
Chapter 5
Permutation-Based Obfuscation

Zimu Guo, Mark M. Tehranipoor and Domenic Forte

5.1 Introduction

As discussed in previous chapters, hardware obfuscation techniques can be
categorized into chip level [1] and board level [2] according to the platform where
these techniques are implemented. Chip-level obfuscation is performed on inte-
grated circuits (ICs), while board-level obfuscation is performed on printed circuit
boards (PCBs). The chip-level obfuscation techniques can be further classified into
register-transfer (RT) level and gate level as per the design abstraction level. Several
approaches can be exploited to accomplish design obfuscation. Based on the mech-
anism of these approaches, they can be classified as finite-state machine (FSM)
obfuscation, logic encryption, and logic permutation. Figure5.1 presents the rela-
tionship between these approaches and the design levels where they are applied. No
single obfuscation approach can fit all the design levels. Additionally, some of them
can be easily broken when implemented on a particular design level.

An obfuscation-protected system often consists of two operation modes: func-
tional mode and obfuscated mode [3]. These two modes are controlled by one or
more keys/configurations. The functional mode indicates that the system performs
the designed functionalities, while obfuscated mode implies that the system presents
no meaningful behavior.

Z. Guo (B) · M.M. Tehranipoor · D. Forte
University of Florida, Gainesville, FL, USA
e-mail: zimuguo@ufl.edu

M.M. Tehranipoor
e-mail: tehranipoor@ece.ufl.edu

D. Forte
e-mail: dforte@ece.ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_5

103

104 Z. Guo et al.

Fig. 5.1 Hardware
obfuscation classification

During the rest of this section, a brief introduction about each of the obfuscation
approaches is provided. Section5.1.1 talks about chip-level obfuscation techniques,
and Sect. 5.1.2 deals with board-level obfuscation. The rest of the chapter focuses on
chip and board-level logic permutation.

5.1.1 Chip Level

For chip-level application, the following three obfuscation approaches can be applied.

• FSM obfuscation
• Logic encryption
• Logic permutation

As stated in Fig. 5.1, theFSM obfuscation can only be implemented bymodifying
theRTLdesign [4]. A general FSMobfuscation approach involves adding extra states
into the original state transition graph (STG) of the design. These inserted states pre-
vent the system fromentering the functionalmodewithout a correct key/configuration
[4]. This key (which can either be fixed or generated based on the chip’s ID) trans-
forms the chip from the obfuscated mode to the functional mode. Some designs also
contain another FSM called a black-hole FSM which permanently locks the chip if
the applied key is incorrect [5]. The aforementioned FSM-based approach cannot
be applied on gate-level nor board-level designs since neither of them provides the
states which can be modified.

The logic encryption approach inserts locking blocks into the gate-level design
[6]. These blocks can be as simple as a set of XOR gates which mask the internal
signals with the keys or configuration bits. Since these encrypting units block the
internal data/signal paths of the original design, they are also named as logic barriers
[6]. These logic barriers can only be inserted in gate-level and board-level designs
since there is no data/signal path abstraction at RTL level. However, logic encryption
is much easier to be broken on board-level designs. A short answer for this is that
it is much simpler to remove the encrypting blocks from board-level designs than
chip-level ones. More detailed explanations will be given in Sect. 5.1.2.

5 Permutation-Based Obfuscation 105

The logic permutation approach permutes the data/signal paths instead of
encrypting them. This method can be utilized to accomplish the obfuscation goal
at both the gate level [7] and the board level [2]. By adding a permutation block,
the correct orders of internal connections are concealed. Similar to other obfusca-
tion approaches, a key/configuration is assigned to drive the system to the functional
mode.

5.1.2 Board Level

Significantly, different constraints can be observed between chip and board-level
obfuscation. These differences include the design modification opportunities, attack
challenges, and design dimension differences. Limited by these differences, the num-
ber of obfuscation techniques which can be applied on PCBs is less than on ICs. The
design modification feasibility indicates what levels of design can be manipulated to
achieve obfuscation. For instance, the RTL and gate-level design can be obfuscated
for a chip. For a board-level design, no RTL definition can be found. However, the
chip-level intergate connections can be extended to board-level interchip connec-
tions. As a result, the gate-level obfuscation approaches, such as logic encryption
and logic permutation, can also be applied at the board level. However, these obfus-
cation methods may be easily broken when they are applied directly on the board
level under low-cost attacks. The designers should also be aware of the dimension
difference between chips and boards. The onboard connections (e.g., between chips)
are more straightforward to be discovered than the chip-level ones. The differences
mentioned above enable the attackers to identify, bypass, or remove inserted obfus-
cation components from the board more quickly. An example is provided as follows
to clarify how certain chip-level obfuscation techniques fail on the board level.

A simple bypass attack on board-level logic encryption is provided as follows.
Shown in Fig. 5.2a, as logic barriers, XOR and XNOR gates are inserted in the
middle of the in-chip paths [6]. These barriers are embedded within a fabricated
chip and can only be identified and bypassed by applying costly techniques such
as IC reverse engineering [8]. For board-level logic encryption, these logic barriers
are implemented on a dedicated chip. The same attack on the boards can be simply
accomplished by bypassing the logic barriers with jumper wires. As presented in
Fig. 5.2b, the attacker only needs to connect corresponding inputs and outputs of the
logic barrier chip. These jumper wires are presented in red dashed line in Fig. 5.2b.
Even though these connections are not public, the attackers can always find the
correct input/output pairs by matching waveforms. This matching process is named
as the probing attack and will be elaborated on in Sect. 5.8.

106 Z. Guo et al.

Fig. 5.2 Comparison of
logic encryption on chip
level and board level

5.1.3 Chapter Organization

In this chapter, the detailed framework for implementing logic permutation on
both chip level and board level is provided. Section5.2 presents the high-level
permutation-based obfuscation framework. The goals of the attacker, as well as the
designer, are discussed. In Sect. 5.3, the major differences between chip-level and
board-level designs are presented. These differences should be carefully considered
when obfuscating the design on different levels. Section5.4 performs the analyses
on implementing the permutation. These analyses help in determining which paths
are good permutation candidates and why. This section provides a guideline for the
designer to achieve the best obfuscation performance. Section5.5 introduces the per-
mutation networkswhich could be used for obfuscation. These permutation networks
are studied by their capabilities and area utilizations. Capability indicates whether a
permutation network can achieve the full permutation or not. Besides these analyses,
two configuration scenarios of a popularly used permutation network are presented.
According to these scenarios, the attacker’s goal is reanalyzed. Section5.6 discusses

5 Permutation-Based Obfuscation 107

the ways to generate and store the key/configurations used for obfuscation. The
advantages and drawbacks of each key generation/storage approach are provided.

Section5.7 provides a comprehensive flow for evaluating the performance of an
obfuscated system against various attacks. This performance indicates how diffi-
cult an attacker can break the obfuscation. In Sect. 5.8, potential attacks and their
corresponding countermeasures are provided. Both the permutation network and its
key/configurations can be attacked. These attacks are discussed at the chip as well
as board level. The attacks are organized into three classes based on the required
information and resources to carry them out. Next, the countermeasures are grouped
into three levels of security requirement. The coverage of the countermeasures is
also discussed. Finally, the conclusions are summarized in Sect. 5.9.

5.2 Permutation-Based Obfuscation Overview

A general idea of hardware obfuscation is shown in Fig. 5.3. The solid-line rectan-
gles imply the components which belong to the original design. For the chip level,
these components can be either logic gates or registers. For the board level, these
components can be chips on the board. In the original design, these components are
connected directly by fixed wires or traces. Since all the intercomponent connections
are established in the original designs, these products are also functional after being
sold in the market. An attacker with the chip-level or board-level reverse engineering
capabilities can obtain the design. The question mark in Fig. 5.3 denotes the obscu-
rity introduced by the obfuscation which prevents simple reverse engineering. This
mystery can be in the form of interconnection permutation, modification of signal
values, or a combination of the two. In hardware obfuscation, typically a secret key is
used to remove the obscurity and allow the design to behave as originally intended. In
this chapter, we consider that the obscurity is provided by a permutation block. This
permutation block consists of a key-controlled permutation network and permutes
the selected intercomponent connections.

Fig. 5.3 General
obfuscation scheme

108 Z. Guo et al.

Breaking the permutation-based obfuscation can be achieved by discovering the
mystery above. Themost straightforwardway to accomplish this task is through brute
force attacks. Two possible brute force objectives may be realized: (i) retrieving the
original connections and (ii) key entries to the obfuscation chip. In the former, an
attacker tests all the possible intercomponent connections to identify the one that
results in the correct operation. This attack is usually achieved on board level since
it is simple to examine the obfuscated connections by physically connecting them.
On the other hand, the same procedure is nearly impossible to be accomplished
at the chip level. The reason is that connecting the traces within the chip requires
chip-level reverse engineering. Since such reverse engineering is usually destructive,
the chip under test would no longer be functional. Compared with the former brute
force objective, the latter one can be applied on both chip level and board level.
Achieving this attacking goal, an attacker tests all possible key inputs through the
permutation network’s interface until the system functions correctly. Note that this
objective differs from the first one because it depends entirely on the implementation
of the permutation network (i.e., the relationship between keys and input/output
combinations).

The term breaking probability denotes the likelihood of discovering the mystery
through these two brute force methods.We use Pcom to denote the breaking proba-
bility for examining the input/output combinations of the permutation network, and
Pkey denotes the breaking probability for reviewing the key entries. These breaking
probabilities are used to evaluate the performance/strength of the permutation-based
obfuscation. Besides the brute force attack, the feasibility analyses of other potential
attacks are discussed in Sect. 5.8.

5.3 Obfuscation Considerations

Since significant design differences exist between ICs and PCBs, the obfuscation
implementedon these platforms should be considered separately. In this section, these
considerations are classified into two categories: obfuscation-induced overheads
and the cost of obtaining the design.

The obfuscation-induced overheads indicate the amount of area, power, and cost
overheads introduced by obfuscating the original design. Higher overheads make the
obfuscation less practical. For the board-level obfuscation, the permutation block is
usually implemented within an additional chip. The reason for adding another chip is
that the functionalities of the chips in the original design are dedicated and cannot be
used to permute the interconnections. However, this extra component induces over-
head to the original design. Compared with obfuscating the board, accomplishing the
same task within a chip presents fewer overheads. The area overhead is negligible
when inserting hundreds of gates into millions of gates. For chip-level obfuscation,
the obfuscation procedure should be achieved during the IC design phase. The inser-
tion of the permutation block may require redesigning the entire IC.

5 Permutation-Based Obfuscation 109

Learning the layout or schematic of the obfuscated design benefits the attacker
in breaking the obfuscation. Since this design information is usually not public, the
attackers would exploit techniques such as hardware probing [9] and reverse engi-
neering [10] to realize this goal. To learn the internal structure of an IC, an attacker
can apply destructive [10] or nondestructive [11] reverse engineering. Destructive
reverse engineering requires delayering of the chip and capturing high-resolution
images for each layer. With these images, the layout of the chip can be recovered.
However, reverse engineering a PCB is much easier. PCBs can be destructively
reverse engineered by a similar process. However, automated nondestructive tech-
nique based on X-ray can be used to extract the PCB internal structure without
delayering [11]. Many online resources provide low-cost PCB reverse engineering
services. Besides reverse engineering, hardware probing aims to monitor the signals
on a running board or chip. Similar to reverse engineering, probing the board is more
straightforward than the chip. The interchip connections of a board are accessible
simply by probing the traces exposed on the surface [12]. These low-cost board-level
reverse engineering and hardware probing make it harder to hide secrets in a board
than a chip.

5.4 Design Modification

As presented in Fig. 5.3, a mystery (i.e., permutation block) hides the actual inter-
component connections from the attackers. The designer needs to modify the design
by inserting the permutation block and selecting the intercomponent connections
to be obfuscated. For the board level, this permutation block can be implemented
by a complex programmable logic device (CPLD), field-programmable gate array
(FPGA), or application-specific integrated circuit (ASIC). For the chip level, this
permutation block is inserted by modifying the gate-level design.

The intercomponent connections used for obfuscation shouldbe carefully selected.
A smart designer would not involve all the intercomponent connections into the
permutation-based obfuscation. Even though performing this selection strategy
increases the attack difficulty, it may cause significant timing, area, and power over-
heads on both chip and board levels. Further, many onboard chips may be commonly
used parts, whose connections can be easily guessed by an attacker (e.g., clock sig-
nals and analog signal pins). This further constrains the type of interconnections
that may be used for permutation-based obfuscation. Moreover, not all the types of
signals can by permuted by the permutation block (e.g., the CPLD and FPGA can
only take digital signals as input). In summary, three general requirements need to
be met before involving an intercomponent connection into the obfuscation. These
requirements are as follows:

(i) The obfuscated connection should not be easily guessed, matched, or bypassed;
(ii) The obfuscated connection should not be on a timing-critical path; and
(iii) The type of connection (digital or analog) should be manipulated by the per-

mutation block.

110 Z. Guo et al.

Requirement (ii) should be considered when implementing both the chip-level and
board-level obfuscations, while requirements (i) and (iii) are considered only during
the board-level obfuscation. In this section, these design modification requirements
are discussed on board level and chip level, respectively. Besides these three general
rules, other more detailed design frameworks have been provided by researchers [2,
7, 13] to either minimize the overheads or improve the obfuscation performance.

5.4.1 Board Level

When implementing theboard-level permutation-basedobfuscation, all three require-
ments should be considered. First of all, it is crucial to obfuscate the connections
which do not performdedicated functionalities. The term functionality indicateswhat
these ports can be utilized as (e.g., analog-to-digital converter and serial peripheral
interface bus). This information is usually public and can be accessed by anyone
including the attackers (e.g., by publicly available data sheets of the ICs).

As an example, a reference design from NXP is shown in Fig. 5.4. The refer-
ence design is based on Freescale ColdFire V1MCF51MM256CLL microcontroller
unit (MCU). This instrument is a noninvasive acquisition system incorporating a
pedometer, ECG, food intake table, data storage, wireless communication, timer,
and a chronometer. Biometric data can be saved and stored in the integrated Micro
SD Card Reader. A touch-sensing interface allows the user to have control of the
device through a capacitive touch-sensing film. As shown in Fig. 5.4, the digital
accelerometer chip communicates with the MCU via interintegrated circuit (I2C)
bus. This chip only consists of 10 pins, and most of them are either reserved or
required to be attached to the power/ground according to the datasheet. Thus, these
reserved pins cannot be obfuscated. If the rest of the chip’s pins are obfuscated, the
attackers need to figure out the corresponding ports from MCU to break the obfus-
cation. Achieving this task, they may examine the MCU’s ports which provide the
I2C function. According to the datasheet of this MCU, only two sets of port preform
the I2C function. As a result, the attacker could partially figure out the obfuscated
connections. The breaking probability will be significantly increased if these I2C
pins are involved in the obfuscation.

The scenario above can be found in most of the modern embedded systems.
Besides I2C, the serial peripheral interface (SPI) is also widely utilized in interchip
communications. These highly dedicated ports/connections are not good candidates
for implementing obfuscation. On the other hand, examples of good obfuscation can-
didates can be the general-purpose input/output (GPIO) pins. They are generic pins on
an integrated circuit whose behaviors are controllable by the user at run-time. Since
GPIOpins havenopredefinedpurpose, it is exceedingly difficult to discover the actual
connections by their functionalities. Thus, the components which provide a signifi-
cant number of these pins are ideal candidates for obfuscation. A system/PCB can be
protected by the permutation-based obfuscation if it consists of one or more of these
components. CPLDs, FPGAs, andMCUs are examples of the componentsmentioned

5 Permutation-Based Obfuscation 111

Fig. 5.4 Block diagram of NXPs activity monitor reference design

above. These components are named as programmable components since they can
be programmed by the designer [2]. The components connected and controlled by
the programmable components are named as non-programmable components. For
instance, the heart rate monitor and display block in Fig. 5.4 are examples of the
non-programmable components.

The second requirement is related to the timing constraints. Since the permu-
tation block introduces additional propagation delays, the delay-sensitive interchip
connections should be avoided in implementing the obfuscation. These connections
consist of clock inputs, other control signals with strict timing requirements, etc. The
last requirement specifies the types of the signal which can be permuted. Since the
permutation block can only take digital signal as inputs, only the digital signals in
the original design can be permuted.

Besides the connected ports in the original design, the system may not utilize
all the ports of the programmable component. These unconnected ports can also
be used in the obfuscation if they satisfy the requirements mentioned earlier. These
unconnected ports are referred to as dummy ports, while the connected ones are
referred to as real ports [2]. Involving dummy ports increases the total number of
combinations which an attacker needs to examine. All the real ports and dummy
ports are the inputs of the permutation block.

The schematic view of the board-level design modification is shown in Fig. 5.5. In
this figure, the original connections are permuted by the permutation block. More-
over, only part of the permutation block’s inputs are real inputs.

112 Z. Guo et al.

Fig. 5.5 Board-level design modification

5.4.2 Chip Level

For the chip-level application, the internal connections are the paths between gates.
The functionalities of the intergate connections are difficult to be discovered without
knowing the full design. Additionally, since the permutation network is merged into
the gate-level design, all the intergate signals are digital. Thus, all the chip-level
interconnections besides the timing-critical paths can be permuted since they are
tough to be bypassed physically. As a result, the requirements (i) and (iii) need not
be considered in the chip-level permutation-based obfuscation. However, the timing
constraint, which is the requirement (ii), is crucial to be studied when inserting the
permutation network.

Researches in [13] proposed a bus-based hardware IP protection scheme. This
scheme is applicable to a broad category of electronic systems with a primary bus.
Such designs include (1) numerous IP offerings for USB, PCI, PCI-E, AMBA,
and other bus standards typically used in system-on-a-chip designs and computer
peripherals, (2) SRAM-based FPGAs that are programmed through an input bus,
(3) general-purpose and embedded microprocessors, including soft cores, (4) DSPs,
(5) network processors, and (6) game consoles. This requirement is illustrated in
Fig. 5.6 using a SoC architecture as an example.

The bus is equipped with additional bus-key inputs such that only a certain key
combination activates the bus, while other combinations scramble it. In other words,
a lock is merged with the bus and only the correct can remove the lock. According
to Fig. 5.6, this lock can be allocated at the region where the bus is implemented.
Several techniques can be utilized to accomplish this locking, such as bit-wise XOR,
arithmetic transformations, and bit permutations.

5 Permutation-Based Obfuscation 113

Fig. 5.6 Bus-based IP
protection [13]

Comparing the requirements which need to be met in the chip-level and board-
level obfuscation, obfuscating chip-level designs ismore flexible than the board-level
ones.

5.5 Permutation Network

Choosing a proper permutation network and implementing it in this permutation
block play an essential role. The inputs of this inserted permutation block come from
the selected components in the original design. The outputs are connected with the
components in which these obfuscated connections are originally attached to.

In this section, the background of various permutation networks is introduced,
and the best candidate for implementing the permutation-based obfuscation scheme
is selected. As an example, according to the selected permutation network, this
section provides the configuration approaches under different scenarios. Based on
the capability of achieving full input/output permutations, permutation networks can
be classified into blocking and non-blocking networks [14].

Blocking permutation network indicates that the network can only realize par-
tial input/output combinations. Butterfly network [15] and basic Omega network
[16] are two examples of blocking permutation network. These blocking networks
are presented in Fig. 5.7. In this figure, the rectangles represent 2-to-2 switches.
Each of these switches is controlled by a binary number. The key is formed by con-
catenating all these binary numbers. The total number of different keys is directly
related to the number of switches. For instance, either of the permutation networks
shown in Fig. 5.7 consists of 12 switches. The total number of different keys is
212 = 4096 for either butterfly network or Clos network. On the other hand, the
total number of input/output combinations needed for any 8-input permutation net-
work is 8! = 40320. This number is greater than the total number of the keys. This
observation indicates that a large percentage of input/output combinations cannot be
accomplished, no matter how one configures the switches.

114 Z. Guo et al.

Fig. 5.7 Examples of blocking networks

Non-blocking permutation network indicates that the network can realize all
input/output combinations with or without constraints. This permutation network
category consists of three subcategories.

(i) Strict-sense non-blocking network [17] can construct a new path connecting
unconnected inputs and outputs regardless of any pre-established paths. Designers
can switch any two paths without adjusting the rest of the network settings. This path
independence propertymakes strict-sense non-blocking network ideal for a telephone
router. The multiplexer (MUX) array network and Clos network with high-order
switches [18] are two examples of this type of network. A general design of Clos
network is presented in Fig. 5.8. Clos networks have three stages: the ingress stage
(Stage1), middle stage (Stage2), and the egress stage (Stage3). Each stage is made
up of a number of crossbar switches, often just called crossbars. Clos networks are
defined by three parametersn,m, and r. n represents the number of sourceswhich feed
into each of r ingress stage crossbar switches. Each ingress stage crossbar switch has
m outlets, and there are m middle stage crossbar switches. These parameters should
follow the relationship m ≥ 2n − 1, in order to achieve the non-blocking property
[19].

An example of 4-bitMUXarray network is provided in [7]. This network is named
as wire scrambling (WS) cells which shuffle the intergate connections. A generic
WS-cell can be implemented by using multiplexers or pass transistors as shown in
Fig. 5.9. The full shuffler (Fig. 5.9b) meets the definition of strict-sense non-blocking
network, while the partial shuffler (Fig. 5.9c) does not. The permutations which can
be achieved by this partial shuffler are a subset of the permutations that the full
shuffler can achieve. For the MUX array network, to preserve the strict-sense non-
blocking property, the number of MUXs should be equal to the number of the inputs
of the permutation network. Additionally, each MUX should have the capability to
select any input of the permutation network.

(ii) Wide-sense non-blocking network [20] does not provide the strict indepen-
dence guarantee as a strict-sense non-blocking network does. It is still possible to
connect any unused input to any unused output with certain algorithms.

5 Permutation-Based Obfuscation 115

Fig. 5.8 N × N three-stage non-blocking Clos network [19]

Fig. 5.9 a Structure of a generic WS-cell. b MUX base WS-cell structure, Full shuffler. c Partial
shuffler. The multiplexers are shown as the triangles [7]

116 Z. Guo et al.

(iii) The weakest notion of non-blocking permutation network is rearrangeable
non-blocking network [21]. This kind of network is not capable of fully realizing
network configurations without the prior knowledge of inputs’ and outputs’ order.
Benes network [22] is one example of this kind of network.

5.5.1 Area Utilization

Comparisons of implementation area utilization are performed among three per-
mutation networks: basic Omega network (blocking), MUX array-based network
(strict-sense non-blocking), and Benes network (rearrangeable non-blocking). The
Omega network and Benes network consist of 2-to-2 switches, while themultiplexer-
based network is composed by n-to-1 multiplexers. The parameter n depends on the
number of inputs of the permutation network.

These networks are synthesized using Quartus II software and implemented in
Altera MAX V CPLD. Target CPLD consists of 570 logic elements (LEs), which
is the basic logic unit in CPLD. The area utilizations are presented by the percent-
age of exploited LEs. The results are summarized in Table5.1. It can be observed
that the Benes network utilizes about half of the LEs (60%) compared with the
multiplexer-based network (115%). The number of gates needed to achieve each
network increases exponentially as the number of inputs/outputs increases.

Benes network is a good candidate in implementing the permutation block for
the following two reasons: (i) It is apparent that blocking permutation networks
are inappropriate since they produce limited inputs/outputs combinations. For our
case, designers should choose a candidate from non-blocking networks. (ii) Benes
network is much better than multiplexed based network considering the hardware
area utilization. For this application, the strict-sense non-blocking networks have
significant overhead and their benefits for the permutation-based obfuscation are not
needed.

Even though the strict-sense non-blocking networks present much larger area
utilizations, they have a unique advantage, which is presented in Fig. 5.10. According
to this figure, this type of network can route any input to one or more outputs. This
unique benefit provides the designer more choices in intercomponent connection
selection. For certain applications, one signal may be routed to multiple chips/gates
(e.g., the chip selection signal which controls multiple memory chips). In these
applications, the above capability of the permutation network is required.

Table 5.1 Permutation network CPLD area utilization

I/O 4/4 8/8 16/16 32/32

Omega network (%) 2 6 20 23

Benes network (%) 2 7 22 60

Multiplex router (%) 2 10 31 115

5 Permutation-Based Obfuscation 117

Fig. 5.10 TheMultiterminal net connection inWS-cells. a IN(0) should be routed to all the outputs.
b The MUX-based hardware implementation of the routing requirement shown in a [7]

5.5.2 Network Configuration

After selecting a permutation network, it should be configured properly. Since the
Benes network presents several advantages mentioned above, its configuration sit-
uations are discussed in this section as an example. The most basic Benes network
unit is a 1-bit controlled 2-to-2 switch as shown in Fig. 5.11a. The switches operate
in two modes: straight mode when the control bit is 0 and exchange mode when the
control bit is 1. Bits from the obfuscation key are used as the control bits for each
switch. We define each column of switches as one stage. Two Benes network prop-
erties play a crucial role in the configuration process: (i) Recursion indicates that a
Benes network can be split into two identical lower-dimension Benes networks. For
example, in Fig. 5.11a, the 8-input Benes network can be split into two 4-input Benes
networks (shown in red dashed boxes). This splitting can be recursively repeated on
any lower-dimension Benes networks till reaching the basic unit (2-to-2 switch).
(ii) Symmetry indicates that the Benes network possesses rotational symmetry across
the center stage. According to this property, the stages on the left of center stage are
named as Forward stages and the stages on the right as Backward stages. These stage
categories are shown in Fig. 5.11b. A designer can take advantage of these properties
for simplifying the configuration.

Network configurations can be classified into two situations based on the prior
knowledge and the goals.

Situation 1: Designers aim to find the order of outputswith the knowledge of input
order and a predefined key. Since Benes network possesses rotational symmetry, it
always consists of an odd number of stages. The number of stages (S) can be found
by S = 2∗ log2 N − 1, where N is network dimension (i.e., the number of inputs
to the Benes network). Each stage can be mathematically represented by a square
permutationmatrix (PM) derived from the key. A permutationmatrix has exactly one
‘1’ in each row/column and ‘0’ elsewhere. Each permutation matrix represents the

118 Z. Guo et al.

Fig. 5.11 a 8-inputs Benes network and b stage partition

permuted inputs passing the corresponding stage. Multiplying permutation matrices
represents the inputs passing multiple stages coherently. The property of symmetry
benefits designers by simplifying the permutation matrix calculation. With PMs
computed and the input order (I), we can formalize the output order (O) as follows

O = I ×
log2 N−1∏

i=1

PMi (5.1)

where N represents the number of inputs. The same procedure can be repeated for
computing input order with the knowledge of output order and the key.

Situation 2: The designer’s objective is to find one or more keys achieving a
required input/output permutation. This procedure is also known as the network
routing. Prior work such as [23] proposed an efficient routing algorithm based on
searching loops (defined later) of outer stages. Outer stages (OS) are defined as
mirrored stage pairs such as Stage 0 and Stage 4 in Fig. 5.11b. The number of outer
stages K is defined according to the number of inputs N as follows,

5 Permutation-Based Obfuscation 119

Fig. 5.12 Outer stage
schematic [23] a switches
connections and b groups
illustration

K = log2 N − 1 (5.2)

The loop structure is shown in Fig. 5.12. As an example, assume the network input
as [0 1 2 3 4 5 6 7] and the output as [3 7 1 0 4 2 5 6]. To determine the loops, the
proposed approach illustrates each switch as a node labeled x0, y0, etc., in Fig. 5.12b.
The connections between nodes are constructed based on the input/output orders. A
loop collects the interconnected nodes. For example, the dashed-line loop consists
of nodes x0 and y1. Nodes within one loop should not connect the nodes outside
this loop. Besides the outer stage formalized by Stage 0 and Stage 4, similar loop
structures can be found in other outer stages such as Sub Stage 1.1 and Sub Stage
3.1 in Fig. 5.11b. A configuration can be accomplished by assigning ‘0’ or ‘1’ to
each node (switch). As mentioned in [23], two equivalent key configurations can be
assigned to each loop. These two configurations are complementary binary chains,
such as ‘1011’ and ‘0100’.

This multiple-configuration phenomenon can lead tomore than one key achieving
the same input/output combination. In this chapter, we refer to this phenomena as the
multiple-key effect. This effect could diminish the protection strength by increasing
the breaking probability. At the beginning of Sect. 5.2, the breaking probabilities are
classified into two categories depending on what information the attacker attempts
to obtain. This breaking probability refers to the probability of the attacker receiving
the correct key by exhaustive search (Pkey).

5.5.3 Multiple-Key Effect

For an 8-bit Benes network with a 20-bit key, the breaking probability is Pcom =
1/8! = 2.5e − 5 when the attacker examines the input/output pairs. If the attacker
examines the keys instead of input/output pairs, the size of the key space to examine

120 Z. Guo et al.

is Pkey = 220 = 1048576. Besides the Benes network, this effect may be observed in
other permutation networks where the key space is larger than the input/output com-
binations. Let the number ofmultiple keys bem for a given input/output combination.
The following scenariosmayhappen: (i)m/220 < 1/8!,multiple-key effect decreases
the breaking probability. (ii) m/220 > 1/8!, multiple-key effect increases the break-
ing probability. (iii) m/220 = 1/8!, the breaking probability remains unchanged. The
last situation only holds when a one-to-one correspondence between the key and the
input/output combination holds. However, this situation does not hold when certain
permutation networks, such as the Benes network, are implemented. Discovering
minimal, maximal, mean, and medium values of m is invaluable for precisely eval-
uating obfuscation performance of the overall approach.

The breaking probability can be computed as Eq. (5.3) when the attacker chooses
to examine the keys.

Pkey = Number of correct keys

Total number of keys
(5.3)

Since the total number of keys is more than the total number of input/output combi-
nations, the multiple-key effect may or may not increase the breaking probability.

The second configuration situation in Sect. 5.5.2 indicates that the switches within
each loop can be configured in two ways, such as ‘1101’ and ‘0010’. These switches’
configurations are connected formalizing the key. In general, a relationship between
the number of loops and multiple keys (Mkey) can be described in Eq. (5.4).

Mkey =
K∏

k=1

2li = 2
∑K

i=1 lk (5.4)

where K is the number of outer stages (OS), and each of them consists of lk loops.
The number of loops (lk) depends on the input/output combinations.

In order to break the proposed board-level obfuscation by brute force, the
attacker would choose from the following two strategies: Strategy (i) examines
the input/output order combinations and Strategy (ii) examines the keys. These
two strategies correspond to the two types of breaking probabilities: Pcom and Pkey.
Affected bymultiple keyswith the same permutated outcome, the attacker only needs
to figure out one of the keys when choosing the strategy (ii).

Effects of multiple keys on obfuscation strength are studied by comparing the
breaking probabilities of applying strategy (i) and strategy (ii). Applying Strategy
(i), the breaking probability is 1/32! = 3.8004E − 36 for a 32-bit Benes network.
For Strategy (ii), the breaking probabilities can be computed through dividing the
numbers of multiple keys by the total number of keys. The breaking probabilities
under strategy (i) and strategy (ii) are summarized in Table5.2. Row # of multiple
keys represents the minimal, maximal, and mean number of multiple keys under
strategy (ii). These values can be obtained from the number of loops distribution.
Row Probability shows the corresponding breaking probabilities. The mean break-
ing probability is computed based on uniform distribution assumption of the Benes
network input/output combinations.

5 Permutation-Based Obfuscation 121

Table 5.2 Effects of multiple keys

Strategy (i) Strategy (ii)

Min. Max. Mean

Multiple keys N/A 32768 1.8447E+19 8.1859e+07

Probability 3.8004E−36 1.4694E−39 8.2719E−25 3.6706e−36

Since breaking probabilities vary with different input/output combinations when
applying strategy (ii), we compare the mean breaking probability with the breaking
probability under strategy (i). According to Table5.2, exploiting the multiple-key
effect of the Benes network decreases the expected (average) breaking probability.
This means that it is even harder to execute strategy (ii) compared to strategy (i).

5.6 Key Management

The permutation obfuscation is controlled by a key. This key configures the system
(either a board or chip) and removes the mystery (the question mark in Fig. 5.3).
Several options can be exploited to generate and store the key/configuration. Each
of these options has advantages and drawbacks.

The key/configuration can be input into the permutation/obfuscated chip either
internally or externally as shown in Fig. 5.13. The internal mode (Fig. 5.13a) implies
that this key is permanently stored in the on-chip nonvolatile memory such as electri-
cally erasable programmable read-only memory (EEPROM) or Flash. The booting
unit automatically loads the saved configuration into the permutation network during
each power-up. As discussed in Sect. 5.5.3, the stored key can be either the same or
different among the various chips. Reference [13] proposed an IC activation proto-
col which utilizes the Diffie–Hellman (D-H) key exchange scheme. This protocol is
presented in Fig. 5.14.

Fig. 5.13 Key loading modes

122 Z. Guo et al.

Fig. 5.14 IC activation protocol [13]

5 Permutation-Based Obfuscation 123

In this protocol, the obfuscated chip generates a unique identity number exploiting
its embedded physical unclonable function (PUF) structure. The unique ID for the
pertinent chip under test would be used as the D-H component b. The value gb mod p
is then communicated to the design house (user A), who has also generated a unique
ID a corresponding to the chip under test. In turn, A sends ga mod p to B. Now, the
design house and the chip under test share the same secret. The key to unlock the chip
can be computed by this shared secret by a secret one-way function f . This function
is implemented in the hardware of the chip and only known by the designer. If the
chip can be successfully activated, the key will be printed in this chip. The internal
key storage mode is a convenient but unsafe scheme since these memories represent
serious security concerns if they are compromised, and the keys are stolen [10, 24].
Besides the storage vulnerability, the D-H key exchange scheme encounters several
known attacks. These vulnerabilities will be elaborated in Sect. 5.8.

Alternatively, the key can be loaded into the permutation network from outside
the chip during powering up (Fig. 5.13b, c). The configuration information is stored
in the embedded volatile memory and erased after the system loses power. As shown
in Fig. 5.13b, the key is encrypted outside the chip and decrypted within the chip.
Constrained by the power consumption, area overhead, etc., not all the permuta-
tion/obfuscated chips have this decryption capability.Amore general case is provided
in Fig. 5.13c. In this case, the key is loaded into the permutation block directly. For
example, this could be done by the owner of the system through a USB drive or smart
card.

5.6.1 Biometric-Based Key Generation

Besides the binary keys stored in the tokens, this key can be generated from a person’s
biometrics in the external key loadingmodes [25]. Biometrics have been investigated
for identification, authentication, and key generation formany years [26].Most of the
biometric modalities, such iris and electrocardiogram (ECG), present strong capabil-
ity against being duplicated by the attackers. A general ECG-based key generation
flow is shown in Fig. 5.15. In this figure, the upper block illustrates the enrollment
phase. During this phase, the user’s biometric signal is collected and processed. The
features of the processed signal are extracted and quantized to generate the enrolled
key. The helper data shown in the enrollment phase consist of the information related
to the key regeneration process. It is unnecessary to keep these helper data confidential
since the enrolled key cannot be recovered from it. This enrolled key can be utilized
to design the permutation network following the configuration situation 1 provided
in Sect. 5.5.2. The key regeneration phase is presented in the lower block. This phase
processes the following steps: preprocessing, feature extraction, and quantization
with the support of helper data. These steps are the same as the enrollment phase and
can be executed by the hardware integrated into the obfuscated system.

124 Z. Guo et al.

Fig. 5.15 ECG-based binary key generation

Bonding the biometrics and the obfuscated system provides a unique benefit.
Combining the biometric-based key and the obfuscation protection enables a one-
to-one relationship between the device and its operator. Based on the advantages of
utilizing biometric-based keys, they are ideal candidates for some critical applications
such as military devices.

5.7 Obfuscation Performance Evaluation

The obfuscation performance indicates how much work/time an attacker needs to
devote in breaking the obfuscation. A comprehensive evaluation approach should be
provided with the obfuscation framework. This evaluation can be split into two parts:
(i) the feasibility of breaking the obfuscation by brute force and (ii) the robustness
against other attacks.

The part (i) evaluation can be accomplished by providing expected time to break
the obfuscation by brute force. This validation (T) can be calculated in Equation

T = t

P
(5.5)

where t refers to the time needed to verify one brute force guess. This guess can be
either a key or an input/output combination of the permutation block. P refers the
breaking probability defined at the beginning of Sect. 5.2. This breaking probability
can be Pcom or Pkey depending which attacking strategy is applied. Pcom and Pkey

are equal if and only if a one-to-one correspondence exists between the input/output
combination and the key. As proved in Sect. 5.5.3, the expected Pkey is smaller than
Pcom when the Benes network is attacked in a brute force manner. Thus, the break-
ing probability Pcom evaluates the obfuscation performance better when the Benes

5 Permutation-Based Obfuscation 125

network is engaged. For other types of permutation networks, both of Pkey and Pcom

should be computed, and the larger one indicates the obfuscation performance.
The calculation of Pkey only depends on the total number of keys and the number

of correct keys. For calculating the probability Pcom, the result not only depends
on the number of correct input/output combinations and the total combinations. For
the board-level obfuscation, other knowledge from the chips’ datasheets may help to
increasePcom. An example [2] is provided in this section to show how this knowledge
benefits in attacking the obfuscation. In the reference design presented in Fig. 5.4, the
touch-sensing block will communicate withMCU via Rapid GPIO (RGPIO). Not all
ports on the MCU have the capability to work as RGPIO (in fact, only 16 ports). In
this sense, the attacker can shrink the scope by searching the correct connection for
the touch-sensing device from 16 ports instead of all the obfuscated ports on MCU.
In computing the breaking probability Pcom, the functionalities of each obfuscated
ports should be considered.

Part of the board-level obfuscation performance evaluations provided in [2] is
presented in Table5.3. The reference designs are listed below:

• Driving a Stepper Motor Reference Design with High-Performance MCU
• Ultralow Power Multi-sensor Data Logger with NFC Interface Reference Design
• Single-axis Motor Control Reference Design with Integrated Power Factor Cor-
rection

• SimpleLink Multi-Standard CC2650 SensorTag Reference Design

In the table, the column ‘Programmable Component’ provides the models of MCUs
utilized in the reference. The column ‘Break Probability’ refers to the probability
of breaking the obfuscation by examining the input/output combinations. The col-
umn ‘Clock frequency’ indicates the maximal operating clock frequencies of the
programmable components. The parameter t in Eq. (5.5) is assumed as one clock
cycle. Then, the column ‘Validation Time’ is computed by Eq. (5.5). The real vali-
dation time would be much longer than the value in Table5.3 since it is extremely
difficult for the attacker to validate each input/output combination in single clock
cycle. In real world, he needs to observe the behavior of the board to tell whether
this combination under test is correct. This process will be much slower than one
clock cycle. Hence, these results should be considered as pessimistic. According
to this table, besides the Design No.4, the validation times for the rest are longer
than thousands of years. It is impossible to break the obfuscation by brute force in a
reasonable time period. The validation time for Design No.4 is extremely short since
this design only consists of a small programmable component with less than 32 pins.
Among these pins, few of them can be obfuscated. Thus, in order to achieve a good
board-level obfuscation performance, the original design is required to consist of a
programmable component with more than 32 pins.

Besides the brute force attack feasibility analysis, the robustness against other
attacks such as the hardware probing and reverse engineering should also be eval-
uated. The part (ii) evaluation studies the obfuscation’s resistance of other types of
attacks. This part of evaluation is presented in Sect. 5.8. In the same section, the
corresponding countermeasures are also provided.

126 Z. Guo et al.

Table 5.3 Board-level obfuscation performance evaluation

Design no. Programmable
component

Break probability
(Pcom)

Clock frequency
(f) (Mhz)

Validation time
(T)

1 TM4C123GH6PM 9.70E−41 60 5.4E+24 yrs

2 MSP430FR5969 1.34E−18 16 1.5E+03 yrs

3 TMS320F28050 1.23E−32 60 2.6E+24 yrs

4 CC2650 2.81E−15 48 85.8h

5.8 Attack Analyses and Countermeasures

In the section, a list of potential attacks is provided. These attacks are grouped
into three categories based on the attackers’ capabilities. Against these attacks, the
countermeasures are organized by the levels of security requirement.

5.8.1 Potential Attacks

To break the permutation-based obfuscation, the attacker needs to discover the fol-
lowing information: true intercomponent connections or the correct keys as discussed
in Sect. 5.2. The following attacks can be carried out by the attacker to accomplish the
attacking goal. These attacks cover the ones that can be either applied on chip level
or board level. All the following attacks can be implemented on board level, while
only a few of them are applicable on chips. Some of these attacks directly provide the
attackers the information they desired, while some of them reinforce others. Since
different attacks demand various equipment and knowledge, the capabilities of the
attackers are studied.

Brute force attack is the most straightforward one and can be applied on both
board level and chip level.As discussed earlier in Sect. 5.2, this attack entails attackers
trying all the keys or the input/output permutations. The success of such attacks is
highly dependent on the breaking probabilities (either Pcom or Pkey) and the time
required to validate the system for correct behavior. It is extremely difficult for the
attackers to break our obfuscation method by brute force as reported in [2].

Surface trace probing attack: The waveform between permutation block inputs
and the corresponding outputs are the same for every system even though the keymay
be different. Attackers with a working system can probe all the I/Os of the permu-
tation block with a multichannel logic analyzer. By simply matching the waveforms
of the probed signals, attackers would find out the true connections between the pro-
grammable and non-programmable components. This attack can only be applied on
board level since it applies to traces on the surface.

5 Permutation-Based Obfuscation 127

Storage compromise attack: The attacker may attempt to extract the keys/
configurations if they are stored in the system. Several techniques can be utilized
to retrieve the data from the nonvolatile memory [10, 24]. This attack is applicable
on both board level and chip level when the internal key storage mode is applied.
If the keys are the same for different chips/boards, this attack becomes powerful.
Extracting one key from one chip enables the attacker to unlock other chips/boards.

Man-in-the-middle attack [13]: This is a well-known attack on the D-H key
exchange scheme. Differing from the storage compromise attack, this attack provides
an attacker the ability to compute the key for each chip/board. In this attack, the
adversary intercepts designers public value and transmits its public value to the
IC. When the IC sends its public value, the attacker substitutes it with it own and
transmits it to the designer. Therefore, the adversary and designer agree on one shared
key and IC and attacker agree on another shared key. Now, the attacker can simply
decrypt messages transmitted by the designer and the IC and can read and potentially
modify them before re-encrypting with the proper key and sending them to the other
party. This vulnerability is possible because D-H key exchange protocol does not
authenticate the users.

Permutation block reinstallation attack: This attack can only be applied on
the board level. Removing the permutation block from the fabricated chip damages
both the permutation block and the chip. Applying this attack, attackers unmount the
permutation block (typically a CPLD) off the board and reinstall onto other platforms
without damaging the package. Reinstalling the unmounted CPLDmakes the surface
trace probing applicable. This attack does not provide the attacker secret information
directly. However, combining this attack makes surface trace probing attack more
powerful.

Middle-layer probing attack: This is another attack which aims to empower
the surface trace probing attack. Thus, this attack can be only applied on the board
level. Attackers can discover full PCB layout by nondestructive reverse engineering
approaches such as X-ray-based techniques [11, 27]. Guided by the layout informa-
tion, attackers can mill holes for probing every CPLD port. These holes enable the
attacker to access the CPLD ports without damaging other traces on the board. For
the chip-level attack, microprobing could be used to read buses on the chip. This
attack enables the attacker to sniff the data transmitted on the buses. However, this
attack is much more expensive than the board-level probing.

IC Reverse engineering attack: The attacker can fully reverse engineer any chip
on the board and learn completely secret information stored in these chips. These
chips can be either the permutation block in board-level application or obfuscated
chip in chip level. This secret information includes the firmware of the programmable
component, internal or external memory content, and the permutation network struc-
ture. This attack can be applied on both chip level and board level.

In a well-known article from IBM [28], the authors suggest that the attackers
can be grouped into three classes, depending on their expected abilities and attack
strength:

128 Z. Guo et al.

• Class I (clever outsiders):
They are often very intelligent but may have insufficient knowledge of the system.
They may have access to only moderately sophisticated equipment. They often try
to take advantage of an existing weakness in the system, rather than try to create
one.

• Class II (knowledgeable insiders):
They have solid specialized technical education and experience. They have varying
degrees of understanding of parts of the system but potential access to most of it.
They often have access to highly sophisticated tools and instruments for analysis.

• Class III (funded organizations):
They can assemble teams of specialists with related and complementary skills
backed by excellent funding resources. They are capable of in-depth analysis of
the system, designing sophisticated attacks, and using the most advanced analysis
tools. They may use Class II adversaries as part of the attacking team.

The brute force attack, the surface probing attack, and the man-in-the-middle
attack can be achieved by Class I attackers. Since these attackers only have insuf-
ficient knowledge of the system, brute force attack is the most straightforward one.
Equipped with oscilloscopes, this class of attackers can accomplish the surface prob-
ing attacks. ComparedwithClass I attackers,Class II attackers can apply the storage
compromise attack, permutation block reinstalling attack, and middle-layer probing
attack with more sophisticated instruments. The tools required for these attacks
should have the capabilities of uninstalling CPLDs without damaging the package,
applying nondestructive reverse engineering, and drilling holes on a multilayer PCB.
Class III attackers are the only ones that can apply IC reverse engineering attack
since they have access to most advanced analysis tools and greatly funded.

5.8.2 Countermeasures and Attack Coverage

Considering the various classes of attackers and their capabilities, the countermea-
sures are organized into three security requirement levels.

Low-level security requirement: Devices satisfying this security requirement
level directly store the same key in nonvolatile memories. To achieve low-level secu-
rity requirement, we suggest that ball grid array (BGA) packages should be exploited
for both the programmable component and permutation block and at least one mid-
dle layer in the PCB to route connections. The requirement of multiple layers is
easy to meet due to the complexity of current PCBs. For the requirement of BGA
package, a statistical result in Table5.4 shows a significant portion of obfuscation
candidates have BGA/VTLA (a package standard used by Microchip very similar
with BGA package) package among the programmable components with equal to or
more than 64 pins. As discussed in Sect. 5.7, a programmable component with more
than 32 pins is required to guarantee a good obfuscation performance. Using BGA
package introduces no additional area and power overhead. The cost is the same

5 Permutation-Based Obfuscation 129

Table 5.4 Percentage of obfuscation candidates with BGA/VTLA package

Manufacturer �64 pins BGA/VTLA Percentage (%)

Microchip 241 107 44.40

Freescale 85 80 94.12

NXP 93 93 100

Total 419 280 66.82

between BGA package and other packages for the same model of the chip as well.
When routing the PCB, the designer should identify all the connections between the
programmable component and the permutation block and route them in the middle
layers. The routing requirement is named as middle-layer routing for the remainder
of the paper. This step is meant to reduce the attackers’ chance of probing a working
device to identify connections between chips. Low-cost tamper resistance techniques
[29] should also be applied.

Medium-level security requirement: System rebooting is unavoidable for most
industry systems and consumer electronics. Since reapplying keys after every reboot
is often impracticable in this case, these systems need to store the keys in nonvolatile
memory and reload them prior to rebooting automatically. This behavior provides
attackers opportunities of breaking the obfuscation by certain techniques such as the
permutation block reinstalling attack and storage compromise attack.

To obtain medium-level security requirements, the BGA packages and middle-
layer routing need to be engaged.Moreover, instead of storing the same key for all the
chips/boards, each of these systems should have its unique key. Since the internal key
storage mode is applied, we can take advantage of the D-H key exchange scheme
and the one-way function as provided in Sect. 5.6. Combining D-H key exchange
scheme and a unique ID, each chip/board can be assigned a unique key. This unique
ID can be generated by incorporating a chip-level or board-level PUF.

High-level security requirement: In this case, the key is not stored in system’s
nonvolatile memories and needs to be reapplied into the system after rebooting.
Devices satisfying this security requirement should be capable of preventing all
known attacks. Critical applications such as military installations and commercial
devices storing sensitive data require this level of protection. The biometric-based
keys (discussed in Sect. 5.6.1) can also contribute to this level of security requirement.

Since the key is not stored in nonvolatile memory, a D flip-flop chain is utilized
to form a shift register in permutation block or obfuscated chip. One dedicated port
on the chip is designed as the serial key input. When the system is powered off, D
flip-flops lose their values, and the key is destroyed. The user needs to input the key
to the system whenever it reboots. Additionally, BGA packages and middle-layer
routing should also be involved in this level of security requirement.

Considering various attackers’ capabilities with aforementioned security require-
ment levels, the protection coverage is analyzed in Fig. 5.16.

130 Z. Guo et al.

Fig. 5.16 Attacks coverage analysis

Devices satisfying low-level security requirement eliminate the brute force and
surface trace probing attacks applied by Class I attackers. The surface trace probing
attack is unavailable since the obfuscated connections are hidden in themiddle layers.
However, since the key is stored in the onboard nonvolatilememory, Class II attackers
can unmount and reinstall the permutation block onto their platforms (permutation
block reinstalling attack) for applying hardware probing attack. The techniques for
extracting the content from the nonvolatile memory (storage compromise attack)
also directly enable an attacker to learn the key. Since this key is the same among
different boards, this compromised key can be used to active other boards.

Thepermutationblock reinstalling attack, storage compromise attack, andman-in-
the-middle attack can be eliminated if the device is compatiblewith themedium-level
security requirement. Devices under this level of security requirement incorporate
the obfuscation scheme with the following techniques: chip-level/board-level unique
identifier; the D-H key exchange scheme; and the one-way function. This combina-
tion guarantees the following: (i) The permutation block can unlock the system using
the prestored key only when it is attached to its original PCB; (ii) each chip/board can
be only activated by a unique key; (iii) the man-in-the-middle attack is prevented.
The permutation block reinstalling attack can be eliminated by the first guarantee,
and the second guarantee prevents the storage compromise attack. Even if a man-in-
the-middle attack establishes two different channels (one with the IC and one with
the designer), he will not be able to compute the key specific to the IC or to use the
key given for another chip.

Unfortunately, automatically loading the key after system rebooting again makes
middle-layer probing attack available. Instead of reallocating the permutation block,
this attack extracts the board layout nondestructively through techniques such as X-
ray [11]. With this knowledge, Class II attackers can design and create holes to probe
the permutation block pins. This attack can be accomplished during run-timewithout
delayering the PCB. Even if the middle-layer probing attack cannot be achieved due
to extremely complex middle layers, Class III attackers can always learn the key by
reverse engineering the chips.

5 Permutation-Based Obfuscation 131

For completely preventing all known attacks, the key should be destroyed when
the system loses power. High-level security requirement enables devices achieving
this objective through storing the key in volatile memory (e.g., in the embedded D
flip-flop chain). Since Class II and Class III attackers require a working device after
rebooting, it is impossible for them to apply attacks on the devices which the keys
are destroyed after powering off.

5.9 Conclusions

Among various obfuscation-based hardware protection approaches, the permutation-
based technique presents certain advantages. For instance, this technique is the only
one that can be exploited in protecting PCBs. Other obfuscation techniques such as
logic encryption can be easily broken if applied at board level.

The permutation-based obfuscation permutes the intercomponent connections of
either an IC or PCB. The designer needs to be aware of selecting these connections.
Several requirements should be met when determining whether a connection is suit-
able for permutation. These requirements consist of the timing, functionalities, and
signal types. Note that the requirements needed for the chip-level application are
fewer than the ones for the board level. After appropriate connections are chosen,
they will be permuted by a permutation network. The permutation network capa-
bility and its area utilization should be carefully balanced. For certain permutation
networks (i.e., Benes network), the multiple-key effect can be observed. This effect
causes more than one kind of the network’s configuration result to end up with the
same permutation outcome. This effect entails the designer to evaluate the brute force
breaking probabilities in two ways (i.e., the probability when the attacker examines
the keys or the input/output combinations). The larger breaking probability is used
to determine the robustness against the brute force attack. The time required to break
the obfuscation has a direct relationship with this breaking probability. As reported
by the existing work, it may take longer than thousands of years to break a properly
obfuscated system.

Besides the brute force attack, the designer should also evaluate the robustness
against other attacks such as the hardware probing and reverse engineering. Since
these attacks require various equipment and resources, they are classified into three
levels based on the difficulty to execute them. Although some attacks are powerful in
breaking the obfuscation, they can be mitigated by certain countermeasures. Similar
to the classification of the attacks, the countermeasures are grouped into three levels
based on the attacks they cover.

Since the permutation-based obfuscation is controlled by a key/configuration,
various schemes can be exploited to manage the key either internally or externally.
Each of these schemes has its advantages and drawbacks. The more convenient the
key management scheme is, the less secure the system will be.

132 Z. Guo et al.

References

1. Roy JA, Koushanfar F, Markov IL (2008) Epic: Ending piracy of integrated circuits. In: Pro-
ceedings of the conference on Design, automation and test in Europe. ACM, pp 1069–1074

2. Guo Z, Tehranipoor M, Forte D, Di J (2015) Investigation of obfuscation-based anti-reverse
engineering for printed circuit boards. In: Proceedings of the 52nd annual design automation
conference. ACM, p 114

3. Chakraborty R, Bhunia S (2009) Harpoon: An obfuscation-based soc design methodology for
hardware protection. IEEE Trans Comput-Aided Design Integr Circuits Syst 28:1493

4. Chakraborty R, Bhunia S (2010) Rtl hardware ip protection using key-based control and data
flow obfuscation. In: 23rd international conference on VLSI design, VLSID’10. IEEE, pp
405–410

5. Koushanfar F (2012) Provably secure active ic metering techniques for piracy avoidance and
digital rights management. IEEE Trans Inf Forensics Secur 7(1):51–63

6. Baumgarten AC (2009) Preventing integrated circuit piracy using reconfigurable logic barriers
7. Zamanzadeh S, Jahanian A (2016) Higher security of asic fabrication process against reverse

engineering attack using automatic netlist encryption methodology. Microprocess Microsyst
42:1–9

8. Tehranipoor M, Wang C (2011) Introduction to hardware security and trust. Springer Science
& Business Media, New York

9. Handschuh H, Paillier P, Stern J (1999) Probing attacks on tamper-resistant devices. Crypto-
graphic hardware and embedded systems. Springer, Berlin, pp 303–315

10. Quadir SE, Chen J, Forte D, Asadizanjani N, Shahbazmohamadi S, Wang L, Chandy J, Tehra-
nipoor M (2016) A survey on chip to system reverse engineering. ACM J Emerg Technol
Comput Syst (JETC) 13(1):6

11. Asadizanjani N (2015) Non-destructive pcb reverse engineering using x-ray micro computed
tomography. In: ISTFA

12. Zhang F, Hennessy A, Bhunia S (2015) Robust counterfeit pcb detection exploiting intrinsic
trace impedance variations. In: IEEE 33rd VLSI test symposium (VTS). IEEE, pp 1–6

13. Roy JA, Koushanfar F, Markov IL (2008) Protecting bus-based hardware ip by secret sharing.
In: Proceedings of the 45th annual design automation conference. ACM, pp 846–851

14. Waksman A (1968) A permutation network. In: JACM
15. Thamarakuzhi A, Chandy JA (2010) 2-dilated flattened butterfly: A nonblocking switching

network. In: HPSR
16. Mitra D, Cieslak RA (1987) Randomized parallel communications on an extension of the

omega network. In: JACM
17. Giacomazzi P, Trecordi V (1995) A study of non blocking multicast switching networks. IEEE

Trans Commun 43:1163
18. Jajszczyk A (2003) Nonblocking, repackable, and rearrangeable clos networks: fifty years of

the theory evolution. IEEE Commun Mag 41(10):28–33
19. Yang J, Yang J, Li X, Chang S, Su S, Ping X (2011) Optical implementation of polarization-

independent, bidirectional, nonblocking clos network using polarization control technique in
free space. In: Optic Eng 50(4):045 003–045 003

20. Feldman P, Friedman J, Pippenger N (1988) Wide-sense nonblocking networks. SIAM J Dis-
crete Math 1(2):158–173

21. Pippenger N (1978) On rearrangeable and non-blocking switching networks. J Comput Syst
Sci 17(2):145–162

22. Chang C, Melhem R (1997) Arbitrary size benes networks. Parallel Process Lett 7(3):279–284
23. Nassimi D, Sahni S (1982) Parallel algorithms to set up the benes permutation network. IEEE

Trans Comput vC-31(2):148–154
24. Jeong H, Choi Y, JeonW, Yang F, Lee Y, Kim S,Won D (2007) Vulnerability analysis of secure

usb flash drives. In: IEEE international workshop on memory technology, design and testing,
MTDT. IEEE, pp 61–64

5 Permutation-Based Obfuscation 133

25. Guo Z, Karimian N, Tehranipoor MM, Forte D (2016) Hardware security meets biometrics for
the age of iot. In: IEEE International Symposium on Circuits and Systems (ISCAS)

26. Wayman J, Jain A, Maltoni D, Maio D (2005) An introduction to biometric authentication
systems. Springer, London

27. Ahi K, Asadizanjani N, Shahbazmohamadi S, Tehranipoor M, Anwar M (2015) Terahertz
characterization of electronic components and comparison of terahertz imaging with x-ray
imaging techniques. In: SPIE sensing technology + applications

28. AbrahamDG, Dolan GM, Double GP, Stevens JV (1991) Transaction security system. In: IBM
Syst J

29. Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trustworthy hardware: Identifying
and classifying hardware trojans. IEEE Trans Comput 43(10):39–46

	5 Permutation-Based Obfuscation
	5.1 Introduction
	5.1.1 Chip Level
	5.1.2 Board Level
	5.1.3 Chapter Organization

	5.2 Permutation-Based Obfuscation Overview
	5.3 Obfuscation Considerations
	5.4 Design Modification
	5.4.1 Board Level
	5.4.2 Chip Level

	5.5 Permutation Network
	5.5.1 Area Utilization
	5.5.2 Network Configuration
	5.5.3 Multiple-Key Effect

	5.6 Key Management
	5.6.1 Biometric-Based Key Generation

	5.7 Obfuscation Performance Evaluation
	5.8 Attack Analyses and Countermeasures
	5.8.1 Potential Attacks
	5.8.2 Countermeasures and Attack Coverage

	5.9 Conclusions
	References

