
Chapter 11
Obfuscated Built-In Self-authentication

Qihang Shi, Kan Xiao, Domenic Forte and Mark M. Tehranipoor

11.1 Introduction

As discussed in Chap. 1, changing economic trends have resulted in a global IC
supply chain. For all but a few semiconductor companies, IC fabrication is now
being performed by contract foundries and outside the purview of original intellec-
tual property (IP) owners. There are serious concerns about whether trust between
an IP owner and such fabs/foundries can be established [1]. A untrusted foundry
with malicious intent could conduct a number of attacks including IP piracy [2], IC
cloning/overproduction [3, 4], and hardware Trojan insertion [5].

A great deal of research has been performed to address the attacks associated with
untrusted foundries. One approach introduced by DARPA [6] is split manufacturing.
In this approach, an untrusted foundry manufactures the front-end-of-line (FEOL)
part of the IC (the transistors and lower metal layers) and then ships it to a trusted
foundry to deposit back-end-of-line (BEOL) layers, which includes the remaining
metal layers (see Fig. 11.1). By concealing complete layout information, split manu-
facturing prevents the untrusted foundry from stealing IP information or committing
attacks that require reverse engineering of the design.
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There has also been a lot of work on protection against the threat of hardware
Trojans. Techniques against hardware Trojan insertion can be grouped into two cat-
egories, depending on how they address the issue.

• Detection: The first category includes Trojan detection techniques, such as func-
tional verification, side-channel signal analysis, or by new front-end design tech-
niques such as design-for-trust [7–15]. Such techniques detect the existence of
hardware Trojans by generating a signature of the circuit under test (CUT) and
then classifying the CUT with this signature. To perform classification, they require
a golden model, i.e., signature of a copy of the same circuit that is known to be
free from hardware Trojans. Unfortunately, it remains doubtful whether golden
models can be acquired for real-world applications (e.g., commerical off-the-shelf
parts). In addition, process variations introduce errors in classification, especially
for small, hard-to-detect Trojans.

• Prevention: The second category includes hardware Trojan prevention techniques
that stop an adversary from inserting a Trojan in the first place and also do not
require a golden model. Built-in self-authentication (BISA) is the first proposed
technique to prevent hardware Trojan insertion in the circuit layout and mask.
By occupying all available spaces for Trojan insertion and detecting malicious
removal through built-in self test, BISA is able to deter hardware Trojan insertion
without the requirement of golden models and classification errors introduced by
process variation.

However, problems remain. Techniques against IP piracy do not usually consider
the threat of hardware Trojan insertion. Conversely, techniques against hardware
Trojan insertion (such as BISA) do not consider IP theft. Unfortunately, IP piracy
and Trojan insertion often go hand-in-hand, with the same adversary capable of
pirating the IP as well as inserting a Trojan.

An untrusted foundry is characterized by two attributes: (1) The service of an
untrusted foundry is imperative (e.g., due to the high cost associated with advanced
nodes). Otherwise, security could be ensured by simply using a trusted foundry and
(2) an untrusted foundry cannot be trusted with the security of the intellectual property
(IP). Hence, additional measures need to be taken to prevent potential IP piracy. Since
both attributes need to be present for split manufacturing to be necessary, we can
assume that all untrusted foundries in the adversarial model possess both attributes.

Therefore, in order to ensure the security of fabrication with split manufacturing,
we must ensure security against all possible attacks from an untrusted foundry. Due
to attribute (1), it is likely that the untrusted foundry is aware of its own criticality,
so there is no disincentive for the untrusted foundry to refrain from all possible
attacks given its technical capability. At the same time, as a result of attribute (2),
the IP owner has no reason to trust the untrusted foundry. It can be reasonable to
assume that the untrusted foundries will likely try all attacks in their arsenal, and IP
owners will desire an overall solution that can secure their design against all attacks.
Therefore, a complete security solution to address the threats from an untrusted
foundry is needed. Unfortunately, both split manufacturing and BISA are limited
when it comes to comprehensively countering the problem of an untrusted foundry.
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11.1.1 Limitations of Built-In Self-authentication (BISA)

To explain how built-in self-authentication (BISA) works, we need to first establish
how normal back-end design of an IC works. Back-end design of an IC is usually in
the form of a netlist, i.e., a list of gates and how the nets connect them. This netlist is
used to build a layout, which can be used to generate a photolithography mask, which
in turn is used to fabricate the IC. The layout phase consists of at least two steps: (i)
placement of the gates and (ii) routing of the nets. Normally, during the placement
step of the back-end design, gates in the circuit are placed at optimized locations
based on density and routability [16]. This leaves so-called white spaces, i.e., spaces
in the layout that are not filled by standard cells in the layout (see Fig. 11.2a). White
spaces have to exist, because gates placed too close to each other will make routing
of nets very difficult or impossible. Power dissipation as well as cross talk due to
high-frequency gate operations in close vicinity could also generate enough heat and
noise in the IC to render it useless.

For security-oblivious design purposes, these white spaces are usually filled with
filler cells to serve as decoupling capacitors and/or extension of power tracks [17]. For
such purposes, a filler cell design containing only power tracks, or power tracks and
decoupling capacitors, is usually adopted, since they consume less leakage power
than standard cells. However, such a simple and unsupervised design also makes
these filler cells prone to malicious removal by Trojan inserters in order to make room
for hardware Trojans. This is because white spaces are not monitored by any logic.
Decoupling capacitors serve performance purposes rather than functional needs. The
very reason white spaces exist is because these spaces cannot be occupied with normal
functional logic. The problem is that Trojan gates are mostly dormant throughout the
host IC’s life span. If white spaces or decoupling capacitors are replaced by Trojan
gates, it would likely incur a mild level of performance loss (e.g., slight drop in
operating frequency). However, the magnitude of a Trojan impact could be so low
that designers could simply attribute it to transient conditions. The symptom would
be comparable to the case of a mild fever in humans: The patient usually attributes it
to stress or other temporary factors, without suspecting any major problem at play.

BISA prevents hardware Trojan insertion by occupying white spaces with testable
standard cells instead of non-functional filler cells (see Fig. 11.2b). All inserted BISA
cells are organized to form a built-in self test (BIST) circuitry, so that they can
be tested to verify that no BISA cells have been removed. BISA is designed so
that removal of its member cells will lead to a BIST failure, so that no attempt to
make room for hardware Trojans will evade detection. As a technique against Trojan
insertion, BISA is highly effective.

Unfortunately, simply securing the design against all hardware Trojan insertion
is insufficient at addressing the intended adversary. As we have discussed above,
untrusted foundries can and should be expected to commit all kinds of attacks within
its capabilities. Unfortunately, the intended attacks BISA is capable of securing
against are quite limited in scope. It is unwise to assume an untrusted foundry willing
to attempt Trojan insertion will not attempt to commit other attacks, e.g., steal IC
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(a) Layout of an AES crypto-core, with unfilled white spaces.

(b) Layout of an AES crypto-core, with white spaces filled with BISA cells.

Fig. 11.2 Layout of an AES crypto-core, with unfilled white spaces

layout in order to perform IP piracy or IC cloning [2, 3]. Therefore, BISA is not
a complete solution. Moreover, specific attacks exist for BISA. For example, if the
attacker can distinguish BISA cells from original circuitry, it is theoretically possible
to perform a “redesign attack” so that BISA detection could be evaded. We shall
discuss limitations of BISA in more details in Sect. 11.2.2.
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11.1.2 Limitations of Split Manufacturing

Split manufacturing prevents all attacks that require complete knowledge of the whole
layout, which also includes attacks against BISA such as identification of BISA
cells. However, not all attacks require complete knowledge of the whole layout. One
example of these kinds of attacks is untargeted Trojan insertion [18].

A “targeted” hardware Trojan is designed to trigger at certain specified states
of the original circuit or to maliciously modify a specific function of the original
circuit, or both. Hence, it requires knowledge of the related modules in the original
circuitry. In the case where the adversary is an untrusted foundry, this knowledge
will also require their locations on the FEOL layout. In a split fabricated IC, at least
some nets consist of BEOL interconnects, whose information is thus denied to the
untrusted foundry. This will complicate or deter targeted Trojan insertion by making
it harder for the untrusted foundry to identify the site that he wants to insert the Trojan
trigger or payload. This deterrence is most significant when the split is optimized to
maximize the effect of obfuscation, e.g., through the use of wire lifting to maximize
security rating k as described earlier in the chapter on 3D IC- based obfuscation. To
overcome this obfuscation, the untrusted foundry will have to insert Trojan payloads
at all possible sites and/or generate trigger signals using net values from all possible
sites, proportional to the design’s security rating k. This will cause the Trojan to be
proportionally larger and easier to discover and/or trigger.

On the other hand, untargeted Trojan does not require knowledge of the original
circuitry [19] and can still pose a threat to split manufactured ICs. Such a Trojan
can be designed as long as a sufficiently rare triggering condition can be produced.
For example, consider an original circuitry where only front-end-of-line (FEOL)
part of the layout is visible, i.e., the portion of the layout visible to an untrusted
foundry under split manufacturing. In this scenario, all cells of the original circuitry
are visible; therefore, all pins are available for the hardware Trojan. Granted, split
manufacturing is effective in denying the untrusted foundry access to backend-of-line
(BEOL) information, and the untrusted foundry would not be able to distinguish the
functionality the signals at these pins may serve; however, hardware Trojan payloads
do not depend on knowing the functionality of the original circuitry, and therefore
neither does it require such access to begin with. As long as the Trojan trigger is
hard enough to trigger during manufacturing test, the Trojan is capable of evading
detection and can cause security concerns.

One way to do this is to choose structurally hard-to-reach nets for the Trojan
trigger inputs. Since such nets can be expected to be difficult for manufacture tests
to place values at without knowing what functions they serve, it is also unlikely for
the manufacture test patterns to trigger the Trojans. This is shown in Fig. 11.3. In
this example, D-pins (i.e., input pins) of flip-flops are used to generate the trigger
signal. D-pins are a suitable option because they are structurally hard to reach for
manufacture test patterns. As is shown in Fig. 11.3, D-pins of flip-flops are at one
end of timing paths. During manufacture test, test patterns are fed into the flip-flops
with scan paths and launched from the other end of timing paths as shown in the
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Fig. 11.3 One approach to insert untargeted hardware Trojan into split manufacturing protected
layout

figure. This naturally makes D-pins the furthest away from the origin of manufacture
test patterns, in terms of number of gates in between. Since each gate in between
exponentially increases the number of inputs necessary to control any net (i.e., to
place a desired logic state at a given net), this makes D-pins hardest to control
from a test coverage point of view. In other words, the number of tests necessary
to completely traverse the complete state space of the D-pin nets in order to trigger
the Trojan will be too large for manufacture test to implement. Consequently, using
D-pins as inputs to generate trigger signal makes the hardware Trojan very hard to
discover with manufacture tests.

Another possible way for the proposed hardware Trojan to be discovered during
manufacture test is through its impact on path delay. Since D-pin nets are used as
inputs to the Trojan’s trigger, the trigger adds load capacitance to the net, which
adds delay to paths that contain that net. There exists a realistic possibility that this
additional delay overhead will change the timing of the affected paths significantly
enough to lead to discovery during delay test. Another realistic constraint is the
distance between available space for a Trojan gate to be inserted and the D-pin. If
the minimum distance is too large, it could also lead to a large resistance on the
interconnect between the D-pin net and the trigger gate. This can also add delay,
possibly resulting in Trojan detection.
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A simple solution to these issues is to add the smallest gate to buffer the trigger
input. This is done in the example shown in Fig. 11.3 with inverters. An inverter is
the smallest cell in a standard cell library. It can help in minimizing the distance
and input capacitance that contributes to delay change to paths that contain D-pin
nets. Its weakness is its fan-out load capacity, a quality essential in meeting tim-
ing requirement, but this is rather unimportant for inserting hardware Trojans since
Trojans usually do not have rigid timing requirements. Therefore, to evaluate the
possibility of untargeted Trojan insertion in a layout, one may simply insert filler
cells into it, but use an inverter instead of usual filler cell models. This will insert
inverters at all available white spaces for it, and a simple geometric search using
a reasonably set radius centered at the coordinate of D-pins will yield all possible
inverter site candidates that are reasonably close to the D-pins. The layout editor
may then be employed to create an interconnect between the inverter inputs and the
D-pins to study the impact on delays of paths that ends at those D-pins. Indeed,
in one such experiment, we performed with an untargeted Trojan insertion on an
open source advanced encryption standard (AES) crypto-core, insertion at 2601 of
all 2602 D-pins does not even impact worst-case delays of all paths containing them.
In a real implementation where parametric drift of devices due to fabrication can
lead to path delay variation of 10 % or more [20], the timing impact will be even less
distinguishable.

Untargeted hardware Trojans do not target specific functions of the original cir-
cuitry and therefore cannot commit attacks that require knowledge of such functions.
Nevertheless, untargeted hardware Trojans are still capable of degrading the perfor-
mance and/or reliability of manufactured ICs or triggering a denial-of-service (DoS)
attack in critical control systems [21]. These are threats that need to be addressed.

Like BISA, split manufacturing has its own share of issues, in addition to the
problem of lacking security against untargeted Trojan insertion. As has been intro-
duced in Chap. 10, k-security is an existing security metric of split manufacturing. It
evaluates the effectiveness of obfuscation (via denial of BEOL information) by cal-
culating the least number (the security rating k) of mutually indistinguishable gates
or nets that exist for any observable gate or net in FEOL. This definition is mathe-
matically sound, but places some rather heavy restrictions on the original circuitry
design. For example, unconnected nets are indistinguishable from each other by
default, but unconnected gates are not. An inverter is distinguishable from an AND
gate and so is an AND gate from another AND gate with twice as much fan-out
capacity. As mentioned in Chap. 10, normal synthesis and netlist optimization yield
many standard cell models with very few numbers of instances, which will seriously
restrict how high k can reach. Consequently, a design that optimizes its k-security
rating will have to restrict the standard cell models it uses. Indeed, the authors in [22]
restricted the standard cell model count in their experiments between 3 and 7, while
an otherwise unconstrained synthesis of an AES core yields 37. This restriction will
undoubtedly lead to elevated area and power overhead as well as performance loss.
Moreover, white spaces also exist in split fabricated ICs, whose existence and spatial
distribution on the FEOL layout could be used to deduct BEOL connections as part
of proximity attack [23] (see Chap. 10).

http://dx.doi.org/10.1007/978-3-319-49019-9_10
http://dx.doi.org/10.1007/978-3-319-49019-9_10
http://dx.doi.org/10.1007/978-3-319-49019-9_10
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11.1.3 Chapter Overview

While split manufacturing and BISA are excellent techniques, they are still incom-
plete. An apparent solution is to create a technique that combines the best of both
worlds. In this chapter, we term this combined technique as the obfuscated built-
in self-authentication (OBISA). This chapter provides background information to
OBISA, investigation of different ways in which OBISA can be implemented, as
well as how protection against both IP theft and hardware Trojan insertion can be
better implemented by OBISA than BISA or split manufacturing alone. The rest
of this chapter is organized as follows: Sect. 11.2 provides background on BISA
and elaborates on existing problems and weakness of BISA that could be improved;
Sect. 11.3 reviews split manufacturing techniques introduced in the previous chapter,
comments on their relevance to BISA, and investigates possible benefits of their inte-
gration with BISA; Sects. 11.4 and 11.5 investigate two possible ways that OBISA
can be implemented and provide their implementation flow, their respective strengths,
and potential attacks; and finally, Sect. 11.6 concludes this chapter.

11.2 Built-In Self-authentication (BISA)

The purpose of BISA, as we briefly visited in Sect. 11.1, is to prevent hardware Trojan
insertion. This objective is achieved by implementing two major features:

1. occupying all white spaces in the layout that could be used for Trojan insertion
and

2. ensuring no inserted filler cell for the purpose of preventing Trojan has been
removed.

As was discussed in Sect. 11.1, existing design flow already occupies white spaces
in the layout with filler cells. That alone is not sufficient to deter malicious Trojan
insertion because conventional filler cells are not under any kind of surveillance to
prevent them from being removed by an attacker in order to make room for hardware
Trojans. Therefore, the second feature is really essential to prevent hardware Trojan
insertion. BISA implements this by replacing filler cells with combinational logic
cells from the standard cell library and then organizing them into a BIST. Removal
of any BISA cell will lead to changes in BIST test signatures and thus detection.

As shown in Fig. 11.4a, BISA consists of three parts: the BISA circuit under test,
the test pattern generator (TPG), and the output response analyzer (ORA). The BISA
circuit under test is composed of all BISA cells that have been inserted into unused
spaces during layout design. In order to increase its stuck-at fault test coverage,
the BISA circuit is divided into a number of smaller combinational logic blocks,
called BISA blocks as shown in Fig. 11.4a. Each BISA block can be considered as
an independent combinational logic block. The TPG generates test vectors that are
shared by all BISA blocks. The ORA will process the outputs of all BISA blocks
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Fig. 11.4 Structure of a
BISA, b four-stage LFSR,
and c four-stage MISR

and generate a signature. TPG has been implemented with linear feedback shift
register (LFSR), while ORA has been implemented with multiple input signature
register (MISR) in prior work [24]. Examples of four-stage LFSR and four-stage
MISR are shown in Fig. 11.4b, c. They are used in the generation of random vectors
and compression of responses into a signature. SFF in the figure represents a scan
flip-flop. Other types of TPG and ORA can also be applied [25].

The main advantage of BISA is that it does not require a golden chip/model. Most
other researches on addressing the issue of Trojan insertions have focused on the
development of:

1. hardware Trojan detection techniques using functional verification and side-
channel signal analysis (applied post-silicon) or

2. new design techniques to improve detection capabilities (applied to front-end
design) [26].

Most detection approaches need golden chips either fabricated by a trusted foundry or
verified to be Trojan-free through reverse engineering, both of which are prohibitively
expensive, if not impossible in many scenarios. Since BISA relies on logic testing,
process variation is not a factor either, as compared to Trojan detection techniques
based on side-channel analysis. As an additional advantage, impact of BISA on
original design in terms of area and power is also negligible.
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Fig. 11.5 BISA design flow

11.2.1 Implementation Flow

Figure 11.5 shows the BISA design flow and where it fits within the conventional
ASIC design flow. The white rectangles in the figure are steps taken in a conventional
ASIC design flow, and the gray ones are the additional steps for inserting BISA
circuitry.

The first step in BISA design flow is called preprocessing, where information
such as dimensions of each standard cell, the number of input pins, and the name of
a cell is acquired from the standard cell library for use in later steps.

After obtaining the necessary information for all standard cells, BISA cells will
be selected from them and marked according to the following criteria:

1. BISA cells must be the minimum-sized cell for every logic function, so they are
resistant to a resizing attack by the adversary (see Sect. 11.2.2).

2. The amount of decoupling capacitance the cells can provide and the input count
should be considered as well. Fewer inputs help to improve test coverage; there-
fore, a normalized input count is used here to represent the number of inputs of a
standard cell if the same cell has the same area of the minimum-sized cell (e.g.,
INVx0 in Synopsys 90 nm library).

3. The smallest cell in the library must also be included in order to ensure that no
cell can be inserted in any remaining unused space.

The second step is called unused space identification, where the BISA flow iden-
tifies white spaces by using a matrix to record the state of each point in the layout.
Every standard cell placed in the layout will be processed one by one, and eventually,
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(a) Original placement (c) Available BISA cells

(b) Unused spaces file (.unsp) (d) Placement after BISA insertion

Fig. 11.6 BISA cell insertion and placement

the matrix reveals the location and size of unused spaces. The matrix is then used to
insert BISA cells into these spaces, as shown in Fig. 11.6.

The final step in the flow is to place and route BISA cells. Placement solutions
can be found and optimized (e.g., dynamic programming algorithm was used in
[24]) based on white space identified in the previous step. Optimization of BISA
placement is an interesting problem; however, it is not of central importance in
BISA. On the other hand, all placed BISA cells need to be connected into a number
of combinational BISA circuits (referred to as BISA blocks) to ensure test coverage
of the BISA circuit. Test coverage is a key issue for BISA since its security relies on
its capability to discover tampering of its constituent cells. A higher test coverage
leads to a higher credibility of results from BISA. Several approaches are employed
to enhance stuck-at fault test coverage:

• First, create as many BISA blocks as possible to make each BISA block with fewer
gates so that higher test coverage is easier to achieve. Since the output of every
BISA block will connect to MISR, the number of BISA blocks is determined by
the size of MISR. If M is the size of MISR, all placed BISA cells are divided into
M groups (BISA blocks).

• Second, redundant gates could deteriorate controllability and observability of the
circuit and lower the test coverage significantly, so a tree-structure circuit is con-
structed to eliminate redundant gates, as shown in Fig. 11.7. If every input is
independent of other inputs in a tree-structure circuit, every net is controllable
and observable, so the theoretical test coverage of stuck-at fault is 100 %. Here,
a tree-structure BISA block is constructed according to the sequence of cells in a
block set.
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Fig. 11.7 Routing a BISA block

Figure 11.7 shows that two different sequences lead to two different tree-structure
circuits. The first gate becomes the root of the tree-structure circuitry, i.e., it is on the
top (first) level of tree. The outputs of the next x cells (x being the number of inputs
of the root cell) are connected to its inputs as its children cells, on the second level.
The same is repeated on the third level to connect new cells to cells on the second
level. Cells are sequentially connected to cells on upper levels until all of them are
processed, as shown in Fig. 11.7a, b. After complete routing in each block, all inputs
of each block should connect to the LFSR sequentially to avoid sharing of inputs. In
the end, the M bit outputs from M BISA blocks connect to a MISR with size of M .

11.2.2 Possible Attacks Against BISA

To attack BISA, an attacker would have to find a way to remove enough cells to make
room for his Trojan insertion, without triggering detection by BISA. Depending on
targets and methods used in this removal, several possible strategies exist to attack
BISA:

1. attack TPG or ORA of BISA,
2. directly remove cells from BISA or original circuitry. This is known as a removal

attack,
3. Replace BISA or original circuitry with a smaller functionally equivalent circuit.

This is known as a redesign attack. In particular, if standard cells of greater fan-
out are replaced with their equivalent counterparts of lower fan-out, this is known
as a resizing attack.

Of the three possible attacks against BISA, attacking TPG or ORA is the least
likely to succeed. BISA uses pseudo-random pattern to perform BIST, which makes
it very easy to increase pattern count and consequently very difficult for the attacker
to make sure all responses of the modified TPG and/or ORA will stay the same
for arbitrarily many patterns. Similarly, direct removal of BISA cells is unlikely
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to succeed as they are covered by BISA test coverage during BISA insertion. It is
indeed possible to remove cells from original design as long as they do not serve
crucial functions. However, design optimization and test coverage will minimize this
opportunity for the attacker.

The attack that is most likely to succeed against BISA is the redesign attack. Both
BISA and the original circuitry can be targeted in this attack. Redesign attack on
original circuitry is restricted by manufacture test as well as other detection-based
anti-Trojan approaches. If attackers redesign the original layout for Trojan insertion,
moving gate locations and altering wire interconnections will result in significant
changes in the electrical parameters, such as power and path delay. These can be
detected much more easily by delay-based and power-based techniques [27–36].

It is more likely for the removal attack to succeed against BISA cells since the
BISA cells cannot be expected to meet a uniform timing constraint: Their inser-
tion has to prioritize area occupation. The attacker may try to first reverse engineer
BISA circuitry—a monumental effort, but not impossible—and then perform logic
optimization, hoping to remove redundant BISA cells. It is possible to further secure
BISA cells by performing this optimization on BISA design to prevent this particular
attack. However, the attacker can also choose to design a custom cell functionally
equivalent to several BISA cell at the cost of fan-out and/or delay in order to make
room for Trojan insertion. Prevention of such an attack would require anticipation
of all possible custom cell designs that are functionally equivalent to any combina-
tion of BISA cells. That is not likely feasible except for very small BISA circuitry.
Therefore, this attack, called the custom cell attack, is also not a likely threat to BISA
security.

11.2.3 Limitations of BISA

BISA adversarial model is more or less limited to Trojan attacks after the back-end
design. This is because Trojan attacks on the original circuitry can be expected to be
detected by other techniques such as functional and delay tests. This leaves untrusted
foundry as the most likely adversary to BISA.

One valid limitation of BISA is its inability to prevent IP piracy or IC cloning—a
task perfect for split manufacturing to tackle. Another small limitation is that due
to the possibility of resizing attacks (see Sect. 11.2.2), all BISA cells have to be of
the smallest variant in area among standard cells of the same function, which might
make it easier for the attacker to identify them.

11.3 Combining BISA with Split Manufacturing

In light of the respective limitations of BISA and split manufacturing, it makes sense
to combine them so that benefits of both techniques can be reaped. We henceforth
term the combined technique as obfuscated BISA (OBISA).
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The most apparent advantage of the resulting technique is the security against
untargeted hardware Trojan insertion, as well as security against IP piracy and IC
cloning, both of which are primary strengths of BISA and split manufacturing, respec-
tively. Combining with split manufacturing can also make the resulting OBISA tech-
nique secure against redesign attack, since the attacker must first identify which
existing cells are connected together before designing a functionally equivalent cir-
cuit to replace these existing cells. This will be much harder if the designer lifts the
wires that connect them to BEOL, so that BISA structure becomes indistinguishable
from the original circuitry.

The obfuscation effect from split manufacturing can further enhance OBISA
beyond protection against redesign attack. As mentioned previously in Sects. 11.2.2
and 11.2.3, conventional BISA requires functional and delay tests as well as
detection-based anti-Trojan techniques for the security of the original circuitry
against redesigning. Although this does not make BISA insecure, detection-based
anti-Trojan techniques do rely on golden models for effectiveness. Reliance on these
techniques erodes BISA’s advantage of not requiring a golden model. Combining
with split manufacturing makes the threat of redesign attack much less of a problem
due to security of BEOL information and therefore reduces the necessity of using
detection based anti-Trojan techniques (which often require a golden model that is
not always available). In addition, obfuscation also deters reverse engineering. A
relaxed threat from reverse engineering could allow relaxation of other limitations
that was not possible with BISA alone, e.g., the requirement of only using the small-
est standard cells may not be necessary if the designer can be reasonably confident
that OBISA cells will not be identified.

On the other hand, obfuscation in OBISA could also benefit from BISA insertion,
owing to additional cells and FEOL interconnects that BISA insertion introduces to
the layout. Since the purpose of split manufacturing is to hide BEOL information,
most theorized attacks and security metrics (see Chap. 10) define split manufacturing
security as anonymity of broken interconnects in FEOL layout [22, 23, 37]: In other
words, even and uniform distribution of FEOL features help split manufacturing
security. Additional cells and interconnects introduced by BISA circuitry can be
very helpful here, because they can be used to compensate rare gate models and
interconnect types so that signatures of original circuitry can be hidden. Without
such additional obfuscating material, cells of rare gate models have to be banned
during synthesis optimization of original circuitry [22], leading to performance loss.
Further, proximity attack based on FEOL-observable distribution of gates as well
as white spaces could also be foiled by occupying white spaces and compensating
spatial distribution of gate types with BISA cells.

To summarize, a combined OBISA technique could derive advantages from both
split manufacturing and BISA, as shown in Fig. 11.8.

http://dx.doi.org/10.1007/978-3-319-49019-9_10
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11.3.1 Trade-Off Between BEOL Security
and Computational Cost

Split manufacturing techniques, as discussed in Chaps. 10 and 12, come in a number
of different implementations. It can be implemented simply by separating FEOL from
BEOL at a certain layer without any modification to the design flow; alternatively,
wires and/or cell placements in FEOL can be modified to avoid information leakage
[23, 37]. In the most secure form of implementation, a list of wires to be elevated to
BEOL fabrication can be optimized to obtain a mathematically provable metric of
obfuscation [22]. Unfortunately, this is also computationally the most complicated.
Generally speaking, there is a trade-off between security and computational cost
among split manufacturing techniques.

Depending on how much complexity is dedicated to the split manufacturing side of
the technique, OBISA can have different implementation approaches. In this chapter,
we introduce two sample approaches:

1. Approach A assumes minimum computational cost is dedicated to split manu-
facturing (i.e., assume split manufacturing is simply implemented by separating
FEOL from BEOL at a certain layer) and

2. Approach B assumes maximum level of security is desired (i.e., wire lifting—as
was introduced in Chap. 10—is optimized using the notion of k-security).

11.4 Approach A: Obfuscated Connection

As has been discussed in Sect. 11.3.1, there is a trade-off between security and compu-
tational cost among split manufacturing techniques. There is also a trade-off between
security and fabrication difficulty, in terms of which layer is used to split the design
between FEOL and BEOL. Generally speaking, splitting at higher layers would lead
to easier fabrication, higher yield, and lower requirements on the technical capability
of the trusted foundry, but would likely leak more interconnect information to the
FEOL and thereby the untrusted foundry. From an industrial point of view, a higher
split layer is more desirable. In this approach, we assume a split layer at or higher
than M3 [18].

To maintain the security of this approach despite reduced obfuscation (due to
splitting at higher metal layers), modifications are performed based on the classic
BISA structure (which we introduced earlier in the chapter). Specifically, two new
types of connections are introduced (see below), and critical wires are lifted to BEOL.

1. The inter-BISA-block fan-outs: This refers to an input of a OBISA block being
driven by a net in another OBISA block. By doing this, the typical tree-like
structure of OBISA blocks can be broken, so that it will become more complicated
for an attacker to identify OBISA cells.

http://dx.doi.org/10.1007/978-3-319-49019-9_10
http://dx.doi.org/10.1007/978-3-319-49019-9_12
http://dx.doi.org/10.1007/978-3-319-49019-9_10
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(b) An obfuscation connection is made.

(a) A fan-out is made between two OBISA blocks.

Fig. 11.9 Two new types of connections to improve obfuscation

2. The obfuscation connection (OC): This refers to an input of a OBISA block being
driven by a net in the original circuitry. By doing this, logic cones in original
circuitry are obfuscated with OBISA cells, and identifiable logic patterns are
broken.

Adding inter-OBISA-block fan-outs (henceforth called “fan-outs”) could poten-
tially produce redundant gates and thereby lower controllability of gates. To avoid
this, fan-outs can be created using following the rules:

• The fan-out is created between a net in one block i and an input pin of another
block j (i �= j) and

• The net in block i and the root output in block j have no common related inputs
from OBISA LFSR.

If these two conditions are satisfied, the net and the input pin can form a candidate
pair for a fan-out. Figure 11.9a shows an example of the fan-out creation. The net
N14 in OBISA block i has completely different related inputs of LFSR from the root
output N10 in OBISAv block j , so N14 can have a fan-out to connect to any input in
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OBISA block j . In Fig. 11.9a, the pin for the net N7 is selected. Note that a fan-out
cannot be made on the net N13, because the net N13 and net N10 share related inputs
of LFSR, A1 and A2.

The creation of obfuscation connections involves two issues. First, activity from
the original circuitry must not propagate into OBISA. Otherwise, it could cause
unnecessary power consumption. This is ensured by choosing the right kind of gates
that have the same controlling value as the LFSR’s idle states so that they can isolate
OBISA from the original circuitry when OBISA is idle. As shown in Fig. 11.9b, cells
BC1 and BC2 are both gated in idle state. BC1 is selected since it is a leaf cell in the
tree-structure OBISA block. The other issue that needs consideration is that it will
inevitably add capacitive load to the original circuitry net it is attached to. The added
capacitance could potentially cause paths to fail in the original circuitry. Thus, we
must select target nets in the original circuitry for the obfuscation connection very
carefully to avoid timing violations. One way to do this is to perform static timing
analysis (STA) prior to the creation of obfuscation connections and only choose nets
whose worst-case paths are faster than the critical path by a margin.

A final step of this approach is to perform wire lifting to restrict FEOL interconnect
information. The main problem with wire lifting is that finding the best solution
requires high computational cost. Since Approach A is geared toward minimizing
computational cost, wire lifting in this approach is limited to security critical block
key to OBISA functions, for example, the mode select net, the feedback nets in
LFSR/MISR, and nets connecting flip-flops in LFSR/MISR.

11.4.1 Implementation Flow

Figure 11.10 presents the design implementation flow of Approach A. The flow fits
within the conventional ASIC design flow and is compatible with current commercial
physical design tools. OBISA insertion procedure begins after clock tree synthesis. At
that point, the whole original circuit has been placed and no more cells will be added
in conventional flow (the most left column in Fig. 11.10). The unused spaces would
be identified in DEF file, and various standard cells are inserted depending on size of
each unused space. Once all unused spaces are filled with OBISA cells, all OBISA
cells in each geometric region will be connected to construct an OBISA block. These
steps as shown in the middle column were developed in [24, 38]. New steps, as shown
in the third column in Fig. 11.10, are introduced to strengthen obfuscation, including
fan-out creation, adding obfuscation connections, and lifting secure-critical paths
within OBISA. After the OBISA process, the flow resumes the procedures in the
conventional design flow. The physical design tool will perform routing for the entire
design including original circuit and OBISA circuit. All constraints for the original
design can be taken care of by the physical design tool during routing process.
Once the timing and sign-off of the design are successful, the last step involves the
generation of a GDSII format of the design for final tape-out.
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Fig. 11.10 Implementation flow of OBISA technique, Approach A

11.4.2 Design Issues and Trade-Offs

The main trade-off of Approach A results from the two new types of connections it
adds to the original BISA design. Both fan-outs and obfuscation connections modify
BISA’s built-in self test architecture, which could lead to redundant gates, redun-
dant nets, and loss of controllability. These translate into test coverage loss, which
means that “blind corners” of OBISA gates are created, whose removal cannot be
detected by OBISA. As long as reverse engineering of the OBISA structure can be
prevented, this will not be a security issue, but a lowered test coverage nevertheless
hurts the credibility of the authentication result. Comparatively, fan-outs between
OBISA blocks are easier to handle as they can be made to be fully controllable,
while the obfuscation connections will cause more severe loss of test coverage, since
their value comes from and is subjected to the status of the original circuitry. However,
this can be remedied by performing multiple tests, each starting from an independent
state of the original circuitry. Indeed, results in [18] show that even for obfuscation
connections which are as many as 25 % of all OBISA inputs, 100,000 random pat-
terns yield just above 60 % coverage, while 10,000 random patterns applied from 10
iterations of the original circuitry can boost the test coverage to almost 100 %.

One optional feature of Approach A is it can choose to use only minimum-sized
cells for OBISA structure to keep its security against resizing attacks or dropping
that requirement for better obfuscation between OBISA cells and original circuitry
cells. This is due to the fact that Approach A does not perform optimized wire lifting
as is done in Approach B, nor does it need to introduce compensation OBISA cells
that may not have minimum sizes, as we shall see in Approach B. In this regard,
Approach A is closer to the classic BISA design.
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11.4.3 Potential Attacks

One possible attack against Approach A of OBISA technique is redesign attack.
Owing to a higher split layer, it is likely that many small-scale logic blocks such as
adders, decoders, and finite-state machines can be identified and optimized by an
untrusted foundry. Wire lifting could prevent this. However, large-scale wire lifting
would not be possible under our assumption that Approach A is supposed to serve as
an example of OBISA technique with minimum computational cost dedicated to the
split manufacturing side. Obfuscation connections and inter-OBISA-block fan-outs
could help in reducing such signatures. Unfortunately, without a metric dedicated to
computational complexity, it is hard to say how much this could help.

11.5 Approach B: OBISA with Wire Lifting

In Sect. 11.4, we discussed an approach to implement OBISA with minimum com-
putational cost. In this section, we discuss the possibility on the other end of the
cost-security trade-off axis, which is how maximum security could be achieved with
large-scale wire lifting.

To achieve maximum security, it is necessary to first define security. In this
approach, we use the k-security definition as was introduced in [22]. k-security
has been discussed in more detail in Chap. 10, so we are only giving a brief revisit
of the idea here. Consider an IC secured with split manufacturing. Its netlist can be
modeled as a graph, where each of its gates is represented by a vertex and each inter-
connect by a number of edges connecting such vertices. Assuming limited number
of custom cells, all models of the gates can be represented by coloring the vertices.
Now, remember that we are considering an IC secured with split manufacturing. The
FEOL part of its layout contains netlist information of all the gates and a subset of
all interconnects. The corresponding graph of the FEOL part, compared to the graph
of the complete netlist, will look like the second graph with some of its edges hidden
away. Those hidden edges correspond to interconnects reserved to the BEOL part of
the IC.

An example of this process is shown in Fig. 11.11. Shown on top is a netlist of a
full adder, where black lines mark interconnects visible in FEOL layout, while gray
lines mark interconnects in BEOL layout. If we further assume FEOL layout of the
full adder splits at its input and output pins, the FEOL layout of the full adder is
represented by the graph below.

From the figure, we notice it is impossible to distinguish the two XOR gates
(represented by vertices shaded in red slash) in FEOL layout. According to k-security,
XOR gates in this full adder have a k = 2 security. If the same can be said for all other
gate models, k-security metric dictates the FEOL layout has at least k = 2 security.
Unfortunately, as we can see from the figure, it is impossible for the full adder to

http://dx.doi.org/10.1007/978-3-319-49019-9_10
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Fig. 11.11 Example: netlist
and graph of a split
manufactured full adder

reach k = 2, even if we lift all edges to BEOL, simply because it has only one OR
gate. For this full adder, any optimization of wire-lifting solution is futile.

There are a few ways to address this issue. In [22], only 3 to 7 gate models are
allowed during design synthesis, in order to prevent rare gate models from restricting
wire-lifting optimization. From a designer’s point of view, however, this approach
seriously impacts the performance of the original circuitry and could cause serious
overhead in area and power.

However, an OBISA technique that performs wire lifting does not have to sub-
mit to this restriction, because the number of instances of rare gate models can
be compensated with OBISA cells. For example, an AES crypto-core netlist after
unconstrained synthesis and optimization has more than 26,000 gates. Among them,
20 gate models have less than 100 instances. Meanwhile, simple BISA insertion into
its layout at a normal 0.7 utilization ratio typically yields about 5,000 BISA cells.
In other words, OBISA cell count under typical utilization ratio is more than suffi-
cient to compensate rare gate models to 100 instances, a number much higher than
what existing wire-lifting algorithm will likely be able to work at within realistic
processing time. In [22], the highest reported k is 48 and was only achieved on a
much smaller benchmark circuit (c432 from ISCAS, gate count 147).

An example of this advantage is shown in Fig. 11.12. The same full adder is used
as shown in Fig. 11.11. In this example, OBISA cells and interconnects are added, as
shown in dashed lines. We can see from the example how the bottleneck in previous
example—the single OR gate—is compensated with OBISA cells. In the shown wire-
lifting example, k = 2 security is reached. If we consider a more extreme solution,
for example, lifting all wires to BEOL, at maximum, the layout could reach k = 4
security rating.
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Fig. 11.12 Example: With OBISA insertion, the same full adder can benefit from wire-lifting
optimization to achieve higher k-security rating

We can also see from the example that to reach a high security rating k, a large
percentage of wires has to be lifted to BEOL for almost every gate. One advantage of
this result is that most logic blocks will unlikely be distinguishable in the resulting
FEOL layout. This will greatly deter IP piracy as well as redesign attacks, making
this approach much more secure. On the other hand, this will also result in a lot
of vias having to be matched between FEOL and BEOL, making fabrication more
complicated.

Another inference from this example is that the previous limitation (to only use
the smallest standard cell models for BISA cells to prevent resizing attacks) must be
dropped. This is because it is unlikely for all rare gate models to be of the smallest
size. However, as long as obfuscation due to wire lifting holds (i.e., the circuit has
a high k-security rating), the attacker will not be able to distinguish OBISA cells
from original circuitry cells. Resizing original circuitry cells runs the risk of being
discovered by a simple delay test, and this will likely be a sufficient deterrent against
resizing attacks.

11.5.1 Implementation Flow

The implementation flow of the OBISA technique (Approach B) is shown in
Fig. 11.13. As shown in the diagram, boxes shaded with blue slashes represent proce-
dures already existing in the BISA flow, while boxes shaded with red crosses repre-
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Fig. 11.13 Implementation flow of OBISA technique, Approach B

sent new procedures in this approach. This technique departs from classic BISA after
unused space identification: Instead of performing BISA cell placement, cells of the
rare gate models are placed first to compensate gate model distribution. After these
cells are inserted, placement of BISA cells with random gate models is performed
to fill remaining white spaces. After that, normal BISA cell routing is performed.
Before signal routing, an optimized wire-lifting solution is found for the complete
layout. Wire lifting can then be performed with the help of layout editor, for exam-
ple, by simply elevating routed interconnects to BEOL metal layers. The rest of the
design flow does not differ from existing back-end design flow.

11.5.2 Design Issues and Trade-Offs

The main issue with this approach is cost. Searching for optimal wire-lifting solution
is computationally costly, and lifting a sizable percentage of wires to BEOL results
in cost in yield loss, elevated requirement on trusted foundry, etc. Between the two
costs, another trade-off exists: Obviously, if we choose to lift all wires to BEOL,
computational cost will be minimal, security will be maximum, but fabrication cost
will be astronomical. The dilemma here is that computational complexity of wire-
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lifting solution optimization is a Sharp-P problem, because it consists of a greedy
algorithm that exhaustively traverses and verifies the entire solution space, where each
step is a Boolean satisfiability problem—a known NP-hard problem. Meanwhile,
fabrication cost is not exactly easy to accommodate either. Unless an improvement
on at least one of both problems emerges, the cost of Approach B is likely caught in
between rock and hard places.

11.5.3 Potential Attacks

One possible attack is based on spatial distribution of cells in FEOL layout. Although
k-security metric is defined as at least k mutually indistinguishable instances of each
gate model, it goes without saying that this does not account for where those instances
are located on FEOL layout. For example, it is certainly logical to assume that a
NAND gate very close to a memory cell array is more likely to be a part of the
load-store unit than the execution unit. The problem with this kind of information
leakage is that little has been established on how the attacker can utilize it. Further,
although it is still unclear how the attacker could utilize this information, methods
to restrict this leakage of information nevertheless exist. In [22], it is proposed that
performing layout design after wire lifting could anonymize the layout and prevent
any information leakage. Unfortunately, this will likely make back-end optimization
of timing a nightmare. Besides, this is not applicable in OBISA since BISA insertion
has to come after placement. Still, OBISA in Approach B can partition the complete
layout into a number of smaller sublayouts and perform wire lifting on each of
them so that wire lifting in each sublayout is relevant to cells in close vicinity. This
technique may limit the maximum achievable security rating, but it makes it possible
to parallelize the wire-lifting algorithm.

11.6 Conclusion

In this chapter, we first reviewed both BISA and split manufacturing techniques
in terms of their adversarial models and pointed out their common adversary, the
untrusted foundry. We also explained why the untrusted foundry cannot be trusted to
not try attacks that are beyond the scope of a BISA-only design flow (IP piracy) or
split manufacturing-only approach (Trojan insertion). We then provided a detailed
background for the BISA technique and showed how a combination of both tech-
niques, which we termed as “OBISA,” could be expected to be effective against
both kinds of attacks. We then investigated two possible approaches to implement
the OBISA technique depending on the trade-offs between security and computa-
tional/fabrication cost. We provided details on their implementation, discussed the
design trade-offs involved, introduced their respective strengths and weaknesses, and
theorized how either approach could be attacked.
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