
Chapter 4
Gate Camouflaging-Based Obfuscation

Xueyan Wang, Mingze Gao, Qiang Zhou, Yici Cai and Gang Qu

4.1 Circuit Camouflaging with Configurable Gates

One of the greatest threats to VLSI design intellectual property (IP) is reverse engi-
neering [1]. Reverse engineering (RE) is the process of extracting the IP and design
information from the target product and reproducing the product [2, 3]. Motivations
of RE vary from the paranoia of the Cold War, through commercial piracy, to com-
petitive intelligence, and courts of patent law. The targets of RE include systems as
large as an aircraft or as small as a microchip, programming codes, a pill of medical
drug, or any sort of IPs [2]. In the semiconductor sector, RE has become a powerful
tool for IP piracy where the attacker analyzes a design and reproduces it with no
or much less investment in research and development. These low cost illegitimate
products bring security vulnerabilities to critical commercial and military systems,
or they can be sold at a much lower price, giving them an unfair competitive edge
against the authenticated products.

The popular digital circuit watermarking and fingerprinting techniques [1] are
passive IP protection schemes because they do not prevent RE from happening or
make it more difficult. Watermark and fingerprint can be embedded into the IP to
make each instance of the IP unique. When necessary, they can be revealed to show
the authorship or ownership of the IP and identify the parties that misuse the IP.
Although it is hard or impossible to completely remove thewatermark andfingerprint,
RE attackers can still extract valuable information from the IP and reproduce the IP
sillegally. The existence of watermark and fingerprint in the IP can deter RE attacks,
but will not increase the complexity of RE.

X. Wang · Q. Zhou · Y. Cai
Tsinghua University, Beijing, People’s Republic of China

M. Gao · G. Qu (B)
University of Maryland, College Park, MD, USA
e-mail: gangqu@umd.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_4

89



90 X. Wang et al.

Table 4.1 The configurable CMOS cell in Fig. 4.1 can perform three different functions: NAND,
NOR, or XOR, based on different true and dummy contact combinations [7]

Function Contacts

TRUE DUMMY

NAND 2,4, 6, 8, 11, 12, 16, 17 1,3, 5, 7, 9, 10, 13, 14, 15, 18, 19

NOR 2,5, 6, 11, 12, 18, 19 1,3, 4, 7, 8, 9, 10, 13, 14, 15, 16, 17

XOR 1,3, 4, 7, 9, 10, 12, 13, 14, 15, 18, 19 2,5, 6, 8, 11, 16, 17

Gate camouflaging techniques have emerged as an effective countermeasure for
RE attacks [4–7]. These techniques rely on the general belief that RE technology is
normally 2–3 generations behind the latest CMOS design technology. That is, certain
CMOS design features cannot be completely reverse engineered until several years
later. For example, some logic cells can be configured to perform different function-
alities while maintaining an identical look to RE attackers. In circuit camouflaging,
conventional logic gates are intentionally replaced by these configurable CMOS cells
to thwart RE attacks.

4.1.1 Configurable CMOS Cells

One popular approach to construct configurable CMOS cells is to use the true and
dummycontacts [4, 5].A true contact spans the dielectric between twoadjacent layers
and represents an electrical connection, while a dummy contact has a gap in the mid-
dle thus fakes the connection between layers. Figure4.1 shows an example where 19
contacts are utilized in the configurable CMOS cell [7]. As demonstrated in Table4.1,
with different combinations of true and dummy contacts, the camouflaging gate can
perform three different logic functions: NAND, NOR, or XOR. For instance, when
contacts 2, 4, 6, 8, 11, 12, 16, 17 are true and contacts 1, 3, 5, 7, 9, 10, 13, 14, 15, 18, 19
are dummy, the camouflaged CMOS cell performs the functionality of a NAND gate.

When an attacker performs the top-down image processing-based RE attack, he is
unable to detect whether a contact is true or dummy, because from the top view of the
chip, the true and dummy contacts appear identical even under most powerful optical
and electrical microscopes. Therefore, this configurable CMOS cell will appear the
same look to the attacker regardless of the functionality it implements. Without
knowing the functionalities of the camouflaged gates, the attacker will fail to reverse
engineering the IP. Of course, the attacker can guess and try all the different possible
configurations, whichwill increase the complexity of the RE attack. This also implies
that against such brute force attack, the more camouflaged gates we have in the IP
and the more functionalities a camouflaged gate can achieve, the more difficult it
will be for attackers to recover the IP.



4 Gate Camouflaging-Based Obfuscation 91

4.1.2 Circuit Camouflaging Technique

The circuit camouflaging technique proposed in [7] obfuscates a circuit by disguising
the functionality of selective XOR, NAND, or NOR gate behind the configurable
CMOS cell illustrated in Fig. 4.1. That is, each camouflaged gate will have the same
appearance but three possible functionalities to an RE attacker. In the circuit shown in
Fig. 4.2, two logic gates have been replaced by the configurable CMOS cells C1 and
C2. Even when an RE attacker has successfully recovered the layout of the circuit,
he cannot rebuild the circuit unless he knows the types of the two camouflaged cells
C1 and C2.

Fig. 4.1 A configurable CMOS cell with 19 contacts that can be configured to be either true or
dummy [7]

I1

I2

I4
I3

G1

G5
I5
I6

I8

I7

G2

G4

G6G3

O1G9

O2G10

?

?

C1

C2

Fig. 4.2 A circuit with two camouflaged gates C1 and C2, which can be resolved individually by
VLSI testing-based attack



92 X. Wang et al.

Intuitively, the attacker has to guess 32 = 9 possibly combinations, because each
of the two camouflaged cells can be an XOR, NAND, or NOR gate. Moreover, since
the attacker can only give input values to the circuit’s primary inputs (PI) and observe
the corresponding primary output (PO) values to verify whether a guess is correct or
not. This seems to make attacker’s job very challenging. Unfortunately, this is not
the case.

In the above example, based on the fact that (i) the output of a camouflaged gate
under input ‘00’ can differentiate {XOR} from {NAND, NOR} (XOR outputs 0,
while both NAND and NOR output 1), and (ii) the output under input ‘01’ or ‘10’
can differentiate {NAND} and {NOR} (NAND outputs 1, while NOR outputs 0), the
attacker can apply the input pattern ‘010XXXXX’ (X represents do not care values)
at the PIs, this justifies the camouflaged gate C1’s inputs as ‘00’, and sensitize C1’s
output to POO1. If O1 is 0, the functionality of C1 is resolved to be XOR. Otherwise,
when O1 is 1, C1 will be either NAND or NOR. The attacker will then apply input
pattern ‘110XXXXX’ at PIs to justify C1’s inputs as ‘10’ and sensitize C1’s output
to O1. If O1 is 0, C1 is resolved to be NOR, otherwise C1 is resolved to be NAND.

This is known as VLSI testing-based attack, where the attacker resolves a cam-
ouflaged gate’s functionality by justifying the gate’s inputs to certain values from
the circuit’s PIs then sensitizing the gate’s corresponding output to PO to observe
from a functional IC. In such attack, it is not necessary to obtain the entire truth
table to resolve a camouflaged gate, a couple of selective input–output pairs will be
sufficient. Thus, it is a very effective way to attack circuit camouflaging.

4.1.3 Enhanced Circuit Camouflaging

In the above example, we see that randomly selecting gates to camouflage is vul-
nerable to the VLSI testing-based attack. This can be fixed by judiciously selecting
candidate gates to camouflage such that these gates will be interfered and cannot be
revealed one by one [7].

Two camouflaged gates are interfered if one gate lies on a path between the other
gate and an output, or the outputs of these two gates go into the same gate. Clearly,
in Fig. 4.3, the three camouflaged gates C1, C2, and C3 are interfered. If gate G4 is
also camouflaged, it will not interfere with C3, but it will interfere with C2 because
their outputs meet at gate G6.

On the other hand, when camouflaged gates do not have any path in the circuit
interfering with other camouflaged gates, they are called isolated. Isolated camou-
flaged gates can be resolved independently by VLSI testing-based attack as we have
seen in Fig. 4.2. However, this will not be the case when camouflaged gates are
interfered.

For example, in Fig. 4.3, none of the camouflaged gates C1, C2, and C3 can be
resolved by VLSI testing-based attack individually: C1’s output cannot be observed
from any of the POs without resolving C2 and C3 first; C3’s inputs cannot be con-
trolled before C1 and C2 are resolved; both the controllability of C2’s inputs and the
observability of its output rely on the functionalities of C1 and C3.



4 Gate Camouflaging-Based Obfuscation 93

?

?

?
I1

I2

I4

I3

I5

O1

O2

C1

C2

C3

G1

G2

G3

G4

G5

G6

Fig. 4.3 A camouflaged circuit where the three camouflaged gates C1, C2, and C3 are interfered

In [7], it is argued that this will force the attackers to brute force search all the
possible functionality combinations of these camouflaged gates. Specifically, for
each possible combination, the attacker will simulate input patterns at PIs of the
circuit to get the corresponding outputs at POs and compare them with an unpack-
aged/functional circuit. If they are not the same, the guess is incorrect and the attacker
will check the next possible combination. Considering that each camouflaged gate
has 3 possible functionalities, the needed brute force efforts will be 33. When the
circuit has N selective camouflaged gates, the complexity will be 3N. This exponen-
tial complexity leads to the claim that when there are sufficient number of interfered
camouflaged gates, the circuit camouflaging is secure [7]. To end this section, we
demonstrate by an example that this claim is not accurate, which motivates us to
propose more accurate metrics to define the security of circuit camouflaging.

4.1.4 Defeating the Enhanced Circuit Camouflaging

Figure4.4 is a sub-circuit of the secure camouflaged circuit in Fig. 4.3, where the two
camouflaged gates C1 and C2 are clearly interfered with each other. We now show
how both camouflaged gates can be revealed with no more than four input–output
pairs.

?

?

I2

I4

I3

I5

O2

C1

C2

G2

G3

G4

G5

G6

Fig. 4.4 A sub-circuit of the secure camouflaged circuit in Fig. 4.3



94 X. Wang et al.

We consider the output O2 as a function of inputs I2, I3, I4, and I5 and denote it
by O2(I2, I3, I4, I5). That is, when input values are I2 = 1, I3 = 1, I4 = 0, and I5 =
0, for example, the output value can be written as O2(1,1,0,0). Here is how an attack
can reveal C1 and C2 easily:

(1) Apply (0, 1, 0, 1) as the input values for (I2, I3, I4, I5);
(2) If O2(0, 1, 0, 1) = 0 : apply (0, 1, 1, 0) as the input;
(3) if O2(0, 1, 1, 0) = 1 : apply (0, 0, 1, 0) as the

input;
(4) If O2(0, 1, 0, 1) = 1 : apply (0, 1, 1, 1) as the input;
(5) apply (0, 1, 0, 0) as the input;
(6) if O2(0, 1, 0, 0) = 1 : apply (0, 0, 0, 0) as the

input;

In step (1), we apply (0,1,0,1) as input to the circuit. If C1 is either NANDorNOR,
C1(0,0) = 1; so G4(1,1) = 0 and we should be able to observe O2 = 1 regardless of
the output of G5. Therefore, we conclude that if O2(0,1,0,1) =0, C1 must be XOR.
Next, in order to reveal C2, we apply (0,1,1,0) in step (2). C1(1,1) = XOR (1,1)
= 0, hence C2 will have both its input as 1 and it will output 0 only if C2 is XOR;
otherwise, we need another input pattern to determine whether C2 is NOR or NAND,
this can be done by for example using (0,0,1,0) as in step (3). Similar analysis can
be done for steps (4)–(6) when C1 is either an NOR or an NAND.

Once we fully resolve the two camouflaged gates C1 and C2 in Fig. 4.4 (by apply-
ing no more than four input patterns), it will be trivial to resolve the last camouflaged
gate C3 in Fig. 4.3 (with no more than two input patterns). Note that this takes us
no more than six input–output pairs, much less than trying 33 possible combina-
tions with multiple input–output pairs for each combination. We are able to do this
because that the circuit can be partitioned to smaller sub-circuits and the set of {XOR,
NAND, NOR} can be effectively distinguished. Next, we will elaborate an attack
against circuit camouflaging based on circuit partitioning and then discuss several
countermeasures to this attack.

4.2 Circuit Partition-Based Attack

It is believed that the enhanced IC camouflaging is secure because of the high brute
force complexity that is exponential to the number of camouflaged gates [7]. How-
ever, this is just secure against the naïve brute force search. Like many other studies
in security literature, a new type of attack would break a system that was previously
proven secure.

As we have seen from the last example, an intelligent attacker does not need to
resolve all the camouflaged gates together even though they are interfered. Instead, he
may first partition the circuit to sub-circuits whose functions can be tested individu-



4 Gate Camouflaging-Based Obfuscation 95

ally from a functional IC, and then perform a brute force search for the functionalities
of the camouflaged gates in each sub-circuit individually. He can of course use some
other smarter approaches that leverage the input–output difference of the potential
gate types of the camouflaged gates.

The key idea of the circuit partition-based attack is to leverage the divide and
conquer methodology to partition camouflaged gates into multiple sub-circuits, then
target each sub-circuit individually. The benefit of circuit partition is breaking down
the original large interference circles of camouflaged gates to multiple small interfer-
ence circles in order to reduce the brute force complexity. Before elaborating circuit
partition-based attack, we first give the definition:

Definition 1 The Maximum FanIn-Cone rooted at a primary output Z is defined as
MFICZ = {Gi | gate Gi belongs to the circuit and there exists a path Gi → Z}, which
is the set of all the gates whose outputs will directly or indirectly feed into the gate
that generate output Z.

Thewordmaximum inMFICZ indicates that all the gates that will impact the value
of output Z should be included. In another word, if a gate does not belong to MFICZ

for someoutput Z, thenwewill not be able to observe fromZany changes on that gate.
Notice that in this chapter, unless it is specified otherwise, we will use MFICZ for
both the maximum fanin-cone rooted at the primary output Z and the corresponding
sub-circuit that includes all these logic gates. For example, in the circuit shown
in Fig. 4.3, we have MFICO1 = {C1, C2, C3, G1, G2, G3, G5}, and MFICO2 =
{C1, C2, G2, G3, G4, G5, G6}, where the latter is the sub-circuit shown in Fig. 4.4.

Accordingly, MFIC’s function, as a sub-circuit, can be studied by directly feeding
the PIs of the MFIC and observing the corresponding output. A camouflaged gate,
like other logic gates, may belong to multiple MFICs. For instance, five logic gates,
including C1 and C2, belong to both MFICO1 and MFICO2 in the above example.
Thus, when an attacker applies brute force attack to resolve the camouflaged gates,
he can start with the MFIC that has the fewest number of camouflaged gates. In the
above example, after he resolves C1 and C2 from MFICO2, MFICO1 will have only
one camouflaged gate C3 left to solve. This greedy approach is the basic idea behind
the following smart circuit partition-based attack shown in Algorithm1.

In line 1, we partition the circuit into MFICs, which can be done with standard
algorithm. In the rest of the algorithm, we iteratively resolve the camouflaged gates
in one MFIC at a time. We greedily choose MFIC with the minimum number of
unresolved camouflaged gates to apply brute force attack (lines 2–3) (for example
in Fig. 4.3, there are three camouflaged gates in MFICO1 and two camouflaged gates
in MFICO2, so we will start with MFICO2). This selection ensures that brute force
efforts in current iteration can be minimized (line 7). The obfuscated netlist will
then be updated by replacing the resolved camouflaged gates with the corresponding
logic gates they implement (line 8). When there are multiple eligible MFICs with
the same minimum number of camouflaged gates, the algorithm will choose the one
that minimizes the maximum number of camouflaged gate number in the remaining
MFICs (lines 4–6). The while loop in lines 9–12 checks whether there exist relevant



96 X. Wang et al.

unresolvable camouflaged gates that will become resolvable when the obfuscated
netlist is updated (in Fig. 4.3, C3will become resolvable after C1 and C2 are resolved
in MFICO2). If there is any, we resolve it by the VLSI testing principles-based
attack [7].

ALGORITHM 1. Smart Circuit Partition based Attack
Input: Camouflaged Netlist, Functional IC.
Output: Original Netlist.
1: partition the circuit to MFICs; 
2: while there exist unresolved camouflaged gates in the netlist
3: find MFIC(s) with minimum unresolvable camouflaged gates;
4: while there is more than one MFIC eligible
5: select the one minimizes next maximum camouflaged gates number;
6: end
7: brute force search possible functionality combinations;
8: update netlist;
9: while there are unresolvable camouflaged gates become resolvable
10: resolve them;
11: update netlist;
12: end
13: end
14: return the resolved netlist.

Suppose that there are N camouflaged gates in the netlist and each camouflaged gate
can implement any one of the three logic gates {XOR,NAND, orNOR}.When anRE
attacker does not have any more information, there will be 3N possible functionality
combinations to enumerate. However, the circuit partition-based attack algorithm in
Algorithm.1 clearly shows that the attacker can resolve all the camouflaged gates
much more efficiently. Let ni be the number of camouflaged gates in the MFIC we
selected during the i-th iteration (line 3), the brute force search process will search
3ni cases in the worst case. Let ri be the number of camouflaged gates that become
resolvable (lines 9–12) during the same iteration after the i-th MFIC is resolved, we
have�i=1,2,...(ni + ri) = N. Since it takes only two PI patterns to resolve each of the ri
camouflaged gates in line 10 [7], it becomes clear that the complexity of the algorithm
in Algorithm1 is dominated by 3nmax , where nmax = max{ni}, the largest number of
camouflaged gates in the sameMFIC that need to be resolved simultaneously. In real
design, nmax normally is much smaller than N and does not increase with N. Our
experiments on benchmark circuits indicate that nmax is usually small (less than 10)
[8].

Theorem 1 The security of a camouflaged circuit against the circuit partition-based
attack is determined by nmax, the largest number of camouflaged gates in the same
MFIC that need to be resolved simultaneously.



4 Gate Camouflaging-Based Obfuscation 97

4.3 Mitigating the Circuit Partition-Based Attack

From Theorem1, we see that it is crucial to have a large nmax, which means that we
want to keep the camouflaged gates together such that the attacker cannot partition
them into multiple sub-circuits and resolve separately. A gate classification method
can help us to select the to-be camouflaged gates for this purpose.

Definition 2 For a gateG,MFICSG is the set ofMFICPO that G belongs to. Formally,
MFICSG = {MFICPOi |POi is a primary output and G ∈ MFICPOi}.

To compute MFICSG, we can first compute MFICPO for all the primary outputs,
then construct each of the MFICSG by examining which MFICPO gate G belongs to.
For example, for the circuit in Fig. 4.5, we have

MFICO1 = {G1, G2, G3, G5},
MFICO2 = {G2, G3, G4, G6},
thus
MFICSG1 = MFICSG5 = {MFICO1},
MFICSG2 = MFICSG3 = {MFICO1, MFICO2},
MFICSG4 = MFICSG6 = {MFICO2}.
Theorem 2 MFICS is an equivalent relation and thus we can partition the circuit
by putting the gates with the same MFICS into the same equivalent class. That is,
gates G1, G2, …, Gn are partitioned to the same class if and only if MFICSG1 =
MFICSG2 = · · · = MFICSGn.

In the above example, the circuit will be partitioned into three equivalent classes:
{G1, G5}, {G2, G3}, and {G4, G6}. Notice that gates in the same equivalent class
cannot be partitioned further. This is an important feature for the following practical
gate selection method that mitigates circuit partition-based attack.

As a reverse engineering attacker can only assign values to the PIs and observe the
corresponding POs from an unpackaged functional IC,MFICPO will be theminimum
sub-circuit whose function can be tested by the attacker. Therefore, if we select gates
to obfuscate from the same equivalent class, for any MFICPOi of the circuit that the
attacker can attack, either all of the camouflaged gates belong to it, or none of them
belongs to it. Thus the attacker will not be able to partition the camouflaged gates

Fig. 4.5 A circuit example
for gate classification. Gates
in the same class, {G1, G5},
{G2, G3}, and {G4, G6}, are
marked with the same color



98 X. Wang et al.

into multiple sub-circuits to perform attacks individually. This criterion should be
added to the enhanced circuit camouflaging method in [7] for better security.

4.4 Multiplexer-Based Circuit Obfuscation

Recall that the more functionalities a camouflaged gate can achieve, the more dif-
ficult it will be for attackers to resolve the camouflaged gate. As we have demon-
strated above, when the configurable CMOS cell can only implement the function-
ality of XOR, NAND, or NOR gate, there will be two major security concerns. First,
it restricts the selection of the gates to be camouflaged to only these three types
of gates, limiting the value of nmax. Second, such camouflaged gate can be easily
resolved by applying two distinct input patterns (as shown in the examples above).
The multiplexer-based circuit obfuscation method [9, 10] solves this problem.

A 4× 1 multiplexer (MUX) has four data lines {X1, X2, X3, X4}, two selection
bits {A, B} and one output line S that comes from one of the data lines determined
by the value of the selection bits A and B. Specifically, the output can be expressed as

S = A′B′X1 + A′BX2 + AB′X3 + ABX4

By assigning proper values to the data lines, a 4× 1MUX can implement any 2-input
logic function (see Table4.2). For example, when X1 = 0, X2 = 1, X3 = 1, and X4
= 0, the MUX becomes XOR.



4 Gate Camouflaging-Based Obfuscation 99

In multiplexer-based circuit obfuscation, special designed MUX is utilized as
the configurable logic unit to replace conventional gates. Programmable camouflage
connector is used to configure the functionality of configurable logic unit. Similar to
the contacts used in [7], the programmable camouflage connector can be programmed
to be either a connection or an isolation,while appears to be physically identical under
optical or electron microscopy.

More specifically, as shown in Fig. 4.6, the selection lines A and B and output
line S of the multiplexer act as the inputs and output of the configurable logic unit,
respectively. Each input line Xi (i = 1,2,3,4) is connected to Vdd and Vss by two

Table 4.2 A 4× 1 MUX can implement all the 16 2-input Boolean functions

Function Number X1 X2 X3 X4 Logic expression of S

1 0 0 0 1 AB

2 0 0 1 0 AB

3 0 0 1 1 A+0· B=A

4 0 1 0 0 ĀB

5 0 1 0 1 0·A+B=B

6 0 1 1 0 A ⊕ B

7 0 1 1 1 A+B

8 1 0 0 0 Ā · B̄ = A + B

9 1 0 0 1 A � B

10 1 0 1 0 B̄

11 1 0 1 1 A + B

12 1 1 0 0 Ā

13 1 1 0 1 Ā + B

14 1 1 1 0 AB

15 1 1 1 1 const 1

16 0 0 0 0 const 0

Fig. 4.6 Each input line of
the MUX is connected to two
programmable camouflage
connectors, one is configured
to be a connection and the
other to be an isolation

X1 X2 X3 X4

A
B

S

Xi, i=1,2,3,4

Vdd Vss

Programmable 
Camouflage Connectors



100 X. Wang et al.

camouflage connectors, but only one is programmed to be a connection, the other
one is programmed to be an isolation. Xi =1 when the camouflage connector that
connected to Vss is configured as a connection, and Xi = 0 when the camouflage
connector that connected to Vdd is configured as a connection.

Algorithm 2 shows a heuristic algorithm to perform circuit obfuscation with such
MUXs. As analyzed in the previous section, we select gates from the same equivalent
class so they cannot be resolved individually. The algorithm makes the gate that
generates the PO, called outGates, of the MFICS of an equivalence class to appear as
black boxes by obfuscating the outGates with MUXs, and blocking at least one input
of the MUX (lines 4–9). Then desired number of gates are iteratively selected from
the class to obfuscate, following the principle of minimizing performance overhead
(lines 10–18). When there are more than one eligible gate class, the algorithm will
get different versions of obfuscated circuits (line 19) and will return the one that
results in minimum performance overhead (line 21).



4 Gate Camouflaging-Based Obfuscation 101

4.5 Conclusions

In this chapter, we study the popular gate camouflaging-based obfuscation with focus
on its security analysis. We use the circuit partition-based attack to demonstrate that
the selection of camouflaged gates is crucial to increase the attack complexity of
reverse engineering. We show that mitigation methods such as smart gate selection
and the use of multiplexer can help to secure gate camouflaging against reverse
engineering. It is our belief that both ‘spear’ and ‘shield’ need to be developed in the
war against attackers.

To make this promising circuit camouflaging technique practical in thwarting
reverse engineering attacks, there still exist many challenges. Perhaps the most sig-
nificant one is that the overhead in applying CMOS camouflaging gates can be rather
high in terms of circuit timing, power consumption, and area, especially when a
high level of protection is needed. How to reduce the overhead incurred by circuit
camouflagingwould continue to be an urgent need. The second challenge is the devel-
opment of countermeasures against the newly proposed and powerful de-obfuscation
attacks based on SAT solver. Such attacks can effectively exclude incorrect function-
ality combinations of the camouflaged gates, successfully bypassing the exponential
complexity of brute force. Although it cannot ensure to be effective in all circum-
stances, it has already posed a serious threat to many circuit camouflaging scenarios.
Finally, it will be interesting to study intrinsic reconfigurable properties of emerging
devices and how they can be utilized for circuit camouflaging.

Acknowledgements Mingze Gao and Gang Qu were supported in part by AFOSR MURI under
award number FA9550-14-1-0351.

References

1. QuG,PotkonjakM(2003) Intellectual property protection inVLSI designs: theory andpractice.
Kluwer Academic Publishers, Dordrecht. ISBN 1-4020-7320-8

2. Torrance R, James D (2011) The state-of-the-art in semiconductor reverse engineering. In:
Proceedings of the ACM/IEEE design automation conference (DAC), pp 333–338

3. Quadir SE, Chen J, Forte D et al (2016) A survey on chip to system reverse engineering[J].
ACM J Emerg Technol Comput Syst (JETC) 13(1):6

4. Chow L, Baukus J, Clark W (2002) Integrated circuits protected against reverse engineering
and method for fabricating the same using an apparent metal contact line terminating on field
oxide. US Patent 20020096776

5. Chow L, Baukus J, Wang B, Cocchi R (2012) Camouflaging a standard cell based integrated
circuit, US Patent 8151235

6. Cocchi RP, Baukus JP, Chow LW,Wang BJ (2014) Circuit camouflage integration for hardware
ip protection. In: Proceedings of the 51st annual design automation conference (DAC 14), New
York, NY, USA. ACM, pp 153:1–153:5

7. Rajendran J, Sam M, Sinanoglu O, Karri R (2013) Security analysis of integrated circuit cam-
ouflaging. In: Proceedings of the ACM conference on computer and communications security
(CCS), pp 709–720



102 X. Wang et al.

8. WangX,ZhouQ,CaiYet al (2016) Is the Secure IC camouflaging really secure. In: Proceedings
of the IEEE international symposium on circuits and systems (ISCAS), pp 1710–1713

9. Liu B, Wang B (2014) Embedded reconfigurable logic for ASIC design obfuscation against
supply chain attacks. In: Proceedings of the design automation and test in Europe (DATE).
IEEE, pp 1–6

10. Wang X, Jia X, Zhou Q et al (2016) Secure and low-overhead circuit obfuscation technique
with multiplexers. In: Proceedings of the ACM great lakes symposium on VLSI, pp 133–136


	4 Gate Camouflaging-Based Obfuscation
	4.1 Circuit Camouflaging with Configurable Gates
	4.1.1 Configurable CMOS Cells
	4.1.2 Circuit Camouflaging Technique
	4.1.3 Enhanced Circuit Camouflaging
	4.1.4 Defeating the Enhanced Circuit Camouflaging

	4.2 Circuit Partition-Based Attack
	4.3 Mitigating the Circuit Partition-Based Attack
	4.4 Multiplexer-Based Circuit Obfuscation
	4.5 Conclusions
	References


