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Preface

This PALO volume constitutes the proceedings of the 20th Asia Pacific Symposium
on Intelligent and Evolutionary Systems (IES 2016). The symposium first took
place in 1997 in Canberra, and since then, the series has become a prestigious
incubator of research ideas, as well as facilitator of research collaborations. The
symposium aims to bring together researchers and practitioners from countries
of the Asia-Pacific region in the fields of intelligent systems and evolutionary
computation to present ongoing work, exchange ideas, and discuss future collab-
oration. In 2016, IES was held again in Canberra to celebrate its 20th anniversary.

IES 2016 was hosted by The University of New South Wales (UNSW), at its
Canberra campus in the Australian Defence Force Academy (ADFA). It was col-
located with two other events: the 24th National Conference of the Australian
Society for Operations Research and the Defence Operations Research Symposium.
The event included a number of plenary talks, special sessions, oral presentations,
and industry workshops for a valuable interaction with researchers and practitioners
in the field.

Out of the 51 submissions initially received, 36 were selected to be included in
the final proceedings. Each submission was reviewed by 2–4 members from our
international program committee.

We would like to thank the steering, organizing, and program committees for
their efforts in supporting the symposium. The support and assistance from UNSW,
Springer, and EasyChair are gratefully acknowledged.

Canberra, Australia George Leu
November 2016 Hemant Kumar Singh

Saber Elsayed

v



Organizing Committee

Conference Chair

George Leu, The University of New South Wales, Australia

Proceedings Chairs

Saber Elsayed, The University of New South Wales, Australia
Hemant Kumar Singh, The University of New South Wales, Australia

Special Session Chairs

Saori Iwanaga, Japan Coast Guard Academy, Japan
Bing Xue, Victoria University of Wellington, New Zealand

Registration Chair

Kathryn Kasmarik, The University of New South Wales, Australia

Local Arrangement Chair

Erandi Lakshika, The University of New South Wales, Australia

vii



Publicity Chair

Jiangjun Tang, The University of New South Wales, Australia

Sponsorship Chair

Naeem Janjua, The University of New South Wales, Australia

Program Committee

Hussein Abbass, The University of New South Wales, Australia
Sreenatha Anavatti, The University of New South Wales, Australia
Ahmed Arefin, CSIRO, Australia
Md Asafuddoula, The University of New South Wales, Australia
Mohamed Bader, University of Portsmouth, UK
Yukun Bao, Huazhong University of Science and Technology, China
Regina Berretta, The University of Newcastle, Australia
Kalyan Bhattacharjee, The University of New South Wales, Australia
Tom Cai, The University of Sydney, Australia
Ripon Kumar Chakrabortty, The University of New South Wales, Australia
Jonathan Chan, King Mongkut’s University of Technology Thonburi, Thailand
Shelvin Chand, The University of New South Wales, Australia
Gang Chen, Victoria University of Wellington, New Zealand
Stephen Chen, York University, Canada
Winyu Chinthammit, University of Tasmania, Australia
Sung-Bae Cho, Yonsei University, Korea
Carlos Coello Coello, CINVESTAV-IPN, Mexico
Swagatam Das, Indian Statistical Institute, India
Suranjith De Silva, The University of New South Wales, Australia
Essam Debie, Zagazig University, Egypt
Kusum Deep, Indian Institute of Technology Roorkee, India
Jeremiah Deng, University of Otago, New Zealand
Grant Dick, University of Otago, New Zealand
Kathryn Kasmarik, The University of New South Wales, Australia
Junbin Gao, The University of Sydney, Australia
Amr Ghoneim, Helwan University, Egypt
Ayman Ghoneim, Cairo University, Egypt
Garry Greenwood, Portland State University, USA
Christian Guttmann, Institute of Value Based Reimbursement System, Sweden
Ahsanul Habib, The University of New South Wales, Australia
Noha Hamza, The University of New South Wales, Australia

viii Organizing Committee



David Howard, CSIRO, Australia
Quang Huynh, The University of New South Wales, Australia
Muhammad Iqbal, Victoria University of Wellington, New Zealand
Hisao Ishibuchi, Osaka Prefecture University, Japan
Monjurul Islam, The University of New South Wales, Australia
Saori Iwanaga, Japan Coast Guard Academy, Japan
Yasushi Kambayashi, Nippon Institute of Technology, Japan
Hiroshi Kawakami, Kyoto University, Japan
Masao Kubo, National Defense Academy, Japan
Paul Kwan, University of New England, Australia
Erandi Lakshika, The University of New South Wales, Australia
Kittichai Lavangnananda, King Mongkut’s University of Technology Thonburi,
Thailand
Ickjai Lee, James Cook University, Australia
George Leu, The University of New South Wales, Australia
C.P. Lim, Deakin University, Australia
Jing Liu, Xidian University, China
Michael Mayo, University of Waikato, New Zealand
Yi Mei, Victoria University of Wellington, New Zealand
Efrén Mezura-Montes, University of Veracruz, Mexico
Saber Mohammed Elsayed, The University of New South Wales, Australia
I. Moser, Swinburne University of Technology, Australia
Nasimul Noman, The University of Newcastle, Australia
Kazuhiro Ohkura, Hiroshima University, Japan
Mahamed Omran, GUST
Akira Oyama, Japan Aerospace Exploration Agency, Japan
Somnuk Phon-Amnuaisuk, Brunei Technological University, Brunei
Kai Qin, RMIT University, Australia
Ibrahim Radwan, Seeing Machines, Australia
Inaki Rano, University of Ulster, UK
Tapabrata Ray, The University of New South Wales, Australia
Paolo Remagnino, Kingston University, UK
Karam Sallam, The University of New South Wales, Australia
Hiroshi Sato, National Defense Academy, Japan
Friedhelm Schwenker, Ulm University, Germany
Karthik Sindhya, University of Jyväskylä, Finland
Hemant Kumar Singh, The University of New South Wales, Australia
Andrea Soltoggio, Loughborough University, UK
Andy Song, RMIT University, Australia
Kang Tai, Nanyang Technological University, Singapore
Jiangjun Tang, The University of New South Wales, Australia
Ben Vermeulen, Hohenheim University, Germany
Markus Wagner, The University of Adelaide, Australia
Peter Whigham, University of Otago, New Zealand
Bing Xue, Victoria University of Wellington, New Zealand

Organizing Committee ix



Jianhua Yang, Western Sydney University, Australia
Tomoko Yonezawa, Kansai University, Japan
Forhad Zaman, The University of New South Wales, Australia
Mengjie Zhang, Victoria University of Wellington, New Zealand

x Organizing Committee



Contents

An Evolutionary Optimization Approach for Path Planning
of Arrival Aircraft for Optimal Sequencing . . . . . . . . . . . . . . . . . . . . . . . 1
Md Shohel Ahmed, Sameer Alam and Michael Barlow

A Game-Theoretic Approach to the Analysis of Traffic Assignment . . . . 17
Caixia Li, Sreenatha G. Anavatti, Tapabrata Ray and Hyungbo Shim

Impact of ALife Simulation of Darwinian and Lamarckian
Evolutionary Theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Yuliya Betkher, Nuno Nabais and Vitor Santos

A Local Search Algorithm for Saving Energy Cost in Duty-Cycle
Wireless Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Huynh Thi Thanh Binh, Vo Khanh Trung, Ngo Hong Son,
Eryk Dutkiewicz and Diep N. Nguyen

Obstacle Avoidance for Multi-agent Path Planning Based
on Vectorized Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . 61
Sumana Biswas, Sreenatha G. Anavatti and Matthew A. Garratt

Resource Constrained Multi-project Scheduling: A Priority
Rule Based Evolutionary Local Search Approach . . . . . . . . . . . . . . . . . . 75
Ripon K. Chakrabortty, Ruhul A. Sarker and Daryl L. Essam

Genetic Programming with Embedded Feature Construction
for High-Dimensional Symbolic Regression. . . . . . . . . . . . . . . . . . . . . . . . 87
Qi Chen, Mengjie Zhang and Bing Xue

The Convolutional Neural Network Model Based
on an Evolutionary Approach For Interactive Picture Book . . . . . . . . . . 103
Saya Fujino, Taku Hasegawa, Miki Ueno, Naoki Mori
and Keinosuke Matsumoto

xi



Semi-automatic Picture Book Generation Based on Story
Model and Agent-Based Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Kiyohito Fukuda, Saya Fujino, Naoki Mori
and Keinosuke Matsumoto

Where Does My Brand End? An Overlapping Community
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Ademir C. Gabardo, Regina Berretta, Natalie J. de Vries
and Pablo Moscato

Analysis of Parameter-Less Population Pyramid
on the Local Distribution of Inferior Individuals . . . . . . . . . . . . . . . . . . . 149
Taku Hasegawa, Yuta Araki, Naoki Mori and Keinosuke Matsumoto

Integrating Class Information and Features in Cluster
Analysis Based on Evolutionary Distance Metric Learning . . . . . . . . . . . 165
Wasin Kalintha, Satoshi Ono, Masayuki Numao and Ken-ichi Fukui

Multiple Additional Sampling by Expected Improvement
Maximization in Efficient Global Optimization for Real-World
Design Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Masahiro Kanazaki, Taro Imamura, Takashi Matsuno
and Kazuhisa Chiba

Dynamic Job Shop Scheduling Under Uncertainty
Using Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Deepak Karunakaran, Yi Mei, Gang Chen and Mengjie Zhang

Similarity Analysis of Survey on Employment Trends
in Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Masao Kubo, Hiroshi Sato, Akihiro Yamaguchi and Yuji Aruka

On Deriving a Relationship Between Complexity and Fidelity
in Rule Based Multi-agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Erandi Lakshika and Michael Barlow

Feature Construction Using Genetic Programming
for Figure-Ground Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Yuyu Liang, Mengjie Zhang and Will N. Browne

Estimation of Distribution Algorithms with Graph Kernels
for Graphs with Node Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Kenta Maezawa and Hisashi Handa

Generating Hub-Spoke Network for Public Transportation:
Comparison Between Genetic Algorithm and Cuckoo Search
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Takahiro Majima, Keiki Takadma, Daisuke Watanabe
and Mitujiro Katuhara

xii Contents



Randomising Block Sizes for BlockCopy-Based Wind Farm
Layout Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Michael Mayo, Maisa Daoud and Chen Zheng

Optimization of Aircraft Landing Route and Order Based
on Novelty Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Akinori Murata, Hiroyuki Sato and Keiki Takadama

Design Strategy Generation for a Sounding Hybrid Rocket
via Evolutionary Rule-Based Data Mining System . . . . . . . . . . . . . . . . . . 305
Masaya Nakata and Kazuhisa Chiba

A Novel Binary Particle Swarm Optimization Algorithm
and Its Applications on Knapsack and Feature Selection Problems . . . . 319
Bach Hoai Nguyen, Bing Xue and Peter Andreae

Particle Swarm Optimization for Yard Truck Scheduling
in Container Terminal with a Cooperative Strategy. . . . . . . . . . . . . . . . . 333
Ben Niu, Fangfang Zhang, Li Li and Lang Wu

A Method to Reduce the Amount of Inventoried Stock
in Thai Supply Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Tomohito Okada, Akira Namatame, Hiroshi Sato and Saori Iwanaga

Increasing Stability of Human Interaction Against Time Delay
on Perceptual Crossing Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Sohtaroh Saitoh, Hiroyuki Iizuka and Masahito Yamamoto

Differential Evolution with Landscape-Based Operator Selection
for Solving Numerical Optimization Problems . . . . . . . . . . . . . . . . . . . . . 371
Karam M. Sallam, Saber M. Elsayed, Ruhul A. Sarker
and Daryl L. Essam

The Effect of Word-of-Mouth in U-Mart Artificial Futures Market . . . . 389
Hiroshi Sato, Tomohiro Shirakawa and Daisuke Nakagawa

Multiple Imputation and Ensemble Learning for Classification
with Incomplete Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue
and Lam Thu Bui

CMA-ES with Surrogate Model Adapting to Fitness Landscape. . . . . . . 417
Kento Tsukada, Taku Hasegawa, Naoki Mori
and Keinosuke Matsumoto

An Evolutionary Simulating Annealing Algorithm for Google
Machine Reassignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Ayad Turky, Nasser R. Sabar and Andy Song

Contents xiii



Mobile Agent Based Obstacle Avoidance in Multi-robot Hunting . . . . . . 443
Shiyou Uehara, Munehiro Takimoto and Yasushi Kambayashi

Communication-Less Cooperative Q-Learning Agents in Maze
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Fumito Uwano and Keiki Takadama

Autonomous Task Allocation for Swarm Robotic Systems Using
Behavioral Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Yufei Wei, Toshiyuki Yasuda and Kazuhiro Ohkura

Acquisition of Cooperative Action by Rescue Agents
with Distributed Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Mengchun Xie, Mitsutoshi Murata and Shoma Sato

An Evolutionary Framework for Bi-objective Dynamic Economic
and Environmental Dispatch Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Forhad Zaman, Saber M. Elsayed, Tapabrata Ray
and Ruhul A. Sarker

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

xiv Contents



An Evolutionary Optimization Approach
for Path Planning of Arrival Aircraft
for Optimal Sequencing

Md Shohel Ahmed, Sameer Alam and Michael Barlow

Abstract In this paper, we present an evolutionary optimization based path plan-

ning algorithm at Terminal Airspace (TAS) that provides a near optimal aircraft

arrival sequence at Final Approach Fix (FAF). The sequence obtained minimizes

the inter-arrival time as well as provides conflict free path planning to an Air Traffic

Controller (ATC). A classic Genetic Algorithm (GA) based optimization technique

with conflict detection and resolution is developed. Conflict between any two aircraft

is detected based on their future arrival time at the waypoint and resolved by stretch-

ing the gap between those two aircraft. The proposed algorithm is compared with the

traditional GA. Results indicate that the proposed approach obtains a near optimal

solution compared to the traditional GA based algorithm which does not consider

TAS constraints.

Keywords Terminal airspace ⋅Way-point manoeuvring ⋅ Optimal path planning ⋅
Optimal aircraft sequence ⋅ Conflict detection and resolution

1 Introduction

Terminal Area Airspace (TAS) is the airspace surrounding a controlled aerodrome

where aircraft transition from the descend phase to the approach phase. TAS is also

one of the most resource-constrained elements of an air transportation network as

all air traffic converges in TAS and is sequenced for landing [1]. Aircraft sequenc-

ing in TAS is a highly challenging task due to complex manoeuvering constraints
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2 Md.S. Ahmed et al.

(i.e., restricted speed, altitude and movement). During the busiest times, operation

on this safety critical environment reduces ATC efficiency especially sequencing and

manoeuvering the aircraft and eventually degrades the efficiency of the system [2].

One study shows that inefficient sequencing techniques in the TAS area resulted in,

on average, 18 min of delay for 19% of European flights [3].

The increasing demand of air traffic is stressing the capacity of the current Air

Traffic Management System (ATMS). This is likely to cause both safety and perfor-

mance degradation in the near future. It is believed that by increasing the level of

automation, the efficiency of the ATMS can be enhanced. This may assist ATC to

handle the increased traffic demand in a more reliable way.

Therefore, increasing the automation of ATM components, an automatic decision

support techniques, is imperative to meet future needs and might increase the overall

system performance.

In recent years, many optimization based algorithms and technique were pro-

posed for aircraft sequencing as an automatic decision support tool [4, 5]. Most of

the approaches available in the literature have goals that were simplistic to obtain

the best sequence and hence provide high throughput. However, in practice, obtain-

ing those optimal sequences might be a very challenging task due to the frequently

changing environment, complex network structure and cost consideration (i.e., shift-

ing position, vectoring a long way, holding a long time etc.). A survey of the literature

has failed to discover any other works that use a path planning based approach for

solving the aircraft sequencing problem. However, a path-planning approach may

deliver near optimal results while addressing and dealing with real-world complexi-

ties such as limited capacity to shift sequence. Figure 1 presents the algorithm based

optimization sequence that is prevalent in the literature and the real world scenario

that is expected to be achieved.

Fig. 1 a Optimal sequence (traditional optimization technique). b Expected optimal sequence
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To achieve the expected arrival sequence, ATCs (the Approach controller) have

to juggle the arrivals through the Standard Terminal Arrival Routes (STAR) along

with the desired safe separation. A STAR is a flight route defined and published

by the Air Navigation Service Provider (ANSP) that usually covers the phase of a

flight that lies between the last point of the route filled in the flight plan and the first

point of the approach to the airport, normally the Initial Approach Fix (IAF) [6].

Hence, a STAR connects the en route phase with the approach phase of the flight.

Having an optimal sequence and implementing it in a TAS provides two different

outcomes, given the complexity of the environment. First, increased probability of

potential conflict at different waypoint. Second, it decreases the ATC efficiency. In

this paper, we have been motivated to obtain the expected near optimal sequence at

FAF by traversing through waypoint, given all the TAS constraints (i.e., speed limit,

altitude limit and separation etc.). We develop an evolutionary optimization based

path planning algorithm that provides an optimal aircraft sequence at the FAF. Our

algorithm also predicts potential conflict at future waypoints and uses a path stretch

technique to resolve the conflict. We call this algorithm Terminal-Airspace Travers-

ing Algorithm (TATA). This algorithm finds the near optimal path for each aircraft,

resolves potential conflict and maintains safe separation. The proposed algorithm

also provides a detailed manoeuvring guidance to the ATC.

We compare and analyse our approach (i.e., TATA VS traditional GA) on several

random arrival sequences in terms of the inter-arrival time of the sequences. The

remainder of the paper is organized as follows: Sect. 2 explains the problem formu-

lation. Section 3 outlines a methodology and proposed algorithm. Section 4 presents

the experimental design. Results and analysis are discussed in Sect. 5. In Sect. 6, we

present our conclusions and future work.

2 Problem Formulation

We subdivide the problem formulation into two stages:

∙ The optimization model for arrival sequencing using traditional GA

∙ The optimization model for arrival sequence using path planning (TATA)

2.1 Optimization Model for Arrival Sequencing Using
Traditional GA

The aircraft-sequencing problem is to minimize the inter-arrival time between two

consecutive arrivals and hence the total inter-arrival time. The optimization model

for the arrival sequence is formulated as follows:

A: set of all aircraft in a sequence

Sij: minimum safe separation between two aircraft i and j
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L: length of the final approach path

Oi: runway occupancy time of aircraft i
Vi: approach speed of aircraft i
Vj: approach speed of aircraft j
Tij: inter-arrival time between aircraft i, j

The inter-arrival time between aircraft i and j can be determined by Eqs. (1) and

(2) [7]. The runway occupancy time of the aircraft are presented in Table 1b.

Tij = Max[
L + Sij
Vj

− L
Vi
, Oi] when Vi > Vj (1)

Tij = Max[
Sij
Vj

, Oi] when Vi ≤ Vj (2)

Objective Function: The objective is to minimize the inter-arrival time of each

sequence. The objective function and the corresponding fitness function of the tra-

ditional GA based optimization problem is as follows:

𝛹 =
k∑

i,j=1

k∑

i,j=1
Pij.Tij (3)

Min
n∑

i=1
𝛹 (4)

Fitness = Max(1∕𝛹 ) (5)

where k is the number of aircraft classes (i.e., 3 for Heavy, Medium and Light clas-

sification), Pij is the probability of the arrival of aircraft i followed by j and n is the

total aircraft in the sequence. Equations (3, 4 and 5) determines the optimal sequence

based on traditional GA.

2.2 Optimization Model for Arrival Sequencing Using Path
Planning (TATA)

Aircraft are sequenced by traversing through the terminal airspace and the final

sequence is obtained at the FAF. Let the arrival time of aircraft i and j at waypoint

p be pti and ptj respectively. Each aircraft needs to maintain a safe separation at each

waypoint.
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Objective function: The objective function of the optimization problem is as fol-

lows:

𝛹 =
k∑

i,j=1

k∑

i,j=1
Pij.Tij (6)

Min
n∑

i=1
𝛹 (7)

Fitness = Max(1∕𝛹 ) (8)

Subject to the constraints that,

|pti −p tj| ≥ Sij (9)

TATA achieve the near optimal sequence through Eqs. (6, 7, 8 and 9).

3 Methodology

The proposed methodology consists of two major phases. Figure 2 shows the con-

ceptual diagram of the methodology.

∙ A method for generating the optimal arrival sequence using GA

∙ TATA for optimal arrival sequence

Fig. 2 Conceptual diagram of the methodology
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3.1 A Method for Generating the Optimal Arrival Sequence
Using GA

Figure 3 shows the flowchart of the traditional genetic algorithm implementation for

optimal sequence derivation. The initial aircraft arrival sequence is generated using a

mixed distribution of the aircraft as presented Table 1a. This distribution represents

the aircraft mix for a typical spoke airport (in a Hub-Spoke network) [8]. The random

Fig. 3 Flowchart of the genetic algorithm implementation
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Table 1 (a) Aircraft mix distribution (%) (b) Runway occupancy time (Sec)

Heavy (H) Medium (M) Light (L)

(a) (%) 20 40 40

(b) 60 55 50

arrival sequence is modelled as a chromosome where each gene of the chromosome

represents the aircraft wake category (heavy, medium or light).

GA based optimization considers inter-arrival time as the sole optimization crite-

ria without involving the manoeuvring complexity of TAS. The evolutionary process

attempts to maximize the fitness function through genetic operations. In this imple-

mentation, according to the problem characteristics and the chromosome size the

initial population size is considered 50 [9].

Two parent chromosomes (out of a population of K parent chromosomes) are

selected (using tournament selection) to undergo a genetic operation (i.e., crossover

and mutation). The elitism algorithm is used to determine the survival of parent and

offspring in the new generation [10]. The fitness of the offspring is evaluated using a

fitness function. The fitness generation curve shows in Fig. 8a that the fitness value

does not further improve after 200 generation. This is because, after 200 generations

the produced sequence’s total inter-arrival time remained unchanged. However, we

continued our evolution up to 400 generations as an evidence of convergence of the

solution.

∙ Selection

Two individuals are chosen from the population using a selection operator. The

preference is given to fitter individuals, allowing them to pass on their genes to

the next generation. Fitness is determined by Eq. (5). The lower the inter-arrival

time of a particular sequence the higher the fitness value.

∙ Crossover

Fig. 4 shows the crossover procedure. In this crossover method a subset of the gene

is selected from the first parent and then that subset is added to the offspring. The

missing genes are then added to the offspring from the second parent by ensuring

that the total number and types of genes (i.e., aircraft) remain equivalent to the

parents’. To make this explanation a little clearer, consider the example in Fig. 4.

Note here that a subset of the genes (i.e., M, L, H) of the offspring is taken from the

parent 1 chromosome. Next, the remaining genes are taken from parent 2 sequen-

tially.

∙ Mutation

Mutation is used to maintain genetic diversity from one generation of the popula-

tion to the next generation. In this implementation, swap mutation is used. With

swap mutation two gene’s positions in the chromosome are selected in a random

fashion. Swap mutation is only swapping of pre-existing genes, it never creates

a new gene. Eventually, once the population is not producing offspring that are

noticeably different from the previous generation, it is assumed that the popula-

tion converges to a set of solutions to the problem.
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Fig. 4 Crossover procedure of GA based optimization

Determining the population size and mutation rate for GA is problem specific [11].

Too high a mutation rate increases the probability of searching more areas in the

search space, however, it prevents the population from converging to an optimum

solution. On the other hand, too small a mutation rate may results in premature

convergence. To prevent both premature convergence and local optima, a small

mutation rate of 0.015 is used [12].

3.2 TATA for Optimal Arrival Sequence

The flowchart of the TATA approach is shown in Fig. 5. The proposed method uti-

lizes the evolutionary algorithm technique to obtain the near optimal sequence that

ensures a conflict free path at TAS.

A. Initial Aircraft Sequence and Activation Time

The population of possible solution sequences are generated randomly according

to a poisson arrival rate 𝜆. Aircraft arrival events occur at IAF continuously and

independently of one another. Each flight is activated at IAF by following a poisson

arrival process. The initial aircraft sequence is randomly generated by a mix of three

classes of aircraft (Heavy, Medium, and Light) using the distribution as shown in

Table 1a. The probability distribution of the number of homogeneous poisson arrival

events in a fixed interval gives the cumulative function of an exponential distribution

as,

F(t) =
{
1 − e−𝜆t, t ≥ 0
0, t < 0 (10)

Given the inverse of the exponential equation y = 1 − e−𝜆t, we can write for the next

arrival time t in terms of y ∈ (0, 1),

t = F−1(y) = −1
𝜆

ln(1 − y) (11)

Equation (11) gives the continuous activation time at IAF of each random aircraft

expressed in terms of the arrival rate.
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Fig. 5 Flowchart of the TATA approach

B. TATA Based Path Planning Algorithm

The TAS is considered as a network of waypoints. We assume that all the way-

points are static and that the distance between all waypoint pairs is known. Equa-

tions of motion are used for calculating the position of the aircraft at any time t.
After activating at the IAF, each flight finds the next possible waypoint towards the

destination (FAF). The next waypoint is selected randomly from the next available

connected waypoint. At each waypoint the traversing aircraft calculates the distance

and the arrival time between the current and next waypoint. The path distance and

the arrival time are estimated as follows,

a = sin2(𝛥𝜑∕2) + cos𝜑1cos𝜑2sin2(𝛥𝜙∕2) (12)

c = 2.atan2(
√
a,
√
(1 − a)) (13)

dp = R.c (14)

pti =
dp
Vi

(15)
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where 𝛥𝜑 and 𝛥𝜙 are the difference between latitude and longitude of two waypoints

respectively. a is the chord length, C is the great circle distance, dp is the distance

up to waypoint p and R is the earth’s radius. From Eq. (15), we can estimate the

future arrival time (pti) of aircraft i at waypoint p while Vi is the approach speed. This

procedure is repeated until the aircraft arrives at the goal waypoint. Each aircraft of

the population obtains a traversal path with an approach speed at a different waypoint.

However, there may be conflict at each waypoint with another aircraft. To resolve

the potential conflict at the waypoint, a conflict detection and resolution technique is

explained in subsection C and D. Two genetic operators are used in an evolutionary

process: selection and mutation.

∙ Selection
The popular tournament selection mechanism is used due to its efficiency and

simple implementation. In tournament selection, 5 individuals are selected ran-

domly from the population [13]. The individual with the highest fitness wins and

is included as one of the next generation’s population. This is repeated. Tourna-

ment selection also gives a chance for all individuals to be selected and thus it

preserves diversity.

∙ Mutation
To maintain the genetic diversity from one generation of a population to another

generation swap mutation is used as described above for traditional GA. However,

the swapping content and strategy is different. The swap scheme selects one gene

within a chromosome at random and then selects a waypoint from the traversed

path of that gene (aircraft) randomly as well. If there is another available path

instead of the selected waypoint, swap these contents. An example of the swap

mutation procedure is shown in Fig. 6. Note here that from the parent chromo-

some, a gene is chosen randomly as indicated by the dotted lines. The selected

gene (i.e., aircraft) has four waypoints in its chosen path (2 → 5 → 7 → 9). The

selected random waypoint is 5 which has two available next waypoints i.e., 7 and 8
as indicated in the dotted box. After swapping the waypoints, an offspring is pro-

duced. Note that the offspring’s gene sequence has also changed as an outcome of

the swap.

Fig. 6 Swap mutation operator
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C. Conflict Detection Technique

In this paper, a prediction based conflict detection model is introduced. Conflict

is a situation where two aircraft come closer than a certain prescribed distance to

one another. The safety distance is determined by means of a minimum allowed

horizontal separation and a minimum vertical separation. In this model, we consider

the horizontal separation as conflict detection metrics and the potential conflicts are

predicted at different waypoint based on an aircraft’s future arrival time.

We assume that each aircraft follows its flight plan moving along the straight line

joining successive waypoints pk−1 and pk with the prescribed speed Vi. The nominal

arrival time kti of an aircraft i at waypoint k is

kti =
‖pk−1 − pk‖

Vi
(16)

where ‖pk−1 − pk‖ is the distance between two waypoint. A potential conflict between

aircraft i and j at waypoint k is predicted if,

|kti −k tj| ≤ 𝛿 (17)

where ktj is the arrival time of aircraft j and 𝛿 is the minimum separation.

D. Conflict Resolution

A path stretching technique is used to resolve the potential conflict. The objec-

tive of path stretching is to maintain a smooth motion along the trajectories. Two

approaches are used. i.e., speeding the aircraft that will arrive first or slowing the

aircraft that will arrive second. Suppose the arrival time of two conflicting aircraft

at waypoint pk is itk and jtk respectively. The resolution advisories (i.e., required

adjustment of speed) is estimated by following equation.

dt = |itk −j tk| (18)

𝛥t = 𝛿k − dt (19)

vexp =
di

itk + 𝛥t
(20)

𝛥v = |vexp −ap vi| (21)

apvi =
{

apvi − 𝛥v, if itk ≥j tk
apvi + 𝛥v, if itk <j tk

(22)
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Here, dt is time gap, 𝛥t is the required time adjustment, 𝛿k is the minimum separation.

Expected speed vexp can be estimated by Eq. (20) where di is the distance between

aircraft i and next connecting waypoint. Therefore, we can estimate the required

approach speed by Eq. (22) where 𝛥v is the required speed adjustment.

4 Experimental Design

The optimization model is evaluated through simulation. The performance of the

model is evaluated using a mixture of arrivals by taking into consideration that all the

ATC separation rules are satisfied. Table 2 shows the summary of the experimental

parameters used. The simulation is conducted 30 times to observe closeness of the

obtained sequence with traditional GA.

Table 3a shows the pair-wise ATC separations from arrival to arrival in seconds.

In practice arrival separation is measured as nautical miles (NM) and departure sep-

aration is measured in seconds. In this implementation, we convert the separation

distance into time (seconds) for simplicity of computation. Table 3b presents the

probability matrix of two consecutive aircraft based on their wake-type.

Table 2 Experimental set-up

Parameter Values

Mutation rate 0.015

Chromosome size 20

Population size 50

Tournament size 5

Generation 400

No. of simulation 30

Table 3 (a) Arrival-arrival (sec) (b) Probability (Pij)

Trail

(a) Separation

H M L
Lead H 90 120 120

M 60 60 60

L 60 60 60

(b) Probability

H(0.2) M(0.4) L(0.4)
Lead H(0.2) 0.04 0.08 0.08

M(0.4) 0.08 0.16 0.16

L(0.4) 0.08 0.16 0.16
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Table 4 Near optimal path and obtained sequence at FAF

IAF seq GA seq FAF seq IAF time FAF time Optimal path

L L H 6.83 23.03 3 → 6 → 7 → 9
M M M 5.35 23.66 0 → 4 → 7 → 9
L H L 7.15 30.69 0 → 5 → 8 → 9
M L M 14.56 32.89 3 → 6 → 8 → 9
L M M 9.61 34.92 1 → 4 → 8 → 9
M H L 5.26 37.79 1 → 5 → 8 → 9
L M H 17.28 40.04 1 → 6 → 7 → 9
H H L 17.64 41.21 3 → 6 → 7 → 9
L L M 24.16 42.47 0 → 4 → 8 → 9
L L L 10.31 42.82 2 → 6 → 8 → 9
M M M 15.74 43.65 2 → 6 → 8 → 9
H L L 20.52 44.09 3 → 5 → 8 → 9
L L M 19.89 45.17 2 → 5 → 8 → 9
M M L 15.62 48.12 1 → 4 → 8 → 9
L L L 25.14 48.71 3 → 5 → 7 → 9
M L L 26.62 50.16 0 → 5 → 8 → 9
L M H 28.44 51.2 1 → 5 → 8 → 9
M M M 31.65 51.65 2 → 5 → 8 → 9
H L M 26.4 53.07 3 → 6 → 7 → 9
M M L 28.92 54.64 2 → 5 → 8 → 9

5 Result Analysis and Discussion

In this section, we present an illustration of the TATA model and a demonstration of

the aircraft simulation. Figure 8a presents the convergence curve of the optimization

problem. The visualisation shows that the fittest individual had not improved further

after 200 generations.

The simulation result presented in this section is the optimal sequence of GA

based optimization and path planning based optimal sequence of the TATA algo-

rithm. An optimal solution of TATA and GA based arrival sequence is shown in

Table 4. Notice that the arrival sequence of the GA and arrival sequence of the path

planning algorithm (TATA) are very close. The TATA algorithm also provides the

estimated arrival time at FAF. Separation is maintained between all aircraft at all

waypoints at all times. A significant contribution of the TATA algorithm is to pro-

vide detailed guidance to the ATC i.e., the path planning, maximization of runway

capacity and the estimated arrival time at FAF as shown in Table 4.

To observe the mutual closeness of the GA based optimal sequence and the TATA

sequence, the simulation is conducted 30 times. The average inter-arrival time is

shown in Fig. 8b. Note that the path planning based optimal sequence took slightly

greater time, however it is only 0.51%. Finally, we analyze the time-space diagram

of the GA based optimal sequence and the TATA based optimal sequence. Figure 9
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Fig. 7 3D traversed network

Fig. 8 Simulation result. a Fitness generation curve. b Average inter-arrival time/window (Sec-

onds)

shows the comparison of the obtained optimal sequence from the traditional GA

approach and the TATA based approach. Note here, an interesting result for the

best possible sequences in both the cases is that similar wake category aircraft are

positioned side by side to reduce the inter-arrival time. A 3D trajectory network is

depicted based on the traversed path of the TATA based optimal sequence as pre-

sented in Fig. 7.
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Fig. 9 Time-space diagram of GA optimal sequence VS TATA near optimal sequence

6 Conclusion

In this paper, we addressed one of the common challenges faced by ATC in TAS.

How to plan the arrival path of aircraft in transition airspace such that they are

conflict free and their inter-arrival time is minimized. State-of-the-art methods pro-

vide the optimal sequence which minimizes the inter-arrival time given an arrival

sequence of aircraft, with population based search methods being highly effective.

We proposed a GA based path planning technique which can not only achieve an

optimal sequence but also address conflict between arriving aircraft and resolve

them. The proposed algorithm fills an important gap in advising ATC on arrival air-

craft path planing and sequencing to achieve a conflict free optimal sequence which

reduces the inter-arrival time which in turn increases the runway capacity. However,

this approach comes at the cost of some airborne delay which stems from aircraft

speed manoeuvres for conflict resolution.
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competitively choose the least cost routes to minimize their own travel cost, while
system optimum traffic assignment requires traffic users work cooperatively to
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1 Introduction

In the Wardrop’s [1] first principle, the journey times in all routes actually used are
equal or less than those which would be experienced by a single vehicle on any
unused route. This first principle is often referred to as “user optimal” (UE) model.
Under the “user optimal”model, each traveler act competitively and make their own
optimal route for their own benefit. According to Wardrop’s second principle, at
equilibrium, the overall system journey time is minimum. This implies that each user
behaves cooperatively in choosing his own route to ensure the most efficient use of
the whole system, which is referred to as “System Optimal” (SO) model. Under the
UE principle, traffic users competitively choose the least cost route to minimize their
own travel cost, while the SO principle requires the traffic users work cooperatively
to minimize their overall cost. Thus, the competitive and cooperative interaction
between traffic information provider and traffic users can be interpreted as a game.

Game theory is related to several parties with different interests to decide the
optimal choice. The benefit to each party not only depends on its own actions, but
also on the choices of the other parties. For the UE, it consists of many travellers
and each traveller is a game player to compete with each other to find the shortest
path for his/her benefit. In terms of SO model, there is only the traffic control centre
to control all the travellers on the roads. It is assumed all the travelers can cooperate
with each other to get the minimized travel cost of the system. Therefore, users are
fully competitive or fully cooperative in the Wardrop’s theory.

In reality, both competition and cooperation among users exist in the traffic
network. More general situation is proposed by Haurie and Marcotte [2], who
present a relationship between non-cooperative Coumot-Nash (CN) and Wardrop’s
model. It denotes users belonging to a common player are fully cooperative, while
different players are fully competitive. For the first situation it approaches to SO
model and the latter one corresponds to the UE model. A mixed behavior situation
is considered by Harker [3], where some distinct players are controlled by the CN
players, while the other users follow the UE principle. Vuren et al. [4] studied the
route guidance problem by combining the UE principle and SO principle in the
traffic assignment model and different levels of information are incorporated into
the model via a multiple user class Stochastic User Equilibrium (SUE). Wie [5]
introduced a differential game model of Nash equilibrium on a congested traffic
network and applied it to solve the dynamic mixed behaviour traffic network
equilibrium problem [6]. The objective of the research is to establish the relation-
ship between the Nash equilibrium and the dynamic user equilibrium. Friesz et al.
[7] examined a certain class of dynamic games known as open loop differential
Nash games. Kumar and Peeta [8] introduced the strategies to enhance path based
static traffic assignment. A Stackelberg routing strategy is combined into the net-
work optimum model by Korilis et al. [9]. A non-cooperative game framework
combining the traffic control model with routing is proposed by Altman et al. [10],
and more detailed study is done on uniqueness, efficiency and computational
method of Nash equilibrium. In addition, multi-class equilibrium models are also
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studied by La and Anantharam [11], which is analogous to the multiple equilibrium
behaviour models. The game theory algorithm is introduced in agent based coop-
erative decentralized airplane system by Sislak et al. [12].

The Stackelberg strategy safeguards each player against any attempts by the
other players to deviate, but in a sequential manner. In other words, once the leader
and the follower are specified; then the leader has no better choice than to select a
Stackelberg strategy under his own leadership and the follower has no better choice
than to react according to his reaction set. The leader has no incentive to cheat,
since he knows that his control is continuously monitored by the follower. In this
sense the Stackelberg strategy is also an equilibrium point. Thus, the relationship
between traffic authority and traffic users can be modelled by the Stackelberg game
model. The traffic manager is regarded as a leader and traffic users act as followers
and the traffic manager makes this optimal strategy and let the users converge to
their respective equilibrium.

In terms of the traffic assignment, the method of successive average (MSA) [13],
the method of simple projection (SP) [4], the method of day-to-day swapping [14],
and the method of modified alternative direction [15] are the most well documented.
Although these algorithms are implemented in the transportation networks, their
relative performance is still unclear.

Moreover, a simple optimization algorithm is required in view of the relationship
of Stackelberg game between traffic management and drivers. Considering the
implementation of the game based strategy between traffic management and traffic
users, an efficient solution algorithm is required, since it needs to update route
choice advices as often as possible. In recent years, Gradient projection algorithms
have been found to outperform the Frank-Wolfe algorithm and the feasibility of
applying the gradient projection algorithm to the traffic networks is demonstrated.
Thus, a modified gradient projection algorithm is introduced in view of Stackelberg
game between traffic management and drivers to mediate their relationship.

The remainder of this paper is organized as follows: Sect. 2 presents the game
theory based traffic assignment for the road network. The gradient projection algo-
rithm is introduced to improve the efficiency of traffic assignment in Sect. 3. Section 4
gives a description of the solution methodology for the integrated system. Numerical
experiments are implemented in Sect. 5. Concluding remarks are given in Sect. 6.

2 Stackelberg Game Based Modelling

There are two decision variables in the game strategy, where one is a set of path
flows caused by the drivers’ route choice behaviour, and the other is a set of travel
cost information as a result of traffic management strategy. The control variables are
set by the information providers to gain their objectives, which can be combined in
a mathematical form. Thus, the cooperation and competition relationship between
traffic management and traffic users can be expressed as a mathematical mini-
mization problem;
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minαZαðα, x*ðαÞÞ ð1Þ

where α is a vector of traffic information influencing drivers’ perception of the
travel cost, and x*ðαÞ is a vector of traffic flows as a result of the traffic assignment
which is a mathematical formulation of drivers’ route choice problem. Traffic flow
patterns can be achieved by solving the traffic assignment problem based on the
information vector α determined by the above problem.

The traffic assignment representing drivers’ route choice behaviour can also be
expressed as a minimization problem;

minxZx α*, x α*
� �� � ð2Þ

The state of equilibrium of α*, x α*ð Þð Þ can be achieved by bi-level programming
problem: For the upper level of Stackelberg game programming, find the optimal
guidance indicator α for given link g that minimizes total system cost, for the given
link g, drivers can make compromise with information providers on sub-paths to
accept the route advices. Thus the total system cost for minimization is as follows:

minαgZU = ∑a∈A Ca xa + x ̇að Þ*ðxa + x ̇aÞ ð3Þ

Subject to:

x ̇a = xa − ∑k ∑τ ∑i ∑j r
τ
ijk * δ

τ ta
ijk ð4Þ

where Eq. (4) is the constraint of the minimization process, representing the traffic
volume change by previous traffic volume and the selected traffic volume. Equa-
tion (3) is the traffic volume xȧ added to the current traffic flow xa. rτijk is the
number of vehicles on the link from previous node i to next node j at time τ and δτtaijk
is the 0–1 time dependent link-path incidence variables corresponding to the
number of vehicles assigned to each link of specific link a.

For the lower level of Stackelberg game programming, find the optimal traffic
flow pattern to satisfy the UE condition;

minZL = ∑a∈A

Zxa

0

Caðw+ x ̇aÞ * αgdw ð5Þ

where Ca is the travel cost on link a with traffic volume xa.
While the upper level problem is the system optimal traffic assignment, the lower

level problem is a process of a user equilibrium traffic assignment problem. In order
to improve the efficiency of the problem, the traffic assignment problem can be
solved by the gradient projection algorithm, where the main target of the problem is
to find the guidance indicator α for sub-paths. The sub-path represents the paths
which can be perceived by drivers for a user-optimal redistribution under the
system optimal traffic assignment to yield better system travel cost.
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3 Gradient Projection Based Traffic Assignment

Gradient projection algorithm has been shown as an efficient algorithm for solving
the traffic assignment. The GP algorithm is a path-based flow formulation, which
cannot find auxiliary solutions in the link-flow space. The feasible space for the
gradient projection algorithm is defined only by the non-negativity, since GP
algorithm makes moves to the direction of the minimum of the Newton approxi-
mation. The update step can be expressed by the following interactive equation:

f rsk ðn+1Þ= ½f rsk ðnÞ− αðnÞDðnÞ∇Z ̇ðnÞ�+ ð6Þ

where αðnÞ is the step size, DðnÞ denotes a diagonal, positive definite scaling
matrix, ∇ŻðnÞ is the gradient of the transformed objective function, and ½.�+ is the
projection of the argument on the positive axis of the independent variables frsk ðnÞ.
This operation of moving demand conservation constraints from the constraint to
the objective function can make projection simpler. In the process of the operation,
frsk ðnÞ is partitioned into the least cost path flow frsk̄rsðnÞ and the non-least cost path
flow frsk ðnÞ in the path set Krs.

f rs
kr̄s
ðn+1Þ= qrs − ∑k∈Krs , k≠ kr̄s

f rsk ðn+1Þ ð7Þ

where k̄rs is the least cost path from origin to destination. The optimization problem
can be transformed into the following form by substituting the least cost path flow
frsK̄rs

ðnÞ. Thus, the minimization process is related to find non-least traffic cost with
non-least traffic cost flow;

min Z ̇ðf Þ̇ ð8Þ

Subject to:

f rsk ≥ 0, ∀k∈Krs, k≠ kr̄s, r∈R, s∈ S ð9Þ

where f ̇ is the set of non-least cost path flows for all origin to destination pairs. The
objective value can be improved by moving in the negative gradient direction. The
gradient of the transformed objective function is related to the set of non-least cost
paths, and a diagonal scaling of the gradient direction can be achieved by the
second derivatives of the independent variables.

∂Z ̇
∂f rsk

=
∂Z
∂f rsk

−
∂Z
∂f rskrs

,∀k∈Krs, k≠ kr̄s, r∈R, s∈ S ð10Þ

where Z is the original objective function including both the least cost and non-least
cost path. Each component of the gradient becomes the difference between the first
derivative cost of a non-least cost path and the least cost path, where the first

A Game-Theoretic Approach to the Analysis of Traffic Assignment 21



derivative of Z related to any path is link traversal cost based on the current traffic
flow information.

∂Z
∂f rsk

= ∑a∈A c
aðxaÞδrsak ð11Þ

∂Z
∂f rsk

= ∑a∈A c
aðxaÞδrsa

kr̄s
ð12Þ

Thus, the diagonals of the second derivatives of the transformed objective
function are the differentiation of the gradients,

∂
2Z ̇

∂f rs2k

= ∑a∈A c
a′ðxaÞðδrsak − δrsa

kr̄s
Þ2 ð13Þ

where ca
′ðxaÞ denotes the first derivative of the link traversal time.

Let drsk and drsk̄rs be the first derivative costs of path k and the least cost path k̄rs of
the origin to destination pair, the iterative flow update can be expressed as follows:

frsk ðn+ 1Þ=maxf0, frsk ðnÞ−
αðnÞ
srsk ðnÞ

½drsk ðnÞ− drsk̄rs �g ð14Þ

where αðn) denotes a scalar modifier. Once all the non-least cost paths are updated,
the traffic flow on the least cost path is appropriately updated so that the demand is
conserved.

4 Solution Methodology for the Stackelberg Game
Based Traffic Assignment

In order to improve the efficiency of the game based traffic assignment, the Gradient
Projection method is implemented. In the principle of the GP method, the flow frsk is
partitioned into the least cost path flow frsK̄rs

ðnÞ and the non-least cost path flow
frsk ðnÞ in the path set Krs. Substituting the partition of the least cost path flow and
non-least cost path, the path flow frsk in the game based traffic assignment is par-
titioned into user equilibrium least cost path flows and system optimal least cost
path flows.

For the different objectives of the UE model and SO model, the least cost path
flows on the UE model and SO model corresponding to the same O-D (origin to
destination) pair are different. Let the traffic flow on the least cost path between UE
model and SO model be the least cost path flow frs

K̄rs
ðnÞ and the other one be the

non-least cost path flows frsk ðnÞ. Moreover, the paths with traffic cost between the
two least cost of the UE model and SO model are defined as the sub-paths and
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stored as the path set Krs. Substituting the least cost path flow frsK̄rs
ðnÞ given by

Eq. (12) for each O/D pair into the objective function, the optimization problem can
also be formalized by the form of Eq. (13). Then, the modified GP method can be
implemented in the traditional implementation process.

Thus, the Stackelberg game based integrated system can be improved by the
Gradient Projection method to achieve efficient traffic assignment. The solution
algorithm, as shown in Fig. 1 gives the framework for the Stackelberg game based
traffic assignment, can be described as follows:

Fig. 1 The algorithmic framework for the Stackelberg game based traffic assignment
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(1) Pre-assignment
(2) Find sub-paths associated with traffic management and traffic users
(3) Update optimal guidance indicator value to satisfy system optimal traffic

assignment
(4) Update sub-paths, indicator, and total cost
(5) Stop, if no more sub-paths, otherwise go to step 2.

5 Numerical Experiment

The game based gradient projection algorithm is implemented in the Sydney road
network which consists of 287 nodes, 592 directed edges with positive demands.
Figure 2 shows the traffic road network and real-time traffic flow information in
Sydney, where the red line denotes more than 800 vehicles/lane/hour on the road,
orange line denotes more than 600 vehicles/lane/hour on the road, and green line
denotes less than 600 vehicles/lane/hour on the road. Results generated from various
experiments form the comparisons of system performance under time-dependent
game based gradient projection, user equilibrium and system optimal traffic
assignment, which can present clear qualitative and quantitative differentiations
between the game based gradient projection, user equilibrium and system optimal
solutions.

Fig. 2 The traffic road network and real-time traffic flow information in Sydney
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5.1 Convergence and Computation Performance
of the Gradient Projection Method

In order to manifest the effectiveness of gradient projection algorithm, the gradient
projection algorithm is compared with Frank-Wolfe algorithm and the method of
successive averages (MSA) algorithm regarding convergence and computation
performance. In term of the Frank-Wolfe algorithm [13], it is one of the promising
algorithms for traffic assignment, since it can make full use of the network structure
of the road networks. The search directions of the Frank-Wolfe algorithm usually
tend to be perpendicular to the steepest descent directions of objective function as
the iteration proceeds. For the method of successive averages algorithm [14], it is
one of the most widely used solution methods in simulation-based dynamic traffic
assignment. This method relies on predetermined step sizes without requiring
derivative information, so that it can obviate the need to solve one-dimensional line
search problems for finding the optimal move size.

Figure 3 shows the Solution convergence of the Gradient Projection method
Compared with the Frank-Wolfe algorithm. Both the Frank-Wolfe (FW) algorithm
and the gradient projection (GP) algorithm are initialized with zero flows on all the
links in the road network. In the FW model, it uses the all-at-once flow update,
where the total link-flow pattern are adjusted after the traffic demands from all O/D
pairs are assigned to the network, while the GP model updates the flow pattern one
O/D at-a-time, that is, the total link-flow pattern is revised after the assignment of an
O/D pair before continuing to the next O/D pair. Since different traffic flow patterns
are updated, the convergence rates are also different. As shown in Fig. 3, the GP
converges faster than FW. Typically, the 5th or 6th iteration in GP corresponds to
the 10th iteration in FW. Actually, FW slowly approaches to the minimum solution,
and the objective value of FW in the 100th iteration is exactly the same as the 10th
iteration. However, the GP can quickly approach to the minimum solution.

Fig. 3 Solution convergence
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In order to test the computation of the Gradient Projection method, the GP
method is tested on various sizes of grid networks. Table 1 shows the performance
associated with computation time and number of iterations for the Frank Wolfe
algorithm, the method of successive averages (MSA) and the Gradient Projection
algorithm tested on various sizes of road network, ranging from 10 to 592 nodes.
From the comparison results, it shows that GP takes much less iterations and less
computation time than the other two algorithms to reach the same objective value in
all the situations. As the size of the road network increases, the ratio of computation
time comparing with FW and MSA decreases. However, it is still more efficient
than the conventional FW and MSA methods. Moreover, it suggests that the GP
method in the decomposed networks of smaller size can achieve significant benefit
in computation time.

5.2 Travel Performance Comparison with SO and UE

Since the implementation of the game based traffic assignment is based on the
interaction process between UE and SO traffic assignment, in order to manifest the
travel performance benefits of the game based gradient projection algorithm, the
game based traffic assignment is compared with the user equilibrium and system
optimal traffic assignment. The system optimal traffic assignment is a time-
dependent path based traffic assignment, which can provide system optimal traffic
assignment for traffic managements.

The user equilibrium traffic assignment is based on the route choices selection
process, which can generate traffic assignment considering divers’ preferences. The
game based traffic assignment is the coordinated strategy between system optimum
and user equilibrium traffic assignment, which is used to compromise the benefits
between traffic managements and travellers.

The game based traffic assignment is implemented as follows: Firstly, an inde-
pendent UE and SO traffic assignment are modelled respectively; Secondly, based
on the UE and SO traffic assignment, the Stackelberg game based traffic assignment
improved by the gradient projection method is compared with the individual traffic
assignment. The traffic assignments are tested under different network congestion
levels, achieved by different network loading levels. The network loading factor

Table 1 Computation time and number of iterations to convergence for various size of road
network

– 10 nodes, 42
links, 170 O/Ds

36 nodes, 92
links, 670 O/Ds

100 nodes, 375
links, 5670 O/Ds

287 nodes, 592
links, 51670 O/Ds

– Iteration/time (s) Iteration/time (s) Iteration/time (s) Iteration/time (s)
FW 43/17.63 56/25.46 161/58.76 268/95.56
MSA 31/19.92 59/23.12 139/57.6 336/113.21
GP 6/2.41 9/4.37 13/11.39 18/45.23
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denotes the ratio of the total number of vehicles generated in the road network
during the traffic assignment periods compared to a given reference number (19346
vehicles over 15 min period represent a loading factor of 1.0). In the numerical
experiments, five loading factors are considered, namely, 1.0, 1.4, 1.8, 2.0 and 2.2.
Table 2 shows the number of vehicles generated for each loading factor.

Table 3 shows the system performance under the time dependent SO, UE and
Stackelberg game based traffic assignment associated with different loading factors.
Based on the principle of the traffic assignment, when the road network is relatively
uncongested (at low loading levels), the average travel time of vehicles in the road
network is relatively close. As the loading factor is increased, congestion can be
caused and the average travel time increases with the loading factor. The results
show that the average travel time is significantly increased with the increase of the
loading factors, while the average travel distance makes limited variation under the
various loading levels. It indicates that the greater traffic congestion is the primary
cause of the higher system travel time instead of the travel routes. Moreover, the

Table 2 Loading factors and
the corresponding number of
generated vehicles for the
numerical experiments

Loading factor Number of generated
vehicles

1.0 19346
1.4 27168
1.8 34887
2.0 38762
2.2 42631

Table 3 Comparison results of SO, UE and GAME based traffic assignment associated with
various loading factors

Loading
factor

Av. travel
time (min)

Total travel
time (h)

Av. travel
distance (km)

Total travel
distance (km)

Av. speed
(kmph)

1.0 21.46 6759.419 15.43 290508.8 44.44073
1.4 21.62 9599.536 15.58 414777.4 44.53774
1.8 27.83 15971.75 16.73 573659.5 37.36899
2.0 35.64 22744.63 17.46 663784.5 30.69394
2.2 41.24 28991.71 18.43 764689.3 28.11377
1.0 21.46 6759.079 15.43 290435.8 44.39473
1.4 21.65 9613.12 15.53 413774.4 44.31926
1.8 28.36 16279.92 16.49 565286.6 36.18717
2.0 37.94 24230.50 17.24 655256.9 28.56410
2.2 43.65 30704.05 18.37 762131.5 26.55086
1.0 21.46 6759.209 15.43 290474.8 44.43034
1.4 21.63 9603.854 15.56 414600.1 44.45197
1.8 28.04 16093.65 16.51 565984.4 36.61781
2.0 36.17 23086.82 17.33 658745.5 30.03728

2.2 41.31 29751.75 18.41 763836.7 27.39725
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average travel distance increases with the loading level increased, suggesting an
increase number of drivers assigned to longer travel routes. In addition, the average
travel distances under UE are less than average travel distances under SO for
various loading factors, indicating some drivers are assigned to longer routes under
SO in order to reduce traffic congestion to achieve system optimal benefit.

For different objectives of the UE and SO models, Stackelberg game based
traffic assignment is proposed to balance the benefit between UE and SO in order to
relieve traffic congestion and reduce travel cost. The results under the Stackelberg
game based traffic assignment show that the game based traffic assignment makes
compromise between UE and SO. Figures 4 and 5 compare the average travel time
and average travel distance under UE, SO and Stackelberg game based traffic

Fig. 4 Average travel time
comparison between UE, SO
and game based traffic
assignment

Fig. 5 Average travel
distance comparison between
UE, SO and game based
traffic assignment
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assignment. The results show that limited variation in both average travel time and
average travel distance is caused by the game based traffic assignment at the lower
loading levels.

The reason is that the traffic is not congested at lower loading levels, and travel
costs as a result of the UE and SO traffic assignment are identical to each other,
thus, limited variation is caused by the game based model. With the increase of the
loading factors, the average travel time approaches the SO model, indicating a
number of vehicles assigned to SO model to relieve traffic congestion on the roads
at the expense of the increase of average travel distance.

6 Conclusion

In this paper, a Stackelberg game based traffic assignment is applied to deal with the
cooperation and competition relationship between UE and SO. While the traffic
management requires the traffic users cooperatively to achieve SO traffic assign-
ment, traffic users competitively make route choices based on UE traffic assign-
ment. Thus, the cooperation and competition relationship between traffic
management and traffic users can be modelled by the game theory model, which
can balance the benefit between traffic managements and travellers. Comparing
with the Nash game theory, the Stackelberg game theory with the leader and
follower player can better model the relationship between traffic authorities and
traffic users. Moreover, the Gradient Projection algorithm is introduced to improve
the efficiency of the game based traffic assignment.

The integrated system is implemented in the Sydney road network, and the
introduced gradient projection algorithm can improve convergence rates and
computation time comparing with Frank-Wolfe algorithm and MSA method. The
system performance results show that route choices given by the game based
redistribution can compromise between traffic management and traffic users to
avoid congested routes and reduce travel time in the road network.
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Impact of ALife Simulation of Darwinian
and Lamarckian Evolutionary Theories

Yuliya Betkher, Nuno Nabais and Vitor Santos

Abstract Until nowadays, the scientific community firmly rejected the Theory of
Inheritance of Acquired Characteristics, a theory mostly associated with the name
of Jean-Baptiste Lamarck (1774–1829). Though largely dismissed when applied to
biological organisms, this theory found its place in a young discipline called
Artificial Life. Based on the two models of Darwinian and Lamarckian evolutionary
theories built using neural networks and genetic algorithms, this research presents a
notion of the potential impact of implementation of Lamarckian knowledge
inheritance across disciplines, including biology, computer science and philosophy.
There is an evidence that Lamarckian organisms can have wide practical application
across several different domains, therefore this type of research should be allowed
and encouraged. However, even though Lamarckian evolutionary algorithm already
holds major benefits for various disciplines and promises even more, its imple-
mentation in Artificial Life needs regulation to avoid malevolent use.

Keywords Artificial life ⋅ Philosophy ⋅ Genetic algorithms ⋅ Darwinism ⋅
Lamarckism

1 Introduction

The behavior of natural organisms in the real world is not fixed across their
lifespan. Through interactions with the environment, they gain experience and
develop a tendency to repeat the actions that bring pleasure or benefit, and to avoid
those that lead to danger or pain.
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At the same time, organisms are not born in a blank state—they develop
according to the information in their genes, which are inherited from the ancestors
and selected through the struggle for existence [1].

However, only what is inborn in their own heritage can be transferred along with
their genes. The acquired characters will not be encoded in the genes, and therefore
will not be directly passed to the offspring—according to Darwinism, all the
knowledge that biological organisms have gained should be developed over again
by each new generation.

Here a simple question arises: what if living beings could get past this limitation?
What if children could pick up where parents left off developing their expertise,
health, coordination and reflexes, each generation building on the last to reach out
for higher and higher goals?

This attractive, although hypothetic process is called Lamarckian inheritance, a
long-discredited mechanism of evolution. Through learning, individuals would
experience certain adaptive changes and acquire new traits that would be directly
transmitted to their offspring. Although it was largely dismissed as a valid theory
for natural systems, Lamarckian evolution found its place and proven effective
within computer applications [2].

But science moves ahead, and in the nearest future, the implementation of
Lamarckian evolutionmay turn into something bigger that just a cybernetic adventure.
Even though our commonly accepted definition of life does not yet recognize any
current simulations or applications as alive, it may not always stay that way. The
opinions regarding this matter vary, but according to the strong ALife position, first
introducedbyNeumann in [3], life canbeabstracted away fromanyparticularmedium.

In this research, we are going to evaluate the potential impact of the imple-
mentation of Lamarckian evolution, in particular, of the inheritance of skills and
knowledge, given the possibility of creating life within computational environment.
Instead of being just an engineering problem, it becomes a cross-disciplinary topic
that creates numerous philosophical questions and implications.

In order to demonstrate that it is possible to implement Lamarckian evolution in
a computational environment, we refer to previously created models and present our
own, where a neural network is regarded as a learnable individual [4], and genetic
algorithms [5] are applied to the population of such individuals based on mecha-
nisms of natural evolutionary processes and genetics. Using a focus group of
researchers from computer science, biology and philosophy, we have validated the
model and evaluated its potential impact on different matters in our lives, including
technology, ethics, life and society.

2 Background and Problem Identification

Throughout the history, scientists have studied evolution for the same reasons that
they have learned any other discipline—the thirst for knowledge, the desire to
understand the past and predict the future, and the necessity to organize our world.
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Evolution, especially the understanding of how organisms evolve through natural
selection, has always been an area of science with various practical applications [6].

But nowadays, with the emergence of artificial intelligence, computational
neuroscience and transhumanism, evolutionary studies have acquired fundamen-
tally different ethical and social significance that extends beyond simple curiosity.
Already existing roadmap on whole brain emulation [7] attempts to achieve soft-
ware intelligence by copying the function of biological nervous systems into
software. This approach produces numerous ethical issues that should affect
responsible policy for developing the field. Animal emulations have controversial
moral status, and a principle of analogy is suggested for judging treatment of virtual
animals. Various considerations of developing and utilizing human brain emula-
tions are discussed [8].

Among the latest published books, taking inspiration from self-awareness in
humans, the new notion of computational self-awareness as a fundamental concept
for designing and operating computing systems has been introduced [9]. The basic
ability of such self-aware computing systems is to gather information about their
state and progress, learning and maintaining models containing knowledge that
enables them to reason about their behavior. Self-aware computing systems will
have the ability to utilize this knowledge to effectively and autonomously adapt and
explain their behavior in dynamic environments.

Although the accuracy of predictions of future developments in AI and ALife is
difficult to evaluate, according to Ray Kurzweil himself, 89 out of 108 predictions
he made so far were entirely correct by the end of 2009. An additional 13 were what
he calls “essentially correct” (meaning that they were likely to be realized within a
few years of 2009), for a total of 102 out of 108. Another 3 are partially correct, 2
look like they are about 10 years off, and 1, which was tongue in cheek anyway,
was just wrong [10].

While at present, whole brain emulation seems an unfeasibly ambitious chal-
lenge, the necessary computing power and various scanning methods are rapidly
developing. Large-scale computational brain models are a very active research area,
at present reaching the size of mammalian nervous systems [11–14]. Whole brain
emulation can be considered the logical endpoint of current trends in computational
neuroscience and systems biology [8].

The implementation of Lamarckian evolution in future ALife systems such as
virtual lab animals has wide practical application across disciplines. We have
examined the trends and role of such evolution in engineering, computational
biology and ethics, and based on this analysis, came to several assumptions that are
to be evaluated by the focus group.

2.1 Engineering

In a dynamic and unpredictable environment such as real world, it is very difficult
to construct intelligent machines or computer programs that would perfectly
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manage to produce desirable results from the very beginning. Therefore, an
approach based on adaptive computation or evolutionary computation, where
programs adapt themselves towards given situations through generating and testing,
gained its popularity and significance [1].

Simulations of evolution using evolutionary algorithms originate from the work
of Barricelli in the 1960s, continued by Fraser, who published a series of papers on
simulation of artificial selection [15]. As a result of the work of Rechenberg, who
used evolution strategies in the 1960s and early 1970s to solve complex engineering
problems, artificial evolution became a widely recognized optimization method
[16]. Genetic algorithms in particular became well-known through the writing of
Holland [5]. As academic interest grew, dramatic increases in the power of com-
puters allowed practical applications, including the automatic evolution of software
[17]. Evolutionary algorithms are now applied in solving multi-dimensional prob-
lems more efficiently than computer programs developed by human designers, and
also to optimize the design of systems [18].

A research area called artificial life [19] is a typical example that analyzes
mathematical aspects of the dynamics residing in life in a synthetic way and tries to
apply principles of natural systems (ranging from swarms of cells to human soci-
eties) as models for possible novel methods of adaptive computation. In
software-based artificial life, neural networks are often applied in modeling the
brain of an agent. Although traditionally more of an artificial intelligence technique,
neural nets can be used for simulating population dynamics of organisms with an
ability to learn [20]. Genetic algorithms are applied to such populations based on
evolutionary and genetic mechanisms.

Due to the biological background, earlier attempts of artificial life modeling have
always focused on a Darwinian evolution, based on competition of artificial beings
in a computational environment, where new artificial organisms would appear only
as the result of combining morphology of parents [21]. Until nowadays, Darwin’s
evolutionary models have been widely used in different scientific fields. Many of
such implementations were motivated by the idea of constructing practical devices
that have some of the useful features of living systems, such as robustness, flexi-
bility, and autonomy [22].

At the same time, from the engineering point of view, it is not necessary to
consider only Darwinian models. The possibility of heredity of acquired charac-
teristics can be quite useful, and several studies have already shown the significant
increase in performance of problem-solving systems using Lamarckian scheme [23,
24].

In evolutionary algorithms, the implementation of Lamarckian inheritance
means that an individual can modify its genetic code during or after fitness eval-
uation, or lifetime. This idea has been used in several studies with particular success
in problems where the application of a local search operator obtains a substantial
improvement, e.g. traveling salesman problem [2]. The effectiveness and superi-
ority of Lamarckian evolutionary algorithm has also been demonstrated for fixed
tasks in stationary environments, even though Darwinian population adapts better
to dynamic environments [1].
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2.2 Computational Biology

Relatively recent research in cell biology has shown that the internal chemistry of
living cells is a form of computation [25]. Such ideas are currently breaking
boundaries between scientific disciplines and give rise to interdisciplinary sciences
like computational biology, which involves the development and application of
data-analytical and theoretical methods, mathematical modeling and computational
simulation techniques to the study of biological, behavioral, and social systems [19].

A wetware computer is an organic computer (also known as an artificial organic
brain or a neurocomputer) built from living neurons. Professor Ditto, at the Georgia
Institute of Technology, is the primary researcher driving the creation of these
artificially constructed, but still organic brains. One prototype is constructed from
leech neurons, and is capable of performing simple arithmetic operations. The
concepts are still being researched and prototyped, but in the near future, it is
expected that artificially constructed organic brains, even though they are still
considerably simpler in design than animal brains, should be capable of simple
pattern recognition tasks such as handwriting recognition [26].

At the same time, while originally dismissed as non-feasible, Lamarckian evo-
lution now appears more and more in biological systems ranging from microbes to
mammals, and molecular mechanisms that might realize this mode of inheritance are
being clarified. Epigenetics, a set of means to propagate a phenotypic change across
generations, appears to provide a set of feasible molecular means that may realize
Lamarckism. In addition, several mechanisms exist which may allow the phenotype
to instruct the genotype at a given environment. Recent advances in molecular
evolution have been surveyed and realistic means have been presented to engineer
Lamarckian organisms in the lab which might possess improved evolvability [27].

2.3 Philosophy and Ethics

Computational biology gives one the sense that we are at the threshold of yet
another of civilization’s “Spinoza moments” where the entire framework for
thinking about life is dramatically, and irrevocably restructured. The idea that
cellular membranes and contents may be functional equivalents of computers does
not appear strange and implausible any longer. And even if the implementation of
strong ALife is a matter of future, considering potential risks and their ethical
impacts is an important aspect of research ethics, even when dealing with merely
possible future radical technologies [8].

Evolutionary studies have provided us better understanding of ourselves and
helped us find our own place on Earth with 1.8 million identified species, and
possibly 10 million total species. The context of evolution gives an insight on how
to behave among members of our own and other species. Evolution helps us
understand the purpose and reasons for our physiology and anatomy [28].
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Since the Darwinian theory of evolution gained widespread acceptance in the
late 1800 s, scientists and philosophers have been looking for ways to relate tra-
ditional evolutionary theory to the way we live, interact with society, and think
about our place in existence. Now the Lamarckian evolution within artificial life has
become a relatively recent object worthy of philosophical attention [29]. Therefore,
the new questions of particular interest in evolutionary philosophy are how much of
an influence Lamarckian evolution in ALife would have on human behavior, and
what are the philosophical implications of this evolution on issues that relate to
ethics and morality.

2.4 Research Objectives

The main goal of this research is to identify the potential impact of implementation
of knowledge inheritance in artificial organisms using Lamarckian scheme. The
objectives being pursued in order to achieve this goal are the following:

1. Build two artificial life models of Darwinian and Lamarckian knowledge
inheritance processes using genetic algorithms and artificial neural networks.
Using this example, prove that such implementation is possible in computational
environment.

2. Evaluate possible impact of knowledge inheritance in artificial organisms on life
and society, considering latest trends across disciplines.

3. Understand the philosophical, social and ethical implications of Lamarckian
evolution in ALife.

3 Research

The inception on species capable of Lamarckian learning does have the potential to
do great harm, as well as good. From the philosophical point of view, this research
may be seen as playing God and even distorting the essence of life, instead of
allowing life to emerge through natural processes and perhaps by nature’s will.
From a more practical point of view, some irreversible horrors may come creeping
out of the flask on the laboratory bench, once a new Lamarckian specimen is
introduced to the natural environment. These issues should give pause even to those
who normally embrace advances in science with enthusiasm.

3.1 Fundamentals

In 2010, two American biologists Craig Venter and Hamilton Smith have made a
bacterium that has an artificial genome—creating a living creature with no ancestor
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[30]. According to Craig Venter himself, this cell has not yet found any practical
applications, but it enables a change in philosophy, it is a proof of concept. But the
proof of concept that we can potentially create and modify living creatures the way
we want was key, otherwise it is just speculation and science fiction.

At the same time, there have been several successful attempts to model
Lamarckian evolution in computer science and engineering [1, 31], e.g. in auto-
mated docking [31]. This model of evolution has been used for boosting search in
particular kind of applications, however, the cost associated with the evaluation of
the objective function with the use of Lamarckian evolution was an issue to con-
sider. Such models have a broad range of applications over several different
domains, e.g. optimization in engineering.

If the two mentioned approaches were combined, and there were indeed purely
artificial organisms that would learn through interactions with the environment,
numerous ethical and philosophical implications would arise. While some may
regard the creation of purely artificial organisms as a defining moment in the history
of biology, others may claim that the risks could outweigh the benefits.

3.2 Proposal (Model)

This model is not attempting to explain how a brain of a pure Lamarckian being
would work. It aims to demonstrate a possibility of creating a robot, whose learning
would have a Lamarckian component, since at least some of its knowledge would
be passed to the offspring. Instead of presenting an automaton with single-layer
neural networks like in AntFarm [32], we will train a multilayer neural network
using backpropagation (of errors) or the generalized delta rule, since a multilayer
net can lean any continuous mapping to an arbitrary accuracy [33]. Training a
network will include the feedforward of the input training pattern, the backpropa-
gation of the associated error, and the adjustment of the weights.

Consider the following network, in which we can formulate both feedforward
propagation and backpropagation as a series of matrix multiplies. From now on, we
are going to index matrices as A(i), where A refers to the type of matrix and (i) is an
index of the position of the matrix in the network (we can also have (i → j) for a
weight matrix connected layer i to layer j). The only exceptions are the input data
matrix X and the output of the network Y. We denote the value of an element in
row i and column j of some matrix A(k) with Aij(k) Dolhansky [34].

The defined automata can be made of several areas, part of them would corre-
sponding to a neural net [35] and making up a neurological system: vision, hearing,
touch, and internal sensing; the rest are physical characteristics. In AntFarm [32],
agents of the same colony have identical genetic codes. This is not what we are
looking for. The automata in this model have some, although minor differences in
their connections between neurons, which better represents such in real biological
systems.
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The neurological system of automata consists of organs (vision, hearing, touch,
internal sensing), through which it receives inputs (like synapses) in the neurons nm
about the environment. Based on the weights wp, q, which stand for knowledge, a
mathematical function would determine the activation of the neuron. Another
function (which may be identical) computes the output of the artificial neuron and
lead to an action of automata, like movement, eating, reproducing, or breathing.

Changing weights in the model represents learning. Automaton will learn
throughout its life, which means all its weights wi, j will change in order to let it
make better decisions (as a result of its learning experience). Cwi, j is a learning
matrix with weights that change with time. The backpropagation algorithm will be
used to compute the necessary corrections. The algorithm can be decomposed in the
following four steps [35]: feed-forward computation, backpropagation to the output
layer, backpropagation to the hidden layer, and weight updates.

During feedforward, each input unit Xi receives an input signal and broadcasts
this signal to the each of the hidden units Z1, Zp. Each hidden unit then computes
its activation and sends its signal zj to output units. Output units Yk compute their
activation yk to form the response of the net for the given input pattern [33]. Note
that the network will not be fully connected, just like our human brain.

The environment can be represented as a bi-dimensional plane 500 × 1000,
where the automata can move right, left, up and down. The letter A stands for the
automata, while O stands for food and Z stands for predators. In the Fig. 1, there is
an example of what neural networks of parent A1 could be. The inputs from the
environment reach input neurons on the left, get to a hidden layer, and based on
knowledge hidden in weights, output neurons trigger actions on the right.

Fig. 1 Neural network of parent A1
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The neural network of the second parent would be very similar to such of the
first parent. We assume that the amount of the neurons is roughly the same, the
difference is in the location of the connections between them, and it should not be
very big.

According to Darwinist approach, automaton is born with heuristic values that
are inherited through a crossover, however, it has almost no knowledge at all (see
Fig. 2). The weights of its neural network are chosen pseudo-randomly.

This means that instead of a crossover, the initial weights would be replaced by
some heuristic (inborn) values appropriate just for automaton’s survival, e.g.
breathing or eating. In the Figs. 2 and 3, there will be only pieces of the whole
network in such form (in reality, there are many more neurons, this is the
demonstration of the concept).

In a Lamarckian neural network, however, weights will be inherited as well.
They can be transferred to children directly (as in Fig. 3) or through any mathe-
matical function, e.g. average of corresponding weights.

Fig. 2 Darwinian crossover (piece)

Fig. 3 Lamarckian crossover (piece)
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3.3 Argument

In our culture, there is a widespread image of a superior artificial mind conquering
the planet. In reality, Darwinian or Lamarckian, an artificial species will more likely
become another species’ lunch. The risks about creating artificial life are
exaggerated.

When the news about Craig Venter’s achievement came out, people started to
become worried about the dangers that ALife could bring. Such worries are of the
same nature as popular beliefs that natural is good and artificial is bad. In fact,
nothing could be further from the truth—malaria is very natural yet disastrous,
while antibiotics are man-made, but very handy sometimes.

However, Lamarckian artificial life can be risky if released into natural envi-
ronment, given the examples of already existing failed interventions in natural
design, mostly because the dimensions of its danger are never known in advance.
Therefore, even if the implementation of synthetic Lamarckian evolution is
allowed, it should be regulated and licensed in order to avoid malevolent use.

For human beings, however, the possibility of inheriting knowledge would have
its major drawbacks. Often our parents are not the people we want to inherit
knowledge from, especially in a form of a random combination of their skills
instead of a catalog. Moreover, it is nice to inherit knowledge from a person like
Einstein, but all the pains, fears and mental issues of our parents would be inherited
too, which would have a major negative impact on our lives. In addition, our brains
do not work like hard drives that store information the way it is over the years. Our
memories get distorted over time, we forget some details and come up with new
ones. Passing such flawed knowledge through generations does not seem like a
good idea.

While Lamarckian evolution has wide application in ALife and can be surely
used in experiments in artificial environment, for human beings, Darwinian evo-
lution seems to make more sense. At the end of the day, we are all living in dynamic
environments where inheriting knowledge is often useless—we keep re-learning
again and again, and the ability to unlearn old skills and study everything anew
seems to be the new literacy.

4 Conclusions

There is an evidence that Lamarckian organisms can have wide practical application
across several different domains, therefore this type of research should be allowed
and encouraged. But even though Lamarckian evolutionary algorithm already holds
major benefits for humanity and promises even more, this implementation needs
regulation. For now, potential benefits seem to outweigh risks, however, the risks
are unknown and the required investment might be an issue.
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Firstly, it is absolutely necessary to prevent malevolent use of the research. It can
be abused in numerous ways, e.g. applied in the creation of biological weapon and
bioterrorism. Secondly, since the project will require a lot of investment, the
research may become driven by profits for harmful purposes rather than benefits to
humanity as a whole. Thirdly, safety measures should be taken before releasing the
Lamarckian species into natural environment. This will be needed not only for the
sake of safety of natural biodiversity, but also to help the Lamarckian organisms
survive outside the lab.

Nowadays, even for a non-scientist it seems quite easy to distinguish a living
organism from a non-living, except probably for viruses, whose status is still
questionable. The agreed on definition of life, however, does not exist, and the
inception of artificial species, in this case, artificial Lamarckian species makes it
even murkier. It is still unclear whether this implementation will defeat the divinity
of life or concept of the soul and prove that there is no magic spirit of vitality. Until
now, man did not manage to create life from scratch, only to manipulate it, so the
question remains open.

The inception of Lamarckian organisms may eliminate some existing philo-
sophical concepts, such as free will, because inherited knowledge contradicts its
definition, however, what matters is the ability to choose which stays put. In this
sense, the definition of free will in philosophy might be changed or expanded,
considering the possibilities that are arising in artificial life.

This type of research is still rather related to computer science and does not
prove or disprove the theory of creationism. Therefore, by conducting this kind of
studies, we may not embrace the concept of God or understand the origins of our
species. Also we may not understand the relationship between us and the creator
any better, as well as find out whether the creator has ever existed at all.
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A Local Search Algorithm for Saving
Energy Cost in Duty-Cycle Wireless
Sensor Network

Huynh Thi Thanh Binh, Vo Khanh Trung, Ngo Hong Son,
Eryk Dutkiewicz and Diep N. Nguyen

Abstract Wireless Sensor Networks (WSNs) have been recently used for various
applications. Due to the distributed and (often) unattended nature of the nodes after
deployment, the lack of energy and the interruptive process in each sensor are the
two major problems of WSN systems. Hence, designing a protocol which not only
improves system performance but also lowers sensors’ energy consumption so as to
maximize the network lifetime is very much desirable. The network lifetime
maximization problem was known to be NP-Hard. This paper addresses the Min-
imum Energy-Multicasting (MEM) problem in Duty-Cycle Wireless Sensor Net-
works (DC-WSNs) in which sensors cyclically switch between on/off (wake/sleep)
modes. To that end, we propose a local search algorithm and compare its perfor-
mance with the best algorithm so far called GS-MEM over the four datasets des-
ignated for the MEM problem. The experimental results show that our proposed
algorithm significantly outperforms GS-MEM in terms of energy cost.
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1 Introduction

Recent advances in micro-electro-mechanical (MEMs) technologies have made
sensor motes affordable for most applications. That allows popular deployment of
wireless sensor networks (WSNs) in a wide range of applications (both civil and
military), e.g., environment monitoring, seismic analysis, surveillance, internet of
things (IoT). So far, the ability to widen the communication range and increase the
performance’s flexibility allows Wireless Sensor Networks (WSNs) deployment in
complicated terrain or hostile environment. For such applications where battery
replacement/replenishing is impossible or prohibitively expensive, it is critical to
design the network in an energy-efficient manner.

There are usually two major components in WSNs, a base station (or data
gateway) and a set of sensor nodes that capture environmental parameters such as
temperature, humidity and pressure. Each wireless sensor node consists of two
separate parts: a data processor and a radio transceiver. After being deployed over a
pre-defined area, sensor nodes continuously monitor the environment and send
sensing data either directly or through relay nodes to the base station. Information
collected from sensors helps detect and analyze environmental changing models.
Therefore, WSNs widely appear in many aspects of life such as environment,
health, military, industry, agriculture, etc. However, sensor nodes have some lim-
itations. The sensors’ energy source is too low to maintain network and the repa-
ration for damaged sensors is difficult to execute. For example, in a battlefield,
military WSN systems play an important role in transporting information to the
command center or individual soldiers. If some sensor nodes run out of battery, they
will be unable to collect or send data; thus, the enemy observing process will be
interrupted. For this reason, saving sensor’s energy is needed.

To save energy, a wireless sensor is designated not to operate continuously but
to switch its transceiver between on/off (or working/idle) modes during an operating
cycle. While being in the working state, the transceiver is activated such that
collected data is transmitted to other nodes and the sensor could also receive data
packets from others. Meanwhile, during the idle state the transceiver is turned off
and that sensor can’t communicate with others. By doing so, a great amount of
energy is saved and the network lifetime can be prolonged. This type of WSN is
often referred to as duty-cycle wireless sensor networks (DC-WSN). This paper
focuses on saving energy cost in DC-WSNs.

The rest of this paper is organized as follows. Related works and the problem
formulation are presented in Sects. 2 and 3, respectively. Our proposed algorithms
are in Sect. 4. Section 5 presents experiments along with computational and
comparative results. Conclusion and future works are in Sect. 6.
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2 Related Works

In WSNs, multicasting energy refers to the total energy consumption including both
transmitting and receiving energy from a source node to all terminal ones on a
multicast tree. Reducing this energy cost is one of the main objectives when
operating WSN systems and is often referred to as the Minimum Energy-
Multicasting (MEM) problem. This problem has been intensively studied and
tackled by using approximate algorithms [1–4]. However, these methods are only
applicable to WSNs consisting of standardized static sensors whose sensing func-
tion is performed continuously throughout the system operation, which causes a
significant loss of energy. Later, the MEM problem is investigated in DC-WSNs,
where duty-cycle sensors are turned on/off only at a specific time slot [5, 6].
Su et al. [6] suggested two optimization algorithms named oCast and BD-oCast to
resolve the MEM problem in a narrowed DC-WSNs model that contains nodes
possessing consecutive working time slots. However, the two algorithms require
exponential time w.r.t. the number of destination nodes. For this reason, oCast and
BD-oCast can only solve the MEM problem with a small number of nodes.
Han et al. [5] proposed four algorithms: Shortest Path Tree (SPT), Approximate
Minimum Steiner Tree (AMST), Minimal data overhead Tree (MNT) and an
approximation algorithm for MEMTCS denoted TCS in order to solve MEM
problem on a general DC-WSN model. On one hand, the first three algorithms are
all executed in two steps as follows. The first step is to construct a multicast tree
relying on the structure of WSNs’ graph. The second step establishes the trans-
porting schedule for each sensor node in the multicast tree found in the first
step. Because two steps are executed separately, the performance of the first three
proposed algorithms is quite modest. On the other hand, TCS algorithm builds up
an expanded graph based on the initial network graph and the working schedule.
The minimum Steiner tree on the graph is then found and the model is mapped to
the tree in order to obtain the final solution. The performance of the TCS algorithm
is relatively good but heavily depends on the quality of the Steiner tree. Huynh et al.
[7] introduced the Ratio-function-based Tree Construction and Scheduling (R-TCS)
and another algorithm called (Group Steiner’s Tree applied in MEM problem);
GS-MEM algorithms based on the expanded graph model. R-TCS is a new version
of TCS algorithm. Better quality multicast tree is produced when utilizing this
method to solve the MEM problem. Furthermore, GS-MEM turns the MEM
problem into a Group Steiner Tree problem, which can be effectively solved using
heuristic algorithms [2–4, 8, 9]. Nonetheless, two algorithms R-TCS and GS-MEM
may require significant computational time when a large number of sensor nodes
involves.

This paper proposes a local search algorithm for the MEM problem in DC-WSN
that aims to conserve the energy cost. Our experiments on four datasets [5] showed
that the proposed algorithm is more energy efficient than R-TCS and GS-MEM with
shorter execution time compared to that of GS-MEM.
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3 Problem Formulation

3.1 Duty-Cycle Wireless Sensor Networks Model

A WSN is represented by a single un-weighted scalar graph G = (V, E). Nodes in
V position on a 2-dimensional space coordinates plane. If two random nodes stay in
their communication area, a link between them is created. Each node owns the same
initial energy. In DC-WSN, all nodes are operated cyclically and each cycle is
divided into K equal periods. In order to save energy cost, nodes are only activated
in a period belonging to a set ΓðuÞ⊂ f1, 2, 3, . . . ,Kg where ΓðuÞ≠∅, ∀u∈V . In
other words, every node u can be awakened to transfer the information at any period
but they only receive data at periods covered by the set ΓðuÞ.

3.2 Multicast on Duty-Cycle Wireless Sensor Network

Considering a set of terminal nodes M ⊂ V; in a multicast implementation process,
data packets are transported from a source node s∈M to other terminal nodes. With
T being a random child tree of the graph G, we denote:

• V(T) and E(T) as the sets of vertices and edges, respectively.
• nl(T) as a set of internal nodes of the tree T.
• child(u, T) as a set of nodes which are children of a node u on T.

The tree T is considered a multicast tree of G if it is a child tree rooted at s and at
the same time, all terminal nodes in M belong to T. Figure 1 describes a DC-WSN
graph that contains a set of terminal nodes {1, 5, 6, 7} including the root node
s = 1, the time slices set ΓðuÞ written next to each node and a multicast tree shown
with bold edges in the picture.

Fig. 1 A multicast tree
represents a DC-WSN
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Definition 1 (Hitting set [5, 10]) Let C = {A1, A2, …, An}
A set F is called the hitting set of C if F holds at least one member in each subset

of C. The hitting set having the smallest number of members is called the minimum
hitting set of C and is denoted as MHS(C).

Definition 2 (Possible transport schedule [5]): A function B: nl(T) → 2{1,2,…K}

(T is a multicast tree) is called a possible transport schedule of T if ∀u∈ nlðTÞ. In
this case, B(u) is the hitting set of ΓðvÞjv∈ childðu,TÞf g.

Let es and er be the transmitting and receiving energy of each data packet in
every node in V respectively (es, er > 0). The energy consumption in a multicast
session includes two parts: transmitting part and receiving part. According to
Definition 2, the total sending energy consumption in a multicast session following
the transport schedule B on a multicast tree T equals ∑u∈ nlðTÞ jBðuÞj ⋅ es. Besides
every T′s nodes except s being able to receive data packets, their transmitting
energy in a multicast session depends only on the number of nodes and equals
jVðTÞ− 1j ⋅ er .

Given a DC-WSN formulated as a graph G= ðV ,EÞ, a set M ⊂V consists of
terminal nodes and a base station s. In each multicast session, the total energy
consumed is calculated as follows.

ΠðTopt,BoptÞ= ∑
u∈ nlðToptÞ

BoptðuÞ
�� �� ⋅ es + ð VðToptÞ

�� ��− 1Þ ⋅ er ð1Þ

The MEM problem in DC-WSN now boils down to finding the multicast tree
Topt of G and a schedule Bopt with respect to the tree Topt such that ΠðTopt ,BoptÞ is
minimized. For example, taking the multicast tree T shown in Fig. 1 in form of bold
lines, a possible schedule B1 are B1(1) = {2, 3}, B1(2) = {3, 5}, B1(3) = {4}. In
case this schedule is applied with es = 100 and er = 15, the total energy consumed
within one multicast session would be 5× 100+ 5× 15= 575. However, if the
schedule B2: B2(1) = {1}, B2(2) = {2}, B2(3) = {4} is applied on the same mul-
ticast tree, it would take up a total energy of only 3 × 100+ 5× 15= 375. Hence, the
multicast tree T and the schedule B2 lead to a more energy-efficient solution for
transporting from one terminal node to others in one multicast session compared
with that of the combination of T and B1.

4 Proposed Algorithm

The main idea of the algorithm is to create a multicast tree and find the best
transport schedule. In each step, the best transport schedule of the neighbor mul-
ticast tree is compared with that of the chosen tree. If the neighbor multicast tree
holds the schedule that consumes less energy than that of the current tree, we will
set the neighbor tree as the new chosen tree.
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4.1 Searching for the Best Transport Schedule of Multicast
Tree

For a G = (V, E) graph, a multicast tree T ⊂ G and a best transport schedule
B: nl(T) → 2{1,2,…,K} on T, we aim to find B to minimize the total energy con-
sumed in each multicast session.

To find B, one needs to find a minimum hitting set belonged to the timeslot set of
all child nodes in each tree’s node (MHS). The MHS problem is formulated as
follows.

Considering a setCwhich includes {A1,A2,…,An} set,F ⊂ A1 ∪ A2 ∪ ⋅ ⋅ ⋅ ∪ An

is called thehitting set ofC ifFconsists of at least onemember of each set inC,meaning
that F ∩Ai ≠∅∀i=1, n. The hitting set having the smallest number of members is
called the minimum hitting set of C, denoted by MSH(C).

The MHS problem is proven to be NP-Hard [1, 3, 11]. In this work, we propose
a greedy algorithm to solve this problem.

• Initializing a set called H =∅.
• Repeating the following steps:

– Step 1: Chose c* members so that the number of Ai ∈ C satisfies that
c* ∈ Ai is the largest.

– Step 2: Add c* into the set H and remove all Ai set having c* from the set
C. While C is not empty, repeat this process continuously until no members
is remained in C. After that, H will then be the minimum hitting set.

In the worst case, the proposed algorithm must visit all set in |C|. Therefore, the
complexity is O(K ⋅ |C|), where K is the maximum number of elements in each set.
Because there are V vertices in the multicast tree, the best transport schedule is
found when the MHS problem is solved for |V| times. Hence, the complexity is O
(K ⋅ |V| ⋅ |V|) = O(K ⋅ |V|2).

4.2 Finding the Base Solution

The solution can be depicted by the multicast tree T0, a graph G and the best
transport schedule B0.

We set the weight of each edge in graph G to one then find the shortest path from
the source node s to all the terminal nodes u (u ∈ M, M is the set of terminal
nodes). After that, T0 tree is constructed (T0 = (V0, T0)) from all paths found. Each
path is then separately evaluated. If a vertex v or an edge e appears on the path but
they have not been put in V0 or E0, v and e are put into V0 and E0 respectively.

The breadth first search algorithm is applied for finding the shortest path from
the source node s to others and its complexity is O(|V| + |E|). Thus, the complexity
of the algorithm equals O(|V| + |E|).
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4.3 Solution Initialization

One of the most crucial elements that strongly affects the quality of the local search
algorithm is finding neighbor solutions of a given one. All neighbor solutions
should diverse in order to maintain a large enough search space that potentially
holds the optimal solution, but the quantity should be limited at a high enough
amount so as not to affect the algorithm’s speed.

Each solution of MEM DC-WSN problem is encoded as a multicast tree T and
the best transport schedule B, denoted S = (T, B). A solution S′ being a neighbor of
S is derived from the transition operation f : S ⟶ S′, satisfying S′ = (T′, B′) (T′ is
another multicast tree on G and B′ is the best transport schedule of T′).

Four transition operations f : S ⟶ S′ are proposed.

(1) Swapping Two Nodes on the Tree

Choose two random nodes u and v on the multicast tree T and swap them when
the following conditions are satisfied:

• Either u or v is a source node.
• After swapping, the new multicast tree T′ belongs to G.

After T′ is found, we continue to find the best transport schedule B′ on T′ to
obtain the solution S′ = (T′, B′). If Π(T′, B′) < Π(T, B), S will be replace by a
neighbor solution S′.

Therefore, this transition swaps two nodes and checks the existence of the edges.
The number of edges is equal to the number of vertices near by the considered
vertex. Each vertex is close to |V| − 1 vertices so the complexity of the first
transition is O(|V|).

Figure 2 illustrates a node swap transition between node 3 and node 5 on the
tree. After the transition, node 3 could be omitted from the multicast tree despite
being a leaf node because it is not a terminal node and the its rejection does not
trigger additional time slot for data transmission. In other words, the new tree
allows a full communication from all terminal nodes to the root regardless of node
3’s presence. Deleting node 3 also leads to lower multicast energy. The original tree
has the transport schedule B(1) = {1, 2} and B(3) = {2, 4} with the multicast
energy equals 4Es +4Er. The new tree after transition has the transport schedule
B(1) = {1, 3} and B(5) = {2} with a smaller multicast energy of 3Es +3Er.

(2) Replacing a Node by Another Node that Has not Presented in the Current
Tree.

Consider a random node u on the multicast tree T and a node v which does not
belong to T but to the graph G. The condition for u to replace v on T is:

• Node u is neither a source nor a terminal node.
• After u is replaced by v, the new tree T′ satisfies T ′⊂G
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If two conditions above are satisfied, u could be replaced by v, constructing a new
tree T′. Again, the mission is to find the best transport schedule B′ and the neighbor
solution S′ = (T′, B′). Then S′ is set as the new solution if Π(T′, B′) < Π(T, B).

The complexity of the second transition is the same as that of the first one.
Considering the existence of |V| vertices, the complexity of this transition is O(|V|).

Figure 3 demonstrates a node replacement transition applied on node 3. To be
specific, node 3 is replaced by node 6, which was not belonged to the multicast tree
but existed in graph G. Similar to Fig. 2, the transport schedule of the original tree
was B(1) = {1, 2} and B(3) = {2, 4} with the multicast energy equals 4Es +4Er.
Meanwhile, the new tree after transition has the transport schedule B(1) = {1} and
B(6) = {2, 3} with a smaller multicast energy of 3Es +4Er.

Fig. 2 Swapping two nodes

Fig. 3 Replacing a node
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(3) Removing Edges and Finding a New Connection

This transition starts with visiting a terminal node u on the multicast tree T. The
next step is finding the path P from u to an ancestor node which is the closest
terminal node to u. On the path P there are two tasks to accomplish:

• Remove all vertices P (except its ancestor nodes)
• Remove all edges on P (except the edges coming from or to the ancestor u).

On graph G, the depth first search (DFS) algorithm is used to find a new path P′
from u to a random node in T. T′ is completed after adding vertices and edges into
T. T′ is regarded as a clue to find the new best transport schedule B′ and neighbor
solution S′ = (T′, B′). Similar to two transitions above, S′ is set as the new solution
if Π(T′, B′) < Π(T, B).

The complexity of the third transition is equal to that of the DFS algorithm,
which is O(|V| + |E|).

Removing edges and finding a new connection, the third transition, is shown in
Fig. 4. The edge connecting the source and node 6 is removed, thus a new con-
nection between the terminal node number 2 and the source must be formed. In this
case, node 2 is then linked directly to the source node. By this way, the multicast
energy is significantly reduced. The original tree has the transport schedule
B(1) = {1, 3}, B(3) = {3, 5} and B(6) = {2} with the multicast energy equals
5Es +5Er. After the transition, the transport schedule becomes B(1) = {3} and
B(3) = {2, 3} with a much smaller multicast energy of 3Es +4Er.

(4) Moving a sub-tree

The fourth transition looks up nodes on a multicast tree T except the source node
s. Let v be the parent node of u. The child node set of v is denoted child
(T, v) (u ∈ child (T, v)). The next step is to solve theminimum hitting set problem of
C= fΓðiÞ: i∈ childðT , vÞg and C′ = C\fΓðuÞg. If MHS(C) = MHS(C′) + 1
(meaning that, by removing child nodes of v, the minimum hitting set is reduced by

Fig. 4 Removing edges and finding a new connection
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1, therefore the sending energy from node v to other nodes is reduced by es), the
mission now is to attach the u is sub tree to v′ on T so that the transmitting energy
from v′ to other nodes remains the same.

On the multicast tree T, implementing the information transfer process from
source node s to leaf nodes which are not terminal ones is considered unnecessary.
Consequently, after the transition, the multicast tree requires removing redundant
nodes.

A new multicast tree T′ is created when the transition finds u is sub tree and that
sub tree is attached to a new position on the multicast tree T.

This fourth transition requires checking the maximum number of nodes u (up
to |V|) and solving the minimum hitting set problem of each node. As a result, the
complexity of the transition is O(|V| ⋅ K ⋅ |V|) = O(K ⋅ |V|2), in which K is the
working cycle of each node.

Figure 5 illustrates the fourth transition where the edge connecting node 4 and
node 6 is removed and a new connection between the source node and node 4 is
formed. It is worth noticing that the transition of node 4 also applies to its sub-tree
as well, as shown in the figure. The transmission energy of node 6 is decreased by
Es because it can send data to node 5 in the fourth time slot. And since the multicast
energy of node 1 remains unchanged, node 1 only need to send data in the fifth time
slot and every terminal node receives it (including node 5 as being explained
before).

Figures 2, 3, 4 and 5 illustrate four transitions proposed in this paper, in which
red node is the source node and terminal nodes are colored blue.

Amongst four transition methods, the first and the second transitions can easily
lead to unstable state where two nodes u and v keep swapping to each other
continuously. In order to overcome the problem, TABU search is applied. Each pair
of swapped nodes is added into a forbidden list, thus they are not allowed to be used
within N repetition steps. After N steps, the swapped pair is removed from the list

Fig. 5 Moving a sub-tree
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and the transform process starts over. TABU search helps reduce a big amount of
unnecessary transition steps and improves the algorithm’s performance.

4.4 Complexity of Proposed Algorithm

The local search algorithm initializes the first solution, then the algorithm is
repeated for L times, each execution operates all four transition functions to gen-
erate neighbor solutions and update the best one. The complexity of each step is
given above, thus the total complexity of LSMEM algorithm is O(|V| + |E| + L
(|V| + |V| + |V| + |E| + K ∙ |V|2)) = O(L ∙ K |V|2).

5 Experimental Results

5.1 Problem Instances

The datasets used in this experiment are constructed in [5] and they have been
applied in [7]. The sensor network graph includes N nodes randomly initialized in a
1000 m × 1000 m plane. Each node possesses a communication radius
R = 300 m, transmitting energy es = 100, receiving energy er = 15 and the
working circle K = 20 timeslots. Nodes will randomly choose some time slices in
K. The ratio between the number of time slices and terminal nodes changes in
different datasets.

Dataset number 1, 2 and 3 consist |V| = 100, 200, 300 vertices respectively
(Table 1). The number of time slices in each working circle from 3 datasets is stable
and equal to 5. Terminal node’s number fluctuates between 5 and 100 % of the total
nodes. The last dataset has 200 nodes. Terminal nodes are kept at a steady amount
which takes up to 50 % of nodes in the network. The time slices ratio lies between 5
and 60 % of the total 20 time slices in a working circle.

Table 1 Parameters of the
datasets

Dataset 1 2 3 4

#Nodes 100 200 300 200
#Terminal
nodes (%)

5–100 5–100 5–100 50

#Time
slices
ratio (%)

25 25 25 5–60
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5.2 System Configuration

The program demonstrating the proposed algorithm is written in Java and run on a
computer having Intel Core i5 2.4 GHz chip and 4 GB RAM.

5.3 Computational Results

The proposed algorithm will be compared with R-TCS and GS-MEM algorithms
[7]. Each algorithm executes 5 times on each dataset. The multicast energy con-
sumption and average running time are reported in Tables 2 and 3 respectively, in
which |V| is the number of nodes and K is the number of time slices.

Figures 6 points out that the LSMEM algorithm performs better than R-TCS and
GS-MEM algorithms in terms of saving energy cost during a multicast session.

To be specific, the energy cost of LSMEM algorithm used in dataset 1 is
especially the lowest throughout 20 test times as shown in the Fig. 6a. From Fig. 6b
and c with data taken from Table 2, it is seen that the proposed algorithm is better
than the existing ones in term of multicast energy.

Moreover, Fig. 6b shows that LSMEM algorithm saves more energy than
R-TCS and GS-MEM algorithms do (roughly 70 % better than R-TCS and
GS-MEM on dataset 2). However, on dataset 3, the proposed algorithm and R-TCS
have similar energy cost, while the energy cost of GS-MEM is not shown in [7]
because GS-MEM consumed too much time. The energy cost of LSMEM in the
final dataset is also lower than that of R-TCS and GS-MEM algorithms, which is
83.3 and 91.7 % better than R-TCS and GS-MEM respectively in dataset 4.

Figure 7 illustrates that LSMEM is faster than GS-MEM but slower than R-TCS.
However, LSMEM only takes one minute to execute all datasets. In this case, the
proposed algorithm takes significantly more time than the other algorithms at test

Table 2 Multicast energy
optimization ratio when
applying proposed algorithm
compare with R-TCS and
GS-MEM

Data-
set

Test
times

|V| K R-TCS
(%)

GS-MEM
(%)

1 20 100 20 100 100
2 20 200 20 70 75
3 20 300 20 50 100
4 12 200 20 83.3 91.7

Table 3 Running time
optimization ratio when
applying proposed algorithm
compare with R-TCS and
GS-MEM

Data-
set

Test
times

|V| K R-TCS
(%)

GS-MEM
(%)

1 20 100 20 35 100
2 20 200 20 40 100
3 20 300 20 35 100

4 12 200 20 0 100
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instances between 57 and 61 because those input sets have the quantity of terminal
nodes on the initial graph G being nearly equal to the total number of nodes, leading
to higher computational demand (higher number of calculations).

Fig. 6 Multicast energy of LSMEM, R-TCS, GS-MEM on dataset from 1 to 4 corresponding to a,
b, c and d respectively

Fig. 7 Running time of LSMEM, R-TCS, GS-MEM in different tests
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The experiments conducted show that the proposed algorithm is fast and efficient
for solving the MEM DC-WSN problem compared with existing methods. Tables 2
and 3 describe the differences between proposed algorithm and R-TCS, GS-MEM
algorithms.

6 Conclusion

This paper investigates the Minimum Energy-Multicasting (MEM) problem in
DC-WSNs. We proposed a local search algorithm named LSMEM to lower the
energy cost of the system and compared its performance with the two existing
methods namely R-TCS and GS-MEM in terms of multicast energy and execution
time. Our methods were experimented over 4 published datasets and the experi-
mental results showed that the LSMEM offered the lowest or equal energy cost in
all datasets in comparison with R-TCS and GS-MEM (up to 70 % and higher in the
2nd and the 4th datasets).

Although local search algorithm is effective to solve the problem DC-WSN
MEM, one of its disadvantages is the possibility of being trapped in locally optimal
points. In the future, the authors would develop a genetic algorithm with an
effective heuristic initialization technique in order to increase the opportunities to
find the global optimal.
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Obstacle Avoidance for Multi-agent Path
Planning Based on Vectorized Particle
Swarm Optimization

Sumana Biswas, Sreenatha G. Anavatti and Matthew A. Garratt

Abstract This paper deals with an approach to path planning by obstacle avoid-
ance for multi-agent systems. An effective framework is presented based on the
Particle Swarm Optimization (PSO) method; an evolutionary computation
(EC) technique that uses the dynamics of the swarm to search the solutions for the
optimization problems. It describes the path replanning technique and obstacle
avoidance for autonomous multi-agent systems. A simultaneous replanning concept
is incorporated into the path planning to avoid both static and dynamic obstacles.
This proposed algorithm reduces the computational time of the path planning. In the
dynamic environment, the numerical results show that the Simultaneous Replan-
ning Vectorized Particle Swarm Optimization (SRVPSO) algorithm is effective and
also efficient for multi-agent systems.

Keywords Path planning ⋅ Particle swarm optimization ⋅ Obstacle avoidance ⋅
Multi-agent systems

1 Introduction

In recent years path planning is one of the research hotspots in the field of
autonomous agent systems. Apart from searching for the optimum waypoints to
reach the destination, advanced path planning is also responsible for ensuring safe
and reliable navigation in a complex environment which may involve different
types of static and dynamic obstacles.
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Compared to single agent systems, multi-agent systems can provide more
flexibility, strong adaptation capacity and high reliability [1] in completing a suc-
cessful mission. For this reason, multi-agent systems have been widely used in
many complex and hazardous scenarios. Obstacle avoidance plays an important role
in the context of managing multiple agents [2, 3]. Evolutionary path planning
algorithms like PSO [4] are most prominent in the research area of the multi-agent
system, where the path evolves based on the obstacles.

The existing approaches for solving the problem of motion planning for multiple
agents can be divided into two namely centralized and decentralized [5]. In a
centralized approach, a single unit gives instructions to other units and supervises
the correct performance of a cooperative task. Centralized methods can be highly
efficient for a small group of agents. However, control of agents becomes difficult
or impossible as the group grows in size. In contrast, the decoupled approach
inspired by biological societies, does not have an agent that controls the whole
system and is a generalization of behavior-based control over multiple robots. No
central planning unit is necessary for this system and every robot can calculate its
own path [3, 6].

Many methods have been developed to tackle the problem of multi-agent path
planning. Some of the known architectures are potential field method [7], genetic
algorithms [8] etc. Yongqiang et al. [9] introduce a new control law based on stream
function and hierarchical associations to avoid obstacles for multi-agent system. For
effective motion planning of multiple mobile agents, Clark et al. [10] used dynamic
networks that coordinate centralized planning. A dynamic rectangular roundabout
collision avoidance scheme based on human behaviour can be used for collision
detection and avoidance [11]. An A*-Dijkstra-Integrated algorithm is promoted by
Zhang and Zhao [12] to make multiple agents moving parallel without any colli-
sion. An improved D* Lite algorithm with a fast replanning techniques is proposed
by Peng et al. [13]. Roy et al. [14] use prediction principle for dynamic obstacle
avoidance in multi-agent motion planning. However, most of the existing methods
have some problems, such as potential field method cannot be able to find an
optimum path in a closed barriers environment [15]. Some other conventional
methods like A*, D* lite have the lack of flexibility and the popular genetic
algorithm shows low solution efficiency [16].

Recently, swarm agent systems based on the concept of swarm intelligence have
become one of the challenging research areas of multi-agent systems. Swarm
intelligence is a part of evolutionary computation. Technically swarm intelligence is
regarded as a collective behavior of decentralized, self-organized systems, natural
or artificial. In a swarm agent system, population of simple agents is fully auton-
omous but a combination of these agents has the capacity to solve more complex
problems. They are inspired from the nature, especially biological systems. Particle
swarm optimization (PSO) has become an excellent optimization tool, using the
concepts of swarm intelligence. PSO is a metaheuristic and random search algo-
rithm inspired by the social behavior of bird flocking or fish schooling. It has been
widely used in the field of multi-agent exploration. In PSO, the population is
initialized with a random solution. Like other evolutionary algorithms, PSO
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searches for the optimum solution by updating generation. In this method, agents
follow very simple rules, no centralized control structure to detect how individual
agents should behave but the interactions between such agents lead to the emer-
gence of “Artificial Intelligence” global behavior, which is not known to other
agents [17]. The algorithm ensures a diversity of response and adheres to the
principle of stability [18]. It generates a high quality solution with less computa-
tional time [19]. The advantages of PSO are that, it has few parameters to adjust and
it can converge in a very fast manner [20]. In optimization problems, PSO gets
better results in a faster and cheaper way compared with other methods, such as
genetic algorithm [21]. By the quality of rapid searching and easier realization, PSO
attempts to solve the drawbacks of conventional/existing methods [15]. Wang et al.
[22] used PSO for obstacle avoidance in a soccer robot system. An intelligent PSO
based real time multi-agent path planning is proposed by Mohamed et al. [23]. The
authors used on board camera image for obstacle avoidance. For a two agent
system, Lu and Gong [24] proposed a novel local path planning method based on
PSO. In this method, the obstacle avoidance system is based on sensor system with
limited detection range.

Generally, the main difficulties for multi-agent path planning problem are time
efficiency, collision avoidance and adaptability. When a number of agents share a
common workspace surrounded by different types of obstacles, high level path
planning is required to avoid collisions [10]. Quick response to the random dynamic
obstacles is the other major concern of path planning problem. Moreover, path
planning by basic PSO algorithm faces a problem of trapping in local optima.
Therefore, to find an optimum solution, a path planning system that efficiently avoid
both static and dynamic obstacles (collisions) as well as rapidly replan the path to
reach the destination is required.

In this paper, a path planning approach based on particle swarm optimization
algorithm is presented where the replanning should be done to avoid both stationary
and moving obstacles. In the proposed, simultaneous replanning vectorized PSO
(SRVPSO) algorithm, one agent considers other agents as dynamic obstacles and
applies collision avoidance strategy. At first, it assigns a very high cost to the fitness
function of the particles within the collision zone. As a result, the velocities of those
particles get increased rapidly with the augmentation of the parameters from PSO to
leave the collision region. This algorithm also has the ability to overcome the
drawback of basic PSO. The main focus of the paper is efficient collision avoidance.

The rest of the paper is organized as follows: At first, representation of the
environment is provided in Sect. 2. An overview of basic PSO and SRVPSO
algorithm, with the key technique in the implementation of the algorithm is pre-
sented in Sect. 3. In Sect. 4. the numerical results are described. Finally, conclusion
and some possible future work are suggested in Sect. 5.
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2 Problem Description

Multi-autonomous agents are deployed to carry out a search mission in a complex
environment. The working environment consists of different types of obstacles. In
the working space, the agents can start from any position and can go any of the
targeted points. The agents should plan a path from a start location to destination
and the path cannot pass through any obstacles. Agents have to avoid both static
and dynamic obstacles and also should avoid collision among them. The agents
have to efficiently replan their paths based on the change of the environment due to
the presence of dynamic obstacles. This multi-agent system will not follow the
central control flight formation type path planning. In the given environment, the
agents can plan their collision-free paths according to their own judgment of the
dynamic environment. Based on PSO algorithm, the agents will avoid collisions
and successfully plan their optimum path.

3 Particle Swarm Optimization

The PSO method was first proposed by James Kennedy and R.C. Eberhart in 1995
[18]. It is a population based stochastic optimization method based on the social
behavior of some species to locate the desired position in a group activity. Based on
the social psychology, PSO represents socio-cognition of human and artificial
agents. It combines local search with global search methods by balancing explo-
ration and exploitation.

In PSO, the workspace is initialized with random particles in which each particle
represents a potential solution to the problem. Each particle of the swarm randomly
searches in a multidimensional search space. They update themselves with the best
solutions of their own experience as well as the social information gathered from
other particles. The best solutions of the particles are evaluated by the fitness
function of their current location. The swarm changes its position dynamically
throughout the optimization process until an optimum solution is reached. Each
particle is randomized with a velocity. Particles change their positions by updating
their velocities. The procedure of velocity update is influenced by three factors
namely, particles current motion, particles previous experience and the influence of
the whole swarm as shown in Eq. (1). Figure 1 describes the various factors that
influence particles movement in PSO. Particles constantly update their velocities
and positions, until they have reached the goal position.

Let, a PSO swarm consists of a set of particles (S). Each particle changes its
position with time. Position and velocity of the ith particle at time step ‘t’ are
respectively-
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xiðtÞ= ðxi, 1ðtÞ, xi, 2ðtÞ, xi, 3ðtÞ, . . . . . . xi, nðtÞÞ and
viðtÞ= vi, 1ðtÞ, vi, 2ðtÞ, vi, 3ðtÞ, . . . . . . vi, nðtÞð Þ.

Each particle updates its velocity and position according to the following equations:

viðt + 1Þ= ω× viðtÞ|fflfflfflffl{zfflfflfflffl}
Inertia

+ c1 × rand1ðÞ× ðPBesti − xiðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cognitive

+ c2 × rand2ðÞ× ðGBest − xiðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Socialinfluence

ð1Þ

xiðt + 1Þ=xiðt) + viðt + 1Þ ð2Þ

where, ω = inertia weight factor, c1 = cognition parameter, c2 = social parameter
and rand1(), rand2() = are independent random variables uniformly distributed in
[0, 1]. PBest is the personal best position achieved by the particle and GBest is the
globally best position achieved by the swarm.

There are three problem dependent parameters, the inertia weight (ω) and the
acceleration coefficients c1 and c2. ‘ω’, controls the exploration and exploitation of
particles and the acceleration coefficients c1 and c2 influence the personal and global
leaders on the search process [26]. These parameters have a significant effect on the
performance of PSO algorithm. Kennedy and Eberhart [18] proposed to use
c1 = c2 = 2 and also Shi and Eberhart [27] suggested to use the value of ‘ω’ from
0.8 to 1.4 [28]. A large inertia weight (ω) facilitates a global search and a small
inertia weight has greater local search ability. The rand() terms ensures good
convergence by avoiding local optima.

Optimization is conducted using an objective function defined by the Euclidean
distance between the starting point (x1, y1) and the goal point (x2, y2).

Distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + y1 − y2ð Þ2

q
ð3Þ

In PSO, the algorithm evaluates the fitness function of all the particles and the
solution is optimized by iterative improvements of the positions of particles [29].

Fig. 1 Particle movement in
PSO [25]
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3.1 Path Planning with SRVPSO

Vectorized PSO is used in this research work. In the case of basic PSO, the
objective functions evaluate one point at a time. They consider a single numeric
vector as arguments and return a single number. On the other hand, in VPSO the
vectorized objective functions evaluate all the points in a search pattern at once,
with one function call. This means, the vectorized objective function expects the
whole population as an argument and returns a vector of objective function values.
The input of the vectorized objective function is a matrix and it generates a vector
of functional values. In the case of searching, the programming code of VPSO is
shorter as it avoids loops and runs faster than basic PSO with loops.

To simplify the representation, some assumptions are considered: Due to
heterogeneous shape of the autonomous vehicle and obstacles, a circle is used to
enclose the vehicles and obstacles. To ensure a collision free path, a safety gap is
considered by extending the enclose radius of both the vehicles and obstacles. The
vehicles are assumed as points and the size of the vehicle is added to the radius of
the obstacle.

3.2 Collision Avoidance Strategy

During the searching for optimum path, the agents need to maintain a safe distance
from the obstacles.

The distance between the obstacles and the current position of the agents must
be ≥ 0.

The SRVPSO algorithm follows two steps to avoid collision with both static and
dynamic obstacles. The first step is to increase the fitness value (cost) of those
particles within the collision zone, with a high positive amount of functional value
and the second step is to increase the velocity of those particles to come out from
the zone.

3.3 Update the Fitness Value

The obstacle avoidance is achieved by PSO in a reactive fashion, unlike any other
conventional method which computes the whole path at every instance. The path
can be changed on the fly when any risk of collision is detected. The velocity of the
static obstacles is zero. The particles don’t need to consider the velocity of the
dynamic obstacles to compute the path. That is the advantage of the reactive
planning. At every instance agents look at where the obstacles are and compute a
path based on that. Hence, the computation time of PSO is not affected by the
presence of dynamic obstacles. In this paper, the path replanning occurs to avoid
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any types of obstacles. At first, to maintain a collision free path all the particles of
the swarm have to detect the positions of the obstacles, then they calculate the
distance between the obstacles and the particles. A collision occurs if

Da
obs ≤ 0 ð4Þ

where, Da
obs represents the distance between agents and obstacles, then it considers a

risk of collision. Here, the negative value of Da
obs means that the positions of the

particles are inside the collision zone. The fitness value of the swarm particles
within the collision zone is assigned by a higher positive functional value. As the
optimization is considered as a minimization problem, the particles with higher
fitness vales are not considered as the best fitness function at all. So the path within
the collision zone is avoided.

3.4 Update the Velocity of the Collision Zone Particles

In order to escape the particles from the collision zone, the values of the parameters
(ω, c1, c2) in Eq. (1) are increased. Therefore, the velocities of those particles are
also increased and they leave the collision zone. The pseudocode of the proposed
algorithm can be expressed as follows:

Step 1: Initialize the parameters: ω, c1, c2, the maximum number of iteration, 
swarm size etc.
Step 2: Particles, initial velocity = 0, initial position = 0
For each particle
Step 3: Evaluate the fitness value from the vectorized objective function
Step 4: For each particle set

Local best fitness   = current fitness and
Local best position = current position

Set global best fitness = min{ local best fitness}
If (current fitness> PBest fitness)

Assign current fitness = new PBest
Else

Keep previous PBest
End

Assign best PBest = GBest
Step 5: Update the particles velocity and position according to equation (1) and (2). 
Step 6: If the distance between the obstacles and the current position of the
agents’ 0 ; replan the path. 
- Assign a high positive functional value for the particles within the collision zone.
- Increase the velocity of those particles to move on from the collision zone
Step 7: If all the particles converge at the global optimum solution (e.g. target posi-
tion) within maximum iteration go to step 8; otherwise turn to step 3.
Step 8: End
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4 Results and Discussions

In this section, several tests are performed on different cases to validate the feasi-
bility of the proposed method. The SRVPSO algorithm is coded in MATLAB
R2015a and tested on a Windows computer with Intel(R) Core(TM) i7-4770 CPU
@3.40 GHz and 16.0 GB of RAM.

The parameters of PSO used in tests are as follows:
ω = 1.0, c1 = c2 = 2.0, Population size of the swarm = 64 and
Maximum iterations = 100
Parameters considered for obstacle avoidance strategy are as follows:
ω = 2.0 and c1 = c2 = 3.0
In obstacle avoidance strategy, the velocities of the particles are increased by

increasing the inertia parameter and the acceleration coefficients. Therefore, the
particles can move away from the region of collision.

In all the experiment the agents attempt to find the shortest path by avoiding any
types of obstacles.

4.1 Path Planning by Obstacle Avoidance

A 2D environment is considered as a workspace. For obstacle avoidance, we
considered different types of working environment. The map size of the environ-
ment is considered as a 120 × 120 square unit with different types of obstacles.
The solid circles represent the static obstacles and the hollow circles represent the
dynamic obstacles (Figs. 2, 3, 4, 6, 7, 8, and 9). The hollow circles sequence
represents the trajectory of dynamic obstacles. The dynamic obstacles can have
constant speed or they can be randomly moving objects. The dots/points on the path
denote the agents. In the SRVPSO algorithm, a 3–5 % tolerance zone is considered.
A rectangular goal region is plotted instead of a single goal location to show the
tolerance zone in the destination.

Figures 2, 3 and 4 describe the path planning and obstacle avoidance strategy of
a single agent system in three different environments. The dotted line represents the
optimal path to reach the destination.

Fig. 2 Sequences of path planning for single agent system
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Fig. 3 Sequences of obstacle avoidance (3 static and 1 dynamic obstacles)

Fig. 4 Sequences of obstacle avoidance (3 static and 2 dynamic obstacles)

Fig. 5 Searching procedure of particles
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Fig. 6 Sequences of obstacle avoidance path planning (three static obstacles and one dynamic
obstacle)

Fig. 7 Screenshot sequences of obstacle avoidance path planning (three static obstacles and three
dynamic obstacles)

Fig. 8 Path of the agents in
the complex
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In Fig. 2 the starting point and the target point of the agent are (0, 0) and (90, 80)
respectively. The environment is surrounded by three static obstacles and one
dynamic obstacle. The dynamic obstacle has a radius of 3 units and is moving from
the point (50, 55) to the point (68, 37) at a fixed speed.

The working environment of Fig. 3 is as same as Fig. 2. Figure 4 shows the
results of the algorithm in a complex environment, where there are three static and
two dynamic obstacles. The starting and goal position of the agent are the same as
before.

4.2 Path Planning with Multi-agent Systems

During experiments, we run the algorithm about 50 times, every time all the par-
ticles converge in the targeted location and we get the optimum solution. As an
example, we consider a two agent systems path planning. Figure 5 shows the screen
shots of the random path searching procedure of two agents. The agent’s movement
environment is considered as 150 × 150 square unit. Figure 5a shows the starting
points (0, 10) for agent 1 and (0, 5) for agent 2. In Fig. 5b according to PSO,
particles of both agents are randomly distributed in the searching space and in
Fig. 2c, all the particles converge in the goal point (80, 80) and (100, 100) for agent
1 and agent 2 respectively.

The screenshots for the sequences of obstacle avoidance path planning are
shown in Fig. 6. In this case, the working environment is surrounded by three static
obstacles and one dynamic obstacle. The dynamic obstacle, with radius 3 units is

Fig. 9 Multi-agent path
planning at dynamic
environment different targeted
location
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moving from the position (20, 80) to (100, −1) at a constant speed. The initial
locations of the agents are considered as (10, 10) and (0, 5) for agent 1 and agent 2
respectively and the target locations are the same as before. The continuous line and
dotted line symbolizes the optimum path for agent 1 and agent 2 respectively.

The searching space shown in Fig. 7, is a more complex dynamic environment.
It is surrounded by four static obstacles and three dynamic obstacles. The directions
of movement of the three dynamic obstacles are different.

Two dynamic obstacles with a radius of 3 units move from (40, 40) to (110,
−60) and from (25,100) to (121, 4) respectively, whilst the other moving obstacle
with a radius of 2 units moves from the position (80, 20) to (16, 52).

Figure 8 shows the path planning for the similar environment as shown in
Fig. 4. Both Figs. 7 and 8 show the path planning of multi-agents by avoiding
different types of obstacles. As in PSO the velocity and position of the particles are
updated randomly, it randomly constructs paths in each run. Even on the same map
size with the same working environment, the execution might not give the same
results [30]. So that, the single agent systems shown in Figs. 2 and 3 gives different
trajectories and the multi-agent system in Figs. 7 and 8 also show different tra-
jectories for the same types of surroundings. Different trajectories for autonomous
agents at different targeted locations are shown in Fig. 9. In this case, the starting
point and goal position for agent 1 are (10, 10) and (80,100) and for agent 2 the
positions are (0, 5) and (100, 80).

In every test run, the SRVPSO algorithm easily handles the moving and static
obstacles in a very wide range of environments. In addition, it deals with
multi-agents. One robot is regarded as a dynamic obstacle of the other one. If agents
find any obstacles on their way, they simultaneously replan their path and reach the
destination. From the above results, it is clear that the agents safely and successfully
have found their solution.

5 Conclusions

In this paper, we have proposed a novel method that we have named the Simul-
taneous Replanning Vectorized PSO (SRVPSO) algorithm for multi-agent path
planning. This optimization algorithm has a safe navigation capability by ensuring a
collision free path. The research shows that the proposed algorithm is easy to
implement and it can easily find an optimum solution by avoiding any types of
obstacles. Moreover, this algorithm is able to optimize the path very efficiently. The
test results validate the feasibility of the proposed algorithm. In the near future, the
SRVPSO algorithm will be simulated with real vehicle dynamics and implemented
in a real world scenario.
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Resource Constrained Multi-project
Scheduling: A Priority Rule Based
Evolutionary Local Search Approach

Ripon K. Chakrabortty, Ruhul A. Sarker and Daryl L. Essam

Abstract This paper considers a static resource constrained multi-project
scheduling problem (RCMPSP) with two lateness objectives: project lateness and
portfolio lateness. To solve the RCMPSP, we have proposed an evolutionary local
search heuristic that uses a variable neighborhood (ELSH-VN) approach. The
heuristic is further analyzed by incorporating different priority-rules. To judge the
performance of these priority rule based heuristics, an extensive simulation-based
analysis has been conducted with different scenario-based schedules. For the
experimental study, we have considered a standard set of 77 generated RCMPSP
test instances of 20 activities. The experimental analysis indicates that the proposed
heuristic is able to solve multiple projects with reasonable computational burden.
The influence of the variation of resource distribution and resource contention on
the algorithm’s performance for different priority rules is also analyzed and
discussed.

Keywords Multi-project scheduling ⋅ Heuristics ⋅ Priority rules ⋅ Resource
constraints

1 Introduction

The resource constrained project scheduling problem (RCPSP) involves the
scheduling of project activities so that given temporal constraints between activities
are satisfied, that the prescribed resource capacities are not exceeded, and a given
objective, e.g., the project duration (i.e., makespan) is minimized. However, in
contemporary enterprises, single project settings are rare today. Hence, issues
involving the simultaneous management of multiple projects (or portfolio of pro-
jects) have become more prevalent. According to Payne [1], up to 90 % of all
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projects worldwide are executed in a multi-project context. Considering this
demanding fact, this paper addresses the resource constrained multi-project
scheduling problem (RCMPSP), which is an extension of RCPSP, and is consid-
ered as the simultaneous scheduling of two or more projects which demand the
same scarce resources. Meanwhile, when dealing with multiple projects, two
approaches have been used in earlier researches: (1) a single project approach, using
dummy activities and precedence arcs to combine multiple projects into a single
mega-project or (2) a multi-project approach, maintaining each RCMPSP and a
separate critical path per project [2]. Here, this paper took the second approach.

In spite of having high relevance with modern project management practices,
RCMPSP has not been studied as comprehensively as single-project scheduling.
Moreover, as a generalization of the RCPSP, RCMPSP is also considered to be
NP-hard [3], meaning that there are no known algorithms for finding optimal
solutions in polynomial time. When using a multi-project approach, two general
approaches are used to solve RCMPSPs, namely exact methods and heuristic
procedures. Among the few, exact methods are the similar earlier works of Drexl
[4]. But those exact methods are limited to solving small problem instances and are
impractical for solving large RCMPSPs. On the other hand, most of the heuristic
methods used for solving RCMPSPs belong to the class of priority rule based
methods [5]. In summary, while various studies have identified potentially
important characteristics of RCMPSP and proposed various priority rules, the
variety of results and their disagreements, have left project managers lacking clear
guidance on which priority rule to use in a particular situation.

Although using a large variable neighborhood search (LNS) approach for var-
ious problems, such as the vehicle routing problem [6] and travelling salesman
problem [7] already exists, to the best of our knowledge no heuristic of this type has
yet been proposed for RCMPSP. To fill this gap, we propose a new variable
neighborhood search based heuristic, which we named evolutionary local search
heuristic with variable neighborhood (ELSH-VN) for RCMPSP. As opposed to
only considering activity sequences or generating sub-problems, this ELSH-VN
approach considers overall partial schedules that are generated from a parallel
schedule generation scheme.

The primary objective of this research was to develop an evolutionary algorithm
for solving RCMPSPs. Besides of that, justifying feasibility of different priority
rules for this type of NP-hard problems (i.e., RCMPSPs) was another secondary
target. Hence, we address static RCMPSP with two tardiness objectives, defined as
average project delay and average portfolio delay. We have employed a parallel
schedule generation scheme to generate an initial baseline schedule of RCMPSP,
which was then applied to our proposed evolutionary heuristic, ELSH-VN. The
effectiveness of the solution scheme (i.e., ELSH-VN) was then demonstrated
through extensive experimentation with 77 randomly generated problem instances.
We then described ten different ELSH-VN alternatives, based on different priority
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rules, to demonstrate the superiority of any particular priority rule. Computational
results have been summarized for all priority-rule based ELSH-VNs. Statistical
analysis has also been carried out to further show the superiority of any particular
priority rule over other ones. In brief, two key contributions have been made over
the existing research on standard RCMPSPs. These are: firstly, we propose an
approach for variable neighborhood diversification among the activities that rep-
resent an initial unbuffered schedule. We also show how to explore those schedules
with evolutionary local searching scheme, particularly by enhanced swapping to
find optimal or near-optimal results. Secondly, we have considered a set of priority
rule based scheduling procedures with our proposed ELSH-VN for RCMPSP. We
find significance differences in the performance of the priority rules which implies
that several widely advocate priority rules generally do not perform as well as may
be thought.

The structure of the paper is as follows: in Sect. 2 we define the basic RCMPSP
with two lateness objectives. In Sect. 3, solution approaches and relevant algorithm
designs with priority rules are discussed. The experimental studies, along with their
results are in Sect. 4. Finally, we provide conclusions in the last section.

2 Problem Description

RCMPSP consists of several projects, where the individual projects have the
characteristics of single project, and is similar to the mathematical formulation of
Talbot [8]. Here we assumed that each project consists of i = 1 . . . Iv activities with
deterministic and non-pre-emptible duration dvi. We further assumed that (i) activ-
ities belonging to any particular project have unique characteristics and do not
depend on other project’s activities; (ii) there is a precedence relationship among
the activities that belong to any particular project, and all predecessors must finish
before an activity can start; (iii) resources considered here are only of renewable
type; (iv) activities are non-pre-emptive (i.e., cannot be interrupted when in pro-
gress); (v) the parameters (durations, capacities and resource requests) are
non-negative and integer valued; (vi) there is no dependency relationships among
the projects, apart from resource sharing. The binary decision variable xvit repre-
sents 1 if activity i of project v starts at time period t or 0 otherwise. RCMPSP
involves finding a schedule for the activities (i.e., determining the start or finish
times) that optimizes a performance measure, such as minimizing the average delay
in all projects. For measuring delays, each project is associated with a due date.
This due date is defined as the lower bound of project completion time without
considering any resource constraints. Using the further considerations and nota-
tions, as given in the below nomenclature section, the conceptual mathematical
formulation for RCMPSP is given below:
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2.1 Nomenclature

V Set of projects, v = 1 … V
Iv Set of activities of project v, i = 1 … Iv
Precv Set of all precedence relationships of project v
Svj Set of all successors of activity j belonging to project v
Svj
�� �� Number of successors for activity j in project v
k∈K Renewable resources (e.g., Machines)
NIv Number of activities for any particular project v (last activity)
Rk Capacity of renewable resource k
rvik Renewable resource k usage of activity i of project v
dvi Duration of activity i of project v
ESvi, LSvi Earliest and latest finish time of activity i of project v
T Total planning horizon/upper bound of all projects
fvi Finish time of activity i belonging to project v
Svi Start time of activity i belonging to project v
CPv Critical path duration of the v’th project without resource constraints

MinΦðFÞ ð1Þ

∑
LSvi

t=ESvj
xvit = 1 for ∀i ∈ NIv and ∀v ∈ V ð2Þ

∑
LSvb

t=ESvb
t− dvbð Þxvbt ≥ ∑

LSva

t=ESva
txvat ∀ a, bð Þ ∈ Precv and ∀v ∈ V ð3Þ

∑
V

v=1
∑
NIv

i=1
∑

t+ dvi − 1

q= t
rvikxviq ≤ Rk ∀k ∈ K,∀t ∈ T and ∀v ∈ V ð4Þ

xvit ∈ 0, 1f g ∀ v ∈ V , ∀i ∈ Iv and ∀t ∈ T ð5Þ

The objective function (1) seeks to optimize a pre-specified performance mea-
sure set by the planner. Although a variety of objective functions have been used for
RCMPSP, minimizing project duration is commonly used. However, in this study,
we seek to minimize project or portfolio delays (tardiness). Hence we considered
two different objective functions, which are defined in the following equations:

Average Project Delay APDð Þ = ∑V
v=1 av A̸v

V
× 100 ð6Þ

Average Portfolio Delay APFDð Þ = Max A1 + a1, . . . ,AV + aVð Þ−Max A1, . . . ,AVð Þ
Max A1, . . . ,AVð Þ × 100

ð7Þ
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Here in Eqs. (6) and (7), Av represents the due date of project v, which equals the
length of its resource unconstrained critical path (CP). Meanwhile, av represents the
delay due to resource constraints. Constraint set (2) ensures that all activities of any
particular project v are to be scheduled once and only once. Constraint set (3) im-
plies the predecessor relationships for all activities within a project. Here no
precedence relationship is considered within projects. Constraint set (4) limits the
maximum level of renewable resources used by the activities belonging to any
project v. For any particular time period t, the maximum amount of renewable
resource usage should be within its availability limit. Finally, constraint set
(5) forces the start times to be non-negative.

3 Algorithms

3.1 ELSH-VN

In this section, we present the procedural steps and basics of our proposed Evo-
lutionary Local Search Heuristic with Variable Neighborhood (ELSH-VN). This
ELSH-VN procedure is analogous to a descent search, or a hill-climbing approach,
with a candidate list strategy. In contrast with a traditional searching strategy, the
legal moves for active activities for this heuristic are only those which belong to the
candidate list at each stage. The overall procedures of this heuristic are also com-
parable to Tabu search, in the sense that when a move or swapping is effected, the
activity concerned is unlikely to be moved back to its old position, until it is
encountered again while searching the sequence, or unless the resulting sequence
leads to the best makespan so far. An evolutionary local search strategy was
developed, where the primary focus was to increase the neighborhood search space
with varied dimensions, and to allow activities to swap among both its direct and
indirect successors and predecessors, even though it may take slightly more com-
putational time than the traditional variable neighborhood approach.

For implementing that evolutionary local searching scheme among diversified
neighborhood activities, at first, an initial feasible schedule matrix was generated by
following some schedule generation scheme (in this paper we executed the parallel
schedule generation scheme (PSGS) [9]). Later on, with that initial schedule, each
activity was swapped or moved, in both forward and backward directions, while
maintaining both their direct and indirect precedence relations. Following this
iterative procedure, after meeting the stopping criteria, if possible, another updated
schedule was generated with better makespan performance. It is worth noting
however, that in either move strategy, not every move leads to a new schedule due
to resource contradictions. Therefore, to find whether a move does lead to a change
in schedule, at first, resource constraints should be satisfied with each of the newly
generated schedules, by only calculating their start or finish times. If none changes,
then the overall schedule will remain the same and it is worthless to re-compute it.
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Moreover, extensive experimentation has shown that the better the initial solution
with which ELSH-VN for RCMPSP is started, the better on average the final
solution will be. For better clarification, the step-wise overall solution scheme of
ELSH-VN is given below.

Algorithm: Step-wise procedure of ELSH-VN
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3.2 Priority Rules

In order to assess the performance of the proposed ELSH-VN, we have considered,
for comparison, a set of scheduling procedures with different priority rules. Since
different activities have different features (resource, duration combination), so
selecting a set of (or single) active activities is always complicated. Therefore,
proposing and switching some priority based rules for use among the active
activities may resolve this issue and accelerate performance [10]. We compiled a set
of 10 popular priority rules from the literature (shown in Table 1), some of which
have already proved to be successful in a single project environment. The main
motivation for selecting these different scheduling procedures was to see whether
ELSH-VN with default activity selection rule (i.e., random selection rule) is
competitive with other possible priority rules. As well as to see if any other
combination of priority rules with ELSH-VN can give a better approach.

4 Experimental Results and Analysis

Extensive numerical experiments have been carried out with the aim of assessing
the performance of our proposed ELSH-VN for RCMPSP. A comparative evalu-
ation has also been made with the compiled set of 10 priority rules. The compu-
tational experiments have been performed on an Intel core i7 processor with
16.00 GB RAM and a 3.40 GHz CPU. All procedures were coded and solved in
Matlab, R2015b. ELSH-VN was employed for generated RCMPSP instances, while
the maximum iteration number, itermax, was set as 1000 and the maximum number
of algorithm runs, runmax was set as 30. The maximum solving time for all projects
under each instance was set as 500 s. An in-depth analysis of the properties of
RCMPSP, and the behavior of a scheduling method, is barely possible based on just

Table 1 Priority rules

Rule Refs. Formula

Random selection rule- RSR [11] Activities selected randomly
First come first served-FCFS [12] Min Evi

Last come first served-LCFS [2] Max ESvi
Shortest processing time-SPT [13] Min dvi
Maximum processing time-MPT [13] Max dvi
Shortest activity from shortest project—SASP [14] Min fvi, where fvi=CPv + dvi
Longest activity from longest project-LALP [13] Max fvi
Minimum slack-MINSLK [15] Min SLKiv,
Maximum slack-MAXSLK [15] Max SLKiv

Latest start time-LST [10] Min LSvi, where LSvi = LFvi − dvi
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a single RCMPS instance. Therefore, motivated by Browning and Yassine [16], we
followed a pragmatic approach to generate additional test instances for RCMPSP,
which will then be used to evaluate our proposed ELSH-VN in more detail.

4.1 Generation of Test Projects

Depending on different instance characteristics, we generated some test instances
for RCMPSP. Among a few, Network complexity (C), Normalized average
resource loading factor (NARLF) and Modified average utilization factor (MAUF)
are the most important characteristics for generating multi-project instances. Details
on these characteristics can be found in the earlier work of Browning and Yassine
[2]. To maximize possible insights, we considered seven NARLF and 11 MAUF
levels [17]. In addition to that, we considered a high project complexity measure for
each project (i.e., C = 0.69) while all of the individual resources MAUFs were not
equal (i.e., showing σ2MAUF =0.25

�
. Thus, we generated 7 × 11 = 77 test problems

for this experiment. As standard problem generators and test sets such as
ProGen/PSPLIB cannot create multi-project problems to these specifications, we
used a test problem generator developed by Browning and Yassine [16]. For better
understandings, a brief summary of this experimental set up and test project gen-
eration is outlined in Table 2.

4.2 Experimental Results for Priority Rule Based ELSH-VN

Table 3 summarizes the performance of our proposed ELSH-VN for our newly
generated 77 RCMPSP instances. Here we considered four different posterior
measures to justify the performance of ELSH-VN, namely: average project delay
(APD) as percentage, average portfolio delay (APFD) as percentage, lower total

Table 2 Experimental design (C.F: Constant Factor; M.F: Main Factor)

C.F Setting M.F Levels

V 3 projects per problem NARLF 7 levels: −3, −2, −1, 0, 1, 2, 3
I 20 activities per project MAUF 11 levels: 0–1.6 in increments of 0.1
R 4 types of resources per activity C 1 level: HHH

Table 3 Performance of different priority rule based ELSH-VN

Parameters RSR FCFS LCFS SPT MPT SASP LALP MINSLK MAXSLK LST

APD 93.36 180.2 198.2 182.8 186.5 182.8 186.5 218.4 174.6 177.5

APFD 136.2 230.8 269.1 229.5 238.6 229.5 238.6 272.4 199.4 229.2

LTM 44.71 62.05 70.25 62.96 64.16 61.96 64.16 69.93 55.92 61.89

TCPU 0.125 0.173 0.176 0.16 0.195 0.160 0.19 0.207 0.189 0.182
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makespan (LTM) after 30 runs and finally total computational time (TCPU) per run
in seconds. As mentioned before, ten different priority rules were executed under
ELSH-VN and the comparative results are outlined in Table 3. As of that table, the
random selection rule based ELSH-VN showed best performance in comparison to
other priority rules, while MAXSLK and LST are quite competitive. Irrespective of
priority rules, the TCPUs for each heuristic are nearly consistent and per run time it
is always 0.207 s or less.

Starting with APD, Fig. 1 shows the graphical representation on the impact of
different MAUF values on APDs. As evident from this figure, the winning priority
rule (i.e., the one with the smallest average percentage delay) is RSR. Surprisingly
among LST, MPT, MAXSLK and SASP, there is no significance difference of their
respective APD values and so they are apparently tied for second place. Obvious
losers include MINSLK as the worst and LCFS as second worst. To investigate the
margin of superiority for RSR over others, it is important to have a comprehensive
statistical analysis on all proposed algorithms. Since our considered problems are
complex in nature and there is a high chance of greater precedence constraints,
priority rules that depend on precedence relationships might show lesser influence
on minimizing APDs [2].

As evident from Fig. 2, a similar trend can also be found for APFDs. While APD
affects the effects of delay on the projects individually, APFD only accounts for
delays that lengthen the overall portfolio of projects. As a consequence, while
individual project managers would care more about APDs, portfolio managers
would have reason to focus on APFDs. Interestingly, here also RSR, LST and
MAXSLK show the least (or lesser) APFD values than the other rules.

In addition to analyzing the influence of MAUF on minimizing project delays, we
also carried out numerical experimentation on the project data to see the possible
impact of NARLFs. The NARLF interaction plot shown in Fig. 3 exhibits the
superiority of RSR at all levels, followed by MAXSLK and SASP. MINSLK and
LCFS are placed as worst priority rules because of their inefficiency at minimizing
APDs. Meanwhile, Fig. 4 plots the relative values of APFD for different levels of
NARLF. Similar conclusion can be drawn for APFDs as well. However, as evident in
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Fig. 4, RSR andMAXSLK show similar APFDs if the value ofNARLF is zero. Again
for NARLF equals −1, the MAXSLK priority rule shows even better results than the
RSR priority rule, which can be considered an important finding of this research.

4.3 Statistical Comparison

As illustrated in the previous section, apart from the RSR priority rule, there is no
firm evidence on the superiority of any particular priority rules over others. Hence
to assist decision making and to evaluate the overall performance of all priority rule
based ELSH-VNs, we used a ranking procedure based on a non-parametric test,
called the Friedman test [18]. The Friedman test is often used for a randomized
complete block design when the normality assumption is not satisfied or the data is
ordinal. Under each instance, for each of the priority rule based ELSH-VN, relative
ranks were calculated by considering the two major performance measures (APD
and APFD) described in Sect. 4.2. Relevant rankings are summarized in Table 4.
As evident from Table 4, RSR shows the least relative rank value, which shows its
significant superiority. Considering APD as a performance measure, FCFS can be
considered as the second best, while for APFD measures, the MAXSLK priority
rule placed second.

From this Friedman test, we can easily conclude the superiority of any particular
algorithm over another, depending on number of nodes and types of statistical
distributions. However, to analyze the difference between the best one and the
second best one, we have also carried out another statistical test, the Wilcoxon
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Table 4 Rank measurement of different priority rule based ELSH-VN using friedman test

I.T RSR FCFS LCFS SPT MPT SASP LALP MINSLK MAXSLK LST

APD 1.01 5.12 7.17 5.60 5.84 5.60 5.84 8.42 5.27 5.14

APFD 1.30 6.010 7.97 6.03 5.81 6.03 5.81 7.91 2.88 5.27
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signed ranks test [19]. Using a 5 % significance level, we assigned one of three
signs (+, − and ≈), where “+” means that the first algorithm is significantly better
than the second one, “−” means that it is significantly worse and ‘≈’ represents that
there is no significant difference between these algorithms. According to Table 5, it
shows that the RSR priority rule convincingly outperformed its nearest competitive
priority rules (i.e., FCFS or MAXSLK). We speculate that the superior performance
of MAXSLK over others (except RSR) here may be due to the generally high
constraining values of AUF which characterizes our generated instances. Moreover,
while intelligence based priority rules work better for single mode RCPSPs, but for
RCMPSPs, rules without intelligence (i.e., RSR) works better than others. The
appropriate reasoning behind this superiority of RSR is still needs to be researched.

5 Conclusions

In this paper, we considered the RCMPSP with deterministic activity durations and
temporal relations. To solve RCMPSP, we developed a variable neighborhood
search based greedy algorithm, ELSH-VN. The suitability and appropriateness of
that heuristic was then studied by incorporating ten different priority rules. In order
to conduct computational experiments with RCMPSP, a large set of test instances
has been generated. To judge the superiority of any particular priority-rule based
ELSH-VN, we carried out a comprehensive statistical analysis based on both the
Friedman and Wilcoxon tests. This statistical comparison, and extensive simulation-
based experiment, revealed that the RSR outperformed others, while FCFS and
MAXSLK algorithms are insignificantly superior to others, especially when the
performance measures were like average project delay or average portfolio delay.

Because of its ongoing practical relevance, RCMPSP is quite common in
modern industry, which makes efficient algorithms for them valuable. Decisions
about which activities to do when (based on resource allocations) have a substantial
effect on project completion time. Hence there is a necessity of choosing suitable
priority rules to select appropriate activity. In this context, this paper dealt with ten
different priority rules to compare and contrast. Importantly, our experimentation
shows that previously published results do not always correspond with their per-
formance on RCMPSP. While widely advocated rules such as MINSLK, SASP and
LST did not perform well, our study revealed that the RSR outperformed others.

Future research is possible, for example, considering multiple modes to reflect
alternative speeds of the production processes. Also, including additional priority

Table 5 Wilcoxon signed ranks test results for comparing the best performing algorithms

Algorithms Criterion Better Similar Worst p Decision

RSR versus FCFS APD 77 0 0 0.00 +
RSR versus MAXSLK APD 77 0 0 0.00 +
RSR versus MAXSLK APFD 67 0 10 0.00 +
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rules, comparing with other schedule generation schemes, exploring other
RCMPSP formulations (i.e., allowing activity pre-emption, stochastic activity
durations, or uncertain resources) can also be important extensions of this paper.
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Genetic Programming with Embedded
Feature Construction for High-Dimensional
Symbolic Regression

Qi Chen, Mengjie Zhang and Bing Xue

Abstract Feature construction is an effective way to eliminate the limitation of poor

data representation in many tasks such as high-dimensional symbolic regression.

Genetic Programming (GP) is a good choice for feature construction for its natural

ability to explore the feature space to detect and combine important features. How-

ever, there is very little contribution devoted to enhance the generalisation perfor-

mance of GP for high-dimensional symbolic regression by feature construction. This

work aims to develop a new feature construction method namely genetic program-

ming with embedded feature construction (GPEFC) for high-dimensional symbolic

regression. GPEFC keeps track of new small informative building blocks on best

fitness gain individuals and constructs new features using these building blocks. The

new constructed features augment the Terminal Set of GP dynamically. A series of

experiments were conducted to investigate the learning ability and generalisation

performance of GPEFC. The results show that GPEFC can evolve more compact

models in an efficient way, has better learning ability and better generalisation per-

formance than standard GP.
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1 Introduction

The importance of data representation has been recognized in machine learning for a

long time. Poor input representation limits performance of learning algorithms. One

approach to eliminating the limitation is to construct new high-level features. Feature

construction is a process to discover relationships between features, and create novel

features based on these relationships. These novel features will augment the feature

space, and make the pattern to be more apparent, thus yielding better performance

of learning algorithms [1, 2]. The natural ability of Genetic Programming (GP) [3]

in detecting and combining important features has made it a good choice for feature

construction. A large number of works have been devoted to this field [2, 4, 5].

Generalisation is a kind of ability by which learning algorithms produce solutions

that can have a reasonable performance on the unseen data. It is one of the most

important evaluation criteria for learning algorithms. For decades, generalisation is

always a hot topic in many fields in machine learning [6, 7]. In GP for classifica-

tion, many works have been devoted to the generalisation of GP. In GP for symbolic

regression, however, before Kushchu published his work [8] in 2002, almost none of

the works on GP based symbolic regression reported performance on unseen data.

Until recent years, an increasing number of works have been devoted to enhance the

generalisation of GP for symbolic regression [9–12]. However, there has not been

any work on improving GP’s generalisation using feature construction for symbolic

regression.

In most GP-based symbolic regression tasks, there is typically one to ten input

variables. We considered regression tasks having more than 100 features to be high-

dimensional. For high-dimensional symbolic regression tasks, the underlying rela-

tionship between variables is more difficult to identify, and the risk of overfitting

becomes high, thus it is difficult to generalise well [13, 14]. In this scenario, feature

construction may help.

The overall goal of this work is to develop a new feature construction method

using GP for high-dimensional symbolic regression tasks and investigate whether

GP with the new feature construction method can improve its performance. Specific

objectives are:

∙ whether GP with the new feature construction method can have better performance

on training data over standard GP;

∙ whether GP with the new feature construction method can generalise well on

unseen test data;

∙ whether GP with the feature construction method can induce more compact mod-

els; and

∙ how the feature construction method influences GP’s computational cost.
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2 Background

This section gives a brief background to GP for symbolic regression, GP-based fea-

ture construction, and building blocks in GP.

2.1 Genetic Programming for Symbolic Regression

Genetic Programming (GP) is a very popular approach for symbolic regression,

which is a function identification process. The task of symbolic regression is to iden-

tify the relationship between the input variables and the outputs for a given dataset

and express the relationship in a mathematical model. The ability of GP in auto-

matically creating various programs and no requirement of predefined shapes and

sizes of solutions makes it a desired approach for symbolic regression. A large num-

ber of improvements to GP-based symbolic regression have been developed on the

literature every year [15–18].

2.2 Genetic Programming for Feature Construction

Many different GP-based feature construction methods have been presented in the

literature [1, 2]. These methods can be classified into three categories: filters, wrap-
pers and embedded methods. In filter methods, the fitness of the constructed feature

is evaluated by a function, for example a function that acts as a surrogate classifier

in classification tasks. In wrappers, instead of a specifically designed fitness func-

tion used in filters, the performance of another machine learning algorithm is used to

evaluate the fitness of the constructed features. Embedded methods incorporate the

feature construction process within the learning process and the constructed features

take apart in the learning process of GP directly.

In previous research, approaches using GP for feature construction were mainly

for classification problems. An early approach using GP for feature construction was

introduced for the face recognition task by Vafaie and De Jong [19]. Since then, a

number of contributions have been devoted to use GP for feature construction for

achieving better performance with kinds of classifiers, such as C4.5 [20], Support

Vector Machine [21] and K-Nearest Neighbour [22].

2.3 Building Blocks in Genetic Programming

GP with Automatically Defined Functions (GP-ADF) [23] is a very first method

using the building blocks in GP. In GP-ADF, the program takes the form of a
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sequence ofm program trees. The program trees in the sequence (except the first one)

are referred to Automatically Defined Functions (ADFs). These ADFs are then used

to extend the function set following the rule of using ADFs which occurs later in the

sequence. GP with ADFs proposes an efficient way to evolve subtrees of programs.

However, GP with ADFs selects building blocks by modifying ADFs at randomly

chosen crossover points. In many cases, this might not be a good idea due to the low

locality problem of ADFs.

Ballard and Rosca [24] proposed a method named Adaptive Representation,

which aims to automatically extract common knowledge in the form of building

blocks to extend the problem representation. In contrast to ADFs which manipu-

late building blocks randomly, Adaptive Representation takes a heuristic approach

to selecting new blocks based on block fitness.

In summary, there are many works on GP-based feature construction to improve

the classification performance. However, to date, there is no work devoted to discover

useful building blocks and construct new features to GP for symbolic regression,

thus helping improve its learning performance and generalisation ability, let alone

high-dimensional symbolic regression problems.

3 Proposed Approach

In GP, a building block refers to a piece of code, a subtree or subprogram of the

candidate programs [23, 25]. The quality of these simple pieces of code is an impor-

tant factor for the success of GP. In this work, a new GP-based feature construc-

tion approach namely GP with embedded feature construction (GPEFC) is proposed.

GPEFC uses building blocks as a way of representation transformation. The moti-

vation of GPEFC is to detect good genetic materials(building blocks) and utilise

them by constructing new features and introducing them into candidate programs.

An overview of GPEFC is shown in Fig. 1. Compared with standard GP, GPEFC

has two additional key components. While the first deals with how to detect and use
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good genetic materials to construct more informative new features, the second deals

with how to use these new features to improve system performance.

3.1 Component 1— Feature Construction Process

The feature construction process consists of three sequential steps. First, discovering

source individualswhich are more likely to contain good building blocks. We assume

that individuals that have higher fitness gain than their parent(s) are more likely to

contain useful genetic materials, since higher fitness gain is presumably brought by

combining more useful building blocks. Under the hypothesis, individuals are ranked

according the fitness gain with its parent(s), which is defined by

FG = min(Fit(pi1),Fit(pi2)) − Fit(i) (1)

where i is the individual, pi is/are the parent(s) of i, Fit(i) is the fitness of i, Fit(pi) is/are

the fitness value(s) of pi, and min(Fit(pi1),Fit(pi2)) is the smaller fitness value of the par-

ent(s) (smaller means better, as a minimisation function will be used). The larger

FG, the better i. In addition, a parameter p is used to determine the percentage of

individuals to be selected. A appropriate value of p is needed to maintain a trade-off

between introducing useful building blocks and keeping the total number of them to

be relatively small.

Second, detecting and collecting building blocks containing good genetic mate-

rials in the source individuals. Two key factors are taken into account, depth and

activeness. While the depth is the number of levels in the building blocks, the active-
ness of a building block is defined to be the number of times it appears in all the

source individuals. The threshold value for depth should be large enough to ensure

the building blocks are useful while keeping the length of programs using these new

features within manageable bounds. According to previous research [24, 26, 27],

building blocks which have two to three levels are a good choice. In terms of active-
ness, each building block has an associate counter regarding its number of occur-

rences among all the source individuals. The importance of the building block is

assumed to be related to this value. Based on this assumption, GPEFC splits all the

building blocks within the limited depth into important ones and unimportant ones

according to its activeness value and a threshold. The threshold is defined to be 𝛽×Nump

where Nump is the number of source individuals, and 𝛽 is the weight. 𝛽 is simply set

to be 0.5, so that the threshold defines a building block to be importance only when

the number of individuals in which it appears is more than that of it does not appear.

The third step is using the output expression of these building blocks to construct

new features directly. The values of the new feature should be transformed accord-

ingly. Each distinguished building block can construct only one new feature. After

the construction of all the available building blocks, the new features are ready to be

used to extend the Terminal Set.
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3.2 Component 2—Introducing New Features

The second key component is how to use the new features. For preparation, the new

features are put into the feature pool and extend the Terminal Set. Then GPEFC uses

these features in two ways. The first way is generating a number of new individuals

randomly using the new extended Terminal Set. By doing this, GPEFC introduces

new features into the population directly and increases the probability of using new

constructed features. A parameter rp defines the percentage of worst individuals to

be deleted in order to make room to the same number of newly generated individ-

uals. These worst individuals should have highest error values compared to their

counterparts in the current population. An appropriate value of parameter rp helps

increasing the probability of introducing the new features into the population while

does not destroy the good enough individuals evolved over generations. Secondly, by

means of the mutation operator, subtrees containing new features will be introduced

into the population of GP.

3.3 Evaluation Measure—Fitness Function

The performance of the GP individuals are evaluated by the Normalised Root Mean
Square Error (NRMSE) on both the training set and the test set. It is calculated as

shown in Eq. (2).

NRMSE =
√
N∕(N − 1) ×MSE∕𝛿t (2)

where N is the number of instances, MSE is the mean square error and 𝛿t is the standard

deviation of the target outputs.

4 Experiment Design

This work used standard GP as a baseline for comparison. Both GP and GPEFC were

tested on six real-world high-dimensional symbolic regression datasets.

4.1 Parameters

The experimental parameters are provided in Table 1. For GPEFC, there are three

important parameters. They are the parameter 𝛼 to determine how often GPEFC

constructs new features, the parameter p which refers to the percentage of individ-

uals having best fitness gain with their parent(s) and the percentage rp of the worst
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Table 1 Parameters for GP and GPEFC

Parameter Values Parameter Values

Population size 512 Generations 100

Crossover rate 0.9 Mutation rate 0.1

Elitism 0.01 Maximum depth 17

Initialisation Ramped-half and half Min-max initial depth 2–6

Function set +, −, ∗,% protected Terminal set Features, constant ∈
[–1,1]

Generation interval 𝛼 5 Top (worst)

individuals p(rp)

10 %

individuals in terms of their fitness to be deleted in order to give room to the new

individuals. All the values of these important parameters are identified by empirical

search. In this work, since the maximum number of generation is 100, 𝛼 is set to be

5, 10, 20. Then, the trials pointed out that 5 is a reasonable value to 𝛼. At the same

time, after a few trials the appropriate value to parameter p and rp are both set to be

10 %. GP and GPEFC have been run for 100 independent runs on each dataset.

4.2 Benchmark Problems

Since GP is still lacking benchmarks specifically designed for the research of gener-

alisation, six real-world datasets are taken from previous research on generalisation

of GP and UCI [28]. All the six datasets have a large dimensionality of the feature

space. The numbers of instances and features of the six datasets are shown in Table 2.

The first two datasets are problems in the field of pharmacokinetics. They consist of

predicting the values of two different kinds of pharmacokinetics parameters: human

oral bioavailability (represent as %F) and median lethal dose (LD50). For more detail

of these two datasets, readers are referred to [29]. The third dataset, Diffuse Large-

B-Cell Lymphoma (DLBCL) was collected from Rosenwald et al. [30], which is to

predict the survival time of patients who have diffuse large-B-cell lymphoma after

chemotherapy.

Table 2 Benchmark problems

Dataset # Fea-

tures

# Instance Dataset # Fea-

tures

# Instance

Total Training Test Total Training Test

%F 241 359 251 108 LD50 626 234 163 71

DLBCL 7399 240 180 60 CCUN 124 1994 1395 599

CCN 122 1994 1395 599 RLCT 384 53500 37450 16050
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The other three datasets are all taken from UCI [28]. Two of the datasets are the

Communities and Crime unnormalised dataset (CCUN) and the Communities and

Crime normalised dataset (CCN). The task of them is to predict the per capita crimes.

The final dataset is the Relative location of CT slices on axial axis (RLCT). The task

of the dataset is to predict the relative location of the CT slice on the axial axis of

the human body.

4.3 Training Sets and Test Sets

In order to investigate the generalisation performance of the two methods, we split

each dataset into a training set and a test set (they are provided in DLBCL). All the

experiments are conducted with 70 % of instances randomly selected from the dataset

for training and the other 30 % instances forms the test set, which is a common way

in many previous research [4, 29, 31].

5 Results and Discussions

This section presents experimental results of GP and GPEFC. The comparison will

be presented in terms of NRMSE on the training sets and the test sets, the number of

nodes and the number of distinguished features of the evolved solutions. The compu-

tational cost will also be compared. An non-parametric statistical significance test,

the Wilcoxon test, is used in this work to compare the 100 runs NRMSE values of

the best-of-run individuals in the training set and the test set of two methods. The

significance level is 0.05.

Figure 2 displays the distribution of NRMSE of the 100 best-of-run individuals

for the six datasets. The evolution plots of the training sets and the test sets over

generations are shown in Figs. 3 and 4, respectively. All the evolution plots are based

on the median value of the 100 runs of the best individual at every generation. Since

the median value is more robust to outliers, it was preferred over the mean value

[11].

5.1 Results of Program Size and Number of Features

The average program size and number of distinguished features of the 100 best-of-

run individuals are shown in Table 3. On most of the problems, GPEFC has a much

smaller program size than GP except for CCN and RLCT. This might due to the

richness of the new constructed features. It is shown that GPEFC can evolve more

compact solutions than GP in most cases. Compact models are generally easier to

interpret and faster in execution.
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Fig. 2 Distribution of NRMSE of the 100 best of runs individuals

In terms of distinguished features, GPEFC has slightly larger average number of

distinguished features in the evolved models on all the six problems. This is due to

the dynamically extended Terminal Set, but the increase is very small and can almost

be neglected.

The results show that GPEFC can utilise the feature construction process to com-

press different features together to discover hidden information among them, which

allows it to evolve compact solutions to improve the performance.

5.2 Results on the Training Sets

As it shows in Fig. 3, it is unquestionable that GPEFC has smaller training errors

than GP on all the test problems over generations. While GPEFC has slight per-

formance gains on %F, LD50 and RLCT, it contributes to a quite dramatic perfor-

mance improvement on the other three problems (DLBCL, CCUN and CCN). The

error distances between GPEFC and GP increase along with the number of gener-

ations on most of the test problems except for RLCT. The major reason may lie in

that the increasing number of new constructed features over generations may pro-

vide more useful information for the training process. Also this can explain why on

RLCT which have over 35,000 instances does not have this trend, since the useful

information can be provided by the large number of instances. In many cases, it is

hard to obtain such a large number. The advantage of GPEFC on the training sets can
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Fig. 3 The median NRMSE of best individuals on the Training Sets

also be confirmed by the training boxplots in Fig. 2, which display the distribution

of NRMSE of the 100 best-of-run individuals on the training sets.

The results suggest that GPEFC which is equipped with introducing new con-

structed features into the candidate individuals and the Terminal Set is able to have

a positive effect on accelerating the learning ability of GP.

5.3 Results on the Test Sets

The evolution plots of the test sets are presented in Fig. 4. It can be observed that

the overall pattern is the same as the training sets. GPEFC is also superior to GP

on all the six datasets. For the first two datasets (%F and LD50), overfitting occurs.
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Fig. 4 The median NRMSE of best individuals on the Test Sets

This may be because the available features and instances of the two datasets do not

provide enough useful information for the evolutionary process. This was confirmed

by the extremely large average program size and number of distinguished features

of the best individuals (Table 3), which are much higher than the other four datasets.

While both GPEFC and standard GP have increasing test errors, GPEFC can still

have lower NRMSE on both tasks, i.e. better generalisation ability.

In contrast to the first two tasks, GPEFC has good generalisation performance on

the other four datasets. On these datasets, the pattern on the test sets is very similar

to the training set. The distance of NRMSE between the two methods increases over

generations. For DLBCL, CCUN and CCN, comparing to GP, GPEFC has a gener-

alisation gain which is significant (p-values, DLBCL = 1.20E-8, CCUN = 1.45E-11,

CCN = 2.28E-12). It needs to note that on DLBCL, while GP has overfitting prob-

lem, GPEFC can eliminate overfitting effectively and generalise dramatically well.

On this task, the new constructed features may contain enough useful information
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Table 4 Computational time

Dataset Method Time (Millisecond) Dataset Method Time (Millisecond)

(Mean ±Std) (Mean ±Std)

%F GP 4401.01 ± 2006.13 CCUN GP 8069.6± 7577.09

GPEFC 3687.21 ± 1485.87 GPEFC 6803.75 ± 4411.12

LD50 GP 3553.41 ± 1703.16 CCN GP 5639.76± 5480.00

GPEFC 3211.18 ± 1364.41 GPEFC 6706.49 ± 5363.38

DLBCL GP 1953.36 ± 1253.27 RLCT GP 6.58E5 ± 2.07E5

GPEFC 1859.13 ± 884.03 GPEFC 6.8E5 ± 2.03E5

that provided by candidate building blocks. This is quite different from the first two

tasks. The contribution can be confirmed by the smaller program size and a big-

ger number of distinguished features. For RLCT, GPEFC can also have significantly

better generalisation ability (p-value = 0.012), although the distance of NRMSE

between the two methods is not as big as that on the other three datasets.

For all the tasks, GPEFC has a positive effect on improving the generalisation

ability of GP. When overfitting happens, the detected building blocks are more likely

to contain noisy information or information that is possibly unique to the training set,

thus the test performance of GPEFC may decrease compared to its training perfor-

mance. However, GPEFC is able to have much better generalisation performance

than GP.

5.4 Computational Cost

The average computational cost of the 100 runs is shown in Table 4. It can be seen

that for the first four problems, GPEFC has a lower computational cost than GP. This

is not very intuitive, since compared to GP, GPEFC needs additional computational

cost for feature construction, reinitializing a number of individuals and transferring

the input values for the new features. However, the smaller average program size over

the population of GPEFC decreases the evaluation cost. This is the major reason for

the efficiency of GPEFC. This can also explain why on the last two problems, GPEFC

is slightly computationally more expensive than GP.

5.5 Results of Statistical Significance Tests

The results of the statistical significance tests which compare the performance of

GPEFC and GP on the training set and the test set are shown in Table 5. “–” (“+”)

shows GPEFC has significantly better(worse) performance than GP. “=” means they

are similar.
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Table 5 Result of statistical significance test

Dataset GP versus GPEFC Dataset GP versus GPEFC

Training Test Training Test

%F – = CCUN – –

LD50 – = CCN – –

DLBCL – – RLCT – –

6 Conclusions and Future Work

This work developed a new feature construction method for GP and investigates how

it can influence the generalisation of GP for high-dimensional symbolic regression

tasks. A set of experiments were conducted on six high-dimensional real-world sym-

bolic regression datasets.

The experimental results show that, with appropriate design, GPEFC can evolve

more compact models which have significantly better regression performance on the

training sets and huge generalisation gains on the unseen data than GP. Furthermore,

since GPEFC can reduce the size of models in the population, it is generally com-

putationally less expensive than GP.

To the best of our knowledge, this is the first work on feature construction to

enhance regression performance and generalisation ability of GP. Since there is still

no systematic work on this field, we expect this work to attract the community’s

attention on exploring the topic of feature construction on GP for symbolic regres-

sion. In future, we will further investigate the key factor affecting the effectiveness

of the detected building blocks and the relationship between the new features and

generalisation ability. We also plan to incorporate an overfitting detecting mecha-

nism, for example using a validation set, introducing early stop detection and model

complexity measurement to GPEFC. It is expected to improve the generalisation of

GP in a more effective way.
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Abstract Creating interactive picture books based on human “Kansei” is one of the

most interesting and difficult issues in the artificial intelligence field. We have pro-

posed a novel interactive picture book based on Pictgent (Picture Information Shared

Conversation Agent) and CASOOK (Creative Animating Sketchbook). Since our sys-

tem accepts human sketches instead of natural languages, a high degree of sketch

recognition accuracy is required. Recently, convolutional neural networks (CNNs)

have been applied to various image- recognition tasks successfully. We have also

adopted a CNN model for the sketch recognition of the proposed interactive pic-

ture book. However, it takes a considerable effort to tune the hyperparameters of a

CNN. In this paper, we propose a novel parameter tuning method for CNNs using an

evolutionary approach. The effectiveness of the proposed method is confirmed by a

computer simulation that uses, as an example, a scribble-object recognition problem

for the interactive picture book.
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1 Introduction

Understanding drawn picture information by a computer is one of the most impor-

tant topics in the artificial intelligence field. We have developed an interactive picture

book based on human “Kansei” by utilizing human sketches. Our proposed interac-

tive picture book is based on two applications: Pictgent (Picture Information Shared

Conversation Agent) and CASOOK (Creative Animating Sketchbook). Various stud-

ies have analyzed picture information by using computer algorithms. However, there

exist three problems in those studies:

∙ It is not sufficient to collect freehand drawings from various users, especially chil-

dren and people who are not adept at drawing.

∙ Several researchers have analyzed the features of existing pictures, such as color

histograms and picture composition, but they ignore the mode of drawing [9].

∙ An important feature of pictures is the object class. One study focused on sketch

recognition [3] and handwritten character recognition [10] to predict the object

class. However, these approaches cannot be applied to freehand drawings because

such drawings may be composed of various classes of objects, such as animals,

characters, symbols, etc.

Since our system accepts human sketches instead of natural languages, a high

degree of sketch recognition accuracy is required when considering the aforemen-

tioned problems. One of the most powerful approaches for solving those problems

is the use of convolutional neural networks (CNNs) [6] with deep learning, which

has shown great accuracy in various image-recognition tasks. We have introduced

a CNN model as a sketch-recognition module into the proposed interactive picture

book. However, the parameter tuning of CNNs requires a considerable effort.

In this paper, we propose a new parameter-tuning method for CNNs by using an

evolutionary approach to solve a parameter tuning problem. To make a CNN useful,

we have to consider both network structure and its numerical parameters, such as the

filter size. A genetic algorithm (GA) [4, 5], which is a search-and-optimization algo-

rithm based on the mechanism of natural evolution, is applied to the CNN parameter-

tuning problem. We define AlexNet [6] as a basic structure of the CNN and apply

GA to optimize the activation functions and tuning parameters. The effectiveness of

the proposed method is confirmed by a computer simulation using a scribble-object

recognition problem as an example. We also demonstrate an interactive picture book

with a CNN model obtained by the proposed method.

2 Interactive Picture Book

In this section, we will show the outline of the proposed interactive picture book.
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2.1 Interactive Picture Book

The main purpose of the proposed interactive picture book is to consider human

Kansei to create an original story for different users. There are two main input data

types from users in the interactive picture book: natural language and an image. Text

data based on natural language are one of the most useful inputs. However, there

exists an obvious limitation in the communication between users and systems with

text-only information. For example, small children cannot use text languages, but

they can communicate to the external world based on their emotions. On the other

hand, drawings are one of the most intrinsic representations of individuals, regardless

of age, national origin, or culture. Therefore, we have introduced a human-sketch-

recognition module into the proposed interactive picture book.

Our interactive picture book is composed of two main parts: Pictgent, which rep-

resents the main frame of the system and controls the story transition, and CASOOK,

which recognizes human sketches for the system (Fig. 1).

2.2 Pictgent

Pictgent is the main frame of our interactive picture book.

Fig. 1 Outline of interactive picture book
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Pictgent consists of the following three modules:

Picture Module This module manages the picture information, which is an impor-

tant item in this study. Each picture has its own model created by an object-

oriented modeling technique. In this module, the picture model is written in XML

format.

Scenario Module This module controls the transition of the scenarios in the pic-

ture book. To achieve an adequate transition, this module stores the user’s various

inputs such as natural-language text and/or a sketch.

Scenarios are written in XML format, which has a transition map and an answer

example set.

Chat Module This module replies according to the user’s input or asks the user

some questions about the picture book story.

2.3 CASOOK

We used CASOOK for the user sketch inputs for the interactive picture book because

Pictgent can only receive text information.

CASOOK consists of two modules: an interaction module and an analysis mod-

ule. The interaction module includes functions that encourage the users to draw, and

the analysis module contains methods that recognize user drawings. Since CASOOK

can use various recognition algorithms, we introduce a CNN model into CASOOK

as a recognition algorithm. Understanding the user intention and Kansei requires a

high degree of recognition accuracy. A CNN model is one of the best solutions to

achieve this in our interaction picture book. We try to obtain the proper CNN model

for this CASOOK part by evolutionary computation.

3 Related Works

In a past research [3], a large-scale exploration of human sketches was performed.

The aim was to compare human performance with computational recognition meth-

ods. To do so, the research study used a dataset of 20,000 unique sketches that were

evenly distributed over 250 object categories. A key point of this dataset is that it

consisted of non-expert human sketches. A study was performed to determine the

mean recognition rate of humans over this dataset. Regarding the computational part,

the identification process used SIFT (scale-invariant feature transform)-like feature

extraction and a bag-of-words model for the sketch representation and multi-class

support vector machines (SVMs) for the classification. The researchers used a state-

of-the-art machine learning technique called parallel SVMs. Bertla et al. also pro-

posed the recognition of sketches by a multi-class SVM classifier utilizing a binary

decision tree [2]. However, there has been no research on sketch recognition for an

interactive picture book using a CNN model.
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Research on combining GA with CNN has been reported [12], but this study did

not consider the hyperparameters of the CNN directly.

4 Convolutional Neural Network

In this section, we introduce a CNN model.

4.1 Outline of CNN

A CNN is one of the deep learning methods and is widely used in the image recog-

nition field. In the ImageNet LSVRC contest, it was reported that approach of using

CNN model is improved remarkable performance than those of conventional image

recognition [6]. Now, a CNN is admitted as the one of powerful method of image

recognition. The basic structure of CNN contains one or more convolutional layers,

pooling layers, and fully connected layers. The fully connected layers are arranged

after the convolutional and pooling layers for fine-tuning.

The CNN has the advantage of only using a small number of learnable parame-

ters. The convolutional layers are the core building blocks with parameters of a set

of learnable filters. An input image is passed to the convolutional layers, and dot

products are computed between the entries of the filter and the image at any given

position. The pooling layers are inserted into the architecture of the CNN as well.

We used max-pooling which operates independently at every depth slice of the input

and resizes using the MAX operation.

4.2 AlexNet

We now introduce the architecture of AlexNet [6], which is shown in Fig. 2.

AlexNet is one of the most popular architectures of a CNN. It contains eight

learned layers: the first five are convolutional and the remaining three are fully con-

nected. Using a softmax function, the last fully connected layer produces an out-

put consisting of four class labels. The response-normalization layers follow the

first and second convolutional layers. The pooling layers follow both the response-

normalization layers and the fifth convolutional layer. To reduce overfitting of the

data during the training stage, we use “dropout” [8, 11]. The idea is to drop out ran-

domly hidden units and input features during the training of the neural network. This

network uses dropout in the first two fully connected layers. Moreover, we rely on

ReLU nonlinearity, which is applied to the output of every convolutional and fully

connected layers.
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Fig. 2 The architecture of AlexNet

5 Evolutionary Approach for a CNN Model

The CNN is one of the best solutions for image recognition. However, setting the

adequate structures and hyperparameters of the CNN requires a great effort. The per-

formance of the CNN is strongly dependent on the network characteristics; therefore,

finding better structures and hyperparameters is a very important issue. Although a

grid search is one solution, a more efficient approach is required because of the huge

hyperparameter space.

In this research, we have adopted evolutionary computations (ECs) as the opti-

mization method for finding better CNN models. ECs are search-and-optimization

algorithms based on the mechanism of natural evolution. We propose an evolution-

ary approach for finding a fine hyperparameter set for the CNN model.

5.1 Genetic Algorithm

To find a fine CNN model, we need to consider the following issues:

Structure This refers to the basic structure of the CNN such as the number and

type of layers, type of activation function, and methods for fine-tuning.

Hyperparameters (integer) These are represented by an integer such as the num-

ber of filters, filter shape, max pooling shape, and convolutional layer shape.

Hyperparameters (real number) These are represented by a real number such

as the weight value of the filter and that of the convolutional layers.

In this study, we only focus on two issues: hyperparameters (integer) and the type of

activation function in the structure. We used a GA [4, 5], which is one of the pop-

ular ECs and has been applied to various types of problems. Although we strongly

understand above setting is not enough to find novel deep architectures, this research

stands the first step of combination of CNNs and ECs for creating more complex

networks.
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Table 1 The gene of individuals in GA

Design variables Allele

The number of filter (NF) 16, 32, 64

Filter size (FS) 3, 5, 7, 9, 11

Pooling size (PS) 3, 5, 7

The number of node in fully connected layer 1 (NL1) 512, 1024, 2048, 4096

The number of node in fully connected layer 2 (NL2) 128, 256, 512, 1024

Batch size (BS) 10, 30, 100

Activate function with ReLU (Re) 1 (use), 0 (not use)

Fig. 3 An example of genotype

5.2 Representation

In a GA, solutions are represented as individuals and each individual has a chro-

mosome. A symbol, which makes up the chromosome, is known as a gene, and the

position of the gene in the chromosome is known as a locus, and possible genes in

the loci are called alleles.

In this study, we set a unique number of alleles for each locus because the degree

of contribution to the quality of a network can be dependent on each design variable.

Table 1 shows the details of the representation.

Figure 3 shows an example of the chromosome of an individual. Each string in

the locus is related to the strings in Table 1. The basic structure of the CNN is fixed

according to AlexNet (see Sect. 4.2). In Fig. 3, the seven genes labeled as “Re” repre-

sent the flag of the ReLU functions, which are set just after five convolutional layers

and two fully connected layers. If the gene Re is 1, the corresponding ReLU function

is set after the target layer. Although AlexNet does not use a ReLU function in fully

connected layers, our system can set a ReLU function in these layers.

5.3 Fitness Function

In this study, the fitness function F(s) of the GA is the sum of the accuracy in a k-fold

cross-validation using the training data, where s is an individual related to a certain

CNN.
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This optimization problem is represented as follows:

arg max
s

F(s) =
k∑

i=1
faccuracyi

(s) (1)

where s denotes an individual and faccuracyi
(s) is the accuracy function of a k-fold

cross-validation after i epochs.

5.4 Speed-Up Methods

To consider the CNN evolution, we need to use speed-up methods because the train-

ing of the CNN takes a long time. In this study, we introduced two types of speed-up

methods.

The first method is called “genotype and fitness memory” in GA. Once the fitness

of an individual is calculated, the relation of the genotype and the fitness value is

recorded by the genotype and fitness memory method. If the same genotype appears

in the GA, the fitness value is obtained from this memory method instead of recal-

culating the fitness. Although the cost of saving the genotype and fitness value is

not low, this memory method reduces the total simulation time because of the heavy

CNN training time.

The second method involves introducing a cutoff point into the CNN training

stage. In this study, we give up the CNN training when the improved quantity of the

accuracy rate of 10 epochs is less than 1 % compared to that of 1 epoch. We remove

the useless training time of hopeless individuals by this method.

Algorithm 1 GENERATION-GA
Create random population
while |P ′

i | < popsize do
Select parents
Apply crossover to them
Add children to P ′

i

for all individual ∈ P ′
i do

Apply mutation to it
while |Pi+1| < popsize − 1 do

Apply survival selection to P ′
i

Add individual to Pi+1

Add elite to Pi+1

Fig. 4 One generation of GA. popsize is the number of individuals in a population, and Pi is a

population in generation i
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5.5 Algorithm

Figure 4 shows the algorithm for creating a generation in GA. GA has a crossover, a

mutation, and a survival selection, respectively.

6 Experiments

Here, we show the experimental results of evolving a CNN model by using GA.

The main purpose of this experiment was to confirm the validity of the proposed

evolutionary method.

6.1 Target Problem

Since the main targets of our interactive picture book are children, we utilized a

bitonal sketch image as the recognition problem for the CNN. Children start draw-

ing before reading and writing; thus, sketches can be an appropriate teaching aid

for early childhood development. Children can input their emotions as sketches into

an interactive picture book, and a prepared CNN can recognize them. Owing to this

recognition, certain transitions can be applied to the picture book story. For instance,

if a child draws a frog, the system would recognize the animal and then transition the

scene to an appropriate story about the frog, such as a rainy situation. In this experi-

ment, the CNN model was evolved to recognize four classes (face, animal, character,
and symbol) of the bitonal sketch image with a size of 28 × 28 because these four

classes are the main categories of the children’s drawing. Each class contained 250

items of data, so the total amount of data was 250 × 4 = 1000. We divided 1000

items of data into two as follows:

Training data in evolution Each class contained 225 items of data, so the total

amount of training data was equal to 900. In parts of the GA, the fitness value

in Sect. 5.3 was calculated by using the results of a threefold cross-validation

after 100 epochs. Each individual was translated into a CNN model and trained

by 600 items of data with 100 epochs. After this, we obtained the CNN accuracy

and loss by utilizing 300 data items, which were the remainder of 900–600 data

items. Because of the threefold cross-validation, we repeated this three times and

obtained the fitness value using the equation above.

Test data In our test data, each class data contained 25 items. Since there were

four classes (25 × 4 = 100), the data were used to estimate the obtained CNN

model represented by a unique individual in the final generation in GA.
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6.2 Experimental Conditions

Table 2 shows the computer specifications used in the experiments. Table 3 shows

the setting of the GA. In addition, we set the maximum number of generations of the

GA to 20.

We use simple mutation that change gene to random allele because target problem

is not so difficult. If the fitness landscape of problem become more complex, we have

to rearrange the setting of mutation operator.

Results and Discussion Figure 5 shows the training and test accuracies. The training

accuracy reached 1.0 in about 100 epochs and then fluctuated while keeping a high

accuracy rate. The test accuracy reached 0.98 in about 30 epochs and then stayed

at around 0.95. After 500 epochs, the test accuracy declined below 0.95 because of

Table 2 Computer spec of experiments

OS Windows 7 Professional

CPU Intel Core i7-4790K 4.00 GHz

Memory 32.0 GB

GPU NVIDIA GeForce GTX 970

Table 3 Setting of GA

Generation size 20

Population size 20

Chromosome length 22

Crossover type Uniform

Crossover rate 1.0

Mutation rate of each locus
1
L

(L is chromosome length)

Selection Tournament selection

Tournament size 3

Fig. 5 Training and test accuracies
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overfitting. Since the fitness in GA was evaluated after 100 epochs, only individuals

with CNN hyperparameters that finished training before 100 epochs could survive.

In this experiment, because the dataset was not so large, our system easily found

fine individuals for CNN. We tried another fitness function using a negative value

of the total losses instead of the total accuracy fitness in Sect. 5.3 and also obtained

a high accuracy. The recognition task of the present dataset may be too easy for our

proposed method. Applying our system to a more difficult dataset is one of the most

important goals for further study. Figure 6 shows the training and test losses calcu-

lated by cross entropy. The training loss became almost 0.0 in about 30 epochs, but

rose up occasionally. On the other hand, the test loss increased with oscillation. Actu-

ally, because of the small size of the test dataset, overfitting caused that oscillation.

Figure 7 shows an example of the training datasets. The character class contains

only “Hiragana,” which is the original Japanese character set. Figure 8 shows the

two images in the test dataset that the CNN model with a 0.98 test accuracy failed

to recognize. The left sketch represents a “dolphin” in the animal class, and the right

Fig. 6 Training and test losses

Fig. 7 Examples of training datasets
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Fig. 8 Images leading to identification failure in test

sketch represents a “rectangle” in the symbol class. The trained CNN mistook the

“dolphin” for a face class and the “rectangle” for a character class. Since there were

few water creatures in our dataset, the dolphin seemed hard to recognize. The dif-

ference, however, between the rectangle and some characters was very small, so the

results were reasonable.

Figure 9 shows the genotype of elite individuals who performed best with a test

accuracy of 0.98. ReLU functions were always used except for the second convolu-

tional layer. This result shows that the ReLU function is very important in obtaining

an effective CNN. In the obtained network, the number of filters and that of nodes

in the fully connected layer were smaller than those for AlexNet. This is because

our network was evolved to adapt bitonal images, whereas AlexNet was tuned for

RGB images. Besides, 100 epoch which is set for calculating fitness of GA is small

Fig. 9 The genotype of best individuals in test data

Fig. 10 Transition example of interactive picture book
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to obtained large network. In this study, since fitness is calculated by Eq. (1), the

landscape of objective function may be simple. We consider memory and/or com-

putational cost of training network in fitness function, e.g. set some penalty for too

large networks.

Figure 10 shows some examples of the output transition for our interactive pic-

ture book. If the user input is an animal, the scene transitions to a “lion appearing,”

whereas if the user input is a face, the scene transitions to “animals gathering.” The

results of the computer simulation show that the proposed method is effective in

creating a CNN for our interactive picture book.

7 Conclusion

In this study, we proposed the novel method of making CNN models for the interac-

tive picture book by using evolutionary approach. Using AlexNet as the basic CNN

model, proposed method with GA can tune the hyperparameters of CNN models.

Proposed method can also find more a simple network than AlexNet to adapt bitonal

sketch images. Important future works are as follows:

∙ To extend the proposed method to various datasets such as photos or RGB images.

∙ Increasing the number of data in order to observe the search dynamics of ECs in

detail.

∙ Comparison of using pure grid search technique versus the proposed method with

considering both performance of the network and computational cost such as

memory and CPU power.

∙ Tuning the real number hyperparameters by using CMA-ES.

∙ Extend ECs genotype to be able to represent complex network topology.

∙ The landscape analysis of search space based on various fitness functions.

Our final purpose is proposing the novel interactive picture book system. In our

current system, the branches of story are only four because system can recognize only

four types of image classes. Therefore, we have to increase the number of recogniz-

able classes in order to show lots of story branches to users.
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Semi-automatic Picture Book Generation
Based on Story Model and Agent-Based
Simulation

Kiyohito Fukuda, Saya Fujino, Naoki Mori and Keinosuke Matsumoto

Abstract In the fields of artificial intelligence, automatic narrative generation has

attracted considerable interest. Lots of studies on narrative generation have been

reported. However, most of those do not consider stories and representation medi-

ums separately. In this study, we focus on the picture book as the narrative because

picture book is a mix of images and language. As a first step of automatic story gen-

eration without representation mediums, we propose a novel semi-automatic picture

book generation method based on story model and agent-based simulation. The com-

putational experiments are carried out to confirm the effectiveness of the proposed

method.

Keywords Narrative engineering ⋅ Picture book generation ⋅ Story model ⋅Agent-

based simulation

1 Introduction

Recently, automatic narrative generation by the computer has attracted considerable

interest as a challenging problem in the fields of artificial intelligence and natural

language processing. Narrative [1] is a creation based on emotions of human and is

comprised of a story and a representation medium. When we represent the story by

language, narrative is called novels; and it is called comics when we represent the
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story in images mainly. In this study, we focus on the picture book which is one of

the most simple comics, as narrative.

With a view toward realizing effective automatic narrative generation, lots of stud-

ies on automatic novel generation based on a case-based reasoning (CBR) [2–4] and

problem-solving process [5], and automatic comic generation based on picture model

to express pictures and images [6, 7] have been reported. However, most of those

studies have a critical problem that they deal with stories and representation medi-

ums together. If we can generate stories without dependency of representation medi-

ums, we can generate various kinds of narratives which are same stories only using

different representation mediums. Therefore, we have proposed the story model in

order to model stories regardless of representation mediums.

In this study, we propose a novel semi-automatic picture book generation method

based on story model and agent-based simulation (ABS). Here, ABS is a simulation

to investigate actions and interactions between autonomous agents [8, 9]. A new

picture book is generated by representing a story model which is generated by the

simulation log of the ABS.

2 Story Model

We generate picture books based on our story model. The most important part of

that is called a scene. There are lots of different scenes in the story model. That

difference among scenes are represented as objects that appear in the scene. Each

scene has actions and emotions of the object, time, and environment. The story is

generated by selecting the next scenes from the all scenes set and transiting scenes

from the start scene to the end scene. The ability of modeling branched stories is one

of the important feature of our story model.

The scene has the following information that are necessary for story generation

in hierarchical structure.

∙ The scene such as scene name, place and time.

∙ The objects that appear in the scene such as name, age and emotion.

∙ The relations between the objects such as action, identification and causal relation.

Figure 1 shows the scene structure of story model.

3 Proposed Method

In this study, we propose a semi-automatic picture book generation method based

on story model and ABS. The proposed method proceeds as follows. Each step is

explained in detail in Sects. 3.1–3.4.
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Fig. 1 Scene structure of story model

Step 1: Settings of the ABS
The environment and parameters of the ABS are set in order to generate log data.

Several parameters of the ABS are determined by the user.

Step 2: Log data generation via ABS
Two types of log data, namely status logs and action logs are generated via the

ABS.

Step 3: Story model generation
Story model is generated from action logs and status logs on the basis of a specific

character’s log data.

Step 4: Picture book generation
Picture book is generated based on the story model by using languages and images

as representing mediums.

Steps 1–3 of the proposed method can be performed automatically. However, step

4 requires human’s help in the current system. Thus, the former are referred to as the

“computer part” and the latter is referred to as the “user part”.

3.1 Setting of the ABS (Step 1)

Figure 2 shows the flowchart of the ABS algorithm. ABS is a simulation to investi-

gate actions and interactions between autonomous agents and their influences on the

environment. The ABS algorithm is implemented for the proposed method. Here we

represent a real value according to the normal distribution  (𝜇, 𝜎2) and the uniform

distribution of [a, b] as w1(𝜇, 𝜎) and w2(a, b).
The details of the ABS are explained as follows:
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Fig. 2 Flowchart of the ABS

3.1.1 Parameter Settings

There are two types of parameters in the ABS, namely system parameters and user

parameters.

System parameters:

xmax and ymax: The field size of the ABS.

t: The current number of turns.

Np: The number of character agents.

Ni: The number of item agents.
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Ns: The number of scenes.

Na: Action number.

User parameters:

n: Each agent’s name.

r: Each agent’s role.

a: Each character agent’s age.

s: Each character agent’s sex.

3.1.2 Space Construction

In the ABS, the agent moving space is constructed by a field, which is two-

dimensional torus-shaped spaces. All agents and scenes are set on random positions

in a certain range of the field. Each of agents and scenes can not be set on the same

position.

3.1.3 Time Management

In the ABS, time is managed by turn t and action number Na. The turn t denotes a

system parameter that manages the time course in the environment and is updated

after all agents performed all actions. The action number Na denotes a system para-

meter that manages the order of actions performed in the same turn and is updated

each time some agent performs an action.

3.1.4 Scenes and Agents Construction

First, Np character agents and Ni item agents are constructed.

A character agent is an agent that represents the main character in the stories

generated by the proposed method and has the following specific internal states:

∙ attributes: age a, personality P = {p1, p2} emotion e, health condition c, where a
is a natural number, s is a binary of man or woman, p ∈ P is a real number of

[1, 3], e is a real number of [−1, 1], c is a real number of [0, 100];
∙ friendship values toward other agent F = {f1, f2,… , fnp+ni } and familiarity values

toward other agent G = {g1, g2,… , gnp+ni }, where f ∈ F and g ∈ G are real num-

bers of [−100, 100];
∙ the list of its own item agents.

An item agent is an agent that represents the item that is appeared in the stories and

has the following specific internal state:

∙ information on character agent that is its owner.
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Then, both character and item agents have the following internal state:

∙ attributes: names n, role in the story r, where r is “hero”, “enemy”, “ally”, “food”

or “weapon”;

∙ influence value on other agent’s movement v, where v is a real number of [0, 200];
∙ position in the field x, y.

Second, Ns scenes are constructed. A scene is a special position in the field. That

is important for the proposed method to generate story model and has the following

parameters: role in the story r and influence value on other agent’s moving v, where

r is “event” or “goal” and v is a real number of [0, 200].

3.1.5 Agent Selection

An agent is randomly selected from agents that do not perform an action in this turn.

If there are character agents in them, agent is randomly selected from them. The

selected agent is defined as i.

3.1.6 Movement

An agent i always performs an action of movement. It moves to the Neumann neigh-

borhood in the direction of the value according to influence values of other agents

and scenes, Euclidean distance between them, and its own personality. After i per-

formed the action of movement, the action number is updated to Na = Na + 1.

3.1.7 Interaction

If an agent i is a character agent and it meets some conditions after movement, it

performs an action of interaction with other agent. The algorithm of interaction is

given below.

1. If a character agent i is set at the same position of other character agents in the

field, a character agent is randomly selected form them and is defined as j. The

friendship value and familiarity value of j toward i, represented by f ji and gji and

the emotion of j, represented by ej are updated as follows.

f ji,t = f ji,t + w1(0, 3)p
j
1,t (1)

gji,t = gji,t + |w1(0, 3)|p
j
1,t (2)

ejt = ejt +
w1(0, 3)p

j
1,t

100
. (3)
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Furthermore, if the role of i is “hero” and it has an item agent that has the role

corresponding to the j’s role, its owner is changed from i to j. In addition, f ji and

gji are updated as follows.

f ji,t = f ji,t + w2(10, 30)p
j
1,t (4)

gji,t = gji,t + |w1(0, 10)|p
j
1,t. (5)

2. If i is set at the same position of item agents that is not belonged to any character

agents in the field, an item agent is randomly selected from them and is defined

as k. k’s owner is changed to i and the emotion of i, ei is updated as follows.

eit = eit + w1(0, 3)pi1,t. (6)

3. If the health condition of i, represented by ci is below threshold and i have item

agents whose role is “food”, an item agent is randomly selected from them and

is defined as 𝓁. i loses 𝓁 and the health condition of i, ci is updated as follows.

cit = cit +
c𝓁t
2
. (7)

After that, the health condition of 𝓁, c𝓁 and position in the field are reset.

4. After i performed the action of interaction, the action number is updated to Na =
Na + 1.

3.1.8 Update and End Determination of the ABS

A set of character agents is defined as J. The friendship value of a character agent i
toward other character agent j, represented by f ij , the health condition of an agent k,

represented by ck and influence values of all agents and scenes, represented by v are

updated as follows.

f ij,t = f ij,t + w1(0, 1) (8)

eit = eit +
1

100
∑

j∈J,i≠j
w1(0, 1) (9)

ckt =
499
500

ckt (10)

vt =
{

1.001vt (r = “goal”)
vt + w1(0, 0.5) (otherwise).

(11)
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The objective of this update is representing that the importance of character’s emo-

tions, items and scenes in the story is changed by the time course. In addition, turn

t is updated to t = t + 1.

Finally, if a character agent whose role is “hero” is set at the same position of a

scene whose role is “goal”, the ABS is halted. If not, it returns to the agent selection.

3.2 Log Data Generation (Step 2)

Two types of log data, namely action logs and status logs are generated via the ABS

implemented by Sect. 3.1. The details of these log types are explained as follows:

Action log Action log information is saved if each agent performs a movement

or an interaction in the ABS. The data of action log is {turn, main agent, target
agent, position of main agent, action type, action number, the change amount of
each parameter caused by the action, item that is exchanged between agents by
the action}.

Status log The status log are saved at the start of each turn and at the end of the

last turn in the ABS. These comprise the turn and all parameters of all agents and

scenes.

3.3 Story Model Generation(Step 3)

The story model is generated from action logs and status logs. The algorithm of story

model generation is as follows:

1. A character agent whose role is “hero” is defined as i. In addition, a set of scenes

whose role is “event” is defined as J.

2. A set of maximum turn when i is set at the same position of scene j ∈ J in the

status logs is defined as Ts
max.

3. Sets of maximum and minimal turn when each different action are performed in

the action logs are defined as Ta
min and Ta

max.

4. Start scene is generated using i’s status log whose turn is 0.

5. The minimal turn in Ts
max is defined as t. After that, if there are action types

that occurred at least once t′ (t′ ≤ t, t′ ∈ Ta
min). For each selected action types,

investigate the latest action and action time t′′ ∈ Ta
max, and one scene is generated

from one action with using status log of turn 0 and t. Obtained scenes are sorted

by in ascending order of each t′′ of selected action.

6. Ts
max and Ta

min are updated to Ts
max = Ts

max\t and Ta
min = Ta

min\t
′
. If Ts

max ≠ 𝛷,

return to 5.

7. The end scene is generated using each agent’s status logs whose turn is the last

turn. Finally, the set of scenes generated in 4, 5 and 7 is defined as the story model.
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Table 1 Correspondence of scene elements to the log data

Scene elements Log data

SID No data

Scene name Scene and action type

Object Agent

Place Scene

Time No data

Relation Agent and scene

Type Agent’s type

OID Agent’s ID

Name Agent’s name

Age Agent’s age

Sex Agent’s sex

Personality Agent’s personality

Emotion Agent’s emotion

Posture Scene

Look Agent’s emotion and health condition

Condition Agent’s health condition

Position Scene and agent’s role

Action Action type

Action number Action number

Causal Relation No data

Result Agent’s parameters

Sentiment Friendship value and familiarity value

Identification Agent’s role

The start scene is only one type. All story models have the same start scene. How-

ever, there are four types of end scene, namely simple-end, happy-end, bad-end, and

unexpected-end. The end scene is selected from these prepared scenes in accordance

with character agent’s parameters such as friendship value, familiarity value, and

position in the field.

Each scene is generated by selecting their elements from choices. The selection of

them is in accordance with data of action logs and status logs corresponding to them.

However, there are some elements that do not correspond to the log data. Table 1

shows the correspondence of scene elements to the log data.

3.4 Picture Book Generation (Step 4)

In this study, a page of the picture book is generated from a scene of the story model.

It is constructed a picture and sentences. The algorithm of picture book generation

is as follows:
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1. The number of scenes of the story model generated by Sect. 3.3 is defined as Npage
and the i-th scene in the story model is defined as Si(i = 1, 2,… ,Npage). Here, S1
denotes the start scene and SNpage

denotes the end scene.

2. Set i = 1.

3. Suitable picture parts and sentence templates are selected by referring to Si’s
elements from the prepared image and sentence template sets.

4. A picture is generated by arranging selected picture parts by human according to

Si. Sentences are generated by combining selected sentence templates and spe-

cific elements such as name or emotion of Si. i-th page of picture book is generated

by combining the picture and sentences.

5. i = i + 1. If i ≤ Npage, it returns to 3.

6. The picture book that is Npage pages is generated by the proposed method.

4 Computer Experiments

4.1 Experimental Method

To confirm the effectiveness of the proposed method, we generated several picture

books by using the proposed method. Table 2 shows the experimental conditions.

Table 3 shows the correspondence of object index called OID to object attributes.

The outline of the story generated by the proposed method was prepared in advance.

It was defined as follows:

Table 2 Experimental conditions

Field size: xmax, ymax 100, 100
Number of character agents: Np 3
Number of item agents: Ni 2
Number of scenes: Ns 4

Table 3 Correspondence of OID to object attributes

OID Name Role Sex Age

1 Little red riding

hood (Red)

“Hero” Woman 10

2 Wolf “Enemy” Man 8

3 Hunter “Ally” Man 30

4 Meat “Food” Null Null

5 Gun “Weapon” Null Null
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∙ One day, the hero was asked to go visit her grandmother who lives in a forest by

her mother. Then some events happen on the way to her grandmother’s house.

In this experiments, we prepared four types of the end of story (Fig. 3). They were

defined as follows:

Simple-end: The hero arrives her grandmother’s house without encountering the

enemy.

Happy-end: The hero and the ally exterminate the enemy, and they arrives hero’s

grandmother’s house and eat dinner with her.

Bad-end: The hero is eaten by the enemy in the way to her grandmother’s house.

Unexpected-end: The enemy apologizes to the hero and becomes good friend with

her, and they arrives her grandmother’s house and eat dinner with her.

4.2 Experimental Results

First, we generated a picture book by using the proposed method in order to discuss

the detail of the story model and picture book generated by the proposed method. We

call the generated picture book “sample”. Figure 4 shows picture book representation

of sample. Tables 4, 5 and 6 show examples of the story model of sample. Figure 4

and Tables 4, 5 and 6 are generated in Japanese and translated into English. Tables 4,

5 and 6 correspond to Fig. 4. For example, the columns whose objects is O-2 or R-2

Fig. 3 Friendship and familiarity values of the last turn
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Table 4 Example of sample’s story model (Scene)

SID Scene name Objects Place Time Relations

1 Start O-1 Start Morning R-1

2 Acquisition of

meat

O-2 In the forest Noon R-2

3 Encounter

with Wolf

O-3 In the forest Noon R-3

4 Encounter

with Hunter

O-4 In the forest Noon R-4

5 Attack on

Wolf

O-5 In the forest Moon R-5

6 Bad-end O-6 In the forest Night R-6

Table 5 Example of sample’s story model (Object)

Objects O-1 O-2 O-2 O-3 ⋯

OID 1 1 4 1 ⋯

Type Character Character Item Character ⋯

Name Little red

riding hood

Little red

riding hood

Meat Little red

riding hood

⋯

Age 10 10 Null 10 ⋯

Sex Woman Woman Null Woman ⋯

Personality Curious Curious Null Curious ⋯

Emotion Normal Normal Null Normal ⋯

Posture Standing Standing Null Standing ⋯

Look Normal Normal Null Normal ⋯

Condition Good Good Good Good ⋯

Position Right Left Right Left ⋯

Table 6 Example of sample’s story model (Relation)

RID R-1 R-2 R-2 R-2 R-2 ⋯

OID-OID 1–1 1–1 1–4 4–1 4–4 ⋯

Action Null Null Pick up −Pick up Null ⋯

Action num-

ber

Null Null 1 1 Null ⋯

Causal rela-

tion

Null Null Chain Chain Null ⋯

Result Null Null Becomes

owner

−Becomes

owner

Null ⋯

Sentiment Null Null Null Null Null ⋯

Identification Myself Myself “Hero” “Food” Myself ⋯
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Table 7 Analysis of 10,000 stories

Type Frequency Mean number of

scenes

Variance

Simple-end 3059 5.656 0.867

Happy-end 274 6.412 0.716

Bad-end 6637 5.49 0.854

Unexpected-end 30 5.800 0.945

in Tables 5 and 6 correspond to the second page of picture book in Fig. 4. We can

understand that the story of Fig. 4 is that Little Red Riding Hood is eaten by the

wolf in the way to her grandmother’s house. The backgrounds, characters or items

are defined by the story model in Fig. 4. The look, personality, emotion and position

of the objects are also defined by the story model. Therefore, this shows that the

proposed method can generate stories regardless of representation mediums because

picture book is a mix of images and language. However, the stories generated by the

proposed method have a low degree of freedom because the proposed method needs

the outline of the story in advance. Therefore, we need to generate the outline of the

story automatically.

Next, Table 7 shows the results of the analysis of 10,000 picture books generated

by the proposed method. We classified them at the end of story and analyzed them

by type of the end. There are four types of the end of story: simple-end, happy-end,

bad-end and unexpected-end. We can understand that the difficulty in generating the

picture book by the proposed method is different according to the end of story in

Table 7. This shows that the proposed method can generate a wide variety of picture

books. This is attributed to the difference by the change of result from the ABS

such as the events order, whether they happen in the story, and character agent’s

parameters of the last.

Finally, Fig. 3 shows the friendship and familiarity values of the last turn for each

end type. Figure 3 is mean of 30 picture books for each end type. It was found that

some parameters of characters in the story of some end types are significantly differ-

ent from ones of the other end types in Fig. 3. This suggests that stories of the picture

books generated by the proposed method are controlled by some agent’s parameters

and actions in the ABS. Therefore, we consider that the proposed method can gener-

ate the only picture book for user by optimizing initial parameters and the amounts

of change for each action in the ABS.

Especially, it was found that friendship value of the Hunter toward Little Red

Riding Hood for a happy-end story and friendship value of the wolf toward Little Red

Riding Hood for an unexpected-end story are higher than that ones for the other end

in Fig. 3. The ally exterminates the enemy in order to help the hero in the prepared

happy-end story and The enemy apologizes to the hero in the prepared unexpected-

end story. These show that the proposed method can generate appropriate picture

books because it is natural that the hunter helps Little Red Riding Hood who has
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Fig. 4 Generated picture book sample
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good relationship with him and that the wolf apologizes to Little Red Riding Hood

in order to make peace with her.

5 Conclusion

In this study, we proposed a novel semi-automatic picture book generation method

based on story model and ABS as a first step of automatic narrative generation that

does not depend on representation mediums. The computational experiments are

carried out to confirm the effectiveness of the proposed method. The results of the

computational experiments are listed below.

∙ The proposed method can generate appropriate picture books.

∙ The proposed method can generate a wide variety of stories.

∙ The proposed method can control stories in the settings of the ABS.

In future work, we plan to optimize the settings of the ABS by using evolutionary

computation [10, 11] or machine learning [12, 13]. This will allow us to generate

picture books based on human preferences and to quantitatively evaluate the story.

In addition, current ABS proposes a solution where all agents select and perform

actions according to their emotions, their personalities and so on. However, these

elements have a weak influence while a strong influence is given by random numbers.

Therefore, the implementation of a new ABS, where actions, emotions, personalities

and roles would have a strong influence for each agent’s actions is also an important

future work.
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Where Does My Brand End? An Overlapping
Community Approach

Ademir C. Gabardo, Regina Berretta, Natalie J. de Vries
and Pablo Moscato

Abstract In this paper, we present a new Memetic Algorithm for overlapping com-

munity detection. We use a link-based clustering approach to detect the communi-

ties of edges in complex networks. To assess the quality of our method, we present

experimental results for benchmark networks in comparison to other state-of-the-art

algorithms. In addition, we present a case study of a co-purchasing product network

from a brand-centric point of view to show the real-life utility of this new Memetic

Algorithm.

Keywords Evolutionary computation ⋅ Memetic algorithms ⋅ Metaheuristics ⋅
Complex networks ⋅ Overlapping community detection

1 Introduction

‘Where does my brand end?’ This seemingly bizarre question may lie in the mind

of marketing professionals but it may be so ill-posed that many would probably be

too shy to ask it to their in-house analytic professionals. After all, to have a notion

of a ‘boundary’ we need to have a notion of a domain where the brand ‘resides’. In

this sense, an oversimplification would be that a ‘brand ends where another brand

starts’. This statement is clearly wrong as today many brands are composed of a large

number of highly dissimilar product lines which could significantly overlap with the
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offerings of their competitors. Two brands then would be, collections of products of

different types. There is then little hope to try to establish a metric over a myriad of

different products and specify boundaries across these highly varied and putatively

very dissimilar set of metrics.

Another possibility would be to try to identify what the ‘brand image’ is that con-

sumers have in their mind and what the consumer perceives the ‘brand personality’

of that brand to be like. ‘Brand personality’ is a heavily studied topic in business

and marketing domains and it is said to have a large impact on consumer perceptions

of a brand [1]. Therefore, it becomes a key aspect of finding the “boundary” of a

brand in comparison to other (similar) brands. For instance, companies like Apple

are characterized by, and known for, the simplicity, but highly functional user inter-

faces designs. Another brand could be highly similar to Apple in terms of their brand

image and personality, yet this other brand is in no way a competitor to Apple. They

could be for instance in the clothing and fashion industry. This example shows that

the boundaries we could find in these brand’s “domains” may extend well into other

product or industry domains making the problem at hand more complex.

In this paper we propose a new Memetic Algorithm (MA) for overlapping com-

munity detection and use it to inspect a co-purchasing network from Amazon.com.

This interesting application shows the usefulness of our method in real-life domains

and we will present the details of this domain in the following section. Following an

approach which is quite intuitive, we can associate products with nodes of a graph.

A pair of nodes that represent two products for which at least one consumer has

purchased them during the same transaction on the website constitute an example of

co-purchasing.

1.1 Complex Co-purchasing Networks

It is appropriate to think of co-purchasing as creating a weighted network, a math-

ematical abstraction in which the elements are represented by nodes and the links

between elements are represented by edges [29]. The weight would then correspond

to the number of instances in which a co-purchasing has occurred. For the purpose of

finding a sharp boundary, however, we will work with an unweighted network. We

will constrain our attention to the cases in which at least one co-purchasing event

has occurred. The area of mining information from graphs and networks is wide

including social networks [11], business networks [27], biological systems [15], and

diverse other physical phenomena [11, 30]. One common approach in the area of net-

work analytics is the identification of motifs with subgraphs of a small cardinality

of nodes which has previously been applied to the study of co-purchasing networks

by Srivastava in [36].

A good strategy would be to display products that lead to the core set of directed

paths which lead to a highly valuable product. This said, the identification of these

boundaries are becoming, far from being a bizarre question, a mathematical pos-

sibility thanks to the available online information about customers’ co-purchasing
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patterns. The problem often is that these sets of information form large complex

networks for which advanced analytical methods are necessary.

One important feature of complex networks is the presence of communities,

groups of nodes which are densely connected among its members and sparsely linked

to the rest of the network [29, 30]. Community detection could be used to investigate:

a group of friends among a social network [5, 21], groups of connected electronic

devices in communication networks [7, 32], customer engagement behaviour mod-

els [8], websites sharing common links [2], biological networks [15, 35], economic

networks [12] and many others. In many real-life cases, communities in complex net-

works can be overlapping. This means that the definition of a community is extended

and now it is possible that nodes can belong to more than one community [3, 19, 31,

33].

There are few studies of overlapping communities in co-purchasing networks. In

2015, Jebabli et al. [18] present a study using the Amazon co-purchasing network.

Their study was not brand-specific and it aimed at comparing the results of sev-

eral community detection algorithms with a ground-truth structure. More recently,

Yamazaki et al. [38] have used co-purchasing graph data from YAHUOKU!, which

is the largest online auction site in Japan. This method was also not brand-specific, is

based on using node attributes and on the identification of maximal cliques. To our

knowledge, ours is the first approach that aims at using the overlapping community

detection problem for a brand-centric request of identifying the boundaries in the

induced subgraph generated by the brand in the co-purchasing network. Detecting

overlapping communities in large networks is not a trivial computational task [5, 19].

Although there is a wide list of community detection algorithms, the vast majority

of them are designed to detect only disjoint partitions [5, 31, 33].

1.2 Using Line Graphs to Detect Overlapping Communities
in Complex Networks

In this contribution we use link clustering with line graphs to detect the overlapping

communities in complex networks by optimizing modularity to detect the commu-

nity structure in a line graph. Introduced by Girvan and Newman [30], modularity is

a measure of quality for network communities, which means that higher modularity

implies good quality partitions. For a graph G = (V ,E), where V is a set of nodes,

and E is a set of edges, the modularity can be expressed as:

Q =
k∑

c=1

[
lc
m

−
(

dc

2m

)2
]
, (1)

where c represents a community, k is the number of communities, m is the number

of edges in G, lc is the number of edges inside a community and dc is the sum of the

degrees of the nodes inside a community.
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(a) (b) (c)

Fig. 1 a A graph G(V ,E), b the line graph L(G) corresponding to G with community structure

highlighted by dotted circles, and c the overlapping communities in G

Our algorithm performs the modularity optimization in a line graph L(G) that

corresponds to the adjacency between the edges of G, in such way that, each edge in

G corresponds to a node in L(G), and two nodes in L(G) are connected if they share a

node. Figure 1 shows a graph and its disjoint partitions, the corresponding line graph

and the overlapping partitions recovered from the line graph.

2 MADOC, A Memetic Algorithm to Detect Overlapping
Communities in Complex Networks

Community detection is known to be an NP-Hard computational problem [5, 11].

We chose Memetic Algorithms to tackle this problem as they are proven to be effi-

cient metaheuristics capable of solving complex combinatorial problems such as the

overlapping community detection problem [25, 26, 28].

Our link based Memetic Algorithm for Detecting Overlapping Communities

(MADOC), employs the evolutionary mechanisms of selection, recombination,

mutation, and replacement to evolve a population of individuals. Our aim is to max-

imize Modularity [30], our fitness function. The main steps performed by our pro-

posed MA are listed in Algorithm 1.

2.1 Representation and Initialization

The representation used by our algorithm is string-coding, a simple and straight-

forward representation, in which, an individual is encoded using an array where

each position represents the community that a node belongs [13, 26]. Given a graph

G = (V ,E), where V is a set of nodes and E is a set of edges, the individual can

be encoded with a string of size n = |V| of values in the range [0, n]. For instance,

a network with 8 nodes can be represented as the string [1, 1, 1, 1, 2, 2, 2, 2], where

nodes 1 to 4 are in the community 1 and nodes 5 to 8 are in the community 2.

Initially, a population of 40 individuals is formed (see Sect. 3.1 for more details).

In this initial population, 39 are valid uniform random solutions, that is, all com-
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Input: a graph G = (V ,E);
Output: the overlapping communities of G.

1 InitializePopulation(pop,G);
2 localSearch(pop);
3 updateFitness(pop);
4 while stopping criteria is not reached do
5 parent1 = selectFromElitePop(pop);
6 parent2 = tournamentSelection(pop);
7 offspring = modularityCrossover(parent1, parent2);
8 mutate(offspring);
9 localSearch(offspring);
10 if getFitness(offspring) > getWorstFitness(pop) then
11 getWorst(pop) = offspring;
12 end
13 end

Algorithm 1: The schematic framework of MADOC.

munities present a single connected component. Our initialization scheme follows

the approach of egonets, which starts from a centric node connected to its neighbor-

hood to create an egocentric network [19, 34]. Algorithm 2 shows the initialization

scheme.

1 c = 1; //communities start from 1.

2 counter = 0;

3 while counter < |V| do
4 seed = rand(1, |V|);
5 counter = counter + 1;

6 placeNodeInCommunity(seed, c);
7 for each neighbor of seed do
8 placeNodeInCommunity(neighbor, c);
9 counter = counter + 1;

10 end
11 c = c + 1;
12 end

Algorithm 2: The steps performed to generate a new individual.

To complete the population, one of the individuals is created in a similar manner,

however, the seeds are chosen according to the degree of the nodes, the first seed
is the node with the highest degree in the network, the second seed is the highest

degree node in the network not yet attributed to a community and so on. This scheme

produces an individual with fitness above the average in the initial population, not

yet with the best modularity, but with much higher quality than the individuals from

random initialization.
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2.2 Selection and Replacement

In each generation, MADOC creates a population pop of Np individuals, where Np is

the size of the population. To create an offspring, two parents are recombined using

the modularity based crossover. The first parent is selected with equal probability

from the elitePop, a subpopulation corresponding to 10 % of the entire population

with the best fitness individuals. The second parent is selected using tournament

selection, in which a subpopulation pop′
is selected with equal probability from the

main population, next, the best individual of pop′
is selected as the second parent.

The replacement strategy adopted by MADOC is simply replacing the worst indi-

vidual with the offspring, but only if the fitness of the offspring is higher. This com-

bination of selection and replacement consists of an elitist strategy for evolving the

population.

2.3 Modularity Based Crossover

The recombination mechanism used by MADOC is a variation of the modularity

based crossover [13, 26]. The modularity based crossover uses a priory list with

the fitness of each community in both parents, the best communities are selected

first, therefore, increasing the quality of the offspring. Our crossover operator differs

in the sense that, instead of using a single global priority list for both parents, we

use two priority lists, one for each parent, selecting the best community from each

parent until it covers the graph. If a node is already set, a community is partially

copied from one parent, as per the example in Fig. 2 (step 3). This strategy ensures

that the offspring will inherit information from both parents, despite if the quality of

the parents is highly uneven. Figure 2 shows the modularity recombination crossover

used by MADOC.

Parent 1 Parent 2 Offspring

Step 1

Step 2

Step 3

1

2

3

4
1

2
3

4

Fig. 2 The modularity based crossover, two parents are recombined into an offspring. Each parent

has a priority list according to the quality of its communities. In step 1, the community with the

highest modularity in parent 1 is copied to the offspring. In step 2, the community with the highest

modularity in parent 2 is copied to the offspring. The process repeats until it covers the whole graph.

In step 3, some nodes of the community in parent 1 are already assigned to another community in

the offspring, therefore, only the remaining nodes are copied
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2.4 Neighborhood Mutation

Mutation is the genetic operator used to preserve the diversity of the population [14,

17]. The mutation operator modifies a solution inserting a level of perturbation to the

solution. A common approach for mutation is to change the value of the string in the

individual with a random value, however, this can produce communities with dis-

connected components and therefore, invalid solutions. To overcome this issue, we

introduce a new neighboring mutation strategy. Our mutation strategy is to choose

a node with uniformly random probability, change its label to another community,

next, select all its neighbors and place them in the same community, therefore ensur-

ing that the individual is still a valid solution. The parameter mutation rate Pm con-

trols the amount of perturbation inserted in the solutions, starting from 0.05, which

represents a probability of 5 %, increasing in steps of 0.01 to a maximum of 0.15.

The mutation is increased if there is no average fitness gain after 15 generations.

2.5 Local Search

The local search mechanism is important in order to improve the quality of the solu-

tions with Memetic Algorithms. In our algorithm, the local search is applied to all

individuals in every generation.

Similarly to label propagation methods, we update nodes communities according

to the highest frequency label of neighbor nodes, if, the community is different from

the current one. The local search algorithm traverses the graph node by node testing

permutations which increases the fitness. If changing a node to another community

results in better fitness this solution is adopted and the algorithm moves to the next

node.

Calculate the total fitness at each permutation is computationally expensive,

rather than, we use delta fitness to measure the gain of permutations. To achieve

that, we store the fitness of each community in an auxiliary data structure, therefore,

when moving a node v from community a to community b, we only need to com-

pute the change in fitness of a and b to assess if the movement results in fitness gain.

Algorithm 3 shows the steps performed by the local search.

Once a node-community permutation results in fitness ‘gain’, the permutation is

accepted and the algorithm moves to the next node, regardless of the possibility

of moving the node to other communities. This approach was adopted to reduce

the number of permutations during the local search. Moreover, our local search is

inspired by label propagation, in which the nodes tend to form communities with the

highest frequency community label amongst its neighbors.
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1 for each node do
2 if currentNodeCommunity() != neighborsHighestFreqComm() then
3 for eachNeighboringCommunity do
4 //Neighboring Communities ordered by highest frequency first.

5 𝛥Q = computeDeltaFitness();

6 if 𝛥Q > 0 then
7 placeCurrentNodeIn(NeighboringCommunity);
8 break;
9 end
10 end
11 end
12 end

Algorithm 3: The steps performed during the local search.

3 Experimental Results

3.1 Parameters Used by MADOC

MADOC receives only two parameters, the population size Np and the maximum

number of generations without fitness improvement Tmax. The amount of mutation

Pm is dynamically set according to the population’s average fitness. Table 1 shows

two sets of parameters tested with MADOC. Set A follows the algorithms MLCD,

MOGA-Net and MODPSO [22] and set B follows the algorithm MA-Net [26].

Three well-known benchmark networks were used to set the parameters used by

MADOC, Zachary Karate Club, American College Football, and a LFR Syntheti-

cally generated network with 128 nodes and 1024 edges. Tests were performed over

50 independent runs for each benchmark network with the two sets of parameters

summarizing 300 test runs.

Results showed no statistically significant difference between the two sets of para-

meters for the Zachary Karate Club network and the LFR benchmark. However, the

Set B performed better for the American College Football benchmark network with

statistically significant difference, with p-value = 0.04837, also, producing higher

average fitness and smaller standard deviation. The results presented were obtained

with parameters following the values of Set B.

Table 1 Parameters used by community detection MAs.
a
The mutation rate is adjusted according

to the fitness,
b
generations without fitness improvement

Set A Set B

Parameter meaning MLCD, MOGA-Net, and

MODPSO

MA-Net and MADOC

Np: Population size 300 40

Pm: Mutation rate 0.15 0.05 to 0.15
a

Tmax: Maximum generations 200 30
b
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3.2 Results in Benchmark Networks

Since modularity optimization plays a key role in our algorithm, results are divided

into modularity optimization for non-overlapping communities in benchmark net-

works and overlapping communities in benchmark networks. Table 2 shows a com-

parison between our algorithm and another state-of-the-art modularity optimization

algorithms, we are able to find the best modularity found in the literature [4, 26] for

each benchmark network.

In addition, we used the Normalized Mutual Information to measure the similarity

between our results and the known community structure of benchmark networks.

Table 3 shows the characteristics of the benchmark networks used to assess MADOC

capacity of detecting overlapping communities.

Table 2 Modularity optimization results comparison table

Network MOGA-Net MODPSO MLCD MA-Net MADOC

Zachary

Karate Club

Max Q 0.4159 0.4198 0.4198 0.4198 0.4198

AVG Q 0.3945 0.4182 0.4198 0.4190 0.4198
Stdv 0.0089 0.0079 0 0.002 0

Lusseau’s

Dolphins

Max Q 0.5034 0.5265 0.5285 0.5285 0.5285

AVG Q 0.4584 0.5255 0.5285 0.5230 0.5284

Stdv 0.0163 0.0061 0 0.0040 0.0003

American

College

Football

Max Q 0.4325 0.6046 0.6046 0.6046 0.6046

AVG Q 0.3906 0.6038 0.6046 0.6010 0.6045

Stdv 0.0179 0.0011 0 0.030 0.0001

Jazz

Musicians

Max Q 0.2952 0.4421 0.4451 0.4451 0.4451

AVG Q 0.2929 0.4419 0.4451 0.4451 0.4446

Stdv 0.0084 0.0001 0 0 0.0021

Table 3 Overlapping benchmark networks used to test MADOC

Network Nodes Edges AVG degree L(G) nodes L(G) edges L(G) AVG

degree

LFR

benchmark-a

8 16 4.00 16 54 6.75

LFR

benchmark-b

32 192 12.01 192 2112 22.01

Les

Miserables

77 254 6.597 254 2808 22.11
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Table 4 Results for overlapping communities with benchmark networks

Network L(G) Max Q L(G) Avg Q Standard

deviation

Inorm Communities

LFR

benchmark-a

0.2220 0.2220 0 1 2

LFR

benchmark-b

0.4033 0.3749 0.0197 0.948 2

Les

Miserables

0.5918 0.5815 0.0057 0.797 7

Table 4 shows the results obtained by MADOC in terms of similarity with the

known benchmark network communities.

The maximum modularity, average modularity, and standard deviation are rel-

ative to fifty independent runs. The case study performed on the Les Miserables
benchmark, a network of coappearances of characters in Victor Hugo’s novel ‘Les

Miserables’, in which, nodes represent characters and edges connect any pair of char-

acters that appear in the same chapter of the book. The Les Miserables results are

compared with the results
1

presented by Evans and Lambiotte [9, 10], with high

similarity (Inorm: 0.797) between MADOC results and Evans and Lambiotte results.

The overlapping communities also depict the central role of the character Valjean,

which appears as a central character and participates in several communities. This

result is also consistent with the results presented by He et al. [16], where the same

number of communities is found, and the main character Valjean is a central node

participating in diverse communities.

3.3 Network of Co-purchases of Photographic Material at
Amazon.com

We analyse the overlapping communities of co-purchased products and the rela-

tionship between products and brands on the Amazon.com website. Through this

example, we will get closer to answering the peculiar question “Where does my
brand end?” and provide some insights that the MADOC algorithm can bring to

its users. The dataset used in this experiment is a subset of a larger dataset com-

prised of 191,000 products crawled from the Amazon.com website [23, 24]. The

metadata includes the product name and brand, price, sales rank, description and

the co-purchasing links. The possible co-purchasing links include the ‘also viewed’,
‘also bought’, ‘bought together’ and ‘buy after viewing’. We have concentrated our

analysis on the network that can be formed by only using the ‘also bought’ informa-

tion to build a graph that links products and their corresponding brands.

1
The data is available at: http://dx.doi.org/10.6084/m9.figshare.1573032.

http://dx.doi.org/10.6084/m9.figshare.1573032
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We have chosen one particular brand to study due to its rich history; Kodak. Our

brand-centric sub-network is the subgraph induced by the Kodak brand in the ‘also
bought’ co-purchasing network.

Kodak introduced the automatic snapshot camera over 110 years ago and holds

several patents including the digital camera in 1976 [6]. Kodak had sales of $13.3 bil-

lion in 2006 and approximately 41,000 employees worldwide. Several authors point

out that a sequence of bad corporate judgements caused the brand’s devaluation.

Kodak was ranked the fourth most valuable brand in the United States in 1996 but in

2007 it was no longer even on the top 100 most valued brands, ending up with bank-

ruptcy in 2012 [20, 37]. This makes Kodak a useful case study to generate some user

insights of MADOC.

In our network each node represents a product, the node ID is the Amazon Stan-

dard Identification Number (ASIN), and the ‘label’ is the product name and brand.

The graph has 565 nodes and 4,573 edges, the line graph has 4,573 nodes and

144,500 edges, our algorithm partitioned the line graph into 11 communities with

modularity Q = 0.645.

We start our discussion with community C2 as it provides an interesting analy-

sis. Figure 3a shows the overlap of community C2 with C4 and the corresponding

‘Wordle’ images. These show the dominating products and brands in the overlapping

section between these two communities and were created by inputting the product

descriptions and metadata in the online ‘Wordle’ tool.
2

It is clear that these communities (and their overlap) are largely dominated by

Kodak products and its main competitors at the time of these purchases in the

film area (e.g. Fujifilm, Ilford). Therefore, we are clearly still within Kodak’s brand

“boundaries” and close to their direct close competitors.

When we continue exploring the graph and take community C4 again with

another overlapping community (C11) we get a different view (Fig. 3b). Looking at

community C4 by itself we can see that it “bridges” most communities in the graph.

It is mainly composed of Epson products (Kodak is for the first time a minority in

the world cloud of brands) which is also apparent in the overlap shown in Fig. 3b.

Kodak is still one of the main brands featured in the overlapping section of these

communities, however, we can see that Epson (one of the world’s largest manufactur-

ers of computer printers)
3

has become the most prominent brand. Alongside this, we

can see a lot of products related to printing appear in the overlap, for instance; paper,

photo sheets, inkjet and so forth. Many business analysts that have studied Kodak

consider that Kodak tried to pursue the printing business for “too long”, rather than

diversifying, and this is what they claim largely led to their failure.
4

The information

in this image shows that Epson is leading in this product space showing a somewhat

blurry initial ‘boundary’ of Kodak. A sign that perhaps this could be “where their
brand ends”.

2
http://www.wordle.net.

3
http://www.epson.com.

4
http://www.forbes.com/sites/daviddisalvo/2011/10/02/what-i-saw-as-kodak-crumbled/#

48f55b2820f5.

http://www.wordle.net
http://www.epson.com
http://www.forbes.com/sites/daviddisalvo/2011/10/02/what-i-saw-as-kodak-crumbled/#48f55b2820f5
http://www.forbes.com/sites/daviddisalvo/2011/10/02/what-i-saw-as-kodak-crumbled/#48f55b2820f5
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Fig. 3 Figure a shows the overlapping communities C2 and C4 on the left, in the center is the

‘Wordle’ of products for the intersection between C2-C4, and on the right is the ‘Wordle’ of the

brands of this interestion. Figures b and c follow the same arrangement for communities C4-C11

and C1-C11 respectively. In Fig. d, the community C7 (highlighted in green) and its ‘Wordle’s’ are

also presented

Finally, if we move to yet another set of communities, C1 and C11 we see Kodak

almost completely disappear from the overlapping product space as shown in Fig. 3c.

Community C1 is largely dominated by printing products and brands. In Fig. 3c we

can see that HP, Brother and Canon in particular are highly prominent. In this overlap

it is even more clear that printing products significantly dominate this product space.
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Fig. 4 A detailed look at some nodes that are in a specific overlapping location. In a the central

node clearly belongs to both communities, the algorithm was able to depict this structure while

preserving the community on the left. In b, the central node is overlapping different communities,

where it shares several edges. And, in c the nodes sharing connections with other communities are

overlapping, while the small community on the right is also depicted

The investigation of these three sets of communities shows that more information

is hidden in the overlaps that helps identify brand “boundaries” and close competitors

of Kodak. Interestingly, we have been able to find those areas of Kodak’s brand and

product offerings that led them to their devaluation as a result of strong competition.

Furthermore, in this analysis we highlight one last interesting community; C7 which

is shown in Fig. 3d.

This community seems to be a small segment of the market clearly dominated

by Kodak with little competition. It seems to be that there are many ‘Underwa-

ter’, ‘Disposable’ and ‘Waterproof’ camera products which did not have many co-

purchases associated to them in this community. We must remind the reader that we

are analysing the graph induced by the Kodak brand and thus it is natural to have an

unequal representation of other brands versus Kodak in the overall network. How-

ever, the lack of competition in this area is interesting with the exception of Intova

(a current Hawaiian digital compact camara
5

which is a healthy competitor of the

GoPro brand
6
). The reason we highlight this community is because it is clearly less

densely connected to the other communities in the larger sections of the graph which

in turn means that Kodak had less competition in this area. Together with some other

small communities (e.g. C10 where the brand ‘Led-Lenser’ dominates) it provides

some insights to the Kodak brand as these areas could indicate the missed opportu-

nities of expansion markets possible for Kodak.

Finally, we would like to show that MADOC was able to accurately identify

the community structure, preserving small communities and non-overlapping areas.

Figure 4 shows some regions of the graph in more detail.

5
http://www.intova.net.

6
http://www.calypsoproductions.com.au/2014/01/gopro-vs-intova-video-comparison.

http://www.intova.net
http://www.calypsoproductions.com.au/2014/01/gopro-vs-intova-video-comparison
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4 Conclusion and Future Work

In this contribution we have proposed a new Memetic Algorithm; MADOC, and

have shown that it is a useful tool in many instances where underlying overlapping

communities can be uncovered. We have used modularity and line graphs to detect

overlapping communities in complex networks using an evolutionary approach.

Throughout this contribution we have shown that boundaries are overlapping, not

just in biological or natural networks, but also in complex marketing-domain co-

purchasing networks. Boundaries of communities cannot be reduced to single dis-

joint network partitions, but rather a “blurry” overlap of interconnected and overlap-

ping objects. Our future work includes omitting the line graph step by employing a

metric capable of detecting overlapping communities as the fitness function for our

algorithm. This will help to reduce the size of the instances used to compute the

network communities and in turn improve running time. Finally, future work could

also explore the many more applications of this method in a much wider variety

of domains bringing more real-life solutions and decision support mechanisms for

organizations and researchers.
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Analysis of Parameter-Less Population
Pyramid on the Local Distribution of Inferior
Individuals

Taku Hasegawa, Yuta Araki, Naoki Mori and Keinosuke Matsumoto

Abstract Unlike many GAs, the Parameter-less Population Pyramid (P3) is an opti-

mization model that avoids premature convergence due to the pyramid-like structure

of populations, and thus P3 can be applied to a wide range of problems without

parameter tuning. However, in some problems, P3 cannot control the number of fit-

ness evaluations in local search and in crossover, while adapting problem structures.

Meanwhile, we have proposed a novel technique, called DII analysis. The computa-

tional complexity of applied problems can be estimated based on the number of local

optima according to the results obtained using DII. In order to solve the problem of

P3, we also have proposed combining P3 with DII analysis (P3-DII). In this study,

we investigated the effect of DII analysis on balance between genetic operators. The

performance of P3-DII was confirmed according to the computational experiments

which were carried out taking several combinational problems as examples.

Keywords Genetic algorithm ⋅ Local search ⋅ Fitness landscape ⋅ Adaptation ⋅
Parameter-less

1 Introduction

Many evolutionary techniques such as genetic algorithms (GAs) employ parame-

ters that provide user control of search dynamics. Therefore, reducing the number

of these parameters or building a theory for tuning parameters adaptively are fun-
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damental goals in the area of GAs. One approach is to learn the fitness landscape

to develop a surrogate model [1]. GAs utilize the surrogate model to guide genetic

operators during the irreversible search process [2], and then sometimes cause sev-

eral problems including premature convergence due to a failure of prediction at one

step.

The Parameter-less Population Pyramid (P3) [3] can avoid premature convergence

due to the pyramid-like structure of the populations employed. P3 performs addi-

tional search according to P3 iterators, and thus P3 is a robust optimization model

to the accuracy of the prediction obtained at each step. On the other hand, in several

problems, P3 can not control the balance between the number of fitness evaluations

in local search and in crossover, while adapting each problem structure. Moreover,

we can not give the efficient distribution of the fitness evaluations between GAs and

LS techniques because there is no parameter to do so.

In the present study, we have proposed a technique “analysis based on the Dis-

tribution of Inferior Individuals in the local neighborhood” (DII analysis), which

facilitates adaptive search using P3 [4]. While no optimizer can solve all problems

equally well [5], we focus on solving the problems which are structured as partial

fitness functions with optimizers based on DII analysis. DII analysis predicts the

computational complexity of the problem based on the features of a simple model

by comparing the quality of the solutions in the local neighborhood. Furthermore,

we also have proposed combining P3 with DII analysis (P3-DII) [4].

In order to show the effectiveness of P3 and P3-DII, in this study, we carried out

taking several combinatorial problems as examples and showed that DII analysis can

control the search dynamics of P3 while providing better results.

2 Parameter-Less Population Pyramid

P3 is an optimization algorithm that requires no user parameters. P3 employs a

pyramid-like population structure rather than a single population of solutions. Each

level of the pyramid comprises a population of solutions, which behaves as different

generations during evolution. P3 utilizes these populations to improve the solutions

by hill climbing and crossover operations.

2.1 Algorithm

As mentioned above, P3 maintains a pyramid-like population structure where each

level of the pyramid comprises a population of solutions. More optimized solutions

are found at the higher levels. The different levels comprise unique solutions such

that ∀i,j∈P,i≠jPi ∩ Pj = 𝜙 where i and j are the levels of the pyramid. If new solutions

do not exist in any levels of the pyramid, they can only be added to a level. For the

details, please refer to [3].
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3 DII Analysis

We propose a novel approach to estimate complexity of problems based on DII which

is the distribution of the number of inferior individuals in the local neighborhood. In

this paper, we focus on DII with a Hamming distance of 1, named DII-1. For simpli-

fication, we define the complexity analysis based on DII(DII-1) as just “DII(DII-1)

analysis”.

In DII-1 analysis, the procedure is divided into two parts, where the first estimates

the distribution of inferior individuals with local search techniques and the second

uses the features derived from the distribution based on a simple model,Nt landscape

problem.

DII-1 analysis can be applied to any problem with a discrete representation, but we

focus on problems with a binary domain for simplicity. In this section, we explain DII

analysis with examples of the Nk landscape problem and the deceptive trap problem,

which are described in Sect. 5, and the Nt landscape problem described in the next

subsection.

The main symbols used in this section are as follows.

F: fitness function

fi: partial fitness function

t: random functional size

N: chromosome length

s: individual

si: gene of individual s at locus i

3.1 Nt Landscape Problem

We define the Nt landscape problem as follows.

1. The fitness function F is given by sum of the partial functions f .
2. All of the partial functions are given by genes in t loci. The number of partial

functions is N∕t, where N is the chromosome length. N∕t does not need to be an

integer in our theory.

3. All of the partial functions are given by random variables based on the positions

of the genes. The function values in partial functions are different from each other.

Nt landscape problem is a type of simplified Nk landscape with no overlapping genes

of partial functions. In this study, we focus on the computational complexity derived

from the value of t in Nt landscape problem. We refer to the value t as the “random

functional size”. Let fi be the partial function given by the set of loci L = {(i − 1)t +
1, (i − 1)t + 2,… , it}. We define the genes S = {s(i−1)t+1, s(i−1)t+2,… , sit} in loci I
with higher values of fi than any combinations of genes at a Hamming distance of

1 in loci I as the partial local optima in the Nt landscape problem. DII-1 analysis

predicts the computational complexity based on the partial local optima in the Nt
landscape problem.
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Fig. 1 Frequency with respect to the number of inferior individuals in the neighborhood with

Hamming distance of 1

3.2 Inferior Individuals

The individuals inferior to individual s are defined as the individuals with not greater

fitness than the fitness value of s. In this study, we focus on the number of individuals

inferior to individual s in the neighborhood, which number is represented by Is, and

we define a local optimum as the genotype of individual s with Is = N.

The distribution of inferior individuals represents many features related to the

problem’s complexity in GAs based on the rank of individuals, but we mainly con-

sider an increase in the local optima according to an increase in the size of a partial

function given by random variables. In the first example, we specify problems with a

linear function and no fitness plateaus, i.e., the One Max problem and Nk landscape

problem with k = 0. In these problems, the distribution of inferior individuals is a

binomial distribution B(N, 1
2
) because a partial function on a locus is independent of

another locus. As another example, we specify a problem with a completely random

fitness function such as the Nk landscape problem with k = N − 1. In this case, the

probability that the number of individuals inferior to s equals Is(Is = 0, 1,… ,N) is

1
N+1

, and the number of inferior individuals is given by the discrete uniform distrib-

ution Ud(0,N). Figure 1 shows the frequency distribution of the number of inferior

individuals in the Nk landscape problem with N = 20. In this figure, the distribution

of the number of inferior individuals in the neighborhood is affected by problem

features, such as the value of k.

3.3 DII-1 Analysis

DII-1 analysis is divided into two steps. In the first step, DII-1 analysis estimates

the distribution of inferior individuals with a beta-binomial distribution [6]. In the

second step, DII-1 analysis estimates a random functional value t for applied prob-

lem, and estimates the maximum number of fitness evaluations in local search and

crossover based on t.



Analysis of Parameter-Less Population Pyramid . . . 153

3.3.1 Beta-Binomial Distribution

A random variable X is given by the beta-binomial distribution BB(n, 𝛼, 𝛽), where

a random variable X is given by the binomial distribution Bi(n,Y) and a random

variable Y is given by the beta distribution Be(𝛼, 𝛽). The beta distribution Be(j, n −
j + 1) gives the jth order statistic with a uniform distribution U(0, 1) in n trials, and

the beta distribution is related to the order statistic of many distributions, which

can be converted into a uniform distribution. If we select numbers from a set of

integers {1, 2,… ,N′} in n′ trials, Xj − j is given by the beta-binomial distribution

BB(N′ − n′, j, n′ − j + 1), where Xj denotes the jth order statistics.

The probability function P(X = x) for the beta-binomial distribution BB(n, 𝛼, 𝛽)
is:

P(X = x) =n Ck
B(x + 𝛼, n − x + 𝛽)

B(𝛼, 𝛽)
(1)

where B(𝛼, 𝛽) is the beta function.

In this study, we simply estimate the parameters 𝛼, 𝛽 for the beta-binomial distri-

bution with an average 𝜇 and variance 𝜎

2
.

𝛼 = −𝜇3 − 𝜇𝜎

2 + 𝜇

2n
𝜇
2 − 𝜇n + 𝜎

2n
(2)

𝛽 = 𝜇

3 + 𝜇𝜎

2 − 2𝜇2n − 𝜎

2n + 𝜇n2

𝜇
2 − 𝜇n + 𝜎

2n
(3)

where the beta-binomial distribution is used for the estimation of the distribution of

inferior individuals, the probability P(X = N) in the beta-binomial distribution rep-

resents the estimated ratio of the local optima relative to the solutions in the search

space. Figure 2 shows the ratio of the local optima relative to the variance 𝜎

2
in the

inferior individuals in the Nk landscape problem with N = 20 and k = 0, 1,… , 19.

The line in this figure shows the probability P(X = N) in the beta-binomial distribu-

Fig. 2 Ratio of local optima

with respect to the variance

in the number of inferior

individuals
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tion, where the average 𝜇 = N
2

. Based on this figure, we can estimate the proportion

of the local optima in the problem that have a similar structure to the Nk landscape

problem.

3.3.2 Random Functional Size

Next, we estimate the random functional size t. The probability that a set of genes

Si is a partial local optimum is 1∕(t + 1). Then, the expected value of the number

of local optima is
(
2t∕(t + 1)

) N
t . The random functional size t is obtained from the

solutions to the following equations if we have found the number of local optima

Nlocal.

Nlocal =
(

2t
t + 1

) N
t

(4)

We estimate Nlocal at 2tP(X = N), where P(X = x) is the probability function of

the beta-binomial distribution obtained in the previous section. The right-hand side

member in Eq. 4 is monotone increasing where t > 0, and thus we use Newton’s

method to obtain the solution to this equation.

3.3.3 Maximum Number of Evaluations in Local Search Techniques

FIHC determines the local optima in N + 1 evaluations of problems with linear func-

tions, but we cannot find the solutions to local optima until the number of fitness

evaluation reaches almost 2N. However, if t = 1 is given in the Nt landscape prob-

lem, FIHC can reduce the number of wasteful fitness evaluations. In particular, the

distribution of fitness evaluations among operators should be efficient to obtain good

performance for Genetic Local Search (GLS) [7]. Therefore, we use the following

criteria to determine the number of fitness evaluations in local search techniques for

an individual ELS based on the value of t:

ELS = N
t
(2t − 1) (5)

where ELS represents the minimum number of fitness evaluations where all of partial

function values are observed. The same partial function is observed several times in

the Nt landscape problem if there are over ELS evaluations.
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3.3.4 Number of Partial Local Optima for Crossover

2t∕(t + 1) represents the expected number of partial local optima for a partial func-

tion in the Nt landscape problem. Local search techniques can obtain a partial local

optimum in 2t∕(t + 1) types. Therefore, the crossover performed after local search

is expected to recombine these partial local optima.

4 P3-DII

The P3-DII algorithm employs different algorithms compared with P3, as follows:

∙ Control the number of fitness evaluations employed in the local search technique.

∙ Control the number of fitness evaluations and the order of clusters during crossover.

4.1 Local Search in P3-DII

The number of inferior individuals Is is observed based on N evaluations before

applying FIHC. DII-1 analysis estimates the distribution of the number of infe-

rior individuals based on the data during this procedure. For many problems, the

search performance will be better if we apply the best improvement to individuals in

this procedure, especially for deceptive trap problem, but we did not apply the best

improvements in this procedure before applying FIHC to find the potential of DII

analysis here.

In this study, we use the information in this sampling for the first step in FIHC

although it was not used in previous study [4].

In P3, FIHC continues the fitness evaluations until the local optima are obtained,

whereas P3-DII continues to apply FIHC until the local optima are obtained, or until

ELC fitness evaluations, obtained in Eq. 5, are performed in FIHC. Figure 3 shows

the local search technique employed in P3-DII.

At least two data points are necessary for DII-1 analysis to estimate 𝛼 and 𝛽 in

Eqs. (2) and (3). Therefore, we add two data points Is = 0.5N ±
√
0.25N to the sam-

pling data for DII-1 analysis in advance.

4.2 Crossover in P3-DII

In P3-DII, the crossover process differs at two points compared with P3: the order

of the clusters and the number of fitness evaluations. During crossover, the clusters

are tested in order with the nearest random functional size t first. The smallest first

order employed by P3 helps preserve diversity, but the diversity in the population is
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Algorithm 1 Local search technique in P3-DII
Create random solution s
number ncount ← 0
for all s ∈ neighborhood of s do

calculate fitness of s
if fitness of s > fitness of s then

ncount ← ncount + 1
add ncount to data set Gdata

estimate random functional size t from Gdata

calculate ELS

number neval ← 0
while neval < ELS and not finding local optima do

apply FIHC to s with an evaluation
neval ← neval + 1

Fig. 3 Algorithm describing the local search technique in P3-DII. Gdata represents the data set of

the number of inferior individuals

Algorithm 2 CLUSTER USAGE in P3-DII
Order useful based on cluster size, with the nearest t first.
for all Ci ∈ useful do

for all d ∈ shuffled(Pi) do
Copy d’s gene values for Ci into the solution
estimate random functional size t from Gdata

calculate EC

neval ← 0
if solution changes then

neval ← neval + 1
if solution’s fitness decreases then

Revert changes
else

break
if neval ≥ EC then

break

Fig. 4 Algorithm describing how clusters are used to perform crossover in P3-DII

on a rising trend with an increase in t. The order that employs the nearest random

functional size t first helps primarily to build several blocks in a random function,

which are usually the most difficult structures to optimize with local search tech-

niques (Fig. 4).

The maximum number of fitness evaluations for crossover EC is obtained as fol-

lows:

t′ = min(t, tcluster )

EC = max([ 2t′

t′ + 1
− 1 + 𝛿U], 1) (6)
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where tcluster denotes the cluster size in cluster usage and 𝛿U is a random variable

given by the uniform distribution U(0, 1). P3-DII continues to perform crossover in

a cluster until it reaches EC, no candidate can be recombined in the cluster or the

solutions are improved. 2t′∕(t′ + 1) represents the estimated number of partial local

optima in a partial function, described in Sect. 3.3.4, where this procedure helps to

avoid building blocks being generated rarely when the population size is larger.

5 Test Problems

In this section, we explain the test benchmark problems used to demonstrate the

effectiveness of our proposed method.

5.1 Deceptive Trap

In the deceptive trap problem, the fitness function combines the sub-functions into

separate traps with lengths of k bits where each trap is given by Eq. 7:

trap(ntrap) =

{
k − 1 − ntrap (ntrap < k)
k (ntrap = k)

(7)

where ntrap represents the number of genes with a value of 1 in the trap. Each partial

function has one local optimum (all bits are 0) and one global optimum (all bits are

1). In this study, we set a trap size of k = 7.

It is easy for P3 to obtain optimal solutions to this problem because FIHC can opti-

mize the sub-functions and crossover can optimize the combination of sub-functions

based on few evaluations.

5.2 Discretized Rosenbrock and Discretized Rastrigin

The discretized Rastrigin problem and the discretized Rosenbrock problem convert

the standard Rastrigin and Rosenbrock problems into gray-coded problems.

The standard Rastrigin evaluation function is as follows.

10n +
n∑

i=1
(x2i − 10 cos 2𝜋xi) ∀x ∈ [−5.12, 5.12] (8)

The Rastrigin problem has a highly multimodal landscape.
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The standard Rosenbrock evaluation function is as follows.

n−1∑

i=1
(100(xi+1 − x2i )

2 + (1 − xi)2) ∀x ∈ [−2.048, 2.048] (9)

The Rosenbrock has a unimodal landscape and the global optimum lies in a narrow

parabolic valley.

In these two problems, depending on the gray code size, the number of fitness

evaluations increases until the local optimum is reached by local search [8]. We set

the gray code size g = 10 or 20.

5.3 Nk Landscape

The function of the Nk landscape problem comprises evaluation tables. Each locus

has an evaluation table and the partial function value depends on the linked k of other

loci. The Nk landscape problem has a multimodal landscape and we can control

the amount of epistasis in the landscape by changing k. A dynamic programming

algorithm is polynomial in N and exponential in k to optimize Nk landscape problem

[9]. We chose to set k = 5 or 7.

5.4 Knapsack Problem

This problem requires the maximization of knapsack items where the item weight

< weight limit of the knapsack. In this study, the fitness of solutions that exceed

the weight limit is set as zero as a penalty. The knapsack problem has a complex

landscape around optimal solutions because many solutions that exceed the weight

limit are present around the optimal solutions.

6 Experiment 1

We analyzed the performance of P3 and P3-DII for 100 trials, where each run was

limited to 30 million evaluations for seven kinds of benchmark problems. The exper-

imental results comprise the average number of successful evaluations required for

each algorithm and the speedup factor represented by EP3∕EP3−DII where EP3−DII and

EP3 are the average number evaluations in P3-DII and P3, respectively. We performed

a pairwise Mann-Whitney U-test for deceptive trap problem with the maximum prob-

lem size.
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Fig. 5 Speedup factor for P3-DII compared with P3. Abscissa given on a log scale

6.1 Results and Discussion

Figure 5 shows the speedup factor for P3-DII compared with P3. Table 1 shows the

average evaluation results and standard deviations in successful runs. Table 2 shows

the p-values obtained using the Mann-Whitney U-test for deceptive trap problem.

P3 performed almost no wasteful evaluations in the deceptive trap problem, as

specified in [3], and the performance of P3-DII was similar to that of P3. For the

problem, P3-DII performed more wasteful evaluations than P3 due to the error when

estimating DII-1 with a specific probability. However, in our experiments, the Mann-

Whitney U-test did not detect any significant difference between the performance of

P3 and P3-DII (p-value = 0.05) in the deceptive trap problem (N = 805).

The speedup factor increased with the problem size in the discretized Rastrigin

problem. By contrast, the speedup factor appeared to decrease with the problem size

in the Rosenbrock problem with g = 10, according to the results shown in Fig. 5.

These results represent that P3 has several possibilities to outperform P3-DII in the

discretized Rosenbrock problem with a larger problem size. However, P3 failed to

obtain optimal solutions in all trials for the discretized Rosenbrock function with

g = 20, even when the problem size was N = 40 which was the minimum size in our

experiments. By contrast, P3-DII successfully obtained optimal solutions in all of our

experiments. Many evaluations tended to be required by FIHC with the discretized

Rosenbrock problem.

In the Nk landscape, knapsack, and Rastrigin problems, the speedup factor

increased with the problem size. P3 outperformed P3-DII in most of the problems

with a small size, which may have been caused by differences in the number of evalu-

ations between crossover operations. In P3, the fitness evaluations were performed in
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Table 1 Comparison of the average evaluations in successful runs

Average (successful runs) Standard deviation

Deceptive trap, N = 805, Speedup = 0.9531

P3 656518 (100/100) 145708.87

P3-DII 688810 (100/100) 182392.30

Nk (k = 5), N = 400, Speedup = 1.2387

P3 4339723 (100/100) 1181417.75

P3-DII 3503399 (100/100) 710192.14

Nk (k = 7), N = 63, Speedup = 1.4855

P3 3960321 (98/100) 4418552.20

P3-DII 2666011 (100/100) 2879898.55

Knapsack, N = 200, Speedup = 1.5562

P3 2356600 (100/100) 1563299.89

P3-DII 1514283 (100/100) 862157.36

Rastrigin (g = 10), N = 800, Speedup = 1.2416

P3 134984 (100/100) 31370.79

P3-DII 108715 (100/100) 25754.56

Rastrigin (g = 20), N = 800, Speedup = 1.2274

P3 245104 (100/100) 49367.82

P3-DII 199699 (100/100) 39771.45

Rosenbrock (g = 10), N = 400, Speedup = 1.4924

P3 689007 (100/100) 499553.85

P3-DII 461664 (100/100) 429152.79

Rosenbrock (g = 20), N = 200, Speedup = NaN

P3 NaN (0/100) NaN

P3-DII 469896 (100/100) 291755.16

Table 2 p-value obtained using the Mann-Whitney U-test

Problem name p-value

Deceptive Trap, N = 805 0.141714602

Nk (k = 5), N = 400 7.03379 × 10−13

Nk (k = 7), N = 63 1.591985 × 10−3

Knapsack, N = 200 1.12119 × 10−5

Rastrigin (g = 10), N = 800 5.66293 × 10−11

Rastrigin (g = 20), N = 800 8.11665 × 10−12

Rosenbrock (g = 10), N = 400 1.13424 × 10−4
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Fig. 6 Deceptive Trap (problem size = 105, trap size = 7)

a cluster during crossover. By contrast, P3-DII performed several fitness evaluations

during crossover according to Eq. 6. Equation 6 is based on the estimated partial local

optima, but it does not yield the optimal distribution of the fitness evaluations. In P3-

DII, crossover recombines x times at most, where x is the estimated number of the

partial local optima based on DII analysis, although some wasteful evaluations were

performed when the problem size was small. However, P3 could obtain high quality

solutions in an efficient manner when the problem size was small, and thus P3 might

pass over the building blocks that are generated rarely, depending on the increase in

the problem size and the population size in the pyramid. While the probability that

a crossover operation in P3 will recombine a unique alternative is O(Ei) where Ei
is the number of P3 iterations, the probability of that in P3-DII is O(Np), where Np
is the number of partial local optima, if DII-1 analysis completely estimates partial

local optima. This agreed with the results of our experiments, except the discretized

Rosenbrock problem.

7 Experiment 2

We analyzed the number of fitness evaluations in local search and in crossover of

P3 and P3-DII. The basic experimental conditions are as same as Experiment 1 and

we focused on two problems: deceptive trap problem and discretized rosenbrock

problem.

In this experiment, we investigated the average number of evaluations for each

operator and the average number of improve ratio represented by Nimprove∗∕E∗ where

Nimprove∗ is the number of fitness improvements for an operator ∗ andE∗ is the number

of evaluations for an operator ∗.
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Fig. 7 Discretized Rosenbrock (problem size = 200, gray-code size = 10)

7.1 Results and Discussion

Figures 6 and 7 show the results for deceptive trap problem and for discretized rosen-

brock problem.

P3-DII reduces the number of evaluations in FIHC and increases the improve

ratio in FIHC for the deceptive trap problem. In addition, P3-DII keeps the number

of evaluations in crossover, and improves ratio of P3-DII is almost the same as it is

for P3 in crossover.

These results represent that FIHC from P3-DII provides a efficient building block

for optimization as same as FIHC from P3 does because the number of evaluations

in crossover depends on solutions found by FIHC. P3-DII can reduce the wasteful

evaluations in FIHC and P3-DII can control the search dynamics.

On the other hand, proportion of sampling cost to the number of all the evaluations

in FIHC is high for this problem. Therefore, P3-DII cannot outperform P3 for almost

every problem size of deceptive trap problem although P3-DII can control the search

dynamics as mentioned above.

In discretized rosenbrock, P3-DII also reduces the number of evaluations in FIHC

and increases the improve ratio in FIHC. Moreover, P3-DII gains the number of

evaluations in crossover and increases the improve ratio in crossover.

These results represent that P3-DII can control the balance between the local

search and the crossover. In particular, P3 wastes the large number of fitness evalua-

tions in FIHC and P3-DII can reduce it. Therefore, P3-DII can obtain a lot of efficient

building block and can recombine them many times in crossover.

The previous results represent that P3-DII can control the balance between the

local search and crossover, while adapting problem structures.
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8 Conclusion

In this study, we showed the DII-1 analysis to estimate partial local optima based

on the distribution of inferior individuals. DII-1 analysis gives a new point of view

about the problem difficulty and search efficiency. We also showed P3-DII, which

combines DII-1 analysis with P3 in order to control the fitness evaluations required

for operators in P3.

To summarize this research:

∙ We show the DII analysis and P3-DII algorithm.

∙ P3-DII obtained optimal solutions that P3 failed to find in discretized rosenbrock

problem. P3-DII’s performance was almost the same as P3’s one for the deceptive

trap problem, where P3 performed almost no wasteful evaluations.

∙ P3-DII outperformed P3 in large size problems without the deceptive trap prob-

lem.

∙ We analyzed the search dynamics of P3-DII and confirmed that P3-DII control

search dynamics while adapting problem structure.

In our future research, we plan to extend the control of fitness evaluations accord-

ing to the population size. If the partial local optima are given, the necessary num-

ber of individuals required in a population can be estimated. The estimated number

allows us to control the fitness evaluations according to the search state. Obtaining

estimates for other models and building the theory for DII within an arbitrary Ham-

ming distance are also fundamental issues.
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Integrating Class Information and Features
in Cluster Analysis Based on Evolutionary
Distance Metric Learning

Wasin Kalintha, Satoshi Ono, Masayuki Numao
and Ken-ichi Fukui

Abstract Most current applications of clustering only focus on a technological

domain, e.g., numerical similarity, while overlooking human domain yield unnat-

ural and incomprehensible results in a human point of view. Unsupervised cluster-

ing constructs based on the similarities of numerical features. This study decreases

the gap between multiple disciplines that are concerned both computational artifact

and the human understanding in order to construct a more understandable cluster

structure by considering available class information as well as data features in the

clustering. Hence, we applied Evolutionary Distance Metric Learning (EDML) in

cluster analysis in order to simultaneously analyze both class label and features. This

method is applied to the real-world problem of facial images and food recipes data.

The analysis provided promising insights about the relation between class informa-

tion and features of the data, overall cluster structure distribution, neighbor cluster

relations, and the viewpoint of the cluster analysis. Finally, cluster analysis using

EDML method can obtain a more intelligible cluster structure with neighbor rela-

tions, discover interesting insights, and particular cluster structure can be obtained

according to the purpose of analysis. Precisely, these results cannot be achieved by

unsupervised clustering.
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1 Introduction

Cluster analysis [15] has played an important role in data mining and machine learn-

ing recently. Cluster analysis divides data into clusters according to their similarities

between each other. Depending on the purpose of clustering, cluster analysis could

obtain meaningful groups (e.g., capture the natural structure of the data), beneficial

group, which is a useful initialization for another approach, or sometimes both. It

has been extended to a wide variety of practical problems, such as, in biology [10,

14], information retrieval [3, 19], and so on.

Clustering algorithms are generally introduced only in an unsupervised learn-

ing. In real world application domains, the data usually contain some background

information, e.g., pairwise constraint or class information (label). However, the tra-

ditional clustering algorithms have no way to make use of this information even it

exists. Hence, the cluster structure is constructed only in the learning perspective,

which often considers incomprehensible to human. One way to take advantage of

this information is semi-supervised clustering [1, 11, 20] by integrating background

information in the clustering.

Despite many approaches of semi-supervised clustering have been proposed, their

aspiration is to divide the data into homogeneous subgroups (clusters) based on their

similarities. Similarities, which normally estimated from the proximity between two

data points (e.g., Euclidean distance), crucially affect the clustering result. Hence,

distance metric learning (DML) has received much attention as the alternative dis-

tance metric recently, varieties of DML have been proposed in order to improve the

accuracy of clustering and classification by learning an appropriate distance metric

from the dataset [21].

Although, semi-supervised clustering with DML have a rich performance to

improve the clustering accuracy; however, most of the clustering techniques are usu-

ally isolated from the visualization process which is beneficial in the cluster analysis.

Meanwhile, visualization can help humanity to investigate the clusters and the rela-

tion between clusters in large data, and obtain some discovery or insights on the data.

Thus, it cannot preserve the neighborhood relation of clusters in low-dimensional

space as well as preserve class information as a human-point-of-view in each cluster.

This study applied EDML for cluster analysis by visualizing the cluster struc-

ture of EDML. It is constructed by considering the class label, which are available

from human intervention, to guide clustering to be constructed in the human point

of view, while preserving the features simultaneously. By taking advantage of evo-

lutionary distance metric learning (EDML) [8], it allows us to propose this novel

cluster analysis because of its capability, precisely, not only preserve the neighbor

cluster relations, but also directly improve cluster accuracy in term of cluster validity

index score.
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The purpose of this study is to analyze the cluster structure by integrating class

information and features in the cluster analysis based on evolutionary distance met-

ric learning. In the first part, we review the literature about semi-supervised clus-

tering, and DML. Next, the overview of EDML is introduced. Then, the EDML

cluster analysis is applied to the real-world application: facial images dataset and

food recipes dataset. Then, the cluster structure is visualized by a K-means cluster-

ing with K-nearest neighbor centroids graph (KMN-KNN) in order to explain how

the proposed method aid the cluster analysis. Finally, we presented the benefits of

the novel method which cannot be achieved by unsupervised clustering as follows:

∙ Comprehensiveness of cluster structure

∙ The relation between class information and features of the data

∙ Neighbor cluster relations

∙ Direction of the cluster analysis

2 Related Work

2.1 Semi-supervised Clustering

Unlike conventional clustering techniques, e.g., K-means clustering (KMN), which

is unsupervised. It’s possible that external knowledge, i.e., class label and pairwise

constraints, are known for a subset of observation. Semi-supervised clustering [1,

5, 11, 16, 20] attempt to improve clustering quality by utilizing these provided

knowledge, for example, COP-Kmeans attempts to introduce pairwise constraints

to KMN. The cluster assignments of data points are forcibly modified to satisfy the

constraints, and the centroids are updated based on the modified assignments. While

MPC-Kmeans integrates distance metric learning (DML) with COP-Kmeans using

a penalty function for violating the constraints.

2.2 Distance Metric Learning

Distance metric learning (DML) [21] attempts to optimize a metric to improve clas-

sification or clustering. Example approaches include nearest neighbor classification

[18], and clustering [11, 20].

Figure 1a shows data points with three classes, i.e., circles, squares, and stars, and

three initial partitions (or clusters) in Euclidean space. Note that one of the clusters

has data points in all three classes. To cluster all data points correctly, the data space

transformation stretches the partitions as shown in Fig. 1b.

DML attempts to learn a distance metric transform function based on auxil-

iary information, including class labels and pairwise constraints of must-links and

cannot-links, in order to keep data within the same class close together, and the dif-
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Fig. 1 Conceptual diagram

of distance metric

transformation [12]

(a) Euclidean space (b) After transformation

ferent class far apart. Our study is categorized as global distance metric learning [2,

4, 9, 20, 22], which attempts to learn an optimal transformation metric matrix for

the whole dataset.

3 Evolutionary Distance Metric Learning

Evolutionary Distance Metric Learning (EDML) is originally proposed by Fukui et

al. in 2013 [8]. EDML is an efficient framework that applies an evolutionary algo-

rithm (EA) to firmly search for a sufficiently optimal distance metric transformation

matrix, also known as, a distance metric learning method (DML). EDML is based

on a clustering index with neighbor relation that simultaneously evaluates inter- and

intra-clusters to improve clustering quality. In contrast to other semi-supervised clus-

tering, which formulate a penalty function for constraints into an objective func-

tion, EDML, however, directly improves the cluster validity index, such as purity, F-

measure, or entropy, depending on the clustering purpose, as an objective function,

when class information is available. Moreover, the cluster validity index is smoothed

by neighbor relations which refines neighboring cluster for better visualization and

the data points of the same class tend to locate in neighboring clusters.

3.1 Global Distance Metric Learning

Similar to many other global distance metric learning methods, a Mahalanobis-based

distance is used in EDML. Given a dataset  = {𝐱i = (xi,1,… , xi,v)t ∈ ℝv}Ni=1, the

Mahalanobis-based distance can be defined as follows:

d2i,j = (𝐱i − 𝐱j)t𝐌(𝐱i − 𝐱j), (1)

where 𝐌 = (mk,l) is a v × v matrix. In DML, the elements of 𝐌 are variables to be

learned that represent a transformation of the input data. In this case, 𝐌 must be a

symmetric positive semi-definite matrix to satisfy the distance propositions. Unlike

original Mahalanobis distance, 𝐌 is given by the inverse of the variance-covariance

matrix of the input data, i.e., 𝐌 = 𝛴

−1
.
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The EDML optimizes a clustering index 𝐸𝑣𝑎𝑙() (introduce in the next few sec-

tions) as follows:

Maximize 𝐸𝑣𝑎𝑙(𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(d2i,j)), (2)

s.t. |mk,k| ≥
∑

l(k≠l)
|mk,l|,

0 < mk,k ≤ 1, −1 ≤ mk,l ≤ 1 (k ≠ l),

where 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(d2i,j) denotes a clustering result obtained using a distance metric

d2i,j—i.e., 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔() ∶ 𝐱 ↦ c ∈ 𝐂, where 𝐂 is a set of cluster identifiers. Besides,

matrix 𝐌 must be a diagonally dominant matrix—i.e., |mi,i| ≥
∑

j(i≠j) |mi,j|—and the

diagonal elements must be positive to ensure that𝐌 is a positive semi-definite matrix

and weak inequality holds.

3.2 Evolutionary Distance Metric Learning Framework

The EDML framework is summarized in Fig. 2. First, candidates of metric transform

matrix 𝐌 are generated using differential evolution (DE). Next, each obtained can-

didate 𝐌 is individually used in Eq. (1) to acquire clusters with neighbor structures

by any partition-based clustering algorithm. Then, class labels are utilized in order

to evaluate the quality of the cluster structure through the neighborhood smoothing

in the clustering index. This is followed by feeding the evaluated values back into

DE as the fitness for each candidate 𝐌. DE selects candidates based on the fitness

to evolve and generate the next candidates by mutation and crossover with certain

probabilities. These steps are repeated until the termination condition (e.g., the iter-

ation limit) is satisfied. Finally, the optimal metric transform matrix 𝐌∗
is obtained

in terms of the most smoothed clustering index among the overall generations of

candidates.

3.3 Cluster Validity Index with Neighbor Relations

This study focuses on using external criteria, that is provided by human interpre-

tation of data. It is more beneficial to use external criteria because class labels are

available in this study. This cluster validity index is used as Eval() in Eq. (2). In order

to evaluate the overall cluster structure, we used neighborhood smoothing in the clus-

ter validity index by adding a weighting function hi,j, unlike conventional clustering

validity that can only evaluate individual cluster quality, which is proposed by Fukui

and Numao [7]. Weighted F-measure (wFME) is mainly used in this study.
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Fig. 2 Flowchart of the evolutionary distance metric learning (EDML)

3.3.1 Weighted F-Measure

Weighted F-measure (wFME) is an extension of set-based cluster validity indices

[8]. Given dataset  with cluster set 𝐂 and class set 𝐓, let Ns,i is the number of data

points with class s ∈ 𝐓 and the ith cluster Ci ∈ 𝐂, Ns denotes the number of data

points in class s, Ni denotes the number of data points in ith cluster, and N is the

total numbers of data points in . These values are smoothed by hi,j, as follows:

N′
s,i =

∑

Cj∈𝐂
hi,jNs,j, (3)

N′
i =

∑

s∈𝐓
N′
s,i =

∑

s∈𝐓

∑

Cj∈𝐂
hi,jNs,j, (4)

By using Eqs. (3) and (4) Precision (𝑃 𝑟𝑒𝑐(s,Ci)) and Recall (𝑅𝑒𝑐(s,Ci)) can be

extended. Then, wFME can be obtained from the original formula as follows.
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wFME(𝐂) =
∑

s∈𝐓

Ns

N
max
Ci∈C

F(s,Ci), (5)

where F(s,Ci) is a harmonic average of 𝑃 𝑟𝑒𝑐(s,Ci) and 𝑅𝑒𝑐(s,Ci).
And 𝑃 𝑟𝑒𝑐(s,Ci) = N′

s,i∕N
′
i , 𝑅𝑒𝑐(s,Ci) = N′

s,i∕Ns.

In this study, hi,j is a Gaussian function. Therefore, hi,j = exp(−ri,j∕𝜎), where ri,j
denotes the inter-cluster distance between Ci and Cj, and 𝜎(> 0) is a smoothing

(neighborhood) radius.

3.4 Differential Evolution

Many real-world application typically involve a gigantic high-dimensional data.

High-dimensional global optimization is one such high-complexity problem. There-

fore, differential evolution, the state-of-the-art evolutionary algorithm for real-value

problem has been utilized for several problems. In this study, self-adapting control

parameters and generalized opposition-based differential evolution (GOjDE) [17], an

effective concept in computational intelligence that can enhance differential evolu-

tion approaches by self-adapting control parameters and simultaneously computing

its opposite solution while evaluating the current solution to provide another chance

for finding a candidate solution closer to the global optimum, is used in order to

manage the quality of candidate solutions. This study makes use of GOjDE due to

faster computational and the confirmation of a better performance especially in a

high dimensional problem.

3.5 K-Means Clustering with K-Nearest Neighbor Centroids
Graph

K-means clustering with K-nearest neighbor centroids graph (KMN-KNN) [7] has

been used in order to easily analyze obtained cluster structures, especially in the

case of micro-clusters or cluster number is larger than class number. With this, we

can study entire data structures via the inter-cluster connectivity and also visualize

neighbor relations among cluster centroids.

3.6 EDML for Cluster Analysis

We addressed the limitation of state-of-the-art cluster analysis, which cannot pre-

serve class information as a neighborhood relation by considering both features and

class labels, which provide from a human point of view to guide clustering to be

constructed correspondingly with human intuition based on evolutionary distance
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metric learning. By applying EDML for cluster analysis, it helps us to investigate

the relationship between class and features, comprehensiveness of cluster analysis,

neighborhood relation of cluster boundary and specify the direction of cluster analy-

sis by constructing a particular structure according to the class category (e.g., age or

gender), unlike any other semi-supervised clustering algorithm which is impossible

to investigate and analyze these properties.

4 Cluster Analysis on Facial Images Data

4.1 Experimental Setup

This experiment performed on facial images from MIT face recognition project.
1

The original facial images are monochrome facial images with 99 features, calcu-

lated by coefficients measuring. We applied principal component analysis (PCA) for

dimension reduction. Each face image contains a descriptor of each face, e.g., age,

gender, skin color, facial expression, and property on their face. In our experiment,

age, namely Child, Teen, Adult and Senior, was used as a class label for DML. Gen-

der was also used as a class label, but only in the last experiment of this section.

200 images were selected in total, 50 images from each age category. Note that the

number of dimension D depends on the number of variable in the distance trans-

form matrix 𝐌 in Eq. (1). In this dataset, we use the diagonal representation with

55 dimensions. Consequently, PCA is applied to reduce the features to 55. In addi-

tion, population size was set to 5 times the number of dimensions. We conducted

five trials with 10,000 iterations (generations) per trial. K-means clustering with

K-nearest neighbor centroids graph is utilized with EDML and without EDML for

further analysis on the neighborhood relation of clusters. 20 clusters and 5 mutual

neighborhoods were employed to obtain cluster structure. For better visualization, all

labeled data are provided to EDML in this paper. The cluster structure was evaluated

using weighted F-measure (wFME).

The KMN-KNN structures are individually visualized by Cytoscape
2

using edge-

weighted spring embedded layout. We did cluster analysis and summarized interest-

ing things in the following subsections.

4.2 Comprehensiveness of Cluster Structure

Before the visualization, we examine the numerical result first. EDML archived

about 61 % accuracy in terms of wFME, obviously yielding an improvement of 10 %

1
http://courses.media.mit.edu/2004fall/mas622j/04.projects/faces/.

2
http://www.cytoscape.org/.

http://courses.media.mit.edu/2004fall/mas622j/04.projects/faces/
http://www.cytoscape.org/
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Fig. 3 Example of facial images in cluster

over the one without EDML. The clustering result by EDML shows that the images

in the same age category are either in the same or neighboring clusters more than

without EDML, and different age category are in the distant clusters.

We visualized KMN-KNN on the dataset results in Fig. 3 in order to investigate

the micro-cluster. LetCi denotes the ith cluster.Ci is represented by a node, where the

edge between two clusters indicates a mutual neighborhood relation. The class label

of each cluster is determined by the majority class of the samples in the cluster. The

class label of each cluster is indicated by the brightness of the node, the brighter the

younger, and vice versa. As well as the node’s size indicates the number of majority

class’s sample.

Then we investigated the overall cluster distribution. In order to confirm the gen-

erality of visualization, we did 4 more trials (5 trials in total) in each dataset with

EDML. 2 graphs are shown in Fig. 4. Similar trend can be obtained in every trial.

In Fig. 3a which is the visualization of EDML, overall distribution can be viewed

as a clique, most of the cluster with the same class are intensely connected and

appears to be neighbors because of the benefit of preserving age category while

cluster is constructed. For example, in Fig. 3a Child (C4, C15 and C17), Teen (C1, C3,

C8, C16 and C18), Adult (C2, C10, C14 and C19) and Senior (C0, C5, C7, C11 and C12)

class individually group together and has strong relation between the cluster with the

same class than one with the different class. Also only a few individual nodes, no

neighbor relation, appear here. Contrary, the without EDML results in Fig. 3b, the

structures are complicated, the cluster with the same class divided into many parts,

for instance, Child class is separated. Unlike the EDML results, many individual

nodes appear in Fig. 3b, in which EDML is not applied.

Moreover, the number of majority class’s sample in each micro-cluster, which is

indicated by node’s size is also investigated. In without EDML case, each cluster size

is similar to each other, while they are varieties of cluster size in EDML. Numerically,

we calculated the standard deviation of number of majority class sample in each

figure to represent the distribution of the cluster size. The average standard deviation
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Fig. 4 KMN-KNN visualization with EDML on facial image data set

of cluster size in EDML is 4.849 while without EDML is 3.128 which means that

EDML can provide a distinct structure of the cluster distribution.

Therefore, utilizing EDML to KMN-KNN provides a better view of cluster struc-

ture, for example, identical class clusters are intensely connected and appear to be

neighbors, reduce the number of individual clusters, and affect distribution of sam-

ples. Because the cluster analysis using EDML could preserve class information in

each cluster.

4.3 Investigating Relation Between Class and Features

By comparing Fig. 3a, in which EDML was applied, with Fig. 3b, in which did with-

out EDML, and analyze the cluster structure. As a result, we recognized a pattern that

images which contain a unique pattern such as persons wearing glasses are in neigh-

bors and wearing a hat are in neighbors in Fig. 3a. In contrast to Fig. 3b that these

pictures are located in the different region of the cluster structure. This is because of

the benefit of EDML which can utilize class information (age category) in the clus-

tering. Moreover, it preserves the neighbor relation between the same age category,

as a result, it groups the clusters with the same age category close together while it

preserves the similar image features, e.g. people wear glasses or hat. Therefore, clus-

ters with the same age category are grouped together, and the similar feature images

are gathered together in these groups as well, e.g., in Fig. 3a people who wearing

glasses are in C10, C14 and C19 or people who wearing hat in C7 and C12. These

patterns cannot be occurred when without EDML (Fig. 3b).

4.4 Investigating Neighborhood Relation
of Cluster Boundary

In order to investigate another benefit of this work that can preserve the neighborhood

relations and provide the cluster boundary. Let assume that the cluster with same
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Fig. 5 Cluster structure boundary

label (nodes) which has a neighbor relation merge into a big cluster. We selected

Fig. 4b and defined big clusters indicated by a dash line circle as in Fig. 5.

When we examined these big clusters, the features in the border node should be

similar to the neighboring clusters of the other class. Result in the distribution of the

sample in the big cluster that can divide a relatively younger or older in the class

which can be seen from the sample of facial images in Fig. 5. If it connects to the

older class, that cluster tends to be a relatively older face in that class, for exam-

ple, we considered C10 (Teen) and C19 (Senior), the average age in C10 is relatively

higher than the other cluster with the class label, and C19 are younger in the senior

class. Moreover, C4 and C17 has high probabilities to be a younger teen because it

is connected to Child class. On the other hand, C1 clustered the elder child, as it has

neighbor relations with Teen, Adult and Senior class. Furthermore, when we consid-

ered Senior class, we could analyze each individual sub cluster, and show that C13
is relatively oldest senior because it has only relation with the same class (Senior)

and has no relation to another class. Similarly to C2 in Child class and C9 in Adult

class. Note that image features do not reflect only age, other possibilities are such

as similar hair style, face shape, or they are families. Importantly, these boundaries

cannot be found without EDML (Fig. 3b).

4.5 Changing the Viewpoint of Cluster Analysis

When the target of cluster analysis is changed, it is better to construct a new cluster

structure according to the target class category. Since EDML has an ability to opti-

mize class information, this method makes use of it to select a different class category
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Fig. 6 KMN-KNN visualization on gender category

(e.g., age or gender) to optimize and change the viewpoint of cluster analysis. For

example, using age category aids cluster analysis together with image features, and

similarly in gender category.

In this experiment, we visualized the KMN-KNN according to the gender of sam-

ple: male and female, denoted by node’s color (i.e., white and black respectively).

The proposed method can provide a particular optimization for the gender analysis,

which can be visualized as shown in Fig. 6a. Conversely, without EDML, as seen

in Fig. 6b we notice changes only in the labels of the micro-clusters; however, we

observe the same cluster structure as the age analysis in Fig. 3b.

Figure 6a, KMN-KNN preserves the neighbor relations and forms the clique in

between the cluster with samples of identical majority class. Also, the border prop-

erties of clusters representing males with long hair are shown in close proximity

with females who have short hair, shown in the figure by the dash line, due to their

similar visual features. Lastly, we can recognize the unique patterns in each class:

male wearing glasses C11, male wearing hat (C8 and C11), women wearing glasses

(C3 and C17) and women wearing hat (C2 and C3) which are located close together.

5 Cluster Analysis on Recipes Data

5.1 Experimental Setup

This experiment performed on food recipes from Cookpad,
3

the Japan’s largest site

for sharing their original recipes. The recipes are all in Japanese, each recipe con-

3
http://cookpad.com/.

http://cookpad.com/
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tains ingredients and how to cook. First, we select recipes from 10 preselected food

categories (Seaweed, Vegetable, Fish, Noodle, Pasta, Egg, Salad, Soup, Sauce &

Dressing, and Meat), which come from today’s recipe category total 19236 recipes

and 8398 ingredients. We applied a Japanese cooking ontology [13] to merge var-

ious ingredient names since the users freely write their ingredients. Then, we used

random sampling to select about 220–400 recipes from each category to resolve the

imbalance of the data. Consequently, total 3732 recipes and 129 ingredients were

selected to use in this experiment. The features are extracted from ingredients of

each recipe using term frequency-inverse document frequency (TF-IDF) and PCA is

applied to reduce dimension to 10. The food categories is corresponded to data class

label. As previous experiment wFME was used as an objective function. Unlike in

facial images data set, we set cluster size to 50, and full matrix representation is

applied instead, due to the limitation of computational time.

5.2 Experimental Results

The goodness of the cluster structure is preliminary evaluated by wFME. Although,

EDML archived 0.261 of wFME in this data, it yielded an improvement of 30 %

over the clustering without EDML. The improvement of wFME clearly illustrated

the distribution of the same class recipes which are either in the same cluster or

neighbor clusters more than the one without EDML. Conversely, the different recipe

category seems to be located farther away.

Then, the KMN-KNN visualization is shown in Fig. 7. From the visualization,

EDML still archived similar results like in facial image dataset. First, comprehen-

Fig. 7 KMN-KNN visualization on cookpad recipe’s data set
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siveness of cluster structure is preserved. It is evident from the visualization that

preserving class category, while construct the cluster, benefit most of the clusters

with the same class to be intensely connected and appears to be neighbors. These

results are indicated by dash line ellipse in Fig. 7, e.g., Salad (C21, C24, C30, C45, C47
and C48), Soup (C8, C15, C33, C37 and C41), and so on.

In order to investigate relationship between classes and features, the most occur-

rence ingredients in each cluster are investigated as shown in Table 1 (unnecessary

Table 1 Top 5 most occurrence ingredients in each cluster with number of occurrences (Translated

from Japanese)

Cluster Rank1 Rank2 Rank3 Rank4 Rank5

0 Soy sauce(97) Soup stock(74) Sugar(56) Mirin(55) Oil(53)

4 Egg(105) Salt(74) Oil(67) Sugar(28) Cheese(27)

8 Miso(42) Soup stock(23) Eggplant(7) Fried tofu(5) Cabbage(4)

9 Green onion(52) Oil(39) Soy sauce(33) Vinegar(24) Soup stock(20)

10 Soy sauce(66) Sugar(58) Vinegar(51) Mirin(47) Ginger(11)

12 Soy sauce(87) Vinegar(80) Sugar(77) Oil(69) Sesame(33)

14 Soy sauce(37) Sugar(36) Sake(33) Mirin(27) (25)

15 Miso(57) Soup stock(28) Oil(27) Green onion(14) Egg(13)

16 Soy sauce(97) Oil(79) Sugar(62) Mirin(41) Vinegar(38)

18 Soy sauce(52) Sliced dried

bonito(15)

Kombu(14) Mirin(14) Radish(10)

19 Egg(58) Oil(26) Noodle Soup

base(19)

Wheat flour(19) Cheese(12)

21 Mayonnaise(37) Sesame(35) Cucumber(18) Sugar(11) Soy sauce(10)

24 Sesame(50) Cucumber(20) Oil(20) Ponzu(18) Sugar(16)

29 Oil(127) Salt(108) Soy sauce(50) Garlic(42) Pepper(39)

30 Mayonnaise(65) Tuna(22) Radish(20) Green onion(18) Soy sauce(16)

33 Water(61) Soup stock(53) Salt(40) Green onion(34) Soy sauce(33)

35 Oil(95) Salt(80) Garlic(28) Pepper(27) Parsley(13)

37 Soup stock(52) Green onion(51) Miso(46) Carrot(41) Radish(41)

38 Soy sauce(96) Sake(85) Mirin(48) Ginger(47) Chicken(41)

40 Salt(88) Oil(75) Vinegar(58) Sugar(42) Sesame(35)

41 Miso(54) Soup stock(45) Water(26) Green onion(25) Fried tofu(16)

42 Oil(83) Perilla(29) Soy sauce(24) Seaweed(23) Noodle Soup

base(23)

43 Soy sauce(87) (82) Sugar(72) Mirin(52) Sake(40)

44 Oil(231) Salt(193) Garlic(141) Pepper(128) Pasta

noodles(106)

45 Mayonnaise(82) Egg(45) Salt(28) Soy sauce(22) Pepper(19)

47 Sesame(29) Ponzu(27) Cucumber(21) Noodle Soup

base(19)

Tomato(16)

48 Mayonnaise(175) Salt(124) Pepper(62) Onion(53) Potato(47)

49 Soy sauce(73) Salt(72) Oil(60) Pepper(30) Mayonnaise(25)
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clusters are omitted due to space limitation). These results indicated that not only the

same category recipes tend to locate close together, but recipes that contain similar

ingredients (feature) are also located nearby either in the same or neighbor clusters.

These clusters are denoted inside the red ellipse in Fig. 7. These could help the user

to select the recipe according to the remaining ingredients, or what kind of taste they

want, for example, soy sauce’s base recipe: Basil Chicken (C38), oil’s base recipe:

Napolitan spaghetti (C44), and so on.

Lastly, the big cluster is indicated as in a dash line ellipse in order to explore the

cluster boundary. We again discovered as in the previous experiments that the fea-

tures in the border node should be similar to the neighboring big clusters, as we can

see from the relationship between C9 (Egg) and C33 (Soup) that the intersection of

these two clusters is Green onion. While in their own big clusters are Oil for Egg

(C4, C9, C19 and C42) and Soup stock for Soup (C8, C15, C33, C37 and C41) big clus-

ters respectively. Moreover, we surprisingly discovered that the border is possible

to occur in an individual big cluster. The Salad big cluster (C21, C24, C30, C45, C47
and C48), indicated inside the blue dash line ellipse, was carefully investigated and

found that C21 is the inner border of their own big cluster. By dividing the big cluster

into two groups using C21, indicated by blue ellipse, the similar features in C45, C48,

C30 change to mayonnaise, and another group is sesame instead of cucumber. Thus,

border between big clusters can be occasionally extended to the neighbor cluster of

the border of the big cluster.

6 Conclusion

In this paper, we applied EDML for cluster analysis in order to construct compre-

hensive cluster structure integrating class label and features. Apparently, EDML can

help investigating the relationship between class and features, for example, clusters

with samples of the same class are grouped together in order to preserve the class

and neighbor relations while features are also preserved. Moreover, overall cluster

structure is well-organized, identical majority class groups together and reduce the

number of individual clusters. Lastly, it can specify the direction of cluster analysis

by constructing a particular structure according to the class category (e.g., age or

gender). For the larger dataset, the data-parallel and distributed environment e.g.,

MapReduce [6] can be a candidate way.

Acknowledgments This work was partially supported by the cooperative research program of Net-

work Joint Research Center for Materials and Devices. Moreover, the recipe data is provided from

Cookpad and the National Institute of Informatics.



180 W. Kalintha et al.

References

1. Bair, E.: Semi-supervised clustering methods. Wiley Interdisciplinary Reviews: Computa-

tional Statistics 5(5), 349–361 (2013)

2. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equiva-

lence relations. In: Proc. the 20th International Conference on Machine Learning (ICML-03).

pp. 11–18 (2003)

3. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Pro-

ceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. pp. 407–416 (2000)

4. Bian, W., Tao, D.: Learning a distance metric by empirical loss minimization. In: Proc. Inter-

national Joint Conference on Artificial Intelligence (IJCAI-11). pp. 1186–1191 (2011)

5. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-

supervised clustering. In: Proc. of the 21st International Conference on Machine Learning.

pp. 81–88. ACM (2004)

6. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Proceed-

ings of the 6th conference on Symposium on Operating Systems Design & Implementation

(OSDI’04). pp. 137–150 (2004)

7. Fukui, K., Numao, M.: Neighborhood-based smoothing of external cluster validity mea-

sures. In: Proc. the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD-12). pp. 354–365 (2012)

8. Fukui, K., Ono, S., Megano, T., Numao, M.: Evolutionary distance metric learning approach to

semi-supervised clustering with neighbor relations. In: Proc. of 2013 IEEE 25th International

Conference on Tools with Artificial Intelligence (ICTAI). pp. 398–403 (2013)

9. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analy-

sis. In: Advances in Neural Information Processing Systems. pp. 513–520 (2004)

10. Guzzi, P.H., Masciari, E., Mazzeo, G.M., Zaniolo, C.: Information Technology in Bio- and

Medical Informatics, chap. A Discussion on the Biological Relevance of Clustering Results,

pp. 30–44. Springer International Publishing (2014)

11. Hertz, T., Bar-Hillel, A., Weinshall, D.: Boosting margin based distance functions for cluster-

ing. In: Proc. the 21st International Conference on Machine Learning (ICML-04). pp. 393–400

(2004)

12. Kalintha, W., Megano, T., Ono, S., Fukui, K., Numao, M.: Cluster analysis of face images

and literature data by evolutionary distance metric learning. In: Proc. of the 35th SGAI

International Conference on Innovative Techniques and Applications of Artificial Intelligence

(AI2015). pp. 301–315. Springer (2015)

13. Nanba, H., Doi, Y., Tsujita, M., Takezawa, T., Sumiya, K.: Construction of a cooking ontology

from cooking recipes and patents. In: Proceedings of the 2014 ACM International Joint Con-

ference on Pervasive and Ubiquitous Computing: Adjunct Publication. pp. 507–516. UbiComp

’14 Adjunct, ACM (2014)

14. Nugent, R., Meila, M.: Statistical Methods in Molecular Biology, chap. An Overview of Clus-

tering Applied to Molecular Biology, pp. 369–404 (2010)

15. Tan, P.-N., Steinbach, M., Kumar, V.: Cluster Analysis: Basic Concepts and Algorithms.

Addison-Wesley (2006)

16. Wagstaff, K., Cardie, C., Rogers, S., Schrdl, S.: Constrained k-means clustering with back-

ground knowledge. In: Proc. of the International Conference on Machine Learning (ICML-01).

pp. 577–584 (2001)

17. Wang, H., Rahnamayan, S., Wu, Z.: Parallel differential evolution with self-adapting control

parameters and generalized opposition-based learning for solving high-dimensional optimiza-

tion problems. Journal of Parallel and Distributed Computing 73, 62–73 (2013)

18. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest

neighbor classification. Journal of Machine Learning Research (JMLR) 10, 207–244 (2009)

19. Wen, J.R., Nie, J.Y., Zhang, H.J.: Clustering user queries of a search engine. In: Proceedings

of the 10th International Conference on World Wide Web. pp. 162–168 (2001)



Integrating Class Information and Features in Cluster Analysis . . . 181

20. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.J.: Distance metric learning with application

to clustering with side-information. In: Advances in Neural Information Processing Systems

(NIPS). pp. 505–512 (2002)

21. Yang, L.: Distance metric learning: A comprehensive survey. Tech. Rep. 16, Michigan State

Universiy (2006)

22. Zha, Z.J., Mei, T., Wang, M., Wang, Z., Hua, X.S.: Robust distance metric learning with auxil-

iary knowledge. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI-09).

pp. 1327–1332 (2009)



Multiple Additional Sampling
by Expected Improvement Maximization
in Efficient Global Optimization
for Real-World Design Problems

Masahiro Kanazaki, Taro Imamura, Takashi Matsuno
and Kazuhisa Chiba

Abstract Efficient global optimization (EGO), based on the expected improvement

maximization of the Kriging model, is a suitable optimization method for designs

based on time-consuming evaluations such as computational fluid dynamics. How-

ever, the original formulation of EGO can find only one additional sample point after

an initial sample point is acquired for the initial Kriging model construction. There-

fore, the efficiency of EGO is decreased even if the designer is able to evaluate sev-

eral designs using a large parallel computer because additional samples can only be

obtained sequentially through the additional sampling process. In this study, a mul-

tiple additional sampling method is proposed to improve the efficiency of the addi-

tional sampling process in EGO while maintaining the performance of exploration

based on EI maximization. The design performance of EGO with MAS is investi-

gated by solving a test problem first, and then an airfoil design problem, which is a

single objective problem. The results are compared with the original EGO in terms

of the convergence of the objective function and the diversity of the design variables.

According to these problems, the proposed method acquires optimum solutions as

effectively as the original EGO, while the diversity of the solutions is improved. In

addition, the total design time can be reduced compared with the original EGO in a

parallel computational environment.
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Keywords Efficient global optimization ⋅ Expected improvement ⋅ Multiple

additional sampling ⋅ Real-world design problem

1 Introduction

In recent times, engineering optimization has been carried out using a combina-

tion of global optimization techniques, including evolutionary algorithms and high-

fidelity/expensive evaluations such as computational fluid dynamics (CFD) [5–7].

On the other hand, such expensive functions require a time of between several hours

and several days. Therefore, in view of the time cost it is not realistic to solve engi-

neering problems using global optimization methods such as genetic algorithms

(GAs) based on CFD results.

With this in mind, surrogate model-based global exploration represents one way

to reduce the computational cost. Efficient global optimization (EGO) [1], which is

based on the Kriging model has been proposed as one such solution. This approach

defines the expected improvement (EI) based on the uncertainty of the Kriging

model. The point of Maximum EI indicates that the possible design is near to an

optimum point that can improve the model. Thus, optimum solutions can be deter-

mined using the maximum EI point as an additional sample. This method has been

successfully utilized in aerospace design [4].

However, in this process only one additional sample can be determined by EI max-

imization. Therefore, EGO is not time effective in cases where a designer can carry

out parallel evaluations using high performance computing. In this study, assum-

ing that a designer has access to an environment capable of parallel evaluation, a

multi-additional sampling method is proposed to improve the efficiency of EGO.

The proposed method is demonstrated by solving test functions and an airfoil design

problem using time consuming CFD.

2 Efficient Global Optimization (EGO)

Meta-heuristic based global optimization is useful in engineering design problems,

such as in the multi-disciplinary design of aircraft and spacecraft, because the opti-

mization can be carried out without knowing the gradient of the unknown func-

tion. Thus, several studies on engineering design have focused on meta-heuristic

approaches, such as genetic algorithms (GAs). Meta-heuristic based optimization

can acquire a global solution and design knowledge for arbitral design problems.

However, because such methods require a number of evaluations, a long time may

be required for the design process to terminate. This is a significant factor in aero-

dynamic design using CFD.

In response, EGO, a surrogate model based optimization, has been proposed

[1], and its applicability has been demonstrated [4]. In EGO, a Kriging model is
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employed that can predict the multi-modal function with a high accuracy. The pre-

dicted solution ŷ(x) for a design variable x can be expressed as

ŷ(x) = 𝜇 + 𝜖(x), (1)

where 𝜇 is a global model among sample points and 𝜖((x)) is a deviation at x. Opti-

mization in EGO proceeds by solving the maximization problem of EI [1, 4], which

can simultaneously consider optimality and uncertainty. In a minimization problem,

the improvement I(y((x))) in the minimum value ymin at (x) can be expressed as

I(y((x))) = max
(
|ymin − ŷ|, 0

)
(ŷ < ymin)

I(y((x))) = 0.0 (ŷ > ymin). (2)

EI at x can be defined as the expectation value of the function improvement, given

by

EI ≡ E[I(x)] =
∫

ymin

−∞
(|ymin − ŷ|)𝜙(f )df , (3)

where f is a Gaussian type stochastic variable obeying N[(ŷ(x), s2(x))], where s is the

root mean square error (RMSE) and 𝜙(f ) is the probability density function (PDF).

Because EI determines the expectation of the function improvement, possible opti-

mum points can be acquired by solving EI maximization. EI often exhibits a multi-

modal function, and the evolutionary algorithm is widely employed to solve this

maximization problem.

3 Proposed Method: Multiple Additional Sampling

The original EGO can acquire one additional sample in each iteration, as shown in

Fig. 1. The additional sample is obtained through maximization of expected improve-

ment, as shown in Fig. 2. Thus, designers can only use computational resources for

one evaluation in this case, while they can use a parallel environment in the ini-

tial sampling. In this case, available computational resources are not used efficiently

during the additional sampling process, as shown in Fig. 3a. In addition, additional

samples obtained by EI maximization improve the surrogate model around a local

optimum when this point exhibits an optimum value. However, it often performs a

local search that does not maintain the diversity. In such cases, many iterations are

required to obtain additional samples in order to explore the global optimum.

In this study, multi-additional sampling (MAS) is proposed. In EGO with MAS,

a sub-iterations is additionally included, as shown in Fig. 3b. In this sub-iteration, an

additional sample obtained by an iteration is included, to create an updated Kriging

model using the predicted point (x, ŷ(x)) as a temporal function value. Then, another

additional sample is acquired by EI maximization. The EI value around a sample
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Fig. 1 Procedure of

efficient global optimization

Fig. 2 Schematic

illustration of expected

improvement (EI)

point should be close to zero, because 𝜙(x) should be close to zero. Therefore, global

exploration is promoted, especially for a multi-modal function.

A schematic illustration of additional sampling in the proposed MAS method is

presented in Fig. 4b. This process begins by obtaining xeimaax1 using EI maximization

on the initial Kriging model. The predicted value ŷa1 is also calculated, and then

the model is updated temporally using (xeimaax1, ŷa1). Because the EI value around

xeimaax1 should not be larger, the next additional point xeimaax2 can be obtained. This

process is iterated until an arbitrary number of additional samples are obtained. Then,

the exact values ya1, ya2 … are evaluated using a parallel evaluation environment for

xeimaax1, xeimaax2 … using the expensive function. The set of these additional samples

is finally added to the dataset for the improvement of the model.

In this sub-iteration, only values ŷ(x) predicted by the Kriging model are required.

Thus, multiple additional samples can be acquired in a short time. In the main itera-

tion, the exact values for these additional samples can be evaluated using a parallel

evaluation. Thus, design using this EGO method can be completed in a shorter time

than with the original EGO. Figure 3b illustrates the application of the parallel eval-

uation using the proposed EGO with MAS. The number of sub-iterations can be

determined by the number of parallel evaluations.
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Fig. 3 Schematic illustration of the use of parallel computer. a Evaluation for original EGO, b
evaluation for EGO with MAS

Fig. 4 Schematic illustration of the proposed multi-additional sampling in EGO. a Procedure of

EGO with MAS. b Illustration of the sub-iteration
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4 Investigation Problems

In this study, the proposed method is investigated by solving a test function and an

airfoil design problem. The design results are compared with results given by the

original EGO, to demonstrate the efficiency of the new method.

Multi-modal Function with Two Design Variables A Branin function is employed

as a test function. This function is expressed with two design variables as

f (x) =
(
x2 −

5
36

x21 +
5
3
x − 6.0

)2 + 10.0
(
1.0 − 1

24
cosx1 + 10.0

)
. (4)

The Branin function has three minimum points f ((x)) = 0.397887 in the range

−5.0 ≤ x1 ≤ 10.0 and 0.0 ≤ x2 ≤ 15.0, at (x1, x2) = (−𝜋, 12.275), (𝜋, 2.275),
(9.42478, 2.475). The minimization problem of the Branin function can be expressed

as

Minimize ∶ f (x) (5)

Subject to ∶ − 5.0 ≤ x1 ≤ 10.0,
0.0 ≤ x2 ≤ 15.0

Airfoil Design Problem As a real-world problem, we consider an aerodynamic

design optimization problem. Namely, the minimization problem of the drag Cd at

an angle of attack of 2.0
◦

for an airfoil is solved using both the original EGO and the

proposed EGO with MAS. The transonic flow is solved using computational fluid

dynamics (CFD), which requires five minutes for one design. The investigation is

started using 89 samples.

The objective function considered here can be expressed as

Maximize ∶ Cd. (6)

For airfoil evaluation, a Reynolds averaged Navier-Stocks solver (RANS) is

employed with a Mach number 0.8 and Reynolds number 107. A 128 × 61 CH topol-

ogy mesh is generated.

The parametric section (PARSEC) method [8] is used to represent a two-

dimensional airfoil. In the PARSEC method, the upper and lower surfaces are inde-

pendently defined by controlling several design variables, such as the leading edge

radius, maximum thickness, and maximum camber (Fig. 5).
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Fig. 5 Parameters for

PARSEC method

5 Results and Discussion

5.1 Comparison of Global Exploration Performance

Minimization Problem of Branin Function This investigation is started using ten

initial samples, which are obtained by Latin hypercube sampling (LHS). Then, the

original EGO process (Fig. 1) and proposed EGO with MAS (Fig. 4) are performed

independently, and the results of additional samples are compared. For the proposed

EGO with MAS, the number of sub-iterations is set three; that is, three additional

samples can be acquired for evaluations of exact solutions in each main iteration. The

main iteration is performed four times, so that 12 additional samples are obtained

in total. For the comparison, the original EGO process, which employs sequential

sampling, is iterated 12 times.

Figure 6 presents a comparison of the convergence histories of the original EGO

and the EGO with MAS. Each method exhibits a good convergence through the

additional sampling process. The results suggest that the exploration performance of

the proposed method does not deteriorate with temporal additional samples obtained

by sub-iterations.

Figure 7 illustrates the variation resulting from additional sampling for each

method. By comparing these figures, the differences in the function improvement

process can observed. According to Fig. 7a, two minimum points can be deter-

mined quickly, but an additional minimum point can only be found after nine addi-

tional sampling processes. On the other hand, the proposed EGO with MAS found

three minimum points after two additional samplings (after obtaining the additional

sample #6). These results suggest that a higher diversity can be achieved with the

proposed method using multiple-additional samples than with the original EGO.

Figure 8 shows the initial samples (blue diamond symbols) and additional samples

(red square symbols) with sampling orders. As shown in Fig. 7, the original EGO

explored intensively around two minimum points before the ninth sampling, while

the third sample point was not explored. On the other hand, the proposed method

explored three minimum points after the second additional sampling (additional

sample #6.) These results suggest that the proposed method can achieve exploration

with a higher diversity than that of the original EGO.
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Fig. 6 Comparison of convergence histories in the minimization of the Branin function. a Original

EGO. b EGO with MAS

Drag Minimization Problem of Airfoil This investigation is started using 89 ini-

tial samples obtained by Latin hypercube sampling (LHS). Then, the original EGO

process (Fig. 1) and the proposed EGO with MAS (Fig. 4) are performed indepen-

dently, and the results of additional samples are compared. For the proposed EGO

with MAS, the number of sub-iterations is set three; that is, three additional samples

can be acquired for the evaluations of exact solutions in each main iteration. The

main iteration is performed seven times, so that 21 additional samples are obtained

in total. For the comparison, the original EGO process using sequential sampling is

iterated 12 times.
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Fig. 7 Variations of the shape of the surrogate model for additional samples for the minimization

problem of the Branin function. a Function shape for the original EGO. b Function shape for the

proposed method (EGO with MAS)



192 M. Kanazaki et al.

Fig. 8 Initial and additional samples and orders of additional samples. a Original EGO. b EGO

with MAS

Fig. 9 Comparison of convergence histories in the drag minimization of airfoil. a Original EGO.

b EGO with MAS
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Fig. 10 Design problem visualization by PCP colored by CD. a Original EGO. b EGO with MAS

Figure 9 presents a comparison of the convergence histories of the original EGO

and the EGO with MAS. Both methods exhibit a similar convergence through

the additional sampling process. This result suggests that the proposed method is

applicable to this real-world problem, with an increased computational efficiency.

Figure 10 presents a comparison of the visualizations of the design problem for

each method using a parallel coordinate plot (PCP). modeFrontier™version. 4.2.2

was used for this visualization. According to this comparison, few differences can

be observed in the design spaces. This result suggests that an almost equal global

exploration was performed by each method.

The CFD employed in this investigation requires about four minutes.
1

Therefore,

in this study the original EGO obtaining the additional samples sequentially takes

53 min to obtain 21 additional samples. On the other hand, the proposed method

employing the three sub-iterations takes 28 min to obtain 21 additional samples in

the parallel evaluation environment. Thus, it is suggested that the proposed method

improves the efficiency of the original EGO when a parallel evaluation environment

is employed.

6 Conclusions

In this paper, a multiple additional sampling method was proposed for efficient global

optimization (EGO) in order to make use of a parallel evaluation environment. The

proposed method was developed by including sub-iterations that can obtain multiple

possible additional samples to improve the surrogate model. The proposed method

was investigated by solving the Branin function minimization problem and a drag

minimization problem for airfoil. The results were compared with the original EGO

method.

According to the investigation, the proposed method can achieve global optimiza-

tion as effectively as the original EGO. In addition, the proposed method can avoid

1
Using a computer with Intel®Core™i7-3770.
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focusing on a local search. Thus, it is useful for solving multi-modal functions. The

result for airfoil design also indicated a reduction in time cost when the proposed

method is employed in a parallel evaluation environment.
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Dynamic Job Shop Scheduling Under
Uncertainty Using Genetic Programming

Deepak Karunakaran, Yi Mei, Gang Chen and Mengjie Zhang

Abstract Job shop scheduling (JSS) is a hard problem with most of the research

focused on scenarios with the assumption that the shop parameters such as process-

ing times, due dates are constant. But in the real world uncertainty in such para-

meters is a major issue. In this work, we investigate a genetic programming based

hyper-heuristic approach to evolving dispatching rules suitable for dynamic job shop

scheduling under uncertainty. We consider uncertainty in processing times and con-

sider multiple job types pertaining to different levels of uncertainty. In particular,

we propose an approach to use exponential moving average of the deviations of the

processing times in the dispatching rules. We test the performance of the proposed

approach under different uncertain scenarios. Our results show that the proposed

method performs significantly better for a wide range of uncertain scenarios.

1 Introduction

Most research on job shop scheduling use a deterministic model [20]. A deterministic

model for a scheduling environment assumes that the shop parameters viz. process-

ing times are constant throughout the realization of a schedule. However, in practice,

the job shop environment always has uncertainty which makes scheduling a challeng-

ing and difficult task [18]. Handling uncertainty during scheduling is of practical

importance. In dynamic job shop scheduling, the information about jobs is unknown
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before their arrival. In this work, we consider the dynamic job shop scheduling prob-

lem with uncertain processing times.

There are many sources of uncertainty which can affect scheduling. A review of

the literature shows that [7] uncertainty in processing times, machine breakdowns,

fluctuating arrival rates of orders, modification of due dates, cancellation or modi-

fication of orders and uncertain arrival time of raw materials have been considered.

In particular, a lot of focus is given to uncertainty in processing times. This could be

attributed to the fact that variability in processing times has an impact on almost all

scheduling objectives e.g. makespan, mean flowtime, tardiness etc.

The methodologies to tackle uncertainty depend on the description of uncer-

tainty. A review of the literature shows that the three widely used methods to

describe uncertainty [20] are: (1) bounded form, (2) probability description and (3)

fuzzy description. The probability description is frequently used in the literature and

is used for this work.

Broadly, the approaches to scheduling under uncertainty are classified as

preventivescheduling and reactive scheduling. Preventive scheduling generates the

schedules before the uncertain event by employing historical information to deter-

mine uncertainty parameters (say in the form of a stochastic distribution). Preven-

tive scheduling methods are further classified into stochastic scheduling [1], robust

optimization [18], fuzzy programming [8] and sensitivity analysis [25]. Reactive

scheduling modifies the generated schedule in the case of an uncertain event. The

literature shows a number of techniques for reactive scheduling, for example, using

Mixed Integer Linear Programming [29], but most of the works are based on using

dispatching rules. Scheduling using dispatching rules, in particular, have been shown

to be a good approach for dynamic job shop scheduling [24]. Our work focuses on

using dispatching rules for reactive scheduling.

The literature survey shows that a lot of research works [6, 9, 19, 21, 23] have

proposed approaches for using dispatching rules for scheduling under uncertainty.

For instance, in [23], Matsuura et al. compare performance of dispatching rules with

re-sequencing and switching as a scheduling approach under different types of uncer-

tainty and show that dispatching rules perform better in a dynamic environment with

rush jobs and specification change (number of machines a job needs to visit). In the

work by Lawrence et al. [19], they show that when the uncertainty in processing

times increases, the quality of schedules generated by dispatching rules is as good as

those generated by computationally expensive optimization techniques viz. branch

and bound. Several other works have considered dispatching rules and scheduling

heuristics in reactive scheduling [13, 16, 17]. Pinedo and Weiss [27] show that for

a certain class of scheduling problems on parallel machines “largest variance first”

policy minimizes flow time and makespan. This has been considered as a dispatch-

ing rule in [19]. Later, Pinedo [26] shows that “smallest variance first” minimizes

the expected makespan and total expected completion time for a certain class of sto-

chastic batch scheduling problems.

Design of dispatching rules is challenging and requires rigorous experimental

validation. Recently genetic programming has been used to automatically evolve

dispatching rules [3, 15]. In these methods, the composite dispatching rules are



Dynamic Job Shop Scheduling Under Uncertainty Using Genetic Programming 197

evolved as genetic programs and are shown empirically to be more effective and

flexible than simple dispatching rules and manually generated dispatching rules [24].

Similarly, Vazquez-Rodriguez and Ochoa [31] modified the dispatching rule under

an existing heuristic using genetic programming for solving permutation flow shop

scheduling problem. In a related work by Hunt et al. [14], they evolved “less-myopic”

dispatching rules based on genetic programming. Yin et al. [34] learn genetic pro-

gramming based predictive scheduling heuristics for stochastic machine failures. The

genetic programming based hyper-heuristic approach to evolving dispatching rules

has shown promise recently, but its application to evolve dispatching rules suitable

for a stochastic environment is still nascent.

Therefore, considering the difficult nature of the job shop scheduling problem

under uncertainty, creating dispatching rules which are automatically designed using

genetic programming is a key approach. With the flexible representation of the

genetic programs, the evolved composite dispatching rules are expected to produce

better quality schedules under uncertainty. Furthermore, to leverage the advantages

of genetic programming, it is a good direction of research to investigate a new ter-

minal set for genetic programming to consider the randomness in processing times

and other uncertain parameters of the scheduling problem.

In this work, we consider the problem of job shop scheduling under uncertain

processing times. In particular we propose the exponential moving average (EMA)

of the deviation from processing times as a new terminal for genetic program. The

overall goal is to present a GPHH method which is able to improve the performance

of scheduling under uncertain processing times pertaining to different scenarios. The

primary objective is evolving dispatching rules with the EMA terminal and verify

that the rules perform significantly better against current GPHH approaches with

mean flow time as the scheduling objective. The secondary objective is to show that

appropriate training instances are required for evolving dispatching rules which can

perform better under different levels of uncertainty.

2 Background

2.1 Job Shop Scheduling

We briefly introduce the dynamic job shop scheduling problem (DJSS). In most of

the works [14, 24], the arrival of the jobs to the shop is assumed to follow a Pois-

son process. Also the general assumptions are: (1) no recirculation of jobs, (2) no

preemption, (3) no machine failure, (4) no alternate routing and (5) zero transit time

between machines. No prior information about the jobs is known before their arrival.

We follow these assumptions in our work.

Each job j arriving at the shop has nj operations and the sequence of these opera-

tions is Oj. Here, nj ∈ {1,… , n} and Oj = (oj,1 → oj,2 →,… , oj,nj ) is the predefined

route. The ith operation of the job j is oj,i and p(o) is the expected processing time of
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the operation o. In practice, the realized processing time may vary from the expected

value. p′(o) is defined as the realized processing time. Furthermore, it is practical to

assume that p′(o) ≥ p(o) and the deviation from the processing time follows some

probability distribution. dj and rj are the due dates and arrival dates (released imme-

diately to shop) respectively for the job j. m(o) is the machine at which the operation

o is processed. Let Cj be the completion time of the job. Then the total flowtime is

defined as

F =
∑

j
(Cj − rj)

The jobs arrive at the shop continuously and the first operation of each job is

queued at the first machine in the job’s route. A dispatching rule (DR) is used to

assign priority values to each operation queued on a machine. The operation which is

first in the priority queue of that machine is processed as soon as the machine is free.

Once the operation is completed, the next operation in the job’s route is enqueued to

its corresponding machine. This continues till the entire job is completed.

Depending upon the scheduling objectives, different DRs are used in the job

shops. Some of the popular DRs for dynamic job shop scheduling problem are FIFO
(first in first out), SPT (shortest processing time), COVERT (cost over time) [30],

ATC (apparent tardiness cost) [32], etc.

2.2 Genetic Programming Based Hyper Heuristics (GPHHs)

Hyper-heuristics are a set of approaches which automate the design of heuristics to

solve hard problems, particularly combinatorial optimization problems [4]. Hyper-

heuristic search is performed in the heuristic space rather than the solution space.

Genetic programming has been shown to be a good method for hyper-heuristic

search [5]. Moreover, a genetic program is an executable data structure which is con-

ducive to represent a dispatching rule. It has been shown to outperform other repre-

sentations [3] viz. linear and neural networks representations. It is possible to vary

the depth of the trees and for the domain-experts to easily incorporate useful func-

tions and terminals. Furthermore, it is possible to use multi-population systems to

create genetic programs which incorporate diverse characteristics [24] in dispatching

rules. There are many more examples from literature which use GPHH to develop

composite dispatching rules. For example, Tay and Ho [12] evolved scalable and

flexible dispatching rules for multi-objective flexible job shop problem. Hildebrandt

et al. [11] use GPHH to evolve dispatching rules which generalize well across vary-

ing scenarios in the job shop. GPHH has been used to evolve dispatching rules in

dynamic environments where the arrival of jobs is uncertain and follows a partic-

ular probability distribution [24]. Motivated by the success of GPHH approach in

dynamic scheduling environment, our GPHH approach aims at evolving dispatching

rules which are suitable for DJSS under uncertainty in processing times.
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3 Proposed Method

We present an approach to evolving dispatching rules which perform well under

uncertain processing times compared to the current GPHH approaches. In particular,

we investigate a new terminal for genetic programming which estimates the infor-

mation about uncertainty in processing times. We use exponential moving average
as one of the candidates for the terminals in the genetic programs and expect to

capture the information about uncertainty in processing times of the operations. We

use ECJ22 [22] for evolving the dispatching rules; the dynamic job shop scheduling

simulation was done using a discrete-event simulation system [10]. The objective of

scheduling is to minimize total flowtime of all jobs, which is a basic and frequently

considered objective in job shops.

3.1 Simulation Model with Uncertainty

We assume that the uncertainty in the processing time of a particular job is associated

with a probability distribution. This probability distribution may change from one

job to another. This is similar to many other studies in related work e.g. [28, 33].

Rai et al. [28] consider scheduling in printing industry, where operator skills and job

characteristics are main sources of variation in processing times. So it is reasonable

to assume dissimilar uncertainty distributions for different types of jobs. Akker et

al. [33] consider processing times with a deterministic component and a random

disturbance, which is identically distributed for each job. We model the uncertainty

using the gamma distribution, which is widely used to model parameters that are

required to be positive or skewed, and have been used to model uncertainty e.g. [19].

It is a continuous probability distribution with two parameters, shape (𝛼 ∈ ℝ+
) and

scale (𝛽 ∈ ℝ+
). In this work, we define the deviation from the processing time (p(o))

as 𝛿, such that

p′(o) = p(o) + p(o) × 𝛿

where, 𝛿 follows a gamma distribution and different jobs are assigned gamma dis-

tribution parameters viz. shape (𝛼) and scale (𝛽) from a set. In particular, we use

𝛼 = 1 and 𝛽 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.2} in our experiments. The choice

of 𝛼 = 1 is motivated by the evidence from literature that the information contained

in standard deviation of uncertain processing times is useful for scheduling [19, 27].

For a gamma distribution, the standard deviation is equal to 𝛼 × 𝛽

2
and the mean is

equal to 𝛼 × 𝛽. If we assign 𝛼 = 1, then the mean and the standard deviation of this

gamma distribution are 𝛽 and 𝛽

2
respectively. Note that when 𝛼 = 1, the distribution

essentially becomes exponential, which has been frequently used to model uncertain

processing times. Since the mean and the standard deviation have a simple relation,

we expect that the evolved rules will be able to estimate the uncertainty informa-

tion. This estimation is done using exponential moving average as explained below

(Sect. 3.2).
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3.2 Exponential Moving Average (EMA) Terminal

The moving average is a rolling mean over different subsets of data. In exponential

moving average the data points are weighted such that for the older data the weight

keeps decreasing. It is presented in the equation below, where ̄
𝛿i is the exponential

moving average at step i(>0) and Yi is the new data. 𝜅 is a constant smoothing factor.

̄
𝛿i = 𝜅 × Yi + (1 − 𝜅) × ̄

𝛿i−1

According to literature, 𝜅 ≤ 0.3 is considered good. We used 𝜅 = 0.2 in our

experiments, and did not observe any difference in performance with the values in

{0.1, 0.3}.

In our work, ̄𝛿 is evaluated for every job and for a job j,

Yi = 𝛿j,i = p′(oj,i)∕p(oj,i) − 1

Therefore for ith operation of the job j,

̄
𝛿j,i = 𝜅 × 𝛿j,i + (1 − 𝜅) × ̄

𝛿j,i−1

We assigned ̄
𝛿j,0 = 𝛿j,1 at the beginning. Our aim, as mentioned earlier, is to obtain

information about uncertainty and use it in the dispatching rule. The exponential

moving average, which is maintained for every job, captures the expected deviation

from the processing times of operations that are already completed. We expect that

the GPHH approach will evolve programs which could utilize the information from

the EMA terminal to create better schedules.

3.3 Genetic Programming System

Table 1 lists all the functions and terminals which we use to construct a genetic pro-

gram. The function if takes three arguments; if the first argument is larger than 0

then it returns the second argument else it returns the third one. The protected divi-

sion returns 1 if the second argument is 0. The other functions are self-explanatory.

A population size of 1024 is used with the number of generations set to 50. A max-

imum depth of 8 was considered for the genetic programs. The crossover, mutation

and elitism rates are set as 0.85, 0.1 and 0.05 respectively [24].

In order to compare the performance of exponential moving average approach, for

the two training configurations mentioned before, we evolve dispatching rules using

all of these terminals and compare them with dispatching rules obtained by GPHH

without EMA as the terminal.
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Table 1 Function and Terminal sets for genetic programs

Function set Meaning

+ Addition

− Subtraction

∗ Multiplication

∕ Protected division

Max Maximum

Min Minimum

If Conditional

Terminal set Meaning

DD Due date of job

PR Processing time of operation

RO Remaining operations for job

RJ Ready time of job

RT Remaining processing time of job

RM Ready time of machine

ERC Ephemeral random constant

EMA Exponential moving average ( ̄𝛿) of processing

time deviation

4 Experimental Results

In this section, we describe the results from our experiments. First, we briefly

describe the simulation configuration. The instances of dynamic job shop schedul-

ing problem are created randomly using a discrete event simulation system. We use

a configuration with ten machines, eight operations per job, with the processing

times sampled uniformly at random from the range [1, 49]. We use this configu-

ration because it has been used in previous works [24]. The stochastic arrival of the

jobs at the shop follows a Poisson process with a rate 𝜆. 𝜆 is a function of the utiliza-

tion factor [2]; we assign 0.85 as the expected utilization factor. The first 500 jobs

are considered as the warm-up and the next 2000 jobs are used for analysis, with

new jobs arriving at the shop till the 2500th job is completed. If we use 𝜆 > 0.85,

by the time the 2500th job is finished, the number of jobs queued on the machines is

very high and the simulation runs for a very long time. This is because the realized
processing times are higher and consequently the realized utilization is also high.

Training Since we consider different jobs to be associated with different probability

distributions, we use two configurations for training by varying the number of job

types.

∙ In the first case, every job on arrival is assigned gamma distribution parameters

as 𝛼 = 1, 𝛽 ∈ {0.1, 0.6} with equal probability i.e. 50% of the jobs are associated

with {𝛼 = 1, 𝛽 = 0.1} and the rest with {𝛼 = 1, 𝛽 = 0.6} (Fig. 1). Consequently,
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Fig. 1 Gamma
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the values of 𝛿 for an operation are sampled from the assigned distribution of its

job. Thus, a job is associated with either of the two levels of uncertainty.

∙ In the second case, we consider five types of jobs, such that the gamma distribution

parameters are 𝛼 = 1, 𝛽 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} with equal probability. In other

words, 20% jobs are associated with each gamma distribution arising out of each

of the five possible values of 𝛽 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

Our primary objective is to test the performance of our proposed genetic pro-

gramming representation which uses exponential moving average as a terminal. As

mentioned earlier, we use two training sets, and for each set we evolve dispatching

rules with and without the proposed terminal. Therefore, we get four sets of dispatch-

ing rules. We denote the four sets as 
̄
𝛿

2,
̄
𝛿

5,2 and 5, where the subscripts denote

the number of types of jobs (with respect to uncertainty level) used. The rules with

superscript ̄
𝛿 are evolved using exponential moving average as a terminal. Each set

consists of 30 rules, which is considered as a minimum number of samples required

for statistical tests.

Testing The experiment is conducted on a number of different configurations. In

particular, we use different gamma distributions by varying the scale parameter (𝛽).

We also vary the proportion of the number of jobs associated with each distribution.

These different configurations are shown in the Table 2. Each test set consists of

Table 2 Test configurations
Test-set Scale (𝛽) #Job-ratio

I {0.1, 0.6} 1 ∶ 1
II {0.1, 0.6} 2 ∶ 1
III {0.1, 0.6} 3 ∶ 1
IV {0.1, 0.3, 0.6} 1 ∶ 1 ∶ 1
V {0.1, 0.3, 0.6, 0.8} 1 ∶ 1 ∶ 1 ∶ 1
VI {0.1, 0.2, 0.3, 0.4, 0.5} 1 ∶ 1 ∶ 1 ∶ 1 ∶ 1
VII {0.1, 0.3, 0.6, 0.8, 1.2} 1 ∶ 1 ∶ 1 ∶ 1 ∶ 1
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30 problem instances. The second column in this table shows the scale parameter

values of the gamma distributions, which the jobs in a problem instance are assigned.

The column ‘#job-ratio’ shows the ratio of the number of jobs which are assigned a

particular gamma distribution. For example, in row 2, corresponding to the test set-II,

out of every three jobs, two have uncertainty represented using a gamma distribution

scale parameter of 0.1 and one has scale parameter of 0.6.

Our aim is to verify if the exponential moving average i.e. the EMA terminal, is

able to improve the performance of scheduling (Fig. 2). While the dispatching rules

are evolved using a training set with just two configurations, the test configurations

are more comprehensive. Therefore, improvement of performance, if any, could indi-

cate more practical applicability of evolved rules. We test the trained dispatching

rules over different test sets and present the box-plots. The Wilcoxon-rank-sum test

with significance level of 0.05 is used to test the statistical significance of the result.

We present our findings in the Figs. 3 and 4. Though we conducted our exper-

iments on 30 problem instances in each test set, we have presented box-plot com-

parisons only for 9 of them due to space limitation. We observe similar pattern for

other instances. The results for the 30 problem instances are mentioned below each

plot in the form of triplets. The first value of the triplet is equal to the number of test

instance for which the performance of proposed method is significantly ‘better’, sec-

ond value equals the number of instances when it is significantly the ‘same’. And the

third value is equal to number of instances with significantly poor performance; thus

the sum of the three values is 30 for each test set. The x-axis denotes the #problem-

instance which is the id of the problem instance; and each of the adjacent box plot

pairs is denoted by same id #problem-instance on the x-axis. The statistically signif-

icant test result is indicated by a colored box-plot. ‘*’ is added as a superscript to the

corresponding #problem-instance on the x-axis as well.

We split the description of our results into three. Firstly we discuss the perfor-

mance of the dispatching rules obtained by training on 2 job types i.e., comparing


̄
𝛿

2 with 2 and then with 5 job-types i.e., 
̄
𝛿

5 with 5. In order to have a holistic

analysis, we also compare 
̄
𝛿

2 with 
̄
𝛿

5 and to show the influence of different training

sets on the performance of GP and the results of some of the test sets are shown.

Fig. 2 Frequency of
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4.1 Performance Comparisons:  ̄

𝜹

𝟐 vs 𝟐

In this set of comparisons, between 
̄
𝛿

2 and 2, shown in the box plots of Fig. 3, our

primary observation is that the terminal EMA is able to evolve rules which perform

better across most of the test configurations. For all pairs of box plots in Fig. 3, the

right one corresponds to 
̄
𝛿

2. To be specific:

∙ When two types of jobs are considered, as in test sets I, II & III, the performance

of 
̄
𝛿

2 is significantly better in 14, 26 and 22 out of a total 30 problem instances

respectively.

∙ Similar results are obtained for the test sets IV & V too. In these two cases, the

types of jobs considered is 3 and 4 respectively (Table 2). The performance of the

dispatching rules evolved with EMA is significantly better in 23 and 13 out of 30

problem instances, respectively.

∙ We observe that when the number of job types is increased to 5, the performance

is not good for the dispatching rules which were trained using two types of jobs.

In the box plots shown in Fig. 3, the performance is in fact significantly ‘worse’,

especially when the jobs have higher uncertainty levels (test set VII).

This can be explained more clearly when we consider the role of a dispatching rule in

creating the schedule. As the jobs arrive at the shop, their operations are queued to the

appropriate machines. The dispatching rule assigns priority values to the operations,

which are used to select the next operation to be processed on the machine. If the

number of levels of uncertainty increases (i.e. number of job types increase) then

all the operations in the queue have variations in processing times. Consequently,

the problem becomes harder as the processing time deviation is similarly prominent

throughout all the operations in a queue. The GPHH method is not able to evolve a

rule which is able to accurately prioritize the operations using the uncertainty infor-

mation contained in ̄
𝛿.

Moreover, when the ratio is skewed, i.e. a higher percentage of jobs are associated

with one probability distribution than the other, the performance using the proposed

terminal is more significant. This is in line with the previous explanation. The rules

are able to assign the priorities more accurately, when the deviation is very prominent

in some jobs and less prominent in other. To be specific, for the test sets II, III &IV

the performance is better than others because, the deviations are high for a smaller

percentage of jobs; 33 %, 25 % and 33 % respectively and low for rest. Therefore, the

GPHH is able to evolve rules which can assign different priorities to these operations.

4.2 Performance Comparisons:  ̄

𝜹

𝟓 versus 𝟓

In this set of comparisons as shown in Fig. 4a, our primary observation is that for

dispatching rules, which are trained on 5 types of jobs, the performance on test cases
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shows no significant difference to either test cases with lower (two) or higher (five)

number of job types.

∙ 
̄
𝛿

5 performs significantly ‘worse’ in only one problem instance of test set III, out

of a total of 30 problem instances. On other test sets, the performance is signifi-

cantly same (including on test sets II, IV & V which are not shown due to space

limitation).

In other words, the performance of 
̄
𝛿

5 is similar on almost all test set. Our expla-

nation to this behavior of dispatching rules is similar to the one given before. The

scheduling problem becomes more difficult when the number of levels of uncer-

tainty assigned to the different jobs increase. Also, this result points to the fact that


̄
𝛿

2 suffers from over-fitting problem when presented with problems with five levels

of uncertainties in jobs as test sets.

4.3 Performance Comparisons:  ̄

𝜹

𝟐 versus 
̄

𝜹

𝟓 and 𝟐 versus
𝟓

We also cross-compare the test results between the set of evolved rules which

are trained on different configurations. The results are shown as box plots in the

Fig. 4b, c. For these pairs of box plots, the left one always corresponds to rules trained

with 2 job types.

∙ For test set I, the results show that there is a big drop in performance when the

rules trained on another configuration is tested on a different configuration. This

is an expected result.

∙ Similarly, for test set VI, though the results are not that apparent as in the previous

case, the rules in 
̄
𝛿

5 perform significantly better in 13 test instances. Though in

the case of 5 the performance is significantly same as that of 2.

This shows the significance of choosing proper training instances depending on

the level of uncertainty in processing times.

4.4 Analysis of Dispatching Rules

Now we analyze the evolved rules to make more sense of our observations. Firstly,

we count the number of each terminal in the set of 30 evolved rules from 
̄
𝛿

2. The bar

chart is shown in Fig. 2. The prominence of the terminal EMA is an indicator that the

terminal is useful. Furthermore, we counted the number of occurrences of pairs of the

terminal EMA and of PR, RT. These pairs are highlighted (in bold) in the example

of a dispatching rule below (Listing 1.1). These terminals are chosen because the

EMA value is expected to combine with terminals related to processing times. We
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found that among the 30 rules, they occurred 92 times (multiple occurrences within

same rule). Moreover, we calculated the frequency of these combinations for the

dispatching rules in 
̄
𝛿

5. We found that the frequency is 61, which indicates that for

a configuration with five job types, the effect of EMA is less prominent.

An example of one of the best evolved dispatching rules is presented below. We

can see that the occurrences of the terminal EMA and its combination with the ter-

minals related to processing times is frequent.

Listing 1.1 One of the best evolved rules

(∗ ( Min (∗ RT EMA ) (− ( / 0 . 584 RO) (+ ( Max 0 .724 RT)

(+ (∗ (∗ ( I f (+ ( Max EMA 0 . 2 1 9 ) (− RO DD) ) ( Max

(+ EMA(− RT RO ) ) ( I f (+ 0 .990 (∗ RT EMA ) )

0 .341 ( / 0 .956 ( + ( / 0 .584 RO) ( Max(∗RT EMA ) ( / 0 . 584 RO)

) ) ) ) ) 2)(+(+ EMA(− RT RO) ) ( Min ( Min (∗EMA PR ) ( Max RJ

RM) ) (− RT RO ) ) ) ) (+ ( Min RO 0 . 3 2 1 ) ( Min RO 0 . 3 2 1 ) ) ) ( Max

(∗ RT EMA ) ( / 0 . 584 ( I f (+ ( Max (∗RT EMA )

( / 0 . 584 RO) ) (− RO DD) ) (Max 0 .724 RT) (+ 2 ) ) ) ) ) ) ) )

( Max RO PR ) )

5 Conclusions

In this paper, we focused on evolving dispatching rules using a GP-based hyper

heuristic approach for dynamic job shop scheduling problem under uncertain

processing times. In particular, we introduced a new terminal which captures the

information about uncertainty in processing times to evolve suitable dispatching

rules. The terminal computes the exponential moving average of deviation in process-

ing times. We considered different uncertainty levels in processing times and con-

sidered different ratios of jobs pertaining to these levels.

The primary conclusion is that, the inclusion of EMA terminal in the GPHH

approach could evolve better dispatching rules with total flow time as the scheduling

objective when the number of uncertainty levels is up to four. When the number of

uncertainty levels is five, the performance of the proposed terminal shows a decline.

We conclude that up to four levels of uncertainty the proposed terminal is able to

assign more accurate priorities to operations queued on a machine. But beyond that,

the processing time variations are prominent across all the queued operations and

consequently the EMA terminal is not effective.

Furthermore, our observations concur with the fact that different job shop scenar-

ios require specific dispatching rules. In particular, when the following parameters

in the job shop are varied: (1) the number of different levels of uncertainty and (2)

the ratio of jobs pertaining to the different levels of uncertainty; different sets of

dispatching rules are required to maintain schedule quality.



Dynamic Job Shop Scheduling Under Uncertainty Using Genetic Programming 209

In our future work, we will investigate better estimation techniques to evolve dis-

patching rules which perform well even with higher number of levels of uncertainty.

We will also consider evolving dispatching rules which perform well under more

types of uncertainty e.g. variation in due dates.
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Similarity Analysis of Survey on Employment
Trends in Japan

Masao Kubo, Hiroshi Sato, Akihiro Yamaguchi and Yuji Aruka

Abstract This paper analyzes the characteristics of employment in Japan from open

data. Applying methods of AI research field to Survey on Employment Trends in

Japan as the way to understand a trend of economic activity is proposed.

Keywords Open data ⋅ Complex network analysis ⋅ Machine learning

1 Introduction

Adequate agent models of a social simulation is one of critical issue for obtain a good

findings. We will want to build a good employment simulator in future and a lot of

hypotheses about employers and employees will be required. Although a field survey

is a good approach to introduce plausible assumptions for them, it has been difficult

to collect valuable information about employment because this kind of information

should be kept secret on the both side. Therefore this trait may make researches of this

field difficult. Employment and monetary dynamics are major factors of macroscopic

economics but the monetary dynamics is much more studied so far. (For example,

Input-output table, http://www.oecd.org).
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Applying an analysis method of AI research field to employment data of open

data as the way to understand a trend of economic activity is proposed. Recently,

government, local administration, and public entity offer their data in public. It will

promote that citizens understand their authority’s activity more clearly. Also the open

data makes activity of research and business more efficient and consistent. On the

other hand, the privacy of the data which the authorities handle should be kept secret.

Therefore it seems that data without any modification is not published but its stat-

ical data is released in public. The modified data is not convenient in sometimes

so that a user needs some inferences and estimations for knowing what it wants to

know. Complex network analysis, machine learning, and other artificial intelligence

techniques are expected to be prospective.

In this paper, the data of Survey on Employment Trends in Japan is discussed,

which is a biannual report published by Health, Labor and Welfare Ministry of Japan.

This reports trends of employment and unemployment about labor’s sex, age, previ-

ous job, and reason why they choose the job and so on.

An index, increasing rate is introduced which is (employment rate–separation

rate) of a sector. The similarity of the increasing rate is visualized and we show the

behavior of the rate of all of the sectors are very similar but sectors in Japan can be

divided into 2 types: sectors of the first type influence each other and form a large

group. A sector in the second is independent: the behavior of the increasing rate is

not similar to other sectors.

2 Annual Data of Survey on Employment Trends in Japan

There are a lot of open data about employment. For example, input-output table is

such a data because this is a primary information of employee. In this paper, annual

data of survey on Employment Trends in Japan is used (http://www.mhlw.go.jp/

toukei/list/9-23-1.html). This survey mainly discusses employment from a perspec-

tive of labor. Health, Labor and Welfare Ministry of Japan takes a survey every 6

months. This questionnaire survey reports accession rate and separation rate of a

sector which is a division of Japanese industry. The reports from 2000 to 2014 are

utilized here and 55 sectors are introduced in total.

Table 1 shows the sectors in 2013. These sectors are a part of the following

16 industries based on the Japan Standard Industrial Classification, namely, Min-

ing and quarrying of stone and gravel; construction; manufacturing; electricity, gas,

heat supply and water; information and communications; transport and postal activ-

ities; wholesale and retail trade; finance and insurance; real estate and goods rental

and leasing; scientific research, professional and technical services; accommodation,

eating and drinking services; living-related and personal services and amusement

services (excluding housework services); education and learning support; medical,

health care and welfare; compound services; services not elsewhere classified (other

unclassified) (excluding foreign public services). Note that this survey does not han-

dle agricultural industry and fishery industry.

http://www.mhlw.go.jp/toukei/list/9-23-1.html
http://www.mhlw.go.jp/toukei/list/9-23-1.html
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Table 1 Sample of sectors in this analysis

Industries covered Mining and quarrying of stone

and gravel

Construction

Manufacturing Manufacture of beverages,

tobacco and feed

Manufacture of textile mill

products

Manufacture of lumber and

wood products, except

furniture

Manufacture of furniture and

fixtures

Manufacture of pulp, paper

and paper products

Printing and allied industries Manufacture of chemical and

allied products

Manufacture of petroleum and

coal products

Manufacture of rubber

products

Manufacture of plastic

products, except otherwise

classified

Manufacture of rubber

products

Manufacture of ceramic, stone

and clay products

Manufacture of iron and steel Manufacture of non-ferrous

metals and products

Manufacture of fabricated

metal products

Manufacture of

general-purpose machinery

Manufacture of production

machinery

Manufacture of business

oriented machinery

Electronic parts, devices and

electronic circuits

Manufacture of electrical

machinery, equipment and

supplies

Manufacture of information

and communication

electronics equipment

Manufacture of transportation

equipment

Miscellaneous manufacturing

industries, Manufacture of

leather tanning, leather

products and fur skins

Electricity, Gas, Heat supply

and Water

Information and

communications

Transport and postal activities

Wholesale and Retail trade Wholesale Retail trade

Finance and Insurance Real estate and goods rental

and leasing

Scientific research,

professional and technical

services

Accommodations, eating and

drinking services

Living-related and personal

services and amusement

services

Services for amusement and

hobbies

Education, learning support Medical, health care and

welfare

Medical and other health

services

Social insurance and social

welfare

Compound services Services, N.E.C

Automobile maintenance

services? CMachine, ETC.

repair services, except

otherwise classified

Miscellaneous business

services

A classification of data of this report in 2014 is shown below (http://www.mhlw.

go.jp/english/database/db-l/dl/employment_trends_2014_outline.pdf):

1. Establishment Survey

(a) Number of regular employees in the enterprise overall

http://www.mhlw.go.jp/english/database/db-l/dl/employment_trends_2014_outline.pdf
http://www.mhlw.go.jp/english/database/db-l/dl/employment_trends_2014_outline.pdf
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(b) Changes in regular employees by gender and type of employment

(c) Number of regular employees by gender, age and type of employment

(d) Number of regular employees and unfilled job vacancy by occupation and

type of employment

2. Hired Employee Survey

(a) Individual attributes

Gender, age, highest level of education

(b) Hiring

Hiring route, type of employment, occupation, address prior to hiring

(c) Previous employment

Industry, occupation, status in employment, length of separation, size of

enterprise, reason

3. Separated Employee Survey

(a) Individual attributes

Gender, age, highest level of education

(b) Employment immediately before separation

Type of employment, occupation, length of service, reason for separation

3 Increasing Rate and Analysis of This Index

In this section, increasing rate is introduced which is accession rate–separation rate.

The benefit of this index will be shown by a simple similarity analysis.

Figure 1 shows the accession rate and separation rate of the 44 sectors in 2014.

Accession rate is a ratio of the number of new employees of a sector and separation
rate is a ratio of the number of employees who leave their previous sector. The x axis

means sector. 11 sectors (55–11) are not used in this year’s report. Roughly speaking,

Fig. 1 The result of the survey on employment trends in Japan in 2014
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Fig. 2 The cumulative

density distribution of the

employment and separation

rate from 2000 to 2014
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accession rate and separation rate of a sector is almost equal but the magnitude and

the (+, −) sign of the difference is different among sectors. For example, sector 28s

accession rate and separation rate is equal so that the number of employee of this

section is stable in spite that a part of employee is exchanged. Sector 35s separation

rate is nearly 30 % but its accession rate is about 40 % so the number of employee of

this sector is increasing in spite of this large separation rate. Figure 1 suggests that

accession rate and separation rate should be treated as a pair.

Next the frequency of the both rates is verified. Figure 2 illustrates the cumulative

density distribution of the both rates of all sectors from 2000 to 2014. The curve of

separation rate starts about 4 % so at least 4 % of employees quit their job. Also

the probability of both rates when they are smaller than 20 % is different. There is

no difference if these rates are larger than this percentage. Therefore the sign of

(accession rate–separation) is also important even if the difference is small.

3.1 Introduction of Increasing Rate

We introduce an index, increasing rate zi,t as follows. Increasing rate zi,t is

zi,t = ai,t − si,t (1)

where i is the sector number and t is year. ai,t is the accessing rate and si,t is the

separation rate.

3.2 Increasing Rate of This Period

Figure 3 shows the progress of the increasing rate in the period. The x axis indicates

a year. Each graph represents a time series of increasing rate zi = {zi,t}. Roughly

speaking, these graphs synchronize but there are small differences. For example,

after the Bankruptcy of Lehman Brothers the increasing rate of the almost of all



216 M. Kubo et al.

Fig. 3 The increasing rate

from 2000 to 2014
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sectors at t = 2009 are decreased but the magnitude is different. Also, in 2005, the

sectors are equally divided into a group of positive z and a group of negative z.
The histogram of this increasing rate is shown by Fig. 4. The average is −0.013

and the standard deviation is 0.037. This seems to be a Gaussian distribution.

3.3 Correlation of Increasing Rate

Next, correlation of increasing rate of sectors are investigated. Pearson’s correlation

coefficient is adopted.

ri,j,k =
∑n

i=1(zi,t − z̄i)(zj,t−k − z̄j)
((
∑n

i=1(zi,t − z̄i)2)(
∑n

i=1(zj,t−k − z̄j)2))1∕2
(2)

where k ≥ 0 is a time delay. Figure 5 shows the correlation matrix ri,j,k=0 when

k = 0. A black point indicates ri,j = −1 and a yellow means ri,j = 1. Simply speak-

ing, almost of all sectors are positively correlated. However, for example, there are

some negatively correlated sectors around sector 30–40.
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Fig. 5 Correlation matrix
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3.4 Correlation Graph of Increasing Rate

Next, a correlation graph of the increasing rate is generated from the correlation

matrix. This matrix is too complicated to understand its structure because this

includes many strong negative relations. First weak correlations are omitted and

only strong correlations are illustrated as link of graph. Figure 6 shows the corre-

lation graph with only links which |ri,j,k=0| ≥ 0.7 which is the largest value still all of

nodes are connected. A node represents a sector and a blue link is a positive strong

relation and a red link indicates a strong negative link.

1 large group of sectors which have positive link each other is found. A few sec-

tors have small correlation to others, for example, “medical, health care and wel-

fare” sector have only 1 strong correlation link to “manufacture of general purpose

machinery”. It is reasonable because “medical, health care and welfare” sector uses

products of “manufacture of general purpose machinery” and this is a kind of relation

of a stream of production network [1].

Next, the correlation with time delay is calculated. By changing time delay k =
{0,… , 9} we expect that a strong correlation with sectors of the past is detected.

Figure 7 shows the result. The x axis is k. The y axis indicates the total correlation

rk which is calculated by

rk =
n∑

i=0

n∑

j=0
|ri,j,k| (3)
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Fig. 6 Graphic representation of the correlation matrix
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Fig. 7 Time delay and correlation

Fig. 8 The correlation graph when k = 8

rk=8 is a highest correlation except k = 0. It suggests that Japanese industry makes

a plan of employment in about 1 decade long perspective. Figure 8 illustrates the

correlation graph of this delay. There seems to be 2 groups which have positive and

negative influence respectively. The analysis of this graph is a future subject.

By this series of experiments we think that the increasing rate is a reasonable

index for analysis of employment of the survey. In the correlation graph in k = 0
there is 1 large group and a few independent sectors, for example, “medical, health

care and welfare” and “oil industry”. Oil industry may strongly depend on oil price.

Also we suppose it is natural that “medical” industry has not strong relations to other

sectors.
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4 A Classification Method of Highly Independent Sectors
by Eccentricity

In this section, we propose a classification method of a independent sector. If a sector

has a negative correlation to other sectors and it increases the number of its employee,

this increase may force the number of employee of the other sectors to be reduced.

In such a case of sector it is difficult to make a plan to give a subsidy. On the other

hand it is easy to give any support for an independent sector. Therefore we suppose

that it is worth to develop a method to categorize sectors from this perspective.

Here a method to utilize eccentricity of graph is proposed. Eccentricity of graph

is an index representing how far it is from its center of its graph. Now let a graph’s

adjacency matrix A = {ai,j} be as follows

ai,j =
{

1 |ri,j| ≥ th
0 otherwise. (4)

th is the threshold for the graphical visualization. 0.7 is used for “th” below. In this

case sector i’s eccentricity eci is

eci = max
j
(|ShortestPath(i, j)|) (5)

ShortestPath(i, j) is the shortest path from sector i to sector j. The magnitude

|ShortestPath(i, j)| is the sum of the element of the adjacency matirx A on the path.

Figure 9 shows the classification result that Eq. 5 applys to the correlation graph

of ri,j,k=0 in Fig. 6. The x axis indicates the eccentricity and the y axis means the

Fig. 9 Classification of

sector by eccentricity
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number of employee of the sector. The eccentricity of “automobile”, “publishing”,

and “eating” industries is “5.0” which is minimum. On the other hand the eccentricity

of “medical” and “oil industry” is “7.0” which is the largest. This index can classify

sectors adequately.

5 Conclusion

In this paper, we investigate the survey on employment trends in Japan. This sur-

vey is an open data published by Health, Labor and Welfare Ministry of Japan. We

introduce an index, increasing rate and the similarity of 55 sectors is analyzed. Con-

sequently we found that there is 1 large group of sectors which are correlated each

other and a few independent sectors. Finally we propose the method to classify the

independent sectors and its performance is verified.
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On Deriving a Relationship Between
Complexity and Fidelity in Rule Based
Multi-agent Systems

Erandi Lakshika and Michael Barlow

Abstract Understanding the relationship between model complexity and fidelity in

simulations is particularly important as increased complexity is one of the major cost

drivers of any simulation. In this work we explore the relationship between com-

plexity and fidelity in simple rule based multi-agent systems by employing a multi-

objective evolutionary framework in two problem domains: (1) Simulation of con-

versational group dynamics (2) Simulation of sheepdog herding dynamics. Firstly, a

new complexity measure is introduced to characterise complexity of the multi-agent

systems. Thereafter the interplay between complexity and fidelity is analysed and the

relationship is derived empirically by fitting the obtained data into functions that can

describe the relationship in a compact and meaningful manner. This empirical study

will be useful to develop theoretical understandings of the complexity and fidelity

trade-off in multi-agent based simulations and the approach may be generalised to

other simulation types.

Keywords Multi-agent simulations ⋅ Trade-off ⋅ Complexity ⋅ Fidelity ⋅ Multi-

objective optimisation ⋅ Complex behaviours ⋅ Simulation ⋅ Model

1 Introduction

The importance of understanding the relationship of simulation model complexity

and fidelity (measured in various forms) has long been discussed in the literature

[1–5]. These works stress the importance of choosing the best model in terms of

appropriate level of detail and complexity considering the objectives of the mod-

elling process and available resources. This is particularly important because choos-

ing a simple model may not satisfy the simulation objectives whereas a complex

model could suffer resource constraints. Despite the importance of this relationship
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of model complexity and fidelity, little theoretical or empirical work has been per-

formed to elucidate the relationship.

Multi-agent based simulations are an effective form of simulation which facilitate

modelling the complex behaviours of real world entities through simple rules codi-

fied into the agents. The decentralised nature, autonomous operation and ability to

capture complex macro level emergent phenomena through micro level interactions

make them desirable in simulating complex systems that are otherwise difficult to

understand or simulate. Therefore, multi-agent based simulations are being exten-

sively used in simulating complex systems and behaviours in numerous application

areas ranging from engineering, biology, medicine to economics, social sciences,

psychology and artificial intelligence. However, when it comes to multi-agent based

simulations (referred as multi-agent systems in this paper interchangeably), little the-

oretical or empirical work has been undertaken to understand the complexity-fidelity

interplay.

Previous work by the authors analysed the interplay of complexity and fidelity in

multi-agent systems in three problem domains—simulation of conversational group

dynamics, sheepdog herding dynamics and lane merge traffic dynamics—using a

multi-objective evolutionary framework [5]. In particular, the work analysed the

properties of the resulted Pareto frontiers [6] by simultaneously optimising the two

objectives complexity and behaviour fidelity (look and feel of the resulted multi-

agent behaviours) based on multiple individual complexity measures: rule count,

parameter count and cyclomatic complexity [7]. Despite being abstract, the mea-

sures were highly useful in understanding the complexity fidelity trade-off in the

three multi-agent systems that were analysed. In this work, we combine the two

complexity measures rule count (number of rules in the multi-agent system) and

parameter count (number of parameters codified in the rules used in the multi-agent

system) in a novel fashion, overcoming the resolution limitations of using each mea-

sure alone and better understanding the complexity-fidelity trade-off. The resulted

non-dominated solutions [6] are then used to describe the relationship of complex-

ity and fidelity in a more compact and meaningful manner by finding the equation

of the curve of best fit. This empirical understanding is useful in developing theo-

retical relationships between simulation model complexity and fidelity, not only in

multi-agent based simulations, but also in other types of simulations.

2 Related Work

Often the guidelines for selecting the best simulation model is based on Occam’s

(Ockham’s) razor- “entities should not be multiplied beyond necessity” [1, 2, 8].

A complex model is not preferred over a simpler model when both can satisfy the

same objectives. However, the guidelines are vague and there is no clear method-

ology to understand model performance as the complexity increases. The notional

relationship between model accuracy and level of detail (which is also referred to as

complexity) presented in [8] shows that beyond a certain point little can be gained by
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adding more and more complexity to the model. Also, it states that 100 % accuracy

is unattainable because it is impossible to know the exact detail of the real system.

Further, beyond a certain point (of increasing complexity) the accuracy will decrease

because no data or information is available for such a detailed model. However, the

relationship is rather notional and no extensive experiments were reported.

The agent based approach has opened up new frontiers to model complex sit-

uations, advancing studies in the areas of physical, natural, social, military, infor-

mation sciences and engineering [9]. According to [9], these trends showed that

simulation model fidelity and complexity are expected to increase continuously and

rapidly in the coming decades. However, the statement is broad and not based on any

experimental outcome. Although, the growing range of applications and simulation

requirements have imposed needs for high fidelity simulations, it is unlikely that the

complexity of a system could be increased exponentially without an upper bound.

One of the main reasons for the continuing possibility of an increase in the com-

plexity of simulations is the advancements in computational resources [2]. Moore’s

law [10] stated that the number of transistors per square inch on integrated circuits

had doubled every year (later this became every two years) since the integrated cir-

cuit was invented and the trend will continue in the foreseeable future. This pre-

dicted trend has continued for about the last 50 years [11] resulting in corresponding

advancements in computational power. However, this exponential rise will not con-

tinue indefinitely due to both economic limits and technology limits [11]. Therefore,

it is unlikely that the simulation model complexity and fidelity can be increased with-

out an upper limit. For example, Level-of-Detail AI (LOD AI) research promotes a

simplification approach for characters in virtual environments, based on different

criteria such as distance to the camera, in order to save computational power [12].

When it comes to multi-agent systems and agent based systems, empirical or the-

oretical studies on the relationship of model complexity and fidelity are particularly

lacking. Even the existing works focus on specific application areas such as air traffic

simulations [4]. However, given that multi-agent systems are used in many applica-

tion domains, understanding the model complexity-fidelity interplay is vital. This

is not only because increasing fidelity comes at the cost of complexity and compu-

tational cost, but also because it is one of the major cost drivers of any simulation

[13].

In the context of this work complexity is defined as “measures of those proper-
ties of a model that impose more resource requirements and consumption in terms
of computation, design, testing or maintenance time and effort” [5] and fidelity is

defined as “a measure of the perceived (by humans) naturalness and realism of the
behavioural dynamics occurring in the virtual environment” [5]. Previous work by

the authors introduced a multi-objective evolutionary framework to explore the inter-

play of model complexity and simulation fidelity in the cases where fidelity depends

on the quality of the emergent behaviours of the multi-agent systems [5]. This frame-

work was proven to be successful in understanding the trade-off of model com-

plexity and fidelity in three problem domains—simulation of conversational group

dynamics, sheepdog herding dynamics and lane merge traffic dynamics. Firstly, three

machine learning systems were trained using human evaluations of the quality of
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the behaviours in the three domains as well as the features used by humans to deter-

mine their scores. The ability of this machine learning approach to recreate human

judgement was validated in [14]. These machine learning systems were integrated

to the multi-objective evolutionary framework in order to automatically score the

fidelity of the resulted behaviours at varying complexity levels. The three multi-

agent systems consist of rules and their parameters (including the weights by which

they are combined) which determine the complexity of the agents (the model). Four

complexity measures—rule count, parameter count, cyclomatic complexity algorith-

mic level and cyclomatic complexity implementation level—were used to measure

model complexity. Separate experiments were conducted for each problem domain

by employing the Non-dominated Sorting Genetic Algorithm II (NSGA II) [15],

simultaneously optimising the two conflicting objectives complexity and fidelity.

Analysis of the solutions in the Pareto-frontier showed that initially rapid fidelity

increases can be observed with increased complexity, however, beyond a certain

point increasing complexity resulted in diminishing returns in fidelity.

Using the above mentioned complexity measures alone has a number of short-

comings. For example, the rule count complexity measure simply accounts for the

number of rules in the multi-agent system without considering the parameters cod-

ified into the rules. Intuitively when a particular rule has more parameters that rule

becomes more complex than a rule that has fewer parameters. On the other hand,

the parameter count complexity measure simply accounts for the number of parame-

ters in the multi-agent system without considering the relative importance of each

parameter. For example, when rules are combined with their relative weightings,

the impact of the parameters codified into a higher weighted rules are larger than

the impact created by a parameter within a lower weighted rule. In this work a new

complexity measure is introduced in order to address these shortcomings by consid-

ering the rule count, parameter count as well as the relative weighting of the rules.

Further, the relationship of model complexity and fidelity will be analysed by fit-

ting the non-dominated solutions to a function that can describe the relationship in

a meaningful manner in two case studies, namely a conversational group dynamics

simulation and a sheepdog herding simulation.

3 Case Studies

3.1 Multi-agent Based Conversational Group Dynamics
Simulation

The first case study is based on a simple rule based multi-agent simulation of peo-

ple engaged in a standing conversational group. The multi-agent system simulates

the dynamics of conversational groups when new people join a conversational group

as well as when participants leave a conversational group. 29 agents organised as 1

group of 8 agents, 2 groups of 6 agents, 1 group of 4 agents, 1 group of 3 agents, and
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Table 1 The pool of rules of the conversational agents with their parameters

Rule Parameter Conceptual function

Keep Personal Distance - A minPersonalDistance

maxPersonalDistance

If another agent is within the

personal distance move away

Keep Personal Distance - B inertiaThreshold If total repulsion forces is

above the inertiaThreshold
move away

Keep Centre of the

Conversation

Tolerance Keep the distance to the center

of the group within a tolerance
Keep Visibility wideArc x% If not x% of agents are visible

within a wideArc move away

from center

narrowArc y% If more than y% of agents are

visible within a narrowArc
move towards center

Keep Distance to the Nearest

Neighbour-A

thresholdDistance Move towards the average

position of the neighbours

within a thresholdDistance
Keep Distance to the Nearest

Neighbour-B

toleranceDistance Move towards the furthest of

the nearest neighbours within a

toleranceDistance

another group of 2 agents have been simulated with the same scenario of two agents

leaving groups and joining two other groups [5, 14]. The rule space comprised of

4 rules shown in Table 1. The conceptual rules, Keep Personal Distance and Keep

Distance to the Nearest Neighbours (KDNN) have two variants (indicated as A and

B) based on the choice of parameters and implementation, however in a given sim-

ulation only one implementation (either A or B) can be active. Rules are combined

using a simple linear approach based on the weights, i.e.: the agents’ movement in

each simulation tick is determined by the weighted average of the active rules within

a simulation.

3.2 Multi-agent Based Sheepdog Herding Simulation

The second case study is based on a sheepdog herding dynamics simulation [5, 16].

This simulation follows a simple rule based multi-agent approach to simulate the

dynamics occurring when a flock of three sheep is herded by a herding dog. The

flock and the dog are initially placed on the opposite ends of a circular arena. The

dog then approaches the flock and herds them back to the dog’s starting position

as quickly and as directly as possible. The sheep in the flock apply the same set of
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Table 2 The pool of rules of the sheep agents with their parameters

Rule Parameter Conceptual function

Separation Separation Distance If within Separation Distance
move away

Alignment Follow velocities of other

sheep agents

Cohesion Keep the centre of the herd

Repel from the dog-A Speedup Parameter

Repulsion Threshold

If total repulsion force is above

Repulsion Threshold move

away based on Speedup
Parameter

Repel from the dog-B Speedup Parameter

Activation Distance

If dog within Activation
Distance move away based on

Speedup Parameter
Repel from the Walls Activation Threshold If closer to walls than

Activation Threshold move

away

Wandering Wandering Angle

Activation Threshold

Speedup Parameter

Add variability to the motion

within Wandering Angle based

on Activation Threshold &

Speedup Parameter

rules from a pool of 6 rules shown in Table 2.
1

These rules have different numbers

of parameters that need to be tuned for realistic dynamics to occur. The rules are

combined using a simple linear combination based on their weights.

4 Methodology

In order to analyse the relationship between simulation fidelity and complexity the

same multi-objective evolutionary framework introduced in [5] is applied in this

work. A machine learning algorithm trained based on bootstrapped human aesthetic

judgement was employed to automatically score the fidelity of the simulations. In

depth details of the machine learning systems can be found in [14, 16]. The fol-

lowing summarises the machine learning approach followed in training the sequen-

tial minimal-optimisation algorithm for learning a support vector regression model

(SMOreg) [17] implemented in the Weka machine learning software [18].

Firstly, a representative set of simulations from each problem domain was selected

by varying the number of active rules, their weights and parameter values. There-

after human participants were recruited on a voluntary basis to determine the aes-

thetic quality of the behaviours. 33 and 20 volunteers were recruited to evaluate the

1
The repel from the dog rule has two different implementations based on the parameter choices and

these two implementations are mutually exclusive in a given simulation.
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conversational group dynamics simulations and sheepdog herding dynamics respec-

tively. In each experiment (one experiment per problem domain), firstly the partic-

ipants were shown videos and pictures of scenarios in real life and asked to list the

feature that they thought as important to determine the realism (fidelity) of simula-

tions of such scenarios. Thereafter, they were shown simulations (each simulation

as a video) in a randomised order and asked to score the simulation for their realism

in a range of 0 to 9 (0 being not realistic at all, and 9 being as realistic as the real

world). Their reason for the score was also obtained as a written response.

Based on the scores provided by the human volunteers and the features they listed

the SMOreg machine learning algorithm was trained to automatically evaluate the

unseen simulations. Based on leave one-out-cross validation results for 1295 training

samples, the machine learning system trained for the conversational group dynamics

model showed a 0.88 correlation between the predicted and the actual scores and a

0.86 root mean squared error (in a range of 0–9) whereas for the sheepdog herd-

ing dynamics model the correlation was 0.98 and the root mean squared error was

0.49 for 420 training samples. Pilot experiments were used to validate the machine

learning scores with the human scores as explained in [14, 16].

A series of complexity measures that can be used to characterise the model com-

plexity of multi-agent systems is discussed in [5]. In this work, a new complexity

measure is introduced in order to better understand the complexity fidelity tradeoff

by combining two complexity measures used in [5] in order to overcome the limi-

tations. The number of rules used to codify the agents has a significant impact on

the complexity of the multi-agent system because an agent codified with two rules

requires more computational resources than an agent codified with a single rule. As

these rules are sensitive to the parameters encoded within the rule, rules with more

parameters require more resources for calibrating them for desired behaviours. Sim-

ilarly, if a particular rule has a higher weight, its parameters arguably have a higher

impact on the resulted behaviours. As such using either rule count or parameter count

in isolation conceals some aspects of complexity which is multi-dimensional. The

complexity measure that is used to examine the relationship of model complexity and

fidelity in this work is defined in Eq. (1) where; R is the number of rules agents are

codified with (e.g.: if the sheepdog behaviours are codified with the rules separation

and cohesion, R = 2), i = ith rule in the simulation, wi = weight of the ith rule and

pi = number of parameters in the ith rule (for example, if the sheepdog behaviours

are codified with the rules separation and cohesion p1 = 1, p2 = 0).

Complexity = R +
R∑

i=1
.wi.pi (1)

NSGA II [15] was employed to understand the relationship of model complex-

ity and fidelity by simultaneously optimising the two conflicting objectives low

complexity and high fidelity. The machine learning systems described above were

employed to determine the fidelity of the simulations generated at the varying com-

plexity levels. A population size of 100 was used for the conversational group
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dynamics model and a population size of 30 was used for the sheepdog herding

dynamics model. The chromosome was encoded with both Boolean and real val-

ues. Boolean genes specified if a rule is active or not while real value genes were

used to represent rule weights and parameters. Mutation rates of 0.1 and 0.01 were

applied for the sheepdog herding model and conversational group dynamics model

respectively. A crossover rate of 0.9 was applied for both models and 7 evolution-

ary runs for each model were conducted. Since no significant differences between

the runs were observed 7 evolutionary runs were sufficient to understand the proper-

ties of the resulted non-dominated solutions. All the evolutionary parameters were

determined based on pilot studies.

5 Experimental Results

Figure 1a shows all non-dominated solutions generated by the 7 evolutionary runs

for the conversational group dynamics domain and Fig. 1b demonstrates all non-

dominated solutions generated by the 7 evolutionary runs for the sheepdog

herding dynamics domain. Generally, in both problem domains the shape of the

Pareto-frontier remains the same showing initial rapid fidelity increases as complex-

ity increases and thereafter diminishing returns. This confirms the results presented

in [5]. One of the main differences observed between the Pareto-frontiers obtained in

the two problem domains is the initial starting point which varies due to the unique

features in each problem domain and their starting configuration. Since it is difficult

to analyse all the non-dominated solutions, the next sections analyse the centroid

solutions from important regions in the Pareto-frontier.
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Fig. 1 Complexity versus fidelity: a Conversational group dynamics. b Sheepdog herding dynam-

ics
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In the conversational group dynamics domain, the first non-dominated solution

(complexity = 2, fidelity =̃ 6.8) is the rule KDNN (both versions were present in the

Pareto-frontier). The next important combination is the rules Keep Centre of the

Conversation and KDNN-B (complexity = 3, fidelity =̃ 7.5). Thereafter, the fidelity

gain is marginal as the complexity increases. The solutions clustered around fidelity

8–8.5, show a complexity of around 3.3 with the two active rules being Keep Vis-

ibility and KDNN-B with a significantly higher weight for the rule KDNN-B. The

cluster around fidelity 8.5–9 show a complexity of around 4.3 and consists of rules

Keep Centre of the Conversation, Keep Visibility and KDNN-B with approximate

relative weightings of 0.4, 0.4, 0.2 respectively. The most complex solution in the

Pareto-frontier consists of the rules Keep Personal Distance-A, Keep visibility and

KDNN-B. Relative weightings between the rules are 0.2, 0.3 and 0.5 respectively.

The results are different from the non-dominated solutions obtained by optimising

the most abstract rule count complexity measure [19, Chap. 7], however similar to

the non-dominated solutions generated by the parameter count complexity measure

[19, Chap. 7].

Unlike the conversational group dynamics model, the sheepdog herding dynamics

model has rules with no parameters. The first cluster of the non-dominated solutions

consists of the rule Cohesion
2

with a complexity of 1 which plays a significant role in

generating flocking dynamics. The centroid solutions around complexity 2 consist of

the rule combination Cohesion and Repel from the dog-A. The analysis of the solu-

tions clustered between complexity 2 and 3, shows that as the weight for the Repel

from the dog rule increases fidelity also increases. This is due to the fact that the rule

Repel from the dog is the prominent rule which makes the herding dynamics occur.

The centroid solutions clustered around complexity 3.5–4 consist of the three rules

Cohesion, Separation and Repel From the Dog. Similarly to the previous cluster,

fidelity increases as the weight for the rule Repel from the dog increases. After com-

plexity reaches 4, the fidelity gain becomes marginal. The centroid solutions in the

cluster around complexity of 4.5 consist of the rule combination Cohesion, Separa-

tion, Repel From the Dog and Alignment. The most complex solutions consist of the

rules Cohesion, Separation, Repel From the Dog, Alignment and Wandering, how-

ever there was no significant fidelity improvement that could be observed by adding

the extra rule. The results are quite similar to the results obtained by using the rule

count and parameter count complexity measures in isolation [19, Chap. 7] except that

when using the rule count complexity measure the first non-dominated solution was

the rule Repel From the Dog and there were no 5-rule solutions in the Pareto-front.

When applying the parameter count complexity measure, the extra rule added after

the rapid fitness increase was the rule Repel from the Walls instead of Wandering.

Generally, after reaching a certain complexity level to get important dynamics of

the simulation, the addition of extra rules only added insignificant fidelity improve-

ments.

2
Fidelity values show minor variations between the runs due to different seeds fed into the starting

configuration.
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Table 3 Curve fitting: conversational group dynamics model

Function Fit RMSE R2

Exponential decay F = 10.7(1 − 0.7e−0.3x) 0.38 0.89

Logistic growth F = 9.7∕(1 + 1.7e−0.7x) 0.38 0.90

Richard’s curve F = 8.8∕(1 + 212.3e(−52.0(x−3.3)))(1∕212.3) 0.31 0.93

Table 4 Curve fitting: sheepdog herding dynamics model

Function Fit RMSE R2

Exponential decay F = 10.4(1 − 1.0e−0.3x) 0.46 0.89

Logistic growth F = 8.2∕(1 + 4.6e−0.8x) 0.45 0.90

Richard’s curve F = 8.4∕(1 + 0.4e(−0.7(x−1.6)))(1∕0.4) 0.45 0.90

In order to describe the data presented in Fig. 1 in a compact and meaningful

manner that captured the key attributes (such as shape) of the relationship, a series

of functions were considered by looking at the shape of the data distribution (in order

to define fidelity F(x) as a function of complexity x). Obviously, the relationship does

not appear to be linear and such a linear curve fitting is not useful to understand

the relationship. An exponential curve F(x) increases without a bound as x increases

which is not the case in the data obtained. A log curve in the form f(x) = a + b.log(r +
x) would be appropriate to represent the decay of growth, however, such a curve does

not have an upper-bound.

After considering a series of functions the most appropriate functions were expo-

nential decay in the form F(x) = a(1 − be−r.x) (upper-bound represented by a), a

logistic growth function in the form F(x) = c∕(1 + a.e−r.x) (upper-bound represented

by c, growth rate represented by r) or a more generalised logistic growth function

know as the Richard’s curve [20] as shown in Eq. (2) where c is the upper-bound, r
is the growth rate, x0 is the point of inflection and a is a parameter that determines

the asymmetry of the curve. According to the Goodness of fit (R2
) and Root Mean

Squared Error (RMSE) shown in Table 3 the Richards curve appears to be the most

appropriate function to describe fidelity as a function of complexity in the conversa-

tional group dynamics model (R2 = 0.93 and RMSE = 0.31), however both logistic

function and the Richard’s curve showed similar performance (See Table 4) for the

sheepdog herding dynamics model (R2 = 0.90 and RMSE = 0.45).

F(x) = c∕(1 + ae−r(x−x0))1∕a
(2)

Figures 2 and 3 demonstrate Richard’s curve fittings for the data obtained in the

conversational group dynamics domain and sheepdog herding dynamics domain

respectively. Both curves capture an initial rapid fitness increases in response to

increased complexity, beyond a certain point increased complexity only resulted in

marginal fidelity improvements. In the conversational group dynamics domain, the



On Deriving a Relationship Between Complexity and Fidelity in Rule . . . 233

Complexity (x)
0 1 2 3 4 5 6 7

Fi
de

lit
y 

(F
)

0

1

2

3

4

5

6

7

8

9

F =8.8/(1+212.3*e-52(x-3.3))1/212.3

Conversational Group Dynamics: Complexity versus Fidelity

data
fit

Fig. 2 Richard’s curve fitting: conversational group dynamics

Complexity (C)
0 1 2 3 4 5 6 7

Fi
de

lit
y 

(F
)

0

1

2

3

4

5

6

7

8

9

F =8.5/(1+0.4*e-0.67(x-1.6))1/0.4

Sheepdog Herding Dynamics: Complexity versus Fidelity

data
fit

Fig. 3 Richard’s curve fitting: sheepdog herding dynamics

asymptote was nearly 9 and the point of inflection was about 3.3 units of complexity

whereas in the sheepdog herding dynamics domain the asymptotes was nearly 8.4

and the point of inflection was about 1.6 units of complexity. It appears that the rela-

tionship between simulation fidelity and complexity can be described by the curve

types that can model diminishing returns, however the growth rate, y-intercept and

the point of inflection depend on the unique properties of the problem domains.

6 Conclusion and Future Work

In this paper a new complexity measure to measure complexity of the rule and para-

meter space of multi-agent systems was introduced. In contrast to the discrete com-

plexity measures presented in the previous work [5], the novel complexity measure
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introduced in this paper is capable of characterising complexity with a higher res-

olution and hence enabling a better exploration of the relationship between simula-

tion fidelity and complexity. The results confirm the previous observations of the

complexity fidelity interplay presented in [5], i.e.: initial rapid fidelity increases,

followed by marginal returns and gradually reaching the asymptote in response to

increased complexity. This higher level relationship remains the same in the two

problem domains studied, so that the relationship can be described using the func-

tions that capture such a property. Based on the results a generalised logistic growth

function appears to be the most appropriate way to describe the relationship between

complexity and fidelity.

Future work focuses on analysing each epoch on the non-dominated sets in order

to understand the impact of changes in relative weighting on the relationship, and

understand the non-linear interactions between the rules. More objective measures

of fidelity will also be investigated in order to incorporate multi-dimensionality into

the relationship. The power of the multi-objective framework used in this work is

its capability to explore trade-offs in multi-dimensions, generalisability to new sim-

ulation types, as well as novel problem areas. Flexibility also exists to explore the

relationships in a many-objective setting. As such this empirical study will be use-

ful in developing theoretical understandings of the relationship between simulation

model complexity and fidelity not only in multi-agent systems, but also in simula-

tions in general. Such an understanding is useful to establish design guidelines for

simulations; in particular when resources are limited.
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Abstract Figure-ground segmentation is a process of separating regions of interest

from unimportant backgrounds. For complex images (e.g. images with high varia-

tions), feature construction (FC) is necessary, which can produce high-level features,

to help achieve accurate segmentation performance. Genetic programming (GP) is

considered as a well-suited FC technique, which is employed for the first time to

build FC methods that aim to improve the segmentation performance in this paper.

One filter GP method (FGP), in which a novel entropy based fitness function is devel-

oped, and one embedded GP method (EGP), in which the error rate is used as the

fitness function, are proposed. The single constructed feature and the combined fea-

tures (the constructed feature + original features) are tested on two standard image

datasets with high variations, i.e. Weizmann and Pascal datasets. Compared with

the original features extracted by existing feature descriptors, both methods can con-

struct useful features from the original ones with the combined features improving

the segmentation performance on both datasets generally. Moreover, EGP is more

efficient and perform better than FGP.
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1 Introduction

Feature construction (FC) is the process of transforming a set of original features

to a new set of more powerful features [1]. FC is crucial for many image analysis

tasks, such as image recognisation, classification and segmentation [2]. Consider-

ing figure-ground image segmentation as an example; it is the process of separating

regions of interest from backgrounds, thus producing binary result images. As there

exist images with high variations, e.g. containing cluttered backgrounds or varying

object shapes, a good feature space is necessary to capture difference between object

pixels and background ones, which is the prerequisite to achieve accurate segmen-

tation performance. Even though many image descriptors exist, e.g. Gabor filters,

they are hand-crafted techniques and often do not match the underlying patterns in

the image, thus can not provide effective feature sets [3]. Moreover, the optimal fea-

ture representation is often not clear for a given problem, and it is infeasible to try

all possible features [3]. Therefore, it is important to conduct feature construction

on the features extracted by existing descriptors to produce high-level features with

more identifying information of objects.

According to how the constructed new features are evaluated in the feature con-

struction process, existing methods can be divided into wrapper, filter and embed-

ded approaches [4]. Wrapper methods use an inductive algorithm, e.g. classifiers,

to evaluate the new features; while filter methods depend on general characteristics

of training data rather than the feedback of an inductive algorithm. The embedded

approach is similar to the wrapper approach, which is directed by an inductive algo-

rithm for the feature evaluation, but the inductive algorithm is the learning algorithm

itself. Therefore, embedded methods construct features and build a learning model

in one step, while filter and wrapper methods treat them as two separate steps.

GP has been applied to feature construction by existing works [1, 5–7]. Guo et

al. [6, 7] develop two filter FC methods using GP for identification problems. In

work [6], the Fisher criterion is applied as the fitness measure, and the created fea-

tures are tested by artificial neural networks (ANNs) and support vector machines

(SVMs) for the identification of six bearing conditions. In work [7], a modified Fisher

linear discriminant analysis (MFLDA) is developed as the fitness function. Multi-

layer perceptrons and SVMs are used to measure the constructed features. In both

works [6, 7], the constructed features improve classification performance compared

with the original features. Bishop et al. [1] presents a wrapper GP based method

for image classification. The fitness function is the classification accuracy. The con-

structed features improve the classification results significantly over the manually

designed features, e.g. features that measure the image aesthetic value in Datta’s

work [8]. Ahmed et al. [5] propose an embedded GP based method for classification
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and biomarker identification of mass spectrometry data. The fitness function com-

bines Fisher criterion and p-values between different classes. Results show that the

constructed high-level features outperform the original feature set in the classifica-

tion performance and biomarker detection rate. The sucess of these existing works

lies in GP’s ability of constructing and searching for more discriminative features,

and the proper settings of GP (e.g. an effective fitness function).

Even though promising results have been achieved by existing works, there

are still several issues in current GP based FC methods [1, 5–7]. Firstly, existing

approaches have been tested mainly on detection and classification problems, other

tasks (e.g. segmentation problems) have not been extensively investigated. Secondly,

the GP-based methods often face the problem of high computational costs due to the

fitness evaluation of each individual (solution). Considering wrapper methods are

normally more computationally intensive, filter and embedded GP methods will be

investigated for feature construction in this work. Thirdly, it is still challenging to

design an effective fitness function to measure the goodness of the constructed fea-

tures, especially for filter methods.

1.1 Goals

This paper employs GP for the first time to construct high-level features from low

(raw features, e.g. intensity)/middle-level features (processed features, e.g. Gabor

features) extracted by existing descriptors for segmentation tasks on complex images

(e.g. images with high variations). One filter GP method (FGP) and one embed-

ded GP method (EGP) are investigated to evolve feature construction programs. In

FGP, a novel entropy based fitness function is designed. The constructed features are

expected to improve the segmentation performance. Specific objectives are shown

as follows.

1. whether the constructed features can outperform the original features for the given

segmentation tasks;

2. which one of the proposed methods, FGP or EGP, can construct more effective

features;

3. how to interpret the constructed features to reveal their effectiveness in distin-

guishing object and background pixels.

As the background to this work has been covered above, Sect. 2 introduces the

baseline methods. Section 3 describes the two new GP based feature construction

methods. In Sect. 4, the experiment preparation is described. Section 5 discusses the

results. Conclusions and future work are shown in the Sect. 6.
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2 Baseline Methods

2.1 Pixel Classification Based Segmentation with Feature
Construction

Figure 1 displays the framework of the pixel classification based figure-ground

segmentation, which includes the process of feature construction. Firstly, an equal

number of object and background pixels are captured from training images. Low/

middle-level features are extracted for these pixels along with their class labels (class

object or background) to form the training set. Accordingly, the same type of fea-

tures are extracted for each pixel in test images. Secondly, the training set is input to

a proposed GP based method to evolve feature construction functions, among which

the single best function is returned (details are described in Sect. 3). Based on this

feature construction function, each sample (a feature vector) in the training set and

the test set is converted to a single new feature. This single constructed feature fc

Fig. 1 Pixel classification based figure-ground segmentation with feature construction (f0 is a fea-

ture with 0 as its index and so forth; (f0, f1, f2, ...) is a feature vector extracted by existing feature

descriptors; fc is the single constructed feature; A and B represent class object and background
respectively; (0, 0), (*, *) and (H, W) represent the pixel coordinates; H and W are the test image’s

height and width)
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Fig. 2 Low/middle-level features (f0 is a feature with 0 as its index and so forth)

can be used by itself and can also be combined with the original features to form the

transformed training and test sets. Thirdly, the transformed training set is employed

to train a standard classifier, e.g. decision tree, which is then applied to classify the

transformed test set. Based on certain evaluation measures and the ground truth, the

segmentation results are generated.

2.2 Low/Middle-Level Features

Existing feature descriptors are used to extract low or middle-level features, which

are then input into the proposed FC methods to construct high-level features. In this

paper, several standard feature descriptors are employed, which can extract three

general types of image features, i.e. edge, colour and grayscale statistics features. As

shown in Fig. 2, there are Gabor filters to extract edge information; R, G, B colour

features; mean filters, median filters, local binary patterns (LBP) and intensity values

to provide grayscale statistics information. All the extracted features are normalized

into the value range of [0, 1].

3 Novel GP Based Feature Construction Methods

This paper employs GP to construct a single high-level feature from the low/middle-

level features based on the best individual in each GP run. Even though a GP indi-

vidual (tree) has many sub-branches, only the output of the root node is considered

for the single feature construction, as it can contain multiple feature combinations.

Algorithm 1 shows the process of GP based feature construction. The parts in blue

colour are the standard procedures in GP algorithm. The parts in red colour are intro-

duced to GP to conduct feature construction, which are mainly about two aspects,

i.e. the fitness function to evaluate the generated single features in the evolutionary

process and the normalization of the best feature to [0,1]. As the original features

are in [0,1], the feature normalization is necessary to make the constructed feature

compatible with the original features.
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input : G: the maximum number of generations;

N: the population size;

The training set and the test set.

output: Transformed datasets.

1 Create an initial population at iteration zero (P0) of GP trees using the Ramped half-and-half

method;

2 g ← 0
3 while g < G and the ideal individual (the individual with fitness value == 0.0) is not found

do
4 Create a child population Pg+1 from Pg:

5 begin
6 Evaluate each individual of Pg based on the proposed fitness function and assign it

a fitness value;

7 for i = 0 to N-1 do
8 Select parent(s) by tournament selection from Pg;

9 Generate children by mutation, crossover or elite operation;

10 Add the children to Pg+1;

11 end
12 end
13 g ← g + 1;

14 end
15 Get the best-so-far individual (feature construction function);

16 for each sample in the training set and the test set do
17 Feed the sample to the feature construction function;

18 Get the output of the function;

19 Convert the output to a value within [0,1] based on the sigmoid function;

20 The transformed value is regarded as the constructed feature for this sample.

21 end
22 Return the transformed training set and the transformed test set.

Algorithm 1: Pseudo-code of GP based feature construction method (GP pro-

cedure is in blue; feature construction related parts are in red).

Both the filter and the embedded GP methods are investigated for feature con-

struction in this paper. The major difference between the filter and the embedded

methods lies in the fitness function, which is described in Sect. 1. A novel fitness

function is designed for the filter GP method; while the classification error rate is

used as the fitness function for the embedded GP method. They will be described in

detail in Sects. 3.1 and 3.2.

Considering that the constructed features may contain outliers, data normalization

(or feature scaling) is required. Since the sigmoid function is monotonic and can

transform numeric values into the range of [0, 1], it can conduct feature normalization

while preserving the distribution of original data. Therefore, the sigmoid function is

used to normalize the constructed features.
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3.1 A Novel Fitness Function for the Filter GP Method

As this work transforms the segmentation task to a pixel classification based prob-

lem, a “good” feature should be the one that can separate pixels of two classes, i.e.

class object and background, by projecting them in the feature space. As shown in

Fig. 3a, pixels from two classes are commonly overlapping. For example, the interval

(the range of feature values) of class background contains object pixels. Since the

less overlapping (or less impure) a class interval means better separation, the good-

ness of constructed features can be reflected by the impurity of the class intervals [9].

Therefore, a novel fitness function is proposed for the filter GP method, which aims

to minimize the impurity of the class intervals. Considering that there may exist out-

liers, which are noisy samples, 0.5 % (determined empirically) of its total pixels on

both minimum and maximal edges are removed from each class interval (illustrated

in Fig. 3b).

As a popular entropy measure, Shannon entropy [10] is employed in this work to

measure the impurity of the class intervals. Shannon entropy is described as follows.

Given discrete probability distributions ⃖⃗p = p1, p2, ..., pN , where the probabilities are

all non-negative numbers and
∑N

i=1 pi = 1, the Shannon entropy of ⃖⃗p is shown in

Eq. 1.

H( ⃖⃗p) = −
N∑

i=1
pi ∗ lnpi. (1)

Based on the Shannon entropy, the impurity of one class interval can be calcu-

lated by Eq. 2, where C is the set of class labels, Ic represents the interval in the

feature space for a specific class c (c ∈ C), and H(Ic) means the Shannon entropy

of the interval Ic. Specifically, given a set of training samples (feature vectors with

class labels), they are transformed based on the evolved feature construction func-

(a) Overlapping class intervals.

(b) Class intervals without outliers.

Fig. 3 Pixel distribution in the feature space (O and B represent class object and background
respectively; × means removing the corresponding pixels)
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tion. Then in the constructed feature space, for a certain class c, the class interval

Ic can be determined. NPIXSIc refers to the number of pixels that fall into the inter-

val Ic; while NPIXSi;Ic refers to the number of pixels whose class labels are class i
(i ∈ C) and who fall into the interval Ic.

H(Ic) = −
∑

i∈C
p(NPIXSi;Ic|NPIXSIc) ∗ ln p(NPIXSi;Ic|NPIXSIc). (2)

As in this paper the problems are binary classification problems, we define C =
{c1, c2}, Ic = {Ic1, Ic2}. The fitness function is defined as the mean of the two class

intervals’ entropies. A lower fitness value means a better separation of two classes,

which suggests a better constructed feature.

fitness =
H(Ic1) + H(Ic2)

2
. (3)

3.2 A Fitness Function for the Embedded GP Method

A GP solution can be used as not only a feature construction function, but also a

classifier, the commonly-used error rate based on the evolved solution is selected

as the fitness function for the embedded GP method. Specifically, Fig. 4 shows

an evolved solution, which can be used as a binary classifier by comparing the

output of its root node with a threshold 0 (other thresholds are also suitable). If

the output is negative, the pixel is categorized as class object; otherwise class

background. Based on the classification results of training samples, error rate =
The number of wrongly classified samples
The total number of training samples

can be generated.

3.3 GP Settings

Table 1 displays the function set, which consists of seven functions (the first five

are standard mathematical functions and the last two are relational functions). The

terminal set is described in Sect. 2.2. The GP parameters follow the settings used by

Fig. 4 A GP solution used

as a classifier (assume there

are six input features

f1, f2,… , f6, and seven

operators, i.e. add +, subtract

−, multiply ×, protected

divide %, >=, <=,
√

)
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Table 1 Function set

Function name Definition Function name Definition

+(a1, a2) a1 + a2 −(a1, a2) a1 − a2

*(a1, a2) a1 ∗ a2 %(a1, a2)

{
a1∕a2 if a2! = 0
0 if a2 == 0

sqrt(a1)
√
|a1| >(a1, a2)

{
a1 if a1 > a2
a2 if otherwise

<(a1, a2)

{
a1 if a1 < a2
a2 if otherwise

Koza [11] except for the population size and reproduction operators. The population

size in this work is set to 512 (1024 set by Koza), as it is sufficient to solve the

related problems. Moreover, crossover, mutation and elitism are used as reproduction

operators (rates are 0.89, 0.1 and 0.01 respectively), which are set empirically.

4 Experiment Preparation

4.1 Datasets

Two standard datasets, the Weizmann horse dataset [12] and Pascal VOC2012 (VOC,

Visual Object Classes) [13], are employed in this paper. Both datasets consist of

images with high variations, which are considered as difficult segmentation tasks.

Figure 5 displays several examples, along with the ground truth images (object in

white and background in black colour). Specifically, the Weizmann dataset has 328

horse images with varying horse positions. The average size of the Weizmann images

Weizmann

horse224 horse225 horse227 horse264 horse306

Pascal

2007 001761 2010 002939 2010 003127 2010 003132 2011 001880

Fig. 5 Example images
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is around 250 × 200 pixels. There are 178 aeroplane images in the Pascal dataset,

and their average size is around 500 × 350 pixels.

4.2 Evaluation Measures

The F1 score (Eq. 4) is applied to evaluate the segmentation results, which reaches

the worst at 0 and the best at 1. In Eq. 4, TP, TN, FP and FN stand for true positives,

true negatives, false positives and false negatives respectively across the pixels of all

test images. Therefore, the F1 score is actually the average across the test images.

F1 = 2 ∗ Precision ∗ Recall∕(Precision + Recall)
Precision = TP∕(TP + FP)
Recall = TP∕(TP + FN)

(4)

4.3 Experiment Design

In the Weizmann dataset, two thirds of total images are used as training images (218

images), from each of which 20 samples (10 from object/background pixels respec-

tively) are extracted. The remaining 110 images are for testing. In Pascal dataset, 88

images are for training and 90 images are for testing, which is suggested by Evering-

ham et al. [13]. Since the average size of Pascal images is much larger than that of

Weizmann images, 50 samples (25 from object/background pixels respectively) are

extracted from each training image. Five standard classifiers, i.e. J48, Naïve Bayes

(NB), PART, random forest (RF) and Support Vector Machines using Sequential

Minimal Optimization (SMO), are selected from the Weka package to measure the

constructed features. All GP related experiments conduct 30 independent runs, and

the results are the average of those based on 30 single best solutions.

5 Result

This section presents the training and test results in Table 2, and provides analyses

in Sects. 5.1 and 5.2. The comparison between features constructed by the proposed

methods with the original features are based on a statistical significance test tech-

nique: the one sample median test [14] at the significance level 5%, which can test

whether the median of a sample set of values is the same as a hypothesized value.

Since the proposed methods are indeterministic, thus they are run multiple times pro-

ducing multiple independent feature sets; while there is only one original feature set.

The one sample median test is suitable to test whether the median of results based
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on a set of feature sets is significant different from the result based on the original

feature set.

5.1 Training Performance

According to Table 2, the training performance of single constructed features pro-

duced by both FGP and EGP is generally worse than that of the original features on

both datasets. As the single constructed feature is only one feature, it may not con-

tain sufficient distinguishing information of object/background pixels, which leads

to worse training performance than the original features. The combined feature sets,

which consists of the original features and the constructed feature, achieve varied

performance compared with the original features. For example, compared with orig-

inal features on Pascal dataset, the FGP combined features perform better for classi-

fier SMO; worse for classifiers NB and PART; while similar for classifiers J48 and

RF. Even though the combined feature sets cannot generally outperform the origi-

nal features in training accuracy, they have generally better test performance on both

datasets than the original features (based on the analyses in Sect. 5.2), which means

that the combined feature sets are more robust than the original features.

Table 3 displays the CPU time cost in the feature construction (or training) process

of FGP and EGP. The values in this table are the average of 30 independent runs.

Based on the Mann-Whitney U test (suitable for testing the median of two equal

sized sample sets) [15] at the significance level 5%, EGP is significantly faster than

FGP in constructing a single best feature on both datasets, which indicates that the

fitness evaluation in EGP is more efficient than that in FGP.

5.2 Test Performance

For FGP, Table 2 shows that the test results based on the single constructed feature

(CF) are significantly worse than those based on the original features on both Weiz-

mann and Pascal datasets. However, the combined feature set (Combined), which

adds the single constructed feature into the original features, can generally increase

the standard classifiers’ performance. Specifically, on the Weizmann dataset, the per-

formance based on the FGP combined feature set increases for classifiers J48, PART

Table 3 Time cost for feature construction (second)

Method Weizmann dataset Pascal dataset

FGP 11.419 ± 1.721 13.439 ± 2.500
EGP 9.609 ± 1.990 10.715 ± 1.879
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and RF, except for classifiers NB and SMO, whose results are similar to those of

the original features. On the Pascal dataset, all the five classifiers achieve higher F1
scores using FGP combined features than those using original features. This indicates

that the single feature constructed by FGP contains useful distinguishing informa-

tion of the objects and backgrounds in test images, but the information is limited

and cannot completely replace that contained in the original features; therefore, the

combined features including both original features and the single constructed feature

perform better than the original features.

For EGP, Table 2 shows promising results. The single constructed feature of EGP

can help several classifiers achieve better results than the original features. For exam-

ple, J48, NB and PART using only one constructed feature produce significantly bet-

ter results on the Weizmann dataset and the Pascal dataset than those based on the

original 53 features. Even though the EGP constructed feature cannot improve all

the classifiers’ performance, the combined feature set of EGP helps improve most

classifiers’ test performance, except for SMO on the Weizmann dataset, which holds

a similar result to that of the original features. One interesting point is that the single

EGP constructed feature outperforms the combined features for certain cases, e.g.

for classifiers J48, NB and PART on Weizmann dataset, and for classifiers J48 and

PART on Pascal dataset. The observation suggests that EGP can construct powerful

features, which can replace the original features for the given segmentation tasks

based on certain classifiers.

When comparing FGP and EGP, EGP are generally better than FGP in both the

single constructed feature and the combined features. For example, on Weizmann

dataset, the five classifiers using the single FGP constructed feature achieve 0.510,

0.457, 0.509, 0.621 and 0.651 in F1 score respectively; while all the five classifiers

using the EGP constructed feature increase in F1 score by 0.074, 0.124, 0.075, 0.064

and 0.188 respectively. The EGP combined feature sets also generally outperform

the FGP combined feature sets on both datasets. The analyses reflect that EGP is

better than FGP in constructing effective features for given segmentation tasks.

6 Conclusions

This paper developed two GP based feature construction methods for figure-ground

image segmentation, i.e. one filter GP method (FGP) and one embedded GP method

(EGP). This is the first time to employ GP to construct image features for figure-

ground segmentation tasks. Moreover, a novel entropy based fitness function was

designed for FGP; while EGP used GP evolved solutions as classifiers to generate

the error rate as the fitness function. The single constructed feature and the combined

features (the constructed feature + original features) were compared with the original

features by five standard classifiers, i.e. J48, NB, PART, RF and SMO, based seg-

mentation tasks on two standard image datasets, i.e. Weizmann and Pascal datasets.

The combined (constructed and original) features of both FGP and EGP perform

generally better than original features for the given segmentation tasks, which indi-
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cates that the proposed methods can construct useful features. Specifically, the com-

bined features of EGP help the standard classifiers achieve higher F1 scores than

FGP combined features. Moreover, EGP is more efficient than FGP in feature con-

struction, as the fitness evaluation in EGP cost less time than that in FGP.

This paper works on the single feature construction. As the single constructed

feature is often not sufficient and original features are also needed to form combined

features in order to achieve better results than the original features, we will consider

multiple feature construction of the single constructed features to capture diverse

aspects of image segmentation in the future.
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Estimation of Distribution Algorithms
with Graph Kernels for Graphs with Node
Types

Kenta Maezawa and Hisashi Handa

Abstract We have proposed a novel Estimation of Distribution Algorithms with

graph kernels (EDA-GK). By using the graph kernels, we can search for solutions in

a feature space. The use of the graph kernel can eliminate the effect of the rugged-

ness of genotype-phenotype mappings of evolutionary algorithms. In this paper, we

extend the EDA-GK to cope with graphs with node types. In order to achieve this,

the histogram in the kernel density estimation function is separated into several sub-

histograms for modes of inter-types, and for nodes of each type. Experimental results

on the Edge-Max problems show the effectiveness of the proposed method.

Keywords Estimation of distribution algorithms ⋅ Graph kernels ⋅ Kernel density

estimation

1 Introduction

Estimation of Distribution Algorithms (EDAs) are a class of Evolutionary Algo-

rithms, which use the probabilistic models to generate offspring [1]. Hence, the

EDAs do not use genetic operators such as crossovers and mutations. In our pre-

vious studies, the EDAs with graph kernels (EDA-GK) have been proposed [2]. In

the EDA-GK, graph kernels are employed to estimate probabilistic distributions of

graphs by means of the kernel density estimation.

The difficulties of solving graph-related problems are described as follows: Sup-

pose that, as individual representation, the adjacency matrix is employed. In this

example, suppose that we have only the interests of the topology of graphs for fit-

ness calculations. In Fig. 1a and b, the genotype of individuals, i.e., the adjacency

matrices, are described in the upper row of these figures. The phenotype of individ-

uals, i.e., graphs, are depicted in the lower row. The fitness of these individuals is the

same if only the typologies are affected to the fitness calculations. On the other hand,

K. Maezawa ⋅ H. Handa (✉)

Kindai University, Higashi-Osaka, Japan

e-mail: handa@info.kindai.ac.jp

© Springer International Publishing AG 2017

G. Leu et al. (eds.), Intelligent and Evolutionary Systems,
Proceedings in Adaptation, Learning and Optimization 8,

DOI 10.1007/978-3-319-49049-6_18

251



252 K. Maezawa and H. Handa

(a) (b) (c) (d)

Fig. 1 Difficulties of evolutionary algorithms in graph-related problems

in the case of Fig. 1c and d, the genotype is almost the same: The difference among

them is an edge between nodes 2 and 3. The phenotype, however, are quite differ:

The graph of Fig. 1d consists of two sub-graphs. Therefore, the genotype-phenotype

mappings in evolutionary algorithms for solving graph-related problems are rugged

so that the difficulties of solving the graph-related problems are caused. The graph

kernels explained in Sect. 2 might address this difficulties.

The EDA-GK proposed by us is an extension of the Estimation of Distribution

Algorithms, which tackle to the graph-related problems. The EDA-GK uses graphs to

represent individuals. In order to estimate the distribution of selected individuals, the

kernel density estimation with graph kernels are employed. The original paper of the

EDA-GK copes with simple graphs. In this paper, we extend the EDA-GK for graphs

with typed nodes. The nodes of the graphs used in this paper are associated with one

of several types. This extension is useful for applying the proposed method to scene

recognitions from image, synthesis of digital circuits, graph mining problems of the

web, and so on.

Related works are summarized as follows: Due to the flexibility of Evolutionary

Algorithms, graph-related problems are potential application area of EAs. However,

we do not have many EA applications for graph-related problems because of the

time-consuming nature of the problems. Chicano and Alba propose ACOhg (Ant

Colony optimization for huge graphs) in the soft engineering area, i.e., model ver-

ification [3, 4]. McDermott and O’Reilly employ graphs for music generation [5].

In addition, the notion of graph is incorporated into some evolutionary algorithms

[6–8].

The organization of the remainder of the paper is as follows: Sect. 2 mention about

the shortest-path distance kernel which is used in this paper as a graph kernel of the

proposed methods. The original EDA-GK is explained in Sect. 3. An extension to

graphs with node types of the proposed method is introduced in Sect. 4. Experimental

results on Edge-Max problems are shown in Sect. 5.
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2 Graph Kernels

Machine Learning algorithms based upon kernel methods have attracted much atten-

tion. The notion of kernel functions has been extended to cope with graphs [9]. This

paper employs the shortest-path graph kernel proposed by Borgwardt and Keiegel

[10]. The followings explain the calculation procedure of the shortest-path graph

kernel:

1. The Floyd-Warshall algorithm are used to calculate all the pairs-shortest-paths in

two graphs G = (V ,E), and G′ = (V ′
,E′).

2. Then, the shortest-path kernel is defined by comparing all the pairs of the shortest

path lengths among nodes in G, and G′
:

k(G,G′) =
∑

vi,vj∈V

∑

v′i ,v
′
j∈V ′

klength(d(vi, vj), d(v′i , v
′
j)), (1)

where d(vi, vj) denotes the path distance of the shortest path between nodes vi, vj.
klength is a kernel for comparing the lengths of two shortest paths:

In the case of a delta kernel [10],

klength(d(vi, vj), d(v′i , v
′
j)) =

{
1 if d(vi, vj) = d(v′i , v

′
j)

0 otherwise.

Let h(G) be a histogram of distances for all the shortest paths in a graph G =
(V ,E). Each bin of the path distance D of h(G) can be written as follows:

h(D,G) = |{vi, vj ∈ V|d(vi, vj) = D}|.

In the case of the delta kernel, the shortest-path kernel k(G,G′) can be rewritten as

follows:

k(G,G′) =
∑

D
h(D,G) ⋅ h(D,G′). (2)

Figure 2 illustrates how the shortest-path graph kernels work. The graphs in Fig. 2

are the same as the ones in Fig. 1. “Dist. Matrix” in Fig. 2 represents the distance

matrices of the shortest-path between corresponding nodes. “Histogram” means the

histogram of distances h(G) mentioned in the previous paragraph. Numbers at the

left hand and the right hand of the colon means the distance D and the bin h(G,D),
respectively. The rotated/reflected solutions, i.e., the graphs in Fig. 2a and b, indicate

the same histograms. Meanwhile, the solutions in Fig. 2c and d, which are similar in

the adjacency matrix representation, show quite different histograms.
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(a) (b) (c) (d)

Fig. 2 Shortest-path graph kernels: the graphs with the same phenotype as in (a) and (b) show

the same histogram. Meanwhile, the graphs with the similar genotype but with different phenotype

show quite different histogram

3 Estimation of Distribution Algorithm with Graph
Kernels

This section explains Estimation of Distribution Algorithm with graph kernels (EDA-

GK) proposed by us [2]. The procedure of the EDA-GK is depicted in Fig. 3, which

is quite similar to the one of the conventional EDAs. One of the differences with the

conventional EDAs is the use of graphs for the individual representation. Because

of this difference, the estimation phase and the sampling phase are also different.

Therefore, “individual representation,” “estimation,” and “sampling” are separately

described in the following subsections. At the same as in the conventional EDAs, we

assume that fitness is evaluated by user-defined fitness functions.

Fig. 3 Procedure of the

estimation of distribution

algorithms with graph

kernels (EDA-GK)
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3.1 Individual Representation

The proposed method employs the direct coding for representing individuals so that

a graph indicates an individual. For an implementation issue, we can use either of

the adjacency matrix data structure or the adjacency list data structure. The proposed

method does not manipulate graphs by using crossover and mutation operations but

requires the data structures to add/remove edges and to calculate all the shortest-path

distances. Hence, both the data structures can be used. We can use the adjacency

matrix for small/dense problems and the adjacency lists for large/sparse problems.

For ease of implementation, we could use public domain software of graph libraries.

3.2 Estimation of Individual Distributions

Suppose that N denotes the number of the selected individuals at each generation,

and the selected individuals are represented by G1,G2,… ,GN . A kernel density

function f (G) can be defined as follows:

f (G) = 1
N ⋅ pn

∑

i
k(G,Gi) (3)

where k denotes the kernel function in Eq. (2), and pn stands for a normalizing para-

meter which normalizes the magnitude of the kernel function to 1. By using Eq. (2),

Eq. (3) can be rewritten as follows:

f (G) = 1
N ⋅ pn

∑

i

∑

D
h(D,G) ⋅ h(D,Gi)

=
∑

D
h(D,G) ⋅ 1

N ⋅ pn

∑

i
h(D,Gi)

Therefore, the probability density estimation for the selected individuals in the EDA-

GK is to sum up h(D,Gi) of all the selected individuals for each possible distance D.

Hence, the procedure of this is summarized as follows:

1. The distance matrices of shortest-path for all the selected individuals are calcu-

lated.

2. A histogram of distances for all the selected individuals is constituted.

3.3 Sampling of New Individuals

The following sampling method is used for the EDA-GK.
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1. A graph G′
is copied from one of the selected individuals.

2. Two nodes are selected from the graph G′
.

3. An edge is added if there is no edge between the selected nodes. Otherwise, an

edge is removed.

4. The new graph G′
is accepted if f (G′) > f (G). Otherwise the new graph G′

is

accepted with the following probability P(G′):

P(G′) =
f (G′)

f (G) + f (G′)
,

where the function f is the kernel density function in the previous section
1

5. If the graph G′
is accepted in the previous step, G ← G′

.

6. Go back to Step (2) until the number of iteration reaches a predefined parameter

Ni.

Note that the sampling method in this paper is improved from the one in [2]. In the

previous study, the sampling process is biased so that the Edge-Max problems were

easier than Edge-Min problems for the EDA-GK, where the Edge-Max problems are

to find out the complete graph, and the Edge-Min problems are to find out the empty

graph. By using sampling method in this paper, there is no bias so that the results of

both problems are almost the same.

4 Extension of EDA-GK for Node Types

4.1 Graphs with Node Types

This section introduces a belief definition of graphs with node types. Firstly, we

define a graph G as follows:

G = (V ,E),

where V = {v1, v2,… , vl} and E = {e1, e2,… , em} denote a set of nodes and a set of

edges, respectively. The original EDA-GK can cope with simple graphs [2], where

there are no types of nodes such that we do not have to distinguish between nodes,

there are no types of edges too.

In this paper, the type is associated to each of nodes: nodes are separated into

groups of nodes Vi:

V = V1 ∪ V2 ∪⋯ ∪ Vk

Each node must be a member of any one of these groups.

1
For the extended version of the EDA-GK, i.e., the proposed method in this paper, Eq. (5) is used

for the calculation of the function f in Eq. (3).
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Vi ∩ Vj = ∅ for all i, j

For instance, suppose that we would like to represent a chemical compound H2O as

a graph with node type. There is a two groups of nodes V1 = {H,H} and V2 = {O}.

We do not have to distinguish between two hydrogen atoms but we have to distinguish

between an oxygen atom and a hydrogen atom.

4.2 Kernel Density Function

The modification for the extension of node types is individual representation so that

each node should store type information. This modification only affects to represen-

tation of the kernel density function of the EDA-GK. We can distinguish nodes in

different groups so that Eq. (1) is rewritten as follows:

knt(G,G′) =
∑

k

∑

l

∑

vi∈Vk ,vj∈Vl

∑

v′i∈V
′
k ,v

′
j∈V

′
l

klength(d(vi, vj), d(v′i , v
′
j)), (4)

where d(vi, vj) denotes the path distance of the shortest path between nodes vi, vj.
These appended summations in Eq. (4), i.e.,

∑
k
∑

l, mean the shortest-path distance

matrix in the original graph kernel are separated into several regions. Therefore, total

calculation costs in the graph kernels are not increased so much. However, we need

that the histogram is separated into several sub-histograms for inter-types, and for

each type as in Fig. 4.

Let hk,l(G) be the sub-histogram of inter-types for all the shortest paths between

nodes in Vk and Vl:

hk,l(D,G) = |{vi ∈ Vk, vj ∈ Vl|d(vi, vj) = D}|.

Fig. 4 Constitution of

sub-histograms: there are

three types for instance.

There are six

sub-histograms: three

histograms for each type and

three histograms for

inter-types
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As in the previous section, the shortest-path kernel knt(G,G′) for node types can be

rewritten as follows:

k(G,G′) =
∑

k

∑

l

∑

D
hk,l(D,G) ⋅ hk,l(D,G′), (5)

where hk,l(D,G) denotes the bin the distance k of the histogram of node group k and

l in graph G.

5 Experiments

This paper shows the experimental results on the Edge-Max problems. Edge-Max

problems can be regarded as a graph edition of the One-Max problems of binary

Genetic Algorithm researches. The target of the Edge-Max problems is to find out

the complete graph, where all the pairs of nodes have an edge. The fitness femax of

the Edge-max problems is defined as follows:

femax(G) = (the number of edges in G),

where femax(G) should be maximized. For the proposed method, i.e., the EDA-GK

with node types, two types are introduced: Type-A, and Type-B. These types are not

affected for fitness calculations.

The number of selected individuals N is set to be half of the number of individuals

M. Plus and Comma selection method is used, 𝜇 is set to be 100 and 𝜆 is set to be

200. The number of iterations Ni at the sampling explained in Sect. 3.3 is set to be

ether of 1, 2, 3, 5, 7, 10, 15, 20, 30, or 50. We examined the Edge-max problems

with 40 nodes. Hence the optimal value for these problems is 780. The number of

generations is set to be 1,500. For comparison, one-max problems of 780 bits are

examined for a few conventional EDAs, UMDA and ECGA.

Figure 5 shows the experimental results of Edge-Max problems: the averaged fit-

ness of the best individuals at 1,500 generations over 10 runs. Four graphs are located

in this figure: the original EDA-GK (upper left), the EDA-GK with node types (Type-

A: 10 %, Type-B: 90 %; upper right), EDA-GK with node types (Type-A: 30 %, Type-

B: 70 %; lower left), and EDA-GK with node types (Type-A: 50 %, Type-B: 50 %;

lower right). The proportion of types is changed. Note that the original EDA-GK is

equivalent with the EDA-GK with node types (Type-A: 100 %, Type-B: 0 %). The

X axis is the number of iterations Ni at offspring sampling as described in Sect. 3.3.

The Y axis means how many edges are required to reach to the optimal number of

edges 780. These graphs tell us that (1) node types (Type-A: 50 %, Type-B: 50 %)

show the best performance among them, (2) fewer iterations Ni at offspring sampling

is better.
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Fig. 5 Experimental results of Edge-Max problems: the average of the best individuals over 30

runs at 1,500 generations: results of the original EDA-GK (upper left); EDA-GK with node types

(Type-A: 10 %, Type-B: 90 %; upper right); EDA-GK with node types (Type-A: 30 %, Type-B:

70 %; lower left); EDA-GK with node types (Type-A: 50 %, Type-B: 50 %; lower right)

Figure 6 shows the experimental results of Edge-Max problems: the temporal

changes of the average of the best individuals over 10 runs. This graph compares

the proposed methods with conventional EDAs: UMDA, and ECGA. The problems

for the conventional EDAs are 780-bits One-Max problems, which are equivalent

to 40 nodes Edge-Max problems. The EDA-GKs show the better performance than

the conventional EDAs. This comparison would not be fair comparisons because the

Edge-Max problems are on graphs. However, this graph elucidates that the EDA-

GKs show the sufficient performance.
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Fig. 6 Experimental results of Edge-Max problems: the temporal changes of the average of the

best individuals over 10 runs; comparison with conventional EDAs for 780-bits one-max problems

6 Conclusion

This paper extended the EDA-GK to cope with graphs with node types. Section 2

showed that the benefits of using graph kernels to the evolutionary algorithms. The

proposed mechanism of coping with node types is that the histogram of the kernel

density estimate function is separated into several sub-histograms for inter-types,

and for each type. Experimental results on the Edge-Max problems show the effec-

tiveness of the EDA-GK with node types. Although the Edge-Max problems have no

characteristics of node types, the EDA-GK with node types works well. It would be

caused by the separation of the histogram in the kernel density estimation function.

Future works are summarized as follows: In this paper, we only examined simple

problems such that adding/removing edges are required. The proposed method can

easily extend to adding/removing nodes. This extension will be useful for applying

graph mining problems. Another extension is for graphs with weighted edges.
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Generating Hub-Spoke Network for Public
Transportation: Comparison Between
Genetic Algorithm and Cuckoo Search
Algorithm

Takahiro Majima, Keiki Takadma, Daisuke Watanabe
and Mitujiro Katuhara

Abstract Scheduled transportation service is a proper system for mass transporta-

tion and it is adopted by wide range of transportation modes, such as railway, airline,

maritime container shipping and bus. The providers of the service are required to

organize effective routes and networks. This paper tackles the problem combining

two problems. One is generating Public Transit Network (PTN) as one of the sched-

uled transportation services. The other is network hub location problem to find out

the effective position of the node as a hub station. The method generating PTN is

based on a growing network model and the method for the hub location problem

is based on a genetic algorithm and a cuckoo search algorithm. This method can

find out effective position of the hub node and transportation line network simul-

taneously. In this framework, this paper reports the comparison result between the

genetic algorithm and the cuckoo search algorithm for the hub location problem.

Keywords Public transportation network ⋅Growing network model ⋅Complex net-

work ⋅ Genetic algorithm ⋅ Cuckoo search algorithm
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1 Introduction

Scheduled transportation service is a proper system for mass transportation and it is

adopted by wide range of transportation modes, such as railway, airline, maritime

container shipping and bus. The providers of the service are required to organize

effective routes and networks. This paper tackles the problem combining two prob-

lems. One is generating Public Transit Network (PTN) as one of the scheduled liner

services. The other is network hub location problem to find out the optimized position

of a hub station. The method generating PTN is based on a growing network model

and the method for hub location problem is based on a genetic algorithm in our pre-

vious method [1]. It was confirmed that the method combining above algorithms can

out put proper position of the hub and transportation line network simultaneously.

To pursue more efficient algorithm, a cuckoo search algorithm is applied for the hub

location problem in this paper and it is compared with the Genetic Algorithm in our

original method.

A large number of the bio-inspired optimization algorithms are reported recently.

In that algorithms, the cuckoo search algorithms is appropriate for optimizing the

hub node in the PTN generation problem, because it relies on the Lévy flight. Lévy

distribution has fat tail distributions, in which the probability of random variables

far from its mean value is larger than that of the normal distributions. It implies that

the searching space is focused around a certain position in most case, but sometime

it jumps. This characteristic is effective to search in a large space without trapping

into the local optimums and This paper reports the result of the comparison between

the genetic algorithm and the cuckoo search algorithm for the PTN generation.

2 Method

In this paper, the nodes in networks represent bus stops or stations. The position and

demand of the nodes, street network, vehicle speed and vehicle capacity are given.

The destination node is limited to only one node represented by a ‘hub node’. The

evaluation function similar to the following equation is applied frequently to the PTN

generation problem [2].

min Z = Z1 + Z2 =
∑

i∈ST
TiDi + w

∑

k∈BL
Bk (1)

where, ST is a set of nodes (bus stops or station). BL is a set of lines. Di is a demand

at node i(number of passengers from node i to the hub node), Ti is a travel time

from node i to the hub node composed of the moving time, Tmi and the expected

waiting time, Twi. Bk is a number of vehicle deployed into the line k. w is a control

parameter (in this paper, w is fixed to 10). The passenger’s total travel time represents

the passenger’s cost, whereas the vehicle number represents the cost of transportation

company. The destination of passengers is the hub node which position is determined
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by two algorithms, Genetic Algorithm and Cuckoo Search Algorithm in Sect. 2.2.2

Thus optimizing process to find out the best position of the hub node reduces the

evaluation value, Z.

The method described below separates two processes. One method produces tran-

sit routes of the transportation line with an improved growing network model. Second

method with location optimization algorithm finds the position of the hub node.

2.1 Growing Network Model

Our model is inspired by Gastner [3]. In this model, after determining a root node,

another node is added to the sub-network including the root node with linking the

node at each evolution step. The node added to the sub-network is selected according

to the ascending order of the distance to the root node. Through such a node addi-

tion, the sub-network spreads outward from the root node. In this paper, the model

was improved to deal with the transportation line. Figure 1 shows the process of the

growing line network.

In this figure, the newly added node (i.e. the node 3 in Fig. 1) is defined as the

‘target node’, while the nodes in the sub-network (i.e. the node 0, 1, and 2 in Fig. 1)

are defined as the ‘candidate node’. The target node is selected in the ascending order

of the distance between the hub node and the target node.

The link connects between the target node and one of the candidate nodes. The

route of the line starting from the target node is same to that of the already existing

line besides the newly added link. The evaluation of the line starting form the target

node is calculated for all candidate nodes according to Eq. 1. (note that this calcu-

lation is limited within the sub-network.). After calculation of such an evaluation,

the candidate node with the smallest evaluation value is selected and is linked with

the target node. This process repeats until all nodes are connected to the hub node.

Note that the vehicle number, the waiting time and the connection type should be

determined to calculate the evaluation value. Following two sections explain how to

determine them.

Fig. 1 Schematic of

growing line network model



266 T. Majima et al.

Fig. 2 Schematic of two

connection types

2.1.1 Connection Type and Waiting Time

If the candidate node is a terminal of the existing lines, there are two types of con-

nection can be considered as illustrated in Fig. 2.

The node 2 in Fig. 2 is the terminal of the line 2 and it is the candidate node for

the target node 3. In case of the ‘addition type’, the line 3 for the newly added target

node (i.e. the node 3) is generated. In case of the ‘subsumption type’, the new line

3 subsumes the already existing line 2. Thus, the evaluation value is calculated not

only for the candidate node but also for the connection type.

The expected waiting time at a node where more than one bus lines stop can be

calculated by the following equation [4].

Twi = t1

{
1
2
+

N−1∑

r=1

(−1)rtr1
(r + 1)(r + 2)

N−r+1∑

j1=2

N−r+2∑

j2=j1+1
…

N∑

jr=jr−1+1

1
tj1tj2 … tjr

}
(2)

where, N is the number of lines stopping at the node i, t1 is the smallest headway

(frequency) in the set of tj representing the headway of bus line j. Furthermore, the

headway for each line is calculated by the averaged value of its round trip time and

the vehicle number.

2.1.2 Vehicle Number

The vehicle number should be satisfied with the condition where the transportation

capacity is larger than the demand of passengers. The number of vehicle satisfying

the demand can be calculated by the following equation.

Bk = ⌈TrkDk∕Bcapa⌉ (3)

where, Trk is a round trip time of the target node k. Bcapa is a capacity of one vehicle.
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However, in the case of subsumption type in Fig. 2, Eq. 3 does not satisfy the

condition of the demand, because the round trip time of the subsumed line changes.

In this paper, the following equation is employed for the subsumption type.

Bk = ⌈TrkDk∕Bcapa + BjTrk∕Trj⌉ (4)

where, subscript k and j represent the target node and the candidate node, and Trj, Bj
are the round trip time of the node j and the vehicle number of the subsumed line at

the node j. Equation 4 satisfies the demand at the target node and does not deteriorate

the frequency of the vehicle stopping at the candidate node.

An example of the growing line network is illustrated in Fig. 3. Further infor-

mation on the characteristic of the growing line network model is summarized in a

paper [5].

2.2 Hub Location

After the publication of the paper by O’Kelly [6], a number of methods on the hub

location problem have been reported [7]. In that reports, some methods output hub-

spoke network similar to the topology in this paper [8, 9]. (It is not supposed that

the all links directly connect the hub node and the other nodes.) However they lack

the concept of the transportation line (route and frequency of line).

The performance of the following two algorithms, genetic algorithm and cuckoo

search algorithm, are compared for the hub location problems of the PTN generation.

2.2.1 Genetic Algorithm

The position of the hub node (only one destination node) relied on a standard genetic

algorithm (here in after referred to GA). The chromosome encodes the position on

the xy plane of the hub node with length of 20 digits binary string (10 digits for

each x, y position). Population size is 25 (Initial arrangement on the plane is 5 ×
5). Fitness of the chromosome is inverse of the evaluation value computed by Eq. 1.

Crossover rates from 0.2 to 1.0 and position-based crossover is employed. Mutation

rate ranges from 0.01 to 0.05. Selection of parents is wheel roulette strategy with

respect to the fitness. Deletion of chromosome is greedy strategy with respect to the

fitness.

2.2.2 Cuckoo Search Algorithm

The cuckoo search algorithm (here in after referred to CS) was inspired by the brood-

ing parasitism of some cuckoo species [10]. It is reported that CS is widely adopted

by the research domains requiring optimization [11]. The location searching process
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Fig. 3 Example of growing line network

of the CS relies on the Lévy flight that follows the power law distribution in the range

of the large random variables. The advantages of the CS are as follows.

∙ The Lévy flight allows to conduct global and local search effectively.

∙ Number of the setting parameter is small.

∙ The solution variables are not discrete values but real numbers.

In this paper, CS is applied to searching the optimum hub node location. Figure 4

shows the pseudo code of the CS algorithm.

The position of the nest is updated by the following equation.

𝐱𝐢(t+1) = 𝐱𝐢(t) + 𝛼 ⊕ Lévy(𝜆) (5)
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Objective function f(x)
Generate initial population of n host nests

while( t < MaxGeneration) or (stop criterion)
Get a cuckoo randomly/generate a solution by Levy flights

and then evaluate its quality / fitness F_i
Choose a nest among n (say, j ) randomly
if(F_i > F_j),

Replace j by the new solution
end
A fraction(p_a) of worse nests are abandoned

and new ones/solutions are built/generated
(with the Levy flight from the position of the best solution)

Keep best solutions and find the current best
end while

Post Process results and visualization

Fig. 4 Pseudo code of the Cuckoo Search

where, the product ⊕ means entry-wise multiplications. 𝛼 is the control parameter

for the step length. Using Mantegna algorithm, the step length s following Lévy

distribution can be obtained from

s = u
|v|1∕𝛽

, 𝛽 ≡ 𝜆 − 1 (6)

where, u and v are drawn from normal distributions.

u ∼ N
(
0, 𝜎2

u
)
, v ∼ N (0, 1) (7)

𝜎u =
⎡
⎢
⎢
⎢⎣

Γ (𝛽 + 1) sin
(

𝜋𝛽

2

)

Γ
(

𝛽+1
2

)
𝛽2( 𝛽−12 )

⎤
⎥
⎥
⎥⎦

1
𝛽

(8)

Here, Γ is the Gamma function.

The number of the host nest is 25 which is same to the population number of

the GA. The fitness of the host nest is inverse of the evaluation value computed by

Eq. 1. The fraction of abandoned nests is set to pa = 0.25. The exponent of the power

law distribution is set to 𝜆 = 1.5. (Lévy distribution approaches to the power law

distribution in the range of the large random variable (i.e. step length).) The control

parameter for the step length is set to 𝛼 = 0.01;
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3 Application

3.1 Simple Network

Firstly, the function of the two algorithms to find an optimal position of the hub node

is confirmed by applying to a simple network. Figure 5 shows the condition of the

simple network problem. Twelve nodes are arranged on a circle with a diameter of

5 km. The infrastructure network (street network) is assumed to be complete graph.

Each node has demand of 200 (person/h). (It is allowed that the generated hub node

has direct links to the other 12 nodes.) The capacity and speed of the vehicle are 50

(persons) and 20 km/h respectively.

Figure 6 shows the comparison of the history of the maximum fitness in the pop-

ulations between GA and CS. In the figure (a), GA with larger crossover rate outputs

better solution. In the figure (b), mutation rate of the GA does not affect to the quality

of the final solution. But, the fitness by the mutation rate set to 1.0 needs more steps

to reach the final solution than that of mutation rate set to 0.8. Although the final

solution is the same quality between GA (Pc ≥ 0.8) and CS, it is clear that the CS

finds the best solution earlier than GA.

Fig. 5 Simple network problem
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Fig. 6 Evolution history of maximum fitness averaged on 10 trials (Pc: Crossover Rate, Pm: Muta-

tion Rate). a Pm0.04, b Pc = 0.8
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Fig. 7 Optimized hub

location and route chart.

Different color means

different line. Gray line is

street network

Generated
Hub Node

Figure 7 shows the hub location and he route chart of the best solution. The line

number of the best solution is 10. The vehicle number is 20. The total travel time is

495 h, in which moving time is 324 h and waiting time is 171 h. Although the demand

pattern is homogeneous, the hub location is not center of the circle. The number of

vehicle in the Eq. 1 is integer and this constraint causes asymmetrical route pattern.

Furthermore, it is noteworthy that routes of the lines go through several nodes before

reaching to the hub node. This route pattern distinguishes this method from the other

methods for the hub location problems.

3.2 Real Street Network

Figure 8 is the street network and bus stops in the southern area of the Mitaka rail-

way station in Tokyo. Fifty bus stops have passengers going to the Mitaka station.

Total demand during rush hours is assumed to be one-third for one day, about 1680

(person/h) that was obtained from a census data [12]. Parameters for the analysis is

same to that for the simple network in the Sect. 3.1. In this real network case, it is

allowed that generated hub node has only one link connecting to the nearest point of

the street network.

Figure 8 shows the routes of generated lines and the location of the hub node. In

all cases, the optimized hub location is about 2 Km away in southward direction from

the Mitaka station. The line number of the best solution is 20. The vehicle number

is 51. The total travel time is 190 h, in which moving time is 145 h and waiting time

is 45 h.
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Mitaka
Station

Generated
Hub Node

Fig. 8 Optimized hub location and route chart around Mitaka railway station
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Fig. 9 Fitness of final solution averaged on 10 trials. a Pm = 0.04, b Pc = 0.8

Fig. 10 Evolution history

of maximum fitness averaged

on 10 trials
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Figure 9 shows the maximum fitness of the final solutions averaged on 10 trials.

The result of the CS is better than that of GA. Although the difference between

GA(Pc≥ 0.8) and CS is small, Fig. 10 shows that CS reach the best solution at smaller

step than that of CS.
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Fig. 11 Trajectory Example

of Lévy flight

4 Discussion

It is confirmed that both GA and CS succeed in increasing the fitness of the popu-

lations smoothly. However, the numerical experimental results show that the perfor-

mance of the CS is better than that of the GA. The CS finds out the best solutions

earlier than the GA. (The computation time of the two algorithms is almost same. In

the simple network problem, the computation time of the GA (Pc = 0.8, Pm = 0.04)

is 0.46 s and that of the CS is 0.28 s. In the real street network, the computation time

of the GA (Pc = 0.8, Pm = 0.04) is 110 s and that of the CS is 95 s. All numerical

experiments were conducted by a laptop PC with Core i7, 3.10 GHz.) This result

implies that the CS has capability to save computation resources, which is crucial

for large scale optimization problems.

Figure 11 shows the reason why the CS has capability to find better solutions

immediately. The position searching process of the CS is based on the Lévy flight.

It means that the searching space is focused around a certain position in most case,

but sometime it jumps as shown in the Fig. 11 This mechanism is compatible with

the position searching process in the real world.

The parameter, w in Eq. 1 controls the balance of the cost between passengers

and transportation companies. This value greatly influences the solutions. However,

considering the averaged salary per hour of Japanese workers and running cost of

the transportation vehicles in Japan, it becomes order of 10. This is the reason that

w was fixed to 10 in this paper.

5 Conclusion

The method optimizing hub location for the PTNs is developed by combining the

growing network model and two optimizing location algorithms, Genetic Algorithm

and Cuckoo Search Algorithm. It can find out optimized hub location and trans-

portation line network simultaneously. Degree of optimization was measured by the
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evaluation function composed of the total travel time of passengers and the vehicle

number. The feature of the method is the topology of the transit route of generated

lines. It goes through several nodes before reaching to the hub node. In this problem,

the performance of the GA and the CS are compared and numerical experimental

results show that the CS is superior to the GA.

Needless to say, it is impossible to move railway stations to a new point like

the result of the Sect. 3.2. Authors concern about the commuter stranded problem

after massive earthquakes in Japan. The commuter stranded problem in the Tokyo

Metropolitan area was posed by the Great East Japan Earthquake in the year 2011. It

is reported that several millions of passengers had difficulty to return their homes due

to the out of service of the railway’s transportation system. In such situation, bus or

waterbus is expected as alternative transportation modes and effective hub stations

connecting local feeder lines and trunk lines should be generated from scratch. The

method in this paper is complementary relationship with the method generating trunk

line network [13] to organize whole network for the stranded commuter problem in

the future.
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Randomising Block Sizes for
BlockCopy-Based Wind Farm Layout
Optimisation

Michael Mayo, Maisa Daoud and Chen Zheng

Abstract The BlockCopy stochastic local search algorithm is a state-of-the-art

optimiser for the Wind Farm Layout Optimisation problem. Unlike many other

metaheuristics-based optimisers, BlockCopy requires the specification of only one

key parameter, namely a block size. In this paper, we investigate the effect on differ-

ent block sizes on the optimisation results. Using standard benchmarks for the Wind

Farm Layout Optimisation problem, we show that smaller fixed block sizes (relative

to overall layout size) produce better optimised layouts than larger fixed block sizes.

More interestingly, we also show that randomising the block size parameter results

in optimisation performance at the same or a better level than that produced by the

best algorithm with a fixed block size. Effectively, this means that the user can ignore

the need to tune the block size parameter and simply randomise it instead. Such a

strategy results in what is effectively a parameterless, but none-the-less effective,

optimisation algorithm for the Wind Farm Layout Optimisation problem.

Keywords Wind farm layout optimisation ⋅ Blockcopy ⋅ Local search ⋅ Parameter

tuning

1 Introduction

The Wind Farm Layout Optimisation problem concerns finding the optimal posi-

tions for wind turbines (termed “micro-siting” in the literature) in a planned wind

farm [1–4]. In a wider context, the process of micro-siting occurs after (i) the site

and boundaries for the wind farm has been chosen, (ii) the characteristics (i.e. typi-

cal distributions across wind speeds and directions) for the site have been measured,
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and (iii) the make, model and other details of the particular turbines (which are

manufacturer-dependent) have been chosen.

Micro-siting is critical in wind farm design for several reasons. The primary rea-

son, which happens to be the one focussed on in this work, is the phenomenon of

wake interference: if two or more adjacent turbines are incorrectly sited, then the

wake (i.e. the reduced velocity downstream wind) of one turbine can unduly neg-

atively influence the other turbines. This negative influence manifests as reduced

downstream power generation or, alternatively, as an increased probability of dam-

age to downstream turbines due to increased turbulence.

The Wind Farm Layout Optimisation problem therefore addresses the problem of

turbine micro-siting in order to mitigate these negative effects of wake interference.

In terms of practical relevance, solving this problem is of immense importance to

the global wind industry—and therefore the world economy in general. Wind farms

worldwide are typically becoming larger and larger (for example, the London Array

[5] generates 630 MW of power that could power 490,000 households) and therefore

small efficiency gains in design may lead to power for significantly more households.

Conversely, the problem is also of considerable interest to researchers in meta-

heuristics and related fields. This is for two reasons. Firstly, the solutions to the

problem are fundamentally multi-dimensional rather than one dimensional as is typ-

ically the case for many blackbox test functions. In the simplest case, a wind farm

can be represented as a two-dimensional (flat) layout with turbine positions speci-

fied using two coordinates x and y. In more complex cases, additional attributes such

as turbine height further increase the dimensionality of the problem. Since wake

effects are non-linear and concern interactions between neighbouring turbines, then

correspondingly the optimisation problem is non-linear with considerable epistasis

between the variables being optimised.

The second reason why the Wind Farm Layout Optimisation is of interest to

researchers is because it represents a problem with a significantly complex evalu-

ation function. Since wake effects between every pair of turbines must be computed

individually, the time complexity of the simplest wake models is at least (n2) where

n is the number of turbines. The makes the evaluation of a significant quantity of

potential layouts infeasible, and therefore many methods fail to achieve satisfactory

results.

In this paper, we continue our exploration of a recently proposed stochastic local

search method for optimising wind farm layouts. The method, known as BlockCopy

[6], divides a wind farm layout into square regions and performs stochastic local

search by copying blocks of turbines from one region to another.

Previously, we were able to show that BlockCopy significantly outperforms

another state-of-the-art algorithm called the Turbine Displacement Algorithm [7].

In this paper, we address one significant issue that arises immediately when the

BlockCopy algorithm is used: how large should the blocks be? Our findings indicate

that block size has a significant impact on the optimisation performance of the algo-

rithm when the block size is fixed throughout a single run of the algorithm. However,

if the algorithm is modified so that instead of a fixed block size, the search operator

instead picks a random block size every time it is applied, then the approach performs
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as well as (or in some cases, better than) the best approach with a fixed block size.

The net effect of the finding reported here is that the user is obviated from the need

to select a block size, and the BlockCopy local search algorithm effectively becomes

parameterless.

2 Background

2.1 Wind Farm Layout Optimisation Problem

In its simplest form, the Wind Farm Layout Optimisation belongs to the family of

two-dimensional circle-packing problems: i.e. the problem is to find optimal posi-

tions of a set of points (x, y)—each point representing a turbine in our case—such

that no two points lie too closely together and all points lie inside a pre-specified 2D

shape.

Unlike typical circle packing problems, however, the objective in the wind farm

case is not to maximise the number of packed circles but instead to maximise either

the total energy efficiency of the farm or to minimise the cost of energy produced

by the farm. The minimum distance constraint between the points represents the

minimum inter-turbine distance: if turbines are placed to closely together, then wake

effect models generally become inaccurate [4] and layouts cannot therefore be evalu-

ated properly. Following Samorani [3] we set the minimum turbine distance to 120 m,

or three times the rotor diameter for turbines with a 40 m diameter rotor.

In this work, we use the Jensen far wake model [8, 9] to evaluate potential layouts.

The Jensen wake model is an analytic approach for assessing wake interferences for

two-dimensional layouts where the distribution of potential wind speeds and direc-

tions at the farm site is assumed a constant.

Although originally proposed in the mid-1980s, the Jensen is still used widely in

the community. To illustrate, Samorani [3] describes it precisely in a recent 2013

introductory survey on the Wind Farm Layout Optimisation problem, and Shakoor

et al. [4] performed an extensive comparison of several different wake effect mod-

els, concluding that “. . . Jenson’s far wake model is a good choice to solve the wind

farm layout optimisation problem due to its simplicity and relatively high degree of

accuracy.”

A graphical illustration of the wake effect according to the Jensen model is given

in Fig. 1. To explain briefly, incoming wind travelling at speed u0 m/s reaches a

turbine with rotor radius rr. As the wind passes through the turbine’s blades, its

velocity is reduced. At a distance of x meters downstream, the wind speed is uj m/s,

which must be less than u0. Moreover, the wake radius increases linearly in size with

distance. At x meters downstream, its radius becomes r1 > rr.
The exact mathematical details of the Jenson wake model, including how the

reduced wind speeds and the spreading wake radius should be calculated, are ade-

quately explained by Samorani [3]. We follow the exact same approach in our
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Fig. 1 Depiction of the

wake effect (reproduced

from [3])

implementation, and therefore the interested reader is referred to Samorani [3] for

the specific mathematics behind the model (which we do not present here for reasons

of space).

It suffices to say, however, that one key characteristic of the Jensen model is that

the wind velocity deficit caused by a turbine is inversely proportion to the distance

x squared from the turbine that caused it; therefore, eventually, most wakes become

negligible for large enough x. However, if a turbine lies inside multiple wakes (which

is highly likely for small, dense layouts) then the wakes aggregate and so even small

wake effects must be calculated. Again, the interested reader should refer to Samorani

[3] for the method of aggregating wakes.

One important aspect of the Jensen model is how a turbine’s power output is com-

puted. Generally speaking, such a calculation depends on the type of wind turbines

being installed and is therefore manufacturer-specific. Therefore, in this paper, we

used an idealised turbine model described originally in Mosetti et al. [2] and later

described again by Samorani [3]. In this model, the power output of a single farm

is proportional to the cube of the incoming wind speed between two boundary wind

speeds. The boundary wind speeds are known as the cut-in speed and the nominal

speed. If the wind speed increases beyond the nominal wind speed, then power gen-

eration becomes a constant until a cut-out speed is reached. For turbines with a cut-in

speed of 2 m/s, a nominal speed of 12.8 m/s and a cut out of 18 m/s, then the power

curve used to model individual turbines is:

power(u) =
⎧
⎪
⎨
⎪⎩

0 kw where u < 2 m/s

0.3u3 kw where 2 m/s ≤ u < 12.8 m/s

629.1 kw where 12.8 m/s ≤ u < 18 m/s

0 kw where u > 18 m/s

(1)

This is precisely the wind turbine model that we use in this research.
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Finally, we briefly turn to the objective function for the Wind Farm Layout Opti-

misation problem. We have already alluded to the fact that it is focussed on minimis-

ing the wake effect. More precisely, if 𝐥 is a layout, then the objective function can

be written down as:

F(𝐥) =
∑

s∈S
rs

∑
j∈𝐥 power

(
us(1 − vsdef (j))

)

∑
j∈𝐥 power(us)

(2)

where j is a turbine’s position in the layout, and vsdef (j) is the total velocity deficit (i.e.

total loss in power as a proportion between 0 and 1 due to wake interference) at j. Th

total velocity deficit is a quantity aggregated across all other turbines in the layout

that may be affecting the turbine at position j. S is a set of wind scenarios, in which

each element of S is a potential wind speed/direction pair. This must be measured at

the wind farm site and is considered to be a constant across the entire layout. The

variable rs represents the probability of scenario s ∈ S and us is the specific wind

speed under scenario s. It should be evident that
∑

s∈S rs = 1.0 in order to compute

proper expected power values.

The objective value of a layout, therefore, is defined as the total power output of

the farm with wakes divided by the total, potential, power output of the farm without
wakes. Clearly, this is a ratio that is maximised at 1.0, and therefore our aim is to

find layouts with an objective value as close to 1.0 as is possible.

2.2 BlockCopy-Based Stochastic Local Search

The BlockCopy stochastic local search algorithm, first described by Mayo and Zhen

[6], optimises wind farm layouts by defining a search operator that copies entire

groups of turbines at a time from one place on the layout to another. It iteratively

applies this operator, starting with a randomly-generated layout called the “current”

layout, to generate a progression of new layouts. The current layout always represents

the fittest layout found so far. If a new layout has improved fitness compared to the

current layout (as a result of one block copy operation), then the new layout becomes

the new “current” layout of the search. Otherwise, if the new layout has a lesser

fitness, it is discarded.

The basic search operator is illustrated in Fig. 2. In our current formulation of the

algorithm, the regions that are copied are square “blocks” of a fixed size such that

the layout can be divided into blocks that do not overlap and that exhaustively cover

the entire layout.

One application of the BlockCopy operator proceeds by randomly selecting a

source and destination block. The turbines in the destination block are deleted, and

then turbines from the source block are copied to the destination block one at a time.

Such an approach basically preserves the local configuration of turbines in the source

block.
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t1

t2
t3

t6

t5

t4

(a) Initial layout with selected
source block.

t1

t2
t3

t7

t8
t9

(b) Final layout showing new tar-
get block.

Fig. 2 Illustration of the BlockCopy operator. In this example, the left block of a small layout is

duplicated to the right hand side of the layout

After the copy operation is complete, if the total number of turbines in the layout

has either increased or decreased (because of differences in the number of turbines

present at the source and destination block), then turbines are either randomly added

or randomly purged from the layout globally in order to keep the total number of

turbines in the layout at a constant value.

All constraints must also be adhered to by the operator so that new layouts are

always legal: if the copying of any turbine would result in a constraint violation,

then it is simply not copied.

The reasoning behind this approach is that by maintaining the relative configu-

ration of turbines whenever a block is copied, then if a particularly good local con-

figuration of turbines is present in the layout, then this configuration will quickly

replicate itself across the layout via successive BlockCopy operations.

In the initial recently published evaluation of the algorithm [6], it was shown that

BlockCopy outperforms one state-of-the-art approach called the Turbine Displace-

ment Algorithm [7] on a set of benchmark problems using a cost-based objective

function and a different far wake model than Jensen.

Moreover, it was also shown in the previous paper that the local search variant

of BlockCopy (with only a single current layout held in memory) outperformed a

population-based evolutionary variant also using the BlockCopy operator for muta-

tion and/or crossover. We believe that the primary reason for this is the limited num-

ber of evaluations that the problem affords: local search effectively performs sig-

nificantly more exploitation of the search space than population-based approaches

do. Population-based strategies, in contrast, are better balancers of exploitation and

exploration. The cost of this, however, is that more evaluations are required to reach

the same level of fitness. We believe this makes local search a better option given

the time complexity of the evaluation function.

A significant disadvantage of the BlockCopy approach, however, is that it is not

clear what the best default size for the blocks should be. We therefore conducted the

set of experiments described in the next section to assess the impact about different

block size decisions on the optimisation results.
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3 Experimental Setup

In order to perform experiments related to Wind Farm Layout Optimisation, one

must firstly define and/or obtain some benchmark problems so that any results can,

in the future, be compared with other results from the literature.

In this paper, therefore, we assume that the layout is comprised of a fixed quantity

of 64 turbines, and that this number can neither increase nor decrease. Furthermore,

we also assume that the layout is a square of size 1.5 km× 1.5 km. Turbines cannot

be placed outside of the layout boundaries. Fixing the layout to such a small size

effectively causes the wake effects to become a non-trivial negative influence on the

wind farm’s efficiency, which makes the problem interesting.

The optimisation algorithms are all initialised with different random starting lay-

outs. The algorithm for constructing a random starting layout is straightforward: tur-

bines are iteratively added at random locations on the layout, as long as they do not

cause any constraint violations (i.e. the new turbine must not be placed too closely

to an already-placed turbine). If a constraint would be violated by a placement, then

a new random position is chosen for the current turbine. This is repeated until all 64

turbines have been initially placed.

Next, we utilise Samorani’s [3] three different problems for benchmarking wind

farm layout optimisation algorithms. The benchmark problems are defined by

Table 1.

Problem A is the simplest benchmark, and consists of only a single wind scenario

in which wind blows with uniform expected speed and in a single direction. The set

of scenarios S for the objective function therefore consists of only a single element.

Problem B, alternatively, consists of 36 different wind scenarios. Each scenario

differs only in the wind direction. while the expected wind speed is a constant. Unlike

Problem A, therefore, this benchmark has no single dominant direction.

Problem C is the most interesting and challenging of the three benchmarks. As is

the case with Problem B, there are 36 possible wind directions. In Problem C’s case,

however, for each different wind direction, there are also three different expected

wind speeds. Furthermore, there is a clear dominant wind direction: 310◦ is the direc-

tion with the highest probability of the greatest wind speed, and therefore it is also

the direction of the greatest power production. In total, Problem C consists of 108

different wind scenarios.

Samorani [3] describes Problem C graphically by means of a histogram of wind

speeds versus directions. In order to implement this benchmark, we therefore reverse-

Table 1 Problems from Samorani [3]

Problem Direction(s) Expected speed(s) #Wind scenarios

A {0◦} {12 m/s} 1

B {0◦, 10◦,… , 350◦} {12 m/s} 36

C {0◦, 10◦,… , 350◦} {8 m/s, 12 m/s, 17 m/s} 108
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Table 2 Probabilities used for the 108 wind scenarios under Problem C (rounded to three signifi-

cant figures) derived from a chart in [3]

Direction us = 8m/s us = 12m/s us = 17m/s

0
◦
–260

◦
0.00404 0.00865 0.0115

270
◦

0.00404 0.0107 0.0127

280
◦

0.00404 0.0121 0.0156

290
◦

0.00404 0.0141 0.0185

300
◦

0.00404 0.0138 0.0300

310
◦

0.00404 0.0190 0.0352

320
◦

0.00404 0.0138 0.0300

330
◦

0.00404 0.0141 0.0185

340
◦

0.00404 0.0121 0.0156

350
◦

0.00404 0.0107 0.0127

engineered the probabilities from his publication. The probabilities we used for Prob-

lem C are given in Table 2.

Now that the three benchmark problems have been described, we next describe

the variants of the BlockCopy local search algorithm that we tested.

The basic difference between the variants is how the size of the block is chosen.

We selected four sensible fixed sizes for the blocks that were chosen because they

divide the 1.5 km× 1.5 km layout evenly. The fixed sizes were: 125 m (which divides

the layout into 12 × 12 blocks), 250 m (dividing the layout into 6 × 6 blocks), 500 m

(making 3 × 3 blocks) and 750 m (which is 2 × 2 blocks). Each fixed size corre-

sponds to one algorithm variant. We also tested a fifth algorithm which selects a

block size from the above set of four sizes at random each time it performs a Block-

Copy operation. We call this algorithm simply “random”.

In order to obtain statistical results, we ran each algorithm 30 times on each bench-

mark. Each algorithm was run for 20,000 iterations before terminating. Therefore the

total number of experimental runs performed was 3 benchmarks × 5 algorithms ×
30 repeats, or 450 runs in total.

4 Results

The results of our experiments are given in Figs. 3, 4 and 5 for each of the problems

A, B and C, respectively. Each figure has two parts: a subfigure (a) showing the

convergence curves for each of the five algorithms (averaged across 30 runs), and a

box-and-whiskers plot (b) showing the distribution of final results for each algorithm.

Examining the convergence curves firstly, we can see that the choice of block size

has a significant impact on convergence performance. In particular, the very large
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Fig. 3 Results for Problem

A (see online colour version

for best viewing)
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(b) Final fitness distributions.

block sizes (750 m for Problem A and 500 m + for Problems B and C) result in sig-

nificantly worse convergence curves. This is to be expected since larger block sizes

correspond to larger steps in the search space—and such large steps may miss nearby

local optima. Conversely, for the small block sizes (125 and 250 m) the convergence

curves are all fairly similar.

Figures 3b, 4b and 5b depict the final distribution of fitness values after each of the

30 runs. Generally speaking, larger fixed block sizes clearly shift the median fitness

down compared to smaller fixed block sizes. This negative effect is most dramatic for

the algorithm with a fixed block size of 750 m, which also consistently has the worst

convergence curve. This algorithm’s fitness distribution is so low that its particular

set of results have been excluded from the plots so that the rest of the results can

be read clearly. The worsening effect of larger block sizes is clearly apparent for the

500 m block size when inspecting the box plots.

In terms of answering the question of which is the best overall fixed block size,

the answer to that question appears to be 125 m—which is also the smallest fixed

block size considered. In all cases, the median and maximum fitnesses achieved by

the 125 m variant exceed those of all the other fixed block size algorithms.
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Fig. 4 Results for Problem

B (see online colour version

for best viewing)
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(b) Final fitness distributions.

The exception to the trend, however, is the random block size algorithm. Interest-

ingly, this algorithm has quite a different behaviour to the fixed-size algorithms.

Firstly, it is always competitive with the other algorithms. In terms of median

overall performance, it always performs slightly below the 125 m fixed algorithm’s

median, but this performance is obviously not statistically significant due to the close

overlap of the distributions.

Most interestingly, however, the random algorithm’s maximum (as opposed to

median) achieved fitness over all runs turns out to be the greatest for each of the

benchmark problems. The explanation for this appears to be largely due the random

algorithm having a greater variance in final fitness results. This is increased variance

is especially evident in the box-and-whisker plots for Problems A and B. It is also

somewhat evident visually in the Problem C plots. As a consequence of this higher

variance, over thirty runs, the random algorithm always finds the best single layout

compared to the 125 m algorithm. This difference is quite small for Problem C, but

an inspection of the numeric results used to generate the plot indicate that the random

algorithm does indeed produce the overall best layout.
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Fig. 5 Results for Problem

C (see online colour version

for best viewing)
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(b) Final fitness distributions.

To conclude this section, some of the best optimised layouts found by the random

algorithm are presented in Fig. 6. By way of contrast, the layouts are shown alongside

one example of a random unoptimised layout.

5 Conclusion

Overall, the results show that the randomised block size algorithm is a better choice

than the algorithms that have a fixed block size, as long as the goal is to find the

single best layout over multiple runs of the BlockCopy local search algorithm. Such

a multiple-restart approach is in fact a sensible approach to take for most difficult

optimisation problems.

Moreover, the fact that the random algorithm is competitive with the best algo-

rithm using a fixed block size means effectively that the user can bypass the problem

of parameter tuning. Instead, the algorithm needs simply to create a set of appropriate

block sizes for random block size selection. The tuning and selection of parameters
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(a) Randomly generated layout.
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found for Problem A.
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(c) Best optimised layout
found for Problem B.

0 250 500 750 1,000 1,250 1,500
x

0

250

500

750

1,000

1,250

1,500

y

(d) Best optimised layout
found for Problem C.

Fig. 6 Example unoptimised (a) and optimised (b)–(d) layouts

is known to have a significant impact on the performance of metaheuristic optimisa-

tion algorithms [10]. By-passing this problem by simply randomising the main key

parameter of the algorithm has been shown to be effective.

To conclude, future work will continue address the problem of improving the

behaviour of the BlockCopy local search algorithm for the Wind Farm Layout Opti-

misation problem.
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Optimization of Aircraft Landing Route
and Order Based on Novelty Search

Akinori Murata, Hiroyuki Sato and Keiki Takadama

Abstract This paper focuses on the Aircraft Landing Problem (ALP) and proposes
the efficient aircraft landing route and order optimization method compared to the
conventional method. As a difficulty in solving ALP, both landing route and order
of all aircrafts should be optimized together, meaning that they cannot be optimized
independently. To tackle this problem, our method employs novelty search to
generate variety candidates of aircraft landing routes, which are indispensable to
generate the feasible landing order of all aircraft. Through the experiment on a
benchmark problem, it has revealed that the proposed method can reduce the
occupancy time of aircrafts in an airport.

Keywords Aircraft scheduling ⋅ Landing route optimization ⋅ Landing order
optimization ⋅ Evolutionary computation ⋅ Novelty search

1 Introduction

In aircraft landing, air traffic controllers should determine both the aircraft landing
routes and their landing order to minimize an occupancy time of aircrafts in an
airport as air transportation service [1]. Such landing route and landing order are
important issue because of directly affecting the occupancy time. This problem is
called as the aircraft landing problem (ALP) [2]. For this issue, the conventional
research tackled this problem by dividing into the following two problems: (1) the
landing route optimization problem and (2) the landing order optimization problem.
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Regarding the first problem, Tajima et al. proposed the real-time path planning
method that can evolve the landing routes of the aircraft by evolutionary compu-
tation [3]. Regarding the second problem, on the other hand, Xiao proposed the
binary-representation-based genetic algorithm method that can evolve the landing
orders of the aircraft by evolutionary computation as the aircraft arrival sequencing
and scheduling problem [4]. Many previous works have dealt with either one of
those specific problems [5]. What should be noted here is that there is no method
that can cope with the aircraft landing problem, meaning to solve both the landing
route and landing order optimization together.

To tackle this problem, we previously proposed the new mechanism for ALP,
which can address both the landing route and landing order optimization together.
In detail, aircrafts individually generate candidates of their own routes toward the
destination and appropriate combinations of routes of all aircrafts are explored by
multi-objective evolutionary computation. This mechanism successfully optimized
the landing route and order of aircrafts [6], but it has some limitations on finding the
robust landing route and order of aircrafts, which can cope with a change of their
landing routes and order due to delay of other aircrafts or weather change such as
typhoon. Since our previous method aims at minimizing the distance of individual
landing route, it is difficult to find the robust landing routes. To overcome this issue,
this paper proposes the new method that generates the robust landing route and
order of aircrafts by employing the novelty search [7] while minimizing the distance
of individual landing routes. We employ the novelty search because this method
searches the not-explored solution space (i.e., the different landing routes and order
in ALP) in high priority, which contributes to finding the good routes and orders
needed for delay of other aircrafts or weather change.

This paper is organized as follows. Section 2 gives a brief description of related
works on the aircraft landing problem and novelty search. Section 3 proposes the
aircraft landing route and order optimization method which employs novelty search.
Section 4 conducts the experiments and Sect. 5 discusses its result. Finally, we
summarize the contribution of this paper and show future works in Sect. 6.

2 Related Works

2.1 Hierarchical Evolutionary Computation

In my previous work, we proposed optimization method based on hierarchical
evolutionary computation. our approach aims at optimizing both landing routes and
the landing order together to minimize the occupancy time of airport. Specifically,
different from the Xiao’s method [4], our method optimizes not only the landing
order but also the landing routes that follow the optimized landing order; unlike the
Tajima’s method [3], our method optimizes the landing routes for aircrafts.
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As shown in Fig. 1, our method is that produces candidates of the robust landing
routes that can be flexibly customized depending on the changeable situations
beforehand (i.e., wake turbulence and a congestion of aircrafts). Our method is
based on NSGA-II as a multi-objective optimization technique [8] and composed of
the following two units;

Landing route optimization unit: which makes candidates of landing route from the
current position to the destination airport. Each landing route is represented by a
gene as in Tajima’s method; the gene represents a set of waypoints. Then, some
sub-routes are added to each generated main route as options that enable the main
route to be flexibly customized depending on the situations.
Arrival sequence optimization unit: which selects the candidates of main route or
customizes the main landing route by replacing with the sub-routes depending on
the situations. Then, it optimizes a combination of landing routes of multiple air-
crafts in order to minimize the occupancy time of destination’s runway.

Landing Route Optimization Unit

As shown in Fig. 2, this unit first generates candidates of main route and then, adds
sub-routes to each of the generated main landing route. Then the candidates are
evaluated in terms of two aspects; (1) the total distance of main route from the
current position to the destination airport and (2) the robustness of the route can be
quantified as the number of possible sub-routes included in the main route. Thus,
this unit eventually produces the landing routes which indicates short distance to the
destination airport and can be customized for adapting as many situations as

Fig. 1 Architecture
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possible. Note that the all routes that pass on the prohibit area is identified as
infeasible solution.

Each candidate of main landing route (i.e., the gene) is generated by NSGA-II.
Then, if the generated route is feasible solution, sub-routes are added to the gen-
erated main landing route (see Fig. 2). One main route included sub-routes are set
of one individual and this individual is evolved through mutation and crossover;

Sub-route algorithm (see Fig. 3)

Step 1: For one of main route, calculating each the distance between the
waypoints.

Step 2: Creating a center point which is a midpoint between the waypoints and
drawing a line on the vertical bisector through this center point. Set-
ting M points on the line at regular intervals. This points become new
waypoints. Maximum angle θ is the parameter.

Step 3: New route added the new waypoint created in Step 2 is calculated the
distance.

Step 4: This route is saved as one of sub-route if the limitations of this route are met.
Step 5: Repeating from Step 2 to Step 4 until the termination condition is satisfied.

After adding the sub-routes to each landing route, they are evaluated with the
fitness function and applied to genetic operators (i.e., the crossover and mutation) to
find better solutions with a high fitness which have small distances to the desti-
nation and many sub-routes. Overall procedure can be described as follows;

Fig. 2 Step of generating
main route and sub-routes

Fig. 3 The main landing
route with the sub-routes
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Calculating fitness of each route in terms of the distance to the destination airport
and the number of sub-routes. Selecting routes as parents and copying them as the
offspring. Then, the crossover and the mutation are applied to generated offspring.
Producing a next generation population by the non-dominant sorting and degree of
congestion tournament selection.

Evaluation Function

Each route is evaluated based on two factors. One is a distance to the destination
airport. The other is robustness for changing environment. An evaluation function
for the distance is as following equation.

Distance evaluation=
1

distance
ð1Þ

where distance indicates total length of the route. From the equation, the shortest
distance to the destination airport is the maximum evaluation value of the candi-
dates. Next, an evaluation function of the robustness is calculating as follow.

Robustness =
the number of feasible detour routes

generating total detour routes
ð2Þ

where generating total detour routes means all detour routes or, to put it in another
way, the number of feasible and infeasible detour routes. And the number of fea-
sible detour routes indicates that the routes are not on the prohibit area.

Arrival Sequence Generating Unit

The generating arrival sequence unit picks out the top N candidates by the
non-dominant sorting and degree of congestion tournament selection and searches
the best combination of landing routes for some aircrafts by GA.

Each locus of gene is represented in the integer number and the selected route
from the candidates of landing route for the aircraft. This unit takes the following
steps;

Step 1: All aircraft choose one route from the candidates of landing route
Step 2: Checking on the interval of aircrafts whether meet constraint condition

or not.
Step 3: Calculating fitness that meets limitation
Step 4: Selecting parents from among solutions that meet limitation by using

tournament selection
Step 5: Crossing between parents and mutation
Step 6: Repeating from Step 2 to Step 5 until the termination condition is

satisfied

After this step, main route of each aircraft has been determined. If new aircrafts
appear in next step, the aircraft which determined the main route takes an
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opportunity to switch sub-route (Fig. 4-left). In case of this, arrival sequence
generating unit replace sub-routes for main routes and research the best combina-
tion of landing routes by GA (Fig. 4-right).

The following are described the limitation condition that all intervals of the
arrival sequence keep the distance appropriately, how to calculate evaluation value
of the solution (Step 2 and Step 3) and how to mutate and crossover (Step 5) in
detail.

Constraints and evaluation value after generating of the combination of routes
for some aircrafts, the arrival sequence generating unit determines the landing order
of aircrafts. Here, when the landing order indicates that an interval of landing
distance is small, its landing order can be identified as infeasible. Since an aircraft
lands on the airport in safety, an enough interval is required. Thus, to identify the
generated landing order either one of feasible solution or infeasible one, we add the
following constraint condition for landing order;

dn − dp > r ð3Þ

Symbol dn and dp represent the distances to the destination of two aircrafts n and
p; thus dn − dp represents the interval between the two aircrafts. Then, if the interval
is larger than a threshold r for all possible route combination of two aircrafts, its
landing order is identified as a feasible solution.

Additionally, to evaluate the generated landing order we introduce the following
equation as calculation of fitness;

Fitness = ∑
n

i=1
di ð4Þ

The fitness of landing order is simply calculated as the summation of distance of
each aircraft. It is the distance of main route. Thus, the small value of fitness means
that its landing order can reduce the occupancy time of the destination airport.

Fig. 4 Overview of arrival sequence generating unit
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2.2 Novelty-Search

Novelty-search is radical evaluation method of individual, introduced by Lehman
[8]. What should be noted here is that novelty-search does not use fitness function
and simple evaluation design. The fitness is depended on a problem. So, it is hard to
design fitness function. Especially, deceptive problem, i.e. maze problem, is inferior
to other evaluation method. On the other hand, novelty-search is high-performance
of this problem because it attaches importance to a uniqueness. The uniqueness
means difference in other individuals in that a relative position. Measuring distance
between target individual and other individuals by Euclid or Mahalanobis, or other
metric [9].

2.2.1 Novelty Metric

Novelty-search measures how unique this is in all solutions and novelty metric is
calculated as following an equation.

ρ xð Þ= 1
K

∑
K

i=1
distðx, μiÞ ð5Þ

where μi indicates the individual which is ith-nearest neighbor in the population and
x means the evaluated individual. The “dist” function is used Euclid (∥x− μi∥) as
usual. For scoring novelty, a target group as the neighbor is used an archive or the
population which is current generation. The number of K is vary from the popu-
lation and problems, and algorithms. K value is most used 15 [10].

3 Proposed Method

This paper introduces a new novelty metric, novelty scaling. The new metric is
expected to keep important candidates. This metric is calculated by following law.

ρ xð Þ= 1
K

∑
K

i=1
distðx, μiÞ

1

a
distance
d min − 1ð Þ ð6Þ

where distance is and d_min indicates the minimum distance in the candidates at the
current generation, and a is the parameter. This function makes weighted factor as
the center of the minimum distance. The more a is increased, the narrower scale of
distance is. Though the conventional method use a robustness of the situation
change as the objective function, the proposed method replaces this objective
function with this function.
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To keep the appropriate distance of the all intervals, all aircrafts are required
generating a diversity of distance. We introduce novelty metric. As described
earlier, an individual which is different from a population are high evaluation value
by novelty search. For example, far distance are high evaluation value based on
novelty search as shown in Fig. 5. But the shortest distance cannot be found only
using novelty metric.

In Fig. 6, generating method in a case where only distance estimate can search
shortest distance. If all aircraft only have shortest distance, this case cannot be met
the constraint condition. Here it can be seen that we introduce multi-objective
approach based on NSGA-II. We use two objective functions which are novelty
search and distance.

4 Experiment

4.1 Experiment Setting

We conduct experiments on the grid map as introduced in [4]. As shown in Fig. 7 is
a grid-map where the aircraft was flying. Noted that the black squares represent

Fig. 5 Two objective
functions based on novelty
and distance

Fig. 6 In comparison to
conventional and proposed
method
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obstacles which indicate a prohibit area. Around Haneda airport, are set up out-
bound aircraft from this airport and for military purpose. Two dimensions map and
this map we use here is a 250 km × 250 km.

In this experiment, we use Haneda airport as a reference. This airport is highest
air traffic in Japan. Aircrafts which arrives at Haneda airport come from east or
west. There are four runways so from east and west side aircraft can own runway
separately. Given this situation, we take scheduling only west side.

We define nine aircrafts (denoted ID1–ID9 respectively) are staying at the
starting area denoted by the blue-rectangle in the figure. To investigate whether our
method successfully optimizes its order that reduces the occupancy time of the
destination airport, we conduct the following one experimental case; This system
optimizes each aircraft route and arrival sequence at 5 min intervals The maximum
number of appearance aircrafts is three at one time. About thirty aircrafts land on
Haneda airport per an hour, therefore average appearance aircraft is considered
three. Each aircraft chooses an appropriate route which is considered interval of
length of another aircrafts routes. Once aircraft routes had been determined, the
aircraft must cruse along the course of chosen route. We conduct three steps per one
seed and 25 trials.

We used the following parameter setting for NSGA-II and simple GA; the
population size is set to 100, the maximal generation is 500, the crossover rate is 1.0
and mutation rate is 0.5. Additionally, r is set to 9.26 km. Each aircraft generates
twenty sub-routes.

4.2 Results

Table 1 shows the number of different total distance and value out of trials and
Table 2 indicates the result of total distance in all trials. A red label means that the
total distance of all aircrafts is shorter than that one and a blue one means longer.

Fig. 7 Field map
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Figures 8 and 9 shows an example of the routes and initial positions of each
aircraft in each step. In Step 1, ID1–ID3 appeared in this map. As is the case with
Step 1, three aircraft came out in Step 2 and Step 3.

Figures 10 and 11 (the upper side) indicates intervals between a leading aircraft
and a following aircraft. Vertical axis indicates the difference in distance between

Table 1 Results of the number of differences of total distance

Step l Step 2 Step 3

The number of same total distance 11 6 1
The number of different total distance 14 19 24

Table 2 Results of all seeds

Fig. 8 Routes of proposed method (seed 23)
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them. Horizontal axis means the arrival order of the leading and following aircraft.
Red line indicates minimum distance landing to the destination airport (9.26 km).

Figures 10 and 11 (the lower side) shows route distance of each aircraft. This
graph is sorted in ascending order of distance. A blue bar indicates distance of
selected route and orange bar indicates the shortest routes in the candidates of

Fig. 9 Routes of conventional method (seed 23)

Fig. 10 The result of distance and interval of proposed method (seed 23)

Fig. 11 The result of distance and interval of conventional method (seed 23)
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routes in each aircraft. From the result, we found that the same total distance in the
Step 1 means all aircrafts chose the minimum shortest route to the destination
airport. It becomes the same result unless aircraft cannot find the shortest route. But,
ID9 selected shorter route in proposed method than that of conventional method.

5 Discussion

Next, the results show it is different from the total distance between proposed
method and conventional method in 1 step (seed 16). In this case, not all aircrafts
can choose the shortest route because their routes need to meet the limitation of the
interval. In the present case, these systems consider a combination of route of each
aircraft, an appropriate landing order and all aircrafts routes were generated.

Figures 12 and 13 show an example of the routes and initial positions of each
aircraft in each step. In Step 1, ID1–ID3 appeared in this map. As is the case with
Step 1, three aircraft came out in Step 2 and Step 3. From this figure, ID9 selected
far distance in conventional method. If ID9 selected the shortest route, the interval
of arrival order could not be met. From this reason, ID9 had to select a little longer
distance route and proposed method can find more appropriate distance than that of
conventional method.

Fig. 12 Routes of proposed method (seed 16)

Fig. 13 Routes of conventional method (seed 16)
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Figure 14 indicates the difference of total distance in each step. As can be seen
from this figure, the total distances are gradually increased step by step. For this
reason, proposed method generates candidates of importance of length lead to good
results.

6 Conclusions

This paper focused on the aircraft landing problem (ALP) which historically
addressed the landing routes and order of aircrafts separately, and proposed the new
method which optimized both aircraft landing route and order together to minimize
an occupancy time of aircrafts in an airport. For this purpose, our proposed method
employed novelty search to generate variety candidates of aircraft landing routes,
which are indispensable for the feasible landing order of all aircrafts especially in
the case of delay of other aircrafts or weather change such as typhoon. To inves-
tigate effectiveness of the proposed method, we tested it on the grid map which
simulated the flying area of the aircrafts. The experimental results revealed that our
proposed method can reduce the occupancy time of aircrafts in an airport by
optimizing the landing routes and order of the aircrafts in comparison with the
conventional method. Since novelty search contributed to generating the various
and desirable distance among aircrafts for arrival order, our proposed method
successfully found the appropriate landing routes and order of the aircrafts.

What should be noted here is that the obtained results have only been obtained
simple grid map. Therefore, further careful qualification and justifications such as
considering a velocity of aircraft are needed to generalize our results. A challenge
for future research remains in terms of conducting simulation which considers real
model (e.g., physics model, 3 dimension).

Fig. 14 Difference of total distance
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Design Strategy Generation for a Sounding
Hybrid Rocket via Evolutionary Rule-Based
Data Mining System

Masaya Nakata and Kazuhisa Chiba

Abstract This paper aims to reveal design strategies of a sounding hybrid rocket

to efficiently perform extinction-reignition. On previous studies, we have derived

design candidates which each is a solution optimized on a design optimization prob-

lem for the sounding hybrid rocket. To extract design strategies from the design can-

didates, this paper applies an evolutionary mining system to design candidates, con-

sidered as a knowledge discovery task. Specifically, we introduce an evolutionary

rule-based data mining system for analyzing a set of Pareto optimal solutions. Our

system acquires rules indicating local design information and also we intuitively dis-

cover anomalous design strategies.

Keywords Evolutionary machine learning ⋅ Learning classifier system ⋅ Knowl-

edge discovery ⋅ Hybrid rockets

1 Introduction

Hybrid rocket engines (HREs) have been expected as an innovative technology for

advanced rocket design. Compared with the solid rocket engine which is currently

operated in many countries, HREs have several advantages: lower cost, higher safety,

and pollution free flight due to no gunpowder use. HREs are actively researched

especially in the E.U. [9] and the U.S. [14]; Virgin Galactic “SpaceShipOne” [15]

which uses HREs, is practically operated for manned private spaceflights. In Japan,
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Agency (JAXA) has also begun to develop a next-generation space transportation

with a hybrid rockets using HREs.

As a part of the ISAS/JAXA’s sounding hybrid rocket project [11], our chal-

lenge is, with artificial intelligence techniques such as evolutionary computation and

machine learning, to clarify the advantage of hybrid rocket and to extract design

knowledge of the hybrid rocket. For instance, we defined an optimization problem

on single-time ignition, which is the identical condition of the current solid rocket, to

understand the performance difference between solid and hybrid rockets [2]. Then,

we revealed the implication of solid fuels in the sounding hybrid rocket performance

and identified that a regression rate is a key element for sounding hybrid rocket per-

formance [3].

In this study, we next attempt to understand design knowledge that the hybrid

rocket efficiently performs extinction-reignition. This is an important issue of HREs

since HREs still have a technical problem to improve the thrust of HREs with

extinction-reignition. Specifically, HREs are designed with different phases between

fuel and oxidizer which a solid fuel and liquid/gas oxidizer is generally used. Since

HREs have low regression rate of solid fuel due to turbulent boundary layer combus-

tion, the thrust of HREs is less than that of pure-solid/liquid engines to implement

premixed combustion [10].

For our purpose, we take the following steps. Firstly, we define the design opti-

mization problem of the hybrid rocket which aims at optimizing the efficiency of

extinction-reignition, and next we apply an evolutionary multi-objective optimiza-

tion method to its problem [4]. Consequently, we have derived design candidates

which each is a solution optimized on its optimization problem. While each candi-

date can be a specific example of the design, it still remains unclear that, how design

variables affect extinction-reignition depending on other variables, and thus, how

the design variable should be set to. Hence, the further next step is to extract design

information indicating general or unique design strategies, to feed back the hybrid

rocket design.

Accordingly, this paper investigates those design candidates to reveal design

strategies to efficiently perform extinction-reignition. Here, we introduce an evo-

lutionary rule-based mining system as a kind of Learning Classifier Systems (LCSs)

[8]. Since LCSs are capable to evolve a minimal rule set resulting in a human-

readable solution [13], LCSs are actively applied to a wide range of data mining

task. Different from the typical use of LCSs as a mining system, we here deal with

design candidates forming a set of Pareto optimal solutions with three objective func-

tions (see Sect. 2). Hence, our LCS is customized for evolving rules considered for

those objective functions. In brief, since there could be a trade-off between objective

functions, that is, there may not be rules having good values for all three objective

functions, our system evolves rules considered for a different number of objective

functions; however, it still attempts to evolve rules having good values for as many

objective functions as possible.
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In next section, we explain the design optimization problem of the hybrid rocket

and show design candidates derived from its problem. Section 3 introduces our LCS

for analyzing the Pareto optimal solutions. Section 4 shows acquired rules and we

interpret the rules to understand design strategies. Finally, our conclusion is given in

Sect. 5.

2 Sounding Hybrid Rocket Problem and Design Candidates

2.1 Sounding Hybrid Rocket Problem

We consider a conceptual design for a single-stage sounding hybrid rocket, simply

composed of a payload chamber, an oxidizer tank, a combustion chamber, and a noz-

zle [11]. A launch vehicle for aurora scientific observation will be focused because

more efficient sounding rockets are desired due to successful obtaining new scientific

knowledge on the aurora observation by ISAS/JAXA in 2009. In addition, a single-

stage hybrid rocket problem fits for resolving fundamental physics regarding HREs

because of its simplicity.

The problem definition is identical with the previous study [6] except for the

design variables. Since the acquired hypothesis indicates that 2nd combustion should

be feeble to merely sustain vehicle gross weight, we anew prepare design variables

regarding oxidizer mass flow for each combustion.

1. Objective Functions. Three objective functions are defined. First objective is max-

imizing the downrange in the lower thermosphere (altitude from 90 to 150 [km]) Rd
[km] (OBJ1). Second is maximizing the duration in the lower thermosphere Td [s]

(OBJ2). It recently turns out that atmosphere has furious and intricate motion in the

lower thermosphere due to energy injection, from which derives aurora, from high

altitude. The view of these objective functions is to secure the horizontal distance

and time for competently observing atmospheric temperature and the wind so that

the thermal energy balance is elucidated on atmospheric dynamics. Third objective

is minimizing the initial gross weight of launch vehicle M
tot
(0) [kg] (OBJ3), which is

generally the primary proposition for space transportation. Current missions of sci-

entific observations are merely implemented on ballistic trajectories. If major expan-

sion of Rd or Td can be fulfilled due to efficient extinction-reignition operations, we

obtain a distinct paradigm shift of scientific observation missions.

2. Design Variables. We use 10 design variables: oxidizer mass flow on 1st com-

bustion ṁ(1st)
ox [kg/s] (dv1), oxidizer mass flow on 2nd combustion ṁ(2nd)

ox [kg/s] (dv2),

fuel length Lfuel [m] (dv3), initial radius of port rport (0) [m] (dv4), total combustion

time t(total)burn [s] (dv5), first combustion time t(1st)burn [s] (dv6), extinction time from the

end of first combustion to the beginning of second combustion text [s] (dv7), initial

pressure in combustion chamber Pcc(0) [MPa] (dv8), aperture ratio of nozzle 𝜖 [-]

(dv9), and elevation at launch time 𝜙(0) [deg] (dv10). We set two combustion periods

as follows:
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Table 1 Upper/lower limits of each design variable

Serial number Design variable Unit Design space

dv1 Oxidizer mass flow on 1st

combustion

[kg/s] 1.0 ≤ ṁ(1st)
ox ≤ 30.0

dv2 Oxidizer mass flow on 2nd

combustion

[kg/s] 1.0 ≤ ṁ(2nd)
ox ≤ 30.0

dv3 Fuel length [m] 1.0 ≤ Lfuel ≤ 10.0

dv4 Initial radius of port [m] 0.01 ≤ rport (0) ≤ 0.30

dv5 Total combustion time [s] 20.0 ≤ t(total)burn ≤ 60.0

dv6 1st combustion time [s] 10.0 ≤ t(1st)burn ≤ 40.0

dv7 Extinction time [s] 1.0 ≤ text ≤ 300.0

dv8 Initial pressure in

combustion chamber

[MPa] 3.0 ≤ Pcc(0) ≤ 6.0

dv9 Aperture ratio of nozzle [–] 5.0 ≤ 𝜖 ≤ 8.0

dv10 Elevation at launch time [deg] 60.0 ≤ 𝜙(0) ≤ 90.0

t(1st)
burn

=

{
t(total)
burn

(t(total)

burn
< t(1st)

burn
)

t(1st)
burn

(t(total)

burn
≥ t(1st)

burn
)
,

t(2nd)
burn

=

{
0 (t(total)

burn
< t(1st)

burn
)

t(total)
burn

− t(1st)
burn

(t(total)

burn
≥ t(1st)

burn
)
.

(1)

Under t(total)

burn
< t(1st)

burn
condition, it is defined that t(1st)

burn
is set to be t(total)

burn and second-

time combustion is not performed. Since t(2nd)

burn
is significant factor to understand

extinction-reignition behavior, we include it in dataset for data mining be named

“dv∗”. There is no constraint except upper/lower limits of each design variable sum-

marized in Table 1. These upper/lower values are exhaustively covering the region of

the design space which is physically admitted. When there is a sweet spot (the region

that all objective functions proceed optimum directions) in the objective-function

space, the exploration space would intentionally become narrow due to range adap-

tation on the evolutionary computation.

2.2 Design Candidate Derivation

We used a hybrid evolutionary computation (EC) between the differential evolu-

tion and the genetic algorithm [6] to efficiently generate a hypothetical dataset using

exact solutions. The detail of this result is summarized in [4]. The population size is

set to be 18 in one generation; the hybrid EC is performed until 4,500 generations.

The generation number is decided by evolution convergence. The hybrid EC conse-

quently generates two discontinuous connecting and convex nondominated surfaces
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input output

dv1 dv2 · · · dv∗
(11) obj1 obj2 obj3

0.57 0.09 · · · 0.55 0.31 0.80 0.38
0.41 0.10 · · · 0.68 0.24 0.81 0.35
0.40 0.99 · · · 0.73 0.20 0.82 0.34
0.78 0.23 · · · 0.43 0.89 0.78 0.20

...
...

0.33 0.42 · · · 0.10 1.00 0.32 0.29

(a) Example of dataset (b) Dataset plotted into objective
space

Fig. 1 The dataset consisting of pareto optimal solutions

except several isolated individuals. A dataset consists of 1,000 Pareto optimal solu-

tions derived from a multi-objective optimization technique on the hybrid rocket

design problem. Figure 1b confirms that the pareto optimal solutions in the dataset

have a tradeoff between three object values. As shown in Fig. 1a, each solution is

composed of 11 optimized values of design variables dv1, dv2, …, …, dv10, dv∗(11)
(only dv∗(11) is implicitly optimized) and 3 objective values obj1–obj3; all values are

converted to be normalized values.

3 Evolutionary Rule-Based Data Mining System

Our system is inspired from Learning Classifier System called LCS [8] which is

an approach of evolutionary rule-based machine learning. We introduce an LCS

as a mining tool for Pareto optimal solutions, called LCS-POS. The rest of section

describes a brief concept of LCS-POS and then a specific mechanism.

3.1 Concept

1. Learning accurate and optimized rules. We use a condition-prediction rule to

represent a design strategy. The condition part indicates a combination of design

variable values dvi, and the prediction part indicates expected objective values objj
when the rule is applied. Here, we want to acquire rules which accurately predict

the objective values. While many modern LCSs are designed to learn such accurate

rules, e.g., XCS [16], we further want to learn rules optimized for the objective func-
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tions. Specifically, since we aim to extract design strategies which optimize objective

functions, the accurate rules should also have as maximum or minimum objective

values as possible. Technically, in the system, the accurate and optimized rules are

defined with two threshold parameters which both defines accurate rules and opti-

mized rules respectively (see Sect. 3.2).

2. Rule exploration on multi-objective function. Ideally, we want to acquire accurate

rules optimized for all three objective functions if those rules exist. However, since

the design candidates are a set of Pareto optimal solutions, there could be a trade-

off between the objective functions. Hence, we permit to have rules optimized with

a different number of objective functions, and then we can consider the optimized

rules for one objective function, for two of three objective functions, or for all three

objective functions. While LCS-POS is designed to acquire those differently opti-

mized rules, it attempts to evolve rules optimized for as many object functions as

possible. In other words, LCS-POS evolutionary detects how many objective func-

tions can be optimized together. For knowledge discovery, this can be an advantage

of LCS-POS, because LCS-POS would extract various design strategies for different

combinations of objective functions.

3.2 Rule Format

A rule consists of a condition and the following five parameters; a prediction pj, a

prediction error 𝜖j, a niche size ns, a fitness F and a number of optimized objective

functions nobj. The condition C specifies inputs (or design candidates in the dataset)

which its rule can be applied. The condition is a set of sub-conditions, denoted by

C = {c0, c1,… , c11}, where ci is a sub-condition applied for a design variable dvi.
Each ci consists of a lower value li and an upper value ui such that 0 ≤ li ≤ ui ≤ 1,

both specifying a numerical range of design variable. The prediction p= {p1, p2, p3}

and the prediction error 𝜖 = {𝜖1, 𝜖2, 𝜖3} are used for calculating F; each prediction

pj and each prediction error 𝜖j indicate an average of objective value objj and its

error respectively. F is used for identifying an accurate and optimized rule. ns indi-

cates a number of overlapping rules. Finally, nobj indicates that how many objective

functions its rule has been optimized for.

To define the accurate and optimized rules, we introduce the following two thresh-

old parameters; the maximum permitted error 𝜖
𝜃

and the maximum permitted pre-

diction p
𝜃

. We define that accurate rules for the objective function OBJj have 𝜖j less

than 𝜖
𝜃

. Similarly, we define that the optimized rules for OBJj have pj less than p
𝜃

.

Note that, while OBJ1, OBJ2 are maximizing functions, LCS-POS internally consid-

ers them as minimizing functions to simplify the mechanism; the objective values

obj1 and obj2 are simply converted to 1 − obj1 and 1 − obj2 when identifying the

optimized rules.
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3.3 Mechanism

Our system consists of following four components: rule-initialization, rule-
evaluation, rule-subsumption and rule-evolution. The rule-initialization is called

once at the start, and then, other three components are repeated.

1. Rule initialization. To build the initial rule set, a covering operator takes place

[1]; for each design candidate in the dataset, the system generates a rule which can

be applied to its input. Specifically, the condition of generated rule for a input is

determined as; for the design variable value dvi of the input, li and ui of each sub-

condition ci are set to a random value but should be satisfied with li ≤ dvi ≤ ui. Note

that, if the rule set has already included rules applicable to a input, the covering

operator does not take place.

2. Rule evaluation. After the rule initialization or the rule evolution is executed, the

parameters of each rule r are updated with the following order; pj, 𝜖j, ns, nobj, and F.

pj for objj, as in Eq. (2a), is simply calculated as the average of objective values of

inputs which its rule can be applied. Note that, in Eq. (2a), s ∈ sr indicates an input

s belonging to a subset of inputs sr which the rule r can be applied; objsj is the j-th
objective value of s; and |sr| is a number of input in the subset sr; we call |sr| as

a correspondent number, which indicates a generality of rule. Then, the prediction

error is calculated as an absolute error of pj against the objective value (see Eq. (2b)).

pj =
∑

s∈sr

objsj
|sr|

, (2a)

𝜖j =
∑

s∈sr

|pj − objsj |
|sr|

. (2b)

To calculate F, we firstly calculate a rule’s validity 𝜂 = {𝜂1, 𝜂2, 𝜂3} which is used

for identifying the accurate and optimized rule. 𝜂j for OBJj is calculated from an

accuracy Ej and an optimality Pj.

Ej =

{
1 if 𝜖j < 𝜖

𝜃

,

𝜖
𝜃

∕𝜖j otherwise.
(3a)

Pj =

{
1 if p′j < p

𝜃

,

p
𝜃

∕p′j otherwise.
(3b)

Ej identifies an accurate rule, and as in Eq. (3a), Ej is set to the maximum value

1 when 𝜖j is less than 𝜖
𝜃

, indicating an accurate rule; otherwise, a value less than

1 depending on 𝜖j. Similar to Ej, Pj is maximally set to 1 when p′j is less than p
𝜃

;

otherwise a value less than 1 (See Eq. (3b)). Note that, to consider the minimizing

functions, p′j is set to 1 − p1 and 1 − p2 for j = 1, 2; for j = 3, p′j is set to p3. Then, each
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𝜂j is calculated as 𝜂j = Ej ⋅ Pj. Hence, we can identify a rule with 𝜂j = 1 as an accurate

and optimized rule for the j-th object function OBJj. ns of rule is set to a number of

overlapping rules which can be applied to the same inputs matched with its rule as

in [1]. As a result, nobj is set to a count value of 𝜂j = 1 in 𝜂. Finally, F is calculated

from 𝜂. If nobj is equal to or larger than 1, that is, the rule has been identified as the

accurate and optimized rule for at least one objective function, its fitness is set to 1;

otherwise, F is calculated from the maximum validity with a parameter 𝜈;

F =

{
1 if nobj ≥ 1,
max

j
𝜂j

𝜈

otherwise.
(4)

3. Rule subsumption. The rule-subsumption performs to promote the generalization

of rule [1]; a rule is subsumed to a more general rule. Specifically, for two rules

rk with F=1 and rl with any value of F, when all lower values lki and upper values

uki of rk are smaller and larger than that of rl respectively (i.e., lki < lli, u
k
i > uli,), rk is

defined as having a more general condition than rl. Then, the system decides whether

the rule rl can be deleted as; if the rl is not accurate or optimized rule with F < 1,

rl is deleted to remove redundant rules; in addition, if the rl has been identified as

accurate and optimized rule (having F = 1) for the same objective functions of the

rk, rl is also deleted.

4. Rule evolution. Finally, the system evolves rules with the genetic algorithm [7];

the system replaces 50 % of the existing rules with generated offspring. It selects two

rules from the rule set with the roulette wheel selection based on the rule’s fitness

[1]; it copies them and performs crossover and mutation on the copies’ conditions

with the probability 𝜒 and 𝜇 respectively. The resulting offspring are inserted into the

rule set and the existing rules are deleted if the number of rule in the rule set is larger

than a maximum rule set size Nrule to keep the rule set size constant. The deleted

rules are selected with a probability Pdel which is calculated as (ns∕F)−nobj . Hence,

the rules with a low fitness value and a large niche size would be deleted; in addition,

the accurate and optimized rules for a smaller number of objective functions are also

selected for deletion.

4 Result

Nondominated solutions to construct dataset are not uniformly in design space;

search bias on the hybrid EC may affect correspondent number. However, since the

convergence of the hybrid EC was confirmed by hypervolume, nondominated solu-

tions are thoroughly distributed in the feasible region of objective-function space

shown in Fig. 1b.

The advantages to generate rules using EC are summarized in the following three

point. Firstly, automatically intelligent discretization of design-variable space (in this
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study, 11 dimensional space) can be performed. Second, the values of all objec-

tive functions can be used as an indicator to extract significant rules from enormous

those, i.e., important design-variable space can be extracted via objective-function

space. Finally, the difference of its important design strategy can be intuitively com-

pared with other design strategies due to heatmap visualization. The rough set theory

[12] is a representative rule mining method; correspondent number is employed as

a rule selection indicator [5]. However, since an evolutionary rule-based data min-

ing system can avoid using rough indicator, it is considerable to be an advanced and

beneficial tool for rule mining.

4.1 Preliminary Experiments

Analysis with different 𝜖
𝜃

settings LCS-POS optimizes the expected values of

objective functions by generated rules. But we can deal with the allowable error

𝜖
𝜃

between prediction and exact values. If 𝜖
𝜃

becomes large, an obscure rule may be

permitted. Figure 2 indicates that the number of generated rules are increased as 𝜖
𝜃

becomes large. Although rules for design variables are similar, objective values are

different; the number of rules consequently swells. The range of predicted objective

values is expanded due to 𝜖
𝜃

gain, LCS-POS severally generates rules which would

be merged if 𝜖
𝜃

were small. If we will obtain rough rules, 𝜖
𝜃

might set to be large.

However, since large 𝜖
𝜃

causes low reliability of predicted rules, 𝜖
𝜃

should set to be

low at the constant as 𝜖
𝜃

= 0.05 in this study.

Influence of allowable range of p
𝜃

to generate rules The optimization for all objec-

tive functions may recognize sweet-spots existence and generate the rule to be in

sweet spots. It is natural for the equality among objective functions that LCS-POS

does not have the arbitrariness and it generates the rules to optimize all of them.

However, if target range p
𝜃

for optimizing objective functions is too small, there

may be no correspondent individual; no rule is generated. We should set an appro-

priate value on p
𝜃

, but there is no indicator due to problem dependency; a parameter

study should be accordingly performed.

The result of the parameter study regarding p
𝜃

in this study is shown in Fig. 3.

When p
𝜃

= 0.25, no rule is generated; if p
𝜃

= 0.30, just two rules are consequently

generated. If p
𝜃

≥ 0.35, we can obtain sufficient number of rules. We acquire the

design information regarding the minimum degree to compromise. Furthermore, this

result reveals that there is a sweet spot in the design space if we compromise p
𝜃

of

0.30 for each objective function. We will use the result of p
𝜃

= 0.35 below to observe

many candidates around the sweet spot region.
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Fig. 2 Visualization of predicted rules, which three objective functions are optimized with p
𝜃

=
0.35. There are six constraints for values of three objective functions and their prediction torelance

𝜖
𝜃

; a 𝜖
𝜃

= 0.05, b 𝜖
𝜃

= 0.10, and c) 𝜖
𝜃

= 0.15. Note that L and U respectively denote lower value

and upper one of each design variable

(a) pθ=0.25 (b) pθ=0.30 (c) pθ=0.35

Fig. 3 Number of the accurate and optimized rules for one objective function nobj = 1, for two

objective functions nobj = 2, and for all functions nobj = 3
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4.2 Comparison of Compromise Results Between p
𝜽

and nobj

The present design problem has a sweet spot in the design space. However, there is

no flexibility because the range of all three objective functions has no diverse value

in Fig. 2a. Although the behaviors of dv1 (ṁ(1st)
ox ), dv4 (rport (0)), and dv8 (Pcc(0))

are with perturbations, there are no correlations between rport (0) and the objective

functions as well as between Pcc(0) and the objective functions. As the upper bound

of ṁ(1st)
ox is large, obj1 (Rd) roughly enlarges; ṁ(1st)

ox is an essential design variable in

this sweet spot.

When considering all three objective functions, there was especially no flexibility

of obj2 (Td) and obj3 (Mtot (0)). Hence, the number of optimized objective functions

is set to be two. Figure 4 displays obtained rules on a heatmap; it indicates that obj1
(Rd) is released from optimization and constraints. The phylogenetic tree in Fig. 4a

obviously reveals unique rules. Figure 4b shows the heatmap with the order sorted by

obj1 (Rd) values; we recognize the influence of unique rules for the objective func-

tions and also the difference of design-variable behaviors in the vicinity. Figure 4b

indicates that obj3 (Mtot (0)) becomes low as obj1 (Rd) is low, that is, there is a severe

tradeoff betweenRd andMtot (0). If we drastically extendRd, we should choose a com-

promise strategy to absolutely sacrifice Mtot (0). In contrast, obj2 (Td) does not act in

concert with Rd behavior. This fact indicates that other strategies need for optimizing

Rd and Td. Figure 4 also indicates the design variable behaviors. Since the variations

of dv1, dv3, and dv10 correspond to that of obj1, ṁ(1st)
ox , Lfuel, and𝜙(0) give an effect on

extending Rd. ṁ
ox
(0) rise gives an effect on ṙport (t) growth and thrust gain. L

fuel
also

gives an effect on Rd swell. If L
fuel

increases, fuel mass rises; long-time combustion

can be performed. 𝜙(0) decrease gives an effect on Rd augmentation. If 𝜙(0) is low,

flight paths become horizontal; Rd increases. These correlations are physically rea-

Fig. 4 Visualization of predicted rules, p
𝜃

= 0.30, under optimizing two objective function con-

dition, a the order by phylogenetic tree and b the order sorted by obj1
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Fig. 5 Visualization of predicted rules, p
𝜃

= 0.35, under optimizing three objective function con-

dition, a the order by phylogenetic tree and b the order sorted by obj1

sonable. Figure 5 shows the generated rules on heatmap under p
𝜃

= 0.35 condition.

We can observe that Fig. 5 is similar to the clipping heatmap from the upper region

of Fig. 4b. If severe tradeoff relationships exist among objective functions, no rule

is generated even when p
𝜃

rises. Thereupon, we should unavoidably decrease the

number of optimized objective functions on the LCS-POS, but it swerves from the

purpose of optimizing all objective functions for real-world problems and of search-

ing compromise solutions. Indeed, the lower region on Fig. 4b is unnecessary design

information. Rules should be generally produced for all objective functions set in

problem definition.

Since the generated heatmaps do not have design-variable rules which get out

of behavior, it is confirmable that there is no peculiar rules, i.e., design strategy to

become a compromise solution in sweet spots. Figure 5 reveals that all design vari-

ables do not have flexibility if we will design an individual existed in the sweet spot.

Especially, dv1 (ṁ(1st)
ox ) strongly dominates obj1 (Rd); if we achieve highRd, we should

set ṁ(1st)
ox to be greater than 26 [kg/s]. The indicated design strategy to efficiently per-

form extinction-reignition is that dv6 (t(1st)burn) should be short; dv ∗ (t(2nd)burn ) should be

long; dv7 (text) should be around 120 [s] at most. The bottleneck of general rule min-

ing is the discretization of design space, but our system does not depend on it and

also can generate adaptable design rules. Our system evolutionary generates local

design information as well as we intuitively identify anomalous design strategies.
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5 Conclusions

This study have been investigated design strategies to efficiently perform extinction

and reignition on a sounding hybrid rocket design problem by introducing an evo-

lutionary rule-based mining system be named Learning Classifier System for Pareto

optimal solutions. The algorithm is not depend on discretization of design space and

is designed to evolve flexible rules considered for those objective functions. Conse-

quently, we obtain the design rule to efficiently implement extinction-reignition: 1st

combustion should be short; 2nd combustion should be long; extinction time might

be on the periphery of 120 [s] at most. We revealed the local design information and

also we intuitively discover anomalous design strategies; the acquired rules show

how design variables affect extinction-reignition depending on other variables.
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A Novel Binary Particle Swarm Optimization
Algorithm and Its Applications on Knapsack
and Feature Selection Problems

Bach Hoai Nguyen, Bing Xue and Peter Andreae

Abstract Particle swarm optimisation (PSO) is a well-known evolutionary compu-

tation technique, which has been applied to solve many optimisation problems. There

are two main types of PSO, which are continuous PSO (CPSO) and binary PSO

(BPSO). Since PSO is originally proposed to address continuous problems, CPSO

has been studied extensively while there are only a few studies about BPSO. In a

standard PSO algorithm, momentum is an important component, which preserves

the swarm’s diversity. However, since movements in binary search spaces and con-

tinuous search spaces are different, it is not appropriate to apply directly the momen-

tum concept of CPSO to BPSO. This paper introduces a new momentum concept to

BPSO, which leads to a novel BPSO algorithm, named SBPSO. SBPSO is compared

with a recent BPSO algorithm, named PBPSO, in two well-known binary problems:

knapsack and feature selection. The experimental results on knapsack datasets show

that SBPSO can find better solutions than PBPSO. In feature selection problems,

SBPSO can select a smaller number of features and still achieve similar or better

accuracies than PBPSO and using all the original features in a comparative compu-

tation time.
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1 Introduction

Optimisation tasks play an important role in many real-world problems. In order to

solve such problems, there are two main approaches [8], which are classical optimisa-

tion [5] and heuristic optimisation. The classical approaches, including linear or non-

linear programming, have limitations when there are too many variables. Heuristic

approaches [17] are proposed when the search space is complicated or the classical

methods’ assumptions such as continuity and differentiability are not satisfied [8].

Instead of providing an exact solution, the heuristic search usually aims to find out

an approximate solution, which is good enough in an acceptable computation time.

Evolutionary computation (EC) is a kind of heuristic search inspired by biologi-

cal principles. Some well-known EC techniques are genetic algorithms [23], genetic

programming [13] and particle swarm optimisation [18].

Particle swarm optimisation (PSO) is proposed in [9], which mimics the social

behaviour of bird flocking. In PSO, a particle represents a candidate solution and

has its own position (x) and velocity (v). The particle also records its own best posi-

tion (pbest) and its neighbours’ best position (gbest) so far, which guide it to follow

promising trajectories. PSO has been successfully applied to solve many real-world

optimisation problems such as financial forecasting [2], steel frame designing [7]

and unmanned combat air vehicle path planning [26].

There are two main types of PSO, which are continuous PSO [24] (CPSO) and

binary PSO [10] (BPSO). BPSO has been widely applied to many combinatorial

problems, for instance knapsack problems [12] and feature selection [22]. In the

original BPSO [10], each position entry has two possible values 0 or 1. The velocity

is used to determine how likely the corresponding position’s element is set to 1, as

in Eqs. (1) and (2).

xt+1d =

{
1, if rand() < 1

1+e−v
t+1
d

0, otherwise

(1)

vt+1d = w ∗ vtd + c1 ∗ r1 ∗ (pbestd − xtd) + c2 ∗ r2 ∗ (gbestd − xtd) (2)

where t is the tth iteration, d is the dth dimension in the search space, w is an inertia

weight, c1 and c2 are two acceleration constants, r1, r2 are two random variables

uniformly distributed in [0, 1].

There are some issues in the original BPSO [9]. Firstly, the new position element

is determined without considering its previous position. In addition, the velocity for-

mula of BPSO is exactly same as the formula of CPSO, which might not be suitable

since in a binary space, particles do not move as smoothly as in a continuous space.

Particularly, in CPSO, the velocity defines the length and the direction that parti-

cles follow in the next step. However, in BPSO, each position’s element has only

two possible values and particles move by flipping its bits. Therefore, in a binary

search space, the idea of moving in a direction, as in the velocity term, is not applica-

ble. In PSO, there are three most important components contributing to the search
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ability of PSO via the velocity, which are momentum, the cognitive-component

(defined as pbest) and the social-component (defined as gbest). Once the velocity

does not describe accurately the movement of binary particles, the three compo-

nents, especially the best experiences are not effectively used to guide the particles.

For example in BPSO the parameter setting in the velocity has an opposite effect

in comparison with CPSO [11, 12]. These might be the reasons for the limited per-

formance of BPSO in comparison with CPSO, even in combinatorial problems [3,

21]. In order to make PSO adapt with binary search spaces, it is necessary to define

new velocity and momentum concepts, which can capture the movements of binary

particles in a more appropriate way.

Pampara et al. [16] utilise an angle modulation to map from a high-dimensional

binary search space into a 4-dimensional continuous search space. The experimental

results show that the proposed algorithm is better than the traditional BPSO. How-

ever, in the benchmark functions, there are a small number of variables, which are

totally independent. In [25], a BPSO algorithm is proposed to avoid premature con-

vergence, which is a common problem in BPSO. In the proposed BPSO, a mutation

operator is used to improve the diversity of the swarm. The mutation rate is set to
1
N

with an expectation that at least one bit in a particle is mutated, where N is the length

of the particle position. The proposed BPSO (MBPSO) is used to select features in

spam detection problems. The experiment shows that MBPSO can evolve better fea-

ture subsets than other EC algorithms such as ACO, PSO or GA. However, it is not

clear how mutation operators are applied to the PSO algorithm. In comparison with

BPSO, MBPSO are sometimes more expensive. In addition, adding only a muta-

tion operator may not be able to overcome other limitations of the original BPSO,

such as velocity and previous position ignorance. Ganesh et al. [6] uses BPSO to

narrow down the search space size for ear detection problems, where the task is to

select pixels with high entropy values and discard low entropy pixels to find the most

promising areas of the original search space. The only difference between BPSO in

[6] and the original PSO is that a random number is multiplied to the previous veloc-

ity, which aims to prevent the premature convergence in BPSO. The experimental

results show that the proposed algorithm has promising results on four benchmark

face datasets. However, the effect of the random number is not analysed i.e. there

is no comparison between the proposed BPSO and the original BPSO. In addition,

the velocity concept from CPSO is still used in this work. Xue et al. [22] proposes

a new BPSO algorithm (PBPSO), in which a probability vector is used to replace

the velocity vector, in which each entry shows the flipping probability of the cor-

responding position’s bit. The experimental results show that PBPSO outperforms

the standard BPSO in both effectiveness and the efficiency in feature selection prob-

lems. Although the probability vector reflects the binary particle’s movement more

accurately, the momentum concept, one of three most important components, is not

defined. Since momentum and movement are two intimate factors, a new movement
concept should be followed by a corresponding new momentum definition. There-

fore, in this work we propose a new momentum concept for BPSO based on the

probability vector.
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Goals: The overall goal of this paper is to develop a new BPSO algorithm for

binary optimisation problems. In order to achieve this goal, we introduce a new

momentum concept and updating mechanism, which can help particles move in

a more meaningful way than the original BPSO. The proposed BPSO algorithm,

Sticky BPSO (SBPSO), is compared with a recently developed BPSO algorithm

(PBPSO) [22]. The comparison is performed on two well-known combinatorial

problems, which are knapsack and feature selection. Knapsack is a traditional binary

problem, which has been used widely to evaluate searching abilities of different

binary optimisation algorithms [12, 19]. Feature selection is even more difficult than

Knapsack because of the complex interactions between features. Specifically, we will

investigate:

∙ whether introducing momentum can enhance the BPSO’s ability to find out solu-

tions in knapsack problems with higher profits than PBPSO,

∙ whether the proposed algorithm, SBPSO can evolve smaller feature sets with sim-

ilar or better accuracies than PBPSO in the same computational time.

2 Proposed Approach

The key idea of a standard PSO algorithm is to guide the particle move to promising

areas by utilising three factors including pbest, gbest and momentum. The momen-
tum corresponds to a tendency to keep moving in the same direction. It has an impor-

tant effect, which ensures the exploration of particles when both gbest and pbest are

trapped in local optima. In other words, momentum preserves the diversity of the

swarm. Therefore, we aim to develop a new BPSO algorithm, which can cope with

binary search spaces and maintain three important properties of a PSO algorithm:

momentum, cognitive and social components.

Since the original momentum in CPSO is not meaningful in BPSO, we define a

new momentum concept for BPSO. In a binary search space, a particle moves by

flipping its position entries; and therefore can not “keep moving” in the same direc-

tion. But we can view momentum as a tendency to stay at the current position, which

is known as stickiness property. The stickiness should decay with time, so that when

the bit is just flipped, it should initially has a high probability of remaining at the new

value, which will reduce over successive iterations. While a bit is “stuck” at a new

value, the particle will search around this value by mutating other bits. We represent

the stickiness of the dth bit using a currentLifed variable, which records the number

of iterations since a bit was just flipped. If the bit has just flipped then its stickiness
in the immediate following iteration should be 1. As long as the bit stays contin-

uously at the current value, the currentLifed increases linearly with respect to the

iteration numbers. Particularly, after an iteration, if the bit does not change its value,

the bit’s currentLifed increases by 1, which also reduces the bit’s stickiness property.

The currentLifed is bounded by an upper value, called maxLife. When calculating

the probability of switching a bit, we calculate its stickiness as belows:
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stickinessd = 1 −
currentLifed
maxLife

(3)

As can be seen from Eq. (3), stickinessd linearly decreases from 1 to 0 after

maxLife iterations. The flipping probability of the dth bit, called pd, is given in Eq. (4),

which contains a momentum component.

pd = im ∗ (1 − stickinessd) + ip ∗ |pbestd − xd| + ig ∗ |gbestd − xd| (4)

In the above equation, im, ip and ig represent the proportions that momentum, cogni-
tive (pbest) and social (gbest) factors contribute to the flipping probability, respec-

tively. It can be seen that if a particle is different from gbest and pbest in at least

maxLife iterations, the flipping probability is im + ig + ip. In this case, to ensure that

the particle moves back to gbest, im + ip + ig is set to 1. Given the pbest and gbest
are not changed, the smaller the stickiness, the more likely the corresponding bit is

mutated. Based on the new flipping probability vector, the new position of a particle

is calculated by Eq. (5).

xt+1d =

{
1 − xtd, if random() ≤ pd
xtd, otherwise

(5)

3 Experimental Studies

In this section, the effect of the new momentum concept is evaluated via a compari-

son between our proposed BPSO algorithm, called SBPSO, and a recently developed

BPSO algorithm, PBPSO [22], in two binary problems: knapsack and feature selec-

tion. SBPSO and PBPSO have the same parameter settings: im = 0.25, ip = 0.25, ig =
0.5, which ensures that gbest plays a more important role than gbest. To test their

performances, a statistical significance test, Wilcoxon test, is performed to compare

the two methods. The confidence interval is 95 %.

3.1 Knapsack Problem

In a knapsack problem, there are n items, each of which has a positive profit

pj > 0. Besides the profit, each item also has m positive resource consumptions,

{rj1, rj2,… , rjm}, which respectively correspond to m types of resources. A knap-

sack has m capacities for each resource type, {C1,C2,… ,Cm}. The task is to select

a subset of items so that the total profit is maximised meanwhile the total resource

consumption does not exceed the corresponding capacity of the knapsack. The prob-

lem can be shown in the following formulae:
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max
n∑

j=1
pj ∗ xj, (6)

s.t. ∶
n∑

j=1
rjk ∗ xj ≤ Ck,∀k ∈ {1, 2,… ,m}, (7)

xj ∈ {0, 1},∀j ∈ {1, 2,… , n} (8)

where xj = 1 or 0 represents that the jth item is selected or not selected, respectively.

A single-dimensional knapsack problem (SKP) has only one resource, which

is m =1. When there are more than one resources, the problem is called a multi-

dimensional knapsack problem (MKP). In this work, 30 MKP datasets with at least

50 items are selected from [4] to compare the two algorithms, SBPSO and PBPSO.

3.1.1 BPSO for Knapsack Problem

In terms of representation, each particle’s position, xi is a binary vector, whose length

is equal to the number of items, n. Particularly the ith particle’s position is denoted as

xi = (xi1, xi2,… , xin) where xij ∈ {0, 1},∀j ∈ {1, 2,… , n}, where xij = 0 shows that

in the ith particle, the jth item is not selected.

Since the knapsack problem is a constrained problem, a penalty function strategy

is applied in the fitness function to convert this problem to an unconstrained problem.

Particularly, BPSO needs to maximise the following fitness function:

fitnessKnap =
n∑

j=1
pj ∗ xj + 𝛼 ∗

m∑

k=1
min(Ck −

n∑

j=1
rjk ∗ xj, 0) (9)

where 𝛼 is set to 1000 to ensure that feasible solutions are evolved by BPSO algo-

rithms.

Both SBPSO and PBPSO are run 50 independent times using 50 different ran-

dom seeds. Each run contains 3000 iterations and the population size is equal to the

number of items. maxLife in SBPSO is set to 50.

3.1.2 Experimental Results

Table 1 shows the experimental results of SBPSO and PBPSO on 14 out of 30 Knap-

sack datasets and the same pattern was observed on the other 16 datasets, but the

detailed results are not presented due to the page limit. In the tables, “#Is” and “#Cs”

represent the number of items and costs in each dataset, which correspond to n and m
in Eq. (9), respectively. “Optimal” shows either the theoretical optimal or best known

profit. “Hits” means the number of runs in which a BPSO algorithm evolves a solu-

tion with an “optimal” profit. “AveProfit” and “StD” stand for the average and the
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Table 1 Experimental results on knapsack datasets

Dataset Method #Is #Cs Optimal Hits AveProfit ± StD Test Time(ms)

Pet7 PBPSO 50 5 16537.0 0 16391.94 ± 45.09 507.86

SBPSO 50 5 16537.0 5 16477.2 ± 40.39 + 564.0

Sento1 PBPSO 60 30 7772.0 0 7414.32 ± 101.74 966.14

SBPSO 60 30 7772.0 5 7704.76 ± 47.14 + 1417.24

Sento2 PBPSO 60 30 8722.0 0 8549.48 ± 36.31 1184.02

SBPSO 60 30 8722.0 1 8676.44 ± 23.29 + 1230.78

Weish10 PBPSO 50 5 6339.0 0 6184.22 ± 80.49 507.04

SBPSO 50 5 6339.0 28 6326.98 ± 22.49 + 558.32

Weish15 PBPSO 60 5 7486.0 0 7100.64 ± 110.22 677.86

SBPSO 60 5 7486.0 4 7438.84 ± 29.55 + 957.52

Weish20 PBPSO 70 5 9450.0 0 8926.7 ± 116.68 902.42

SBPSO 70 5 9450.0 0 9348.16 ± 48.2 + 1045.78

Weish25 PBPSO 80 5 9939.0 0 9246.76 ± 96.21 1202.18

SBPSO 80 5 9939.0 0 9760.58 ± 61.14 + 1244.32

Weish30 PBPSO 90 5 11191.0 0 10426.06 ± 113.37 1477.02

SBPSO 90 5 11191.0 0 10947.28 ± 57.29 + 1638.74

Gk01 PBPSO 100 15 3766.0 0 3657.0 ± 10.32 2111.88

SBPSO 100 15 3766.0 0 3679.42 ± 9.51 + 2274.7

Gk02 PBPSO 100 25 3958.0 0 3846.06 ± 8.09 2454.6

SBPSO 100 25 3958.0 0 3867.78 ± 10.75 + 2682.28

Gk03 PBPSO 150 25 5656.0 0 5490.08 ± 8.88 5052.5

SBPSO 150 25 5656.0 0 5512.46 ± 12.79 + 5749.02

Gk04 PBPSO 150 50 5652.0 0 5608.56 ± 9.25 6723.28

SBPSO 150 50 5652.0 1 5625.88 ± 9.75 + 7441.88

Weing7 PBPSO 105 2 1095445.0 0 1052973.24 ± 5801.6 1592.22

SBPSO 105 2 1095445.0 0 1080452.0 ± 3632.63 + 1806.74

Weing8 PBPSO 105 2 624319.0 0 467870.78 ± 20783.97 1506.44

SBPSO 105 2 624319.0 0 562477.06 ± 15752.94 + 1759.8

standard derivation of the 50 profits obtained from the 50 independent runs. “Test”

shows the results of the Wilcoxon significance tests between SBPSO and PBPSO,

where “+” (“−”) means that SBPSO is significantly better (worse) than PBPSO,

and “=” means they are similar. “Time” shows the average computation time of the

algorithms in milliseconds.

As can be seen from Table 1, in terms of the average profit, SBPSO achieves

better profit than PBPSO. For example, in Weish25, the average profit of SBPSO is

about 6 % better than PBPSO. In addition, on 27 out of the 30 datasets, the standard

deviations of SBPSO are smaller than PBPSO, which demonstrates that SBPSO is

more stable. The other two datasets are large datsets with more than 100 items, in
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which SBPSO’s standard deviation is a little bit larger than PBPSO. Probably due

to the difficult search spaces, SBPSO mostly finds the same solutions as PBPSO

and sometimes, SBPSO can discover a significantly better solution, which makes

SBPSO’s standard deviation larger than PBPSO. This can be seen in Gk04, in which

SBPSO hits the optimal point only 1 time. In terms of the hit rate, SBPSO is able to

discover the optimal solutions in half of the datsets, while PBPSO can not reach any

optimal point. For example, in Weish10, SBPSO achieves the optimal solution in 28

out of the 50 times, while the hit rate of PBPSO is 0. The significance test results

show that, on all datasets, SBPSO is significantly better than PBPSO. However, in

terms of efficiency, SBPSO is more expensive than PBPSO, which can be seen in

the “Time” column. The main reason is that SBPSO has extra steps to maintain the

currentLife vector and calculate the momentum.

In general, the experimental results show that because of using momentum,

SBPSO is more stable and explores the search space better than PBPSO. However,

SBPSO’s computation time is a little bit longer than PBPSO’s computation time.

3.2 Feature Selection Problems

With advancements in technology, “big dimensionality” becomes a big problem due

to the “curse of dimensionality”. Classification, one of the most important tasks in

machine learning, also suffers the deterioration in accuracies and a long learning

time. The main reason is that a large feature set usually contains a number of irrel-

evant or redundant features, which may hide useful information from the relevant

features [27]. In order to deal with this problem, feature selection is proposed mostly

as a pre-processing step to select a small relevant feature subset by removing irrel-

evant and redundant features. It is expected that feature selection can shorten the

training time and improve the classification performance over using all features.

However, feature selection is a difficult combinatorial problem, firstly because

of its large search space. Suppose there are N original features, the total number

of possible feature subsets is 2N . In comparison with knapsack problems, feature

selection is more challenging because there are interactions between features while

items in the knapsack problem are independent. For example, two relevant features

might provide the same information, which makes one of them become a redundant

feature. Additionally two weakly relevant features might be significantly relevant

when working together [20]. Since PSO has been widely applied to achieve feature

selection [14, 15], feature selection is chosen as a benchmark problem to compare

the searching abilities of the two PSO algorithms, SBPSO and PBPSO.



A Novel Binary Particle Swarm Optimization Algorithm and Its Applications . . . 327

3.2.1 BPSO for Feature Selection Problems

In BPSO-based feature selection approaches, each position entry corresponds to one

original feature. The value of one entry is either 1 or 0, which respectively indicates

whether the corresponding feature is selected or not.

Feature selection has two main objectives, which are to maximise the classifica-

tion accuracy and minimise the number of selected features. Therefore, the following

minimisation fitness function is used:

fitnessFS = 𝛼 ∗ ErrorRate + (1 − 𝛼) ∗ #selected
#all

(10)

whereErrorRatemeans the classification error rate of the selected features, #selected
represents the number of selected features and #all is the total number of original

features. 𝛼 is used to control the contributions of the classification performance and

the number of selected features. Since in feature selection problems, the classification

performance is preferable, 𝛼 is set to 0.9.

14 datasets from the UCI machine learning repository [1] are chosen to test the

performance of SBPSO and PBPSO. These datasets can be seen in Table 2. Each

dataset is randomly divided into two sets with different proportions: 70 % for training

set and 30 % for test set. During the evolutionary feature selection process, a 10-fold

cross-validation is applied to training set to calculate the accuracy to evaluate the

fitness of the selected features. The 5-nearest neighbour classification algorithm is

used in the experiments. For each dataset, each algorithm is run 40 independent

times. Each run contains 100 iterations. The total number of particles in the swarm

is 30.

Table 2 Datasets

Dataset #Features #Classes #Instances

Wine 13 3 178

Australian 14 2 178

Zoo 17 7 101

Vehicle 18 4 846

German 24 2 1000

WBCD 30 2 569

Ionosphere 34 2 351

Sonar 60 2 208

Movementlibras 90 15 360

Hillvalley 100 2 606

Musk1 166 2 476

Arrhythmia 279 16 452

Madelon 500 2 4400

Multiple features 649 10 2000
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Table 3 Experimental results on feature selection

Dataset Method AveSize Training accuracy Testing accuracy Time(s)

AveAcc ± Std T AveAcc ± Std T

Wine Full 13.0 80.11 ± 0.00 – 76.54 ± 0.00 –

PBPSO 4.0 95.59 ± 0.42 = 96.45 ± 0.73 = 5.3

SBPSO 3.8 95.48 ± 0.76 96.52 ± 2.02 5.3

Australian Full 14.0 67.08 ± 0.00 – 70.05 ± 0.00 –

PBPSO 2.0 84.27 ± 0.00 = 85.02 ± 0.00 = 55.3

SBPSO 2.1 84.15 ± 0.57 85.00 ± 0.09 55.6

Zoo Full 17.0 83.90 ± 0.00 – 80.00 ± 0.00 –

PBPSO 8.1 94.06 ± 2.00 = 93.75 ± 1.45 = 2.5

SBPSO 8.0 94.17 ± 1.91 93.79 ± 1.07 2.4

Vehicle Full 18.0 81.33 ± 0.00 – 84.06 ± 0.00 +
PBPSO 5.1 85.01 ± 0.41 = 83.25 ± 0.74 = 86.2

SBPSO 5.1 84.99 ± 0.39 83.35 ± 0.79 88.0

German Full 24.0 69.86 ± 0.00 – 68.00 ± 0.00 –

PBPSO 7.1 72.86 ± 2.24 = 69.75 ± 2.30 = 116.4

SBPSO 7.1 72.31 ± 2.23 68.99 ± 2.41 118.4

WBCD Full 30.0 93.22 ± 0.00 – 92.98 ± 0.00 –

PBPSO 2.7 94.71 ± 0.55 – 93.17 ± 2.44 – 42.4

SBPSO 2.1 94.96 ± 0.22 94.33 ± 1.23 40.9

Ionosphere Full 34.0 81.30 ± 0.00 – 83.81 ± 0.00 –

PBPSO 7.5 90.20 ± 0.97 – 89.14 ± 2.03 = 20.1

SBPSO 6.5 91.47 ± 0.83 89.45 ± 1.56 18.6

Sonar Full 60.0 74.48 ± 0.00 – 76.19 ± 0.00 –

PBPSO 20.3 86.03 ± 1.82 – 79.78 ± 3.70 = 9.4

SBPSO 19.3 87.70 ± 1.67 79.62 ± 3.13 9.9

Movementlibras Full 90.0 96.56 ± 0.00 = 94.69 ± 0.00 +
PBPSO 20.4 96.53 ± 0.20 = 94.26 ± 0.39 = 27.0

SBPSO 16.5 96.58 ± 0.21 94.29 ± 0.41 27.1

Hillvalley Full 100.0 55.19 ± 0.00 – 56.59 ± 0.00 –

PBPSO 34.4 57.38 ± 0.83 – 57.55 ± 1.52 = 261.9

SBPSO 32.3 58.09 ± 0.79 57.80 ± 1.78 263.7

Musk1 Full 166.0 81.68 ± 0.00 – 83.92 ± 0.00 –

PBPSO 72.6 89.60 ± 0.96 – 85.06 ± 2.34 = 67.4

SBPSO 71.4 90.06 ± 1.19 85.51 ± 2.10 68.3

Arrhythmia Full 278.0 93.52 ± 0.00 – 93.78 ± 0.00 –

PBPSO 97.9 94.12 ± 0.18 – 94.28 ± 0.33 – 82.8

SBPSO 89.8 94.36 ± 0.24 94.50 ± 0.33 79.2

Madelon Full 500.0 71.26 ± 0.00 – 70.90 ± 0.00 –

PBPSO 233.7 78.63 ± 0.65 – 77.44 ± 1.01 – 3228.5

SBPSO 225.4 79.42 ± 0.66 78.19 ± 1.25 3328.4

Multiple features Full 649.0 99.01 ± 0.00 – 98.53 ± 0.00 –

PBPSO 250.2 99.26 ± 0.05 = 98.92 ± 0.11 = 2360.2

SBPSO 231.7 99.28 ± 0.06 98.93 ± 0.10 2225.3
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3.2.2 Experimental Results

Table 3 shows the experimental results of SBPSO and PBPSO on the 14 datasets. In

this table, “Full” means that all features are used. “AveSize” is the average number of

selected features over 40 independent runs. “AveAcc” and “Std” stand for the average

and the standard deviation of 40 accuracies in the 40 runs. “T” shows the significance

test results, which compare between either using all features or PBPSO and SBPSO.

“−”/ “+”/ “=” mean that the other methods are significantly worse/ better/ similar

to SBPSO. The average computation time of two methods is shown in the “Time”

column.

From Table 3, it can be seen that in most cases SBPSO can select a smaller num-

ber of features and achieve similar or better testing accuracy than PBPSO. For exam-

ple, on Arrhythmia, SBPSO’s accuracy is slightly better than PBPSO while SBPSO

selects about 8 features fewer than PBPSO. In terms of training accuracy, on all

datasets SBPSO always achieves similar or better average accuracy than PBPSO

while selecting a smaller number of features.

As can be seen in the “Time” column, SBPSO is faster than PBPSO on 6 out of the

14 datasets. On the remaining datasets, SBPSO’s computation time is only around

3 % higher than PBPSO, which is still in an acceptable range. Table 3 shows that

SBPSO can use approximately the same computation time to evolve smaller feature

subsets while maintaining or improving the classification performance over PBSO.

The evolutionary processes of the two BPSO algorithms are shown in Fig. 1.

Three datasets, Zoo, WBCD and Multiple Features are selected in the order of

increasing the number of features, which corresponds to the difficulty levels of the

search spaces in different datasets. Other datasets show a similar pattern. In Fig. 1,

the horizontal axis represents the number of iterations and the vertical axis shows

the average fitness values of the gbest in the 40 independent runs. Since the task

is to minimise the fitness value i.e. the error, the closer to the horizontal axis, the

better the algorithm. As can be seen in Fig. 1, when the number of features is small

like the Zoo dataset, SBPSO and PBPSO’s evolutionary processes are quite similar.

However, when the number of features increases, SBPSO seems to be superior to

PBPSO. Despite of starting from the same positions, SBPSO just stays with PBPSO

0 20 40 60 80 100

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0 Zoo

Iterations

E
rr
or

PBPSO
SBPSO

0 20 40 60 80 100

6
7

8
9

WBCD

Iterations

E
rr
or

PBPSO
SBPSO

0 20 40 60 80 100

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4 Multiple Features

Iterations

E
rr
or

PBPSO
SBPSO

Fig. 1 Evolutionary Process of SBPSO and PBPSO in feature selection problems
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for a few iterations (around 5 iterations) before quickly leaving PBPSO behind in

the following iterations by using the momentum. In WBCD, the distance between

SBPSO and PBPSO is closer at the later iterations, which means that given more iter-

ations, PBPSO might catch up SBPSO. However, when the dataset’s search space is

even more complicated, for instance in the Multiple Features dataset, the gap between

SBPSO and PBPSO is even larger with respect to the number of iterations. So the

evolutionary processes clearly show that by introducing the momentum term in the

updating mechanisms, SBPSO can better explore the search space, especially when

the search space is large and complicated.

4 Conclusions and Future Work

The paper introduced a new momentum concept to BPSO based on which a new

updating mechanism was developed. The proposed BPSO, called SBPSO is com-

pared with a recently developed BPSO (named PBPSO) [22] in two well-known

binary problems: knapsack and feature selection. The experimental results show that

in knapsack problems, SBPSO has a superior performance on all datasets. In feature

selection, SBPSO usually selects a smaller number of features and achieves similar

or better testing accuracies. The training accuracies and evolutionary processes have

shown that the introduced momentum can help SBPSO to improve the search ability

over PBPSO, especially when the number of features is large. In terms of compu-

tation cost, SBPSO is slightly more expensive than PBPSO since SBPSO needs to

maintain the currentLife vector.

This work focuses mainly on introducing the momentum concept to BPSO, more

works need to be conducted to optimise its parameters such as im, ip, ig and maxLife.

In addition, the proposed PSO is for binary problems only, which can be extended to

general discrete problems in future. We will also extend SBPSO to a multi-objective

BPSO algorithm to consider the trade-off and optimise multiple conflicting objec-

tives simultaneously.
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Particle Swarm Optimization for Yard
Truck Scheduling in Container Terminal
with a Cooperative Strategy

Ben Niu, Fangfang Zhang, Li Li and Lang Wu

Abstract Trucks play a significant role in transporting containers between the
seaside and storage yard at a container terminal. This paper exhibits a cooperative
strategy for scheduling trucks, which allows trucks working or acting together
toward a common purpose that can reduce truck-unload rate and cut back the make
span. The objective is to minimize the total time cost of the sum of the delay of
requests and the travel time of yard trucks. Particle swarm optimization (PSO) al-
gorithm and three of its variants are applied to deal with the scheduling problem.
The effectiveness of PSOs are analyzed by four typical different level-scale test
problems. The results demonstrate that social learning PSO (SLPSO) can obtain
better results than other algorithms for different scale cases.

Keywords Yard truck scheduling ⋅ Cooperative scheduling ⋅ Particle swarm
optimization

1 Introduction

Due to the world trade expansion, container traffic has been growing steadily and
this trend is expected to continue. This calls for efficient container terminal oper-
ations. Therefore, the optimal management for container terminals is desperately
needed.

There are three fundamental equipment in typical container terminals: quay
cranes (QCs), yard trucks (YTs) and yard cranes (YCs) [1]. When a vessel arrives at
a port, containers are discharged by QCs. And then, YTs are utilized to transport the
containers to the storage yard. The storage yard refers to the area where containers
handling, transport, storage and transfer are occurred. YTs play a significant role in
the process of transportation between the seaside and storage yard.
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The yard truck scheduling problem has characteristics of backhaul due to the
repeated pickup and delivery processes involved. In traditional trucks scheduling in
container terminals, the itinerary of a single-truck consists of three major steps.
Firstly, a truck goes to a quay crane in discharging (called as CD) to pick up a
container. Secondly, it delivers the container to an assigned storage area (called as
AD). Finally, it turns back to the original CD. This is a typically static scheduling
between the seaside and storage yard [1]. For more dynamic scenario, for example,
a truck may go to another CD to discharge containers or a storage area for export
containers (called as AL) to load a container after the completion of previous
delivery operation.

There are many studies on the yard truck scheduling problem. In [2], a
mixed-integer programming model was raised to decide the yard truck fleet size and
allocate delivery jobs to YTs. In [3], the time-space network technique was utilized
to describe the potential movements of yard trucks, thus to decrease the pollution of
yard trucks operations. Taking the yard truck scheduling and storage allocation as a
whole, Wang et al. [4] studied the influence of yard truck configurations on the
truck employment strategy. In [5], a dynamic truck scheduling model with strong
applicability was designed to reduce truck-load rate, and shorten the time of han-
dling task. Wang et al. [6] gave weight to both internal truck scheduling and storage
allocation and put forward a model that determines the strategy of owning and
renting trucks in container terminals. Emphasizing on sequence-dependent pro-
cessing time and different preparation time, the problem of scheduling a fleet of
trucks to perform a set of transportation jobs was investigated in [7].

Unfortunately, most of the research above is not directly applicable to container
terminal operations while disregarding their dynamic nature. Yet, as we mentioned
before, on most dynamic scenario, container terminal operations need greater
flexibility. And the development of models should take into account the charac-
teristics and constraints associated with container terminals.

Taking dynamic characteristics into consideration, this paper addresses the truck
scheduling problem in the container terminal using cooperative scheduling strategy,
where trucks are normally considered to load a container to the assigned quay crane
in AL for export containers in loading operation (called as CL) after the delivery to
AD. Figure 1 is a truck-map which shows the cooperative scheduling of trucks in
the terminal.

As can be seen from Fig. 1, truck 1 turns to the AL (33) for export container to
load a container after delivering its container in AD (23) while truck 2 goes to the
AL (25) for export container to load a container after handing over its container in
AD (15). Obviously, this cooperative scheduling strategy will greatly reduce the
unload time compared with traditional static scheduling strategy.

Scheduling problem is NP-hard [8]. Heuristic algorithms have been widely
applied to deal with this kind of problem and achieve more effective solutions. Lee
et al. [9] used the preparation time for jobs as the representation of the chromosome,
instead of using job sequence which is generally employed in the typical genetic
algorithm. Chung et al. [10] presented a new hybrid genetic algorithm with
exhaustive searching in order to achieve fine local searching to determine the
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production schedule in the factories. Niu et al. [11] designed a mapping schema
using bacterial foraging optimization to deal with integrated yard truck scheduling
and storage allocation.

Motivated by the foraging behavior of birds, PSO algorithm was developed by
Kennedy et al. in 1995 [12]. Then many researchers have studied the mechanism of
PSO algorithm and proposed variety of its variants, such as [13–15]. Particle swarm
optimization algorithm, as a significant branch of swarm intelligence, is also widely
used in many application fields. In order to dig deeper in PSO algorithm and
evaluate its performance in scheduling problems, this paper adopts PSOs to verify
the model we proposed.

This study optimizes the yard truck scheduling in container terminal with the
cooperative strategy. In the next section we describe the problem in detail. The
scheduling problem is formulated in Sect. 3. The PSOs for solving the scheduling
problem are discussed in Sect. 4. The results of computational experiments are
presented in Sect. 5. The final section concludes the paper.

Fig. 1 An overview of cooperative scheduling for trucks
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2 Problem Description

Aiming at improving YTs productivity, more dynamic itinerary courses should be
considered. Three dynamic itinerary routes were mentioned in [1], as follows.

• pick up containers at a CD, deliver them to ADs, and go to another CD
• after moving containers from a CD to ADs, go to ALs
• after loaded at a CD, go to ADs and proceed to a CL

In this paper, we focus on the third itinerary course and elaborate the scenario.
We assume at least four jobs should be done. The following example includes three
quay cranes and four container storage points (two storage points for discharging
containers and two storage points for loading containers). Import containers dis-
charged by crane A, B are assigned to storage area AD1 and AD2, respectively. And
export containers stored at AL1, AL2 are assigned to crane B and C for their
loading, respectively. The dotted line represents the unloaded itinerary while the
solid line stands for loaded itinerary.

Figure 2 illustrates the process of traditional static handling operation in con-
tainer terminal. In the process of discharging, trucks turn back to their original
location (unloaded) after finishing the unloading jobs. Similarly, in the process of
loading, trucks have to go to the Ads (unloaded), to pick up export containers and
transfer them to assigned QCs. This scheduling strategy will leave the trucks
unloaded frequently.

The cooperative scheduling addressed in this paper is defined with a given set of
jobs, as shown in Fig. 3. When a vessel arrives at the terminal, containers are
discharged on trucks by the QCs. For example, a truck transfers the container to the
assigned storage area AD1. Then the truck moves to AL1 to pick a container for
export. So, the container picked up from AL1 will be transported to the assigned QC
incidentally. However, in a busy terminal, many containers are waiting to be
transported nearby the quay crane B, so the truck can undertake one job (for
example, transfers a container to AD2). The same rule is true for the following
scheduling. The truck moves to AL2 to pick up a container for export. And finally,
the truck stops nearby quay crane C and waits for a new job. Obviously, this
cooperative scheduling strategy can decrease the rate of unloaded itinerary to a
large extent.

Fig. 2 Before cooperative
scheduling
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As described above, the cooperative scheduling strategy we proposed is more
advantageous than the traditional static one.

3 Model Development

In this section, we build a model to minimize the total time cost, that is, the sum of
the delay of requests and the travel time of yard trucks. And the flowchart of the
cooperative scheduling strategy is shown in Fig. 4.

3.1 Modeling Assumptions

According to the previous research on yard truck scheduling [8, 16], the following
assumptions are made in this study.

• The number of trucks is limited.
• The number of storage locations is no less than the number of discharging

containers.
• The quay crane and yard crane are always available. That is to say, once the yard

truck arrives at the quay crane or yard crane, it can be served immediately.
• Congestion among yard trucks is not considered.
• The pick-up and drop-off locations of each job are known and uniquely iden-

tified by their ðx, yÞ coordinates.
• The truck travel speed is the same for both loaded and empty trips.

Fig. 3 After cooperative
scheduling
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3.2 Notations

The following notations are used in this study.

i, j Index of jobs, i≠ j
p, q Index of location
N The number of containers to be transported
M The number of trucks to be used
J − Set of discharging jobs
J + Set of loading jobs
J ′ Union set of all jobs and initial status, J ′ = J ∪ lrf g
J ′′ Union set of all jobs and final status, J ′′ = J ∪ krf g
wi Starting time of job i
½ai, biÞ A soft time window for each job. Ii is a period of time involving the earliest

possible ai and the due time bi
ci Completion time of request i.
di Delay of request i. di = max{0, ci − bi}.
τp, q The travel time between location p and location q
ti The processing time of job i

Yes
No

No

No

Yes

Yes

Stay the initial position

Calculate the 
distance between 

CD and AL

Transport the container 
to assigned AD

Go to the 
nearest CD

Calculat e the 
distance between 

AD and CD

Go to the nearest AL

Transport the container 
to assigned QC

Discharging jobs
Exist? 

Loading jobs
Exist? 

Loading jobs
Exist?

Calculate the distance 
between AD and AL

Start

Fig. 4 The flowchart for the cooperative scheduling strategy
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τoi, ei, if job i is a loading job.
τoi, ζk, if job i is a discharging job and allocated to storage location k.

Lm The initial location for a truck.
rm The initial departure time for a truck
Pi The pick-up location of job i
Qi The drop-off location of job i.
Si, j Setup time of trucks from the destination of job i to the origin of job j.

τei, oj, if job i and job j are discharging jobs.
τei, ζj, if job i is a discharging job and job j is a loading job.

xik 1, if container i is allocated to storage location k.
0, otherwise.

Xijm 1, if truck m (∀m∈M) processes job j after job i.
0, otherwise.

Yim 1, if truck m (∀m∈M) processes job i (∀i∈N).
0, otherwise.

3.3 Model Formulation

In the process of cooperative scheduling, we aim at decreasing the unloaded itin-
erary rate to minimize the total make span of the transportation jobs. The processing
time of job i has two components: the travel time for the empty trip to Pi (if there is
any) and the complete time of job i. The problem formulation is modified based on
the model provided by Ng et al. [17] and Lee et al. [8]. However, Ng et al. [17]
proposed to schedule a fleet of trucks to perform a set of discharging jobs, ignoring
the loading jobs. And Lee et al. [8] only considered the typical static operation
pattern in the process of scheduling. In this paper, we take the loading jobs and
dynamic itinerary routes into consideration. The revised model is given as follows:

Minimize: Z = α1 ∑
i∈N

di + α2 ∑
i∈N

ti + ∑
i, j∈ J

sij Xijm

 !
ð1Þ

∑
M

m=1
Yim =1 ∀i∈N ð2Þ

∑
N +1

j=1 and i≠ j
Xijm ⩽ Yim ∀i∈N ð3Þ

∑
N

j=1 and i≠ j
Xijm ⩽ Yim ∀i∈N ð4Þ
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1⩾Xijm +Xijm ⩾ Yim +Yjm − 1 ∀i, j∈N and i≠ j; ∀m∈M ð5Þ

wi + Sij + ti ⩽Kð1−XijmÞ+wj ∀i∈ J ′ and ∀i∈ J ′′ ð6Þ

ai + di ⩽ ci ∀i∈N ð7Þ

rm + tLm,Pi + di ⩽ ci ∀i∈N; ∀m∈M ð8Þ

sij = τei, oj ∀i, j∈ J − ð9Þ

sij = ∑
k ∈K

τei , ζj xjk ∀i ∈ J − and ∀j∈ J + ð10Þ

ti = τoi, ei ∀∈ J + ð11Þ

ti = ∑
k ∈K

τoi , ζk xik ∀i ∈ J − ð12Þ

xik, Xijm, Yim ∈ f0, 1g, ∀i ∈ J ′, ∀i ∈ J′′ and ∀k ∈ K ð13Þ

Xijm, Yim ∈ f0, 1g, ∀i ∈ N − 1; ∀i ∈ N ∀m ∈ M ð14Þ

wi ∈ R ∀i ∈ J ′ ∪ J ′′ ð15Þ

ti ∈ R ∀i ∈ J ð16Þ

Sij ∈ R ∀i ∈ J and ∀j ∈ J ð17Þ

di ⩾ 0 ∀i ∈ J ′ ∪ J′ ð18Þ

The movement of a container from its origin to destination is defined as a job,
denoted by i and j. Two types of jobs are considered in this paper, loading jobs and
discharging jobs. Let J + and J − represent the set of loading jobs and the set of
discharging jobs, respectively. A soft time window ½ai, biÞ for each job is given as a
constant.

Constraint (2) states that each job is processed by only the same truck. Con-
straints (3)–(5) give the relationship between X and Y for jobs handled by the same
truck. Constraint (6) gives the connection of the starting time of a job and that of its
successor. Constraint (7) defines the relationship between the completion time,
preparation time and duration of a job. Constraint (8) gives the relationship between
the duration and completion time, the truck preparation time and the travel time of a
truck from its initial location to the pick-up location. Constraints (9) and (10) define
the setup time of trucks from the destination of job i to the origin of job j. Con-
straints (11) and (12) define the processing time of job i. Constraints (13)–(18) are
simple constraints which define the range of values of some variables.
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4 Solution Approach

This paper aims at employing PSOs in solving the scheduling problem. Tasgetiren
et al. [18] presented the completion time for n-job m-machine problem by equa-
tions. Similarly, in the yard truck scheduling problem, given the processing times
tim for job i on truck m ðk=1, 2, . . . ,mÞ, and a job permutation
πi = ½πi1, πi2, . . . , πin�, n jobs ðJ =1, 2, . . . , nÞ will be sequenced through m trucks.
Let TðπJ ,mÞ denotes the completion time of job πJ on truck m. The calculation of
completion time for n-job m-truck problem is given as follows:

Tðπ1, 1Þ= tπ1, 1 ð19Þ

TðπJ , 1Þ=TðπJ − 1, 1Þ+ tπJ, 1 J =2, 3, . . . n ð20Þ

TðπJ , kÞ=TðπJ − 1, kÞ+ tπJ, k J =2, 3, . . . n, k=2, 3, . . . ,m ð21Þ

Then the yard truck scheduling is to find a permutation π� in the set of all
permutations ∏. As demonstrated by the following equation.

Tðπ *Þ⩽Tðπn,mÞ ∀π ∈∏ ð22Þ

4.1 Particle Swarm Optimization Algorithms (PSOs)

After Kennedy proposed particle swarm optimization in 1995 [12], inertia weight
was introduced into PSO algorithm (called SPSO) to provide a balance between
global and local exploration abilities by Shi et al. in 1998 [19]. The key opti-
mization mechanism of SPSO algorithm is described as follows.

Vid =w *Vid + c1 * randðÞ * ðPid −XidÞ+ c2 * randðÞðPgd −XidÞ ð23Þ

Xid =Xid +Vid ð24Þ

The vector Pid −Xid represents the distance from individual’s current positions
Xidð Þ to the individual’s previous best position Pidð Þ. The Ggd −Xid indicates the
distance between current positions Xidð Þ and the best position ðPgdÞ that has been
found by any member of the neighborhood. c1 and c2 are two positive constants,
randðÞ is a uniformly distributed random function in the range [0, 1], and w is the
inertia weight.

Three improved PSOs, including CLPSO, LPSO and SLPSO can be referred to
literature [13–15], respectively. The main updating equations of the three PSOs are
described in Table 1.
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PSOs are used to solve difficult continuous optimization problems. However, the
scheduling problem in this paper is a discrete one. So, we have to enable the PSOs
to be applicable to the continuous problem.

4.2 Solution Representation

In our former research, solution representation was discussed in [20]. The position
vector of each particle πiðn+ + n− + l+mÞ with ðn+ + n− + l+mÞ dimensions is divided
into three parts. The ðn+ + n− Þ dimensions πJi = ½πi1, πi2, . . . , πinðn+ + n− Þ� denote
scheduling permutation of jobs. The l dimension πli = ½πiðn+ + n− +1Þ,
πiðn+ + n− +2Þ, . . . , πiðn+ + n− + lÞ� denotes potential locations available to the dis-
charging containers. We distinguish them from job permutation part with negative
numbers. The m dimension πmi = ½πiðn+ + n− + l+1Þ, πiðn+ + n− + l+2Þ, . . . , πiðn+ + n−

+ l+mÞ� denotes workload assignment, namely, the number of jobs assigned to each
truck.

In order to design a corresponding relationship between the scheduling problem
and the particles, a suitable mapping to convert continuous position of particles
XJ
i = ½Xi1,Xi2, . . . ,Xiðn+ + n− Þ� into job sequence πJi = ½πi1, πi2, . . . , πinðn+ + n− Þ� in

PSOs is needed. The smallest position value (SPV) rule [18] is employed in this
study.

Table 2 exhibits the solution representation of particle XJ
i for PSOs with its

corresponding sequence. According to the SPV rule, the smallest position value is -
1.57, so the dimension j=5 is assigned to be the first job in the processing
sequence; the second smallest position value is 0.03, so the dimension j=2 is
assigned to be the second job in the processing sequence, and so on.

Table 1 The chosen PSOs for comparison

Algorithm Updating equations

CLPSO Vid =w *Vid + c * randðÞ * ðPid −XidÞ
LPSO Vid =w *Vid + c1 * randðÞ * ðPid −XidÞ+ c2 * randðÞðPgd −XidÞ

with topology structure of Square

SLPSO ΔXijðt+1Þ= r1 *ΔXijðtÞ+ r2ðtÞ*IijðtÞ+ r3 * ϵ *CijðtÞ
with IijðtÞ=XkjðtÞ−XijðtÞ,CijðtÞ=XjðtÞ−XijðtÞ

Table 2 Solution
representation of particle Xi

j 1 2 3 4 5 6

XJ
i 2.34 0.03 3.13 0.78 –1.57 1.87

πJi 5 2 6 3 1 4
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The l dimension πli = ½πiðn+ + n− +1Þ, πiðn+ + n− +2Þ, . . . , πiðn+ + n− + l� is the permu-
tation of the integers from -1 to L. The m dimension πmi = ½πiðn+ + n− + l+1Þ,
πiðn+ + n− + l+2Þ, . . . , πiðn+ + n− + l+mÞ� are workload assignment for trucks. As can be
seen in Fig. 5, two trucks are arranged to work on six scheduling jobs. And Truck 1
is responsible for four jobs while Truck 2 is assigned two jobs. We assume that the
first three jobs are discharging jobs and the second three jobs are loading jobs. The
scheduling solution is that Truck 1 will handle jobs 6, 2, 4, 3, sequentially, while
Truck 2 is assigned to handle jobs 5, 1, sequentially. According to the location
solution, the first discharging job is located in ζ2, the second discharging job is
located in ζ1 and the last discharging job is located in ζ3, as shown in Fig. 6.

5 Computational Experiments

The computational experiments used to evaluate the performance of PSOs are
discussed in this section. Four test problems of scheduling trucks are solved by
Matlab R2001b running on a PC with Intel Core i5 2.20 GHz and 4 GB RAM.

The number of jobs (n) ranges from 8 to 300 while the number of trucks
(m) ranges from 3 to 50 [17]. The four typical different scales of n and m are listed
in Table 3. The initial location of trucks and pick-up/drop-off location are created
following a uniform distribution in the two-dimension square from 0 * 0 m2 to
1500 * 1500 m2. And the earliest possible time of the jobs is randomly generated

Fig. 5 An example for encoding scheme

Fig. 6 Decoding of encoding
scheme illustrated in Fig. 5

Table 3 Four representative
combinations of n and m

Instance n m

1 8 3
2 40 15
3 160 40

4 300 50
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following a uniform distribution of ∪ ð0, 1500Þ (unit: second) and the due time of
jobs is generated following a uniform distribution of ∪ ð200, 500Þ (unit: second)
[16]. The travel speed of trucks is 11.11 m/s and the two weight α1 and α2 are set to
0.6 and 0.4 as described in literature [8]. Each experiment is run twenty times.

It can be seen from the results presented in Table 4 that, with the increase of the
number of jobs and trucks, the computational time grows rapidly. For the
small-scale instance (i.e. n=3,m=8), all of the PSOs can find the minimum
schedules for the problem. Figure 7 shows the average convergence rate on
small-scale instance.

Table 4 Performance of the four PSOs on the test problem

Instance ðn,mÞ Algorithm Max Min Mean Time(s)

1 (3,8) SPSO 1.9466e+003 1.8140e+003 1.8279e+003 0.70
CLPSO 1.8582e+003 1.8140e+003 1.8239e+003 1.30
LPSO 1.8583e+003 1.8140e+003 1.8184e+003 0.17
SLPSO 1.8147e+003 1.8140e+003 1.8140e+003 0.30

2 (15,40) SPSO 2.7748e+003 2.3547e+003 2.5558e+003 13.26
CLPSO 2.8587e+003 2.4160e+003 2.6460e+003 10.44
LPSO 2.7941e+003 2.3125e+003 2.4494e+003 11.28
SLPSO 2.5863e+003 2.2678e+003 2.3932e+003 9.30

3 (40,160) SPSO 5.2197e+003 5.1623e+003 5.1710e+003 37.89
CLPSO 5.3109e+003 5.2450e+003 5.2606e+003 39.53
LPSO 4.9324e+003 4.6359e+003 4.7829e+003 38.08
SLPSO 4.7277e+003 4.5305e+003 4.3096e+003 36.08

4 (50,300) SPSO 6.9758e+003 6.7766e+003 6.8016e+003 49.30
CLPSO 7.5080e+003 7.2925e+003 7.3626e+003 61.73
LPSO 7.3979e+003 7.1155e+003 7.1690e+003 59.65
SLPSO 6.3277e+003 6.1905e+003 6.2306e+003 48.08
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Fig. 7 The average evolution
curve for small-scale instance
(n=3,m=8)
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Experimental study shows that the SLPSO outperforms the other three PSOs on
all test problems. Our comparative results show that SLPSO performs well on
small-scale problems and is promising for solving large-scale problems as well. It
may be attributed to the fact that social learning mechanisms have the advantage of
allowing individuals to learn behaviors from others without incurring the costs of
individual trial-and-errors.

6 Conclusions

In this study, we addressed the cooperative scheduling strategy to reduce the
unloaded rate and thus to cut back the make span. And PSO and its variants are
applied to find optimal schedule strategy for the problem. A comprehensive set of
test problems are used to compare the performance of the PSOs. The computational
results demonstrated that the SLPSO performs better than all three PSOs on
small-scale problems and large-scale problems as well. In future research, the
development of more practical application will still be an emphasis on the study of
integrated optimization model in container terminal operations.
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A Method to Reduce the Amount
of Inventoried Stock in Thai Supply Chain

Tomohito Okada, Akira Namatame, Hiroshi Sato and Saori Iwanaga

Abstract A global industrial enterprise is a complex network of different
distributed production plants that produce, inventory, and distribute products. An
agent-based model can be used to solve complex network problems that involve
independent actors. The global economy and the increase in both demand fluctu-
ation and pressure to lower costs while satisfying customers have put a premium on
smart supply chain management. It is important to undertake a risk benefit analysis
of supply chain design alternatives before making decisions. Simulation is an
effective approach to comparative analysis and evaluation of such alternatives. In
this paper, we describe an agent-based simulation tool for the design of smart
supply chain networks and logistics networks. In the agent-based approach, supply
chain models comprise supply chain agents. The agent-based simulation tool is
useful to predict the effects of local and system-level activities on multi-plant
performance and to improve the tactical and strategic decision-making at the
enterprise level. Specifically, this model can reveal the optimal transport method
under demand fluctuation and network disruption conditions. We found that
selecting transport methods according to maximum stock is effective and can reduce
cut the amount of stock in the whole supply chain in Thailand.
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1 Introduction

Supply chain and logistics networks have become larger and more complex due to
globalization. This tendency makes it difficult to manage the supply chain and meet
market demand. Collaboration among many independent contractors and suppliers
is necessary to meet market demand. Companies should have an alternative
strategic solution for their supply chain to ensure continued existence of their
company. One solutions is to become a multi-plant enterprise. This has several
advantages such as low raw material costs, flexibility to change product, and the
ability to change the product flow network [1]. However, with a multi-plant
enterprise, the supply chain network involves many actors and it is operated col-
lectively. The logistics network, i.e., the physical transportation network, also
becomes an interconnected complex system that affects the behavior of the supply
chain network.

Many analytical methods [2–8] for modeling and optimizing different scenarios
in a multi-plant enterprise have been proposed. These methods involve mathe-
matical formulations for operations management in multi-plant industrial networks.
These studies have proposed methods to solve the combined production and dis-
tribution scheduling problem in multi-plant environments using mathematical
programming approaches.

2 Agent-Based Supply Chain Architecture

Lee and Billington [2] provided an insightful survey of common pitfalls in supply
chain management practices. Some studies demonstrate that market and supplier
relationships depend on quality, delivery time, and contract flexibility rather than
cost. Many studies have analyzed inventory problems in a multi-echelon supply
chain. Svoronos and Zipkin [3] investigated a multi-echelon system with multiple
tiers in the supply chain. In a multi-echelon system, it is assumed that the company
manages the supply chain and exercises centralized control.

Towill et al. [4] applied simulation technology to evaluate the effect of different
supply chain strategies when demand increases. Swaminathan et al. [5] presented a
modeling and simulation framework for developing decision support tools for
supply chain management. They developed a framework with two basic elements,
i.e., object modeling of supply chain flows and agent modeling of supply chain
entities.

The Just-in-Time philosophy affects conventional supply chain management
styles. The supply chain affected by this philosophy becomes globalization, use of
third parties, and reducing the lead-time. These trends reduce supply chain costs
and increase the company’s competitiveness relative to other companies in the same
market.

348 T. Okada et al.



Supply chain distribution can be modeled as a network problem. Player in the
supply chain and relationships between players can be represented as nodes and
links. Considering a supply chain as a network problem, a disruption means that a
node is shut down or a link is served.

Supply chains are defined as a collection of business centers through which
products pass at various stages of completion from the provision of raw materials to
final sales. Individual companies in supply chain are only aware of limited part of
the supply chain. Thus, it is difficult for an individual company to estimate demand.
The players in a supply chain depend on their own information, which may differ
from the information by headquarter management. The amount of order may be
larger than the headquarter one. The more amplified, the amount of order. These
problems can occur with a dynamic supply chain. Consequently, each company
makes incorrect demand estimations and inventory is larger than that required by
the actual demand. This is known as the bullwhip effect [5].

Information sharing among companies in the supply chain has been proposed as
a solution to the bullwhip effect. Information systems that support supply chain
management have unique characteristics. First, they should support distributed
collaboration among companies. Second, a single company cannot manage multiple
players in the supply chain directly, but there are need to coordinate each company.
Third, high intelligence for strategy, planning, and flexibility adaptation is required.
For these reasons, agent modeling is suitable to support supply chain management
[6].

Multi-agent technology has many beneficial features for autonomous, collabo-
rative, and intelligent systems in distributed environments, which makes it one of
the best candidates for complex supply chain management [7]. Agent-based
modeling is a suitable approach to analyze a system that is influenced by autono-
mous agents [8]. Such a system is affected by the behavior of the players in the
system and their interactions. The agent-based model comprises a network of
decentralized agents. Generally, agents can make decisions autonomously. They
can all decisions without centralized management. In addition, agents can change
decisions when conditions change.

A multi-plant enterprise can be modeled as a modular, decentralized, changeable
agent network. Such networks have many agents of different types. In addition, all
agents set their own goals in the supply chain.

The agent-based model can be used to analyze different stages of the supply
chain in order to determine what could happen under different scenarios, e.g., in an
aid supply chain where aid was not sufficient to meet demand. Analyzing different
stages of supply chain can provide information about possible side effects or
delayed consequences, such as the bullwhip effect. This is important because dis-
torted information in the supply chain can lead to significant inefficiencies. In the
case of an aid supply chain, inventory moves up the chain and fluctuates as more
donations are recollected in distribution centers, which distorts demand informa-
tion. The model represents the flow of emergency goods and how it is affected by
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information feedback. Thus, the model can explain the existence of bullwhip effects
at different times depending on the initial stock of stored goods in different parts of
the chain and on exogenous variables.

3 Model and Simulation

In Southeast Asia, floods have caused extensive damage. Despite this, there have
been little anti-disaster operations that deal with floods. We should consider net-
work disruptions caused by such disasters. Disasters can disrupt a supply chain
network, e.g., factories can shut down and products cannot be transported to
markets.

This study simulates a supply chain model in the automobile industry in Thai-
land that supports supply chain management. In former study, we dealt with
Southeast Asia [9]. Then, we can get data of open industrial data in Thailand. In
Thailand, there are 17 distributed industrial areas [10]. We clarify which routes are
effective to supply products produced in these industrial areas to the market in
Thailand.

3.1 Agents and Networks

The agent model is constructed from two types of agents, i.e., factory agents and
market agents. In this simulation, there are 17 factory agents and 30 market agents
(47 agents in total). Each agent is independent and can make autonomous decisions.
The function, location and the network are described as follows.

• Factory agent
Factory agents produce auto mobiles. In the automobile supply chain network, a
factory agent is an upstream supplier in the supply chain network. Each factory
agent produces products based on various demands and delivers products based
on orders from downstream retailers.

• Market agent
Market agents are consumers. Market agents are downstream in the supply chain
network. It is impossible to estimate consumption precisely; however, it is
possible to estimate consumption to some extent based on centralized sales
promotion campaigns. If consumption is high, the available stock will be
depleted. Lack of available stock results in lost sales opportunities. Conse-
quently, the company’s reputation will suffer, which affects the future man-
agement. The market controls inventory to avoid lack of stock due to
unpredictable consumption and to keep stock less within the inventory which is
not running short.
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• Agent locations

We selected 17 factory agents from the industrial area [10] and 30 market agents,
including tourist spots, like Phuket and so on (Table 1).

• Agent networks
The transport path between tradable agents in this model is a bipartite graph.
A bipartite graph is a layered graph with two layers, i.e., the factory layer and
the market layer. All factory agents can interact with all market agents. In this
network, agents of same type cannot interact, i.e., transactions between factory
agents are prohibited, as are transaction between market agents. We obtained
lead time data about in the transport route “Google map” as the land trans-
portation line (Table 2). We used Google Maps to identify transportation routes
and determined lead times based on the route. Here, lead time represents the
time from the start to end of a given process. For a market agent, lead time
represents the time between placing an order and product delivery.

Agent Rules
In this study, transportation routes are land transportation lines that connect fac-
tories (factory agents) and markets (market agents) in Thailand. We analyzed which
route is selected frequently by simulating the supply chain network.

Table 1 Agent names, types and IDs

ID Market agent ID Market agent ID Factory agent

0 Chiang Rai 17 Cha-am 30 Lamphun
1 Mae Hong Son 18 Rayong 31 Pichit
2 Chiang Mai 19 Huahin 32 Singburi
3 Lampang 20 Ban Pae Pier 33 Khon Kaen
4 Phrae 21 Chang 34 Nakhon

Ratchasima
5 Nong Khai 22 Tao 35 Prachinburi
6 Sukhothai 23 Surat Thani 36 Ratchaburi
7 Phitanulok 24 Phangnga 37 Ayudthaya
8 Khon Kaen 25 Kaolack 38 Saraburi
9 Surin 26 Phuket 39 Chachoengsao

10 Khorat 27 Krabi 40 Rayong
11 Phra Nakhon Si

Ayutthaya
28 Tambon Khlong

Khanan
41 Chonburi

12 Prachinburi 29 Lanta Yai 42 Pathum Thani
13 Kanchanaburi 43 Bangkok
14 Nakhon Pathom 44 Samut Prakarn
15 Bangkok 45 Samut Sakhon
16 Bang Lamung, Phattaya 46 Songkhla
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• Market agents

Market agents consume products. We set the consumption pattern as a lognor-
mality distribution, which the standard consumption pattern follows normal dis-
tribution. However, actually, there can be a remarkable rise or fall of sudden
demands; thus, it is acceptable to appropriate to other distributions. Thus, we
employ a lognormality distribution as the consumption pattern. This is the distri-
bution of a random variable for which the logarithm of the variable has normal
distribution, which is given as follows.

Dt+1 = μ+ ρ×Dt ð1Þ

Here, Dt is demand at step t, μ is the basement value of consumption at step t (5
in this simulation, ρ is a value in the range −1.0 to 1.0 at normal distribution, and
the average is 0.1.

The safety stock is the threshold. And it is out of stock if it less than the
threshold. The safety stock is expressed as follows.

SS=AvgC×MaxLT ð2Þ

Here, SS represents the safety stock, AvgC represents the average stock con-
sumption and MaxLT is the longest lead time among factory agents for the given
market agent. AvgC is the averaged stock consumption over the previous 10 steps.
This value is updated for each time step after the tenth time step. For the first nine
time steps, we calculate is the averaged stock consumption as the total past stock
consumption divided by t at time step t.

The market agent calculates the safety stock, the order point, and the order
amount, and manages the inventory. When the current stock is less than an order
point, the market agent orders products. The order point (OP) is expressed by the
following function.

OP=SS+AvgC ×LT ð3Þ

Here, LT is the lead time for a particular factory agent for a given market agent.
AO represents the order amount and depends on the current stock at the order

point. Typically, the market agent orders the required products for the lead time.

AO=AvgC ×LT+OP−CS ð4Þ

Here, CS represents current stock.
Sometimes, products cannot be delivered on in time because the factory agent is

out of stock. If the order amount is greater than the order point, a market agent
orders same as ordering point.

AO=AvgC ×LT ð5Þ
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We employ three methods to select a factory agent that can transact with a
market agent, “random selection”, “minimum lead time” and “maximum stock”.

For “random selection”, each market agent chooses a factory agent randomly
(Case 1). For “minimum lead time”, each market agent chooses a factory whose
lead time is the least among the factory agents (Case 2). For “maximum stock”,
each market agent chooses a factory agent whose stock is greatest among all factory
agents (Case 3).

We set the interval of ordering to once in 10 time steps for each agent. The upper
limit for the product order amount is 100. If this order amount exceeds 100, the
order amount substitutes for 100.

• Factory agents

Based on an order from a market agent, the factory agent sends out products.
The factory agent calculates the consumption of products and sends out the prod-
ucts and manages inventory. If the inventory amount is less than a certain pro-
duction point, it produces products based on the amount of production.

The factory agent calculates the safety stock, the ordering point, the amount of
the order, and manages the inventory. These functions are similar to that of the
market agent. The safety stock SS is the threshold. And it is out of stock if it less
than the threshold. It is given by the following function.

SS=AvgC ×MinLT×N ð6Þ

Here, AvgC is the average stock consumption and MinLT is the shortest lead
time of the market agents for the factory agent. The average stock consumption is
the averaged stock consumption over the past 10 step. This value is updated for
each time step after the tenth time step. Until nine time steps, we calculate the
average stock as the total past stock consumption divided by t at time step t. N is the
number of market agents that transact with the factory agent. When current stock is
less than a given production point, the factory agent produces products based on the
amount of production. The amount of production depends on the stock at the given
production point. Normally, the factory agent produces the required amount of
products for the lead time. We denote current stock as CS.

PP=SS+AvgC×LT×N ð7Þ

AP=PP−SS+PP−CS ð8Þ

However, products are sometimes out of stock. In this case, the factory agent
produces products as same as ordering point if the amount of produce is greater
than production point.

AP=PP−CS ð9Þ
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3.2 Simulation Settings

We define a single step as one hour. Each simulation has 8760 steps, i.e.,
approximately one year. The factory agent produces products when the amount of
inventory is under the order point. Here, the production cost is $90. The market
agent stocks and orders inventory form a factory agent. When the inventory is less
than the order point, the market agent orders the inventory shortage. In the market,
the inventory is consumed by the customer. The profit for a single product is $120.
When the inventory is less than the order point, the market agent orders inventory.
The delivery cost is $1 per inventory for a single time step. The store cost is $0.1
per inventory for a single time step. This simulation runs three times. We use the
average data from three simulations.

3.3 Simulation Results

The simulation results are shown in Table 3. The average amount of stock and the
standard deviation are described by the average stock per single time step in the
simulation. We found that the average amount of stock of market agent is the most
in the three cases if market agents select a factory agent randomly. If the market
agents select a factory agent whose lead time is the least in the factory agents, the
averaged stock is the least in the three cases. In other words, selecting by “minimum
lead time” is the best way to minimize the amount of stock for market agents.

On the other hand, for factory agents, selecting by “maximum stock” is the best
way to minimize the amount of stock and the averaged stock is the averaged stock
is the least in the three cases. Because the amount of stock for factory agents are
larger than that of market agents, as for entire supply chain, selecting by “maximum
stock” is the best way to minimize the amount of stock for all agents and the
averaged stock is the averaged stock is the least in the three cases.

As shown in Fig. 1, the transportation routes differ relative to the manner in
which the factory agent is selected.

• Case 1: Random selection

When each market agent selects a factory agent randomly, the agents transport
products by all possible transportation routes as shown in Fig. 1a.

Table 3 Averaged stock in the simulation

Case 1 Case 2 Case 3

Supply of market agent Average 31.63 13.57 14.39
Standard deviation 42.49 10.56 13.60

Supply of factory agent Average 909.14 1252.58 100.99
Standard deviation 822.89 2731.21 16.04

Entire supply Average 349.03 461.72 45.717
Standard deviation 651.06 1748.27 44.08
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(a) Case 1 (b) Case 2

(c) Case 3
Yellow circle: Factory agent, Red circle: Market agent

Fig. 1 Supply chain networks
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• Case 2: Minimum lead time

When each market agent selects a factory agent according to the minimum lead
time, the agents want to select the nearest factory agent. Then, the agents transport
products using by four clustered networks, as shown in Fig. 1b. The network areas
are classified as the northern, eastern, central and southern areas of Thailand.

• Case 3: Maximum stock

When each market agent selects a factory agent according to the maximum
stock, the agents want to select the largest factory agent. Then, the agents transport
products using two clustered networks as shown in Fig. 1c. The centers of these
two networks are Bangkok and Lamphun. The market agent tends to select a factory
in northern and eastern parts of Case 2.

4 Conclusion

To reduce the amount in stock of the whole supply chain in Thailand, we found that
selecting by maximum stock are effective. We also found four factory areas cen-
tered around Bangkok and Lamphun. Then, compared to randomly selection,
selecting the maximum stock can cut the amount of stock.

We found that supply chain management to reduce stock by holding industrial
four areas and building overall network, which centered on Bangkok and Lamphun
in Thailand.

This result is consistent with the North-South and East-West economic corridors
suggested by Ito [11]. In these corridors, transportation times are shorter than that of
sea routes and the costs are less than that of air transportation. It is expected that
these routes will be used in the future.

Ito focused on Vietnam and analyzed business expansion in Southeast Asia
considering labor force, cost, and infrastructure maintenance in Thailand, Cam-
bodia and Myanmar. An automobile industry has been developed in Thailand and
development is expected in Cambodia and Myanmar. As our results with regard to
transportation corridors are consistent with those of Ito, we consider that proposed
simulation tool will be useful.

5 Future Work

The proposed model helps decision making in multi-plant supply chain networks.
This model focuses on inventory flow from the factory to the market. If the model
considered an expanded the region of flow, it could simulate flow from raw
materials to the customer. In future, we expected an expanded version of proposed
model will assist supply chain management. The expanded model will be able to
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determine optimal delivery routes under various scenarios and the demand from the
manager. We expect that the expanded model will have additional functionality and
make use of expanded data to enable modeling of demand fluctuations, market
disruptions.

This study has demonstrated the potential of using agent-based modeling for the
supply chain management. Decision making in supply chain network is affected by
various types of agents and the relationships among agents. The agent-based
modeling approach can help decision making to manage the supply chain relative
dynamic networks and environmental conditions. Considering unpredictable market
changes and the need to adapt to such charges, it is expected that agent-based
modeling will reveal optimal decisions.

References

1. Behdani, B., Zofia, L., Arief, A., Rajagopalan, S.: Agent-based Modeling to Support
Operations Management in a Multi-plant Enterprise. In: International Conference on
Networking, Sensing and Control (ICNSC ‘09) pp. 323–328 (2010)

2. Lee, H.L, Billington, C.: Managing supply chain inventory: pitfalls and opportunities. Slone
Management Review 33(3), 65–73 (1992)

3. Svoronos, A., Zipkin P.: Evaluation of one-for-one replenishment policies for multiechelon
inventory systems. Management Science 37(1), 68–83 (1991)

4. Towill, D.R., Naim, M.M., Wikner, J.: Industrial dynamics simulation models in the design of
supply chains, International Journal of Physical Distribution & Logistics Management, 22 (5),
3 – 13 (1992)

5. Swaminathan, J.M., Smith, S.F., Sadeh, N.M.: Modeling Supply Chain Dynamics, Decision
Sciences 29(3), 607–632 (1998)

6. IMF-World Economic Outlook Databases, March (2015)
7. Naoaki, H.: Introduction of Supply Chain Management. Nikkei Bunko (1999)
8. Fermando, D, M., Gonzalo, G., Antonio, E., Luis Puigjaner.: An agent-based approach for

supply chain retrofitting under uncertainly (2007)
9. Tomohito, O., Akira, N., Hiroshi, S.: An Agent-Based Model of Smart Supply Chain

Networks. Intelligent and Evolutionary Systems Vol.5 of the series Proceedings in
Adaptation, Learning and Optimization pp 373–384(2015)

10. Tokyo Development Consultants.: Tokyo Development Consultants, Available: http://www.
tdc-thai.com/factory/area/

11. Sayaka, I.: Rising Like a Dragon. Available: http://www.sumitomocorp.co.jp/english/
business/kouhou-person/article/id=26806.

A Method to Reduce the Amount of Inventoried Stock in Thai … 359

http://www.tdc-thai.com/factory/area/
http://www.tdc-thai.com/factory/area/
http://www.sumitomocorp.co.jp/english/business/kouhou-person/article/id%3d26806
http://www.sumitomocorp.co.jp/english/business/kouhou-person/article/id%3d26806


Increasing Stability of Human Interaction
Against Time Delay on Perceptual Crossing
Experiment

Sohtaroh Saitoh, Hiroyuki Iizuka and Masahito Yamamoto

Abstract Perceptual Crossing experiment is the method for analyzing human inter-

action with low degrees of freedom of perception and motion. In this experiment,

participants need to establish a cooperative interaction to achieve a task. In this study,

we introduce time delays of participant’s perception in this experiment, and evaluate

the stability of human social interaction against the time delay. Our result shows that

human social interactions have the stability against the time delays by changing their

behaviors adaptively. We also investigate if the stability can be enhanced by modu-

lating the participant’s behavior conversely. It is shown that it is possible to increase

the stability of social interaction by slowing down behaviors of participants.

1 Introduction

Human social interaction has been studied intensely in order to develop a robot that

can interact with human naturally and smoothly. Those robots are expected to be

used for various kinds of purposes such as entertainment, business, and rehabilita-

tion. For entertainment and business purposes, human can enjoy their interaction

with a robot as a friend and it may explain and recommend new products instead of

sales staffs [1]. For the rehabilitation purposes, the robot is applied to improve men-

tal disabilities through interactions [2]. In order to understand human social interac-

tion for such an application, the analyses tend to be complicated because of several

interaction modalities such as verbal communication, facial expressions including

gaze directions, and gestures by hands [3]. Auvray et al. have investigated the social

dynamic interaction in a minimal shared virtual environment, which is called per-

ceptual crossing experiment where two participants interact with each other with

restricted and simple motion and sensation [4]. The studies using the experimental

framework revealed that exact interaction timing is important to sustain the human

interactions on such a environment [5].
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Up to present, a lot of social robots and software agents that interact with human

have been developed and some of them are deployed in a public area to interact with

human customers at shops or restaurants [6]. However, it is difficult for a robot to

sustain the interaction with a human for a long time. Human feels uncomfortable and

easily get bored due to delayed and poor responses. In order to avoid such uncom-

fortable situations, it is required to clarify the conditions of interaction timings to

sustain the interaction.

The aim of this paper is to clarify the stability conditions of the social interaction

by introducing time delay on perceptual crossing experiment and to investigate how

we can increase the stability of human interaction on such delay environment. By

introducing time delay, it is shown how the social interaction is established and how

we can modulate the stability of interaction. Time delay effects of individual percep-

tion are well studied as cognitive science [7, 8] however this paper investigates how

the delay is suppressed or enhanced in the social interaction.

2 Perceptual Crossing Experiment

A schematic view of our experimental setup is shown in Fig. 1. It is built based on

the original perceptual crossing experiment [4]. Two participants are embodied as

avatars in a 1D virtual environment in which they can move left or right by using

a trackball mouse. The translational left/right movements are transformed to the

avatar’s motion and up/down movements are simply ignored. The both ends of the

1D virtual space are connected, i.e., the space becomes circular. The participants

hold a voice coil motor on the left hand and receive tactile stimuli as vibrations from

the motor for as long as their avatar overlaps with another virtual objects. In the

virtual environment, each participant can encounter two different virtual objects: an

object of their partner’s avatar, and an obstacle object called “shadow” that keeps a

constant distance to the partner’s avatar, which means that the shadow moves in an

exactly same manner with the avatar (In addition to these, a static object exists in the

original Auvray’s experiments, which is eliminated here). There are neither size nor

Fig. 1 Experimental setup and virtual environment
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feedback differences between avatar and shadow objects. It means they are identical

except for the position. The task is to find the partner’s avatar without being attracted

by the shadow object and participants are instructed to click in order to report that

they have found the partner’s avatar during a trial. No feedback about the success or

failure for the task is provided during the experiment. The discrimination of the part-

ner’s avatar with the shadow object can be achieved only by the social cooperated

and coordinated interaction.

A trial of experiment consists of 60 s. The participants are allowed to click once

during a trial when they think that the object that they are interacting with (i.e.,

the object that causes vibrations) is the partner’s avatar. When they have not been

confident during a trial, they do not have to click. They are instructed to get a point in

each trial according to the timing of the click:+1 point if clicking when encountering

the avatar, −1 point if clicking when not encountering the avatar, 0 point without

clicking in the trial. Their task through the experiment is to maximize the total points

of paired participants as a cooperation game. The participants are not informed about

the partner’s click, which means that they have to keep interactions even after their

own click. It is necessary for both participants to cooperate with each other and click

at the appropriate time.

3 Time Delay

The previous studies show that the participant can discriminate the partner’s avatar

with the shadow object even their movements are objectively same and can correctly

click when interact with the partner [5]. In order to see how the successful coordi-

nated interaction is sustained, we introduce into the perceptual crossing experiment

the time delay between the time when avatar touches another objects in the virtual

environment and the time when the participants are given the actual feedback caused

by the contacts. In the experiment, there are basically six different time delays, i.e.,

0 ms (no time delay), 100, 200,... 500 ms delays. There are a few additional time

delay conditions, which is described later. For example, under 100 ms time delay

condition the participants perceive a tactile stimulus 100 ms after the actual avatar’s

contacts with objects in the virtual environment. In this paper, both participants have

the same time delays.

Six participants (three pairs) joined this experiment. 20 trials were performed for

each delay condition. There was rest between different conditions.

4 Result

The example of participants’ behaviors (Pair 1) without time delay is shown in Fig. 2.

In the experiment, the length of the 1D space is 600 units long (from −300 to 300 in

the figure). Because they have no feedback at the beginning, they just search for
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Fig. 2 Example behaviors

of pair 1 without the time

delay

objects by moving toward one direction to touch anything. When passing the shadow

object and getting feedbacks, the participants tried to start interaction. However, the

shadow object did not respond and the coordinated interaction could not be ini-

tialized. When the participants touched each other, their behavior were organized

and they sticked together. Their behaviors formed turn-taking behaviors in this case

where one participant oscillates around while anther stays there and their roles are

exchanged alternately. The turn-taking behaviors are often observed in the percep-

tual crossing experiments [9] however it is not absolutely necessary for this task.

After establishing turn-taking behavior, both participants could click to report that

they were interacting with the partner’s avatar. Figure 3 shows the example behaviors

when the 500 ms time delay was introduced. It should be noted that the time delay is

so small that it is not observable in the scale of the graph. The task was not achieved

in this example. When the participant touched something, they tried to form a coor-

dinated behavior in the same manner of the above. However, even when touching the

partner’s avatar, they could not keep touching. They touched each other for a while

and they split away. The coordination could not be achieved by the end of the trial.

The time delay destabilized the interaction and prohibited to form a coordination. In

the successful trials even under the delayed environment (not shown), they somehow

formed the coordination successfully and clicked during the coordination.

Figure 4 shows the successful rates of clicks under different time delay condi-

tions. The results of each participant are separately shown. If both participants can

click correctly, it means that they can establish a cooperative interaction to achieve

the task. When the cooperative interaction can be maintained even under the time

delay conditions, we could say that the cooperative interaction is stable. In that sense,

the successful rates of the interactions under the time delay conditions are regarded

as the stability. Pair 1 and 2 could achieve the task without time delay because the

percentage of the correct click rate with 0 ms time delay is over 90 %. To see the

stability against the time delay, the performances are compared in different amounts
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Fig. 3 Example behaviors of pair 1 with 500 ms time delay

Fig. 4 Click rates of all participants under different time delay conditions

of time delay. Pair 1 was stable until 400 ms time delay. For pair 2, because their

performances were not affected by 500 ms time delays, we performed additional

experiments with 700, 900, 1200, and 1500 ms delay conditions. The performances

decreased at 1500 ms delay condition, which is shown on the right-most of pair 2

graphs in Fig. 4. Pair 2 was more stable than pair 1 in terms of time delays. The dif-

ference of the stabilities of pair 1 and 2 has not been analyzed yet but it must depend

on the shape of the coordination. On the other hand, the successful rate of the par-

ticipant 2 of pair 3 was very low even without the time delay while the click result

of the partner was perfect. The successful rates of the participant 2 in other time

delay conditions were not consistent. The reason for that is not obvious however the

participant did not make wrong click and just did not click when the performances

were low. The participant’s confidence to do clicks might not be consistent. It is also

shown that a few pairs could not achieve the task in the previous studies [5]. Because
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the participant did not achieve the task properly, pair 3 was not tested with the further

experiment however the behaviors against the time delays were analyzed.

In order to investigate how the participants change the behaviors against time

delays, we measured the periods of tactile stimuli during the coordinated behaviors.

The periods are calculated by averaging the time intervals between tactile stimuli

which occurs when only one participant (A) is moving and another (B) is staying. In

this case, the time interval is used for participant A’s periods. For participant B, it is

calculated when B is moving and A is stopping. The time intervals for the calcula-

tions are shown in Fig. 5. The period shows how quick they touch each other during

a coordination, i.e., the speed of interaction in other words. The results of the periods

of tactile stimuli are shown in Fig. 6. It is interesting that it seems that the partici-

pants share the periods in the pair. When the period is short or long in a participant,

the period of another also becomes short or long, respectively. Imitation might have

happened there. Another important aspect is that their behavior became slower in

terms of the periods as the time delay became longer. Therefore, we hypothesized

that the participants change the speed of the interaction to establish or sustain the

coordination against the time delay, and pair 1 and 2 could successfully achieve the

task under time delay conditions.

If the hypothesis is true, there is a possibility to increase the stability of the coor-

dination by somehow modifying the speed of interaction. To investigate this possi-

bility, we performed slowing-down behavior experiment with 500 and 1500 ms time

Fig. 5 Averaging time

intervals between tactile

stimuli to calculate the

period

Fig. 6 Time intervals

during coordination in

different time delays
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delay conditions for pair 1 and 2, respectively, where their performances of the task

were low. If it can increase the stability, the performance must rise. In the experi-

ments, the participants’ movements are slowed down. The slowing-down was sim-

ply implemented by changing the gain of transformation from the trackball mouse

movements to the movements in the virtual environment. It dropped as much as 50 %

of the previous experiment in the slowing-down behavior experiment. It should be

noted that the slowing-down does not necessarily cause the decrease of the interac-

tion speed, which is defined as the period of the tactile stimuli. If the participants

move the trackball mouse during the coordination in the same manner as the pre-

vious experiment, the period does not change. What changes in the slowing-down

experiment is the time duration of the vibration when passing through the partner.

We expected that such a change affects the participants’ behavior and causes the

decrease of the interaction speed. The fact that their movements were slowed down

was not informed to the participants.

Figure 7 shows that the successful rates of clicks in the previous time-delay exper-

iment and slowing-down experiment with the same amount of the time delay. The

performances of the slowing-down experiment became better than the previous

experiment for both pair 1 and 2. We also measured the interaction speed by the

time period of the tactile stimuli in the same way as Fig. 6. The results are shown in

Fig. 8. Despite the fact that slowing-down modulation does not mean decrease of the

interaction speed, the periods actually became slower. Figure 9 shows the example

of the participants’ movements with 500 ms time delay in the slowing-down experi-

ment. The participants could form the coordination and achieved the task. This result

shows that modifying the speed of the avatar makes it possible to indirectly control

the speed of the social interaction, and thus to increase the stability of the social

interaction.

Fig. 7 Comparison of the click rates in the original and slowing-down conditions
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Fig. 8 Comparison of the time intervals of the tactile stimuli in the original and slowing-down

conditions

Fig. 9 Example behaviors

of pair 1 with 500 ms time

delay in the slowing-down

condition

5 Discussion and Summary

Our results showed that the participants formed the relatively slow coordinated

behaviors according to the amount of the time delay. This might be because the

slower movements produced the longer vibration when interacting with the partner,

which makes sure that something is there. The rhythm shared between participants

might also have become slower. If the rhythm is quick, the response have been per-

formed at the exact timing. On the other hand, the response timing might not need

to be strict in the slow rhythm. Because of that, the stability of the social interaction

against the time delay could be enhanced.

If we can control the speed of the social interaction between a robot and human

somehow by an interface device as our experiment did, we might be able to estab-

lish more fruitful interaction between human and a robot. For example, slowing the
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speaking speed by an interface device can produce more stable interaction between

human and robot. The modulation of the gesture speed in the interaction might have

the same effect. These could be investigated as future works.
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Differential Evolution with Landscape-Based
Operator Selection for Solving Numerical
Optimization Problems

Karam M. Sallam, Saber M. Elsayed, Ruhul A. Sarker and
Daryl L. Essam

Abstract In this paper, a new differential evolution framework is proposed. In it, the

best-performing differential evolution mutation strategy, from a given set, is dynami-

cally determined based on a problem’s landscape, as well as the performance history

of each operator. The performance of the proposed algorithm has been tested on a

set of 30 unconstrained single objective real-parameter optimization problems. The

experimental results show that the proposed algorithm is capable of producing good

solutions that are clearly better than those obtained from a set of considered state-

of-the-art algorithms.

1 Introduction

Optimization is an important decision making tool in many fields, including, but

not limited to, operations research, engineering design and data mining. Without

loss of generality, a global unconstrained single objective optimization problem, as

considered in this paper, can be stated as finding the values of a decision vector

⃖⃗x = (x1, x2,… , xD) ∈ ℝD
, which satisfies the variable bounds, xmin ≤ x ≤ xmax and

minimizes or maximizes an objective function f (⃖⃗x), where xmin and xmax are the lower

and upper boundaries, respectively. In these problems, the decision variables may

be integer, real, discrete, or mixed [10] and the objective function can be linear or
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nonlinear, convex or non-convex, continuous or not continuous, and uni-modal or

multi-modal [9].

As gradient based methods usually encounter many difficulties when solving such

complex problems [16], evolutionary algorithms (EAs) have received much inter-

est over the last few decades. EAs are population-based search strategies that have

demonstrated promising results in solving complex optimization problems [29]. The

reasons for this popularity are (1) they do not require the satisfaction of specific

mathematical properties; (2) they are flexible to dynamic changes; and (3) they have

the capability for self-organization [12]. However, as EAs are stochastic algorithms,

there is no guarantee that they will reach an optimal solution in every run. To add to

this, the performance of EAs depends on parameter settings.

The family of EAs contains various algorithms, such as differential evolution

(DE) [30], genetic algorithm (GA) [13] and evolution strategy (ES) [27]. The major

difference between these algorithms, is in the way they produce new solutions.

Among those algorithms, DE has gained popularity in solving continuous optimiza-

tion problems [7, 28]. However, there is no guarantee that a DE algorithm, which

performs well for one problem, or a certain class of problems, will work well for

another, or on a range of problems. One reason for this is the variability of the under-

lying mathematical properties of optimization problems.

As a consequence, researchers have proposed multi-operator and multi-method

based algorithms to solve complex optimization problems [9, 11]. However, the way

of combining these operators and/or methods in the best way is still a challenging

task. In the evolutionary algorithms, the selection of operators for use in a search

process is made based on different criteria, such as the improvement in the quality of

solutions, and/or constraint violations and/or the feasibility rate [9], re-enforcement

learning mechanisms [1, 17], convergence differences and progress ratios [14]. How-

ever, the use of landscape information in the selection process is rare, even though

it may boost the performance of an algorithm if it is carefully incorporated [2, 6].

However, for these methods that do exist, they have some limitations: (1) the land-

scape analysis was performed using an off-line mode, i.e., initial experiments were

conducted to calculate landscape statistics values independently of the evolutionary

process used for solving the problem [22, 23]; (2) the calculation of the landscape

measures was computationally expensive [23]; and (3) a training and testing mech-

anism is used, which may mean the algorithm is biased towards the considered test

problems, and hence its performance can deteriorate when solving another set of

problems.

In this paper, a new DE framework is proposed, in which a function’s land-

scape information is considered, in addition to the usual performance history of

the operators in selecting the best-performing DE operator during the evolutionary

process. We also consider linear population size reduction, in which population size

is reduced continuously with a linear function. In linear population size reduction,

the worst individual is deleted to resize the population. In this paper, before deleting

the worst-ranking individuals, a modified technique is used, the 2 worst solutions and

the centroid of the entire population are used to generate a new individual. If the new

one is better than the second worst one, it replaces it. To speed up the convergence
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of the proposed algorithm, the sequential quadratic programming (SQP) technique

is periodically applied, once every predefined number of generations. This DE algo-

rithm with landscape based operator selection is named DE-LOS.

To judge the performance of the proposed framework, a total of 30 test func-

tions were solved from the CEC2014 competition [18]. These benchmark sets have

different mathematical properties, and are of 10, 30, 50 and 100 dimensions. The

computational results show that the performance of DE-LOS is much better than the

top two algorithms from the CEC2014 competition.

The rest of this paper is organized as follows: in Sect. 2, a review of DE algorithms

and operators are reviewed, along with some landscape measures. Section 3 presents

the proposed framework. The simulation results on benchmark problems, and the

value of parameters are provided in Sect. 4. Finally, Sect. 5 provides conclusions and

possible future research directions.

2 Related Work

In this section, a literature review of DE and the concept of landscape analysis are

discussed.

2.1 Differential Evolution Algorithm

DE was proposed by Storn and Price [30]. It is a popular EA because it usually con-

verges fast, is simple in implementation, and the same settings can be used for many

different optimization problems. As of the literature, DE showed good performance

in comparison to several other EAs on a wide variety of problems [8]. The DE algo-

rithm uses three operators (mutation, crossover and selection) to evolve a population

of individuals during the search process.

2.2 Improved DE Algorithms

In this section, some of the improved variants of DE are discussed.

2.2.1 Single Operator de Variants

An adaptive DE algorithm with an optional external memory (JADE) was proposed

by Zhang et al. [35], in which the CRi of each individual xi at each generation was

independently generated according to a normal distribution of mean 𝜇Cr and stan-

dard deviation 0.1, where when the value of CRi falls outside [0,1], it is repaired to a
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value in [0,1]. Also, the value of, Fi, of each individual, xi, was independently gener-

ated according to a Cauchy distribution with parameter 𝜇F and scale parameter 0.1.

If its value is greater than 1, then it is truncated to 1, or regenerated if Fi < 0.

Success-history based parameter adaptation for differential evolution (SHADE),

which is an improved version of JADE, uses a history based parameter adaptation

method. In SHADE, instead of using a single pair (𝜇CR, 𝜇F) to guide parameter

adaptation, the mean values of SCR and SF for each generation, were stored in mem-

ory as MCR and MF.

The L-SHADE [31] algorithm is a SHADE algorithm that uses linear popu-

lation size reduction (LPSR) to dynamically re-size its population during a run.

LPSR reduces the population linearly as the number of fitness evaluations increases.

LSHADE showed good performance, in comparison with other algorithms over a

set of unconstrained optimization problems.

Sallam et al. [28] proposed a neurodynamic differential evolution algorithm for

solving the CEC2015 single objective optimization problems. An adaptive mecha-

nism was proposed for the appropriate use of LSHADE and neuro-dynamic during

the search process.

2.2.2 Multi-operator DE Variants

In this section, a brief review of multi-operator based DE and self-adaptive DE is

provided.

Self adaptive multi-operator differential evolution (SAMO-DE) was proposed by

Elsayed et al. [9] for solving constrained optimization problems. In their proposed

algorithm, each operator has its own sub-population which are evolved by different

DE operators. Based on an improvement measure, in which the solution quality,

constraint violation and feasibility ratio were used to calculate the success of each

operator, the number of individuals in each sub-population was adaptively updated,

and more emphasis was given to the operator with the highest success. The results

showed that SAMO-DE performed better than other-state-of-the-art algorithms.

Composite DE (CoDE) was proposed by Wang et al. [33] for solving optimization

problems. In CoDE, three mutation strategies were randomly combined with three

fixed control parameter settings for generating a new trial vector at each generation.

To generate a new solution, three vectors were generated, then the best one among

them was selected to enter the next generation. From the experimental results, it

was concluded that CoDE is a promising DE algorithm for solving optimization

problems.

A self-adaptive DE (SaDE) was proposed by Qin et al. [26] for solving uncon-

strained real-parameter optimization. In SaDE, both the trial vector generation strat-

egy and its associated control parameter values, were gradually self-adapted accord-

ing to a success rate, that was calculated based on previous learning experience. At

the beginning, all mutation strategies had equal probability to generate a new solu-

tion, and the probability was updated after an initial LP generations, accordingly as

follows: at the end of each generation, after evaluating all the generated trial vectors,
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the number of trial vectors generated by each strategy that successfully entered the

next generation was recorded in its success memory and the number of trial vectors

generated by each strategy that failed to enter the next generation was recorded in its

failure memory. This algorithm performed much better than both the traditional DE

algorithm and several state-of-the-art adaptive parameter DE variants.

All of the above mentioned methods did not incorporate any landscape informa-

tion in the selection phase.

2.3 Landscape Analysis

Generally, a fitness landscape consists of: (1) a set of solutions (populations of indi-

viduals), (2) fitness values (objective function values) of individuals, and (3) a neigh-

borhood operator which can be used as a distance measure [19, 22]. Measuring the

fitness landscape of a problem aids researchers to classify a problem as easy or hard

to solve [25]. Many landscape measures have been proposed to understand and ana-

lyze different characteristics of a problem [19, 24], and this section reviews some of

them.

Auto-correlation is often used to measure the ruggedness of a fitness landscape

[5, 24]. Fitness distance correlation (FDC), proposed by Jones and Forrest [15], is

another method used to measure problem difficulty [32]. It measures the correlation

between the objective value and the distance to the nearest optimum in the search

domain. Among landscape measures is also the searchability of a problem. To mea-

sure the searchability of a problem, which is the ability of the search operator to

move to a region of a search space of better fitness value, an information landscape

metric exists, which is computed based on the difference between the information

landscape vector of the problem to be solved and a reference landscape vector. The

reference landscape is the landscape of a function that is easy to be optimized by any

optimization algorithm in any dimension [3].

An information matrixM = [ai,j] for a minimization problem, is constructed using

Eq. 1

ai,j =
⎧
⎪
⎨
⎪⎩

1 if f (xi) < f (xj)
0.5 if f (xi) = f (xj)
0 otherwise

(1)

Not all of the entries in the information landscape are necessary for defining the

information landscape [3, 4]. There is duplication in the entries due to symmetry

(so the lower triangle should be omitted), the entries on the diagonal are always

0.5 (and also should be omitted), and the row and column of the optimum solu-

tion should also be omitted. So, the information matrix can be reduced to a vector

LS = (ls1, ls2, ..., ls|LS|), where the number of elements in LS, |LS| = (NP−1) × (NP−2)
2

.

Continuing from this:
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LD = 1
|LS| ×

|LS|∑

i=1
|(lsi)f − (lsi)p| (2)

where (lsi)p is the information landscape vector of the problem to be solved, and

(lsi)f is the information landscape vector of the reference function. When LD is near

0, the problem is considered easy, while LD = 1, means the problem is difficult.

In the recent past, researchers and practitioners have used fitness landscape to

determine and select an appropriate algorithm or operator for solving optimization

problems. In [20], a prediction model was developed to predict when a particle

swarm optimization (PSO) algorithm would fail to solve a particular optimization

problem. Decision trees were employed to predict the failure of seven different PSO

algorithms, by using a number of different fitness landscape metrics. In [6], an adap-

tive operator selection mechanism, based on a set of four fitness landscape analysis

techniques, was used to train an online regression learning model (dynamic weighted

majority), which was used to predict the weight of each operator in each genera-

tion. Their proposed mechanism was used to determine the most suitable crossover

operator, among four crossover operators, to solve a set of Capacitated Arc Routing

Problem (CARP) instances. The authors used instantaneous reward, in which the

reward was considered as the value computed at the last evaluation. In comparison

with some of the-state-of-the-art algorithms, the algorithm did not show significant

benefit.

3 Landscape-Based Adaptive Operator Selection DE

In this section, our novel DE-LOS algorithm is presented.

3.1 DE-LOS

The existing multi-operator algorithms use an adaptive operator selection mecha-

nism, which is usually based on the success of generating new offspring. In this

section, a DE-LOS algorithm is proposed, which uses problem landscape informa-

tion, as well as the performance of operators, to adaptively place emphasis on the

most suitable DE operator. The general steps in DE-LOS are given in Algorithm 1.

To begin with, three mutation strategies (DE/𝜑best/1, DE/current-to-𝜑best/

1/archive and DE/current-to-𝜑best/1/without archive) are used. Initially, NP random

individuals are generated within the variable bounds using a Latin Hypercube design.

Then, each operator is randomly assigned to the same number of individuals. Next, a

new solution is generated using its assigned mutation strategy. At the same time, the

information landscape negative searchability metric and performance history, using

Eqs. 4 and 2, respectively, are calculated for each single operator. This process con-
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Algorithm 1 Proposed algorithm

1: C ← 0; Generate an initial population (X) of size NP using Latin Hypercube Design;

2: Calculate the fitness values of X;

3: FES ← FES + NP;

4: while FES ≤ MAXFES do
5: C ← C + 1;

6: if FES ≤ limit then
7: if C < CS then
8: Evolve the population using m DE operators;

9: else if C ≥ CS and C < 3CS then
10: if mod(C,CS==0) then
11: Calculate the average normalized value ANV for each DE operator using Eq. 7;

12: m ← m − 1 - i.e., the best m − 1 DE operators;

13: Evolve the population using the best m DE operators;

14: else if mod(C, 2CS==0) then
15: Calculate average normalized value ANV of each DE operator using Eq. 7;

16: m = m − 1, i.e., discard the worst DE operator;

17: end if
18: Evolve the population using m operators;

19: else if mod(C, 3CS==0) then
20: C ← 0, reset m to 3, and go to step 5;

21: end if
22: else
23: if mod(iter,100==0) then
24: apply SQP as a local search up to a fixed number of fitness evaluations.

25: end if
26: Evolve the population using the best DE operator;

27: end if
28: FES ← FES + NP
29: Update population using Eq. 8

30: end while

tinues for a certain number of generations, say CS generations. After CS generations,

the average value of the landscape metric and performance history are computed for

every operator, using Eqs. 5 and 6, respectively. Subsequently, the normalized value

of both measures is computed using Eq. 7. Based on this value, the best two oper-

ators are selected to be used in the subsequent cycle. Throughout the next cycle, at

each generation, offspring are generated using one of those two operators, while the

performance measure and landscape value are calculated for each operator. Then,

the normalized values are calculated for the two mutation strategies. Based on the

overall mean normalized performance measure (Eq. 7), the worst operator (the one

with the minimum value) is discarded. Subsequently, the remaining best operator is

used to evolve the entire population, for the subsequent CS generations. Note that

after every CS generations, the success and landscape metrics are reset to zero. The

above process is repeated every 3CS generations, however, after a predefined num-

ber of fitness evaluations is reached, the best-performing operator so far, is used to

evolve the population until a stopping criterion is reached. Furthermore, during this

stage, SQP is periodically applied to the best individual from the whole population.
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Algorithm 2 Algorithm for computing the Information landscape negative searcha-

bility.

1: Input: population of individuals (X) updated by operator op;

2: Determine the location of the best individual in the sample, x∗.

3: Construct the pairwise comparison matrix M using Eq. 1;

4: Construct vector LSf that represents the information matrix of the problem.

5: Construct the reference function, fref , by using Eq. 3.

6: Construct the vector LSref that represents the information landscape of the reference function.

7: Compute the value of the Information Landscape negative searchability index using Eq. 2.

3.2 The Selection Phase

3.2.1 Information Landscape Negative Searchability Measure

The information landscape negative searchability measure, which is based on the

difference between the information landscape vector of the problem to be solved

and a well-known spherical function as a reference landscape, is considered in this

research, due to its simplicity and scalability [21].

The reference function fref (⃖⃗x) is constructed using Eq. 3.

fref (⃖⃗x) =
D∑

j=1
(xj − x∗j )

2
(3)

where ⃖⃗x∗i is the best individual in the sample.

In this paper, Latin Hypercube Design is used to generate an initial population

[34] that properly covers the search space of the problem. After constructing the

vector landscape of the problem to be optimized (LSf ) and the vector landscape of the

reference function (LSref ), the information landscape negative searchability measure

is computed using Eq. 2, this is done as part of Algorithm 2.

3.2.2 Average Normalized Value (ANV)

After the information landscape negative searchability value for each operator was

computed, the success rate (SR) of each operator is computed. The success rate of

each operator (SRop) is defined as the number of successful offspring generated by a

search operator (op), divided by the number of individuals assigned to op, as shown

in Eq. 4:

SRop =
Number of improved offsprings

Number of all individuals evolved by operator
(4)
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The normalized value for the SR and landscape metrics are calculated using Eqs. 5

and 6, respectively.

NMSR =
MSROP∑m

OP=1 MSROP

(5)

NMLD =
(1 −MLDOP

)
∑m

OP=1(1 −MLDOP
)

(6)

where MSR and MLD are the mean value of the success rate and landscape value,

respectively.

Subsequently, the normalized performance of each operator is computed using

Eq. 7:

ANVOP = (NMSROP
+ NMLD)∕2 (7)

3.3 Population Updating Method

A linear population size reduction scheme is used to adaptively re-size NP during

the evolutionary process [31], as follows:

NPiter = round[(NP
min − NPmax

FESmax
) × cfe + NPmax] (8)

where NPmin
is the smallest number of individuals that the proposed algorithm can

use. cfe is the current number of fitness evaluations, FESmax is the maximum number

of fitness evaluations. The default value of NPmax
is set as 18D, NPmin

is set as 7.

To get some benefit from the worst individuals before deleting them, a new solu-

tion is generated using information from the worst two individuals and the centroid

of the population (Xcent =
∑D

j=1
∑NP

i=1 xi,j
NP

), as

Xnew = Xcent + rand × (XNP − XNP−1) (9)

Then the worst individual is deleted, and a decision is made to decide if XNP−1 is

replaced by Xnew or not, based on the objective value.

4 Experimental Results

In this section, the performance of the proposed algorithm is tested by solving a set

of problems taken from the CEC2014 competition on learning-based real-parameter

single objective optimization [18]. The CEC2014 benchmark test set contains 30 test
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problems. The search space for all the problems is [−100, 100]D. The proposed algo-

rithm was run following the guidelines of the competition. That required 51 indepen-

dent runs for each test problem with up to FESMAX = 10, 000D fitness evaluations. In

the experimentation, if the deviation of the best fitness value from the optimal solu-

tion is less than or equal to 1.0e − 8, it was considered as zero. The algorithm was

coded using Matlab R2014a, and was run on a PC with a 3.4 GHz Core I7 processor

with 16 GB RAM, and windows 7.

4.1 Algorithm Parameters and Operators

The default values of NPinit
, and NPmin

were set based on our experimental analysis,

NPinit = 18D and NPmin = 7. 𝜑 was set at a value of 0.6 for DE/𝜑best/1 to maintain

diversity, while its value was 0.1, for the other two variants, to speed up the conver-

gence rate. A is the archive rate, and it was set at a value of 1.4. H, the memory size,

was set at the value of 5. limit the maximum limit to run the multi-operator phase,

where as after it the best performing operator evolves the population until the end of

the run, was set at the value of
2
3
× FESMAX , and CS was100. The scaling factor F

and the crossover probability CR were set as in [31].

4.2 Detailed Results for 10, 30, and 50D

The computational results of DE-LOS for 10, 30, and 50D are shown in Table 1.

For 10D, from the results obtained, the proposed algorithm provided the optimal

solutions for all unimodal functions (F01 − F03). For the multimodal functions

(F04 − F16), DE-LOS was able to obtain the optimal solutions on six problems,

while it was very close for the rest. For hybrid functions (F17 − F22), DE-LOS was

able to obtain the optimal solution for only F17, and was very close for the rest of

the test problems. However it became stuck in local solutions for all the composition

test problems, F23 − F30.

For 30D, from the results, DE-LOS was able to obtain the optimal solution on

all the unimodal problems. For multimodal problems, DE-LOS was able to obtain

the optimal solution for F04, F06, F07, F08 and F10, while it was very close to

the optimal solution for the rest. For hybrid functions, the best solutions obtained

were close to the optimal. Again, for the composition problems, DE-LOS got stuck

in local solutions.
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For 50D, DE-LOS was able to obtain the optimal solutions in F02 and F03, while

forF01 it obtained very close solutions to the optimal one. For multimodal problems,

DE-LOS was robust in solving F08, efficient in solving F04, F07, F08 and F10,

while it got stuck in local solutions for the rest of the test problems. This was also

the situation for the hybrid and composition problems, although its performance in

solving the hybrid problems was a little bit better than its performance in solving the

composition problems.

4.3 DE-LOS Versus State-of-the-art Algorithms on CEC2014

DE-LOS was compared with the top two algorithms in the literature LSHADE [31]

and UMOEAs [11]. The matlab source codes for LSHADE and UMOEAs were

downloaded online. We ran these algorithms using the same parameters suggested

by the authors in their papers and the other conditions were the same as the compe-

tition guidelines. To make a fair comparison, all the algorithms were run using the

same seeds.

Table 2 shows a comparison summary of the results obtained from DE-LOS and

the other two algorithms for 10D, 30D, and 50D problems. A non-parametric test,

Wilcoxon rank-sum test, was chosen, to judge the difference between any paired

algorithms. The results regarding the best and average fitness functions are pre-

sented in Table 2. The significance level was set at a value of 10%. Based on the

test results/rankings, one of three signs (+, −, and ≈) was assigned for the compar-

ison of any two algorithms (shown in the last column), where the “+” sign means

that the first algorithm is significantly better than the second, the “−” sign means

that the first algorithm is significantly worse, and the “≈” sign means that there is no

significant difference between the two algorithms. Considering the quality of solu-

tions, and from the results in Table 2, it is clear that DE-LOS is always better than the

other algorithms, based on the best and average results obtained, and this is obvious

for 30D and 50D.

Based on the statistical test, DE-LOS is better than UMOEAs in 10D, 30D, and

50D in regard to best and average results, except for the best results in 10D and 50D,

where there is no significant difference between DE-LOS and UMOEAs. Consider-

ing the comparison between DE-LOS and LSHADE, DE-LOS is significantly better

than LSHADE in 10D, 30D, and 50D.

In addition, based on the average results obtained, the average ranking of DE-

LOS, LSHADE and UMOEAs, as produced by the Friedman test, is summarized

in Table 3. The results in Table 3 are consistent with the results in Table 2, in which

DE-LOS had the best rank.
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Table 3 Friedman’s test results

Algorithm 10D 30D 50D

Rank Rank Rank

DE-LOS 1.63 1.60 1.58
LSHADE 2.08 1.85 1.85

UMOEAs 2.28 2.55 2.57

5 Conclusion and Future Work

During the last few decades, DE algorithms have shown superior performance

to many other-state-of-the-art algorithms in solving both unconstrained and con-

strained optimization problems. It is known that no single algorithm or operator is

able to solve all kinds of optimization problems. Even though for a single run, an

algorithm or operator may perform well in the earlier generations, its performance

often decreases during later generations. So the selection of an appropriate algo-

rithm or operator is not an easy task. In this paper, the DE-LOS algorithm has been

presented. It used landscape and normalized performance measures to dynamically

place more emphasis of the best-performing DE mutation.

The algorithm has been tested on 30 bound constrained numerical optimization

problems from the CEC2014 competition. The results obtained were better than

those obtained from the best two algorithms in the literature.

In future work, we will investigate the use of more than one landscape measure,

and will incorporate some of them with multi-method-based algorithms.
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The Effect of Word-of-Mouth in U-Mart
Artificial Futures Market

Hiroshi Sato, Tomohiro Shirakawa and Daisuke Nakagawa

Abstract In many stock markets, it is believed that word-of-mouth effect makes the

market unstable. The market nowadays is becoming vulnerable because the trading

style has shifted to online trading. The signal or noise can be spread very fast in

the network of online traders. By U-Mart artificial market simulator, we show that

this assumption is correct in most cases, but there is a special situation in which

word-of-mouth effect can make the market stable.

Keywords Agent-based simulation ⋅Artificial market ⋅U-Mart ⋅Word-of-mouth ⋅
Stylized fact

1 Introduction

As with all developed country, there are growing demands on online trading in Japan.

Introduction of new products like mini-stock spur this trend [1]. In Japan, there are

about 22 million accounts used for online trading and the number of the accounts

continues to rise about 5 % in a year.

It is often observed that the human traders in the real stock market make their

decision based on the information in the Internet. There are many online communi-

ties such as bulletin boards or SNS which can show and predict price movement or

traders actions. For example, at the beginning of 2017, SNS site “Stocks in Every-

one” gathered more than 360,000 people and they exchange their predictions about

almost all of individual stocks in the SNS.
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These communications generate the word-of-mouth effects. Shimokawa shows

that a small market or minor brands are easily affected by the word-of-mouth effects

[12, 14]. However, it had been outside the scope of traditional economics. Unlike

the traditional economics, traders in the real world are not so rational.

Recently, agent based simulation is used for analysis of this type of phenomenon.

This approach is called artificial market. There are two ways to implement artificial

market: one is simple simulation based on KISS principle [8]. KISS is the abbre-

viation of “Keep It Simple, Stupid.” KISS principle advocates that simplicity is the

key in design. The other is high fidelity simulation. This approach aims to create the

realistic model for the simulation as far as possible [11].

In this paper, we place ourselves at realistic simulator point of view because

the increase of computing power and obtaining detailed information about trading

behaviors enable us to conduct realistic simulation. We adopt U-Mart artificial mar-

ket simulator as an realistic simulator [13]. U-Mart simulates virtual futures market

of real stock index in order to connect virtual to real. It provides a variety of trading

agents called standard agent set [6].

The purpose of this study is to analyze the effect of the word-of-mouth. It is con-

ducted by introducing the function of word-of-mouth in the standard agent set of

U-Mart simulator and comparing the results changing the rate of word-of-mouth

type agents in the whole population of traders.

2 Word-of-Mouth in Market

2.1 Literatures

The study of psychological effect in economics and finance is gaining attention. The

following two phenomena are important:

∙ Asymmetry of Information It is impossible to get all information about the

investment. Each trader has different information. Many traders usually adopt the

strategies which is the majority in the population.

∙ Consistency of Traders Traders don’t want to change their decision. This means

that they rely on a group of agents and trust them even when they are no longer

reliable. The traders’ decision will be changed finally if they find more reliable

group.

These phenomena generate herding behaviors and herding usually remains in the

population. The word-of-mouth is a typical example of herding behaviors.

There are several studies which considers word-of-mouth effect in market. The

main type of study is regression using real data to the model [9, 10]. This type of

study can be said as top-down type research. As written in previous section, however,

we would like to use agent-based approach to treat this problem. This type of study

can be said as bottom-up type research.
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The regression can only explain existing situation of the market. On the other

hand, the agent-based simulation can evaluate the numerous situations through

numerous settings.

2.2 Model of Word-of-Mouth

In order to analyze of word-of-mouth effects, we use agent-based modeling and con-

duct simulation. We adopt the model which is proposed by Misawa [5] and modify

the model to implement word-of-mouth phenomenon. The following is the descrip-

tion of the model.

Communication In order to implement the communication between agents, we

introduce the two-dimensional lattice type landscape where agents exist. Each agent

moves on the landscape randomly in every time step. If it sees other agent in its range

of vision, it decides whether it imitates the strategy or not. This landscape will be

real (e.g. geographical landscape) or virtual (e.g. in Internet geographic landscape).

Figure 1 is the structure of the landscape. A cluster of the agents in the landscape is

called community.

Decision Making The trading agent in this paper can imitate the majority decision

in his neighborhood. Every agent i has its own decision di(t) at time t. It also has

reliability threshold ai. In every time step, the agent makes its decision (e.g. buy,

sell or do nothing). It also gather the information of decisions of its neighbors in the

landscape and calculate the majority decision dmaji . It compares the majority decision

with its own decision. If the number of majority decision in its neighbors exceed its

reliability threshold, it adopts majority’s decision.

di(t) =
{

dmaji (t) (number of dmaji (t) > ai(t))
di(t) (otherwise) (1)

3 Virtual Market

We adopt U-Mart virtual features market simulator as virtual market simulator. This

is an high-fidelity simulator made by U-Mart project [13]. The advantages of this

simulator compared to other market simulators are:

∙ Price Formation U-Mart simulator decide the contract price from the method that

is used in real stock market. “Itayose” is used in this study.

∙ Variety of Agents U-Mart simulator provides the variety of trading agents. Many

representative technical analysis based methods are implemented as agents.

∙ Connection to the Real In U-Mart simulator, agents trade the virtual futures of

the real stock index. Both prices are correlated and this connects virtual and real.
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Fig. 1 Communication landscape of the trading agents

∙ Open simulator It is available from the book and internet. If we use common

tools, we can share and compare the results.

Figure 2 shows the screenshot of the ongoing simulation by U-Mart system.

4 Computer Simulation

In this section, we simulate the word-of-mouth effects using U-Mart simulator. U-

Mart simulator version 2 is used here.



The Effect of Word-of-Mouth in U-Mart Artificial Futures Market 393

Fig. 2 A screenshot of U-Mart virtual futures market simulator

4.1 Simulation Settings

Parameter Setting In order to analyze the word-of-mouth effect, we focus on the

following three parameters:

∙ The range of communication (r) The range of the vision in the landscape. (range:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

∙ The ratio of word-of-mouth agent (s) How many agents use word-of-mouth and

how many don’t. (range: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

∙ The reliability threshold (a) The threshold whether the agent adopts the majority

decision of its neighbor (range: 0.4, 0.5, 0.6, 0.7, 0.8)

The number of possible combination of these parameters is 500 (=10 × 10 × 5).

Market Setting We prepare four types of price movements which are used as the

price of real stock index (spot price) for virtual futures in the market—ascent,

descent, reverse, and oscillation. Figure 3 shows these spot prices.

Agent Setting The following nine types of agents are used in this experiment: Trend

strategy, Anti-trend strategy, Random strategy, S-Random strategy, RSI strategy,

SRSI strategy, Moving average strategy, S-Moving average strategy, Day trade strat-

egy. These agents are the member of the standard agent set in the U-Mart simulator.
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Fig. 3 The spot price sequence for virtual futures used in the experiment: a ascent, b descent,

c reverse, d oscillation

In fact, each agent has its own parameters. The default parameter value are used

in this paper. The number of agent in the market is 100—Ten agents in each type,

and ten more RandomStrategy agents.

4.2 Experiment 1: Baseline Results

We sweep the three parameters described in Sect. 4.1 for word-of-mouth effect. All

500 combinations of the parameters are simulated. In each parameter setting, four

spot price movements are used. In each price movement, 100 times simulation are

done.

4.2.1 Ratio of “Nothing Done”

We focus on the parameter s and see how the market changes. Figure 4 shows the

failure rate in transaction, in other words, the ratio of “nothing done” in the market.

From Fig. 4, we can see that if the parameter s—the number of agents who use

the word-of-mouth—increases, the failure rate also increases. The same trend can

be observed for the other parameters—r and a.
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Fig. 4 Failure rate of trading The screenshot of U-Mart virtual futures market simulator. x-axis:

parameter r, y-axis: parameter a, z-axis: failure rate of trading. a s = 0.4, b s = 0.6, c s = 0.8,

d s = 1.0

4.2.2 Tracking Performance of Futures to Spot

Then, we analyze the tracking performance of future prices which are produced by

the agents to the spot prices. In theory, the future prices must track the spot prices.

However, if there are many irrational agents, future price does not follow the spot

price. Figure 5 depicts the two cases of tracking. We measure the tracking perfor-

mance by the disassociation degree D defined in Eq. (2).

D =
t∑
|ps(t) − pf (t)| (2)

where, ps(t) is the spot price at time t and pf (t) is the futures price at time t.
Figures 6 and 7 show the top 50 and the bottom 50 tracking cases in the parameter

space. In both cases, large value of s lead to these extreme cases. Well tracking cases

are spread near the a-s plane. On the other hand, there are two clusters in parameter

space in Fig. 7.
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Fig. 5 Tracking performance of futures price against spot price (solid line spot price, dashed line
futures price). a Well-tracking case, b ill-tracking case

Fig. 6 The top 50 tracking

performance in parameter

space

Fig. 7 The bottom 50

tracking performance in

parameter space
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Fig. 8 Tracking performance in randomly distributed reliability threshold (3D plot). x-axis: r, y-

axis: s, z-axis: the disassociation degree defined in Eq. 2

4.3 Experiment 2: Heterogeneous Reliability Threshold

In previous experiment, all parameters about word-of-mouth are the same. But it is

more natural to think there is the variety in the parameter values. In this experiment,

we set the random value of a—reliability threshold—to each agent. The distribution

of a is the uniform.

Figure 8 shows the disassociation degree with 3D-plot. Figure 9 shows the same

situation in contour plot. From these figures, we can find that larger value of r occurs

high disassociation between spot price and future price. There is a peak in the region

of the large r and large s, but it is not in the edge of the parameter space. It is sur-

prising that there are very few disassociation in the region of largest r and the largest

s.

5 Conclusion

In many stock markets, it is believed that word-of-mouth effect makes the market

unstable. The market nowadays is becoming vulnerable because the trading style has

shifted to online trading. The signal or noise can be spread very fast in the network of

online traders. By U-Mart artificial market simulator, we show that this assumption

is correct in the most cases, but there is a special situation in which word-of-mouth

effect can make the market stable.
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Fig. 9 Tracking performance in randomly distributed reliability threshold (contour plot). x-axis:

r, y-axis: s, color the disassociation degree defined in Eq. 2

Although we use the relatively realistic artificial market simulator, there is room

to introduce more realistic regulations in the simulation, for example, circuit-breaker,

special quotes and so on. There is also room to introduce more realistic properties in

the decision of the trading agents, especially in communication between traders.
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Multiple Imputation and Ensemble Learning
for Classification with Incomplete Data

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue
and Lam Thu Bui

Abstract Missing values are a common issue in many real-world datasets, and

therefore coping with such datasets is an essential requirement of classification since

inadequate treatment of missing values often leads to large classification errors. One

of the most popular ways to address incomplete data is to use imputation methods

to fill missing fields with plausible values. Multiple imputation, which fills each

missing field with a set of plausible values, is a powerful approach to dealing with

incomplete data, but is mainly used for statistical analysis. Ensemble learning which

constructs a set of classifiers instead of one classifier has proven capable of improv-

ing classification accuracy, but has been mainly applied to complete data. This paper

proposes a combination of multiple imputation and ensemble learning to build an

ensemble of classifiers for incomplete data classification tasks. A multiple impu-

tation method is used to generate a set of diverse imputed datasets which is then

used to build a set of diverse classifiers. Experiments on ten benchmark datasets use

a decision tree as classification algorithm and compare the proposed approach with

two other popular approaches to dealing with incomplete data. The results show that,

in almost all cases, the proposed method achieves significantly better classification

accuracy than the other methods.

C.T. Tran (✉) ⋅ M. Zhang ⋅ P. Andreae ⋅ B. Xue

School of Engineering and Computer Science, Victoria University of Wellington,

PO Box 600, 6140 Wellington, New Zealand

e-mail: cao.truong.tran@ecs.vuw.ac.nz

M. Zhang

e-mail: mengjie.zhang@ecs.vuw.ac.nz

P. Andreae

e-mail: peter.andreae@ecs.vuw.ac.nz

B. Xue

e-mail: bing.xue@ecs.vuw.ac.nz

C.T. Tran ⋅ L.T. Bui

Faculty of Information Technology, Le Qui Don Technical University,

Hanoi, Vietnam

e-mail: lam.bui07@gmail.com

© Springer International Publishing AG 2017

G. Leu et al. (eds.), Intelligent and Evolutionary Systems,
Proceedings in Adaptation, Learning and Optimization 8,

DOI 10.1007/978-3-319-49049-6_29

401



402 C.T. Tran et al.

Keywords Incomplete data ⋅ Multiple imputation ⋅ Ensemble learning ⋅ Classifi-

cation

1 Introduction

Classification is one of the main tasks in data mining and machine learning. Clas-

sification has been successfully applied to many scientific areas such as computer

science, engineering, statistic, medicine, biology, etc [4]. In spite of receiving great

attention over many decades, there are still open issues in classification; one of these

issues is incomplete data [10].

An incomplete dataset is a dataset containing some fields which are missing val-

ues. Missing values are a unavoidable problem in many real-world datasets [15, 18].

For instance, 45 % of the datasets in the UCI repository [1], which is one of the most

popular data repositories for machine leaning, have the issue of missing values [10].

The reasons for missing values are various. For example, in a social survey, respon-

dents often ignore to answer some questions; some results collected from industrial

experiments may be missing values due to mechanical failures while collecting data;

medical datasets are often incomplete because not all tests can be run on every patient

[9].

Missing values lead to severe issues for classification. One of the most severe

issues is non-applicability of many classification algorithms. Although some clas-

sification algorithms are able to deal with incomplete data, many others require

complete data. Therefore, these classification algorithms cannot directly work with

incomplete data. Even for algorithms that can cope with incomplete data, missing

values often result in large classification errors [10, 21].

One approach to handling classification with incomplete data is to use imputation

methods to replace missing fields with plausible values before using classification

algorithms. For example, mean imputation replaces each missing field with the aver-

age of the complete values of the same feature. Imputation methods provide complete

data that can be then used by any classifier. Consequently, imputation methods are

one of the most popular approaches to addressing classification with incomplete data

[10].

Multiple imputation is an approach to tackling incomplete data by creating multi-

ple imputed datasets to reflect better the uncertainty in incomplete data. In statistical

fields, multiple imputation has become increasingly popular because of its conve-

nience and flexibility [15, 18, 20]. Multiple imputation also has been a powerful

technique for addressing classification with incomplete data [9, 19, 23]. However,

when multiple imputation is used for classification with incomplete data, multiple

imputed datasets are simply averaged to generate a single imputed dataset which is

then used by classification algorithms [9, 23]. The disadvantage of this approach is

that it ignores the ability of multiple imputation to reflect the uncertainty of incom-

plete data. How to exploit this ability of multiple imputation in classification with

incomplete data is still an open issue.
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Ensemble learning algorithms can build a set of classifiers for classification task

instead of a single classifier. After that, a new instance is classified by taking a

vote of their predictions. Both theoretical development and empirical research have

showed that an ensemble can help to improve classification accuracy [8, 16]. How-

ever, ensemble methods are mainly applied to complete data. Therefore, how to use

ensemble methods for improving classification with incomplete data should be fur-

ther investigated.

1.1 Research Goals

The goal of this paper is to propose a combination of multiple imputation with

ensemble learning for improving classification with incomplete data. The proposed

method is compared with two other popular approaches to dealing with missing

values. One approach is to use single imputation to generate a single imputed

dataset. Another approach is to use multiple imputation to generate a single imputed

dataset by averaging multiple imputed datasets. Results from experiments are used

to address the following objectives:

1. Whether the combination of multiple imputation with ensemble learning can

achieve better classification than using single imputation; and

2. Whether the combination of multiple imputation with ensemble learning can

achieve better classification than using multiple imputation to generate a single

imputed dataset by averaging multiple imputed datasets.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 discusses related work.

Section 3 outlines the proposed method. Section 4 presents experiment design.

Section 5 shows results and analysis. Section 6 draws conclusions and presents future

work.

2 Related Work

This section discusses related work including classification with missing data, impu-

tation methods and ensemble learning.
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2.1 Classification with Missing Data

There are four major approaches to addressing classification with incomplete data

including the removal approach, the imputation approach, the model-based approach

and the machine learning approach [10].

The removal approach eliminates all instances containing missing values before

using classifiers. The main benefit of this approach is to provide complete data that

can be then classified by any classifiers. Nevertheless, incomplete instances are not

classified by the classifier. Therefore, this approach is only able to be applied to the

training process and when a dataset includes a small number of incomplete instances

[9].

The imputation approach uses imputation methods to replace missing values with

suitable values before using classifiers. For instance, mean imputation fills all miss-

ing fields in a feature with the average of complete values in the feature. The main

benefit of this approach is to provide complete data which can be used by any clas-

sification algorithm. By using imputation methods, both complete and incomplete

instances are attended in the classification process. Furthermore, most imputation

methods can enhance classification accuracy compared to the corresponding meth-

ods without using imputation. Therefore, the imputation approach is a main way to

address classification with incomplete datasets [9].

The model-based approach generates a data distribution model from input data.

Thereafter, a combination of the data distribution model and Bayesian decision the-

ory [3] is used to classify both complete and incomplete instances. Although this

approach can classify both complete and incomplete instances, it requires to make

assumptions about the joint distribution of all features in the model [10].

The machine learning approach makes classifiers that are able to directly classify

incomplete datasets without using nay imputation methods. For instance, C4.5 [17]

can tack with missing values in both training data and test data by using a proba-

bilistic approach.

2.2 Imputation Methods

The goal of imputation methods is to fill missing fields with plausible values [15].

Imputation methods can be categorized into single imputation and multiple imputa-

tion [9]. While single imputation methods search one value for each missing value,

multiple imputation methods search multiple values for each missing value.
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2.2.1 Single Imputation

Each missing field is filled by one value in single imputation methods. This paper

uses three single imputation methods: mean imputation, hot deck imputation and K

nearest neighbours-based imputation.

Mean imputation replaces all missing fields in each feature with the average of

the complete values in the feature. The advantage of this method is that it maintains

the mean of each feature, but it under-represents the variability in the data since all

missing fields in each feature have the same value [10].

In hot deck imputation, for each incomplete instance, the most similar instance

with the incomplete instance is found, and missing fields are replaced with complete

values from the most similar instance. The main merit of hot deck imputation is that

it fills missing fields by real values from the data. Nonetheless, this method only

utilises the information of one instance; thus, it ignores all global properties of the

data [15].

KNN-based imputation is based on K-nearest neighbors algorithm for classifi-

cation. For each incomplete instance, firstly, it finds the K most similar instances

with the incomplete instance, and then fills missing fields of the incomplete instance

with the average of values in the K most similar instances. KNN-based imputation

often performs better than mean imputation and hot deck imputation [2]. However,

this method is often computationally intensive owing to having to search through all

instances to find the K most similar instances for each incomplete instance [10].

2.2.2 Multiple Imputation

Multiple imputation has three main steps. Firstly, incomplete data is put N times

(N> 1) into an imputation model incorporating random variation to build N different

imputed datasets. After that, each imputed dataset is separately analysed by standard

procedures for complete data. The second step provides N analysis results. Finally,

the N analysis results are combined to provide a final result [15, 18].

Multiple imputation has become more and more popular because of several rea-

sons. Firstly, multiple imputation often reflects better uncertainty related to a partic-

ular model used for imputation, though it is computationally more expensive than

single imputation [9]. Moreover, many recent software developments have based on

the multiple imputation framework [12].

One of the most convenient and powerful multiple imputation methods is mul-

tivariate imputation by chained equations (MICE) [22]. The first step to generate

multiple imputed datasets in MICE is multiple imputation by chained equations.

MICE utilises a set of regression methods such as classification and regression trees

(CART) [5] and Random forest [14]. Initially, each missing field is replaced by a

complete value randomly chosen from the same feature. Afterwards, each incom-

plete feature is regressed on all other features to compute a better estimate for the

feature. The process is repeated several times for all incomplete features to gener-

ate a single imputed dataset. The whole procedure is repeated N times to generate
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N imputed datasets which are then used to calculate the final imputed dataset [22].

MICE software [6] makes it easy to use this method.

2.3 Ensemble Learning

Ensemble learning is the process that builds a set of classifiers for classification.

Thereafter, a new instance is classified by voting the decision of the individual clas-

sifiers. Ensemble learning has been proved capable of achieving better classification

accuracy than any single classifier [8, 16].

An ensemble of classifiers is good if the individual classifiers in the ensemble is

accurate and diverse. Bagging and Boosting are two popular approaches to building

accurate ensembles [16]. Both Bagging and Boosting use “resampling” techniques

to manipulate the training data. Bagging manipulates the original training dataset

of N instances by randomly drawing with replacement instances. Therefore, in the

resulting training dataset, some of the original instances may appear multiple times

while others might disappear. Bagging is often effective on “unstable” learning algo-

rithms such as neural networks and decision trees where small changes in the training

dataset lead to major changes in predictions. Experimental results show that Bagging

ensemble almost always performs better than a single classifier. Boosting manipu-

lates the original dataset for each individual classifier by using the performance of the

previous classifier(s). In Boosting, instances which are incorrectly classified by pre-

vious classifiers are selected more often than instances which are correctly classified.

Therefore, Boosting tries to build new classifiers that are better to classify instances

for which the current ensemble’s performance is poor. Empirical results show that

with little or no classification noise, Boosting ensemble also almost always performs

better than a single classifier, and it is sometimes more accurate than Bagging ensem-

ble. However, in situations with substantial classification noise, Boosting ensemble

is often less accurate than a single classifier because Boosting often overfits noisy

datasets [16].

An ensemble of classifiers trained with random subsets of features is presented in

[13] to classify with incomplete data. In this approach, each base classifier is trained

with a randomly selected subset of features. In [7], a combination of data analysis

and ensemble learning is proposed to deal with classification with incomplete data.

Firstly, the incomplete data is analysed and grouped into complete data subsets, and

then each data subset is used to train one classifier. In the both approaches, when

an incomplete instance needs be classified, only those classifiers trained with those

features that are available in the instance are used to classify the instance. Although,

the two methods are able to cope with incomplete data in some degree, they cannot

guarantee to classify all incomplete instances, especially when data contains many

missing values. Moreover, combining ensemble learning and multiple imputation

has not been investigated. Therefore, using ensemble learning for classification with

incomplete data should be more investigated.
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3 Multiple Imputation and Ensemble Learning
for Classification with Missing Data

The proposed algorithm has two phases: the training process and the application

process. The training process uses a multiple imputation method combined with

ensemble learning to build a set of classifiers. After that, the application process uses

the multiple imputation method and the set of classifiers to classify a new incomplete

instance (Fig. 1).

In the training process, a training incomplete dataset is put into a multiple impu-

tation method to build a set of imputed datasets. Afterwards, each imputed dataset is

used as a training data by a classification algorithm to train a classifier. As a result,

a set of classifiers are generated from the set of imputed datasets.

In the application process, if an instance which needs to be classified is incom-

plete, the incomplete instance is put into the multiple imputation method (along with

the training data) to generate a set of imputed instances. After that, each classifier is

applied to each imputed instance to generate a large set of predicted classes. The final

predicted class will be the most frequent class of all the predictions. If an instance

Fig. 1 Classification with incomplete data using a multiple imputation method and building a set

of classifiers
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which needs to be classified is complete, the complete instance does not need the

imputation method. Rather, they are classified directly by each of the classifiers and

the most frequent class is chosen.

A key requirement of ensemble methods is that the set of classifiers should be

diverse. The key idea of the proposed algorithm is that it exploits the ability of the

multiple imputation method to build a set of diverse imputed datasets from which

diverse classifiers can be constructed. This is in contrast to the usual use of multi-

ple imputation for classification which averages the imputed datasets into a single

dataset. From one incomplete dataset, multiple imputation is able to generate a set

of diverse imputed datasets because the initial step of the multiple imputation is to

fill each missing field with a randomly chosen complete value. Therefore, the initial

step generates different temporary imputed datasets. Although the same regression

method is then used to improve the temporary imputed datasets, the multiple impu-

tation method is able to generate a set of diverse imputed datasets, especially when

the training dataset contains many missing fields. As a result, a classifier ensemble

which is then built by using the set of imputed datasets is hopefully diverse.

4 Experiment Design

This section shows detailed experiment design including the method, datasets, impu-

tation methods and classification algorithms.

4.1 Comparison Method

This study is designed to empirically evaluate the proposed method for classifi-

cation with incomplete datasets. In order to achieve this objective, the proposed

method is compared to two popular benchmark methods for tacking with classifi-

cation with incomplete datasets. The first popular benchmark method for classifi-

cation with incomplete datasets is to use multiple imputation to generate multiple

imputed datasets. After that the multiple imputed datasets are averaged to generate a

single imputed dataset which is used to build a classifier. The second popular bench-

mark method for classification with incomplete datasets is to use a single imputation

method to generate a single imputed dataset which is then used to build a classifier.

In the first benchmark method for classification with incomplete data, a train-

ing incomplete dataset is put into a multiple imputation method to generate a set

of imputed datasets. After that, the set of imputed datasets is averaged to generate

a single imputed dataset which is then used to learn a classifier. In the application

process, each incomplete instance is combined with the training dataset, and then

is put into the multiple imputation method to generate a set of imputed instances.

Subsequently, the set of imputed instances is averaged to generate a single imputed

instance which is then classified by the classifier.
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In the second benchmark method for classification with incomplete data, a train-

ing incomplete dataset is put into a single imputation method to generate a sin-

gle imputed dataset. Thereafter, the imputed dataset is used to learn a classifier.

In the application process, each incomplete instance is combined with the training

dataset, and then is put into the single imputation method to generate a single imputed

instance. Afterwards, the single imputed instance is classified by the classier.

4.2 Datasets

Ten datasets, summarised in Table 1, are used in the experiments. These are taken

from the UCI Repository of Machine Learning Databases [1]. Each dataset is

presented in one row in Table 1 including the number of instances, the number of

features, the number of classes, the proportion of instances containing at least one

missing field and the proportion of missing values.

The first five datasets suffer from missing values in a “natural” way. In the

datasets, we do not know any information related to the randomness of missing val-

ues, so we make assumption that missing values in the datasets are distributed in a

missing at random (MAR) way [15].

In order to test the performance of the proposed feature selection method with

datasets containing different levels of missing values, the missing completely at ran-
dom (MCAR) mechanism [15] was utilised to introduce missing values into the last

five complete datasets. Three different levels of missing values: 10 %, 30 % and 50 %

were used to introduce missing values into the datasets. With each dataset in the

last five datasets and each level of missing values in the three levels, repeat 30

times: introduce randomly the level of missing values in all features. Hence, from

one dataset and one level of missing values, 30 artificial datasets containing missing

values were generated. Therefore, from one complete dataset, 90 (=30 × 3) artifi-

Table 1 The datasets used in the experiments

Dataset #instances #features #classes Incomplete inst (%) Missing values (%)

Bands 539 19 2 32.28 5.38

Hepatitis 155 19 2 48.39 5.67

Horse-colic 368 23 2 98.1 22.76

Housevotes 435 16 2 46.67 5.63

Mammographic 961 5 2 13.63 3.37

Heartstatlog 270 13 2 0 0

Iris 150 4 3 0 0

Liver 345 7 2 0 0

Parkinsons 197 23 2 0 0

Seedst 210 7 3 0 0
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cial datasets containing missing values were generated and a total of 450 (=90 × 5)

artificial datasets containing missing values were used in the experiments.

None of the datasets in the experiments comes with a specific test set. Moreover,

in some datasets, the number of instances is relatively small. Therefore, the ten-fold

cross-validation method was used to measure the performance of the learned clas-

sifiers. With the first five incomplete datasets, the ten-fold cross-validation method

was performed 30 times. With the last five complete datasets, with each dataset and

each level of missing values, the ten-fold cross-validation method was performed on

the 30 incomplete datasets. Consequently, for each incomplete dataset in the first five

datasets and each level of missing values on one dataset in the last five datasets, 300

pairs of training and testing sets were generated.

4.3 Imputation Algorithms

The experiments used multiple imputation MICE [6] with the random forest as

a regression method. In the multiple imputation method, each incomplete feature

was repeatedly regressed on other features 10 times. With each incomplete dataset,

the multiple imputation method was performed 20 times to procedure 20 imputed

datasets.

Three single imputation methods including mean imputation, hot deck imputation

and KNN-based imputation were used in the experiment. The three single imputa-

tions were in-house implementations. With KNN-based imputation, the number of

neighbors K were set five.

4.4 Classification Algorithms

The experiment used C4.5 [17] to classify data. For the classifiers, WEKA’s imple-

mentation [11] was used and all parameters were set to WEKA’s defaults. The num-

ber of classifiers in an ensemble is equal to the number of imputed datasets generated

by multiple imputation; therefore, the number of classifier in an ensemble is set 20.

5 Results and Analysis

This section presents the comparison between the proposed method with other meth-

ods on classification accuracy, and further analysis.
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5.1 Results

Table 2 shows the average of classification accuracy and standard deviation using

C4.5. In the tables, and in the following ones, MIEL column presents results by using

the proposed method, AvgMI column presents results by using the first benchmark

method; Mean, HDI and KNNI columns present results from the second benchmark

method by using mean imputation, hot deck-based imputation and KNN-based impu-

tation, respectively. With each dataset in the first five datasets, the classification accu-

racy is the average of accuracies of the 30 times performing ten-fold cross-validation

(30 × 10 = 300 experiments).

Table 3 shows the average of classification accuracy and standard deviation using

C4.5 with three levels of missing values. With each dataset and each missing level

in the last five datasets, the classification accuracy is the average of accuracies of the

30 generated incomplete datasets at each missing level and ten-fold cross-validation

(30 × 10 = 300 experiments).

To compare the performance of MIEL with the other methods, the Wilcoxon

signed-ranks tests at 95 % confidence interval is used to compare the classification

accuracy achieved by MIEL with the other methods. “T” columns in Tables 2 and

3 show significant test of the columns before them against MIEL, where “+”, “=”

and “−” mean MIEL is significantly more accurate, not significantly different and

significantly less accurate, respectively.

Table 2 shows that MIEL can achieve significantly better classification accuracy

than the other methods in almost all cases with the datasets containing natural miss-

ing values. MIEL achieves similar classification accuracy to the other methods on

Housevotes dataset and significantly better classification accuracy than the other

methods on the other four datasets.

Table 3 shows that MIEL also can achieve significantly better classification accu-

racy than the other methods in almost all cases with the datasets containing artificial

missing values. MIEL achieves significantly better classification accuracy than the

other methods on all fifteen cases.

It is clear from the results that AvgMI is generally better than single imputation

methods showing that multiple imputation generates a more reliable imputed dataset.

Furthermore, a combination of multiple imputation and ensemble learning is signif-

icantly better than using multiple imputation to generate a single imputed data by

averaging imputed datasets.

In summary, the proposed method combining multiple imputation combined with

ensemble learning is able to enhance classification accuracy of a classifier not only

with natural incomplete datasets, but also with artificial incomplete datasets.
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6 Conclusions and Future Work

This paper proposed a new combination of multiple imputation and ensemble learn-

ing for classification with incomplete data. Firstly, multiple imputation is used to

generate a set of imputed datasets from one incomplete dataset. After that, the set

of imputed datasets is used to build an ensemble classifier. The proposed approach

was compared with two other popular approaches to dealing with incomplete data:

one using multiple imputation to generate one single imputed dataset and the other

using single imputation to generate a single imputed dataset. The experiments on ten

datasets used C4.5 as classification algorithms. The experimental results showed that

the proposed method can achieve better classification accuracy than the two other

methods. The experimental results also showed that it is advantageous to exploit the

natural diversity generated by multiple imputation, rather than averaging the diverse

imputed datasets. Even if the averaged imputed datasets is reliable, using the diver-

sity of imputed datasets in an ensemble method leads to a more effective classifier.

The experiments in the paper used random forest as a regression method in MICE.

There are some other regression methods in MICE such as linear regression and

CART [5]. Further work could perform this investigation with linear regression and

CART. Furthermore, the proposed method uses the majority vote. Therefore, another

future work could develop a more powerful vote method to improve the proposed

method.
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CMA-ES with Surrogate Model Adapting
to Fitness Landscape

Kento Tsukada, Taku Hasegawa, Naoki Mori and Keinosuke Matsumoto

Abstract One of the most important issues for evolutionary computation (EC) is to

consider the number of fitness evaluations. In order to reduce the number of fitness

evaluations, we have proposed the novel surrogate model called Rank Space Esti-

mation (RSE) model and the surrogate-assisted EC with RSE model called the Fit-

ness Landscape Learning Evolutionary Computation (FLLEC). This paper presents

a novel CMA-ES with RSE model for continuous optimization problems and a scal-

ing method for input data to surrogate model.

Keywords Evolutionary computation ⋅ Support vector machine ⋅ Continuous opti-

mization

1 Introduction

Evolutionary Computation (EC) has been applied to various kinds of optimization

problems, and several advantages of using EC have been reported. On the other hand,

a large number of fitness evaluations is required to obtain adequate results with EC.

This high cost of these evaluations is one of the most important issues for EC to

obtain adequate results for real-world applications.

Surrogate-assisted ECs have been proposed in order to solve this problem, and

several methods have reported success [1]. Moreover, almost every surrogate model
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attempts to estimate the fitness value itself. If a suitable fitness function model can

be generated, this is decisive answer for EC with surrogate models. However, it is

difficult to estimate the fitness function completely, and doing so often requires sub-

stantial effort. To address this challenge, we have proposed a novel surrogate model

named the Rank Space Estimation (RSE) model [2]. The research of a surrogate

model based on rank has been reported [3]. However, there is no research of a surro-

gate model utilizing the ranks determined by relative evaluation between two indi-

viduals. An estimation cost of a fitness landscape can be reduced without critical

estimation error by means of limiting the prediction in this model to the ranks of two

individuals.

We have also proposed a framework for EC using our proposed RSE model.

This proposal is called the Fitness Landscape Learning Evolutionary Computation
(FLLEC) framework. Our methods demonstrated their effectiveness using compu-

tational experiments such as taking several combinational problems. On the other

hand, in the application of ECs to the field of industry, there are many continuous

optimization problems and reducing the number of fitness evaluations in those prob-

lems have become important.

In this paper, Evolution Strategy with Covariance Matrix Adaptation (CMA-

ES) [4], which is a stochastic method for continuous optimization, is introduced to

FLLEC. The number of fitness evaluations is especially reduced by utilizing SVM

predictions for evaluating individuals instead of computing their fitness.

2 CMA-ES

The CMA-ES is a EC for various continuous optimization problems. The important

processes of the CMA-ES are called Recombination, Step Size Adaptation (SSA)
and Covariance Matrix Adaptation (CMA). Various types of updating methods have

been proposed. In this study, “(𝜇w, 𝜆)-CMA-ES” is used. It utilizes the following

three procedures.

∙ weighted recombination [4]

∙ cumulative step size adaptation(CSA) [5]

∙ hybrid covariance matrix adaptation(Hybrid-CMA) [6]

2.1 Algorithm of CMA-ES

The following is the algorithm of the CMA-ES used in this study:

1. Initialization

Mean vector m, global step size 𝜎 and population size 𝜆 are set depending on

the problems. Then, we initialize a covariance matrix C, evolution path pc and
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p
𝜎

(C = I, pc = p
𝜎

= 𝟎). Moreover, parents number 𝜇, recombination weight w
and other parameters are set according to the previous work [7]. After that, the

following procedure is repeated until the termination criterion is satisfied.

2. Sampling

Individuals xi are generated according to the following equations

zi ∼  (𝟎, In), (1)

yi = BDzi, (2)

x(g+1)i = m(g) + 𝜎

(g)yi (i = 1,… , 𝜆), (3)

where

B is an orthogonal matrix, BTB = BBT = I. Columns of B form an orthonormal

basis of eigenvectors.

D is a diagonal matrix with square roots of eigenvalues of C as diagonal elements.

∼ denotes the same distribution on the left and right side.

 represents a multivariate normal distribution.

Moreover, the following equation, for generation number g = 0, 1, 2,…, reads

x(g+1)i ∼  (m(g)
, (𝜎(g))2C(g)). (4)

If individuals x(g+1)i are generated in infeasible domain, they are re-sampled until

they are in feasible domain.

3. Selection and Recombination

Fitness function f (x(g+1)i ) for all individuals is computed. Then, a mean vector is

updated according to the following equation,

m(g+1) =
𝜇∑

i=1
wix

(g+1)
i∶𝜆 , (5)

where i∶ 𝜆 represents an index of the individual which has ith best fitness. This

update method is called weighted recombination.

4. Step Size Adaptation

In the CSA algorithm, a global step size is updated by calculating the following

evolution path,

p(g+1)
𝜎

= (1 − c
𝜎

)p(g)
𝜎

+
√
c
𝜎

(2 − c
𝜎

)𝜇effC
(g)− 1

2
m(g+1) −m(g)

𝜎
(g) , (6)
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where 𝜇eff = (
∑

𝜇

i=1 w
2
i )

−1
. Then, the global step size 𝜎 is updated according to

the following equation,

𝜎

(g+1) = 𝜎

(g) ⋅ exp
(
c
𝜎

d
𝜎

( ‖p(g+1)
𝜎

‖
E‖ (𝟎, In)‖

− 1
))

, (7)

where E(‖ (𝟎, In)‖) represents an average norm of normally distributed n-

dimensional random numbers norm.

5. Covariance Matrix Adaptation

For the update of a covariance Matrix of a multivariate normal distribution, two

update methods are combined in the Hybrid-CMA. They are “rank-one update”

and “rank-𝜇 update”. In the rank-one update, an evolution path, which indicates

a transition of the mutation distribution mean, is calculated for the update.

p(g+1)c = (1 − cc)p(g)c

+ h(g+1)
𝜎

√
cc(2 − cc)𝜇eff

m(g+1) −m(g)

𝜎
(g) , (8)

On the other hand, in the rank-𝜇 update, the information of 𝜇 individuals is uti-

lized for the update. Then, a covariance matrix is updated as follows.

C(g+1) = (1 − ccov)C(g)

+
ccov
𝜇cov

(p(g+1)c p(g+1)Tc + 𝛿(h(g+1)
𝜎

)C(g)).

+ ccov(1 −
1

𝜇cov
)

𝜇∑

i=1
wiOP(

x(g+1)i∶𝜆 −m(g)

𝜎
(g) ).

(9)

Here, h(g+1)
𝜎

is as follows.

h(g+1)
𝜎

=
⎧
⎪
⎨
⎪⎩

1 if ‖p(g+1)
𝜎

‖√
1−(1−c

𝜎

)2(g+1)

< (1.5 + 1
n−0.5

)E(‖ (𝟎, In)‖)
0 otherwise.

(10)

Moreover,

𝛿(h(g+1)
𝜎

) =

{
1 if h(g+1)

𝜎

= 0
0 otherwise.

(11)

The optimization progresses repeating 2. ∼ 5. [4] and [7] are used as reference.
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3 Surrogate-Assisted Evolutionary Computation

This section describes the surrogate-assisted ECs for reducing the number of fitness

evaluations.

3.1 Surrogate Model

Surrogate models generally estimate the fitness function and are directly used in

fitness evaluations in order to reduce the number of fitness evaluations. Several sur-

rogate models have been proposed. From previous studies [1, 8], it is important for

effective search to select the most suitable models for each fitness functions.

3.2 Rank Space Estimation (RSE) Model

We proposed a novel surrogate model based on the ranks of two individuals called

the RSE model. In our model, since the ranks is calculated by relative evaluation

between two individuals, estimation quality of proposed method is superior to that

of existing models by evaluating only one individual. Besides, most surrogate models

predict a fitness function directly, whereas our model only focuses on the order of

two individuals. Complete prediction of a fitness function is sometimes more difficult

than finding an optimum solution. By contrast, ranking of two individuals results

in only three types: high, low or equal. If we ignore the equal ranks of different

genotypes, it is sufficient to consider only two results. The famous selection operator

called tournament selection shows good performance even though this operator only

utilizes rank information. This fact guarantees the suitability of RSE model.

The RSE model utilizes SVM as the training method. The input to SVM is the

genotype information for two individuals and the output concerns their class labels

and their ranks. If an individual in the latter part has a higher fitness than the other

one, the class label of the vector is set to 1. On the other hand, if the individual in

the first part has a higher fitness than the other one, the class label of the vector

is set to −1. Figure 1 shows an outline of our SVM. If the input positions of two

individuals are swapped, the output is expected to give the opposite result. Therefore,

two items of training data are obtained from one pair of individuals because there

are two positions in the SVM input.
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Fig. 1 Outline of SVM fitness: f1 fitness: f2

class:  1

class: -1

f1 > f2

f1 < f2

class:  1

class: -1

1 1 0 0 1

1 1 0 0 1

1 1 0 0 1

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

3.3 FLLEC

We proposed a novel evolutionary computational framework which introduces the

RSE model. It is called FLLEC. The population can evolve reducing the number of

fitness evaluations using predictions from the RSE model in FLLEC.

In search process of ECs, both a surrogate model and an original fitness func-

tion should be utilized [9]. In the previous work [1], this was considered as the

issue of evolution control and fixed evolution control have often been used. Fixed

evolution control has two main approaches:individual-based evolution control and

generation-based evolution control. Previous works have reported that generally the

surrogate model needs to be trained repeatedly. However, the best interval for relearn-

ing depends on respective optimization problems and algorithms. Search processes

differ especially depending on control mechanisms for convergence. Therefore, the

relearning interval should be set considering those differences.

4 CMA-ES with RSE Model

We reported that FLLEC shows the good performance with binary coding problems

[2]. However, the analysis of FLLEC for continuous problems is also very important.

This paper presents the FLLEC for continuous problems and analyzes the features

of FLLEC in solving continuous problems. Specifically, the CMA-ES is adopted as

EC parts of FLLEC and the RSE model is introduced to the CMA-ES according to

Sect. 3.3.
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4.1 How to Apply RSE Model

In the CMA-ES, fitness of all individuals in a generation must be computed so as

to calculate Eq. (5). In this study, the number of those computations is reduced by

means of replacing computations of fitness with SVM predictions. However, if the

individuals xi∶𝜆(i = 1, 2,… , 𝜇) which has ith best fitness are selected only based on

SVM predictions, an incorrect prediction is harmful for the effective search. There-

fore, after all individuals in a generation are ranked by SVM, fitness of only Ne (≥ 𝜇)
individuals out of population are computed. Here,Ne represents the number of fitness

evaluations in each generation. Ne individuals have the ranks in the range between

1 and Ne computed by SVM. This method enables the reduction of the number of

fitness evaluations because fitness of all individuals in a generation is not necessarily

computed. Besides the harmful influence of incorrect predictions from SVM is miti-

gated because Eq. (5) is calculated using the re-sorted ranks based on Ne individuals’

fitness.

Specifically, we introduce a prediction from SVM into the “Selection and Recom-

bination” step mentioned in Sect. 2.1. The detail is as follows.

∙ Selection and Recombination with SVM

Firstly, the number of fitness evaluations in each generation (Ne) is set. Secondly,

Ne individuals are selected based on the ranks computed by SVM. The round

robin tournament is used to rank individuals by SVM. Thirdly, only Ne individ-

uals’ fitness is computed. Finally, Eq. (5) is calculated using the re-sorted ranks

based on Ne individuals’ fitness.

A SVM is relearned at a relearning interval (Nr) and it is used until next relearn-

ing. The fitness information of individuals sampled after the last relearning is used

for the training data. Therefore, the more a Nr is set at large, the more a fitness

information of individuals in the past generation is utilized. These methods are cat-

egorized into “individual-based evolution control” mentioned in Sect. 3.3. Figure 2

shows the evolutionary process by it.

4.2 Scaling Method

For our proposed surrogate model using SVM, training and test data should be scaled

in order to improve an accuracy rate of the model. In ECs for continuous optimization

problems, population density is biased. This bias is harmful to learn a fitness land-

scape effectively. Hence, in this study, the biased population density is smoothed by

means of scaling input data for SVM. In CMA-ES, the population density is repre-

sented as a normal distribution. This biased population density should be converted

to a uniform distribution for the effective learning of a fitness landscape. In order to

reduce a computation cost, we approximate a normal distribution in CMA-ES sam-

pling as a logistic distribution. A sigmoid function, which is the cumulative distrib-
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Fig. 2 Individual-based

evolution control

ution function of a logistic distribution, is utilized for that scaling. The elements of

input data for SVM are mapped onto a sigmoid function. Figure 3 shows the validity

of the logistic distribution approximation. The upper figure shows the relative fre-

quency of standardized normally distributed random numbers and the lower figure

shows the relative frequency of these numbers mapped onto the sigmoid function.

Figure 3 indicates that the mapping onto the sigmoid function smooths the biased

population density. The sigmoid function follows

fi(x) =
1

1 + exp{− x−mi

si
}
, i = 1, 2,… , n (12)

where mi is the ith element of the mutation distribution mean vector and si is the

parameter of the sigmoid function. si is calculated from global step size 𝜎 andD in the

generations where training data are sampled. The variance of a logistic distribution

is given as 𝜋
2s2i ∕3 and that of a normal distribution in CMA-ES sampling is given

as (𝜎di)2. Therefore, si is calculated as

si =
√
3𝜎di
𝜋

. (13)

We described our proposed scaling method considering the biased population

density as follows.

x′ = BT(x−m). (14)

BT
rotates x −m into the coordinate axes. That is, the principal axes of the distrib-

ution  (𝟎,C) are rotated into the coordinate axes.
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Fig. 3 Frequency distribution of standardized normally distributed random number

x′′ = ( f1(x′1), f2(x
′
2),… , fi(x′i))

T
. (15)

fi(x′i) represents the elements mapping from an SVM input vector. It is considered

that the above scaling method enables surrogate models to learn a fitness landscape

efficiently.

5 Experiments

In this section, the effectiveness of the CMA-ES with RSE model and scaling algo-

rithm mentioned in Sect. 4.2 are demonstrated. For the comparison experiment, the

following methods are prepared.

∙ CMA-ES:original, mentioned in Sect. 2.1.

∙ CMA-ES with RSE model:using a linear scaling

∙ CMA-ES with RSE model:using our proposed scaling

A linear scaling is used to confirm the difference between scaling methods. The

linear scaling maps input data for SVM into [−1, 1].

Table 1 shows the benchmark functions utilized in our experiment and Table 2

shows the experimental conditions. The upper part shows the common parameters

for a CMA-ES and the lower part shows the parameters for the RSE model. These

parameters are set through the preliminary experiments and the strategy parameters

for CMA-ES are set as mentioned in Sect. 2.1. In each trial, the termination criterion
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Table 1 Benchmark functions

Name Function Initialization

domain

k-tablet

(k = n∕4)

f =
k∑

i=1
x2i +

n∑

i=k+1
(100xi)2 [1, 5]

Rosenbrock f =
n−1∑

i=1

(
100(x2i − xi+1)2 + (xi − 1)2

)
[–2, 2]

Bohachevsky f =
n−1∑

i=1

(
x2i + 2x2i+1 − 0.3 cos(3𝜋xi) − 0.4 cos(4𝜋xi+1) + 0.7

)
[1, 15]

Table 2 Experimental conditions (experiment 1)

Population size 100

Dimension size 10

Number of trials 30

Number of evaluations in each generation(Ne) 50

Training data size(Nts) 1000

Interval of relearning(Nr ) 1

Kernel function of the SVM Polynomial (cubic)

is that the objective function value of the best individual reaches under 1.0 × 10−10. If

the number of fitness evaluations is over n × 𝜆 × 103 before the termination criterion

is satisfied, the search is regarded as failure.

5.1 Results and Discussion

Figures 4, 5 and 6 show the average objective function value with the number of fit-

ness evaluations. The abscissa shows the number of fitness evaluations and the ordi-

nate is a logarithmic scale axes and shows the objective function value. In the experi-

ment, the original CMA-ES and the method using our proposed scaling achieved the

global optima in each trial. On the other hand, the method using the linear scaling

did not achieve that in each trial.

These figures indicate that better solutions are obtained at an early stage of the

search in linear scaling compared with other methods. On the other hand, when the

objective function value reaches around 1.0 × 10−1, searching better solution began

to go wrong. It is assumed that the trend resulted from the error prediction from

SVM. In the stagnant stage of the search, the variance of the distribution in Eq. (4)

remained large. That indicates the population did not successfully converge on the
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Fig. 6 Objective function value with fitness evaluations (for CMA-ES using RSE model with the

Bohachevsky function)

global optima. For those reasons, it is concluded that a linear scaling cannot suffi-

ciently improve an accuracy rate of SVM.

Meanwhile, with respect to the method using our proposed scaling, it indicates

the best performance of all methods. In the CMA-ES, the shape of the distribution

in Eq. (4) changes according to the update of the C. Therefore, it is assumed that a

simple scaling method cannot improve an accuracy rate of SVM sufficiently. In fact,

a preliminary experiment which investigated the effectiveness of the scaling method

which maps input data for SVM into values of the sigmoid function was conducted.

Contrary to Eq. (14), the scaling method does not consider the bias of the multivariate

normal distribution. As a result, it is found that the CMA-ES with the RSE model

using that scaling method did not achieve the global optima in all trials.

Consequently, it is concluded that a scaling method which considers the bias of

the distribution is important in order to improve the precision of the prediction from

SVM.

6 Conclusion

This paper demonstrated the effectiveness of our proposed surrogate model:RSE

model by means of CMA-ES with it. We also proposed the algorithm to introduce

the RSE model to the CMA-ES and the scaling method which consider the bias in
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orientation of principle components of the distribution in Eq. (4) in order to improve

the performance of machine learning part in FLLEC.

Moreover, the computer simulations were carried out so as to confirm the effec-

tiveness of our proposed method. The results of these computer simulations show a

satisfactory performance for FLLEC with CMA-ES.

Important future works are as follows.

∙ To confirm what a fitness landscape learned in training for SVM is.

∙ To devise a better training method for SVM in order to predict a fitness landscape

correctly.

∙ To investigate the effectiveness of kernel functions of SVM for various optimiza-

tion problems.

∙ To apply our method to optimization problems which involve constraints.
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An Evolutionary Simulating Annealing
Algorithm for Google Machine Reassignment
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Abstract Google Machine Reassignment Problem (GMRP) is a real world prob-

lem proposed at ROADEF/EURO challenge 2012 competition which must be solved

within 5 min. GMRP consists in reassigning a set of services into a set of machines

for which the aim is to improve the machine usage while satisfying numerous con-

straints. This paper proposes an evolutionary simulating annealing (ESA) algorithm

for solving this problem. Simulating annealing (SA) is a single solution based heuris-

tic, which has been successfully used in various optimisation problems. The pro-

posed ESA uses a population of solutions instead of a single solution. Each solu-

tion has its own SA algorithm and all SAs work in parallel manner. Each SA starts

with different initial solution which can lead to a different search path with distinct

local optima. In addition, mutation operators are applied once the solution cannot

be improved for a certain number of iterations. This will not only help the search

avoid being trapped in a local optima, but also reduce computation time. Because

new solutions are not generated from scratch but based on existing ones. This study

shows that the proposed ESA method can outperform state of the art algorithms on

GMRP.
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1 Introduction

Cloud computing is a fast growing area which aims to provide online resources

including storage, processing and network bandwidth to meet computational needs

[1, 2]. Service providers like Google and Amazon need to find an efficient way to

manage their large-scale data centers and ensure high quality services for large cohort

of end users. Optimising resource allocation becomes more and more important in

this industry [2]. A recent problem in the public domain is the Google Machine

Reassignment Problem (GMRP) proposed at ROADEF/EURO challenge 2012 com-

petition [3]. It is a combinatorial optimisation problem, aiming to improve resource

utilization by reassigning a set of processes across a pool of servers while satisfying

a set of constraints. A range of algorithms have been proposed for GMRP in the lit-

erature. These include simulated annealing [4], variable neighbourhood search [5],

constraint programming-based large neighbourhood search [6], large neighbourhood

search [7], multi-start iterated local search [8] and restricted iterated local search [9].

In this work, we propose an evolutionary simulating annealing (ESA) algorithm

for GMRP. Simulating annealing (SA) is a single solution based heuristic, which has

been successfully used in various optimisation problems. It is a probabilistic local

search method that allows the acceptance of worse solutions in order to escape from

the local optima. It starts with an initial solution and then generated a neighbourhood

solution. The generated neighbourhood solution will be replaced with initial one if

the solution quality is better or it satisfies the acceptance probability. In contrast the

proposed ESA uses a population of solutions instead of a single solution. Hence,

each solution has its own SA procedure. All SA procedures work in parallel. Each

SA starts with different initial solution which can leads to a different search path with

distinct local optima. Furthermore a range of mutation operators are applied once the

solution cannot be improved for a certain number of iterations. This will not only help

the search avoid being trap in a local optima, but also reduce the computational cost,

because solutions are not built from scratch but based on existing solutions.

The performance of the proposed ESA algorithm is evaluated using 20 instances

of the machine reassignment problem from ROADED/EURO 2012 challenge. These

instances are very diverse in terms of size and data characteristics. To verify the

effectiveness of our proposed algorithm, state of the art algorithms are included for

comparison. Our aim is to have an algorithm outperform simulated annealing as well

as algorithms designed for GMRP.

The rest of the paper is organised as follows: Sect. 2 presents the problem descrip-

tion. Section 3 describes the proposed algorithm in detail. Section 4 shows the exper-

iment settings. The results are reported in Sect. 5. Finally, the conclusions are pre-

sented in Sect. 6.
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2 Problem Description

GMRP is a recent problem proposed at ROADEF/EURO challenge 2012 [3]. It is a

combinatorial optimisation problem. The main elements of this problem are a set of

machines M and a set of processes P. The goal of this problem is to find the optimal

way to assign process p ∈ P to machines m ∈ M in order to improve the usage of a

given set of machines. One machine consists of a set of resources such as CPUs and

RAM. One process can be moved from one machine to another in order to improve

overall machine usage. The allocation of processes must not violate the following

hard constraints:

∙ Capacity constraints: the sum of requirements of resource of all processes does

not exceed the capacity of the allocated machine.

∙ Conflict constraints: processes of the same service must be allocated into different

machines.

∙ Transient usage constraints: if a process is moved from one machine to another, it

requires adequate amount of capacity on both machines.

∙ Spread constraints: the set of machines is partitioned into locations and processes

of the same service should be allocated to machines in a number of distinct loca-

tions.

∙ Dependency constraints: the set of machines are partitioned into neighbourhoods.

Then, if there is a service depends on another service, then the process of first one

should be assigned to the neighbouring machine of second one or vice versa.

A feasible solution to GMRP is a process-machine assignment which satisfies all

hard constraints and minimises the weighted cost function as much as possible. The

cost can be calculated as follows:

f =
∑

r∈R
weightloadCost(r) × loadCost(r)

+
∑

b∈B
weightbalanceCost(b) × balanceCost(b)

+ weightprocessMoveCost × processMoveCost
+ weightserviceMoveCost × serviceMoveCost
+ weightmachineMoveCost × machineMoveCost (1)

where R is a set of resources, loadCost represents the used capacity by resource

r which exceeds the safety capacity, balanceCost represents the use of available

machine, processMoveCost is the cost of moving a process from its current machine

to a new one, serviceMoveCost represents the maximum number of moved processes

over services andmachineMoveCost represents the sum of all moves weighted by rel-

evant machine cost. weightloadCost, weightbalanceCost, weightprocessMoveCost,

weightserviceMoveCost and weightmachineMoveCost define the importance of each individual

cost.
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For more details about the constraints, the costs and their weights can be found

on the challenge documentation [3]. Note that the quality of a solution is evaluated

by the given solution checker. Our proposed algorithm takes the returned value from

the checker as the fitness measure of a solution. Another important aspect of this

challenge is the time limit. It was stated that “The maximum execution time will be
fixed to 5min by instance on a core2duo E8500 3.16Mhz with 4Go RAM on debian
64 or Win7 64 bits.” All methods have to finish within 5 min. This is to ensure the

fairness of comparison.

3 Methodology

SA algorithm is a probabilistic local search method proposed by [10] that uses an

initial solution as a starting basis and then generated a neighbourhood solution. The

generated neighbourhood solution will be replaced with initial one if it better in term

of the quality or satisfy the acceptance probability. Instead of using a single solution,

we use a population of solutions and each solution has its own SA algorithm and all

SAs work in parallel manner. Each SA starts with different initial solution which can

leads to a different search path with distinct local optima. In addition, in order to help

the search to avoid being trap in a local optima point and to reduce the computation

time, a different mutation operators are applied once the solution cannot be improved

for a certain number of iterations.

The overview of the proposed single SA algorithm is shown in Fig. 1. It first sets

the parameter values (Sect. 3.1), generate the initial solution (Sect. 3.2) and calculate

the fitness value (Sect. 3.2). For GMRP, Google provides an initial solution for every

problem instance [3]. For each SA, the initial solution is generated by randomly

modifying this solution. Next, the algorithm calls the SA procedure (Sect. 3.3) to

generate better solution by iteratively modifying the generated initial solution. If the

solution cannot be improved for a certain number of iterations, a mutation operator

(Sect. 3.4) is applied. Otherwise, the algorithm checks the termination condition. If

that is satisfied, the process stops and returns the best solution. Otherwise, the fitness

value (Sect. 3.5) of the resulting solution is calculated. The solution update strategy

is then applied to determine if it updates the current solution or not. This process will

be repeated for a pre-defined number of iterations. Our proposed algorithm differs

from the work in [11] in that we assign one SA for each solution whereas their idea

is to parallelise and distribute the SA algorithm by dividing the main population into

small subparts.

The following subsections discuss the main components of the proposed single

SA algorithm.
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1: Start

2: Initialising the al-
gorithm parameters

3: Solution initialisa-
tion and evaluation

4: Simulated
annealing procedure

Get stuck? Mutationyes

Stopping
condition
satisfied?

Stop

yes

no

5: Fitness
calculation

Update the solution

no

Fig. 1 The overall flowchart of the proposed single SA algorithm

3.1 Initialising the Algorithm Parameters

In this step, SA parameters are initialised which are initial temperature t, the cooling

ratio 𝛼 and final temperature tf .
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3.2 Solution Initialisation and Evaluation

To generate an feasible initial solution, we randomly modified the initial solution

provided by Google for every problem instance of GMRP [3]. Next, the fitness value

of the solution is calculated by Eq. (1).

3.3 Simulated Annealing Procedure

In this step, SA is applied and it always accepts an improving local search move

but applies a probability of acceptance to deteriorating moves. The probability P of

accepting a worse solution is calculated using Eq. 2

P = exp
−(f (x′)−f (x))

t (2)

where f (x) is the fitness of the current solution and f (x′) the solution after the pro-

posed change and t is the current temperature. The t value controls the acceptance

ration of worse solutions and its gradually decreases by 𝛼 during the search process.

The search process will terminate when t = 0. The pseudocode of SA procedure is

shown in Algorithm 1.

Algorithm 1: Simulated annealing procedure

1 while ti > tk do
2 x′ ← apply neighbourhood operator to x;

3 calculate f (x′) ;

4 if random[0, 1] < exp
−(f (x′)−f (x))

t then
5 x′ ← x ;

6 end
7 ti+1 ← 𝛼 ∗ ti ;

8 i ← i + 1 ;

9 end

3.4 Mutation Operator

Mutation operator plays a big role on algorithm performance. Its main contribution

is to help the search escape from a local optima point by providing a new starting

point for the search. In this work, we use four different mutation operators. Each one

is assigned to one SA algorithm. The reason of assigning different operators to each

SA algorithm is because different problem instances and different stages of search

react to mutation differently. These mutation operators are [8]:
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∙ Single swap. It selects two processes from two different machines and inter-

changes them.

∙ Double swap. It selects four processes from two different machines and inter-

changes them.

∙ Single move. It selects a process from a machine and moves it to a different

machine.

∙ Double move. It selects two processes from a machine and moves them to a dif-

ferent machine.

3.5 Fitness Calculation

The fitness value of a solution is calculated using the same equation shown in Eq. (1).

4 Experimental Settings

In this section, the GMRP instances used in our experiments are discussed. Parameter

settings of the proposed ESA are also discussed.

4.1 Problem Instances

In total 20 different instances provided by Google for ROADEF/EURO 2012 chal-

lenge are used in the evaluation. They are divided into groups a and b. Theses

instances have different characteristics in terms of number of machines, number of

processes, neighbouring machines and so on. Table 1 shows the main characteristics

of these instances. In the table, R is the number of processes; TR is the number of

resources that need transient usage; M is the number of machines; P is the number

of processes; S is the number of services; L is the number of locations; N is the

number of neighbourhoods; B is number of triples and SD is the number of service

dependencies.

4.2 Parameters Settings

The proposed ESA has three different parameters that need to be set by the user.

These are: population sizeP (P = 4), the initial temperature t (t = 108) and the 𝛼 (𝛼 =
0.7). The t value controls the acceptance ration of worse solutions and its gradually

decreases by 𝛼. The search process will terminate when t = 0. The suggested values

of these parameters are obtained based on a preliminary test. We tested ESA with 31

independent runs using different parameter combination.
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Table 1 The characteristics of the problem instances

Instance R TR M P S L N B SD

a1_1 2 0 4 100 79 4 1 1 0

a1_2 4 1 100 1000 980 4 2 0 40

a1_3 3 1 100 1000 216 25 5 0 342

a1_4 3 1 50 1000 142 50 50 1 297

a1_5 4 1 12 1000 981 4 2 1 32

a2_1 3 0 100 1000 1000 1 1 0 0

a2_2 12 4 100 1000 170 25 5 0 0

a2_3 12 4 100 1000 129 25 5 0 577

a2_4 12 0 50 1000 180 25 5 1 397

a2_5 12 0 50 1000 153 25 5 0 506

b_1 12 4 100 5000 2512 10 5 0 4412

b_2 12 0 100 5000 2462 10 5 1 3617

b_3 6 2 100 20000 15025 10 5 0 16560

b_4 6 0 500 20000 1732 50 5 1 40485

b_5 6 2 100 40000 35082 10 5 0 14515

b_6 6 0 200 40000 14680 50 5 1 42081

b_7 6 0 4000 40000 15050 50 5 1 43873

b_8 3 1 100 50000 45030 10 5 0 15145

b_9 3 0 1000 50000 4609 100 5 1 43437

b_10 3 0 5000 50000 4896 100 5 1 47260

5 Results and Comparison

In this section, we evaluate the effectiveness of the proposed ESA by comparing it

with SA and state of the art algorithms for GMRP. The approaches for comparison

are:

1. VNS:Variable neighbourhood search [5].

2. CLNS: CP-based large neighbourhood search [6].

3. LNS: Large neighbourhood search [7].

4. MILS: Multi-start iterated local search [8].

5. SA: Simulated annealing [4].

6. RILS: Restricted iterated local search [9].

The computational results over 31 runs of the proposed ESA algorithm for all

instances from both group a and group b are summarised in Table 2. The results are

compared in term of the cost of the best solution and the search has to be finished

within 5 min. In the table, the best result among all the algorithms is highlighted

in bold. For GMRPs the lower the cost the better the solution. Table 2 reveals that,
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the proposed ESA algorithm outperforms SA proposed by [4] on all 20 instances.

In addition, ESA is very competitive compared to the reference algorithms. Specif-

ically, the proposed ESA obtained new best results for 12 out of 20 tested instances

and equal the best known result on two instances. Although Table 2 suggests that

the proposed ESA could not find new best results for 8 instances, nevertheless, the

difference is quite small.

A further analysis was carried out by conducting a statistical test to show the

significant differences between our algorithm and the algorithms in the literature.

As a statistical analysis, Friedman’s test [12] was first applied, followed by Holm

and Hochberg tests as post hoc methods (if significant differences are detected) to

obtain the adjusted p-values for each comparison between the control algorithm (the

best-performing one) and the rest. Table 3 summarises the ranking obtained by the

Friedman’s test. Note the averages are not available, hence the comparison is purely

based on the best results.

Note that the RILS algorithm is not considered in the comparison due to the rea-

son that this algorithm does not tested on set A instances.

Table 3 shows that ESA ranks first, followed by the VNS, CLNS, SA, MILS and

LNS. The p-values computed by the Friedman’s test is 0.000, which is below the

significance interval of 95 % (𝛼 = 0.05). This value shows that there is a significant

difference among the observed results. Post hoc methods (Holm’s and Hochberg’s

test) were also performed on the ESA algorithm. Table 4 shows the adjusted p-values

(Friedman). We can see that Holm’s and Hochberg’s procedures reveal significant

differences when using ESA algorithm as a control algorithm, where ESA algorithm

Table 3 Average ranking of Friedman test

# Algorithm Ranking

1 ESA 1.7

2 VNS 2.375

3 CLNS 3.175

4 SA 4

5 MILS 4.8

6 LNS 4.95

Table 4 Adjusted p-values (Friedman) of the compared methods

# Algorithm Unadjusted p P Holm P Hochberg

1 LNS 0 0 0

2 MILS 0 0.000001 0.000001

3 SA 0.000101 0.000304 0.000304

4 CLNS 0.01266 0.025319 0.025319

5 VNS 0.253887 0.253887 0.253887
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is better than LNS, MILS, SA and CLNS algorithms, with 𝛼 = 0.05 (4/5 algorithms).

Although the statistical tests show that the ESA is not better than VNS, the results in

Table 2 shows that the ESA achieves better cost than VNS over 14 and 20 instances.

6 Conclusions

This paper introduced an evolutionary simulating annealing (ESA) algorithm for

Machine Reassignment Problem from ROADEF/EURO 2012 challenge. ESA uses a

population of solutions instead of a single one. Four SA algorithms search in parallel

to solve the problem. Each SA starts with a different initial solution. Each leads to

a different search path with distinct local optima. In addition, four different muta-

tion operators are introduced once a solution cannot be improved for a certain num-

ber of iterations. This mutation mechanism not only helps the algorithm avoid get-

ting stuck in a local optimum but also reduce computation time. In comparison with

the state-of-the-art algorithms, ESA produces high-quality solutions and outperform

other methods. We conclude that the ESA is an effective method for optimisation on

Google machine reassignment problem.
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Mobile Agent Based Obstacle Avoidance
in Multi-robot Hunting

Shiyou Uehara, Munehiro Takimoto and Yasushi Kambayashi

Abstract Multi-robot hunting is a problem in which multiple robots cooperatively

search for a target that emits signals in the all directions. Robots proceed in the guid-

ance of the signals, and finally, some of them reach the target to capture. In order to

solve the problem, an approach based on Particle Swarm Optimization (PSO), which

is one of meta-heuristics, has been proposed. The PSO based approach is well known

that it works well in fields with no obstacle. It is, however, not assumed to be used

in practical situations with obstacles. In order to lift this restriction, we propose a

new PSO based approach that enables particles search and capture the target while

getting around the obstacles. In our approach, each robot records its moving trace in

a fixed period. Once a robot is blocked by obstacles and cannot proceed, it creates

a mobile software agent that migrates to other robots around it through Wi-Fi. The

mobile software agent selectively migrates to some robots whose traces have some

intersection points. Since a sequence of the traces gives a detour route through which

a robot can go, the agent can just inform the detour route to its home robot. We have

implemented a simulator based on our approach, and conducted experiments. The

experimental results show that our approach is remarkably more effective than the

original PSO based approach.
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1 Introduction

Today, it is possible to address complicated problems by a sophisticated robot

and solve the problems, while several efforts have been made to achieve the same

problem-solving using multiple robots with relatively simple functionalities. Efforts

have been made to control multiple robots based on Swarm Intelligence, which

enables the multiple robots to achieve self-organized collective behaviors, while each

robot behaves along the same simple algorithm. We call the multiple robots behaving

based on swarm intelligence swarm robots.

One of the important collective behaviors of the swarm robots is hunting targets.

In order to achieve target-hunting, some approaches have been proposed. Especially,

Multi-robot Hunting based on Particle Swarm Optimization (PSO) has shown that

no less than eight PSO based swarm robots can successfully find a target in an open

space without collision [8]. Also, an extension of the PSO based approach has shown

that it can save the total energy consumption and reduce the total communication

costs between robots without sacrificing the success rate, using swarm robots con-

trolled by mobile agents [4]. These PSO based huntings assume the work field has no

obstacle so that the movements of robots are not blocked, and the view of the device

such as a camera is always clear. The assumption would be too strong in terms of

practical uses.

We propose a new multi-robot hunting approach that works in a field with obsta-

cles. In our approach, robots behave based on the original PSO based approach. In

the PSO, each particle, which corresponds to a robot, is given its own estimated value

at the current location by a fitness function. The next location is determined by the

estimation of its previous location and the current locations of the other particles.

In this way, as time elapses, the swarm converges to the particle located at the most

suitable position. On the other hand, robots have some volume unlike particles in

PSO and hence, they would be strongly influenced by obstacles around them. The

robots cannot easily avoid obstacles and have to make a detour based on just PSO.

In order to solve this problem, we make mobile agents traverse robots with inter-

section points on their traces, which compose a detour route for the obstacles. The

technique is based on the method proposed by Avilés et al. [1]. Each robot records

its own trace as a log in a certain fixed period, so that each robot can always find

some detour routes leading it to a positon beyond obstacles through its trace based

on the migration manner of mobile agents. Therefore the swarm robots can find the

target by simply following the PSO algorithm in a field with obstacles.

The rest of this paper is organized as follows. We describe the related works in the

second section. We explain the fundamental concepts of PSO in the third section. We

describe the details of the mobile agent system we use in the fourth section. We show

the experimental results on a simulator we have implemented based on the proposed

method and discuss about the results in the fifth section. Finally we conclude our

discussion in the sixth section.
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2 Related Works

Swarm Intelligence (SI) is the optimization method inspired by the behaviors of

swarms in nature. Swarms that have been studied are ants, birds, insects, etc. and

these swarms have been composed on computer as swarm models. SI based opti-

mization is performed by the swarm of individuals located in search space. This

swarm is generally composed of individuals of uniform agent and these individuals

interact with environment as well as each other. Even though there is no central con-

trol system of the swarm, the chain of local interactions of neighborhood individuals

triggers a large scale movement of the swarm as whole individuals. SI based opti-

mization is the method to search optimal solution through the emergence of such a

movement.

PSO is a typical algorithm of SI based optimization proposed by Kennedy and

Eberhart [6]. In the PSO, particles are randomly located in the search space at the

initialization phase and these particles compose a swarm. Each particle determines

its next behavior by combining its own information and common information of the

swarm. Thus all the particles slowly come near the most optimal position among the

individuals. The fitness value of a position in search space is estimated by a function

called “fitness function”.

In the traditional PSO, a particle’s movement is determined through calculating

its velocity vector. Kennedy studied a method that removes the concept of velocity

vector and then performs each particle’s movement stochastically [5]. Kennedy pro-

posed that each particle’s next position is determined by creating a Gaussian random

vector dimension-by-dimension since an observation of particles using standard vec-

tor strategy produced a bell-curved histogram of position being tested. This method

is called Bare_Bones_Particle_Swarm (BBPS), and swarm following BBPS shows

continuous improvement throughout the steps.

Bell et al. abstracted BBPS above and they called the method Particle_Field_

Optimization (PFO) [2]. In PFO, each particle is always located at its own best posi-

tion, and position updating at each step is not necessarily cover all the particles. A

candidate point is generated as a Gaussian random vector from the Gaussian dis-

tribution of a particle probabilistically sampled from the swarm, and in this way a

fixed number of candidate points at a step are generated. If there are candidate points

generated from a particle and a candidate more suitable than the particle exists, then

the particle move to the point. With suitable parameter setting, this method produces

better solution than BBPS does.

There are quite a few multi-robot applications that take advantages of PSO. Zhu et

al. propose an algorithm that guides mobile robots to search a target without precise

global information [10]. They demonstrate that when some limited number of robots

form a small group and explore cooperatively, the cooperation display remarkable

performance. They also demonstrate that their multi-robot system is applicable to

map-building through exploring unknown terrain [9]. For avoiding obstacles, Mase-

hian and Sedighizadeh propose a variant of PSO that employs Probabilistic Roadmap

Method [7]. They have reported that their method has merit on computational com-
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plexity. The most closely related research project to ours is the one conducted by

Dadgar et al. [3]. They propose an extension of PSO called Adaptive Robotic PSO

(A-RPSO) that provides control mechanism for multiple robots. Like our system,

A-RPSO takes obstacle avoidance into consideration as well as has mechanism to

escape from local optima.

3 PSO Based Hunting

PSO based hunting works by iteratively updating two vectors velocities and positions

of particles that are initially scattered in a search field. These vectors are initialized

to random values, and updated along the following equations.

Vt+𝟏
i = 𝜔 ∗ Vt

i

+ C1 ∗ rand1 ∗ (Pt
i − Xt

i)
+ C2 ∗ rand2 ∗ (Pt

g − Xt
i)

(1)

Xt+𝟏
i = Xt

i + Vt+𝟏
i (2)

In Eq. (1), t is the current iteration number, Vt
i and Xt

i are the velocity and the posi-

tion vector of particle i in the current iteration, Pt
i is the most fitted location of the

particle i, Pt
g is the location of the particle that is most closest to the target at cur-

rent iteration. 𝜔, C1 and C2 are constants, and rand1 and rand2 are two uniformly

distributed random numbers in the range [0, 1].

We assume that robots corresponding to particles move in a square search field.

We also assume that the target is located at the center of the field. The robots are

located in the field at random manner.

The target emits signals in every direction. Robots are able to receive the signals

and measure their strength, which is used as information for searching the target. The

hunting successfully finishes once some robots capture the target, i.e. they reach the

area within 30 units from the target.

Robots share the following information:

1. The position of the robot that is closest to the target

2. Strength of the signal that reaches the current location.

Each robot is equipped with a camera and a GPS device. It can detect other robots

within 100 units from the current position through the camera if they are not hidden

by any obstacle. On the other hand, it cannot directly recognize the target through

any sensors including the camera. Also, each robot can know the precise information

of its own position through the GPS device.
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4 Agent Based Detour Detection

Once a robot collides with an obstacle, it stops moving, and then starts searching

a detour to get around the obstacle. The robot periodically generates mobile agents

and sends them to one of the neighbor robots at a time. In the process of searching a

detour, we call this robot that generates agents the start robot. At this time, an agent

can just migrate from the start robot to one of its neighbors that are reachable with

Wi-Fi at the current position. Once the agent migrates to a neighbor robot, it checks

a migration condition that is the GPS log of the robot has some intersection points

with the GPS logs of the robots from which the agent has migrated(source robot), or

the robot is within the view range of the source robot without being blocked by any

obstacle. If the neighbor robot satisfies one of the two conditions, the agent records

the position, velocity and GPS log of it, and try further migrations; otherwise it

abandons the robot, and migrates another neighbor of the source robot to check the

conditions. The agent repeats the migrations without revisiting the same robots until

it reaches the target robot that satisfies the following target condition decided by

parameters L and D that are arbitrarily or randomly defined in the experiments:

1. The total distance of a sequence of collected GPS logs, which include the straight

lines between robots within the view range of the other, is more than L, and

2. The direction of the velocity of the target robot is within angle D around the

direction of the velocity of the start robot.

The agent that has reached the target robot traverses the sequence of robots on which

it has migrated, in reverse order to go back to the start robot. Once the agent is back

to the start robot, it gives the start robot the collected sequence of GPS logs as a

result (Fig. 1).

Immediately after the start robot receives the result of searching a detour search-

ing, it stops generating agents and composes a detour route based on the GPS logs.

Finally, the start robot move toward the position where the target robot is along the

Fig. 1 Screenshot of robots’

relative position. Pink node

is the robot generating

agents, orange arrow is the

velocity vector that agent

remember, the candidate

goal area is composed of the

white area surrounded by the

blue lines. The deep blue
node is the target robot
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detour route, and then, restarts hunting based on PSO algorithm. Since the detour

route is a chain of GPS logs with intersection points or the straight lines without any

obstacle between robots that are within the view range of the other, the start robot

can move along the detour route without being blocked by any obstacle.

The robot blocked by an obstacle also keeps calculating their own velocity in

searching a detour routes. If the robot fortunately turns toward the direction of non-

obstacle area before finding a detour route, the robot stops detour searching and

resumes the searching behaviors following the PSO algorithm, immediately.

5 Numerical Experiments

We have implemented a simulator in order to demonstrate the effectiveness of our

approach. Figure 2 is the screenshot of our simulator. In this figure, deep blue nodes

represent robots that follow our PSO algorithm to move, light blue nodes are robots

in search of detour route, pink nodes are robots taking a detour, and yellow lines are

GPS logs of each robot, and red lines are detour routes that pink nodes take at current

iteration. In this simulation, we measure the capability of our hunting approach with

the different number of robots.

5.1 Simulator

This simulation field, which is depicted in Fig. 2, has 600 × 600 size and obstacles

are located in centrosymmetric manner. Only one target is located at the center of

this field, of which the coordinate is unknown to the searching robots. This target

emits signal in every direction, which robots can receive, and measure the distance

to the target based on its strength of the signal at the position. In the field, robots can

move in a white area and cannot get into the black areas that represent obstacles. We

assume that obstacles do not block the signal emitted by the target, through which

robots know the direct distance to the target. Initially, robots are randomly located

avoiding the areas occupied by obstacles and 300 × 300 rectangle area at the center

of the field. Each robot can see every direction through an omnidirectional camera.

For our approach, we have conducted experiments with two kinds of settings of L

and D as follows:

∙ Fixing L and D to 50 and 60, respectively.

∙ Randomly selecting L and D from the ranges [30, 100] and [30, 180] respectively,

every time each robot searches a detour route.
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Fig. 2 Screenshot of the simulator

The settings of the other parameters were as follows:

∙ 𝜔 = 0.9, C1 = 2.0, C2 = 2.0 on Eq. 1

∙ Robots searching a detour route periodically generate agents per 100 steps.

∙ The maximal number of steps in a simulation is 600.

5.2 Results of the Experiments

In the simulation, the number of robots is changed in the range of [10, 100] in units

of 10, and the simulation is performed 50 times for each case.

Figure 3 shows the success rates in our approaches and traditional PSO based

approach. Figure 4 shows the average number of time units taken until each simula-
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Fig. 3 Success rate of the

algorithms in terms of the

number of robots. X-axis

denotes the number of robots

and Y-axis denotes the

success rate of experiments

Fig. 4 Average success time

of the algorithms in terms of

the number of robots. X-axis

denotes the number of robots

and Y-axis denotes the

average time spent until

robots find the target

tion is successfully completed. We can observe that the traditional approach makes

a robot stop moving without restarting once it collides with an obstacle.

In these figures, results of the traditional approach and our approaches with fixed

parameters and randomly set parameters are shown by “PSO”, “TrackFix”, and

“TrackRan”, respectively. As shown in Fig. 3, TrackFix is the most successful i.e.

90 % success, when the number of robots is more than or equal to 40, while success

rate of PSO is 60 % for 40 robots. On the other hand, as shown in Fig. 4, TrackFix

roughly takes 20 more steps than traditional approach in order to reach the point

improving success rate. TrackRan tends to be more successful with smaller number

of robots but its success time is not stable.

Our approaches for both parameter settings give mostly better results than the

traditional approach. In details, in the case where sufficiently many robots in search

field, TrackFix tends to have an advantage, since each robot can steadily compose a

detour route. Conversely, it is hardly able to find any target robot for composing a

detour route for the small number of robots. In such a case, TrackRan has an advan-
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tage because the condition of parameters L and D may be weakened by random

selection, giving some opportunities for searching a detour route in wider area.

It is worth investigating the roles that the detour routes play in our approach. The

most effective role of them is to lead the robots that are blocked by obstacles. In the

traditional approach, only a few robots can travel a long distance without colliding

with obstacles because each robot does not take the obstacles into consideration.

That is, taking advantage of the traditional approach in a search field with obstacles

is difficult and we need to introduce new means to cope with this obstacle-present

situation. In other words, the obstacles make robots as particles in PSO less efficient

and less accurate. In contrast, since our approach rescues the robots that are blocked

by obstacles and makes them re-active as particles in PSO, it makes robots more

efficient and makes go further toward the target than those in the traditional PSO.

6 Conclusions

In this paper, we have proposed a novel multi-robot hunting approach based on PSO

and GPS tracking. This approach leads the robots blocked by obstacles in front of

them to detour routes. The detour routes are composed with GPS logs of adjacent

robots that are collected by mobile software agents. In other words, our approach

rescues the blocked robots and makes them re-activate as particles of PSO. We have

implemented a simulator to demonstrate the effectiveness of our approach, and have

conducted numerical experiments on it. As a result, we have shown that our approach

remarkably increase success rate of searching a target, while it requires a little more

iterations to complete the mission than the traditional PSO based approach.

As future directions, we are investigating other environmental parameters that

are practically required, and the effects of the arrangements of obstacle map, or the

topology of PSO.
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Communication-Less Cooperative
Q-Learning Agents in Maze Problem

Fumito Uwano and Keiki Takadama

Abstract This paper introduces a reinforcement learning technique with an internal

reward for a multi-agent cooperation task. The proposed method is an extension of

Q-learning which changes the ordinary (external) reward to the internal reward for

agent-cooperation under the condition of no communication. To increase the cer-

tainty of the proposed methods, we theoretically investigate what values should be

set to select the goal for the cooperation among agents. In order to show the effec-

tiveness of the proposed method, we conduct the intensive simulation on the maze

problem for the agent-cooperation task, and confirm the following implications: (1)

the proposed method successfully enable agents to acquire cooperative behaviors

while a conventional method fails to always acquire such behaviors; (2) the coopera-

tion among agents according to their internal rewards is achieved no communication;

and (3) the condition for the cooperation among any number of agent is indicated.

Keywords Multi-agent system ⋅ Q-learning ⋅ Cooperation ⋅ Theory

1 Introduction

Multi-agent reinforcement learning (MARL) is a useful approach to tackle multi-

agent cooperation tasks, such as multi-robot cooperation and traffic signal control

[1–6]. However, a MARL has a difficulty of deriving good performance without

communication among the agents because the agents do not know how they coop-

erate with each other [7, 8] due to the fact that the behavior of agents affect the

behavior of other agents and vice versa. To address this issue, most of the conven-

tional methods such as Tan’s research [9] promote agents to cooperate with each
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other by using other agents’ information through communication. Such information

is very useful for the cooperation among the agents, but it goes without saying that

the agents cannot guarantee to acquire all information required to cooperate with

each other through communication. From this fact, it is important to explore a rein-

forcement learning method based on “no communication” for the cooperation among

the agents.

For this issue, the conventional methods can be classified with the following two

viewpoints: (1) the agents learn their behaviors empirically or theoretically; (2) infor-

mation of other agents can be (partially) shared or not to cooperate with each other.

As the empirically approach (not theoretical approach) employing information of

other agents, Ono et al. proposed the modular Q-learning that combines the modular

architecture with Q-learning and showed that the modular Q-learning agents suc-

ceeded to synthesize decision policies for cooperation among the agents by using

information of other agents [10]. However, the cooperative behavior cannot be guar-

anteed because the decision policies are determined heuristically. As the empirically

approach without sharing information of other agents, Iima et al. proposed the swarm

reinforcement learning that improves the performance of the collective agents [3].

In this method, the agents do not need the information of other agents, but the opti-

mal behavior of the agents cannot be guaranteed to be acquired. As the theoretical

approach employing information of other agents, on the other hand, Elidrisi et al. pro-

posed the fast adaptive learning in the stochastic game (FAL-SG) [5], which enables

the agents to choose the optimal action by observing their actions each other. How-

ever, this method requires the complete information of all agents for the cooperation

among them.

Compared with these methods, it is clear that there is no method based on the

theoretical approach without sharing information of other agents, even though such

methods are really needed as the number of agents increases. To tackle this issue,

this paper aims to explore the theoretical approaches for cooperation among agents

which do not require the communications during the learning. For this purpose, we

propose the “internal reward” which is changed from the ordinary (external) reward.

Specifically, the agents in our approach theoretically learn their behaviors according

to the internal reward instead of the ordinary (external) reward. For this issue, we

employ Q-learning agents in this paper because Q-learning is well studied and ana-

lyzed mathematically (i.e., the convergence of Q-value is proofed in the single agent

environment [11]).

This paper is organized as follows. Section 2 describes the multi-agent coopera-

tion task addressed in this paper. Our method is proposed in Sect. 3. Section 4 con-

ducts the experiment and analyzes the obtained results. Finally, our conclusion is

given in Sect. 5.
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2 Multi-agent Cooperation Task

2.1 Cooperation on Maze Problem

This section introduces a multi-agent cooperation task using a 3× 8 grid maze prob-

lem. Figure 1 shows an example of 3× 8 grid maze. On the maze this paper uses,

as shown in the figure, we define there are two possible start states (A, B) where

agents will be initially placed before learning; and two goal states (S, L) where the

agents attempts to reach. A difficulty of multi-agent cooperation task on the maze,

is each agent attempts to selfishly learn the minimum step for him that does not find

a cooperating behavior with other agents. For instance, on the maze problem shown

by Fig. 1, when two agents start from states A and B respectively, they attempt to

reach the same goal state S since their minimum steps to goal can be achieved by

reaching it. In this case, the agent starting from the state B can potentially reach goal

state S faster than another agent starting from the state A. This result suggests that

the agent starting from the state A should reach the goal state L. This is the best (but

selfish) solution for the agent starting from the state B while the worst solution for

agent starting from the state A since he should take the longest step to reach goal.

The cooperating behavior can be selected as; the agents starting from state A and B
reach the goal state S and L respectively. This difficulty is often called as a dilemma

problem.

2.2 Definition of the Cooperation Task

For the theory, we define the cooperation task of maze problem mathematically by

using minimum steps from start states to goal states. Note that two Q-learning agents

are employed and we assume that all minimum steps are different from each other.

In this section, we define tAS, tAL, tBS and tBL as the minimum steps. The minimum

step to Goal S for agent A indicates tAS, and the other steps indicate at the same way.

When the agents starting from states A and B select goal states S and L respectively

after learning, if this situation is the dilemma problem, the minimum step spend

by this selection is larger than another selection because either agent spends long

Fig. 1 Maze Problem
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steps. Specifically, if the agent starting from the state A cannot reach the goal state

L and reaches the goal state S because of another agent, the following equation is

established.

tAL < tAS (1)

tBL < tBS (2)

tAL > tBL (3)

tAS > tBS (4)

the Eqs. 1 and 2 indicates the selfish results of both agents, and the Eq. 3 indicates that

the agent starting from the state A cannot reach the goal state L because of another

agent starting from the state B. Since tBL is shortest from these equations, if this is

dilemma problem, tAS is bigger than tBS (Eq. 4) because, by yielding of the agent

starting from the state B, the agents starting from state A and B reach the goal state

S and L respectively in minimum step shorter than that in this selection as another

selection.

Therefore, if this situation is the dilemma problem, the Eqs. 1, 2, 3 and 4 are

established. In addition, the equations same as these equations can be established by

the same way in other situations.

3 Proposed Method

In the dilemma maze problem like Fig. 1, in order to achieve the cooperation of

agents, we proposed the learning method as shown in Fig. 2. Agents repeats the learn-

ing cycle (observe states, select action, state transition, learn) on each square (state)

of this maze. The agents obtain reward at the goal point and calculate Q-value from

the reward during this cycle. The proposed method enables the agents to predict

the optimal goals for cooperation, and get the agents to have own reward (internal

reward) to reach the selected goals. The remain of this section explains the mecha-

nism of the cooperation method (goal selection and internal reward design).

3.1 Goal Selection

3.1.1 Selection Based on Goal Value

In the proposed method, agents memorize the minimum steps from own start to every

goal (because of the Q-value table), and have goal values which indicate priority of

every goal, for example, the agent starting from the state A has this Table 1. In this

table, bidAS and bidAL indicates the goal values for the goal state S and L respectively.

The agent starting from the state B has the thing same as this Table 1, and bidBS and
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Fig. 2 Proposed method

Table 1 Table memorized by agent at state A

Goal S Goal L

Minimum step tAS tAL
Goal value bidAS bidAL

bidBL indicates the goal values for the goal state S and L. The goal value is the real

number and indicates whether the agent select the goal. In this process, the agents

select the goal states by using the goal values and update the goal values from the

result of this selection.

1. Selecting Goal

First, the agents select the goals from the goal values. the agents select the goal

which has the largest goal value, for example, if bidAS < bidAL is established,

the agent starting from the state A selects the goal state L. After that, in the

process 9, the agent estimates internal reward to reach the goal selected in

this process. Note that, in implementation, the agents can select the goals ran-

domly in some probability to update the goal values evenly.

2. Update the Goal Value

Second, the agents update the goal values from the result of above selection. The

agents update by following the equations same as the Eqs. 5 and 6 for the agent

starting from the state A.
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bidAS =
n − 1
n

bidAS +
tAS
n

(tAS < tBS) (5)

bidAS =
n − 1
n

bidAS +
0
n

(tAS > tBS) (6)

If the agents starting from state A and B select the same goal state S, and if the

minimum step from state A to that goal state for the agent starting from the state

A is short, the agent updates the goal value for the goal state by following the

Eq. 5; otherwise, the agent updates the goal value by following the Eq. 6. As for

the agent starting from the state B, if the minimum step from state B to the goal

state L is short, the agent updates the goal value by the above same way.

3. Mathematical Analysis

In this section, we analyze whether the selection in Sect. 3.1.1 can resolve the

dilemma problem by calculating the goal values when agents learn for infinite

times. Note that we use the definition of the maze in Sect. 2.2. The Eqs. 5 and

6 indicate the average of the minimum steps and the average of those added 0
respectively. If “Selecting Goal” phase is happened for infinite times, the fol-

lowing equations are established from the above equations.

lim
n→∞

bidAS = tAS (tAS < tBS) (7)

lim
n→∞

bidAS = 0 (tAS > tBS) (8)

If the agents starting from state A and B will reach the goal states S and L,

respectively in dilemma problem, same way as the Sect. 2.2, the each goal value

is put on the following Table 2. The goal value of the goal state S for the agent

starting from the state A becomes 0 by the Eq. 8 because the Eq. 4 is established

in this situation. While, though the Eq. 3 is established in this situation, the goal

value of the goal state L for the agent starting from the state A becomes tAL
because the agent starting from the state B will only select the goal state S.

After all, from the goal values of Table 2, the agent starting from the state A
selects the goal state L and the agent starting from the state B selects the goal

state S by following the Eq. 2. In addition, it is clear that this selection resolves

the dilemma problem in this situation.

Table 2 Goal value table for two agents

Goal S Goal L

Agent A 0 tAL
Agent B tBS tBL
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3.2 Internal Reward Design

In this process, each agent designs the internal reward to reach the goal state selected

in first step by using the method. Figure 2 shows a way for two agent to cooperate each

other. tBS indicates minimum step from start state B to goal state S and tBL indicates

minimum step count from start state A to goal state L. Red star represents the turning

point to select whether the agent reaches the goal state S or L. Yellow directional

arrows represent the agent’s mainly action for each goal states, and arrows’ thickness

indicates Q-value. Note that each agent knows the goal with the process introduced in

Sect. 3.1. The agent estimates Q-value to reach the optimal goal selected in Sect. 3.1

by an internal reward for Q-value described above.

In Fig. 2, the agent starting from the state A should reach the goal state S and the

agent starting from the state B should reach the goal state L. Note, it is not necessary

for the agent starting from the state A to set internal reward, since it reaches the goal

state S normally (maximizing reward for the agent A). However, the agent starting

from the state B should set the internal reward; under the standard RL the agent

starting from the state B would reach to the goal state S, while the agent starting

from the state B need to reach the goal state L for maximizing the reward for all

agents. Then, in the proposed method, the internal reward is added to reform the

reward design of the agent starting from the state B to reach the goal state L.

In the turning point on Fig. 2, the Q-value of the action to reach the goal state S
eventually converges to a value r and the Q-value of the action to reach the goal state

L is r𝛾2. If the agent starting from the state B uses the internal reward irS, irL, the

Q-value of the action to reach the goal state S is irS and the Q-value of the action to

reach the goal state L is irL𝛾2. Since irL𝛾2 > irS is satisfied, if irL is
r
𝛾
2 + 1 and irS is

r, the agent starting from the state B will reach the goal state L finally and be able to

cooperate. We explains the general way to design internal reward in the following.

4 Experiment

To validate the performance of the proposed method, we executed two experiments.

We applied two agents to one maze problem for cooperation among agents in first

experiment. We applied three agents to one maze problem in second experiment.

4.1 Experimental Setting

To investigate the effectiveness of our RL mechanism, this paper applies it into two

maze problems as the multi-cooperation tasks. Specifically, in the first problem, we

employ a 3× 8 grid maze, as shown in Fig. 1, where two agents should cooperate with

each other in order not to fall into dilemma (i.e., the local minimum). In the second
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Fig. 3 Maze problem for

three agents

problem, we employ a 3× 8 grid maze, as shown in Fig. 3, where three agents should

cooperate with each other.

As the evaluation criterion, this paper evaluates the success rate for the coopera-

tion among two or three agents. In addition to this criterion, this paper also investi-

gates the effect of the random selection and the constant 𝛿, respectively. Concretely,

we conduct the simulation by employing the percentage for random action 𝜂 (5) and

constant 𝛿 (1). The parameters for Q-learning as summarized in Table 3. In detail,

note that the parameter of both experiments is the same. In this table, the learning

iterations and step counts are limited to 30000 and 100 as threshold showed in first

and second lines of Table 3, respectively. If the iterations come over the threshold,

the experiment is finished, and if the step counts come over, the present learning is

stopped and next learning is started. We initialize Q-values at all states to 0 in third

line of Table 3. The agents learn according to the parameter 𝛼 = 0.1 and 𝛾 = 0.9 in

4th and 5th lines of Table 3. In this experiment, agents select an action by 𝜖 − greedy
of 𝜖 = 0.7, and if the agent reaches goal states, the agent acquires the ordinary (exter-

nal) reward 10 in 7th line of Table 3. Constant 𝛿 and random goal selection 𝜂 in 8th

and 9th lines of Table 3 indicate the difference of the internal reward for cooperation

among the agents and the percentage that the agents select the goal states randomly,

respectively.

Table 3 Parameters

Q-learning

Iterations 30000

Maximum steps 100

Initial Q-value 0

Learning rate 𝛼 0.1

Discount rate 𝛾 0.9

Action selection 𝜖-greedy, 𝜖 = 0.7
Reward 10

Constant 𝛿 1

Random goal selection 𝜂 5
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4.2 Result

Figures 4 and 5 show the success rate of cooperation between two agents by the con-

ventional method and the proposed methods. The vertical axis indicates the success

rate, while the horizontal axis indicates the iteration of learning. As shown in Figs. 4

and 5, the success rate of the conventional Q-learning is low, while the proposed

Q-learnings based on the internal reward increases as the iterations increases and

finally becomes 1. From these results, it is clear that the proposed methods enable

Q-learning agents to cooperate with each other.

4.2.1 Verification of the Goal Selection

Figures 6 and 7 show the estimated goal values by the proposed method and the the-

oretical ones, respectively. In these figures, the vertical axis indicates the averaged

Fig. 4 Success rate of

conventional Q-learning

(two agents)

Fig. 5 Success rate of the

proposed method (two

agents)
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Fig. 6 The estimated goal

value (two agents)

Fig. 7 The theoretic goal

value (two agents)

goal values of 30 seeds at the last iteration, while the horizontal axis indicates the

combinations of the agent and the goal (e.g., “A to S” means that the goal value of

the agent starting from the state A to the goal state S). Bars indicates the goal value

employing 𝜂 = 5, and the short lines on the top of the bars indicates the standard

deviation of the goal values of all seeds. Since the standard deviations of the goal

values acquired from the simulation do not overlap, it is clear that the goal values

in the simulation are mostly estimated by the theoretical ones. From the figures, the

proposed method enable the agent to estimate the goal value close to the theoretical

one. On the other hand, Figs. 8 and 9 show the success rate of cooperation among

three agents by the proposed methods in 30000 and 150000 iterations, respectively.

The vertical axis indicates the success rate, while the horizontal axis indicates the

iteration of learning. As shown in Fig. 8, the success rate of the proposed Q-learnings

based on the internal reward increases as the iterations increases, and finally becomes

1. From these results, the proposed method is effective in the situation of three agents
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Fig. 8 Success rate of the

proposed method (three

agents)

Fig. 9 Success rate of Fig. 8

in 150000 iterations (three

agents)

perfectly. In addition, Figs. 10 and 11 show the estimated goal values by the proposed

method and the theoretical ones, respectively. In these figures, the vertical axis indi-

cates the averaged goal values of 30 seeds at the last iteration, while the horizontal

axis indicates the combinations of the agent and the goal (e.g., “AS” means that the

goal value of the agent starting from the state A to the goal state S). The agents start-

ing from the state A, B and C set the largest goal value to the goal state S, M and

L, respectively. these combinations are the same as the combinations determined by

theoretic goal value. However, the standard deviations of the goal values acquired

from the simulation overlap one another, and the estimated goal values of the com-

binations whose theoretic goal value is 0 have not become 0. These suggest that the

three agents want more learning iterations.
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Fig. 10 The estimated goal

value (three agents)

Fig. 11 The theoretic goal

value (three agents)

4.3 Discussion

From the above results, it is clear that the proposed methods, i.e., the internal reward

design based on the goal selection enable the agents to learn appropriate actions

according to the theory, which needs to cooperate with each other. Since the agents

should acquire the minimum steps to derive to the best performance, this subsection

investigates the effectiveness of the proposed method.

4.3.1 Goal Selection

In the proposed method, the agents can select an appropriate goal for cooperation

by estimating the goal value which converges to the number of the minimum steps

towards the goal that the agent can reach. Since the agent far from goals, i.e., the agent
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starting from the state A, estimates the goal value of a far goal as 0 while estimates

that of a near goal as the minimum steps in Fig. 7, the agent selects the near goal

because the goal values of the near goal is largest in the situation of two agents (the

agents can select appropriate goals by same process in the situation of three agents).

This result suggests that it is important for the agents to select other (not optimal)

goals. In other words, it is important that the agent near goals leads the agent far

from goals to optimal goal. In the proposed method, 𝜂 is related to this factor. If 𝜂 is

5 (same as 𝜂 in the experiment), the agents select goals randomly for five times per

one iteration. If the number of the agent is two, since the agent starting from the state

B can estimate all goal values accurately, the agent starting from the state A is led to

the optimal goal by another agent. From the explanation, 𝜂 = 5 is appropriate in the

situation which there are two agents in one environment. This is shown in Figs. 4, 5,

6 and 7. In the situation which there are three agents in one environment, the result is

worse than the result of the situation of two agents. The reason of this is that the goal

value estimation among three agents is not easier than that among two agents, unlike

the randomly goal selection. Since the goal value is converged from the near agent to

goals, if the number of the agent is increased, to estimate the goal value is difficult.

This is clearly a fact because if the learning iteration is increased, the success rate is

improved in the experiment and converged to 1, such as Figs. 8 and 9.

4.3.2 The Number of Agent

From the result of the experiment of three agents, If the proposed method fulfills cer-

tain conditions, the proposed method can be effective in the situation which there are

three agents in a same environment. This suggests that if the proposed method ful-

fills certain conditions, the proposed method can be effective in the situation which

there are any agent in a same environment. Since the proposed method get the agents

to estimate the goal value in order to reach far goal state, and the agents near the

goal states lead the agents far from the goal states, the proposed method might mis-

take in some situation; the agents near the goal states select a wrong goal state. “far

goal state” must be the goal state which is faraway from start points of all agents,

in other words, each goal state has same magnitude correlation with one another

against each agent (if a goal state is most faraway from start point of one agent, this

goal state is most faraway from start points of all agents). Therefore, each goal state

has same magnitude correlation with one another against each agent so that the pro-

posed method is effective. Since the experiment of this paper meets this condition,

the agents can cooperate with one another. This is clearly from the results of the

experiments.
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5 Conclusion

This paper focused on a multi-agent cooperation which is generally difficult to be

achieved without communication among the agents, and proposed the Q-learning

method for a multi-agent cooperation based on no communication. For this purpose,

our proposed method, the extension of Q-learning, changes the ordinary (external)

reward to the internal reward. To increase the certainty of the proposed methods, this

paper theoretically investigate (1) how the internal rewards should be set to guarantee

the cooperation among agents; and (2) how their values should be set to discover the

goal for cooperation among agents. Through the intensive simulations on the cooper-

ating task in the 3× 8 grid maze where two or three agents are required to cooperate

with one another, the following implications were revealed: (1) our proposed method

successfully enables the agents to select their own appropriate cooperative behaviors

which contribute to acquiring the minimum steps towards to their goals, while the

conventional methods cannot always acquire such behaviors. In detail, the proposed

method always enables agents to cooperate with each other without communication

by prioritizing the goal to select the yielding action; and (2) the cooperation among

agents according to their internal rewards is achieved even less communication or no

communication. In detail, the proposed method enables the agents to cooperate with

each other by designing the internal reward, and the agents can design the internal

reward by the minimum steps acquired with no communication; and (3) the proposed

method is effective in the situation which there are three agents in a same environ-

ment and we reveal the condition of the proposed method to be effective.

What should be noticed here is that the results have only been obtained from one

simple gird maze problem with two agents. Therefore, further careful qualifications

and justifications, such as an analysis of results with other tasks or an increase of the

number of agents, are needed to generalize our results. Such important directions

must be pursued in the near future in addition to the following future research: (1)

an extension of the proposed method to any number of agent; and (2) an application

of the proposed method into large scale environment.
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Autonomous Task Allocation for Swarm
Robotic Systems Using Behavioral
Decomposition

Yufei Wei, Toshiyuki Yasuda and Kazuhiro Ohkura

Abstract Swarm robotic systems (SRS) are a type of multi-robot systems, in which

robots operate without any form of centralized control. In SRS, the generation of a

complex swarm behavior resulting in robots being dynamically distributed over dif-

ferent sub-tasks requires an autonomous task allocation mechanism. It has been well

recognized that evolutionary robotics with an evolving artificial neural network is a

promising approach for generating collective swarm behavior. However, the artifi-

cial evolution often suffers from the bootstrap problem, especially when the underly-

ing task is very complex. On the other hand, the behavioral decomposition, which is

based on the divide-and-conquer thinking, has been reported to be effective for over-

coming the bootstrap problem. In this paper, we describe how a behavioral decompo-

sition based evolutionary robotics approach can be applied to synthesize a composite

artificial neural network based controller for a complex task. The simulation results

show the hierarchical strategy based evolutionary robotics approach is effective for

generating autonomous task allocation behavior for a swarm robotic system.
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1 Introduction

Swarm robotics (SR) [1] is a field in which many homogeneous robots coordinate

behavior to accomplish a given task without any form of global control. The robots

are relatively simple compared to the task they are dealing with, that their commu-

nication is usually local and sensory capabilities are limited. Therefore, the emer-

gence of complex collective behaviors can be regarded as a result of local interac-

tions between the robots, and between the robots and the environment. A swarm

robotic system exhibits three advantages: (i) robustness: the system is inherently

fault-tolerant, that even if some robots stop working during the task, the system is

still functional, (ii) flexibility: the solution generated by SRS is flexible enough to

deal with similar tasks, (iii) scalability: the system can operate with a wide range of

group sizes.

SRS is mainly inspired by social insects. Social insects such as ants, bees and

wasps exhibit collective behaviors to accomplish tasks beyond the capability of a

single individual. This highly intelligent behavior implicitly shown in these social

insects is sometimes called swarm intelligence [2]. Among those intelligent collec-

tive behaviors, task allocation is the one which results in individuals being engaged

into different sub-tasks while solving a complex task, in which the allocation is not

fixed but may change dynamically based on local observations of individuals. Since

task allocation can be widely observed in almost all social livings, similar behavior

can be beneficial for SRS in the same way.

The design methods for SRS can mainly be divided into two categories [3]. The

first one is behavior-based design, in which individual-level behaviors are developed,

tested and improved manually following a typical trial-and-error process until the

required collective-level behaviors are obtained [4, 5]. However, in this approach,

expertise knowledge of the undertaken task is required and the performance of the

system is completely reliant on the human designer. The second approach is auto-

matic design, wherein a certain automatic design method is adopted to reduce the

effort of human developers. One promising automatic design approach is evolution-

ary robotics (ER) [6, 7], in which the controller of robots is developed in an iterative

way utilizing the Darwinian principle. Typically, robot controllers in ER are repre-

sented by artificial neural networks (ANN) [8, 9], whose parameters are obtained

through evolutionary algorithms (EA).

Currently, task allocation behaviors in SRS are mainly obtained through the use of

behavior-based design methods. The difficulty that prevents ER from being applied

for generating autonomous task allocation behaviors resides in the fact that for such

complex tasks requiring proper task allocation, the design objective of the controller

is too far beyond primitive capabilities of the controller. The gap results in all indi-

viduals in the first generations performing equally poorly, that the evolution process

cannot start and no valid controller could be found [10]. This problem is also referred

to as the bootstrap problem.

One methodology for overcoming the bootstrap problem is to assist the evolu-

tionary process with human knowledge. In this context, three approaches have been
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widely adopted: incremental evolution, behavioral decomposition and human in-the-

loop [10]. In incremental evolution [11], the robot controller is trained in a simpli-

fied or partial task first, then the difficulty of the task is gradually increased until

the original goal is achieved. In behavioral decomposition [12, 13], the original task

is decomposed into several relatively simple sub-tasks, and the robot controller is

also divided into sub-controllers to deal with the corresponding sub-tasks, respec-

tively. Differently, the key idea of human in-the-loop is to let developers indicate

intermediate states directly in order to avoid local optima [14]. Considering the fact

that complex tasks which require task allocation behavior are inherently composed

of sub-tasks, we believe that the behavioral decomposition has more advantages.

In this study, we utilize a behavioral decomposition based evolutionary robotics

approach to generate autonomous task allocation behavior for a robotic swarm in

order to accomplish a complex task. The remainder of this study is organized as

follows: related work are introduced in Sect. 2. Section 3 describes the behavioral

decomposition. Experiment settings are explained in Sect. 4. Section 4.5 discusses

the results. Finally, we conclude this study with Sect. 5.

2 Related Work

In most existing work, task allocation behaviors have been generated for scenarios

where robots need to search for some objects in the environment and then operate

on these objects (e.g. foraging).

In [5], the authors described a foraging scenario in which robots have to decide

whether to perform a foraging task or rest in the nest according to the density of

foods in the environment in order to maximize the net swarm energy.

Pini et al. [15] devised a task where robots need to transport objects from source

to nest, which can be achieved by two ways: transport the objects directly through a

long path, or take a shortcut using a cache, which allows only a few robots operating

on it simultaneously. The robots therefore need to choose which way to use based on

the cost involved.

Agassounon et al. [16] considered a scenario where robots gather randomly

located objects in the field and then group them in a cluster. Since the probabil-

ity for robots to find scattered objects reduces as they are clustered, redundant robots

can rest in order to increase the efficiency of the swarm.

Conventionally, task allocation behavior is obtained through the use of either

probabilistic or threshold methods.

Liu et al. [5] proposed a mathematical model to generate task allocation behavior

for a foraging task. In their approach, each robot keeps two thresholds tracing the

permissible maximum time of searching and resting. The two thresholds are dynam-

ically updated over time in an adaptive way based on local interactions. In [17],

Castello et al. utilized an adaptive response threshold to describe the sensitivity of

a robot to the “need” for performing a task, and the relation between those “needs”

and response is updated by a probabilistic method.
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On the other hand, good results have been reported by several works which uti-

lized behavior decomposition to address the bootstrap problem in ER. Lee [12] devel-

oped a hierarchical controller for a scenario in which the robot had to find a box and

transport it to a light source. In their study, the original task was divided into three

sub-tasks: “circle the box”, “transport the box” and “explore for the box”. In [13],

Duarte et al. studied a complex task in which a robot had to rescue a teammate in

a double T-maze. The rescue task is composed of three parts: exit the initial room,

solve the double T-maze, and bring the teammate back to the initial room. A hierar-

chical strategy based controller was synthesized and achieved 92 % solve-rate.

3 Behavioral Decomposition

The key idea of behavioral decomposition is based on the divide-and-conquer think-

ing: if a task is too complex to be solved directly, one can decompose it into relatively

simple sub-tasks and achieve them respectively. The implementation of behavioral

decomposition proposed so far shares many similarities [12, 13]. Here, we describe

a generalized version as follows:

Firstly, the original task is decomposed manually into relatively simple sub-tasks

in a hierarchical and recursive way until all sub-tasks are solvable. The original task

can be then represented by a tree-like graph: leaf nodes represent the simplest sub-

tasks after decomposition, internal nodes are harder sub-tasks consisting of children

sub-tasks, and then the root node is the original task to be solved. Importantly, the

decomposition is based on the analysis of task specification rather than the robot indi-

viduals’ abilities, which allows the designer to devise task structure by top-to-down

schemes. In addition, if several sub-tasks have the same requirements for robots, they

can be solved by the same sub-controller.

To accomplish those sub-tasks respectively, the robot controller is also organized

in a hierarchical way similar to the task, in which sub-controllers have two types:

behavior primitive and arbitrator [12]. A behavior primitive is used to solve the

corresponding simplest sub-tasks sharing the same requirements, and an arbitrator

combines several primitives or lower arbitrators together to achieve relatively harder

sub-tasks. Primitives and arbitrators are usually represented by artificial neural net-

works receiving a part or all of the sensory inputs of the robot, respectively. The

outputs of primitives have direct control of the robot, while the outputs of arbitrators

are used to activate or restrain their primitives dynamically. An example of the robot

controller architecture is as shown in Fig. 1.

The development of a robot controller is a hierarchical process following a

bottom-to-top procedure, where lower sub-controllers are developed first, and then

they are combined together through the development of its upper arbitrator. This

process is repeated until all controllers are developed.
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Fig. 1 Behavioral

decomposition based

controller

4 Experiments

4.1 A Complex Task

To demonstrate the effectiveness, we apply the proposed approach to a complex vari-

ation of classic foraging task as shown in Fig. 4a.

The experiment field is composed of three parts: nest (with barriers at the entrance,

green area), central area (grey area) and split-up area (pink area). Thirty robots are

located in the nest at the beginning of the experiment. There are ten small foods (S-

foods, henceforth) and five large foods (L-foods, henceforth), each L-food is com-

posed of seven S-foods in the central area. An S-food can be transported by a single

robot, while an L-food is too heavy. Therefore, robots have to cooperate to move it.

In addition, L-foods can be separated into S-foods automatically by moving them to

the split-up area.

The goal task for robots is to transport all foods back to the nest. However, due

to the existence of barriers at the entrance of the nest, L-foods must be moved to

the split-up area first for decomposition. Furthermore, the sight of robots is limited,

therefore they need to explore the field to find foods.

As discussed above, the goal task is actually composed of three sub-tasks,

described as follows:

∙ Explore

Since the sight of robots is limited, they have to explore the experiment field for

foods.

∙ Transport L-foods to the split-up area

L-foods can not be transported to the nest directly due to the existence of barriers.

Instead, robots have to move L-foods to the split-up area to decompose them into

S-foods.

∙ Transport S-foods to the nest

S-foods should be transported to the nest in order to achieve the task.
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4.2 Specification of Robots

As shown in Fig. 2, each robot consists of eight IR sensors, an omni-camera, a grip-

per, two motors and a behavioral decomposition based ANN controller (invisible in

the figure). Details of those components are described as follows:

IR sensors Set in eight directions to detect distance between the nearest object and

the robot. If the distance exceeds the sensors’ maximum range, it will be recognized

as the maximum range.

Omni-Camera Main sensorial component with limited range of sight, gathers infor-

mation of:

∙ Number of robots, S-foods and L-foods in its sight, separately

∙ Angle of the nest, nearest S-food, nearest L-food, central area and split-up area

(relative angle to the robot, represented by sin𝜃 and cos𝜃)

Gripper A pre-programmed component in the front of the robot, catches an S-food

automatically when two conditions are met simultaneously: the robot is performing

the “transport S-foods to the nest” sub-task and the gripper is touching an S-food,

otherwise it will drop the caught S-food if there is any.

Motors Each accepts a target speed argument, and then accelerates until the target

speed is achieved.

Behavioral decomposition based ANN controller Corresponding to the task decom-

position, the controller is composed of three behavior primitives and one arbitrator,

all represented by three-layered ANN whose hidden layer is fully linked (recurrent).

The number of input nodes of these ANNs and the information they hold differ from

each other according to specific sub-tasks, while they all have ten hidden nodes.

Each primitive has two outputs that take control of the robots, dealing with three

sub-tasks respectively. The arbitrator has three outputs determining which sub-task

to perform at each moment. Figure 3 shows the architecture of this controller. Details

of the arbitrator and three primitives are described as follows:

∙ Explore Primitive

If this sub-controller is activated, the robot moves around the central area. Inputs

consist of the angle of the central area and eight IR sensors.

Fig. 2 Specification of

Robots
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Fig. 3 Architecture of the

Robot controller

∙ Decompose Primitive

This sub-controller is used to perform the “transport L-foods to the split-up area”

sub-task. It takes the angle of the split-up area and the nearest L-food as its inputs.

The gripper will automatically catch an S-food in the front of the robot, if it is

available. The robot will stop if there is no L-food in the robot’s sight while this

primitive is active,

∙ Transport Primitive

When this sub-controller is active, the robot grabs and transport the nearest S-food

to the nest. Inputs include status of the robot’s gripper (catching an S-food or not),

the angle of the nest and the nearest S-food and eight IR sensors. If the robot can

not see any S-food in its sight, the robot stops.

∙ Task Allocation Arbitrator

This arbitrator takes the number of robots, S-foods and L-foods in its sight, as well

as its output in the last time step as its inputs. The corresponding primitive to the

highest output will be activated.

4.3 Experimental Settings

As discussed in Sect. 3, to obtain the final controller, we first evolve three primitives

in three independent experiments, and then evolve the task allocation arbitrator in the

goal task to exploit those primitives. In addition, to increase the accuracy, all exper-

iments are performed by simulation using Box2D.
1

Details of those experiments are

described as follows:

4.3.1 Experiment for Explore Primitive

Since the sight of robots is limited, they have to explore the field for foods. To train

this primitive, we devised the following experiment, as shown in Fig. 4b. There are

five robots in the nest and twenty-five obstacles in the central area. Five foods are

located in the central area and once robots detect a food, they get a bonus and the food

will be marked detected meaning it can not be detected again. Foods will be refreshed

1
Box2D is an open-source physics engine, which can be found on http://box2d.org.

http://box2d.org
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(a) Complex Task’s Field (b) Explore Primitive’s Field

(c) Decompose Primitive’s Field (d) Transport Primitive’s Field

Fig. 4 Experiment fields for a complex task—the overall task, b explore primitive, c decompose

primitive, and d transport primitive

Table 1 Fitness function for

explore primitive
Action Fitness

Bonus when detect a virtual food +100

Robots touch obstacles −180/s/robot

every 10 s in a new random position. The initial position of robots, obstacles and

foods is also randomly selected. Each experiment lasts for 50 s.

During the artificial evolution, each individual candidate of this primitive con-

troller is simulated 50 times, and the average fitness value is used as its final fitness

value. Table 1 describes the fitness function.

4.3.2 Experiment for Decompose Primitive

The L-foods can not be moved to the nest directly due to the existence of barriers.

Instead, robots need to transport them to the split-up area to be decomposed into S-

foods. In this experiment, as shown in Fig. 4c, nine robots and one L-food are located

in the central area. Their initial position is randomly selected. Additionally, the range

of omni-camera in this experiment is temporally set to unlimited. Each experiment

lasts for 50 s.
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Table 2 Fitness function for decompose primitive

Action Fitness

Robots touch the L-food +6/robot/second

L-food moved toward the nest +moved distance/original distance × 4500

L-food moved to the nest +500 +remaining seconds × 600

Table 3 Fitness function for transport primitive

Action Fitness

Robot gets close to the S-food +final distance/original distance × 5000

Robot caught the S-food +7000

S-food moved toward the nest +moved distance/original distance × 11000

S-food moved to the nest +1000 +remaining seconds × 600

Robot touches obstacles −180/second

Each individual candidate of this primitive controller is simulated 50 times during

the artificial evolution process, and the average fitness value is used as its final fitness

value. The fitness function is shown in Table 2.

4.3.3 Experiment for Transport Primitive

The final objective for robots is to transport all S-foods to the nest. Therefore we

perform this experiment to obtain the transport primitive. The experiment field is

illustrated in Fig. 4d. There are sixteen obstacles, one robot and one S-food in the

central area. The initial position is randomized at the beginning of each experiment,

time limit of which is set to 50 s. Similarly, the range of omni-camera is set to unlim-

ited.

The fitness function is shown in Table 3. Each controller candidate is evaluated

50 times, and the average fitness value is used as its final fitness value.

4.3.4 Experiment for Task Allocation Arbitrator

The task allocation arbitrator is evolved in the original task as shown in Fig. 4a.

Details are described in the beginning of this section. The fitness function is shown

in Table 4, some parts are derived from its primitives’ fitness functions. This exper-

iment lasts for 120 s for each candidate.
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Table 4 Fitness function for task allocation arbitrator

Action Fitness

L-foods moved toward split-up area +moved distance/original distance × 4500

L-foods moved to split-up area +500 +remaining seconds × 20

S-foods moved toward the nest +moved distance/original distance × 11000

S-foods moved to the nest +1000 +remaining seconds × 10

Robots stopped −60/second/robot

4.4 Evolutionary Algorithm Settings

We adopted (𝜇, 𝜆) evolution strategy for all experiments, sharing most parameters.

The population size is set to 500, and the parent size to 75. The range of each ANN

link is ∈ [−1.0, 1.0] following the standard normal distribution mutation, where ini-

tial mutation step size is set to 0.05. The maximum generation for three primitive

experiments is 500, and 1000 for the arbitrator. For all experiments, we run 10 trials.
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Fig. 5 Representative fitness transition of all experiments
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4.5 Results

Figure 5 illustrates the most representative fitness transition of all experiments in 10

trials. The fitness of explore primitive, transport primitive, and the arbitrator grew

smoothly and finally converged and reached the maximum fitness in the final stage.

On the contrary, the fitness of decompose primitive was still growing in the final

stage, which indicates that the maximum generation was not enough.

Snapshots of the generated autonomous task allocation behavior are shown in

Fig. 6. In the first snapshot, robots start with performing the explore sub-task. After

most robots moved to the central area, in snapshot 2, some robots changed to per-

form the “decompose L-foods” sub-task, and some robots performed the “transport

(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

Fig. 6 Snapshots of a successful trial, showing that robots are able to change their roles dynami-

cally to achieve the task
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S-foods” sub-task. In snapshot 3, they moved an L-food to the split-up area and then

started to transport the appeared S-foods after decomposition, but when they found

another L-food, they changed soon to move that L-food (see the change between

snapshot 3, 4). Snapshot 5 shows that after they transported S-foods to the nest, they

turned back to perform the explore sub-task. In snapshot 6, most foods were trans-

ported to the nest and the experiment ended due to the time limit.

As shown in these snapshots, we obtained a behavioral decomposition based con-

troller that successfully exhibited autonomous task allocation behavior to achieve

this complex task by using the proposed approach.

5 Conclusion

In this paper, we applied the evolutionary robotics approach to generate autonomous

task allocation behavior for a robotic swarm to accomplish a complex task. The

behavioral decomposition is adopted for overcoming the bootstrap problem. By

means of computer simulation, we confirmed the effectiveness of the proposed

approach for complex tasks that require autonomous task allocation behavior.

As for the next step, we plan to apply this approach to much more complex tasks to

examine its scalability. In addition, we also plan to conduct quantitative experiments

to demonstrate the performance of the proposed approach.
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by Rescue Agents with Distributed Roles
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Abstract Fully anticipating the overall effect on society is difficult due to the many
as-yet-unrecognized factors at disaster sites. There is a need for autonomous dis-
aster relief robots, which can learn from the conditions they encounter and then take
independent actions. Reinforcement learning is one way that robots can acquire
information about appropriate behavior in new environments. In the present study,
we present the results of a disaster relief simulation that included multiple auton-
omous robots working as a multi-agent system. In order to assist in the use of
reinforcement learning for the efficient acquisition of action rules, we divided the
task into various sub-tasks. We propose an approach in which cooperative action is
obtained by giving each agent a different reward; this encourages the agents to play
different roles. We investigated how the various autonomous agents determined the
appropriate action rules and examined the influence of providing separate rewards
to different agents in the system. We also compared the values of various actions in
different learning situations.
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1 Introduction

Research on disaster relief robots has been increasing since the Great East Japan
Earthquake of March 11, 2011. Fully anticipating the overall effect on society is
difficult due to the many as-yet-unrecognized factors at disaster sites. In addition,
many different remote-controlled disaster relief robots have been developed.
A further complication is that these robots must work in environments in which
communication is not always secure. For these reasons, there is a need for auton-
omous disaster relief robots, which can learn from the conditions they encounter
and then take independent actions.

Reinforcement learning is one way that robots can acquire information about
appropriate behavior in new environments. This is a computational approach to
understanding and automating goal-directed learning and decision-making. It is
distinguished from other computational approaches by its emphasis on learning
from direct interaction with the environment, without exemplary supervision or
even complete models of that environment [1–3]. Thus, it enables the determination
of the best practices, which can be difficult even for humans in an unknown
environment. Recent research on disaster relief robots has included consideration of
multi-agent systems, that is, systems that include two or more disaster relief robots.

These multi-agent systems include multiple interacting, intelligent agents that
pursue a set of goals or perform a set of tasks [4]. In such systems, each agent must
behave independently according to its current state and that of its environment, and,
if necessary, it must cooperate with other agents in order to perform a given task.
Multi-agent systems have greater robustness and flexibility than do conventional
centralized management systems. However, it is difficult to predict in advance the
actions of the various agents or to assign action rules to multi-agent systems
because the interaction between agents is complex. A possible solution to this
problem is the use of autonomous agents that are able to learn from the environment
and implement independent actions [5–8].

In conventional multi-agent systems, such as the box-pushing problem and the
pursuit problem, the task must be simple, and all agents share a common task
[9–11]. However, disaster areas are complex, and thus it is difficult for agents to
learn efficiently from their own actions.

In the present study, we present the results of a disaster relief simulation that
included multiple autonomous robots working as a multi-agent system. In order to
assist in the use of reinforcement learning for the efficient acquisition of action
rules, we divided the task into various subtasks. We propose an approach in which
cooperative action is obtained by giving each agent a different reward; this
encourages the agents to play different roles, with some specializing in relief and
others specializing in the removal of obstacles. We investigated how the various
autonomous agents determined the appropriate action rules and examined the
influence of providing separate rewards to different agents in the system. We also
compared the values of various actions in different learning situations.
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2 Multi-agent Systems and the Disaster Relief Problem

2.1 Multi-agent Systems

An agent is a computational mechanism that exhibits a high degree of autonomy
and performs actions in its environment based on information (sensors, feedback)
received from that environment [12]. A multi-agent system is one in which several
interacting, autonomous agents pursue some set of goals or perform some set of
tasks. A key pattern seen in the interactions of multi-agent systems is goal- and
task-oriented coordination, in both cooperative and competitive situations. In a
cooperative interaction, several agents combine their efforts to accomplish as a
group what the individuals could not accomplish alone, and in a competition
interaction, several agents combine their efforts to obtain something that only some
of them can have.

In [13], the following major characteristics of multi-agent systems were
identified:

• each agent has incomplete information and is restricted in its capabilities;
• the control of the system is distributed;
• the data are decentralized; and
• the computation is asynchronous.

2.2 Disaster Relief Problem

The present study considers a disaster relief problem, in which the injured are
placed on a field of fixed size and agents must rescue the injured as quickly as
possible. This can be considered to be a multi-agent system in which the task of the
system is to efficiently rescue all of the injured, but in which each agent focuses on
achieving its own target.

As shown in Fig. 1, the field is divided into an N × N lattice. Agents are
indicated by solid black circles , their initial position is indicated by solid gray
squares , the injured are indicated by solid red squares, and obstacles are indicated
by solid blue triangles . There are two types of obstacles : those that can be
removed and those that cannot; agents are able to recognize to which category a
given obstacle belongs. The injured are to be conveyed to the upper-left corner of
the field, and movable obstacles are to be conveyed to the upper-right corner of the
field. A single step is defined such that each of the agents on the field completes a
single action, and the field is re-initialized once all of the injured have been moved.
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2.3 Actions of Available to Agents in Disaster Relief
Problem

The actions that an agent can take are as follows (Fig. 2):

• moving up, down, right, or left to an adjacent cell;
• remaining in the present cell.

No agent may move to a cell that is occupied by an obstacle that cannot be
removed or by another agent, nor can an agent move outside the field; if there are
no useful allowed moves, the agent remains in the current cell.

In addition, when an agent moves to a cell in which there is an injured person or
a movable obstacle, that person or object will be taken for removal to the appro-
priate location (Fig. 3).

Once an agent has taken possession of an injured person and moved them to the
appropriate destination, the subtask is completed (Fig. 4), and the agent can begin a
new subtask. The overall task is completed when all of the injured on the field have
been rescued.

Fig. 1 Example of a disaster
relief problem

(a)  moving to a an adjacent cell (b) remaining in the present cell

Fig. 2 Actions available to an agent
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3 Cooperative Action Acquisition of Disaster Relief
Multi-agents by Division of Roles

3.1 Cooperative Action of Agents

Multi-agent systems enable problems to be solved more efficiently. In addition,
multi-agent systems can solve problems that may be impossible for an individual
agent to solve, because multiple agents have a single common goal and can act
cooperatively when adjusting to their environment and performing various actions.
Occasionally, in order to proceed with a task in a changing environment, such
agents must make precise judgements in order to make adaptive moves. In order to
cooperate, it is necessary to have a rule that working as a group takes priority over
the actions of any individual. Generally speaking, individual action is natural,
whereas group action is acquired by learning to accomplish goals through coop-
erative actions [14–16].

In this study, in order to use reinforcement learning to efficiently acquire action
rules, we divided the whole task into various subtasks. Cooperation was achieved
by giving each agent a different reward, and assigning some agents to perform relief
(relief agents) and others to remove obstacles (removing agents).

3.2 Cooperative Actions with the Role Division

For the disaster relief problem, the cooperative actions of the multiple agents are
determined by using reinforcement learning and a division of roles.

(a) before processing  (b) after processing 

Fig. 3 Processing of injured
person or movable obstacle

(a) moving target to destination (b) completion of rescue 

Fig. 4 Completing the rescue
of an injured person
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First, the complete disaster relief task is divided into two subtasks: rescuing the
injured and clearing obstacles.

Second, the relief agents are divided into two types: Type I, which gives priority
to rescuing the injured, and Type II, which gives priority to clearing obstacles.
Different rewards were given depending on the assigned role.

In reinforcement learning, each agent chooses from among the various allowed
actions, the one from which it will obtain the greatest reward. This means that by
allocating a larger reward to a task, it is given higher priority; thus, it is possible to
ensure that prioritize tasks when learning.

In this study, there were three patterns of rewards, which were assigned
according to the priority of the task and the action of the agent. These are shown in
Table 1, where R, Rh, and Rl are rewards, Rh > R > Rl, and P is a penalty (P < 0),
which is given to an action that does not help achieve the task.

In Pattern 1, the same reward R is given to any agent who acts in a useful way;
this is the same approach that is used in conventional methods. In this case, all
agents learn that saving the injured and clearing obstacles have the same priority,
and so the tasks are performed with the same frequency. In other words, all agents
share a common two-factor task.

In Pattern 2, different rewards are assigned to agents depending on their type.
Each agent chooses their actions based on the task that has been prioritized by being
given a higher reward (Rh). If an agent chooses an action for a lower priority action,
they receive a smaller reward (Rl). In this way, roles are assigned: Type I agents
give priority to saving the injured, and Type II agents give priority to clearing
obstacles.

In Pattern 3, only those agents who perform the highest priority action for their
type receive a reward (Rh). In this way, there is complete role division between the
different types of agents.

In all patterns, a penalty P is assigned to any agent that collides with a wall or
another agent. In an actual disaster site, collision with other robots may lead to
failure, and so during the learning phase, there are rewards for learning to avoid
collisions.

Table 1 Rewards based on the task priority and the action of the agent

Action of agent Reward of agent
Pattern 1 Pattern 2 Pattern 3
Type I Type II Type I Type II Type I Type II

Recure an injured R R Rh Ri Rh 0
Clear an obstacle R R Rl Rh 0 Rh

Collision with wall or the other agent P P P P P P
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4 Simulation and Results

To evaluate the effectiveness of the proposed method, we performed a simulation of
a multi-agent disaster relief problem. We used the Java programming language.

We used a 15 × 15 grid for the field, and injured people and obstacles were
arranged randomly. Each experiment was repeated 10,000 times, and each exper-
iment began with a random initial state and continued until all agents had completed
their tasks. The agents retain the information learned in all previous experiments.

Each agent has a constant but limited view of the field, and it can assess the
surrounding environment. They are able to recognize other agents, obstacles, and
the injured that appear within their range of vision. An example of their range of
vision is shown in Fig. 5, where the grid squares in an individual agent’s visual
field are indicated by shading. The experimental conditions are listed in Table 2.

Fig. 5 Visual field of agents

Table 2 Experimental
conditions

The setting of filed

The field size 15 × 15
The number of rescue agents 2
The number of clearing agents 2
The number of injured individuals 5
The number of removal possible obstacles 15
The number of removal impossible obstacles 5
The setting of agent
Range of vision of an agent 5 × 5
Learning rate α 0.1
Discount rate γ 0.9
Greedy policy ε 0.1
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4.1 Results of Different Rewards

The three reward patterns are shown in Table 3. To compare their effectiveness, the
total reward was the same for each pattern.

The learning results for three patterns are shown in Fig. 6. The horizontal axis
indicates the number of experiments, and the vertical axis indicates the number of
steps required to achieve the task and it is average of the previous 100 episodes of
the step up to this episode. The average number of steps for each pattern in the final
experiment is shown in Table 4.

Figure 6 and Table 4 show that Pattern 2 was more efficient than Pattern 1,
which is the traditional method. With Pattern 1, there were delays in removing
debris and saving the injured because no agents were taught to prioritize
the clearing of obstacles. However, with Pattern 2, rescuing the injured, which it the
goal, could be carried out effectively because agents were able to consider
the whole task while still giving priority to their assigned task. Pattern 3 resulted in

Table 3 Rewards based on the task priority and the action of the agent

Action of agent Reward of agent
Pattern 1 Pattern 2 Pattern 3
Type I Type II Type I Type II Type I Type II

Recure an injured 5.00 5.00 6.67 3.33 10.00 0.00
Clear an obstacle 5.00 5.00 3.33 6.67 0.00 1.00
Collision with wall or the other agent −1.00 −1.00 −1.00 −1.00 −1.00 −1.00

Pattern 1

Pattern 2

Pattern 3

Fig. 6 The results of
different rewards

Table 4 Average number of
steps in the final experiment

The average of steps

Pattern 1 10679.081
Pattern 2 9575.845
Pattern 3 13877.415
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the greatest number of steps to complete the task because only those agents per-
forming their assigned duty were rewarded; thus, for example, Type II agents did
not attempt to save the injured.

Based on these experiment results, we find that Pattern 2 is effective for efficient
learning. However, there is not much difference from the results for Pattern 1,
which is the conventional method, and so there is room for improvement. The roles
as currently assigned are not optimal for task completion, because, for example,
Type II agents are rewarded for removing debris, even if this is unnecessary. This
could be remedied by rewarding Type II agents only when they remove debris that
is preventing the rescue of victims.

4.2 Q-Factors and Agent Cooperation

Almost all reinforcement learning are based on estimating value functions of
state-action (i.e., Q-factor). In this study, to evaluate the effectiveness of the pro-
posed method, we compared the Q-factors following learning.

Consider an agent that is in the state shown in Fig. 7; the Q-factor for each state,
each pattern, and each type of agent is shown in Table 5. The reward is the value
used to prioritize each behavior. In Fig. 7, a solid black circle indicates an agent,
a solid red square indicates an injured person, and a solid blue triangle
indicates an obstacle.

In Table 5, we can see that for Pattern 2, the Q-factors were similar to the reward
for both types of agents. However, for the state shown in Fig. 7a, for Pattern 1, the
Q-factors were smaller than the reward value, which implies that there was not
sufficient learning.

These results show that with the proposed method (Pattern 2), the agents per-
formed their assigned roles and cooperated with each other. In addition, the learning
time was sufficient.

(a) rescure an injured (b)  clear an obstacle

Fig. 7 State of an agent
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5 Conclusion

We considered a disaster relief simulation in which multiple autonomous robots
worked as a multi-agent system. We examined whether reinforcement learning
would be an efficient method for the agents to learn their tasks and the environment.
We proposed dividing the task into various subtasks and ensuring cooperation by
giving agents different rewards for different tasks. In this way, tasks were divided
between rescue agents and clearing agents.

The results of a simulation showed that the number of steps required to rescue an
injured individual decreased as the number of learning iterations increased; thus,
allowing the agents to learn had a positive effect. In addition, for the proposed
method, the Q-factors were close to the reward for both types of agents, and the
learning was efficient.

However, at an actual disaster site, the state of the injured and the amount of
generated debris may change from moment to moment, and the situation will
certainly be more complex. Therefore, in future research, we intend to further
develop the simulation environment so that it can model more varied conditions.
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An Evolutionary Framework for Bi-objective
Dynamic Economic and Environmental
Dispatch Problems
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Abstract A dynamic economic and environmental dispatch (DEED) problem is a

challenging bi-objective optimization problem that simultaneously minimizes both

operating costs and gas emissions. To solve it, several evolutionary algorithms (EAs)

have been used, each of which has pros and cons, with one performing better in an

early stage of evolution and another later. In this paper, to solve such problems, an

evolutionary framework is designed based on two EAs, a genetic algorithm (GA) and

differential evolution (DE), dynamically configures the better of the two during the

evolution. In it, two sub-populations are performed, one for each of GA and DE, and

their sizes updated in each generation according to the respective algorithm’s per-

formance in previous generations. Moreover, a heuristic is employed to improve the

performance of the proposed algorithm by repairing infeasible individuals towards

feasible directions. To demonstrate its performance, two renewable-based DEED

problems are solved using the proposed and state-of-the-art algorithms. An analy-

sis of the simulation results reveals that the proposed algorithm is the best of those

considered, with the heuristic enhancing its performances.
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1 Introduction

Over the last decade, economic dispatch (ED) problems have been used to determine

the allocation of electricity demand among fossil fuel-based thermal generating units

to minimize operating costs subject to physical and technological constraints [13].

However, the excessive use of fossil fuels produces large amounts of atmospheric

pollutants that are continuously released into the environment. Therefore, alterna-

tives to thermal energy power generation have emerged, such as solar, wind and

hydro energy, which are now widely used because of their lower production costs

and environmentally friendly characteristics [14, 17]. Consequently, the economic

and environmental dispatch (EED), a new bi-objective optimization problem, has

been introduced to simultaneously minimize operating costs and air pollution [12].

A DEED problem is an extension of the conventional EED one that schedules

generators for an operational cycle in a time horizon divided into multiple periods

while taking into account the intrinsic links between two hours of the ramp limit of

a thermal generator [15]. Although the DEED is a more realistic problem than the

EED, its computational process is also more complex because of its large number of

decision variables and chain of equality constraints [13]. Moreover, considering the

valve point effect (VPE) of a thermal generator’s cost function, it becomes a non-

linear, non-smooth, non-convex and multi-modal bi-objective optimization problem

which is difficult to solve using a classical optimization approach [13, 16]. Therefore,

an efficient algorithm, such as an EA, is required because of its flexible, efficient and

stochastic searching feature [13].

During the last decade, several meta-heuristic methods, such as GA [13], sim-

ulated annealing (SA) [8], particle swarm optimization (PSO) [18] and DE [13],

PSO—sequential quadratic programming (PSO-SQP) [11] and modified hybrid evo-

lutionary programming (EP)–SQP (MHEP-SQP) [11] have been effectively used to

solve various single-objective DED problems. Also, several algorithms, such as a

binary PSO [6], hybrid PSO, non-dominated sorting GA-II (NSGA-II) with a heuris-

tic (H-NSGA-II) [12], infeasibility-driven EA (IDEA) with a heuristic (H-IDEA)

[12] and gravitational search algorithm (GSA) with GA [5], have been used to solve

bi-objective DEED problems. However, most solve the problems as single-objective

optimization ones by aggregating two objectives to produce a single solution, not a

Pareto frontier, with many runs required to generate a set of trade-off solutions [12].

In our previous research [13], it was found that, for solving different types of DED

problems, one EA may perform well in an early stage of the optimization process

but less well in later generations and vice versa. To efficiently solve a DED problem,

multi-method EAs that integrate two or more optimization techniques in order to

utilize their strengths and overcome their own and each other’s weaknesses, have

been developed. Similar ones, such as multiple operators of a GA in [10], a multi-

operator evolutionary framework with various EAs in [4] and a general framework of

two EAs (GA and DE) in [13] have been developed to solve various single-objective

optimization problems. However, to the best of our knowledge, solving bi-objective

DEED problems using a multi-EAs framework has not yet been explored.
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In this paper, an evolutionary framework called GA-DE, in which two EAs (GA

and DE) are run in parallel under two sub-populations, is designed to solve bi-

objective DEED problems. Although the initial sub-population sizes are the same,

they are dynamically varied in each generation based on the performance of each

EA in previous generations. After a predefined number of generations (also called

a cycle), only the better algorithm is allowed to run alone for a subsequent cycle.

After that cycle is finished, both algorithms are run again for another cycle, with

both using the same sub-population size. The process is continually repeated until a

stopping criterion met. Moreover, rather than setting the control parameters of DE,

self-adaptive mutation and crossover techniques that automatically configure the best

ones in each generation are used. Also, a heuristic technique is employed to improve

the convergence rate of each algorithm by rectifying infeasible individuals towards

feasible directions. The results obtained by the proposed approach for solving two

renewable-based bi-objective DEED problems, (i) hydro-thermal [1] and (ii) solar-

thermal [16], are compared with those from recent state-of-the-art algorithms, with

GA-DE shown to perform best.

The rest of this paper is organized as follows: Sect. 2 presents the problem for-

mulation, Sect. 3 the proposed methodology, Sect. 4 the experimental results and

analysis and Sect. 5 conclusion and future works.

2 Mathematical Formulations

The bi-objective hydro-thermal and solar-thermal DEED problems are formulated to

determine the optimal level of power generation in each participating plant by mini-

mizing both the fuel costs and greenhouse gas emissions while satisfying a number

of constraints, as presented in this section.

2.1 Hydro-Thermal

In the hydro-thermal DEED problem, the objectives are to minimize both the oper-

ating costs and gas emissions subject to a number of equality and inequality con-

straints.

2.1.1 Objective Functions

Considering the VPE, the cost and emission functions of thermal generators are,

respectively:
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The first objective of Eq. (1) is to minimize the sum of all the fuel costs of the

thermal power plants (PTi,t ) under consideration (NT ) during an operational cycle

(T), where, ai, bi, ci, di and ei are the cost coefficients. The second Eq. (2) is to min-

imize the gas emissions from the thermal plants, where, 𝛼i, 𝛽i, 𝛾i, 𝜆i and 𝜂i are their

emission coefficients.

2.1.2 Constraints

The hydro-thermal DEED problem includes the following constraints.
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Equation (3) is the power balance constraint, where PHj
, Xj, and Vj are the hydro

power generation, water storage rate and volume of jth hydro plant, respectively.

NH , Ck,j∀k, Ij, Sj, Nup, and tdr,j are the number of hydro power plants, the genera-

tion coefficient, natural water inflow rate, spillage water (assume zero, as in [1]),

number of upstream plants and water transport delay from the rth to jth reservoir,

respectively. The constraints in Eqs. (6)–(9) are the capacity limits of the hydro and

thermal plants, water storage volume and water discharge rate, respectively, where,

PHj
min

and PHj
max

, Vj
min

and Vj
max

, and Xj
min

and Xj
max

are the minimum and maxi-

mum output power of the hydro power plant, water storage volumes and water dis-

charge rates, respectively. The initial and final reservoir storage volumes, which must

meet the requirements of all the reservoirs, are expressed in Eq. (10), where, Vini
j and

Vend
j are the initial and final water volumes of the jth reservoir, respectively.

2.2 Solar-Thermal

The solar-thermal DEED problem is considered a mixed-integer non-linear bi-

objective optimization problem (MINP) [6] in which the solar and thermal units are

represented as binary and continuous variables, respectively. Its objective functions

and constraints are described below.

2.2.1 Objective functions

The objective functions of the solar-thermal DEED problem are to minimize both

the operating costs and gas emissions, respectively, as:

Min ∶ FC

(
PTi,t ,Uss,t

)
=

T∑

t=1

( NT∑

i=1

(
Fci (PTi,t )

)
+

NS∑

s=1

(
FSs(USs,t )

))
(11)

where, Fci (PTi,t ) = ai + biPTi,t + ciP2
Ti,t

+
||||
di sin

{
ei
(
Pmin
Ti,t

− PTi,t

)}||||
(12)

FSs (Uss,t ) = PUcos tsPSs,tUss,t , USs,t ∈ {0, 1} s ∈ NS t ∈ T (13)

PSs,t = Prs

{
1 +𝛺

(
Tambs,t − Trefs

)} Sis,t
1000

(14)
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Min: FE

(
PTi,t

)
=

T∑

t=1

NT∑

i=1
hi
(
Fei (PTi,t )

)
=

T∑

t=1

NT∑

i=1

(
Fci

(
Pmax
i

)

FEi

(
Pmax
i

)
)(

Fei (PTi,t )
)

(15)

where ,FEi
(PTi,t ) = 𝛼i + 𝛽iPTi,t + 𝛾iP2

Ti,t
+ 𝜂ie

𝜆iPTi,t i ∈ NT t ∈ T (16)

The first objective function in Eq. (11) involves the operational costs of the solar

and thermal generators, and the second in Eq. (15) the gas emissions from the thermal

plants normalized to the cost function. Equation (13) indicates the operational costs

of solar power generation (PSs,t ), where, USs,t is a binary decision variable that deter-

mines whether a unit is turned on or off, and PUcost the per unit cost of PSs,t , which

expressed in Eq. (14), where Prs is the rated power, Trefs and Tambs,t the reference and

temperature, respectively, 𝛺 the temperature coefficient and Sis,t the incident solar

radiation of the sth plant at the tth time.

2.2.2 Constraints

The solar-thermal DEED problem has the following equality and inequality con-

straints.

NT∑

i=1
PTi,t +

NS∑

s=1
PSs,tUSs,t = PDt

+ Plosst t ∈ T (17)

Pmin
Ti

≤ PTi,t ≤ Pmax
Ti

i ∈ NT , t ∈ T (18)

− DRi ≤ PTi,t − PTi,t−1 ≤ URi i ∈ NT t ∈ T (19)

T∑

t=1

NS∑

s=1
PSs,tUSs,t ≤ 0.3PDt

(20)

Equation (17) defines the power balance constraints, and Eqs. (18) and (19) the

capacity and ramp constraints of the thermal generators, respectively, with UR
and DR the upward and downward transition limits, respectively. The constraint in

Eq. (20) is used to limit the solar share at any time based on a 30 % upper limit to

avoid any uncertainty in terms of solar irradiance [6].
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3 Proposed Bi-objective GA-DE Algorithm

In this research, an evolutionary framework is designed by configuring two optimiza-

tion algorithms, namely GA and DE for solving the bi-objectives DEED problems.

In the design, an initial population of size NP is generated and then randomly divided

into two subpopulations of equal size of NP1 and NP2 for GA and DE, respectively.

In subsequent generations, the new individuals in GA and DE are generated from

random individuals from either subpopulation (NP1 and NP2) rather than only their

own which results in information being exchanged between the two algorithms in

each generation. Once the fitness functions of both the parents and children are eval-

uated, a non-dominated sorting approach [2] is applied to rank each individual, with

the best NP individuals selected for the next generation.

Based on the percentage of offspring surviving to the next generation, the success

rate (SR) of each algorithm is calculated, and their subpopulation sizes subsequently

updated considering their lower (Nmin
P1 ) and upper (Nmax

P1 ) bounds as in Eq. (24). This

process is continued until a predefined number of generations (Ngc) is performed.

Then, the best algorithm is determined, based on its average SR (ASR) during the

last Ngc, and used to evolve all the NP individuals from both subpopulations for the

next Ngc generations. Once subsequent Ngc are completed, the final individuals are

again equally and randomly assigned to both algorithms with two subpopulations

(NP1 and NP2) to evaluate next Ngc with the GA-DE algorithm terminating once the

maximum number of generations, NG is over. The pseudo code of the proposed GA-

DE algorithm is shown in Algorithm 1.

3.1 Initial Population

The chromosomes or representations of the decision variables for both GA and DE

are expressed as:

x⃗p =
{ [PTi,t ,Xj,t]1∶Nx

for hydrothermal system

[PTi,t ,USs,t ]1∶NX
for solar-thermal system

(21)

where, i = 1, 2,… ,NT , j = 1, 2,… ,NH , s = 1, 2,… ,NS, t = 1, 2,… ,T ,USs,t ∈ [0, 1],
p ∈ NP, with NP the population size and Nx the number of decision variables as

T × (NT + NH) for the hydrothermal system, and T × (NT +NS) for the solar-thermal

one. Each individual is generated as:

x⃗p = x⃗min +
(
x⃗max − x⃗min) lhs(Nx), ∀p = 1, 2,… ,NP (22)

where x⃗min
and x⃗max are the vectors of the lower and upper bound, respectively, and x⃗p

the pth individual in the NP population, with lhs
(
Nx

)
random individuals generated

using Latin hypercube sampling (LHS) rules [15].
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Algorithm 1 GA-DE algorithm

Require: NG, NP,Nmin
P1 and Nmax

P1
1: Set, count1 = count2 = 0
2: Randomly generate initial individuals using Eq. (21)

3: Evaluate the individuals after repairing the infeasible individuals using heuristic described in

Sect. 3.3

4: Randomly distribute NP individuals over two subpopulations with sizes of NP1 and NP2, such

that NP1 = NP2
5: for g = 1 ∶ NG do
6: Set, count1 = count1 + 1
7: if count1 ≤ Ngc then
8: Generate NP1 and NP2 offspring from the all NP parents using GA and DE operators,

respectively

9: Repeat step 3 for both NP1 and NP2
10: Determine best individuals from parents and offspring based on non-dominated selec-

tion approach described in Sect. 3.4

11: Calculate SR1,g and SR2,g based on numbers of offspring of GA and DE surviving to

next generation, respectively,

12: Group selected individuals, NP ← NP1 + NP2
13: Update NP1 and NP2 according to Eqs. (24) and (25), respectively

14: else
15: set, count2 = count2 + 1
16: if count2 ≤ Ngc then
17: Calculate average success rates of GA (ASR1) and DE (ASR2)

18: if ASR1 > ASR2 then
19: Perform GA, considering NP1 ← NP1 + NP2
20: else
21: Perform DE, considering NP2 ← NP1 + NP2
22: end if
23: end if
24: if count2 = Ngc then
25: Repeat step 4 and set again, count1 = count2 = 0
26: end if
27: end if
28: end for

3.2 GA-DE Search Operators

To update the individuals in GA-DE, we use either GA or DE search operators in

various stages of an evolution, as previously discussed. Of the different operators

available, simulated binary crossover (SBX) and non-uniform mutation (NUM) are

used in GA and two self-adaptive mutation operators and one binomial crossover in

DE because they showed superior performances for solving various DED problems

in [3, 12, 13, 15]. Due to the limitation of this paper’s number of pages, details of

these operators are not provided but can be found in [15].
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3.3 Heuristic for DEED Constraints

As previously mentioned, a DEED problem involves a number of equality and

inequality constraints, all of which new solutions generated by an EA process may

not satisfy, especially during the early stages of an evolution. To maintain feasibil-

ity throughout generations, in our previous research, we developed a heuristic for a

single-objective DED problem [15]. In it, a DED problem with a 24-h load cycle

is converted into 24 sub-problems, with the hourly infeasible individuals repaired

in feasible directions based on a forward and backward slack-generation approach.

In this paper, we employ this heuristic for a bi-objective DEED problem, with its

detailed steps provided in [15].

3.4 Selection Process

To rank the chromosomes, firstly, the parents and offspring are grouped together and

the best NP individuals among them selected for the next generation. To do this, we

use a popular constraint-handling approach with a non-dominated sorting technique

[2] in which an additional objective is considered based on the amount of relative

constraint violations (CVs). Then, a crowding sorting technique and non-dominated

mechanism are used to preserve diversity and elitism among the population mem-

bers. The advantages of having an additional objective for constrained optimization

problems are explicitly demonstrated in [9], with that of each individual of each

algorithm expressed as:

CVp =
K∑

k=1
max

(
0,Gk

(
x⃗p
))

+
E∑

e=1
max

(
0,He

(
x⃗p
)
− 𝜀g

)
∀p ∈ NP (23)

where x⃗p represents the pth individual in a sub-population, G and H their inequal-

ity and equality constraints, respectively, K and E their numbers of inequality and

equality constraints, respectively, for a DEED problem.

Based on the number of individuals selected from the offspring, the SR of each

algorithm is calculated; for example, if 30 % of the offspring of GA survive to the next

generation, SR1 is 30 %. Then, the subpopulation sizes (NP1 and NP2) are updated for

the next generation according to their normalized SRs as:

NP1 = max
[
Nmin
P1 ,min

{
NP

SR1,g

SR1,g + SR1,g
,Nmax

P1

}]
(24)

SR1,g ∪ SR2,g ≠ 0, g ∈ NG

NP2 = NP − NP1 (25)
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Equations (24) and (25) are applied when at least one SR is nonzero, whereas,

if both are zero, the values of NP1 and NP2 remain the same as in the immediate

previous generation.

4 Experimental Results and Analysis

For the experimental study, two standard benchmarks, (i) a 7-unit hydro thermal

power system from [1, 12]; and (ii) a 19-unit solar-thermal power system from [6,

13, 14], for a 24-h planning horizon in one-hour time period are solved using our

proposed and state-of-the-art algorithms with and without considering the heuristic,

as follows:

1. Non-dominated sorting GA-II (NSGA-II) without heuristic,

2. Multi-objective DE (MODE) without heuristic,

3. Proposed GA-DE without heuristic,

4. NSGA-II with heuristic (H-NSGA-II),

5. MODE with heuristic (H-MODE),

6. Proposed GA-DE with heuristic (H-GA-DE),

Based on [13], NP,Ng are set to 200, 500, and 100, 1000 for the hydro-thermal and

solar-thermal systems, respectively, and NPmin
1 , NPmax

1 , and Ngc to 20, 80, and 50,

respectively for both. It is also noted that each algorithm evaluates an equal number

of fitness functions for a fairer comparisons. Also, each one runs 30 times using a

desktop personal computer which has a 3.4 GHZ Intel Core i7 processor with 16 GB

of RAM using the MATLAB (R2014a) environment.

4.1 Hydro-Thermal DEED

In this section, a 7-unit bi-objective hydro-thermal DEED problem comprising 3

thermal and 4 hydro units is solved using the proposed and state-of-the-art algo-

rithms on the same platform. Once the 30 random runs of each algorithm are com-

pleted, their hyper-volume (HV) values are calculated based on their normalized

fitness values as [7]:

fnorm =
f − fideal

fNadir − fideal
(26)

where, fnorm and f are the normalized and actual function values, respectively, and

fideal, and fNadir the ideal and nadir points [7] for this problem, respectively, which are

found to be (7.17E+4,10.09) and (1.28E+5,142.95), respectively from all the runs

of all the algorithms considered. The best, mean, median, worst, and standard devia-

tion (STD) of the HV values obtained from algorithm with and without the heuristic



An Evolutionary Framework for Bi-objective Dynamic Economic . . . 505

Table 1 Comparison of performances of algorithms for hydro-thermal DEED

Algorithm HV (reference: [1,1]) Time (sec) MR

Best Mean Median Worst STD

NSGA-II 0.59 0.53 0.54 0.44 0.05 56.81 1.60

MODE 0.49 0.43 0.44 0.35 0.05 48.91 1.70

GA-DE 0.71 0.67 0.68 0.63 0.03 53.75 2.70

H-NSGA-II 0.84 0.81 0.81 0.79 0.01 237.82 4.90

H-MODE 0.81 0.77 0.78 0.71 0.03 232.55 4.10

H-GA-DE 0.91 0.89 0.89 0.87 0.01 234.41 6.00

Fig. 1 Pareto-frontiers for

hydro-thermal problem
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are shown in Table 1. It is indicated that the proposed approach with the heuristic

(H-GA-DE) obtains the best and most consistent results of all the algorithms in a

reasonable computational time. The Pareto-frontiers of the best runs based on the

HV values for all the algorithms are plotted in Fig. 1 which also shows the superi-

ority of the proposed algorithm. In fact, the GA-DE approach obtains the best non-

dominated solutions, both inclusive and exclusive of the heuristic, with H-GA-DE

the best algorithm of all. Also, a Friedman test is performed considering the HV of

each run of each algorithm with their mean ranks (MRs) are listed on Table 1 which

proved that the H-GA-DE is the best algorithm.

4.2 Solar-Thermal DEED

To demonstrate the performances of the six algorithms, with and without the heuris-

tic, on larger problems, in this section, we solve a 19-unit solar-thermal DEED prob-

lem formulated as a mixed-integer, non-linear, bi-objective optimization one that
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Table 2 Comparison of performances of algorithms for solar-thermal DEED

Algorithm HV (reference: [1,1]) Time (sec) MR

Best Mean Median Worst STD

NSGA-II 0.18 0.17 0.17 0.15 0.01 64.47 1.00

MODE 0.21 0.20 0.21 0.18 0.01 52.21 2.80

GA-DE 0.20 0.19 0.20 0.18 0.01 75.38 2.20

H-NSGA-II 0.52 0.51 0.51 0.51 0.00 158.21 5.00

H-MODE 0.50 0.49 0.49 0.47 0.01 148.30 4.00

H-GA-DE 0.56 0.55 0.55 0.54 0.00 212.48 6.00

minimizes both the operating costs and gas emissions. The binary decision variables

of the solar units are handled as continuous ones and then rounded off in order to

avoid different representations.

Once the 30 independent runs are completed, the functions’ values are normalized

according to Eq. (26) based on nadir and ideal points, and found to be, (8.17E+5,

2.36E+5) and (3.08E+5, 2.0E+5), respectively. Subsequently, the HV of each run

is calculated and the best, mean, median, worst and STD values presented in Table 2

which indicates that the proposed H-GA-DE obtains the best solutions of all the

algorithms within a reasonable computational time. Also, based on the MR of the

Friedman test, H-GA-DE is the best algorithm once again.

The Pareto frontiers of the best runs based on the HV values are presented in Fig. 2

in which it is clear that including a heuristic significantly improves the performances

of all the algorithms considered, with the proposed H-GA-DE the best in terms of

obtaining non-dominated solutions. In fact, when the algorithms do not include the

heuristic, as their numbers of feasible solutions are very limited, the range of Pareto

Fig. 2 Pareto-frontiers for

solar-thermal problem
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frontiers is very narrow. Conversely, when the heuristic is applied to rectify infeasible

solutions towards a feasible direction, the algorithms quickly obtain non-dominated

feasible solutions while simultaneously minimizing both objectives.

5 Conclusion and Future Work

In this paper, an evolutionary framework based on the automatic configuration of

GA and DE was designed to solve bi-objective DEED problems. In it, random indi-

viduals from the initial population were evaluated in parallel through two different

sub-populations, one using GA and the other DE. The sub-population sizes were

dynamically updated during the evolutionary process based on their prior perfor-

mances, with the better-performing algorithm receiving more individuals to evolve

and vice versa. To enhance the performance of the proposed algorithm, a heuris-

tic was employed to rectify infeasible individuals. The proposed framework was

tested by solving two renewable-based bi-objective DEED problems using the pro-

posed and state-of-the-art algorithms. A comparison indicated that the proposed GA-

DE framework consistently performed better than all the other algorithms, with the

heuristic greatly enhancing all their performances.

In future, bi-objective DEED problems could be solved using this configuration

but with more algorithms and the uncertainty factors of renewable sources incorpo-

rated in the model.
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