
Chapter 3
Logic Encryption

Jeyavijayan (JV) Rajendran and Siddharth Garg

3.1 Introduction

Logic encryption1 hides the functionality and the implementation of a design by
inserting additional gates into the original design [4–6]. In order for the design to
exhibit its correct functionality (i.e., produce correct outputs), a valid key has to be
applied to the encrypted design. The gates inserted for encryption are the key-gates.
Upon applying a wrong key, the encrypted design will exhibit a wrong functionality
(i.e., produce wrong outputs).

Example. Consider the circuit shown in Fig. 3.1 which is encrypted using key-
gates K1 and K2. The inputs I1–I6 are the functional inputs, and K1 and K2 are the
key-inputs connected to the key-gates. On applying the correct values of the keys
(K1 = 0 and K2 = 1), the design will produce a correct output; otherwise, it will
produce a wrong output.

EPIC [1] incorporates logic encryption into the IC design flow, as shown in
Fig. 3.2. In the untrusted design regime, the IC is encrypted, and its functionality
is not revealed. Post-fabrication, the IP vendor activates the encrypted design by
applying the valid key. The key is stored in a tamper-evident memory inside the
design to prevent access to an attacker.

Logic encryption prevents attacks such as piracy and hardware Trojans. Since the
design is encrypted by the designer, the foundry cannot use any copies or overproduce

1Researchers have previously used the terms “logic obfuscation” [1, 2] and “logic locking” [3]
for this purpose.

J. Rajendran (B)
Department of Electrical Engineering, The University of Texas at Dallas,
800 W Campbell Road, Richardson, TX 75080, USA
e-mail: jv.ee@utdallas.edu

S. Garg
New York University, New York, NY, USA
e-mail: siddharth.garg@nyu.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_3

71



72 J. Rajendran and S. Garg

(a) (b)

Fig. 3.1 a Original circuit. b A circuit encrypted using two key-gates K1 and K2 based on the
technique proposed in [1]. By applying the input pattern 100000, an attacker can sensitize key-bits
K1 and K2 to the outputs O1 and O2

Fig. 3.2 The top blue box represents the EPIC design flow [1]. The design is in the encrypted form
in the untrusted design regime. In the untrusted regime, an attacker can obtain the encrypted netlist
from (1) the IC design or by reverse engineering the (2) layout, (3) mask, or (4) a fabricated IC, and
(5) the functional IC from the market. Using this attack, the attacker can get a deciphered netlist
and make pirated copies

ICs without the secret keys. Furthermore, it prevents an attacker from analyzing the
structural behavior of the design, thereby hindering Trojan insertion.

Outline of the chapter. Section3.2 explains the protocol on how logic encryp-
tion can be used in an IC supply chain, and Sect. 3.3 defines the threat model for
logic encryption, listing out the capabilities of the attackers and their limitations.
Section3.4 lists the different security properties and metrics for logic encryption.
Since its introduction in 2008, several attacks have been introduced against logic
encryption. Section3.5 details a set of attacks that enables an attacker to learn the
correct outputs of the design, even when the design is subjected to logic encryption.
In another set of attacks explained in Sect. 3.6, an attacker can learn the correct key
used for logic encryption, by observing input–output pairs. Additionally, this section
also explains the set of countermeasures against this class of attacks. Recently, new
vulnerabilities due to an untrusted test facility have undermined the security of logic
encryption. Unlike the previous attacks, this class of attacks relies only on the test pat-
terns and responses. Section3.7 details this class of attacks. Finally, there are several



3 Logic Encryption 73

techniques that rely on the security offered by logic encryption, which are explained
in Sect. 3.8. Section3.9 concludes this chapter by comparing different attacks and
their countermeasures.

3.2 Protocol

The protocol for logic encryption is as follows [1].
Step 1: The designer encrypts the design with a common key, CK . This is the key
shown in Fig. 3.2. On applying CK, the encrypted design produces correct outputs.
The target IC is then designed along with the encrypted design, a public key crypto-
graphic algorithm (e.g., RSA) and an on-chip random number generator. The IC also
has a master public key (Master-Pub). Master-Pub’s private pair is master private key
(Master-Pri), which is not stored on-chip.
Step 2: The designer sends this design to the untrusted foundry, where the chip is
manufactured. The manufactured chip is then sent to the designer.
Step 3: The designer activates the on-chip random number generator to generate a
public–private key pair, RCK-Pub and RCK-Pri, respectively. RCK-Pub is known
to everyone. The designer encrypts CK with MK-Pri and RCK-Pub. The resultant
ciphertext is called input key (IK).
Step 4: IK is given to the user of this chip. The user applies IK to the chip to activate
it. The public key cryptographic module within the chip decrypts IK with MK-Pub
and RCK-Pri to obtain CK. The on-chip infrastructure applies CK to the encrypted
design and makes the IC functional. This process is called activation. Since IK is
encrypted with public–private key pairs, it does not reveal CK. Thus, the user may
not be able to unlock (i.e., reverse engineer) the design, even if he is able to unlock
his chip (i.e., make the IC functional).

Identifying MK-Pri and RCK-Pub will help an attacker to overproduce the ICs.
An attacker does not need design to a new mask. He can reuse the existing mask
and unlock them by determining their IKs using MK-Pri and RCK-Pub. Identifying
CK will help an attacker to pirate the design and identify “safe” places in a design
to insert Trojans2. An attacker can extract the protected design (without the public
key cryptographic algorithm and on-chip random number generator), unlock it using
CK, create a new mask, and manufacture the pirated ICs. For the rest of this chapter,
we will consider how an attacker can extract CK. We refer to CK as the “key.”

3.3 Threat Model

The attacker can be either in the foundry or be the end user. The objective of the
attacker is to determine the secret keys used for logic encryption. By determining
the keys, he/she can decipher the functional netlist, make pirated copies, and sell

2Safe places in a design in the context of hardware Trojans refer to circuit nodes with low observ-
ability, low controllability, minimal impact on power and delay [7, 8]. places to insert Trojans.



74 J. Rajendran and S. Garg

them illegally, thereby defeating the purpose of logic encryption. Furthermore, with
the knowledge of the keys, he/she can analyze the structural behavior of the design,
thereby inserting Trojans at “safe places.”

The attacker needs the encrypted netlist and a functional IC. He/she can obtain
the encrypted netlist from (1) the IC design, or by reverse engineering the (2) layout,
(3) mask, or (4) a manufactured IC as shown in Fig. 3.2. The functional IC, (5) in
Fig. 3.2, is bought in the open market.

3.4 Security Properties and Metrics

In the rest of this chapter, we focus on security of logic encryption assuming that the
common key (CK) is the most critical security asset. Indeed, if CK is compromised,
the attacker learns the IC’s intended functionality, thus compromising the designer’s
IP and opening the door to hardware Trojan insertion. Furthermore, we note that
even though the EPIC protocol does protect against overbuilding even if CK is com-
promised (each chip is activated only after the designer supplies the chip-specific
IK), a determined attacker can still overbuild ICs using a new mask in which CK
is hardwired to its compromised value. Such an attack is easily within the range of
capabilities of a foundry attacker.

To thwart these attacks, a logic encryption technique has to satisfy the following
properties:

1. Correctness.A logic encryption technique should produce a correct output upon
applying the correct key. If it produces an incorrect output upon applying the
correct key, the encrypted IC/design will violate the design specification, and the
design will be considered “defective.”

2. Resilient against output-guessing attacks.A logic encryption technique should
prevent an attacker from guessing the correct outputs from previously observed
input–output pairs. To thwart such attacks, the output entropy upon applying the
wrong key should be maximized. In other words, the Hamming distance between
the outputs of the design upon applying the incorrect key should be 50%, as this
value maximizes the entropy [4].

3. Entanglement.One should not be able to remove the key-gates from the protected
circuit. Otherwise, an attacker can remove the key-gates, analyze the unprotected
components, and obtain the original design.

4. Resilient against key-guessing attacks. A logic encryption technique should
prevent an attacker from guessing the correct key value from previously observed
input–output pairs. To thwart such attacks, key-gates should be inserted such that
the number of input–output pairs required to obtain the key value is exponential
to the size of the key.

5. Overhead. The logic encryption technique should aim to minimize area, delay,
and power overheads, but not at the expense of the security objectives listed above.



3 Logic Encryption 75

3.5 Thwarting Output-Guessing Attacks

In logic encryption, different combinational logic elements are inserted in a circuit to
conceal the functionality of a design. These elements can be XOR/XNOR gates [1, 4,
5, 9], AND/ORgates [6],MUXes [3, 4], or a combination of these elements [10]. One
of the inputs to these gates serves as a key-input, which is a newly added signal driven
by a tamper-evident on-chip memory. Unless the correct key is loaded onto the on-
chip memory, a design will not work correctly. The activation of a encrypted IC can
be conducted either prior to or after the manufacturing test. Secure communication
infrastructure is needed if the keys are to be loaded remotely onto the chip [9, 11].

EPIC [9] is a logic encryption framework which inserts XOR/XNOR gates,
referred as key-gates, such that these gates have minimal impact on circuit delay.
One can configure these gates as buffers or inverters using these key-inputs. The
insertion of the gates is done after logic synthesis and before physical synthesis. The
design can then be resynthesized. If the key-gates were left as such without any other
modifications to the circuit, the key-bits could be extracted by inspecting if a key-
gate is XOR or XNOR. To eradicate such a simple deduction analysis of the key-gate
types and the key values, the netlist can be synthesized such that the XOR/XNOR
key-gates are replaced with other gates like AND/OR/NAND, or the inverters in the
design can be moved around to change the polarity of the key-gates.

Since EPIC inserts the key-gates based on only delay overhead as a constraint,
there is no guarantee that an incorrect key produces incorrect output for all the input
patterns. Rajendran et al. [4, 5] developed a method, based on the principles of VLSI
testing, that inserts XOR/XNOR gates or MUXes to achieve controllable corruption
of the output bits. This technique maximizes the Hamming distance between the
correct output and the incorrect outputs on applying a random incorrect key.

Testing principle-based insertion of key-gates Key-gates should be inserted in
such a way that any wrong key causes a wrong output. This is similar to the situation
where a circuit produces a wrong output when it has a fault that has been excited and
propagated to the outputs. The following observations relate logic encryption and
fault analysis in IC testing. These observations are used to insert XOR/XNOR gates.

Fault excitation: Application of a wrong key can be associated with the activation
of a fault. For a wrong key, either a stuck-at-0 (s-a-0) or a stuck-at-1 (s-a-1) fault will
get excited when key-gates are used for encryption.

Consider the C17 circuit (from the ISCAS’85 benchmark set) encrypted with one
XOR gate (E1) as shown in Fig. 3.3(b). Here, E1 is the key-gate. If a wrong key (K1
= 1) is applied to the circuit, the value of net B is the negated value of net A. This
is the same as exciting an s-a-0 (when A = 1) or an s-a-1 (when A = 0) fault at the
output of G7 as shown in Fig. 3.3(a). Please note that s-a-0 (s-a-1) fault activation
can be attributed to the case where the net in question is supposed to yield a value of
1 (0) during the functional mode of operation.

Fault propagation: Not all wrong keys can corrupt the output as the effects of
a wrong key may be blocked for some of the input patterns. This is similar to



76 J. Rajendran and S. Garg

(a) (b) (c)

Fig. 3.3 Relation between logic encryption and IC testing: a fault excitation, b propagation, and c
masking

the scenario where not all input patterns can propagate the effect of a fault to the
output [12].

Consider the circuit shown in Fig. 3.3(b). Let a wrong key (K1 = 1) be applied
to the circuit. For the input pattern 00000, an s-a-0 fault gets excited at the output of
E1 and propagates to both outputs. The value at the output of E1 is 0 instead of 1,
and the output is 11 instead of 00. For the input pattern 01110, even though the s-a-0
fault gets excited at the output of E1, the output is 11, which is the correct output, as
the fault effects have been blocked.

To propagate the effect of an excited fault, in our case the wrong key, non-
controlling values should be applied to the other inputs of the gates that are on
the propagation path of the fault. Since not all input patterns guarantee the non-
controlling values on the fault propagation path, a wrong key will not always corrupt
the output.

Faultmasking: Inserting a single key-gate and applying awrong key are equivalent
to exciting a single stuck-at fault. Likewise, inserting multiple key-gates and apply-
ing a wrong key are equivalent to simultaneously exciting multiple stuck-at faults.
However, when multiple faults are excited, they might mask one another. Therefore,
in logic encryption, when multiple key-gates are inserted, the effect of one key-gate
might mask the effect of other key-gates.

Consider the encrypted circuit shown in Fig. 3.3(c).When the key-bits are 000, the
correct functional output is 00 for the input pattern 00000. However, if the key-bits
are 111 (wrong key), the effect introduced by the XOR gate, E1, is masked by the
XOR gates E2 and E3. Consequently, the design produces the correct output, 00.
Similar to fault masking in IC testing, the effect of one XOR gate is masked by the
effect of the other two XOR gates.

Fault impact. To insert an XOR/XNOR as a key-gate, one needs to determine
the location in the circuit where, if a fault occurs, it can affect most of the outputs for
most of the input patterns. To determine this location, one uses fault impact defined
by Eq.3.1. From a set of test patterns, one can compute the number of patterns that
detect the s-a-0 fault (NoP0) at the output of a gate Gx and the total number of output
bits that get affected by that s-a-0 fault (NoO0). Similarly, NoP1 and NoO1 for s-a-1
faults are computed.



3 Logic Encryption 77

Fault impact = (NoP0 × NoO0) + (NoP1 × NoO1) (3.1)

By inserting anXOR/XNORkey-gate at the locationwith the highest fault impact,
an invalid key will likely have the most impact on the outputs (i.e., the wrong out-
puts appear), indirectly enabling the logic encryption technique to reach the 50%
Hamming distance metric.

Improving fault analysis-based insertion. XOR/XNORkey-gates are combined
with MUX key-gates to achieve a Hamming distance closer to 50% [10]. Dupuis et
al. [6] propose a technique that inserts AND/OR key-gates to minimize the number
of low controllability locations in a circuit, making it difficult to insert hardware
Trojans in the circuit.

3.6 Key-Guessing Attacks

Multiple attacks have been presented against existing logic encryption techniques.
The objective of an attacker is to figure out the key used for encryption of the circuit [3,
10, 13]. These attacks assume that the attacker has access to an encrypted netlist and
a functional IC, on which one can apply inputs and observe outputs. There are two
main types of attacks — key propagation and SAT attacks — that are described
below:

3.6.1 Key Propagation Attacks [13]

The value of an key-bit can be determined if it can be sensitized3 without being
masked/corrupted by the other key-bits and/or inputs. By observing the output, the
value of sensitized key-bit can be determined, given that other key-bits (similar to
unknown X-sources4) do not interfere with the sensitized path.

Once an attacker determines an input pattern that sensitizes the key-bit to an output
without any interference, it is applied to the functional IC, i.e., the IC with the correct
keys. Now, this pattern will sensitize the correct value of the key-bit to an output. An
attacker can observe this output and resolve the value of the key.

Example: Consider the key-input K1 in Fig. 3.1. It will be sensitized to output
O1 if the value at the other input of gate G6 is 0 (non-controlling value for an OR
gate). This can be achieved by setting I1 = 1, I2 = 0, and I3 = 0. As the attacker has
access to the functional IC, he/she can apply this pattern and determine the value of

3Sensitization of an internal line l to an output O refers to the condition (values applied from the
primary inputs to justify the side input of gates on the path from l toO to the non-controllable values
of the gates) which surjectively maps l to O and thus renders any change on l observable on O.
4X-sources: Uninitialized memory units, bus contentions, or multicycle paths are the source of
unknown response bits, i.e., unknown-Xs in testing. They are non-controllable.



78 J. Rajendran and S. Garg

Fig. 3.4 Miter-like circuit to
determine DIPs [13]

K1 on O1. For example, if the value of O1 is 0 for that input pattern, then K1 = 0;
otherwise, K1 = 1.

3.6.2 Boolean Satisfiability (SAT) Attacks [13, 14]

The SAT attack iteratively rules out incorrect key values using distinguishing input
patterns (DIPs). A distinguishing input pattern Xd is an input value for which at
least two different key values, k1 and k2, produce differing outputs, o1 and o2,
respectively. Since o1 and o2 are different, at least one of the key values or both of
them are incorrect. It is possible for a single DIP to rule out multiple incorrect key
values.

The DIPs are found by constructing a miter-like circuit as illustrated in Fig. 3.4.
The primary inputs are common to the two copies of the encrypted circuit, while the
key-inputs are left independent. The corresponding outputs of the two circuits are
XORed and then ORed to generate diff signal. The conjunctive normal form (CNF)
of the resultant circuit is generated and passed to a SAT solver. The SAT solver finds
a DIP Xd for which diff = 1, i.e., the outputs of the two circuits are different. Xd is
applied to the functional IC, and correct output Id is obtained. The input–output pair
(Xd, Id) is used to identify incorrect key values.

A single pattern may not rule out all incorrect keys. Hence, an iterative process
is used in the SAT attack, as shown in Fig. 3.5. A new pair (Xd, Id) is added to the
SAT formula in each iteration, and the SAT formula is updated. The generated DIP
is applied to the functional IC, and the set of keys that results in an incorrect output is
eliminated. The attack is successful when no further DIP is found, which implies that
all incorrect key values have been pruned. Example. Let us consider the application
of the SAT attack on the encrypted example circuit in Fig. 3.6. Figure3.7 presents
the output of the original circuit in column Y and the output of the encrypted circuit
for different key values in the following columns. For three key-inputs, there are
eight possible key values, which are represented as k0, k1,..., k7. When the SAT
attack is launched on the encrypted circuit, it takes four DIPs to identify the correct
key [13]. In iteration 1, the DIP 011 is used. For this DIP, the key value k4 alone



3 Logic Encryption 79

Fig. 3.5 SAT attack on logic encryption [13]

Fig. 3.6 Logic encryption usingXOR/XNORgates [1]. The correct key value is 110. This technique
is vulnerable to SAT attack [13]

Fig. 3.7 Analysis of the SAT attack against logic encryption [13]. Columns k0–k7 show the
encrypted circuit’s output for different key values. Red entries in each row denote an incorrect
output. The correct key is k6

produces a wrong output as highlighted in red. Thus, only one incorrect key is ruled
out in the first iteration. In the second and third iterations, key values k1 and k7 are
ruled out, using the patterns 111 and 101, respectively. The pattern 100, used in the



80 J. Rajendran and S. Garg

Fig. 3.8 A circuit encrypted
using two key-gates K1 and
K2 based on the technique
proposed in [15]. This
prevents key propagation
attacks

fourth iteration, eliminates all incorrect keys and the attack successfully identifies
the correct key as k6.

The attack could have succeeded in the first iteration with a single DIP 100, if
this input pattern was tried first. Thus, the execution time of the attack depends on
the order in which the input patterns are applied for the SAT attack. The SAT attack,
however, chooses the DIPs arbitrarily [13]. The larger the number of incorrect key
values ruled out per DIP, the fewer the patterns needed for the attack, which implies
a smaller execution time of the attack algorithm.

3.6.3 Countermeasures to Attacks

Countermeasures to Key Propagation Attacks

In order to thwart key propagation attacks, key-gates are inserted such that an attacker
cannot propagate the output of a single key-gate [15]. This way, the observed output
value is a function of multiple key-gates. Key-gates are inserted such that their
sensitization path is blocked by each other. Such key-gates form a “clique.” As
the size of the clique increases, the attacker’s effort increases.

Example. Consider the circuit shown in Fig. 3.8 which is the same functional
circuit shown in Fig. 3.1, but the two key-gates K1 and K2 are at different locations.
Here, if the attacker has to propagate the effect of either of the keys, then one has to
force a “0” (non-controlling value of NOR gates) on the other input of G4. In order
to force this value, one has to control the key-inputs, which are inaccessible. Thus,
one cannot propagate the effect of a key to an output, failing to determine the values
of the key.

To break this scheme, the attack proposed in [10] targets the logic cones with the
smallest number of key-inputs and recovers the secret key by employing brute force.
The process is then repeated for the remaining logic cones in the circuit, sorted in an
increasing order by the logic cone size. To increase the complexity, the number of
MUX key-gates is increased to increase the size of the logic cone.

Countermeasure to SAT-Based Attacks [16]

To thwart this attack, clique-based insertion is used along with a cryptographic prim-
itive called one-way random functions (ORFs) [17]. ORFs, such as AES with a fixed



3 Logic Encryption 81

Fig. 3.9 ORF-based
countermeasure against
SAT-based attacks. K1 out of
K key-inputs in the
encrypted netlist is
connected to the ORF circuit

secret key, prevent an attacker from determining the inputs from the output [18].
First, the designer synthesizes an AES design with a fixed secret key (unknown to
the attacker). The resultant design implements a random function. Then, he applies a
randomly selected input to the AES with the fixed secret key, which serves as the key
for logic encryption. The output of the AES (with fixed secret key) is connected to a
subset of XOR/XNOR key-gates added for logic encryption. The designer knows the
fixed secret key to the AES and the input applied to AES, and he can configure the
key-gates as XOR/XNORs accordingly. This technique is illustrated in Fig. 3.9. The
original netlist is encrypted with K = K1 + K2 number of key-bits. K1 key-inputs
of the encrypted netlist are connected to the output of the AES (with fixed secret
key) circuit, and the remaining K2 key-inputs are connected to the on-chip memory.

This modified scheme will now withstand the SAT attack. A property of the AES
is that it is computationally infeasible to determine the inputs of AES from its outputs
when the key is unknown [18]. Thus, one cannot backtrace from the outputs of the
design and determine the inputs to the AES. In other words, the input to the AES is
the secret key for logic encryption.

The limitation of this scheme is it assumes the function-to-be-protected is an
unknown logic. Thus, it cannot protect against known functions, because an attacker
can “carve out” the logic implemented by the known function. It also assumes that the
AES with a fixed key implements a random function. When this random function is
cosynthesized with the target unknown function, an attacker cannot classify whether
a given gate in the resultant design is part of the random function or the function-to-
be-protected.

3.7 Impact of Testing on Logic Encryption

3.7.1 Motivation

Each fabricated chip goes through a manufacturing test that screens out the defec-
tive chips. Design for testability (DfT) engineers target generating test patterns that
maximize the fault coverage, minimize test pattern count, and reduce test power con-
sumption [19]. The state-of-the-art logic encryption frameworks pursue two different



82 J. Rajendran and S. Garg

Fig. 3.10 Logic encryption and IC activation in the IC design flow. Pretest activation and post-test
activation models

activation models, pretest and post-test activations, that differ in the time of activa-
tion of an IC with respect to the manufacturing test. The two models are illustrated
in Fig. 3.10 and highlighted in red and green colors, respectively.

Pretest activation. The ICs are activated prior to the manufacturing test, typically
conducted in the foundry or outsourced to anOSAT. Since the IP owner does not want
to reveal the secret key to the untrusted foundry, on-chip public key cryptographic
infrastructure [1] is used to load the secret key securely on the chip. On passing the
manufacturing test, the ICs are shipped for assembly/sales directly from the foundry,
which is useful in meeting time-to-market constraints.

Post-test activation. The ICs are activated after performing the manufacturing
test. Either remote activation [20] or in-house activation [21] can be employed. In-
house activation requires shipping of the encrypted IC from the foundry to the trusted
facility, eliminating the need for on-chip cryptography.

Evolving business and threat models. Fabless and fab-lite are the evolving busi-
ness models for semiconductor companies [22]. Fabless companies, such as Apple
Inc., outsource IC fabrication (to Samsung and TSMC [23]), testing, and assem-
bly services. Fab-lite companies such as TI [22] may outsource IC fabrication (to
SMIC [24]) and testing, but conduct packaging and assembly in-house. Given the
above business models, Apple may activate the ICs remotely using pretest activation,
and TI may activate the ICs in-house using post-test activation. However, the test
and security implications of these scenarios have never been studied.

3.7.2 Pretest Activation

In pretest activation, the secret key is loaded onto the IC prior to the manufacturing
test. Themanufacturing test can be conducted in the foundry or a separate test facility
(OSAT [25]). Since an IP owner wants to protect the secret key from being exposed to
either the foundry or the OSAT, he can load the secret key securely on the chip using
public key cryptography infrastructure. Such infrastructure can incur significant area
overhead [1].

As the test is to be conducted with the key in place, the secret key values are
applied as constraints on the key-inputs during the test generation phase, which can
impact the test quality and costs, as well as the security of logic encryption.



3 Logic Encryption 83

3.7.2.1 Threat Model

The attacker is a person in the foundry or test facility with access to the following:

1. An encrypted netlist EK , which can be obtained by reverse engineering [26] or IP
piracy [27].

2. Test stimuli T and responses Γ .

Impact on Security

To highlight the security vulnerabilities of pretest activation, we develop a test data
mining attack that can reveal the secret key used in pretest activation of logic encryp-
tion.

Attack methodology. During the test pattern generation phase, a DfT engineer
will apply the correct key Kcorr as a constraint and obtain a set of test patterns that
maximize fault coverage.

An attacker can therefore apply the test stimuli as input constraints and the test
responses as output constraints and search for the potentially correct key KP that
maximizes the fault coverage under the specified constraints. The attack is an opti-
mization problem: The objective is to maximize the fault coverage FC under the test
stimulus T and test response Γ constraints, as follows:

maximize FC

subject to ∀
1≤i≤N

EK(KP,Ti) = Γi

solve for KP

(3.2)

The rationale for the attack to return the correct key is that the test patterns have
been generated with the objective of maximizing the fault coverage in the presence
of the correct key as a constraint. When the same set of test patterns are used as
constraints, the key that maximizes the fault coverage will be the one that is used to
generate the patterns.

Equation3.2 formulates a system of Boolean equations which can be solved
using techniques such as Boolean satisfiability (SAT) or integer linear program-
ming (ILP) [28]. Test generation (ATPG) algorithms are capable of solving a system
of Boolean equations while maximizing the fault coverage at the same time; ATPG
is, therefore, a natural candidate for solving the optimization problem in Eq. 3.2. The
complexity of the attack is NP-hard [29].

Let us consider the netlist shown in Fig. 3.8.When the correct key valueKcorr = 00
is used as a constraint, eight test patterns are generated by the ATPG tool as listed
in Table3.1. An attacker will launch the attack described in Eq.3.2 by applying the
test stimuli and responses as constraints and search for the potential key KP that
maximizes the fault coverage. The only key KP that maximizes the fault coverage
and satisfies these test pattern constraints is 00, and the corresponding fault coverage
is 82.43%. None of the other key values satisfies the test pattern constraints.



84 J. Rajendran and S. Garg

Table 3.1 Test patterns
(pretest activation) for the
netlist in Fig. 3.8. The correct
key Kcorr is used as a
constraint during ATPG

Key(Kcorr) Stimulus (T) Response (Γ )

00 011001 10

00 101010 01

00 101111 01

00 011101 10

00 111010 11

00 000111 11

00 110001 00

00 001011 10

3.7.3 Post-test Activation

In post-test activation, the manufacturing test is conducted on an encrypted IC with
the rationale that manufacturing test is a “structural” test and that the chip need not
be functional during the test. The IC can be activated post-test in one of the following
ways:

1. Aftermanufacturing test, defect-free ICs are shipped to a trusted facility, activated
by the IP owner, and shipped out for sale.

2. Tested ICs can also be activated remotely, similar to the case of pretest activation,
via public key cryptography infrastructure [30].

Impact on security. In post-test activation, both test pattern generation and man-
ufacturing test are conducted in the absence of the secret logic encryption key. Any
analysis performed by the attacker will only reveal these arbitrary key values and not
the secret key value. Therefore, post-test activation has no detrimental impact on the
security of logic encryption.

3.7.4 Hill Climbing Attack

The hill climbing search-based attack [21] uses test data information to guess the
secret key for pretest activated ICs. The attack tries to achieve zeroHamming distance
HDO between the test response and the encrypted circuit, for multiple random key
guesses. The individual bits in the initial key guess are flipped if the flip minimizes
the Hamming distance HDO.

Example. Consider the circuit shown in Fig. 3.8 and the test patterns shown in
Table3.1. In iteration 1, the hill climbing attack startswith a randomkeyvalue, say 00.
With this key value, the test patterns are applied and the responses are collected. The
cumulative Hamming distance between the collected responses and the responses
from the test set is calculated. In this case, it is 12. Now, one of the key-bits will
be flipped, say the new key is 01. The cumulative Hamming distance between the



3 Logic Encryption 85

collected responses and the responses from the test set is now reduced to 6. Since
there is a reduction in the cumulative Hamming distance, the second bit is retained
as 1. Now, the remaining bit is flipped (key = 00) and the cumulative Hamming
distance is 0. Thus, the attacker identifies that 00 is the correct key.

3.8 Other Techniques Based on Logic Encryption

Logic encryption is used not only in the context of IP protection, but also in other
applications as well. Two of them are described below:

3.8.1 Secure Split Test (SST) [20, 30]

An untrusted test facility can mark a defective IC, which failed the test, as a good
quality one. Consequently, a designer unknowingly sells low-quality ICs, spoiling
his reputation. Further, a test facility can also label “good” ICs as “faulty” ICs and sell
them in the blackmarket. Such an attack is possible onlywhen the attacker (malicious
tester) can identify whether an IC is defective or not. In order to prevent this attack, a
designer should hide the test responses. For this purpose, the test infrastructure should
be protected. Logic encryption aids in protecting the test infrastructure, thereby
hiding the correct responses.

3.8.2 Securing Processor Architectures [31]

Modern processors are equipped with several security modules to aid detection and
prevention of attacks. These modules usually inform the processor pipeline about
the attack through a signal, which is carried by a wire. Unfortunately, such wires are
susceptible to Trojan attacks, enabling an attacker to modify the target signal value
at will. Detecting a Trojan that modifies a single wire is difficult. Consequently, he
can launch traditional software attacks and still go undetected.

To prevent such attacks, logic encryption encrypts a processor module and stores
the key within a security module. The security module, instead of sending the signal,
sends the correct key to unlock a processor pipeline, when it does not detect an attack.
When it detects an attack, it sends a wrong key, resulting in an incorrect computation.
Since the size of Trojan required to mask/modify a multibit key is bigger than the
one required to modify a single wire, such Trojans can be easily detected.



86 J. Rajendran and S. Garg

Table 3.2 A comparison of the attacks against logic encryption

Study Attacker’s
location

Attacker’s
capabilities

Attack method Defense

Rajendran et
al. [15]

Foundry and end
user

Encrypted netlist
and an activated
IC

Sensitization of
key-bits to
outputs

Clique-based
insertion [15]

Subramanyan et
al. [13]

Foundry and end
user

Encrypted netlist
and an activated
IC

SAT-based
algorithm to rule
incorrect keys

Strong logic
encryption
OWF [16]

Plaza and
Markov [21]

Foundry and test
facility

Encrypted netlist
and test set

Find the key that
minimizes
Hamming
distance

Test-aware
combinational
logic encryption

Test data mining
attack [32]

Foundry and test
facility

Encrypted netlist
and test set

Find the key that
maximizes fault
coverage

Post-test
activation

SST [30] Foundry Activated ICs to
be tested

Reduce yield Encrypting test
circuits

3.9 Conclusion

Logic encryption is an emerging technique to thwart IP piracy, reverse engineering,
and hardware Trojans. Initially, most of the techniques proposed in the literature are
based on VLSI testing principles. However, recent attacks have broken these tech-
niques, even though the complexity of those techniques is NP-hard. Researchers are
now trying to adopt concepts from cryptography and apply them to logic encryption.

Table3.2 summarizes the different attacks and their countermeasures on logic
encryption. Clique-based insertion of key-gates can prevent sensitization attacks but
is susceptible to SAT attacks. Strong logic encryption can prevent both SAT and
sensitization attacks, but it is applicable only for random unknown logic. Test data
mining attack is applicable only when the attacker has access to test patterns and
responses, which are generated for the correct key; they can be prevented by post-
test activation.

References

1. Roy J, Koushanfar F, Markov IL (2008) EPIC: ending piracy of integrated circuits. In: Pro-
ceedings of the IEEE/ACM design, automation and test in Europe, pp 1069–1074

2. Chakraborty RS, Bhunia S (2009) HARPOON: an obfuscation-based SoC designmethodology
for hardware protection. IEEETransComput-AidedDes IntegrCircuits Syst 28(10):1493–1502

3. Plaza SM, Markov IL (2015) Solving the third-shift problem in IC piracy with test-aware logic
locking. IEEE Trans Comput-Aided Des Integr Circuits Syst 34(6):961–971



3 Logic Encryption 87

4. Rajendran J, Zhang H, Zhang C, Rose G, Pino Y, Sinanoglu O, Karri R (2015) Fault analysis-
based logic encryption. IEEE Trans Comput 64(2):410–424

5. Rajendran J, PinoY, SinanogluO,Karri R (2012) Logic encryption: a fault analysis perspective.
In: Proceedings of the IEEE/ACM design, automation and test in Europe, pp 953–958

6. Dupuis S, Ba P, Natale GD, Flottes M, Rouzeyre B (2014) A novel hardware logic encryption
technique for thwarting illegal overproduction and hardware trojans. In: Proceedings of the
IEEE international on-line testing symposium, pp 49–54

7. Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trustworthy hardware: identifying
and classifying hardware trojans. IEEE Comput 43(10):39–46

8. Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan taxonomy and detection.
IEEE Des Test Comput 27(1):10–25

9. Roy JA, Koushanfar F, Markov IL (2010) Ending piracy of integrated circuits. Comput
43(10):30–38

10. Lee Y-W, Touba N (2015) Improving logic obfuscation via logic cone analysis. In: Proceedings
of the Latin-American test symposium, pp 1–6

11. Contreras GK, Rahman MT, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: Proceedings of the IEEE international symposium on
defect and fault tolerance in VLSI and nanotechnology systems, pp 196–203

12. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory, and
mixed-signal VLSI circuits. Kluwer Academic Publishers, Boston

13. Subramanyan P, Ray S, Malik S (2015) Evaluating the security of logic encryption algorithms.
In: Proceedings of the IEEE international symposium on hardware oriented security and trust,
pp 137–143

14. Massad ME, Garg S, Tripunitara MV (2015) Integrated circuit (IC) decamouflaging: reverse
engineering camouflaged ICs within minutes. In: NDSS

15. Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Security analysis of logic obfuscation. In:
Proceedings of the IEEE/ACM design automation conference, pp 83–89

16. YasinM, Rajendran J, Sinanoglu O, Karri R (2015) On improving the security of logic locking.
IEEE Trans Comput-Aided Des Integr Circuits Syst 99:1–1

17. Matsuzaki N, Tatebayashi M (1994) Apparatus and method for data encryption with block
selection keys and data encryption keys. US Patent 5,351,299

18. Goldreich O (2001) Foundations of cryptography: basic tools, vol 1. Cambridge University
Press, Cambridge

19. BushnellM,AgrawalVD (2000) Essentials of electronic testing for digital, memory andmixed-
signal VLSI circuits, vol 17. Springer, New York

20. Contreras G, Rahman M, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: Proceedings of the IEEE international symposium on
defect and fault tolerance in VLSI and nanotechnology systems, pp 196–203

21. Plaza SM, Markov IL (2014) Protecting integrated circuits from piracy with test-aware logic
locking. In: Proceedings of the IEEE/ACM international conference on computer-aided design,
pp 262–269

22. McLellan P (2013) A brief history of the foundry industry, part 2, [Sep 1, 2015]. https://www.
semiwiki.com/forum/content/2109-brief-history-foundry-industry-part-2-a.html

23. AppleInsider (2015) Samsung reportedly nabs 75% of Apple’s next-gen ’A9’ SoC orders,
[Aug 10, 2015]. http://appleinsider.com/articles/15/01/26/samsung-to-reportedly-take-75-of-
apples-nextgen-a9-soc-orders

24. Releases SP (2014) SMICs Beijing fab wins TI quality excellence award, [Aug 10, 2015].
http://www.smics.com/eng/press/press_releases_details.php?id=107870

25. Wire B (2014) Research and markets: outsourced semiconductor assembly and test market
(OSAT) trends, [Aug 22, 2015]. http://www.businesswire.com/news/home/20140324005628/
en/Research-Markets-Outsourced-Semiconductor-Assembly-Test-Market

26. Torrance R, James D (2011) The state-of-the-art in semiconductor reverse engineering. In:
Proceedings of the IEEE/ACM design automation conference, pp 333–338

https://www.semiwiki.com/forum/content/2109-brief-history-foundry-industry-part-2-a.html
https://www.semiwiki.com/forum/content/2109-brief-history-foundry-industry-part-2-a.html
http://appleinsider.com/articles/15/01/26/samsung-to-reportedly-take-75-of-apples-nextgen-a9-soc-orders
http://appleinsider.com/articles/15/01/26/samsung-to-reportedly-take-75-of-apples-nextgen-a9-soc-orders
http://www.smics.com/eng/press/press_releases_details.php?id=107870
http://www.businesswire.com/news/home/20140324005628/en/Research-Markets-Outsourced-Semiconductor-Assembly-Test-Market
http://www.businesswire.com/news/home/20140324005628/en/Research-Markets-Outsourced-Semiconductor-Assembly-Test-Market


88 J. Rajendran and S. Garg

27. Rostami M, Koushanfar F, Karri R (2014) A primer on hardware security: models, methods,
and metrics. Proc IEEE 102(8):1283–1295

28. Clarke E, Gupta A, Kukula J, Strichman O (2002) SAT based abstraction-refinement using ILP
and machine learning techniques. In: Proceedings of the computer aided verification, Springer,
pp 265–279

29. Krishnamurthy B, Akers SB (1984) On the complexity of estimating the size of a test set. IEEE
Trans Comput 33(8):750–753

30. Rahman MT, Forte D, Shi Q, Contreras GK, Tehranipoor MM (2014) CSST: preventing distri-
bution of unlicensed and rejected ICs by untrusted foundry and assembly. In: Proceedings of
the IEEE international symposium on defect and fault tolerance in VLSI and nanotechnology
systems, pp 46–51

31. Rajendran J, Kanuparthi AK, ZahranM, Addepalli SK, Ormazabal G, Karri R (2013) Securing
processors against insider attacks: a circuit-microarchitecture co-design approach. IEEE Des
Test 30(2):35–44

32. Yasin M, Saeed SM, Rajendran J, Sinanoglu O (2016) Activation of logic encrypted chips:
pre-test or post-test?. In: Proceedings of the IEEE/ACM design, automation and test in Europe


	3 Logic Encryption
	3.1 Introduction
	3.2 Protocol
	3.3 Threat Model
	3.4 Security Properties and Metrics
	3.5 Thwarting Output-Guessing Attacks
	3.6 Key-Guessing Attacks
	3.6.1 Key Propagation Attacks [13]
	3.6.2 Boolean Satisfiability (SAT) Attacks [13, 14]
	3.6.3 Countermeasures to Attacks

	3.7 Impact of Testing on Logic Encryption
	3.7.1 Motivation
	3.7.2 Pretest Activation
	3.7.3 Post-test Activation
	3.7.4 Hill Climbing Attack

	3.8 Other Techniques Based on Logic Encryption
	3.8.1 Secure Split Test (SST) [20, 30]
	3.8.2 Securing Processor Architectures [31]

	3.9 Conclusion
	References


