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Abstract. In view of the recent ban of the use of P-values in statis-
tical inference, since they are not qualified as information measures of
support from empirical evidence, we will not only take a closer look at
them, but also embark on a panorama of more promising ingredients
which could replace P-values for statistical science as well as for any
fields involving reasoning with integrated uncertainty. These ingredients
include the recently developed theory of Inferential Models, the emergent
Information Theoretic Statistics, and of course Bayesian statistics. The
lesson learned from the ban of P-values is emphasized for other types of
uncertainty measures, where information measures, their logical aspects
(conditional events, probability logic) are examined.
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1 Introduction

The recent ban on the use of the notion of P-values in hypothesis testing (Trafi-
mow and Marks [32]) triggered a serious reexamination of the way we used
to conduct inference in the face of uncertainty. Since statistical uncertainty is
an important part of an integrated uncertainty system, a closer look at what
went wrong with statistical inference is necessary to “repair” the whole infer-
ence machinery in complex systems.

Thus, this paper is organized as follows. We start out, in Sect. 2, by
elaborating on the notion of P-values as a testing procedure in null hypothe-
sis signficance testing (NHST). In Sect. 3, within the context of reasoning with
uncertainty where logical aspects and information measures are emphasized, we
elaborate on why p-values should not be used as an inference procedure any-
more. Section 4 addresses the question “What are the items in statistical theory
c© Springer International Publishing AG 2016
V.-N. Huynh et al. (Eds.): IUKM 2016, LNAI 9978, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-49046-5 1



4 H.T. Nguyen

which are affected by the removal of P-values?”. Section 5 points out alternative
inference procedures in a world without P-values. We reserve the last Sect. 6 for
a possible “in defense of P-values”.

2 The Notion of P-values in Statistical Inference

It seems useful to trace back a bit of Fisher’s great achievements in statistical
science. The story goes like this. A lady claimed that she can tell whether a cup of
tea with milk was mixed with tea or milk first, R. Fisher designed an experiment
in which eight cups of mixed tea/milk (four of each kind) was presented to her
(letting her know that four cups are mixed with milk first, and the other four
are mixed with tea first) in a random sequence, and asked her to taste and tell
the order of mixture of all cups. She got all eight correct identifications. How
did Fisher arrive at the conclusion that the lady is indeed skillful? See Fisher
[10], also Salbursg [29]. This kind of testing problem is termed Null Hypothesis
Significance Testing (NHST), due to Fisher [9].

The important question is “Could we use P-values to carry out NHST?”. You
may ask “what is the rationale for using P-value to make inference?”. Well, don’t
you know the answer? It could be the Cournot’s principle (see, e.g., Shafer and
Vork,[31], pp. 44+), according to which, it is practically certain that predicted
events of small probabilities will not occur. But it is just a “principle”, not a
theorem! It does have some flavor of logic (for reasoning), but which logic? See
also Gurevich and Vovk [14] , where two “interesting” things to be noted: First,
to carry out a test, one just “adopts” a “convention”, namely “for a given test,
smaller values provide stronger impugning evidence”! And secondly, it is a fact
that “every test statistic is equivalent to a unique exact P-value function”.

3 Why P-values Are Banned?

Starting with NHST, the unique way to infer conclusions from data is the tra-
ditional notion of P-values. However, there is something fishy about the use of
P-values as a “valid” inference procedure, since quite sometimes serious prob-
lems with them arised, exemplified by Cohen [6], Schervish [30], Goodman [13],
Hurlbert and Lombardi [15], Lavine [16], and Nuzzo [28].

Having relied upon P-value as the inference procedure to carry out NHST
(their bread and butter research tool) for so long, the Psychology community
finally has enough of its “wrong doings”, and without any reactions from the
international statistical community (which is responsable for inventing and devel-
oping statistical tools for all other sciences to use), decided, on their own, to ban
NHST-Procedure (meaning P-values), Trafimow and Marks [32]. While this is a
ban only for their Basic and Applied Social Psychology Journal, the impact is
worldwide. It is not about the “ban”, it is about “what wrong with P-values?”
that we should all be concerned. For a flavor of doing wrong statistics, see e.g.,
Wheelan [34].
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Even, the ban gets everybody’s attention now, what happend since last year?
Nothing! Why? Even after the American Statistical Association issued a “state-
ment” about P-values (ASA News [2]), and Wassertein and Lazar [33], not ban-
ning P-values (why not?), but “stating” six “principles”.

What do you read and expect from the above “statement”? Some literature
search reveals stuff like this. “Together we agreed that the current culture of
statistical significance testing, interpretation, and reporting has to go, and that
adherence to a minimum of six principles can help to pave the way forward for
science and society”. And in the Sciences News, for laymen, “P-value ban: small
step for a journal, giant leap for sicence”. See also, Lavine [16].

There are three theoretical facts which make P-values undesirable for statis-
tical inference:

(i) P-values are not model probabilities.
First, observe that a hypothesis is a statistical model. The P-value P (Tn ≥

t|Ho) is the probability of observing of an extreme value t if the null hypothesis
is true. It is not P (Ho|Tn ≥ t) even when this “model probability given the
data” makes sense (e.g., as in the Bayesian framework where Ho is viewed as a
random event). Note that when P (Ho|Tn ≥ t) makes sense and is available, it
is legitimate to use it for model selection (a valid inference procedure from at
least a common sense standpoint). In a frequentist framework, there is no way
to convert P (Tn ≥ t|Ho) to P (Ho|Tn ≥ t). As such, the P-value P (Tn ≥ t|Ho),
alone, is useless for inference, precisely as “stated” in the sixth principle of
the ASA.

(ii) The reasoning with P-values is based on an invalid logic.
As mentioned by Cohen [6] and in the previous section, the use of P-values to

reject Ho seems to be based on a form of Modus Tollens in logic, since after all,
reasoning under uncertainty is inference ! and, each mode of reasoning is based
upon a logic. Now, thanks to Artificial Intelligence (AI), we are exposed to a
variety of logics, such as probability logic, conditional probability logic, fuzzy
logics...which are logics for reasoning under various types of uncertainty. See a
text like Goodman, Nguyen and Walker [12]. In particular, we could face rules
that have exceptions (see e.g., Bamber, Goodman and Nguyen, [3]). The famous
“penguin triangle” in AI can be used to illustrate well the invalidity of Modus
Tollens in uncertain logics.

While we focus in this address on reasoning with P-values in probabilis-
tic systems, perhaps few words about reasoning with more complex systems
in which several different types of uncertainty are involved (integrated uncer-
tain systems) should be mentioned. To create machines capable of ever more
sophisticated tasks, and of exhibiting ever more human-like behavior, we need
knowledge representation and associated reasoning (logic). In probabilistic sys-
tems, no additional mathematical tools are needed, since we are simply dealing
with probability distributions, and the logic used is classical two-valued logic.
For general integrated uncertain systems, new mathematical tools such as con-
ditional events, possibility theory, fuzzy logics are needed. See, e,g., Nguyen and
Walker [25], Nguyen and Walker [26], Nguyen [27].
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(iii) As set-functions, P-values are not information measures of model sup-
port.

Schervish [30], while discussing the “usual” use of P-values to test hypothe-
ses (in both NHST and Neyman-Pearson tests), “discovered” that “a common
informal use of P-values as measures of support or evidence for hypotheses has
serious logical flaws”. We will elaborate on his “discovery” in the context of
information theory.

Essentially, the reason to use P-values, in the first place, although not stated
explicitly as such, to “infer” conclusions from data, is that they seems to be
“information measures of location” derived from data (evidence) in support of
hypotheses. Is that true? Specifically, Given a null hypothesis Ho and a statistic
Tn and the observed value Tn = t, the P-value p(Ho) = P (Tn ≥ t|Ho), as
a function of Ho, for fixed Tn and the observed value Tn = t, is “viewed” as a
measure of support that the observed value t lends to Ho (or amount of evidence
in favor of Ho) since large values of p(Ho) = P (Tn ≥ t|Ho) make it harder to
reject Ho (whereas, small values reflect non-support for Ho, i.e., rejection). But
this “practice” is always informal, and “no theory is ever put forward for what
properties a measure of support or evidence should have”.

What is an information measure? Information decreases uncertainty. Qualita-
tive information is high if surprise is high. When an event A is realized, it provides
an information. Clearly, in the context of “statistical information theory”, infor-
mation is a decreasing function of probability: the smaller the probability for A
to occur, the higher the information obtained when A is realized. If A stands for
“snowing”, then when A occured, say, in Bangkok, it provides a “huge” amount
of information I(A). Put it mathematically (as in Information Theory, see e.g.,
Cover and Thomas, [7], I(A) = − log P (A). For a general theory of information
without probability, but keeping the intuitive behavior that information should
be a decreasing function of events, see, e.g., Nguyen [24]. This intuitive behavior
is about a specific aspect of the notion of information that we are considering in
uncertainty analysis, namely, information of localization.

In the context of testing about a parametric model, say, f(x|θ), θ ∈ Θ, each
hypothesis Ho can be identified with a subset of Θ, still denoted as Ho ⊆ Θ.
An information measure of location on Θ is a set-function I : 2Θ → R

+ such
that A ⊆ B =⇒ I(A) ≥ I(B). The typical probabilistic information measure is
I(A) = − log P (A). This is the appropriate concept of information measure in
support of a subset of Θ (a hypothesis). Now, consider the set function I(Ho) =
P (Tn ≥ t|Ho) on 2Θ. Let H ′

o ⊇ Ho. If we use P-values to reject null hypotheses
or not, e.g., rejecting H ′

o (i.e., the true θo /∈ H ′
o) when, say, I(H ′

o) ≤ α = 0.05,
then since H ′

o ⊇ Ho, we also reject Ho, so that I(Ho) ≤ α, implying that H ′
o ⊇

Ho =⇒ I(H ′
o) ≥ I(Ho) which indicates that I(.) is not an information measure

(derived from empirical evidence/ data) in support of hypotheses, since it is an
increasing rather than a decreasing set function. P-values are not measures of
strength of evidence.
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4 Are Neyman-Pearson Testing Theory Affected?

So far we have just talked about NHST. How Neyman-Pearson (NP) testing
framework differs from NHST? Of course, they are “different”, but now, in view
of the ban of P-values in NHST, you “love” to know if that ban “affects” your
routine testing problems where in teaching and research, in fact, you are using
NP tests instead? Clearly the findings are extremely important: either you can
continue to proceed with all your familiar (asymptotic) tests such as Z-test,
t- test, X 2-test, KS- test, DF- test, ....or... you are facing “the final collapse of
the Neyman-Pearson decision theoretic framework ”(as announced by Hurlbert
and Lombardi [15]! And in the latter (!), are you panic?

In accusing Fisher’s work on NHST as “worse than useless”, Neyman and
Pearson embarked on shaping Fisher’s testing setting into a decision framework
as we all know and use so far, although science is about discovery of knowledge,
and not about decision-making. The “improved” framework is this. Besides a
hypothesis, denoted as Ho (although it is not for nullifying, but in fact for accep-
tance), there is a specified alternative hypothesis Ha (to choose if Ho happens to
be rejected). It is a model selection problem, where each hypothesis corresponds
to a statistical model. The NP testing is a decision-making problem: using data
to reject or accept Ho. By doing so, two types of errors might be committed:
false positive: α = P (reject Ho|Ho is true), false negative β = P (accept Ho|Ho

is false). It “improves” upon Fisher’s arbitrary choice of a statistic to compute
the P-value to reach a decision, namely a most powerful “test” at a fixed α-level.
Note that while the value of α could be the same in both approaches, say 0.05
(a “small” number in [0, 1] for Fisher), its meaning is different, as α = 5% in
NP approach (the probability of making the wrong decision of the first kind).

Let’s see how NP carry out their tests? As a test is usually based on some
appropriate statistic Tn(X1,X2, ...,Xn) (though technically not required) where,
say, X1,X2, ...,Xn is a random sample, of size n, drawn from the population, so
that we select a set B in the sample space of Tn as a rejection (critical) region.

The most important question is: What is the rationale for selecting a set
B as a rejection region? Since data (values of the statistics Tn) in B lead to
rejection of Ho (i.e., on the basis of elements of B we reject Ho), this inference
procedure has to have a “plausible” explanation for people to trust! Note that an
inference procedure is not a mathematical theorem! In other words, why a data
in B provides evidence to reject Ho? Clearly, this has something to do with the
statistic Tn(X1,X2, ...,Xn)!

Given α and a (test) statistic Tn, the rejection region Rα is determined by

P (Tn ∈ Rα|Ho) ≤ α

Are P-values left out in this determination of rejection regions? (i.e., the
rationale of inference in NP tests does not depend on P-values of Tn?). Put it
differently: How to “pick” a region Rα to be a rejection region?

Note that the P-value statistic p(Tn) = 1−FTn|Ho
(Tn) corresponds to a N-P

test. Indeed, let α be given as the type-I error. Then, the test, say, Sn, which
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rejects Ho if and only if p(Tn) ≤ α has P (rejecting Ho|Ho) = P (p(Tn) ≤ α)
which will be ≤ α, if the random variable p(Tn) dominates (first) stochastically
the uniform distribution on [0, 1] (so-called a “valid” P-value statistic).

Thus, in summary, the statistics used for significance tests (Fisher) and
hypothesis tests (N-P) are the same, and hypothesis tests can be carried out
via p-values (as the rationale for rejection), where significance levels (but not
p-values) are taken as error probabilities. Thus, in improving Fisher’s NHST set-
ting, NP did not “improve” Fisher’s intended inference procedure (i.e., P-values),
so that both NHST and NP tests share the same (wrong) inference procedure.
See Lehmann [17], Lehmann and Romano [18].

In this respect, I cannot resist to put down the following from Freedman,
Pisani, and Purves [11], (pp. 562–563):

“Nowadays, tests of significance are extremely popular. One reason is that the
tests are part of an impressive and well-developed mathematical theory... This
sounds so impressive, and there is so much mathematical machniery clanking
around in the background, that tests seem truly scientific-even when they are
complete nonsense. St. Exupery understood this kind of problem very well:

“When a mistery is too overpowering, one dare not disobey” (The Little
Prince).

The basic questions for inference in testing are these. What is the rationale
for basing our conclusions (decisions for reject or accept) on a statistic Tn? Are
all rejection regions should be determined this way? Based upon which logic (or
rationale) we construct rejection regions, from which we reach decisions (i.e.,
from data to conclusions)?

With all the fancy mathematics to come up with, say, an asymptotic distri-
bution of a statistic Tn (e.g., the Dickey-Fuller test for stationarity in AR(1)
model), the goal is to say this. If the observed value of Tn = t is “large”,
then reject Ho, where “large” is “defined” as the critical value c determined
by P (Tn ≥ c|Ho) ≤ α. Don’t you see that is clearly equivalent to the P-value of
Tn being less than α? Specifically:

t ≥ c ⇔ P (Tn ≥ t|Ho) ≤ α

Thus, this kind of inference (or logic!) is exactly the same as what Fisher
had suggested for NHST. In other words, all fancy mathematical works aim at
providing the necessary stuff for computing p-values! from which to jump to
rejection conclusion, just like in NHST.

Freedman, Pisani, and Purves [11] seemed to feel something wrong about the
“logic of p-values” /(In fact the “logic of the z-test”), pp. 480–481, but did not
dare to go all the way to say that it’s silly to use it to make inference. They said
things like

“It is an argument by contradiction, designed to show that the null hypothesis
will lead to an absurd conclusion and must be rejected”. Wrong, we are not in
binary logic! And

“P is not the chance of the null hypothesis being right”, “Even worse, accord-
ing to the frequentist theory, there is no way to define the probability of the null
hypothesis being right”.



On Evidential Measures of Support for Reasoning 9

Remember: if you must choose (or select) two things under uncertainty, you
would choose the one with higher “probability” to be right, given your evidence
(data). But you do not have it if it does not make sense to consider such a
probability (since a hypothesis is not a random event), let alone with p-values.
Perhaps, because of this “difficulty” that statisticians “play around” with a
seemingly OK logic of p-values? and no one has catched it. Should we continue
to use this wrong logic or try to find a better (correct) one? There is no possible
choice anymore: the P-value logic is now officially banned!

It seems we cannot “repair” the p-value logic. We must abandon it com-
pletely. Clearly, the Bayesian approach to statistical inference does not have this
problem. Note that, there are no names of tests in Bayesian statistics, since their
is only one way to conduct tests (similar to estimation method), which is in fact
a selection problem, based on Bayes factors (no test statistics, no sampling dis-
tributions!). The crucial thing is that, hypotheses are random events and hence
it makes sense to consider “probabilities of hypotheses/ given data” which form
a common sense reasoning for reaching conclusions.

However, the following observation seems interesting? Most of NP rejection
regions are nested, i.e. of the form (Tn > c), and as such their associated test-
ing procedure is equivalent to using P-values whose threshold is taken as the
size of the test. Thus, from a logical point of view, there is no difference between
NHST and NP-testing as far as “inference” is concerned. However, there is some-
thing interesting here which could “explain” the meaning of NP-rejection regions.
While the null hypothesis is rejected by using the “logic of P-values”, this infer-
ence is controlled by the type-I error α (Noting that there is no such guarantee in
NHST framework). In other words, while the inference based on P-value might
not be “logical”, it could be “plausible”: decisions using P-values in NP-testing,
say, by NP Theory are enforced by error probabilities. Specifically the use of
P-values in NP-testing is in fact carried out together with error probabilities,
and not alone. The implication is that decisions for rejecting hypotheses are
controlled with specified error probabilities in advance.

5 Some Alternatives to P-values

Clearly, Bayesian selection (testing) is valid in this sense. The basic “ingredi-
ents” are priors and Bayes’ theorem which are used precisely to obtain model
probabilities for selection purposes. See a Text like Koch (2007).

With respect to “Statistics of the 21st century”, David Draper (2009) already
claimed that it is Bayesian statistical reasoning, in

Bayesian Statistical Reasoning:
An Inferential, Predictive and Decision-Making Paradigm for the 21st Century

(www.ams.ucsc.edu/∼draper)

Well, not so fast! Even now with the possible “final collapse of the Neyman-
Pearson decision theoretic framework and the rise of the neoFisherian” (Hurlbert
and Lombardi [15]) the Bayesian statistics is not the unique “super power”,

www.ams.ucsc.edu/~draper
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thanks to the existence (since 1959) of the non-Bayesian Information Theoretic
(IT) Statistics!

Another approach to statistics which posseses also two similar ingredients,
allowing us to reach model probabilities for selection, is the Information Theo-
retic (IT)Statistics. These are “a chosen class of possible models” (playing the
role of prior distributions in Bayesian approach, but not subjectively in nature),
and the notion of “cross entropy” (playing the role of Bayes’ formula). See Kull-
back [21], Anderson [1], Burnham and Anderson [5], Konishi and Kitagawa [20],
Cumming [8], Cover Thomas [7].

Testing of hypotheses is a special case of model selection. The IT approach
to model selection is a sort of posterior analysis without subjective priors. What
could be considered as priors (a priori) is our choice of a class of competing
models for selecting the “best” model for prediction purpose. The Kullback-
Liebler divergence (together with its estimate/ the AIC statistic) plays the role
of Bayes’ formula to arrive at model probabilities which serve as a valid inference
for decisions on selections (as opposed to P-values).

Given data X1,X2, ...,Xn from a population X, with, of course, unkown
probability density f(.), we consider a class of models M = {Mj : j = 1, 2, ..., k}
where each Mj = {gj(.|θj) : θj ∈ Θj}, to be possible candidates for approximat-
ing f(.).

Somewhat similar to Fisher’s idea of finding a statistic to measure the incom-
patibility between the data and a hypothesis (here, a model), from which we can
figure out a way to “reject” it, the IT approach proceeds as follows.

First, in general terms: Suppose we use a density g(.) to approximate an
unknown f(.). How to measure the “lost of information?”. Well, remember how
you answer such a question in your simple linear regression? You use the coeffi-
cient of determination as a measure of how much the linear model captures the
real variation of the true model, or equivalently, one minus that coefficient as
how much information is lost when approximating the true model by a linear
model. The IT approach is more general as it addresses directly to the models
themselves, by considering a sort of distance between distributions. Note another
similarity with P-values! A distance between the true model and an approximate
one, measuring the loss of “information”, could be used to judge whether the
approximating model is reasonable.

As we will see shortly, this idea is much better than P-values, and serves as
the fundamentals for valid statistical inference (in the sense that it can provide
model probabilities for ranking alternatives, whereas P-values cannot).

Now, given densities f , g, there are many possible ways to define (real) dis-
tances between them (just as in functional analysis). We seek a kind of distance
which measures a loss of information.

But what is information? it is right here that we need a theory of information!
Intuitively, information is a decrease of uncertainty. Uncertainty involves

probabilities. Thus, any measure of information should be a function of proba-
bility (?). Clearly, an event A gives us less information when its probability P (A)
is high: how much information you learn for A=“it will be real hot in April in
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Chiang Mai next year”? Since P (A) 
 1, your information is zero (no surprise).
How about B =“it could be snowing”? Well, big surprise, lot of information:
P (B) 
 0, information is infinity! Thus, the information provided by the real-
ization of an event A is of the form I(A) = − log P (A), i.e., a non increasing
function of probability.

Based upon information theory, via Shannon’s entropy, Kullback and Liebler
(see Kullback, 1968) considered a “pseudo” distance (relative entropy, or diver-
gence) between two probability density f and g as

I(f |g) =
∫

f(x) log
f(x)
g(x)

dx = E[log
f(X)
g(X)

]

measuring the loss of information when using g to approximate f . For a good
explanation of this “loss of information”, see Benish [4].

The expectation is of course with respect to the distribution f of the random
variable X, so that sometimes we write I(f |g) = Ef [log f(X)

g(X) ] to be explicit. It
is a pseudo distance in the sense that I(f |g) ≥ 0 and I(f |g) = 0 if and only if
g(.) = f(.).

The purpose to consider such a distance is to compare different g(.) as possible
candidates to be used as approximations of f(.). Given, say, an i.i.d. sample
X1,X2, ...,Xn drawn from X (with true, unknown distribution f), we cannot
compute, or even estimate I(f |g), even if g(.) is (completely) known (specified).
Indeed,

I(f |g) =
∫

f(x) log f(x)dx −
∫

f(x) log g(x)dx

If g(.) is known, then since

−
∫

f(x) log g(x)dx = −E[log g(X)]

this term can be estimated consistently, for large n, via the strong law of
large numbers, by

− 1
n

n∑
i=1

log g(Xi)

But, the first term
∫

f(x) log f(x)dx is unknown. Fortunately, while it is
unknown, it does not involve the candidate g, so that it is the same for any
g. Thus, let

∫
f(x) log f(x)dx = C, the comparison of I(f |g) among various

different g, only involves the term −E[log g(X)] , namely

I(f |g) − C = −E[log g(X)]

With this meaning of I(f |g), clearly we seek

arg min
g∈G

[−E[log g(X)]]
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A problem arises when each g(.) is a statistical model, i.e., g(.) is only spec-
ified up to some unknown parameter (possibly vector) θ ∈ Θ: g(.|θ), so that we
are facing

min
g∈G

[−E[log g(X|θ)]]

which cannot be estimated anymore since θ is unklnown. We handle this
problem by replacing θ ∈ Θ by its MLE

θn(X1,X2, ...,Xn) = arg max
θ∈Θ

Lg(X1,X2, ...,Xn|θ)

For i.i.d. sample Lg(X1,X2, ...,Xn|θ) =
∏n

i=1 g(Xi|θ).
Thus, replacing −E[log g(X|θ)] for θ ∈ Θ by −E[log g(X|θn(X1,X2, ...,Xn))]

which is a random variable (since it depends on the values of the sample
(X1,X2, ...,Xn) = Y ). An estimate of it could be simply its mean. So, finally,
we are led to estimating

EY EX [log g(X|θn)]

from which, a reasonable selection criterion is

max
g∈G

EY EX [log g(X|θn)]

It turns out that, for large sample size n (see an appendix),
EY EX [log g(X|θn)] can be estimated by log Lg(θn|Y ) − k where k is the num-
ber of estimated parameters (dimension of Θ), resulting in the so-called Akaike
Information Criterion (AIC), for model g:

AIC(g) = −2 log Lg(θn|Y ) + 2k

Note that Lg(θn|Y ) is the value of the likelihood function of g evaluated at
the MLE estimator θn.

Thus, for n large, the selection problem (containg hypothesis testing as a
special case) is carried out simply by computing AIC(g) for all g ∈ G, and pick
the one with smallest AIC value.

Let AICmin be the smallest AIC value, corresponding to some model. Then,
let

Δg = AIC(g) − AICmin

and make a transformation, e.g., Δg → e− Δg
2 (as suggested by Akaike) to

obtain “model likelihood), we arrive at Akaike’s weights (of evidence supporting
models)

wg =
e− Δg

2∑
g∈G e− Δg

2

which are interpreted as evidence in favor of model g being the best approxi-
mating model in the chosen set of models G, viewing as “model probability” given
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the data, needed for explaining the rationale in the selection process (where P-
values are lacking), noting that

wh = argg∈G wg ⇔ AIC(h) = arg min
g∈G

AIC(g)

How about “small sample size?”. Remember how you consider small sample
sizes in your introductory statistical courses? Here, we are talking about small
size for AIC approximation to K-L statistic. As a “rule of thumb”, the sample
size n is considered as small, relative to the number of parameters k in the model
g, when n < 40 k. In that case, the AIC is “corrected” to be

AICc(g) = AIC(g) +
2k(k + 1)
n − k − 1

6 Plausibilities in Inferential Models

In discussing this “crisis” in (frequentist) statistical inference with many col-
leagues, I received “mixed signals”. Almost all agreed on the second “principle”
of ASA’s statement, namely “ P-values do not measure the probability that the
studied hypothesis is true”, but stopped short of saying anything more! Some
mentioned that ASA did not ban P-values. What does that means? Does that
mean that you still can publish research papers using P-values in statistical
journals (but not in psychology journals!)? I don’t think so, since the statistical
journals’ editors have to take into account of public reactions (everybody was
aware of the wrong doings/ not just the misuses of P-values from Sciences News),
unless they can clarify their actions, scientifically. Almost all did not “feel” that
NP testing is affected (and hence will “survive” this crisis) without explaning
why, although Gurevich and Vovk [14] proved that “Every test statistic is equiv-
alent to a unique (exact) p-function”. Remember also: An inference procedure
is valid only if it is based on a firm logical basis. The “future” will settle the
matter soon, I guess.

Meanwhile, you could ask “Rather than throwing P-values away, can we
find a way to save them so that they can contribute to statistical inference?”
I happened to read Martin and Liu [22] in which they proposed a way to save
P-values, in the framework of their theory of Inferential Models, Martin and Liu
[23]. Below are the essentials.

Let the null hypothesis Ho be identified with a subset Θo of the parameter
space Θ (in a statistical model X ∼ Fθ(.), θ ∈ Θ). For a test statistic Tn, the
P-value of Tn = t under Θo is extended to Pv(Θo|t) = supθ∈Θo

P (Tn ≥ t|θ).
While Pv(Θo|t) is not the probability that Θo is true when we observe t, it
could be equated to another concept of uncertainty, namely “plausibility”, to
be used as a new inference engine. But what is a plausibility measure (rather
than a probability measure)? It is the capacity functional of a random set (see
Nguyen, [27]). Specifically, if S is a random set with values in 2Θ, then its
capacity functional (or plausibility measure) PlS(.) : 2Θ → [0, 1] is defined as
PlS(A) = P (S ∩ A = ∅).
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The result of Martin and Liu [22] is this. Any Pv(.) on 2Θ can be written
as PlS(.) for some random set S on 2Θ. The construction of a suitable random
set S is carried out within the Inferential Model framework, Martin and Liu
[23]. Note that the computation of plausibilities does not require one to assume
that the null hypothesis is true, as opposed to P-values, so that it does make
sense to take PlS(Θo|t) as the plausibility that Θo is true. The intention is to
transfer P-values to plausibilities (not to probabilities) and use plausibilities to
make inferences. It remains to take a closer look at this proposal, especially with
respect to the objections similar to those of P-values.
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