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Abstract. This paper presents a construction of confidence intervals
for the common variance of normal distributions based on generalized
confidence intervals, and then compares the results with a large sample
approach. A Monte Carlo simulation was used to evaluate the coverage
probability and average length of confidence intervals. Simulation studies
showed that the generalized confidence interval approach provided much
better confidence interval estimates than the large sample approach. Two
real data examples are exhibited to illustrate our approaches.
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1 Introduction

The construction of confidence intervals for a normal variance are well known
and simple to apply and attracted a great deal of attention from researchers. An
investigation of the history and development of constructing confidence inter-
vals for a normal variance was given in Cohen [1], and he constructed confidence
intervals for the variance that had the same length as the usual minimum length
interval but greater coverage probability. Analogously, Shorrock [2,3] presented
an improved interval based on Stein’s technique and a smooth version of Cohen’s
interval using Brewster and Zidek’s technique. Stein-type improvements of con-
fidence intervals for the normal variance with unknown mean were also obtained
by Nagata [4]. Casella [5] constructed a class of intervals each of which improved
both coverage probability and size over the usual interval. Lastly, Kubokawa
[6] presented a unified approach to the variance estimation problem. There are
many researchers that are also interested in the estimation of variance; see e.g.,
Shorrock and Zidek [7]. Sarkar [8] constructed the shortest confidence interval
and Iliopoulos and Kourouklis [9] presented a stein-type interval for generalized
variances.

The motivation of this paper comes from an analysis of variance (ANOVA),
which are used to compare several means. Under the assumption of analysis of
variance are normality, homogeneity of variance, and independence of errors.
If the quantitative data of the sample n observations from k populations come
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from a different time or space and in experimental situations have repeated many
times. In this case if the variances are homogeneous, what is the best way for
construction the confidence interval estimation of common variance to obtain a
single estimation? Therefore, interval estimation procedures regarding common
variance of normal distributions are interesting.

The practical and theoretical of developing procedures for interval estimation
of common variance based on several independent normal samples are important.
Thus, the goal of this paper was to provide two approaches for the confidence
interval estimation of common variance derived from several independent sam-
ples from normal distributions. The generalized confidence interval and large
sample confidence interval concept will be used for the end evaluation. The app-
roach is based on the concepts of generalized confidence intervals. The notions
of generalized confidence intervals are proposed by Weerahandi [10]. The gener-
alized confidence interval approach has been successfully used to construct the
confidence interval for many common parameters and since then these ideas have
been applied to solve many statistical problems, for example, Tian [11], Tian and
Wu [12], Krishnamoorthy [13], and Ye et al. [14]. However, the generalized con-
fidence interval approach used to construct these confidence interval estimations
for the common variance are also interesting. To our knowledge, there are no
previous works on inferences on common variance referring to normal distribu-
tions with a generalized confidence interval approach compared with the large
sample approach.

The remainder of the paper is organized as follows. Section 2 introduces
the basic properties of normal distribution. Section 3 presents the generalized
variable approach developed and describes computational procedures. Section 4
presents simulation results to evaluate the performances of generalized confi-
dence interval approach and the large sample approach on coverage probabili-
ties and average lengths. Section 5 illustrates the proposed approaches with real
examples. Finally, conclusions are given in Sect. 6.

2 Properties of Normal Distribution

If the random variable X follows the normal distribution, that is X ∼ N
(
μ, σ2

)
.

The probability density function of X is given by

f (x) =
1

σ
√

2π
exp

(

− (x − μ)2

2σ2

)

,−∞ < x < ∞.

The maximum likelihood estimators (MLE) of μ and σ2 are μ̂ and σ̂2 respec-
tively,

where μ̂ = X =
1
n

n∑

i=1

Xi, σ̂2 =
1
n

n∑

i=1

(
Xi − X

)2
.
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The estimator σ̂2 is the sample variance of the sample (X1,X2, ...,Xn). In
practice, another estimator is often used instead of the σ̂2. This other estimator
is denoted S2, and is also called the sample variance. The estimator S2 differs
from σ̂2 by having (n − 1) instead of n in the denominator

Thus S2 =
n

n − 1
σ̂2 =

1
n − 1

n∑

i=1

(
Xi − X

)2
.

The estimator S2 is an unbiased estimator of the underlying parameter σ2,
whereas σ̂2 is biased.

Theorem 1. Suppose X ∼ N
(
μ, σ2

)
, where μ, σ2 are respectively population

mean and population variance of X. Then the estimator of σ2 is σ̂2 = S2, the
variance of σ̂2 is

var
(
σ̂2

)
=

2σ4

n − 1
.

Proof. Let X1,X2, ...,Xn be an independent and identically distributed random
variables with mean μ and variance σ2, then X and S2 are unbiased estimators
of μ and σ2 :

where X =
1
n

n∑

i=1

xi, S2 =
1

n − 1

n∑

i=1

(
xi − X

)2
.

Also, by the LehmannScheff theorem the estimator S2 is uniformly minimum
variance unbiased (UMVU). In finite samples both S2 and σ̂2 have scaled chi-
squared distribution with (n − 1) degrees of freedom

so, S2 ∼ σ2

n − 1
· χ2

n−1, σ̂2 ∼ σ2

n
· χ2

n−1,

then sampling distribution of
(n − 1) S2

σ2
is chi-square with n − 1 degrees of

freedom. For the chi-square distribution, it turns out that the mean and variance
are E

(
χ2

n−1

)
= n − 1, var

(
χ2

n−1

)
= 2 (n − 1) .

We can use this to get the mean and variance of S2

E
(
S2

)
= E

(
σ2χ2

n−1

(n − 1)

)
=

σ2

n − 1
(n − 1) = σ2,

var
(
S2

)
= var

(
σ2χ2

n−1

(n − 1)

)
=

σ4

(n − 1)2
2 (n − 1) =

2σ4

n − 1
.

Hence,

var
(
σ̂2

)
= var

(
S2

)
=

2σ4

n − 1
.
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3 The Confidence Interval Approaches of the Common
Variance

3.1 The Generalized Confidence Interval Approach

The generalized confidence intervals (GCI) are based on the simulation of a
known generalized pivotal quantity (GPQ). Weerahandi [10] introduced the con-
cept of a generalized pivotal quantity for a parameter θ as follows:

Suppose that Xij ∼ N
(
μi, σ

2
i

)
, for i = 1, 2, ..., k, j = 1, 2, ..., ni are a random

samples from a distribution which depends on a vector of parameters θ∼ =
(
θ, ν∼

)

where θ is the parameter of interest and ν∼ is a vector of nuisance parameters. A

generalized pivot R
(
X∼ , x∼, θ, ν∼

)
for interval estimation, where x∼ is an observed

value of X∼ , as a random variable having the following two properties:

1. R
(
X∼ , x∼, θ, ν∼

)
has a distribution free of the vector of nuisance parameters ν∼.

2. The observed value of R
(
X∼ , x∼, θ, ν∼

)
is θ.

Let Rα be the 100α-th percentile of R. Then Rα becomes the 100 (1 − α)% lower
bound for θ and

(
Rα/2, R1−α/2

)
becomes a 100 (1 − α)% two-side generalized

confidence interval for θ.

Generalized Variable Approach. Consider k independent normal popula-
tions with a common variance θ. Let Xi1,Xi2, ...,Xini

be a random sample from
the i-th normal population as follows:

Xij ∼ N
(
μi, σ

2
i

)
, for i = 1, 2, ..., k, j = 1, 2, ..., ni.

Thus θ = σ2
i .

Let S2
i denote the sample variance for data Xij for the i-th sample and let

s2i denote the observed sample variance respectively. From

(ni − 1) S2
i

σ2
i

= Vi ∼ χ2
ni−1,

so, σ2
i =

(ni − 1) S2
i

Vi
where Vi ∼ χ2

ni−1.

where Vi is χ2 variates with degrees of freedom and ni−1, we have the generalized
pivot

Rσ2
i

=
(ni − 1) s2i

Vi
∼ (ni − 1) s2i

χ2
ni−1

. (1)

The generalized pivotal quantity for estimating θ based on the i-th sample is

R
(i)
θ = Rσ2

i
. (2)
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From the i-th sample, the maximum likelihood estimator of θ is

θ̂(i) = σ̂2
i , where σ̂2

i = S2
i . (3)

The large sample variance for θ̂(i) is

var
(
θ̂(i)

)
= var

(
σ̂2

i

)
= var

(
S2

i

)
=

2σ4
i

ni − 1
, see Theorem 1. (4)

The generalized pivotal quantity, we propose for the common variance θ is a
weighted average of the generalized pivot R

(i)
θ based on k individual samples as;

see, Ye et al. [14],

Rθ =

k∑

i=1

RwR
(i)
θ

k∑

i=1

Rwi

, (5)

where
Rwi

=
1

Rvar(̂θ(i))
, (6)

Rvar(θ̂(i)) =
2

(
Rσ2

i

)2

ni − 1
. (7)

That is, Rvar(θ̂(i)) is var(θ̂(i)) with σ2
i replaced by Rσ2

i
.

Computing Algorithms. For a given data set Xij for i = 1, 2, . . . , k, j =
1, 2, . . . , ni, the generalized confidence intervals for θ can be computed by the
following steps.

1. Compute x̄i and s2i for i = 1, 2, . . . , k.
2. Generate Vi ∼ χ2

ni−1 and then calculate Rσ2
i

from (1) for i = 1, 2, . . . , k.

3. Calculate R
(i)
θ from (2) for i = 1, 2, . . . , k.

4. Repeat steps 2, calculate Rwi
from (6) and (8) for i = 1, 2, . . . , k.

5. Compute Rθ following (5).
6. Repeat step 2–5 a total m times and obtain an array of Rθ’s.
7. Rank this array of Rθ’s from small to large.

The 100α-th percentile of Rθ’s, Rθ(α), is an estimate of the lower bound of the
one - sided 100(1−α)% confidence interval and (Rθ(α/2), Rθ(1 − α/2)) is a two -
sided 100(1 − α)% confidence interval.
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3.2 The Large Sample Approach

The large sample estimate of normal variance is a pooled estimate of the common
normal variance defined as

θ̂ =

k∑

i=1

θ̂(i)

var
(
θ̂(i)

)

k∑

i=1

1

var
(
θ̂(i)

)
, (8)

where θ̂(i) is defined in (3) and var
(
θ̂(i)

)
is an estimate of var

(
θ̂(i)

)
in (4) with

σ2
i replaced by s2i , respectively.

Hence, the large sample solution for confidence interval estimation is
⎛

⎜
⎜
⎜
⎜
⎜
⎝

θ̂ − z1−α/2

√√
√
√
√
√

1
k∑

i=1

1

var
(
θ̂(i)

)
, θ̂ + z1−α/2

√√
√
√
√
√

1
k∑

i=1

1

var
(
θ̂(i)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (9)

Computing Algorithms. For a given data set Xij for i = 1, 2, ..., k, j =
1, 2, ..., ni, the generalized confidence intervals for θ can be computed by the
following steps.

1. Compute xi and s2i for i = 1, 2, ..., k.
2. Calculate var

(
θ̂(i)

)
from (4) for i = 1, 2, ..., k.

3. Compute θ̂ following (8).
4. Calculate confidence interval estimation from (9) for i = 1, 2, ..., k.

4 Simulation Studies

A simulation study was performed to estimate the coverage probabilities and
average lengths of the common variance of the normal distributions for vari-
ous combinations of the number of samples k = 2 and k = 6, the sample sizes
n1 = ... = nk = n, the values used for sample sizes were 10, 30, 50,100 and 200
the population mean of normal data within each sample 1, and the population
standard deviation σ = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00
and 2.00. In this simulation study, we compared two methods, comprising of our
proposed procedure generalized confidence interval approach and the large sam-
ple approach. For each parameter setting, 5000 random samples were generated,
2500 Rθ’s were obtained for each of the random samples.

Tables 1 and 2 present the coverage probabilities and average lengths for
2 and 6 sample cases respectively. In 2 and 6 sample cases, the generalized
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Table 1. Empirical coverage probabilities (CP) and length of approximate 95 % two
side confidence bounds for common variance of normal distributions (based on 5000
simulations): 2 sample cases.

n σ GCI approach Large sample approach

CP Length CP Length

10 0.10 0.9156 0.0147 0.7602 0.0113

0.20 0.9282 0.0588 0.7628 0.0453

0.30 0.9198 0.1321 0.7486 0.1015

0.40 0.9242 0.2368 0.7572 0.1820

0.50 0.9306 0.3687 0.7588 0.2842

0.60 0.9248 0.5330 0.7512 0.4103

0.70 0.9248 0.7176 0.7526 0.5519

0.80 0.9242 0.9473 0.7562 0.7311

0.90 0.9230 1.1958 0.7524 0.9210

1.00 0.9212 1.4668 0.7468 1.1298

2.00 0.9268 5.8861 0.7530 4.5365

30 0.10 0.9440 0.0077 0.8762 0.0069

0.20 0.9336 0.0311 0.8658 0.0277

0.30 0.9312 0.0699 0.8532 0.0623

0.40 0.9370 0.1241 0.8672 0.1106

0.50 0.9328 0.1941 0.8632 0.1726

0.60 0.9436 0.2806 0.8696 0.2497

0.70 0.9364 0.3793 0.8626 0.3379

0.80 0.9402 0.5007 0.8618 0.4453

0.90 0.9430 0.6295 0.8712 0.5615

1.00 0.9382 0.7800 0.8654 0.6949

2.00 0.9360 3.1166 0.8630 2.7751

50 0.10 0.9418 0.0058 0.8936 0.0054

0.20 0.9434 0.0235 0.9018 0.0217

0.30 0.9438 0.0529 0.8988 0.0488

0.40 0.9444 0.0941 0.9014 0.0870

0.50 0.9360 0.1474 0.8946 0.1361

0.60 0.9428 0.2127 0.9014 0.1963

0.70 0.9438 0.2893 0.9020 0.2672

0.80 0.9398 0.3768 0.8950 0.3473

0.90 0.9494 0.4778 0.9006 0.4414

1.00 0.9426 0.5897 0.9000 0.5441

2.00 0.9464 2.3638 0.9000 2.1832

(continued)
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Table 1. (continued)

n σ GCI approach Large sample approach

CP Lenght CP Lenght

100 0.10 0.9416 0.0040 0.9224 0.0038

0.20 0.9454 0.0162 0.9190 0.0155

0.30 0.9436 0.0366 0.9230 0.0349

0.40 0.9402 0.0650 0.9178 0.0620

0.50 0.9456 0.1016 0.9242 0.0969

0.60 0.9482 0.1468 0.9234 0.1399

0.70 0.9508 0.1996 0.9272 0.1903

0.80 0.9448 0.2604 0.9186 0.2484

0.90 0.9424 0.3298 0.9212 0.3149

1.00 0.9444 0.4062 0.9240 0.3876

2.00 0.9504 1.6329 0.9286 1.5557

200 0.10 0.9448 0.0028 0.9326 0.0027

0.20 0.9512 0.0113 0.9400 0.0110

0.30 0.9472 0.0255 0.9366 0.0248

0.40 0.9454 0.0452 0.9332 0.0440

0.50 0.9504 0.0707 0.9394 0.0689

0.60 0.9506 0.1020 0.9426 0.0994

0.70 0.9500 0.1389 0.9376 0.1353

0.80 0.9480 0.1811 0.9362 0.1764

0.90 0.9496 0.2293 0.9386 0.2233

1.00 0.9502 0.2836 0.9352 0.2761

2.00 0.9480 1.1331 0.9346 1.1039

confidence interval approach and the large sample approach provide the under-
estimates coverage probabilities for most of the scenarios, especially when the
sample size is small. Additionally, the coverage probabilities of the generalized
confidence interval approach are better than the large sample approach for all
sample sizes, especially when the sample size is small. In overall, the generalized
confidence interval approach and the large sample approach have the coverage
probabilities close to the nominal level when the sample size increases. In this
case, there is no need to see the average lengths from two intervals since the
large sample approach provide the coverage probability below the generalized
confidence interval approach for almost cases. Finally, it was discovered that the
generalized confidence interval approach provided much better results over the
large sample approach in terms of coverage probabilities.
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Table 2. Empirical coverage probabilities (CP) and length of approximate 95 % two
side confidence bounds for common variance of normal distributions (based on 5000
simulations): 6 sample cases.

n σ GCI approach Large sample approach

CP Lenght CP Lenght

10 0.10 0.6156 0.0073 0.4614 0.0056

0.20 0.6234 0.0296 0.4560 0.0227

0.30 0.6196 0.0666 0.4672 0.0513

0.40 0.6082 0.1178 0.4514 0.0903

0.50 0.6086 0.1844 0.4528 0.1418

0.60 0.6074 0.2653 0.4574 0.2044

0.70 0.6082 0.3622 0.4488 0.2783

0.80 0.6180 0.4746 0.4554 0.3648

0.90 0.6170 0.6001 0.4580 0.4625

1.00 0.6034 0.7393 0.4482 0.5680

2.00 0.6098 2.9526 0.4588 2.2705

30 0.10 0.7840 0.0045 0.7238 0.0038

0.20 0.7880 0.0180 0.7318 0.0154

0.30 0.7818 0.0405 0.7230 0.0346

0.40 0.7794 0.0722 0.7274 0.0616

0.50 0.7824 0.1127 0.7190 0.0960

0.60 0.7752 0.1624 0.7156 0.1385

0.70 0.7850 0.2213 0.7210 0.1887

0.80 0.7756 0.2888 0.7194 0.2468

0.90 0.7848 0.3654 0.7254 0.3120

1.00 0.7846 0.4509 0.7334 0.3855

2.00 0.7730 1.8012 0.7196 1.5387

50 0.10 0.8344 0.0034 0.8080 0.0030

0.20 0.8314 0.0137 0.8016 0.0122

0.30 0.8344 0.0309 0.8074 0.0276

0.40 0.8374 0.0550 0.8124 0.0491

0.50 0.8274 0.0857 0.7984 0.0766

0.60 0.8326 0.1236 0.8062 0.1106

0.70 0.8366 0.1685 0.8004 0.1505

0.80 0.8380 0.2199 0.8124 0.1966

0.90 0.8408 0.2787 0.8110 0.2491

1.00 0.8356 0.3435 0.8026 0.3070

2.00 0.8446 1.3751 0.8146 1.2294

(continued)
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Table 2. (continued)

n σ GCI approach Large sample approach

CP Lenght CP Lenght

100 0.10 0.8894 0.0023 0.8806 0.0022

0.20 0.8888 0.0094 0.8764 0.0088

0.30 0.8930 0.0213 0.8846 0.0199

0.40 0.8878 0.0377 0.8784 0.0354

0.50 0.8784 0.0590 0.8712 0.0554

0.60 0.8918 0.0851 0.8808 0.0798

0.70 0.8876 0.1159 0.8798 0.1087

0.80 0.8948 0.1514 0.8840 0.1420

0.90 0.8902 0.1914 0.8814 0.1795

1.00 0.8878 0.2366 0.8786 0.2218

2.00 0.8844 0.9456 0.8778 0.8871

200 0.10 0.9088 0.0016 0.9072 0.0015

0.20 0.9158 0.0065 0.9146 0.0063

0.30 0.9188 0.0147 0.9184 0.0142

0.40 0.9146 0.0262 0.9124 0.0253

0.50 0.9132 0.0409 0.9120 0.0396

0.60 0.9120 0.0590 0.9106 0.0570

0.70 0.9220 0.0804 0.9210 0.0776

0.80 0.9154 0.1049 0.9128 0.1014

0.90 0.9172 0.1328 0.9134 0.1283

1.00 0.9148 0.1638 0.9140 0.1583

2.00 0.9110 0.6562 0.9066 0.6337

5 An Empirical Application

In this section, two real data examples are exhibited to illustrate the generalized
confidence interval approach and the large sample approach. The first data set
compares two different procedures for the shear strength for steel plate girders.
Data for nine girders for two of these procedures, Karlsruhe method and Lehigh
method [15]. Using the data from Table 3, for test the hypothesis of equal mean
treatment effects. Under the assumption are normality, homogeneity of variance,
and independence of errors. The Shapiro - Wilk normality test indicate that the
two sets of data come from normal populations and the variances were homo-
geneous by Levene’s test. The sample variances of the normal data were 0.0213
and 0.0024 for Karlsruhe method and Lehigh method respectively. Using the
generalized confidence interval approach, the generalized confidence interval for
the overall variance was (0.0012, 0.0104) with the length of interval 0.0092. In
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Table 3. The 18 observations of the shear strength for steel plate girders.

Karlsruhe method Lehigh method

1.186 1.151 1.322 1.061 0.992 1.063

1.339 1.200 1.402 1.062 1.065 1.178

1.365 1.537 1.559 1.037 1.086 1.052

Table 4. The 50 observations of blood Sugar Levels (mg/100 g) for 10 Animals from
Each of five Breeds (A−E).

A B C D E

124 120 111 129 117 148 104 119 142 149

116 110 101 122 142 141 128 106 139 150

101 127 130 103 121 122 130 107 133 149

118 106 108 122 123 139 103 107 120 120

118 130 127 127 121 125 121 115 127 116

comparison, the confidence interval by the large sample approach was (0.0003,
0.0050) with the length of interval 0.0047.

The second example was blood sugar levels (mg/100g) measured from ten
animals of five different breeds [16]. The results are presented in Table 4, for
test the hypothesis of equality of means for the five breeds. The data on the
five set were tested from normal populations by Shapiro - Wilk normality test
and the variances were homogeneous by Levene’s test. The sample variances of
the normal data were 84.0000, 124.6667, 126.5444, 101.1111 and 173.1667 for
breeds A, B, C, D and E respectively. Using the generalized confidence interval
approach, the generalized confidence interval for the overall variance was
(56.9113, 156.9829) with the length of interval 100.0716. In comparison, the
confidence interval by the large sample approach was (62.6062, 155.0373) with
the length of interval 92.43106.

6 Discussion and Conclusions

This paper has presented a simple approach to construct confidence intervals for
the common variance of normal distributions. The proposed confidence intervals
were constructed by two approaches, the generalized confidence interval and
large sample approaches. The generalized confidence interval approach provided
coverage probability close to nominal level 0.95 and is better than the large sam-
ple approach for all sample sizes. The average lengths increased when the value
of σ increased for both approaches. The results indicated that the confidence
interval for the common variance of normal distributions based on the gener-
alized confidence interval approach is better than confidence interval based on
the large sample approach. In conclusion, the generalized confidence interval can
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be successfully used to estimate the common variance of normal distributions.
This conclusion supports the research papers of Tian [11], Tian and Wu [12],
Krishnamoorthy [13] and Ye et al. [14].
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