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Abstract. The purpose of this paper is to evaluate the efficiency of
agricultural production in Asia and analyze the production function
of Asian countries. Methodologically, we employ the stochastic frontier
model with the concern about dependency between two-sided error term
and one-sided inefficiency. Likewise, we try to improve the performance
of the standard stochastic frontier model by applying quantile regression
to the frontier production function. Therefore, this paper introduces the
model called Copula-based stochastic frontier quantile model as an alter-
native tool for this issue. The accuracy of this model is proved through
a simulation study before applying to the agricultural production data
of Asia.

Keywords: Stochastic frontier · Frontier production function · Quantile
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1 Introduction

It is true that food drives the world and access to adequate food is one of the
primary concerns for most people on the globe. With that in mind, Asia is
well-known as the best area for growing staple food such as vegetable, fruit,
and wheat, in which many Asian countries are on the lists of top agricultural
producers and top exporters. This makes agriculture one of the largest and most
significant sectors for Asian economy.

As agricultural production sector is a major driving force for Asias economic
growth, we have to take into account the productive efficiency of this sector.
Motivated by this reasoning, we attempt to analyze the agricultural produc-
tion function of Asian countries and then examine the technical efficiencies of
this region. Why do we need to consider the technical efficiencies? There are a
variety of reasons that technical efficiencies are critical. For instance, technical
efficiencies can lead to a rising in agricultural productivity without increasing the
resource base, meaning that we are able to produce more output from the same
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quantity of inputs. Likewise, the technical efficiency can bring about the pro-
ducers competitiveness without increase in input factors (Bezat-Jarzebowska and
Rembisz [1]). Most importantly, efficiency measurement is necessary not only for
Asian countries, but also for other nations who aim to allocate effectively agri-
cultural funds across heterogeneous farmers and maintain an adequate standard
of living in rural communities (Kaditi and Nitsi [2]). This seems to make the
technical efficiency important for nations, especially in the role of agricultural
productivity growth.

The idea of technical efficiency was proposed by Farrell [3] through the use
of frontier production function. His discovery spills over several extensions on
estimation of the frontier production function as well as the measurement of
technical efficiency. However, this paper takes into account a powerful model
called stochastic frontier (SFM) which was proposed by Aigner et al. [4]. The
main idea of this model is to find a linear relationship between output and input
levels with two independent error terms representing inefficiency and the stan-
dard normal error, respectively. This model is widely used to assess technical
efficiency of production units. The efficiency is simply measured by the para-
meters of the frontier production function; we calculate the distance between a
country’s actual level of production output and the maximum level of output
given inputs, which is called the production frontier.

Apart from the use of the SFM, the study of Kaditi and Nitsi [2] pointed
out that the SFM still makes a strong assumption for the functional form of the
inefficiency distribution and is sensitive towards outliers, which in turn lead to
a misspecification. Therefore, they employed a quantile regression as an alter-
native model to estimate the efficiency in agricultural sector. Various studies
have followed this idea such as Duy [5], and Gregg and Rolfe [6]; they found
that this approach is well-suited for efficiency estimations when they concern
about heterogeneity in the different country-level data. Likewise, this approach
also describes well the production of efficient producers or countries in different
quantile level rather than on the average. With that in mind, this paper is trying
to take the advantage of the quantile regression. But would rather not giving
up using the SFM, we will put the use of quantile approach into the SFM and
introduce the stochastic frontier quantile model as an alternative method for this
issue. We believe that the quantile approach will provide new information to the
SFM by estimating the whole percentile of production functions corresponding
to different efficiency levels. (Bernini, Freo, and Gardini [7]).

Additionally, as the SFM contains two independent error terms i.e. the stan-
dard normal error and inefficiency, many studies concern about the validity of
this independence assumption and try to explain it in many different ways.
For example, Das [8] suggests that inefficiency at current time may depend on
the noise at the previous time. Moreover, due to the misspecification of model,
the standard normal error may contain some important variable, which in turn
makes the inefficiency dependent. Therefore, this paper employs a well-known
joint distribution function called copula to be a linkage between the two error
terms as suggested by Smith [9] and Wiboonpongse et al. [10]. They empirically
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found that the independence assumption can be relaxed appropriately by the
use of copulas which in turn allow us to explore the dependence structure of the
error components.

Therefore, this paper suggests a new approach to the analysis of the fron-
tier production function called Copula-based stochastic frontier quantile model
which takes into account the impact of inputs on the production output and the
efficiency scores of agriculture in different quantiles. In addition, this model also
allows for the dependence between two error components through the ability of
copula, which in turn makes this model more flexible and far from the grossly
overestimates efficiency, as in the original SFM.

The outline of this paper is as follows. Section 2 we explain thoroughly about
our proposed model and other necessary statistical properties related to our
model including the basic idea of copula. Section 3 we discuss about the estima-
tion technique and then some Monte Carlo experiments are reported Sect. 4. The
empirical study of agricultural production in Asia is given in Sect. 5. Section 6
contains conclusion.

2 Methodology: An Introduction to the Stochastic
Frontier Quantile Model

To construct the stochastic frontier quantile model (SFQM), three statistical
approaches are considered: (i) the conventional stochastic frontier model (SFM),
(ii) quantile regression with an Asymmetric Laplace distribution (ALD), and
(iii) copula approach. These approaches will be discussed later.

As we mentioned previously, the SFM assumes the two error components, U
and V , to have normal and positive distributions, respectively. These two errors
represent noise and inefficiency of the SFM model. (Smith [9]) pointed out that U
and V are dependent, so he suggested using copula to join these errors together
to eliminate the weak independence assumption of the SFM. However, without
considering heterogeneity in the country-level data, the SFM of (Smith [9]) may
not be robust against outliers and cannot capture the extremes of distribution i.e.
tail behavior of a probability distribution. Therefore, to overcome this problem,
we abandon the normality assumption of the U in favor of the ALD; that is
we extend the quantile regression to the SFM of (Smith [9]) and introduce a
stochastic frontier quantile analysis (SFQM) model. Hence, this model becomes
more flexible to the outlier and it can measure the relationship between output
and input levels across efficiency quantiles. In addition, this model also provides
the different slopes of parameters describing the production of Asian countries
rather than average value.

2.1 Modelling the SFQM with Correlated Error Components

Consider a case of cross-section of countries; the stochastic frontier quantile
model is given by the following equation where Yi is the output level of the
country i in which i = 1, ..., I, and X ′

ik is a I × K matrix of K different input
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quantities of the i − th country. The term βρ represents (I × K) matrix of
estimated parameters of the input variables at quantile level denoted by ρ, such
that ρ ∈ [0, 1]. The function f(·) is the imposed functional form of frontier such as
the Cobb-Douglas production model. The term TEρ denotes technical efficiency
across quantiles and Ei is the composed error term which will be discussed later.

Yi = f(X ′
ikβρ) · TEρ

Yi = X ′
ikβρ + Ei, i = 1, ..., I

Ei = Ui − Vi

U ∼ ALD(0, σ2
u, ρ)

V ∼ ALD(0, σ2
u, ρ)

(1)

The conditional quantile of given an input matrix is measured using the con-
ditional quantile function denoted by

Qyi
= (ρ|Xik) = β(ρ)X ′

ik (2)

In addition, the composed error term of the model is defined by Ei = Ui −Vi

where Ui is assigned as the Asymmetric Laplace distribution (ALD) with mean
zero and variance σ2

U and Vi is a nonnegative random error that is truncated
positive ALD with mean zero and variance σ2

V (see [11]). Therefore, when using
ALD, we can get consistent estimation of the quantile function and obtain a
different slope coefficients as well as the technical efficiency (TE) across different
quantiles ρ. In the context of the SFQM, the technical efficiency or TE can be
defined as the ratio of the observed output (Yi) to the corresponding frontier
output (Y ∗

i ) conditional on the levels of inputs used by the country at each
quantile level. Thus, the technical efficiency across quantiles or TEρ is given by

TEρ = exp(Xikβρ + Vi − Ui)/exp(Xikβρ + Vi) (3)

where Ui and Vi represent the noise and technical inefficiency, respectively. Most
importantly, these two errors are assumed to be related in this case; therefore,
the joint distribution of Ui and Vi then will be modelled by the copula approach,
which in turn will be explained in the next section.

2.2 Copula Functions

By a theorem due to Sklar, copula is a powerful tool used for building multivari-
ate distributions. Copula represents dependence structures among component
variables. In this study, we consider the case of two variables that are Ui and
Vi, with distribution functions F1 and F2, respectively. Suppose that both Ui

and Vi are continuous, then the joint distribution function of a two-dimensional
random vector and can be expressed as

H(u, v) = P (U ≤ u, V ≤ v) = P (F1(U) ≤ F2(u), F2(V ) ≤ F2(v)) (4)
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Note that the marginal Ui and Vi are uniformly distributed on the interval [0,1].
The term H(u, v) is a joint distribution of Ui and Vi evaluated at the point
(F1(u), F2(v)) ∈ [0, 1]2. As such, it is of the form

H(u, v) = C(F1(u), F2(v)) (5)

for some copula C, then the unique copula C is obtained as

C(u, v) = H(F−1
1 (u), F−1

2 (v)) (6)

where F−1
i is the quantile functions of marginal i = 1, 2; and ui, vi are uniform

[0,1]. In summary, a (bivariate) copula is a (restriction of) bivariate distribution
with uni-form marginal on [0,1]. Any joint distribution function can be built up
from the marginal distributions and copula. The copula of a joint distribution
can be extracted from the joint distribution.

2.3 Copula-Based Stochastic Frontier Quantile Model

In recent years, the validity of independence assumption between the two error
components of stochastic frontier model has been questioned, particularly in the
context of inefficiency in a dynamic setup, Das [8]. Two statisticians Burns [12]
and Smith [9] suggest relaxing this weak independence assumption by using the
ability of copula joining two marginal distributions of Ui and Vi, and they prove
that the copula can work well as a joint distribution for this case. Hence, this
study decides to employ the copula to join our two error components. The joint
density of Ui and Vi can be derived by the copula function, C(u, v) so that

F (Ui, Vi) = C(F1(u), F2(v)) (7)

This bivariate distribution function F (Ui, Vi) can be obtained using the marginal
distribution function F1(u) and F2(v) of u and v, and bivariate copula function
C(u, v). The corresponding bivariate copula density function can be obtained by
differentiating Eq. (6) with respect to u and v as follows

f(u, v) =
∂2

∂u∂v
C(F1(u), F2(v))

= f1(u)f2(v)Cθ(F1(u), F2(v))
(8)

As in Eq. (7), the terms F1(u) and F2(v) denote the probability density function
(pdf) of Ui and Vi, respectively. The term Cθ(F1(u), F2(v)) is the density func-
tion of the copula. Since the inefficient Vi cannot be obtained directly through
the SFQM, this study employs the simulated likelihood function, which is the
intractable integrals appearing in the likelihood functions. It is actually expec-
tation of a well behaved function of random Vi. Thus, we transform (Ui, Vi) to
be (Ei, Vi) where Ei = Ui − Vi. Thus we can rewrite the Eq. (7) as

f(u, v) = f(v, v + e) = (f1(v)f2(v + e)c(F1(v), F2(v + e)) (9)
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According to Smith [9], the pdf of is given by

f(e) =
∫ M

0

f(v, e)du

= Ev(f(Vi + Ei)cθ(F1(v), F2(v + e)))
(10)

where

f(Vi + Ei) =
p(1 − p)
σ(Vi−Ei)

exp

{
−ρp

(Vi + Ei)
σ(Vi−Ei)

}
(11)

where Vi is simulated from the positive truncated ALD with mean equal to zero
and variance, σ2

V . Consider the second density, the bivariate copula density for
Vi +Ei and Vi is contracted by either Elliptical copulas or Archimedean copula.
In this study, we consider six copula functions namely, Normal copula, Student’s
t copula, Frank copula, Clayton copula, Gumbel copula, and Joe copula. The
joint distribution or the copula function is uniform marginal thus the simulated
Vi + Ei and Vi are transformed by cumulative ALD and cumulative truncated
ALD, respectively. One of the most important purposes of stochastic frontier
analysis is to measure the technical efficiencies of countries at different quantile
level (TEρ) based on the combination of input and the level of outputs. TEρ is
the effectiveness of given set of inputs used to produce an output at each quantile
level. It appears to be technically efficient if the countries produce a maximum
output from the minimum of inputs. In fact, we cannot observe TEρ directly
especially with different quantile levels, but by following the model of original
TE given by Battese and Coelli [13], we are able to apply the quantile approach
and copula to the original formula of TE. And hence, the formula of TEρ can
be expressed as follows.

TEρ = E(exp(−Vi) |Ei = e)

=
∑M

i=1 exp(−Vi)f(Vi + Ei)c(Fi(Vi), F2(Vi + Ei) |θ)∑M
i=1 f(Vi + Ei)c(Fi(Vi), F2(Vi + Ei) |θ)

(12)

where (U = Vi + Ei) ∼ ALD(0, σ2
U , ρ) and V ∼ ALD+(0, σ2

V ).

3 Estimation of the Copula-based SFQM

In general, the estimation of the parameters of a copula model is done by infer-
ence function for margins method or IFM. However, Vi cannot be observed and
estimated by the univariate likelihood function, say f(Vi + Ei). Therefore, the
estimation in our model has to be necessarily based on the full likelihood in
Eq. (9). As we mentioned before, the two error components Ui and Vi are assumed
to be related and the joint distribution of and can be constructed by employing
the copula approach. Here, we employ six well-known families of copula consist-
ing of Gaussian, Student’s t, Frank, Joe, Gumbel, and Clayton copulas in which
a brief summary of the property of each copula family is described in [10].
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As discussed in the works of Smith [9] and Das [8], the model faces with
multiple integrals in the likelihood. Thus they suggested employing a simulated
likelihood estimation function to obtain the asymptotically unbiased simulators
for the integrals. Therefore, the exact likelihood functions based on a sample{
V R

i

}R

r=1
of size R,where V R

i = (V R
1 , ..., V R

N ), is expressed by

L(βρ
k , σ(V +E), σV , θ) =

N∑
i=1

⎛
⎝ 1

R

R∑
j=1

log f(Vij + Eij)c(vij , (vj + ej) |θ )

⎞
⎠ (13)

Then, the log likelihood function as shown in Eq. (13) will be maximized using
the BFGS algorithm, which in turn makes the likelihood consistent for every
quantiles. (Snchez, Lachos, Labra [14]).

4 Monte Carlo Simulation Study

In this section, we employ a simple Monte Carlo simulation study to evaluate
primarily the performance and accuracy of our proposed model, which takes
the form as Eq. (1). In practice, we generate data from the ALD and half ALD
distributions and employ six copula families as described in the previous section
to model the dependence structure of the two error components of the SFQM. We
start with simulation of uniform u and v by setting the true copula dependency
θ equal to 0.5 for Gaussian, Student’s t, and Clayton copulas and equal to 3
for the rest copulas i.e. Gumbel, Joe, and Frank. For the case of Student’s t
copula, we set the true value of the additional degree of freedom vf equal to 4.
Then, the obtained u and v are transformed into Ui ∼ ALD(0, σU , ρ) and Vi ∼
ALD+(0, σV , ρ) by the quantile function of ALD and half-ALD, where σU = 1

and σV = 0.5. The covariates X1 and X2 of the output Yi are randomly simulated
from uni(0, 2). We assume the true parameter for the intercept term α ρ to be 1.5
and the coefficients β ρ to be 2 and −2 for all quantiles ρ = (0.25, 0.5, 0.75), and
then generate data set n = 100. For each data set, we can observe the performance
and accuracy of our proposed model by comparing the true parameters with the
estimated parameters.

Table 1 shows the results of the Monte Carlo simulation investigating the
maximum likelihood estimation of the Copula-based SFQM. We found that our
model can perform very well through simulation study. It is found that the
estimated parameters are very close to their true values with acceptable standard
errors shown as the values in the braces. For example, in the case that we use
Gaussian copula as a joint distribution for U and V , the estimated values of
the intercept term α are 1.1055, 1.7249, and 1.6081 for quantile 0.25, 0.5, and
0.75, respectively, while the true value is 1.5 for all quantiles. The estimated
coefficients β1 are equal to 1.6946, 1.8084, and 1.5332 for different quantiles
while the true value is equal to 2. This result is acceptable and the same for
other copulas, therefore, the Monte Carlo simulation suggests that our proposed
Copula-based SFQM is reasonably accurate.
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Table 1. Simulation result

Copula Gaussian Student’s t Gumbel

Parameter/Quantile 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

α 1.1055 1.7249 1.6081 1.1055 1.4154 1.5066 1.4173 1.5797 1.6831

(0.1626) (0.1734) (0.1552) (0.1626) (0.0011) (0.3336) (0.3839) (0.0747) (0.5178)

β1 1.6946 1.8084 1.5332 1.6943 1.8182 1.6376 1.9093 1.9566 1.7714

(0.182) (0.2755) (0.2020) (0.1820) (0.4298) (0.4359) (0.3499) (0.1666) (0.3784)

β2 −2.4778 −2.8275 −2.2651 −2.4778 −2.3800 −2.2684 −2.1553 -2.1102 -2.1441

(0.4029) (0.4523) (0.1183) (0.4029) (0.1089) (0.4982) (0.3899) (0.2815) (0.1794)

σu 0.9959 1.0506 0.9841 0.1006 0.9760 1.0563 1.1106 1.0839 1.2877

(0.0111) (0.0977) (0.1936) (0.0741) (0.1008) (0.0076) (0.1126) (0.0301) (0.1804)

σv 0.4645 0.6863 0.6909 0.4959 0.4383 0.7240 0.4273 0.4354 0.5918

(0.2645) (0.0336) (0.0635) (0.0119) (0.0058) (0.1128) (0.1130) (0.0428) (0.0699)

θ 0.3555 0.5359 0.6113 0.4555 0.5809 0.5551 3.1728 4.2498 2.5983

(0.1395) (0.0819) (0.0207) (0.0395) (0.0224) (0.0081) (0.0500) (0.4288) (0.0276)

Copula Frank Joe Clayton

Parameter/Quantile 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

α 1.8021 1.4844 1.8172 1.5313 1.3962 1.2315 1.2596 1.9652 1.7974

(0.5793) (0.0909) (0.3652) (0.1669) (0.1049) (0.0415) (0.3714) (0.3417) (0.4397)

β1 1.9164 1.7469 1.5253 2.0347 1.8012 1.7219 1.3307 1.8310 1.5333

(0.1597) (0.5266) (0.1515) (0.1338) (0.1050) (0.0448) (0.1929) (0.2864) (0.2941)

β2 −2.2897 −2.3334 −2.2191 −1.9108 −2.2988 −2.2577 −2.0191 −2.4506 −2.3424

(0.6428) (0.5568) (0.3973) (0.1164) (0.0812) (0.0391) (0.3636) (0.1867) (0.6668)

σu 0.8298 0.9317 1.0467 0.8409 1.3523 0.9704 1.0381 1.0368 1.0694

(0.1768) (0.1075) (0.1461) (0.0934) (0.0602) (0.0452) (0.1044) (0.1054) (0.1648)

σv 0.5291 0.4025 0.8604 0.2975 0.6641 0.4323 0.5029 0.5044 0.4878

(0.0799) (0.0344) (0.0031) (0.0503) (0.0851) (0.0304) (0.0977) (0.0811) (0.0148)

θ 3.100 2.3677 2.2796 2.6488 2.5491 4.0894 0.6544 0.6405 0.4887

(0.2065) (0.3190) (0.2142) (0.1945) (0.0549) (0.0430) (0.0009) (0.0076) (0.0768)

Note: We assume the true value for intercept term α ρ for all quantiles ρ = (0.25, 0.5, 0.75) to be 1.5, the

coefficients β ρ to be 2 and −2, and σu = 1 and σv = 0.5. The true copula dependency θ is equal to 0.5 for

Gaussian, Student’s t, and Clayton copulas but it is equal to 3 for Gumbel, Joe, and Frank copulas.

5 Empirical Results: Agricultural Production Model
for Asia

This part presents the benchmark result of this paper. We analyze the agricul-
tural production function of Asian countries using our proposed model copula-
based stochastic frontier quantile model which has been proved to be accurate
through the simulation study.

5.1 Dataset

Prior to the estimated result, this part begins with the brief explanation of the
data used in this paper. This paper considers three important input variables for
estimating Asian production function, including labor, fertilizer, and agricultural
area. Since we consider a cross-section of countries, we then collect the data
in year 2013 when the data of every country are the most perfect and latest,
from World Bank database and Thomson Reuters DataStream, from Financial



Analysis of Agricultural Production in Asia 709

Investment Center (FIC), Faculty of Economics, Chiang Mai University, covering
44 countries in Asia.

Production output (Y ) refers to the crop production index which shows
agricultural production for each year relative to the base period 2004-2006. It
includes all crops except fodder crops and is calculated from the underlying val-
ues in international dollars, normalized to the base period 2004-2006.

Labor (L) refers to the rural population. Due to some limited access to the
data, we are unable to get the exact number of labor working in the agricul-
tural sector. So, we decide to use the number of rural population as defined by
national statistical offices to represent this variable since we believe that people
living in rural areas have high possibility of working in agriculture.

Agricultural area (A) refers to the share of land area that is arable, under
permanent crops, and under permanent pastures.

Fertilizer (F ) refers to the fertilizer consumption measured by the quantity
of plant nutrients used per unit of arable land. The variable covers nitrogenous,
potash, and phosphate fertilizers (including ground rock phosphate), except tra-
ditional nutrients such as animal and plant manures.

5.2 Model Specification

To analyze the factors affecting agricultural output and measure the technical
efficiency of Asian production, we considered the following production model.
The model primarily takes the form of Cobb-Douglas production function where
labor (L), fertilizer (F ), and agricultural area (A) are inputs.

Yi = αL
βρ
1

i F
βρ
2

i A
βρ
3

i
(14)

Then, we transform Eq. (14) into a translog production frontier which takes the
form as

ln Yi = α + βρ
1 ln Li + βρ

2 lnFi + βρ
3 ln Ai + Ui − Vi. (15)

In this study, we consider three quantile levels that are ρ = (0.25, 0.5, 0.75) to
represent three groups of agricultural countries in Asia as classified by the 2008
World Development Report of World Bank, namely (1) agriculture-based, (2)
transforming, and (3) urbanized countries, respectively.

5.3 Model Selection

As a sequential estimation method, the copula has to be selected before esti-
mation. Therefore, this part is also about selecting a copula that is best-fit for
the data. We employ the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) to pick the best copula among the copula families
that we concern, i.e. Gaussian, Students t, Clayton, Gumbel, Frank, and Joe.
The results are presented in Table 2.

Table 2 shows the values of AIC and BIC for each Copula-based stochastic
frontier quantile model, where the minimum values are bold numbers. According
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Table 2. AIC and BIC for each Copula-based SFQM

Copula Quantile level

0.25 0.5 0.75

Gaussian 610.47 4.25 3.42

635.48 30.82 28.43

Student’s t 734.21 6.32 8.83

762.79 36.69 37.41

Clayton 885.55 3.39 6.13

907.56 29.96 31.14

Gumbel 2.567 5.01 6.92

27.57 31.57 31.93

Frank 1.11 5.85 5.97

26.06 32.43 30.98

Joe 5.92 3.17 0.68

32.49 29.74 25.68

to both criteria, the best model for quantile level 0.25 is the one based on the
Frank copula where the values of AIC and BIC are equal to 1.11 and 26.06,
respectively. However, the best models for quantile levels 0.5 and 0.75 are the
one based on the Joe copula since it has the minimum values of AIC and BIC
as shown in the table.

5.4 Estimated Results of Copula-Based SFQM

This part presents the benchmark result of this paper, where we estimate the
stochastic frontier model based on the copulas we chose in the previous section.
The results are presented in Table 3. Technically, it is found that the dependence
between error components exists since the estimated parameters of the copulas
θ are significant for all quantiles at the 1 % level. Apart from that technical
consideration, we found some interesting point that the estimated parameters
are not so different across quantile levels. This means the impact of inputs, i.e.
labor, fertilizer, and agricultural area, on the agricultural output are quite the
same for all Asian countries. For example, an additional 1 % of labor leads to
0.013 % increase in agricultural output at the 0.25-quantile, 0.015 % and 0.018 %
at the 0.5 and 0.75 quantiles, respectively.

Fertilizer is found to affect significantly only the first quantile which repre-
sents a group of agriculture-based countries. This seems to make sense because
the other groups which are transforming (ρ = 0.5) and urbanized (ρ = 0.75)
countries are able to access to get high-tech agricultural innovation such as solar
power, hydroponics, and aeroponics. These smart technologies help farmers get
more output and improve their crops, which in turn make fertilizer exert less
influence on agricultural product.
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The last input, agricultural area, seems to create the largest impact on the
output compared with other factors, but the impacts are not different across
quantiles. We found that an additional 1 % of area brings about 0.038 % increase
in agricultural output at the 0.25 and 0.5 quantiles. This result corresponds with
many agricultural reports in which Asia uses a very large area to grow crops;
the quantity of output depends essentially on the lands used.

Table 3. Estimated parameters and standard errors for Copula-based SFQM.

Parameter Quantile level

0.25 0.5 0.75

α 4.335*** 4.557*** 4.708***

(0.018) (0.048) (0.094)

βρ
1 0.013*** 0.015*** 0.018*

(0.006) (0.008) (0.011)

βρ
2 0.022* 0.026 0.027

(0.011) (0.026) (0.032)

βρ
3 0.038*** 0.038*** 0.037

(0.011) (0.013) (0.026)

σU 0.037*** 0.086*** 0.233***

(0.008) (0.018) (0.025)

σV 0.058*** 0.010 0.022

(0.003) (0.023) (0.022)

θ 1.164*** 3.144*** 5.558***

(0.077) (0.058) (0.336)

Note: *, **, and *** denote rejections of the
null hypothesis at the 10 %, 5 %, and 1 % sig-
nificance levels, respectively.

Additionally, Fig. 1 is constructed to illustrate the position of each country.
We aim to find out which quantile level that a country fits most based on different
inputs. Each of the quantile levels has meaning (See Sect. 5.2); that is the 0.25-
quantile means agriculture-based country, the 0.5-quantile means transforming
country, and the 0.75-quantile means urbanized country. To visualize the posi-
tion, we plot the data of each input, i.e. area (top left), fertilizer (top right), and
labor (bottom), against the level of output (crop production). Note that the data
are log-transformed. The dot lines refer to the quantile lines for the 0.25, 0.5,
and 0.75 quantiles, which are estimated from the copula-based SFQM. Finally,
the result from the copula dependence shows the significant positive correlation
exists between noise and inefficiency.
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Fig. 1. Plot of production data fitting to quantile lines

5.5 Estimate of Technical Efficiency

This section presents the estimated result of the technical efficiency of Asian
production. As we described in the end of Sect. 2.3, the technical efficiency is
given by the ratio of observed output to maximum feasible output in which the
value is equal to 1 means a country obtains the maximum feasible output. The
value less than 1 refers to a shortfall of the observed output from maximum
feasible output.

Figure 2 displays the values of technical efficiency at different quantiles, which
are estimated by the copula-based SFQM. We found that the efficiencies are
not the same for all quantile levels. The first quantile (0.25) representing the
agriculture-based country has the lowest efficiency score in agricultural produc-
tion where the range is 0.87 to 0.93 (average 0.90). The second and third quantiles
representing the transforming and urbanized countries, respectively, have quite
the same efficiency score with in the range around 0.91 to 0.99.
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Fig. 2. Technical efficiency of Asian production at different quantiles

6 Conclusion

Since agricultural production sector has played a key role to the Asian economy,
this paper attempts to analyze the agricultural production function of Asian
countries and examine the technical efficiencies of this region. In methodology,
we take advantage of the stochastic frontier model in terms of the dependency
between the error term U and the non-negative inefficiency V . We employ the
copulas to model this dependence structure, and then extend the quantile regres-
sion to the SFM with dependent error components to capture the tail behavior of
a probability distribution. Therefore, we introduce the model named the Copula-
based stochastic frontier quantile model as a frontier model for this issue.

To model the agricultural production in Asia, we consider labor, fertilizer,
and agricultural area to be inputs and the crop production to be output. This
methodology is applied to the agricultural data of 44 Asian countries. The results
show that the impact of labor on production output is quite the same for all
Asian countries, whereas fertilizer is found to have effect significantly only on
the first quantile which represents a group of agriculture-based countries. Agri-
cultural area creates the largest impact on output compared with other factors,
but the effect sizes are not different across quantiles. For technical efficiency,
we found that the 0.25-quantile has the lowest efficiency score in agricultural
production within the range 0.87 to 0.93 while the other two quantiles have the
efficiency score within the range 0.91 to 0.99. The overall results suggest that
the agricultural sector in Asia is able to perform effectively in the long-run.
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