
Chapter 9
Structural Transformation-Based
Obfuscation

Hai Zhou

9.1 Introduction

A variety of techniques have been proposed for fighting against hardware piracy.
There are two main classes of approaches. One approach is hardware metering [15],
which enables design houses to have post-fabrication control on the produced ICs. By
metering, the designer can count the number of fabricated ICs, monitor their usage,
and even remotely lock/unlock the ICs. Hardware watermarking [21], as another
popular approach to IP protection, is inspired by the traditional digital watermark-
ing technique. It inserts certain identity information into behavioral specification
or sequential structure of the design. Watermarking is more passive compared with
metering. But since watermarking has a unified signature for all ICs and does not
involve any designer–manufacturer interaction, it will usually be less expensive.

Both hardware metering and watermarking techniques are intimately related to
program/circuit obfuscation. Informally speaking, an obfuscator is a probabilistic
compiler O that transforms a source program/circuit F into a new program/circuit
O(F) that has the same functionality as F but less intelligible in some sense. The
technique of obfuscation is often used to protect the secrets in programs by making
them harder to comprehend. However, circuit (hardware) obfuscation is radically
different from program (software) obfuscation. A program is usually obfuscated
to hide its function, but the functionality of a commercial IC must be known to
different parties other than the designer. The value of a hardware IP is determined
by their efficiency of implementation in terms of performance, power consumption,
reliability, etc. Thus, instead of hiding the information within the original circuit,
circuit obfuscation usually tries to hide extra secret information (e.g., watermarking)
that is intentionally added to the circuit in order to prevent illegal use of the IC.
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In this chapter, we discuss two popular notions of obfuscation: black-box obfus-
cation [3] and best-possible obfuscation [9]. Black-box obfuscation is stronger but
has been proved impossible on general families containing point functions [3], while
the best-possible obfuscation is weaker and possible to obtain [9]. Defined as disclos-
ing only functionality, the best-possible obfuscation is more realistic in the context
of hardware IP protection. Based on its definition, we show that any best-possible
obfuscation of a sequential circuit can be accomplished by structural transformation
composed of four types of operations: retiming, resynthesis, sweep, and conditional
stuttering. We then develop a Key-Locked OBfuscation (KLOB) scheme for hard-
ware IP protection. In KLOB, a circuit will first be inserted with a stuttering logic
with conditions both on key checking and on the state of the circuit. The conditionally
stuttered circuit will then be further obfuscated by a sequence of retiming, resynthe-
sis, and sweep operations. In the presence of the correct key value, the obfuscated
circuit will run in the same speed as the original circuit; without the key, it will run
in much slower speed. An simple version of the KLOB has been implemented to
measure its overhead, and the effectiveness of the approach is thoroughly discussed.

9.2 Related Approaches

Program/circuit obfuscation is a fundamental problem in computer security. Barak
et al. [3] initiated the theoretical study of obfuscation and demonstrated that generic
“virtual black-box” program obfuscator does not exist. Later Lynn et al. [20] proved
the first positive result about obfuscation that the family of point and multi-point
functions can be perfectly obfuscated under random oracle model. Goldwasser and
Rothblum [9] argued that the black-box model be too strong for many real appli-
cations. They proposed a new notion of “best-possible” obfuscation under relaxed
requirements and studied its properties. Yet there is still lack of common agreement
on the definition of obfuscation.

The concept of hardware metering is first introduced by Koushanfar and Qu in
2001 [15]. The idea was to assign a unique signature to the IC’s functionality by
making a small part of the design programmable. There followed some works that
exploitmanufacturing variability to generate unique random ID for each IC to achieve
metering [16, 18, 27, 28]. These methods are all passive. Alkabani and Koushanfar
[1, 2, 12] proposed the first active hardware metering scheme. The method utilized
physically unclonable function (PUF) [28] to generate the unique initial FF values
(power-up state) for each IC. The power-up state will have very high probability to
be in the non-functional part of an augmented FSM structure; thus, the IC will be
locked. Only the designers who have knowledge about the augmented FSM structure
would be able to send the key (transitions to legitimate reset state) to unlock the IC.
According to a comprehensive survey about piracy avoidance [11], the methods
based on embedding locks in the behavioral description of the design is also called
internal active IC metering. In contrast, external active IC metering [10, 25, 26]
usually embeds locks in the physical level of the design, which are further controlled
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by external cryptography function. The latter set of methods tends to have larger
power and area overhead due to the complexity of cryptographic modules interfaced
with the locks.

Oliveira first proposed to hide a secret watermark in a sequential circuit [21, 22].
The watermarking was performed by modifying the State Transition Graph (STG)
to go through a chosen path of state transitions with certain set of inputs (secret
keys). The insertion of watermark will not have any effect on the IC’s functionality.
The proof of authorship is ensured by the fact that the displayed input-transition
behavior would be extremely rare in non-watermarked circuit. Later Koushanfar and
Alkabani [14] proposed to add multiple watermarks to further enhance security, and
they showed that hidingmultiple watermarks in the STG is an instance of obfuscating
a multi-point function with a general output. Yuan and Qu proposed the idea of hid-
ing information in the unused transitions of FSM [29]. They developed a SAT-based
algorithm to find the maximal set of redundant transitions for a given minimized
FSM and took advantage of this redundancy to hide the information in the FSM
without changing the given minimized FSM. Hardware watermarking looks similar
as passive hardware metering, but they have some critical differences. The water-
marking signatures are uniform in all ICs of the same product, while metering will
assign a specific signature for each IC. For this reason, watermarking cannot track
the number of fabricated copies from one mask.

9.3 Structural Transformation for Best-Possible
Obfuscation

9.3.1 Best-Possible Obfuscation

The definition of obfuscation had been intuitive but not vigorous before its theoretical
study was initiated by Barak et al. [3]. Barak et al. defined obfuscation in very strong
requests that 1) the obfuscated circuit computes the same function as the original
circuit with at most a polynomial-time slow-down and 2) the obfuscated circuit
should leak no more information than its “black-box” (input–output invocation)
functionality. Formally, “black-box” obfuscation requires that anything that can be
efficiently learned from the obfuscated circuit can also be learned efficiently from
input–output access to the circuit. Barak et al. showed that the general “black-box”
obfuscator does not exist. The proof comes from the intuition that even an obfuscated
program provides a complete function description, while a “black-box” oracle access
may not be able to help to learn the complete function. This is especially true for
point functions defined as follows:

Cα,β(x) =
{

β if x = α

0 otherwise.
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More specifically, we can define another function Dα,β whose input is a function C :

Dα,β(C) =
{
1 if C(α) = β

0 otherwise.

Having the obfuscations of the two functions, Cα,β and Dα,β , the adversary will
apply the second function on the first one. The result is always one. However, if we
only have “black-box” access to these functions, the probability for any simulator to
get one is negligibly small. Therefore, there is no “black-box” obfuscation for any
family that includes point functions.

The results of Barak et al. indicate that the “black-box” requirement in the def-
inition may be too strong. In fact, it is indeed too strong in the context of circuit
obfuscation for IP protection. When an IP block is provided, its functionality must
be known and agreed up on by all parties. If it is a soft block, an obfuscated netlist is
also visible to the parties. Thus, an IP block cannot be treated simply as a black-box.
Following the study by Barak et al., Goldwasser and Rothblum [9] proposed a new
definition of the best-possible obfuscation with a relaxed requirement in place of the
“black-box” requirement. Intuitively, a best-possible obfuscation only leaks as much
information as any circuit of the same function. In other words, it only leaks the
functionality of the original circuit. While this relaxed notion of obfuscation gives
no absolute guarantee about what information is hidden in the obfuscated circuit, it
does guarantee that the obfuscation is literally the best-possible if the functionality
is known.

Goldwasser and Rothblum also proved that there exists a best-possible obfusca-
tion for a family of circuits that does not have “black-box” obfuscation. It shows
that the definition of the best-possible obfuscation is strictly weaker than that of the
“black-box” obfuscation. The family is the Polynomial-sized Ordered Binary Deci-
sion Diagrams (POBDD) [6]. Bryant [6] has shown that each OBDD has a canonical
representation which can be efficiently computed. The best-possible obfuscation of
any POBDD P is its canonical representation, which can be computed efficiently
from any POBDD P ′ of the same function as P . Now, consider the point functions
Cα,1(x) encoded in POBDD. As shown by Barak et al. [3], there is no “black-box”
obfuscation for them.

9.3.2 Functional Equivalence of Finite State Machines

Starting from this section, we are going to show that the best-possible obfuscation
can be computed by a sequence of structural transformations on the sequential cir-
cuit. Here, structural transformation means operations only on circuit netlist, not on
state transition graph. Based on the definition, any obfuscated circuit must have the
equivalent function as the original circuit. In this section, we will formally define
functional equivalence between two circuits/FSMs.
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Finite State Machine (FSM): FSM specifies how the system changes its states and
produces outputs responding to inputs.

Definition 1 A FSM is quintuple (Q, I, O, λ, δ) where Q is a finite set referred
to as the states, I and O are finite sets referred to as the set of inputs and outputs
respectively, δ : Q × I → Q is the next-state function and λ : Q × I → O is the
output function.

Functional Equivalence: If we view a circuit as a black-box system, then its visible
behavior can be described as its possible sequences of inputs and outputs. A circuit
may exhibit an externally visible behavior like a sequence

〈〈E0 = (I0, O0), E1 = (I1, O1), E2 = (I2, O2), . . .〉〉

Note that in our specification every step in the sequence corresponds to a clock cycle
in the sequential circuit. Traditionally, the equivalence of two FSMs [30] requires that
their visible behavior should be precisely the same in every single clock cycle. In this
chapter, we will define this strict form of equivalence as cycle-accurate equivalence
to avoid ambiguity.

Definition 2 Two FSMs C and C ′ are cycle-accurate-equivalent if any sequence of
external behavior 〈〈E0, E1, E2, . . .〉〉 that is allowed by C will be also allowed by
C ′.

Nevertheless, the relation of two FSMs computing the same function may not be
restricted to cycle-accurate equivalence. If there exists internal states for the circuit,
we can also have the complete behavior

〈〈(E0, S0), (E1, S1), (E2, S2), . . .〉〉

where S is the internal state (register values). In practice, sometimes only the internal
state changes for example

〈〈(E0, S0), (E1, S1), (E1, S′
1), (E1, S

′′
1), (E2, S2), . . .〉〉

Since the internal states are invisible to the users, the sequence of external behav-
ior 〈〈E0, E1, E1, E1, E2, . . .〉〉 and 〈〈E0, E1, E2, . . .〉〉 compute the same function.
Accordingly, we define the equivalence of two behavior sequences and derive the
definition for equivalence of circuit behavior.

Definition 3 Two sequence of external behavior 〈〈E0, E1, E2, . . .〉〉 and
〈〈E∗

0 , E∗
1 , E∗

2 , . . .〉〉 are stuttering-equivalent if one can be obtained from the other
by repeating states or deleting repeated states (by adding or removing finite amount
of stuttering).

Definition 4 Two FSMs C and C ′ are functional-equivalent if for any sequence of
external behavior 〈〈E0, E1, E2, . . .〉〉 that is allowed by C , there exists a stuttering-
equivalent sequence of external behavior 〈〈E∗

0 , E∗
1 , E∗

2 , . . .〉〉 that is allowed by C ′.
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9.3.3 Structural Transformation

Previous approaches to circuit obfuscation usually operate on behavioral level of the
design and require substantial modification on the STG of the design. The cost is
potentially high since the STG will usually have exponential size in terms of the
netlist. In this chapter, we will focus on operating on structural level of the design.
Our approach has lower cost since we do not need to generate any STG. All the oper-
ations are done on the circuit netlist. We introduce four structural operations applied
on sequential circuits: retiming, resynthesis, sweep, and conditional stuttering. An
example of applying the first three of them to transform one circuit into another is
shown in Fig. 9.1. The example of conditional stuttering will be shown later.

Retiming [17, 19] moves the registers in a sequential circuits while preserving
its logic functionality. Two elementary operations can be applied: deleting a register
from each input of a combinational node while adding a register to every output,
or conversely adding a register to each input of a combinational node and deleting
a register from every output. As can be seen from Fig. 9.1, retiming will change
the state transition function and the state encoding while keeping the input/output
functionality.

Resynthesis restructures the netlist within the register boundaries without chang-
ing its logic functionality. As seen from Fig. 9.1, resynthesis will not change the state
transition, but it can create new signals in the circuit. These new signals can become
new states if we move registers on them by retiming. The first resynthesis in Fig. 9.1
created two new signals for the subsequent retiming to use. Retiming becomes more
powerful when combined with resynthesis due to new signals generated. Resynthesis
also becomesmore powerfulwhen combinedwith retiming due to newcombinational
blocks generated by register moves.

Sweep adds or removes registers not having effect on the output. In Fig. 9.1, the
sweep operation removes one register with the XOR gate since they do not affect
the output. The sweep operation is necessary to change cycle lengths in the state
transition graph. In Fig. 9.1 example, it reduces the length of the cycle in STG by
half. Since synthesis normally simplifies the circuit structure, sweep is usually used
as an operation to remove redundant registers and logic.

Conditional stuttering adds control logic to the circuit to stutter the registers, i.e.,
copy the register values in the current cycle to the next cycle, if a given logic condition
is true. Stuttering is necessary if we want to transform a circuit into another that is
not cycle-accurate-equivalent. It is easy to see that an obfuscated circuit can hide
more information if it is not required to be cycle-accurate-equivalent to the original
one. The simplest implementation is to add a multiplexer to the input of each register
to select between the current register value and the next register value.
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Fig. 9.1 Structural operations: retiming, resynthesis, and sweep

9.3.4 GCD Example for Conditional Stuttering

To better illustrate structural transformation for functional equivalence, we use two
small circuits that compute the greatest common divisor (GCD) of two natural num-
bers as an example. They are different implementations of Euclid’s algorithm. The
two original circuits (dark lines) as shown in Fig. 9.2 have the same functionality
but different netlists due to different resource allocation. Circuit GCD_A uses two
subtracters, while GCD_B uses only one subtracter. Each circuit has registers for
two integers. The basic iteration in Euclid’s algorithm is to reduce the larger number
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Fig. 9.2 The GCD example for conditional stuttering

to the difference of two numbers until they become the same. However, with only
one subtracter, GCD_B may conduct a subtraction in wrong order, in which case, it
needs to swap the two numbers. Because of it, GCD_B is slower than GCD_A. The
circuits will output one number when they are the same. For simplicity, the outputs
are not shown in the circuits.

Our first observation is thatGCD_Bwill usemore cycles thanGCD_A for the same
computation because it needs extra cycles to swap the two numbers if the subtraction
result is negative. Thus GCD_A and GCD_B are functional-equivalent but not cycle-
accurate-equivalent. In order tomake them cycle-accurate-equivalent,GCD_A needs
to be stuttering for one cycle when GCD_B is swapping the two numbers. Therefore,
in order to know when GCD_B swaps, we need to keep track whether the number
order in GCD_A is different from that in GCD_B. We introduce a register c for that
purpose. Its value is 0 at the beginning and needs to be flipped when GCD_B swaps.
The conditional stuttering in GCD_A is shown in gray lines in Fig. 9.2. With the
conditional stuttering, the two circuits are cycle-accurate-equivalent. To make the
mapping between the states of the two circuits explicit, we also introduce a history
variable s in GCD_B by (inverse) sweep (shown in gray lines). It starts at 0 and flips
when the number swaps.With these transformations, the mapping between the states
of the two circuits is given as follows.
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F :

⎧⎪⎨
⎪⎩

a = (c == 1)?y : x

b = (c == 1)?x : y

s = c

⇔ F−1 :

⎧⎪⎨
⎪⎩

x = (s == 1)?b : a

y = (s == 1)?a : b

c = s

As an example, consider giving the input of 4 and 6 to the two GCD circuits.
It means that x = a = 4 and y = b = 6 at the very beginning. The circuit GCD_A
will generate a sequence of states (x, y) as (4, 6), (4, 2), (2, 2). The circuit GCD_B
will generate a sequence of states (a, b) as (4, 6), (6, 4), (2, 4), (4, 2), (2, 2). As
we can see that the two circuits are functional-equivalent since their final result is
the same. However, they are not cycle-accurate-equivalent, since they take different
numbers of cycles to reach the final states. But with the conditional stuttering in
GCD_A and the history variable inGCD_B, the sequence of states (x, y, c) inGCD_A
is (4, 6, 0), (4, 6, 1), (4, 2, 1), (4, 2, 0), (2, 2, 0), while the sequence of (a, b, s) in
GCD_B is (4, 6, 0), (6, 4, 1), (2, 4, 1), (4, 2, 0), (2, 2, 0). It is easy to check that
the corresponding states satisfy the mapping functions. The two cycle-accurate-
equivalent circuits can be transformed from each other by a sequence of retiming
and resynthesis. Therefore, we can transform GCD_A to GCD_B by a sequence of
conditional stuttering, retiming, resynthesis, and sweep.

9.3.5 Structural Transformation Sufficient for Best-Possible
Obfuscation

Now we will show that the best-possible obfuscation of a sequential circuit can be
done by a sequence of structural transformations. As already demonstrated on a
simple example in Fig. 9.1, we can transform any circuit into any other one that is
cycle-accurate-equivalent to the original one. This is stated as the following lemma
given by [30].

Lemma 1 If two circuits are cycle-accurate-equivalent, then one of them can be
transformed to the other by a sequence of sweep (inverse), resynthesis, retiming,
resynthesis, and sweep, given that the second resynthesis operation is allowed to use
one-cycle reachability.

Similar to Fig. 9.2, it can be shown that conditional stuttering can transform a
circuit into a circuit that is cycle-accurate-equivalent to any circuit that is functional-
equivalent to the original one. Combined with the Lemma 1,

Lemma 2 If two circuits C1 and C2 are functional-equivalent, then C1 can be trans-
formed into a new circuit C ′

1, and C2 into a new circuit C ′
2, by conditional stuttering,

such that C ′
1 and C ′

2 are cycle-accurate-equivalent.

With Lemmas 1 and 2, we can show that any functional-equivalent transformation
can be done if conditional stuttering is used in addition to retiming, resynthesis, and
sweep.
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Theorem 1 Retiming, resynthesis, sweep, and conditional stuttering are complete
for structural transformation between any functional-equivalent circuits.

The following corollary shows the existence of structural transformations for any
best-possible obfuscation of a sequential circuit. It is based on the above theorem that
structural transformations can derive any functional-equivalent circuit from a given
circuit, and the definition that the best-possible obfuscation reveals at most infor-
mation as any other equivalent program. Given the current state of art in behavioral
synthesis and logic synthesis, we can safely state that giving a program (no matter
what computational model it is on) is the same as giving an equivalent sequential
circuit.

Corollary 1 Any best-possible obfuscation of a sequential circuit can be accom-
plished by a sequence of retiming, resynthesis, sweep, and conditional stuttering.

9.4 Key-Locked OBfuscation (KLOB)

The previous section shows the existence of structural transformation-based best-
possible obfuscations. However, it does not provide a specific procedure, not even
a guide, to do transformations for any best-possible obfuscation. The reason is that,
even though Goldwasser and Rothblum [9] gave the definition of the best-possible
obfuscation–one equivalent circuit, they did not show which one it is or not even
which subset it belongs to. In this section, wewill address this problem by developing
a scheme called Key-Locked OBfuscation (KLOB).

9.4.1 KLOB Framework

We first argue that Key-Locked OBfuscation (KLOB) is the correct scheme for
hardware IP protection. Based on the definition [9], the best-possible obfuscation
of a circuit is one of equivalent circuits. Intuitively, in order to hide the original
circuit, the obfuscation should be most different from the original one. But please
note that it should not be the most different one if that helps to identify the original.
Such a request helps to prevent the original to be understood or reverse-engineered.
However, for hardware IP protection, thatmay not be sufficient: an adversarymay not
want to understand or modify the original, but to produce and use the circuit without
permission. Therefore, an obfuscation that is very different from the original but with
similar performance (speed, power consumption, etc.) is not very useful. However,
if the obfuscation performs much worse than the original, then the legal users will
suffer and complain. Therefore, any obfuscation for hardware IP protection should
perform differently between an adversary and a legal user. And it is necessary to
employ a secret key in the obfuscated circuit to differentiate the two modes, giving
the Key-Locked OBfuscation (KLOB) scheme.
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Behaviorally, the KLOB scheme works as follows. It uses a point function at the
key value to select between two functional-equivalent circuits: the original one and
its best-possible obfuscation with much worse performance. With the key, a legal
user is served by the original circuit; without the key, an adversary is almost surely
getting the much worse circuit. Of course, it is necessary to use obfuscation to mixed
up the three parts of the circuit: the two versions of the circuit and the selection by
the point function. Otherwise, an adversary may be able to extract the original circuit
by analyzing the circuit.

Instead of starting with two equivalent circuits and then mixing them up, we will
start with the original circuit and employ conditional stuttering to transform it. As
shown in the previous section, stuttering based on circuit condition can mimic the
behavior of any other equivalent circuit. If we only do this followed by a sequence
of retiming, resynthesis, and sweep, what we can get is just a slower circuit of the
best-possible obfuscation. In addition, KLOB does the stuttering also based on key
checking. In other words, stuttering is happening inKLOB if and only if the key input
is wrong and the circuit stuttering condition is true. Intuitively, the former encodes
the selection by a point function at the key, while the latter encodes a slower circuit
equivalent to the original one. The advantage of doing this is to make sure that the
two circuits of the same function are tightly entangled together. After this conditional
stuttering, a sequence of retiming, resynthesis, and sweep will be employed to make
sure the three parts are inseparable.

The KLOB scheme after the conditional stuttering step is shown in Fig. 9.3. The
components in dark color Ro and Co are the registers and combinational logic of
the original circuit, respectively. The components in light color are the conditional
stuttering logic, which includes the combinational circuit Cs to generate stuttering
condition s based on the original state Ro and the extra registers Rs, and the key
checking circuit Ck to generate the mismatching signal k. Only under the condition
s and k the original circuit is stuttering. Please note that Ck in a straight-forward
design may not have the dashed connections in Fig. 9.3 and is only a combinational
implementation of a point function that will only generate zero at a given key point.

Fig. 9.3 Key-Locked
OBfuscation (KLOB)
scheme after conditional
stuttering

Ro

Co

1        0 AND

Cs

Ck

Rs

Rk

PI PO

Key

s

k
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Fig. 9.4 Behavior of the key
checking circuit

Such Ck is hard to be obfuscated by retiming and resynthesis, since there is only one
bit and one-directional connection from Ck to the rest the whole circuit. In the next
subsection, we will enhance the obfuscation of Ck by introducing extra registers Rk
and the connection from Ro to Ck. With these modifications, it is easy to see that
all the registers in Ro, Rs, and Rk can be retimed through or into Co, Cs, and Ck.
It will greatly increase the security of the obfuscation by the followed retiming and
resynthesis operations.

9.4.2 Stuttering Control Logic

This section will elaborate on the design of the stuttering control logic, including
both Cs with Rs and Ck with Rk. As already mentioned, it is better to introduce
extra registers Rk to Ck and to connect Ro to Ck to facilitate the obfuscation by
later retiming and resynthesis operations. The idea is to make Rk to stay at the same
state if and only if the correct key value is presented at the correct cycle, otherwise it
will be trapped in the mismatch states (black hole states), as shown in Fig. 9.4. The
transitions among the black hole states are dependent on Ro, making Rk depending
on both Ro and Rk.

A simple design for stuttering signal s generation may make Cs with Rs as
a counter such that Rs ′ = (Rs + 1)%2w and set s = (Rs%t == 0)?0 : 1, where
1 − 1/t is the frequency of stuttering. In other words, the slow circuit is approxi-
mately t times slower than the original circuit. However, such a design will make Cs
independent of Ro, which will hurt the obfuscation of the whole circuit. From the
structural point of view, it may limit the capability to retime registers on Cs; from
the behavioral point of view, a very regular stuttering on the original circuit may only
transform it into a very specific equivalent circuit, from which the original circuit
may be easily derived.

As can be seen from the GCD example in Fig. 9.2, the right stuttering condition
should be decided by the target circuit. The ideal approach is to follow the procedure
shown in Fig. 9.2, that is, first come up with an equivalent circuit with much worse
performance, then figure out a mapping between the states of the two circuits, and
finally design the stuttering control logic to make the mapping one-to-one. An easier
approach could first find an approximate formular of the reachable states in the origi-
nal circuit (either by simulation or static analysis), then reformat it into a disjunction
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Fig. 9.5 Re-encoding of sequential circuits by retiming and resynthesis

of a few simple expressions, and finally give different numbers of stuttering cycles
to different expressions.

Since the insertion of stuttering control logic results in extra delay, area, and
power consumptions, its design has to consider not only obfuscation effect, but also
the overhead. A good design must have a good trade-off between these effects.

9.4.3 Obfuscation by Retiming and Resynthesis

As shown in Sect. 9.3.5, conditional stuttering by itself is not sufficient for obfusca-
tion. This can be easily seen on Fig. 9.3: by analyzing the circuit, an adversary can
easily remove the stuttering control logic and get the original circuit! The condition-
ally stuttered circuit (shown in Fig. 9.3) has to be obfuscated by other structural trans-
formations: retiming, resynthesis, and sweep. However, the transformation space by
these operations is so huge, and it includes all cycle-accurate-equivalent circuits. We
propose some basic ideas in this section. It should be note that any extra sequence of
retiming and resynthesis operations can be applied on top of each other, and random
operations of retiming and resynthesis can enhance the obfuscation.

It can be seen that one vulnerability of the conditional stuttered circuit in Fig. 9.3 is
the relative independence of the three register groups Ro, Rs, and Rk. By carefully
re-encoding the states, we can increase the dependency among them, thus make
it harder to extract useful information from the netlist.1 It is well known that any
re-encoding of a sequential circuit can be done by a sequence of retiming and resyn-
thesis, as shown in Fig. 9.5. The identity function at the register outputs is resynthe-
sized to F ∗ F−1, where F is the one-to-one mapping from states of C to the target
states of circuit C ′. Then retiming moves the registers forward over F . The last step

1See Sect. 9.5 for detailed discussion.
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resynthesizes F−1 ∗ C ∗ F into C ′. Note that retiming and resynthesis may also
help to reduce the overhead caused by adding stuttering control logic. Different re-
encoding functions may be evaluated and the one resulting in the least overhead will
be chosen as the final re-encoding function.

A linear transformation can be used as the re-encoding function. An elementary
linear transformation transforms the set of variables X = {x1, . . . , xi , . . . , x j , . . . ,

xn} into the set of variables X = {x1, . . . , xi , . . . , xi ⊕ x j , . . . , xn}. An arbitrary lin-
ear transformation can be obtained by a sequence of elementary linear transforma-
tions, each one of them implementable by two xor gates, one gate in the transcoder
before the registers (F) and one gate in the transcoder after the registers (F−1).

9.4.4 Implementation Overhead

In this section, we report the overhead in terms of area, power, and timing of the syn-
thesized circuits from the ISCAS89 benchmark suite. We first generate the original
BLIF netlist of the benchmark circuits by ABC synthesis tool [5], which will be used
as the baseline for obfuscated circuits. Then, we will generate the BLIF netlist of the
stuttering control logic. Finally, the original circuit and stuttering control logic will
be merged and obfuscated by resynthesis and retiming. All benchmark circuits are
mapped to a standard cell library. In the experiments, we use 8 bits for the stuttering
indicator and 24 bits for the key indicator.

Table9.1 demonstrates comprehensive performance overhead evaluations on the
ISCAS benchmark suite. The first column denotes the benchmark circuit name. The
next three columns (Columns 2–4) show the original design statistics: the number
of primary inputs, the number of primary outputs, and the number of FFs. Columns
5–7 demonstrate the design maximum delay in the following order: the original
synthesized delay, the added delay post-obfuscation, and the percentage of increase.
The original designs power post-synthesis, the added power post-obfuscation, and
the ratio between the two are reported in Columns 8–10. The post-synthesis area of
the original design, the added area post-obfuscation, and the ratio between are shown
in the last three columns, respectively.

We first analyze the impact of obfuscation on the circuit timing. From Fig. 9.3, we
can see that the critical path may be affected by newly added control signal, and the
ratio of the added critical path delay overhead compared to the original delay seems
to be independent of the circuit size. However, this overhead can be alleviated by
the followed retiming and resynthesis optimization. Therefore, the actual overhead
in the critical path delay introduced by our obfuscation is rather low, especially for
large designs that have much flexibility for retiming and resynthesis to leverage. For
the tested cases with small or modest design size, on average the delay overhead is
3.35%.
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The area and power overhead is closely related in our approach. In addition, they
are not independent of the design size in the worst case since the control signal for all
original FFs are changed. The overhead for area and power in our testcases are 31.2
and 34.4% on average. It can be seen that the overhead of our obfuscation scheme
decreases as the size of the original design increases. Since our testcases are typically
much smaller than current industrial designs, it can be estimate that the overhead for
area and power will not exceed 10% for realistic designs.

9.5 Attack Resiliency

In this section, we enumerate possible attacks on KLOB scheme and discuss how
the proposed method is secured against them.

• Brute force attack: The adversary attempts at guessing the key until the throughput
of tested IC is obviously better. It is well known that such an approach could be
successful with very tiny probability.

• Stuttering control logic identification: Assume that the adversary knows that the
circuit is obfuscated by KLOB, thus will try to identify the stuttering control logic.
Running without the key, the circuit in Fig. 9.3 must have many stuttering steps
in Ro, but not in Rs or Rk. This may be explored by the adversary to identify
Ro. However, in KLOB, re-encoding and other retiming and resynthesis steps
has been done on this circuit. Suppose A is a stuttering register in Ro and B
is a changing register in Rs, a linear transformation A′ = A ⊕ B will make A′
changing, defeating the suggested attack.

It is already mentioned in Sect. 9.4.2 that it is better to make Rs and Rk dependent
on Ro. Otherwise, since every register in Ro is dependent on Rs and Rk, a register
dependence analysis may separate Ro from the others. Here again, even we did a bad
job such that the dependence of Rs and Rk on Ro is weak, a linear transformation
B ′ = A ⊕ B will make register B ′ dependent on register A. Therefore, a general
linear transformation on all the registers in Ro, Rs, and Rk will also prevent register
dependence analysis.

• Inverse structural transformation: The adversary may attempt to inversely transform
the obfuscated IC into the original IC via structural transformation. However, without
any knowledge on the obfuscation transformations, the adversary can only randomly
guess the reverse re-encoding and transformations and test correctness by stuttering
control logic identification. In reality, this attack is too expensive and time consuming
for the purpose of piracy.

• Key-based de-obfuscation: Here, we consider an extreme case where the key has
been somehow leaked and want to check how easy the adversary can get the original
circuit. If no re-encoding or other retiming and resynthesis is done on the circuit in
Fig. 9.3, applying the key can identify Rk since they are not changing. This can further
help to identify k and s, thus to get the original circuit. However, with a thorough
linear transformation on Ro, Rs, and Rk together, all the registers are mixed up, and
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it is impossible to identify Ck. Therefore, we can safely say that, even when the key
is leaked, its damage to a KLOB circuit is limited since the adversary can only use
the original circuit but cannot get the design.

9.6 Conclusion

This chapter presents a circuit obfuscation technique called KLOB (Key-Locked
OBfuscation) based on structural transformations. It first shows that any best-possible
obfuscation of a sequential circuit can be accomplished by a sequence of retiming,
resynthesis, sweep, and conditional stuttering. Then the KLOB is presented for hard-
ware IP protection. Starting with an original circuit, KLOB first adds stuttering with
conditions both on key checking and on the original circuit, and then obfuscates the
conditionally stuttered circuit by a sequence of retiming, resynthesis, and sweep.
With the correct key, the circuit will run in the original speed; otherwise, it will
run much slower. The efficiency of the method was demonstrated by evaluations on
ISCAS89 benchmarks. We also discussed the possible attacks and how KLOB is
secure against them.

As we already mentioned, the benefit of structural transformations is to avoid the
expensive STG manipulation. Therefore, the structural transformation-based obfus-
cation ismore efficient than STG-based obfuscations. Logic obfuscation (also known
as logic encryption) is a technique that uses a key and extra logic to modify the com-
binational design of a given circuit [4, 7, 8, 13, 23–25]. Since it only modifies the
combinational logic, logic obfuscation can be viewed as a subset of the structural
transformation-based obfuscation, where the allowed operations is only resynthesis.

For hardware IP protection, circuit performance is the key treasure to be protected.
If the obfuscated circuit performs similarly as the original, an adversarywill be happy
to take it. If it performsmuchworse, then no user wants it. This means that the KLOB
scheme is the right choice for circuit obfuscation:with the key, legal users get a circuit
with the same performance as the original one; without the key, an adversary gets the
best-possible obfuscation—an equivalent circuit with much worse performance. The
theory in Sect. 9.3.5 ensures that, even when the key is known, an adversary will still
not be able to get the original circuit. Our future work will study more sequences of
structural operations to better obfuscate the conditionally stuttered circuit, especially
the key checking circuit. We will leverage existing obfuscation techniques for point
functions since key checking is essentially a point function.
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