
Chapter 10
Split Manufacturing

Siddharth Garg and Jeyavijayan (JV) Rajendran

10.1 Introduction

The idea behind split manufacturing (or split fabrication) is to partition (or “split”)
an IC netlist into multiple “parts” and fabricate each part at a separate foundry.
Intuitively, since no one foundry gets access to the full design of the IC, its ability to
either pirate the design or maliciously modify it in a targeted way is hindered.

In its simplest instantiation, an IC is split into two parts. One part has of all
the active components (transistors) and some of the interconnect (wires), while the
other part has the remaining interconnections. As wewill discuss, more sophisticated
instantiations of split manufacturing might even involve splitting active components
across gates.

Technologically, split manufacturing can be achieved in one of two ways: either
using an FEOL/BEOL split, or using 3D integration technology. These are discussed
below.

• FEOL/BEOL splitting: this technique, shown in Fig. 10.1a, involves splitting the
front-end of line (FEOL) and the back-end of line (BEOL) fabrication steps across
two foundries. The FEOL part consists of transistors as well as lower metal layers
(for example Metal 4 and below), and the BEOL part consists of the upper metal
layers [1]. The untrusted, high-end foundrymanufactures the FEOLpart (including
the lower BEOL layers), since these steps involve the smallest feature sizes and
require access to advanced fabrication technology. Next, the trusted, low-end, in-
house foundry manufactures the remaining BEOL layers. Clearly, the attacker in
the high-end untrusted foundry only has access to a partial netlist; he has only
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Fig. 10.1 Two approaches to split manufacturing. a FEOL/BEOL split manufacturing and b 3D
integration-based split manufacturing

the FEOL part but not the BEOL part. The feasibility of this approach has been
demonstrated by Vaidyanathan et al. [2] in a 0.13µm technology node.

• 2.5D/3D integration: As shown in Fig. 10.1b, the netlist is split across two or more
wafers, each containing a part of the netlist. The wafers are fabricated in different
foundries and integrated through 3D integration technology. When the top part
consists of only metal layers, the technology is more commonly referred to as
2.5D integration and the top tier is referred to as an interposer.

Split manufacturing is advantageous over other IP protection techniques as it does
not require any key-storage mechanisms, as logic encryption does. In addition, as
we will see, split manufacturing can be used to defend against strong attack models
in which the attacker has access to the netlist the defender wishes to fabricate and
aims to maliciously modify targeted parts of the netlist. On the other hand, hand
split manufacturing is susceptible to proximity attacks that exploit physical design
information, while logic encryption is not. Mitigating this vulnerability potentially
introduces high overheads.

10.1.1 Split Manufacturing Flow

Figure10.2 shows an exemplar split manufacturing flow that leverages 2.5D integra-
tion. The designer starts with the design netlist and first partitions the netlist into two
tiers—the bottom tier consists of all gates and some wires, while the top tier consists
of the remaining wires. The top tier is also referred to as the hidden tier since it is
hidden from the view of the untrusted foundry. Note that partitioning for 2.5D/3D
integration is a well-studied problem in the EDA community [3]. However, these
partitioning strategies try to optimize metrics like delay and power, not security.

After partitioning, the next step is physical design. At the end of this step, the
GDSII files for the bottom and top tiers are ready to be sent to their respective
foundries. As mentioned earlier, the attacker should not have access to the layout
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Fig. 10.2 Split manufacturing flow using 2.5D integration. The steps in the green boxes must be
performed securely, while all others are potentially subject to attack. The flows for single-wafer and
full 3D integration-based split manufacturing are similar

of wires in the top tier. Traditional physical design tools optimize for metrics like
average wire length and can potentially leak information to the attacker, thus com-
promising security. In Sect. 10.4, we discuss a security-aware layout strategy for split
manufacturing.

The two tiers aremanufactured at their respective foundries. The assumption is that
the two foundries cannot collude—for this reason, the top tier must be fabricated in a
trusted, in-house foundry. Finally, the top and bottom tiers are stacked and packaged
by a trusted integrator.

An inherent assumption in any split manufacturing process is that the IC has not
been manufactured before, or at the very least, previously manufactured versions
cannot be purchased commercially. If this were the case, the untrusted foundry could
simply purchase the IC from themarket and reverse engineer the wiring in the hidden
tier.

The rest of this chapter is organized as follows. Section10.2 details two specific
threat models in the context of split manufacturing. The weak threat model assumes
an attacker who is interested in thieving the designer’s IP. In contrast, the strong
threat model strengthens the weak attacker with apriori knowledge of the IC’s netlist
(hence, IP theft is moot)—the strong attacker wishes tomaliciouslymodify the chip’s
functionality.

Next, Sect. 10.3 discusses a specific security metric, k-security, that quantifies the
amount of security that split manufacturing buys in the context of the strong attack
model. Intuitively, k-security measures the extent to which the attacker is confused
as to the functionality of each gate in the (partial) netlist she observes.

Section10.4 discusses how the traditional design automation tool flow should be
modified to obtain a certain level of security while minimizing cost and information
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leakage. In the secure partitioning step, the netlist is partitioned so as to maximize
k-security within a cost constraint. In the secure layout step, the placement of gates
in the netlist outsourced to the untrusted foundry is decided so as to ensure that
the layout/placement does not reveal information about the wiring in the part of the
netlist hidden from the attacker. We conclude in Sect. 10.6.

10.2 Threat Models

We now discuss two specific threat models in the context of split manufacturing. In
the first, we assume that the attacker only has access to the GDSII file of the bottom
tier. We call this the weak attack model. The attacker’s goal is to reverse engineer
the full netlist when the designer is fabricating. In the second, we assume that in
addition to the GDSII file of the bottom tier, the attacker also has access to the full
netlist when the designer is fabricating. Here, the attacker’s goal is not IP theft, but
instead is hardware Trojan insertion.

10.2.1 Weak Attack Model

In the weak attack model, the goal of the designer is to keep the IC’s netlist hid-
den from the attacker. Formally, let the designer’s private netlist be C = (V, E).
The part of the netlist sent to the untrusted foundry is referred to as CPART =
(VPART , EPART ), where |V | = |VPART | for FEOL/BEOL splitting or 2.5D
integration-based split manufacturing. We assume that the attacker can reliably
recover the netlist CPART from its layout file. Can a determined attacker recover
C knowing only CPART ?

Rajendran et al. [4] have shown that attacker’s can potentially infer the hidden
connectivity in the top tier by leveraging the proximity of gates in the bottom tier. This
is referred to as a proximity attack. Proximity attacks can be particularly successful
if the defender uses conventional layout techniques. Such techniques try to minimize
sumwire length; thus, connected gates are likely to be proximal. This is illustrated in
Fig. 10.3 using a simple example in which connecting proximal bond points recovers
the hidden wires correctly. Figure10.4 shows the histogram of Euclidean distances
between pairs of connected and unconnected gates obtained using a commercial
layout tool—observe that connected gates are far more likely to be proximal than
unconnected gates.

Using even a simple strategy in which the attacker connects each unconnected
gate input to its closest unconnected gate output results in >90% correct recovery
of hidden connections when a conventional netlist partitioning technique such as
hMetis [5] and a commercial layout tool are used in the split fabrication flow.
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Fig. 10.3 c17 benchmark circuit with two hidden wires. Connecting proximal bond points recovers
the correct netlist

Fig. 10.4 Layout of a sample benchmark and corresponding wire length distribution for uncon-
nected and connected gates

10.2.2 Strong Attack Model

In the weak attack model, the designer’s netlist is private. However, what if the
designer’s goal is to fabricate logic for which the functionality, and perhaps even
the netlist, is public knowledge? Examples of such functions are abundant. Most
cryptographic protocols are publicly known, for instance advanced encryption stan-
dard (AES) and the data encryption standard (DES) protocols, and often have known
optimized hardware implementations [6, 7]. The primary threat in such a scenario
arises from hardware Trojan insertion. As noted by [8], hardware Trojans can have a
disastrous impact on IC security, from unauthorized privilege escalation [9] to secret
key leakage [10]. Hardware Trojans are broadly categorized into: (1) always active,
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(2) trigger and payload, and (3) reliability-based [11], i.e., those that use device
degradation as an implicit trigger.

Specifically, in the strong attack model, we assume that attacker has access to the
full netlist, C , that the designer wishes to fabricate. In addition, as in the weak attack
model, the attacker also has the partial netlist CPART . We assume that the designer
has scrubbed the layout file from which CPART is derived of all identifying labels,
and therefore, the labels in CPART are arbitrary and unrelated to those in the original
netlist C .

The attackerwishes tomodify the design, i.e., insert a hardware Trojan, in a certain
targeted way. For instance, for the privilege escalation attack [9], the attacker’s goal
is to modify the gates that control the bits that determine whether the processor
executes in user or kernel mode. That is, the attacker needs to determine where in
the design to insert the hardware Trojan payload. Similarly, to insert a Trojan that
triggers when a certain sequence of instructions is observed [12], the attacker needs
to identify certain wires/gates in the decode logic. As another example, the reliability
attack discussed in [11] also requires modifications of certain targeted parts of the
netlist.

To succeed in its objective, therefore, the attacker must first correctly identify
the gate(s) in CPART that it wishes to modify (recall that gates in CPART and C are
differently labeled). It does so by matching the gates in the partial netlist to those
in the public netlist. If the match is correct, the attacker succeeds. The attacker’s
objective can therefore be formulated mathematically as follows. To match gates in
CPART to those inC , the attacker wishes to find a bijective mapping φ : V → VPART

such that < φ(u), φ(v) >∈ EPART only if < u, v >∈ E . That is, the attacker knows
that if an edge exists in CPART , the corresponding edge must exist in C . On the other
hand, if an edge does not exist in CPART , the corresponding can still exist in C since
it might be hidden.

The condition above is equivalent to the attacker determining a sub-graphofC , one
that consists of all of the vertices in C but only some of the edges, that is isomorphic
to CPART . Two graphs are said to be isomorphic if they have the structure, i.e., there
is a way to permute the vertices of the first graph to obtain the second. When a
sub-graph of one graph is isomorphic to another, this is referred to as a sub-graph
isomorphism.

The crux of using split fabrication as a defense mechanism in this setting is
that many such sub-graph isomorphisms might exist, thus hindering the attacker in
identifying a correct mapping.

Note that the proximity attacks discussed above are still relevant in the context of
the strong attack model—that is, in addition to finding sub-graph isomorphisms, the
attacker could use proximity information to match gates inCPART toC . In this sense,
the strong attack model subsumes the weak attack model. The rest of this chapter
therefore focuses on the strong attack model.
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10.3 Security Metric

Imeson et al. [13] have proposed a security metric, k-security, that quantifies the
security obtained fromsplitmanufacturing against targeted hardwareTrojan insertion
attacks. Consider, for example, the public netlist in Fig. 10.8a and the partial netlist
sent to the untrusted foundry, shown in Fig. 10.8b. Five wires from the public netlist
have been hidden, and bond points are added to allow these wires to be implemented
in the top tier. Now observe that gate G6 in the public netlist can correspond to
either gate GF and GG in the partial netlist. We thus say that gate G6 is 2-secure. To
attack G6, the attacker can either pick one of GF/GG and fail with probability 0.5
(modifying both gates will change the nature of the attack). On the other hand, note
that the attacker can uniquely identify that gate GC in the partial netlist is gate G3
in the public netlist. Gate G3 is therefore only 1-secure. The definition of k-security
is formalized below (Fig. 10.5).

Definition 1 (k-security) A gate u ∈ VPUB is k-secure if there exist k distinct sub-
graph isomorphisms {φ1, φ2, . . . , φk} between CPUB and CPART where φi (u) �=
φ j (u) for all i, j ∈ [1, k] and i �= j . A partial netlist CPART is k-secure with respect
to the public netlist CPUB if each vertex u ∈ VPUB is k-secure.

10.3.1 Relevance of k-Security

To further understand the relevance of the k-security metric, consider the hardware
implementation of the DES protocol shown in Fig. 10.6a. It has been shown that if
an attacker can modify the LSB output of the 14th round, then she can easily recover

(a) c17 Benchmark Netlist (b) Secure Partitioning

Fig. 10.5 The c17 benchmark netlist (a), and the part of the netlist sent to the untrusted foundry
after secure partitioning (b)
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Fig. 10.6 A hardware implementation of DES encryption (left) and the partial netlist sent to the
untrusted foundry after partitioning. Each round of the DES implementation is 16-secure since it
cannot be distinguished from any other round

the DES key from plaintext–ciphertext combinations [14]. Without obfuscation, an
untrusted foundry might try to leverage this vulnerability by maliciously modifying
the DES implementation such that the least significant bit (LSB) output of the 14th

round flips when a certain trigger condition occurs. Obviously, to carry out such
a targeted attack, the foundry must first identify the wire that corresponds to this
vulnerable bit.

Now consider the implementation in Fig. 10.6b where all wires between rounds
are hidden. Since the functionality (and netlist) of each round is identical, any one of
the 16 modules could correspond to the one that implements the 14th round. Indeed,
in this case, the LSB output of the 14th round is 16-secure.

Other examples of security-critical gates that an attacker might wish to target in
a netlist include:

• The gate that outputs the privilege bit in amicroprocessor. Bymodifying the output
of this gate, the attacker can launch a privilege escalation attack [15].

• Bits that indicate the type of instruction in a processor decode unit. Rarely occur-
ring instruction types, or more generally, gate outputs that rarely switch, can be
used as triggers for attacks [16].
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10.3.2 Computing k-Security

For a given partitioning, that is, givenC andCPART , how can the defender determine
the security level k? As indicated by the definition of k-security, the problem deter-
mining the security level is closely related to the sub-graph isomorphism problem,
which is NP-complete. Indeed, Imeson et al. [13] formally prove that the problem
of determining whether a given partitioning meets a security constraint, k, is also
NP-complete.

Having characterized the complexity of the problem, the next step is to devise a
concrete algorithm to determine the security level for a given partitioning solution. To
do so, the defender iterates through vertices in C . For each vertex in C , the defender
iteratively checks if it can be mapped to each vertex in CPART . Specifically, to check
whether vertex u ∈ V can map to vertex v ∈ VPART , she checks if a sub-graph of C
is isomorphic to CPART with the constraint that u must map to v (φ(u) = v).

The check above can be performed in one of twoways: (1) directly using sub-graph
isomorphism solvers (since it is an instance of a sub-graph isomorphism problem);
or (2) reducing the check to an instance of a CNF-SAT and calling a SAT solver. The
reason to try the second approach is that fast, off-the-shelf solvers are available for
the SAT problem.

The reduction to SAT approach (which is the one recommended by Imeson
et al. [13]) introduces Boolean variables φi j that are 1 if node vi in CPART maps
to node r j in C , and 0 otherwise. Constraints are then introduced that ensure that a
node in CPART maps to only one node in C and vice versa. Finally, constraints are
also introduced to ensure that an edge in CPART only maps to an edge in C . The
three sets of constraints are conjoined and input to a SAT solver.

Given graphs C and CPART , and a bijective mapping φ as defined above, we
now construct a Boolean formula that is true if and only if graphs C and CPART are
sub-isomorphic for the mapping φ. We will construct the formula in parts.

First, we ensure that each vertex in C maps to only one vertex in CPART :

F1 =
|VPART |∏

i

|V |∑

j

⎛

⎝φi, j

|V |∏

k �=i

¬φi,k

⎞

⎠

and vice versa:

F2 =
|V |∏

j

|VPART |∑

i

⎛

⎝φi, j

|VPART |∏

k �=i

¬φk, j

⎞

⎠

Finally, we need to ensure that each edge in CPART maps to an edge in C . Let
EPART = {e1, e2, . . . , e|EPART |} and E = { f1, f2, . . . , f|E |}. Furthermore, let ek =
〈qsrc(ek ), qdest (ek )〉 ∈ EPART and fk = 〈rsrc( fk ), rdest ( fk )〉 ∈ E . This condition can be
expressed as follows:
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Fig. 10.7 Run-time of
SAT-based a domain-specific
sub-iso solver-based
approaches for computing
security. The sub-iso solver
used is VF2

F3 =
|EPART |∏

k

|E |∑

l

φsrc(ek ),src( fl ) ∧ φdest (ek ),dest ( fl )

The formula F that is input to the SAT solver is then expressed as a conjunction
of the three formulae above: F = F1 ∧ F2 ∧ F3. The formula F has O(|VPART ||V |)
variables and O(|EPART ||E |) clauses.

Empirically (and perhaps surprisingly), the SAT approach is faster than using a
domain-specific sub-iso solver. This is illustrated in Fig. 10.7.

10.4 Defense Mechanisms

Designer’s must mitigate the threat from strong attackers in two ways: (1) secure
partitioning to maximize k-security so as to defeat sub-iso attacks and (2) secure
layout to defeat proximity attacks. Note that to defend against weak attackers, only
the second method would be required. We now describe these defense mechanisms
in detail.

10.4.1 Secure Partitioning

Split manufacturing incurs a cost—wires that cross from one tier to the other use
large, capacitive bond points. This increases the area, delay, and power consumption
of the chip. Thus, on the one hand, increasing the number of hidden wires increases
security, but also increases area, delay, and power. The goal of secure partitioning is
to explore the trade-offs between security and cost. As a starting point, we adopt a
simple notion of cost, the number of hidden wires. Security is measured using the
k-security metric described earlier.

Given C and constraint on maximum number of hidden wires, H , the goal of
secure partitioning can be formulated as finding CPART as follows:
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Fig. 10.8 Example of greedy secure partitioning heuristic. In each iteration, a new edge is added
in a way to minimize the reduction in security. Each gate is annotated with its security level in each
iteration

max
CPART

k(C,CPART )

such that
|E | − |EPART | ≤ H

and
CPART ⊆ C,

where k(C,CPART ) returns the security level of a partitioning solution.
El Massad [17] has shown that there exists no polynomial time approximation

scheme for the secure partitioning problem. As an alternative, Imeson et al. [13] have
proposed a greedy heuristic to solve this problem.

The greedy heuristic initializes CPART to have all the gates in C but none of the
wires. That is, CPART is initialized to have maximum security, but at maximum cost.
Then, in each iteration, a new edge/wire is added to CPART , specifically, one that
results in the smallest reduction in security. These iterations continue till EPART =
E − H , at which point the procedure terminates.

An example illustrating the greedy procedure is shown in Fig. 10.8. The original
netlist has 6 gates. Each gate can be at best 2-secure because it can, at best, be
confused for the other gate of the same type. Starting with the maximally secure
netlist in which all wires are hidden, we observe that the new wire added in the first
iteration does not reduce security. The same is true for the second iteration. In the
third iteration, adding any new wire will result in a drop in security—the wire that is
added results in the least drop in security (the security of the two NAND gates goes
down to 1). Adding any other wire would have resulted in even larger reduction in
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Fig. 10.9 Security versus
cost trade-offs obtained
using the greedy secure
partitioning and random
partitioning approaches

Fig. 10.10 Impact of choice
of technology library on
security. More diverse
technology libraries yield
greater security
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security. Adding any further wires makes all the gates 1-secure, i.e., at this point we
obtain no security at all.

Figure10.9 shows the security versus cost trade-offs obtained by using the greedy
approach on the c432 benchmark circuit from the ISCAS-85 benchmark suite. The
results obtained from the greedy heuristic are compared to randomly hiding wires
from the netlist, a strategy suggested in a white paper by Tezzaron. Note that the
greedy secure partitioning approach significantly outperforms random partitioning.

The upper bound on security in Fig. 10.9 is set by the gate type that appears the
fewest times in the netlist. In theory, if there is a unique gate in the netlist (one
that appears only once), it will always be 1-secure, and correspondingly, the entire
netlist would only be 1-secure. This suggests that the diversity of the technology
library has a role to play in security—the more diverse the technology library, the
less effective we would expect secure partitioning to be. This is indeed the case, as
shown in Fig. 10.10.
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10.4.2 Secure Layout

Figure10.11 shows a secure layout tool flow that provably defends against proximity
attacks [4]. In this flow, the bottom tier layout is performed independently of the top
tier—since the layout tool has no information about connectivity in the top tier, this
information cannot be embedded in the resulting layout. After layout, conventional
routing is performed for the top and bottom tiers.

Figure10.12 compares the results after conventional 2D layout to secure layout
for the bottom and top tiers. Of note, the routing in the top tier is more “convoluted”
than in the optimized 2D layout—this reflects the fact that the proximity of gates in
the bottom tier reveals no information about their connectivity in the top tier. This
assertion was empirically verified using a statistical hypothesis test for the layout in
Fig. 10.12.

We note that although the secure layout tool flow guarantees security, it comes at
extra cost because of increased wire length in the top tier. Increased wire length
implies greater delay and power consumption. Table10.1 reproduces data from
Imeson et al. [13] that illustrates the relationship between delay, power, total wire

Fig. 10.11 Secure layout tool flow. The bottom tier layout is performed separately from the top
tier after partitioning using a commercial layout tool. The resulting layout is independent of the
connectivity of the hidden (top) tier

Fig. 10.12 Layout of the bottom and top tiers after secure layout, compared to the original, opti-
mized 2D layout
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Table 10.1 Power, delay, wire length, and area analysis for different levels of security on the c432
circuit. 1∗ is the base circuit with no wires lifted and 48∗ has all of the wires lifted

Security Power ratio Delay ratio Total wire length
(µm)

Total area (µm2)

1∗ 1.00 1.00 2739 1621

2 1.54 1.73 6574 4336

4 1.55 1.76 7050 4416

8 1.61 1.82 8084 4976

16 1.62 1.86 8161 5248

24 1.71 1.98 9476 6048

32 1.73 1.99 9836 6368

48∗ 1.92 2.14 13058 8144

length and area as the k-security level is increased. These results are for a relatively
small benchmark (c432); for large benchmarks, it is possible that beyond a certain
security level the design becomes unroutable.

10.4.3 Raising the Bar on the Attacker

As a consequence of the defense mechanisms studied in this section, the attacker
is now confounded. For any gate in the original netlist that the attacker wishes to
modify, there are k − 1 other gates that can conceivably correspond to that specific
gate.

An attacker could now choose one of those k gates at random and fail in her
objective with a high probability. Or, the attacker could try and modify all gates,
modifying one at a time (since modifying all together will not result in the mali-
cious functionality the attacker desires). Figure10.13 shows the minimal hardware
the attacker would need to sequentially modify each of the k gates. The additional
hardware significantly increases the Trojan area and likelihood of being detected in
post-fabrication testing.

10.5 Future Opportunities and Challenges for Split
Manufacturing

10.5.1 Reducing Cost

As we have seen, existing split manufacturing approaches can incur high cost,
although they do provide strong security guarantees. Several opportunities exist to
reduce the cost without compromising security.
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Fig. 10.13 Attack scenarios
of 1- and k-secure circuits
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Usingdecoygates: simply duplicating a netlist and connecting only one of the netlists
to the chip’s IO pins (the IO pins are implemented in the hidden tier) automatically
provides 2-security with low overhead in terms of number of bond points, power,
and delay. The trade-off is in the area of the bottom tier, but these trade-offs might
be acceptable especially in the era of dark silicon [18]. In this solution, one of the
two netlists acts a decoy. The same idea can be deployed at the gate level instead
of at the netlist level, i.e., the security level of individual gates can be increased by
introducing decoys in the bottom tier.
Leveraging full 3D integration: Full 3D integration allows each tier to have both
gates and wires. Using full 3D would allow gates to be hidden in the top tier along
with wires. The top tier is still fabricated by a trusted foundry, but one with access
to more mature CMOS fabrication technology. Security-critical gates in the design,
for example, the sub-circuit that controls super-user privileges in a microprocessor,
can be selectively implemented on the top tier.
Reducing cost of secure layout: A significant contributor to the cost of split man-
ufacturing is secure layout, especially as the number of hidden wires exceed. The
secure layout approach discussed so far guarantees that the placement of gates in
the bottom tier leaks no information their connectivity—in practice, a solution that
allows designers to trade off a limited amount of information leakage for reduced
cost is desirable. Xie et al. [19] have taken in a step in that direction using simulated
annealing-based layout flow. However, the authors do not quantify the amount of
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information leaked by the proposed approach. More details on this approach can be
found in Chap.12.

10.5.2 Alternative Security Metrics

A criticism of the k-security metric is that it is perhaps too conservative. For one, it
assumes that the attacker knows the original netlist, a potentially unrealistic assump-
tion. Second, the metric requires that every gate in the netlist be k-secure while this
might only be required of certain security-critical gates.

Jagasivamani et al. [20] have proposed alternative metrics for split manufacturing
that might be relevant in the weak attack model. These metrics depend only on
the partial netlist that the attacker observes, CPART and not on the original netlist,
CPUB . Two specific metrics proposed by [20] and their relationship to k-security are
discussed below:
Standard cell entropy: thismetricmeasures the diversity of standard cells in the design
using its entropy; a design that only uses cells of one type (say NANDs) has entropy
0, while one that has the same number of cells of each type has the highest possible
entropy.Counter-intuitively, however, the authors advocate for lower entropy as being
beneficial for security. This is antithetical to the traditional interpretation of greater
entropy (i.e., greater disorder) being useful from a security perspective [21]. A simple
example illustrates why using entropy in the way that Jagasivamani et al. suggest
might be misleading.

Consider a netlist with N/2 gates of type 1 and N/2 gates of type 2 versus one
with N − 1 gates of type 1 and a single gate of type 2. Based on the entropy metric,
the former netlist has higher entropy than the latter and is therefore less secure. On
the other hand, k-security suggests the opposite: The former netlist is N/2-secure
while the latter is only 1-secure.

This discussion illustrates the potential danger in simply adopting metrics, like
entropy, that are used in entirely different security contexts. While entropy is a useful
metric for side-channel vulnerability assessment, for instance, it is not clear how it
directly relates to the split manufacturing problem. In contrast, k-security has a
precise attack model and relates directly to the success probability of the attacker in
this model.
Neighbor connectedness: To address the threat from proximity attacks, Jagasivamani
et al. [20] suggest the use of ametric thatmeasures how likely proximal (neighboring)
gates are to be connected. While this metric captures, abstractly, resilience against
proximity attacks, metrics that can precisely estimate the attackers success probabil-
ity are needed.
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Table 10.2 Overview of split manufacturing-based obfuscation techniques

Work Domain Attack model Attacker intent Methods

Reference [13] Logic Strong attacker Trojan insertion 2.5D integration
Provably
randomized layout

Reference [22] Logic Strong attacker Trojan insertion Obfuscated built-in
self-authentication
Optimized layout
with filler extra filler
cells

Reference [2] Logic Weak attacker IP theft FEOL/BEOL split
(M1 and above)
Optimized layout

Reference [23] Logic Weak attacker IP theft FEOL/BEOL split
(poly and above)
Obfuscated layout of
standard cells

Reference [24] SRAM Weak attacker Trojan insertion FEOL/BEOL split
(M1 and above)
Partially randomized
layout
nonconventional
design decoys

Reference [25] RF Weak attacker IP theft FEOL/BEOL split
(M4–M7 on)
obfuscated inductors
and capacitors

10.5.3 Complementary Uses of Split Manufacturing

Split manufacturing can be used in a number of security-related setting that are
complementary or orthogonal to the setting discussed in this chapter. Vaidyanathan
et al. [24] for SRAM blocks and analog IP, while Bi et al. [25] have proposed similar
ideas for RF ICs.

In particular, Vaidyanathan et al. [2] identify hard IP blocks such as SRAM arrays
and analog IP as specific sources of weakness because they typically have very
regular layout patterns. Even with only FEOL and M1 access, attackers can easily
reverse engineer these patterns.

To address this vulnerability, the authors propose to use (a) randomized place-
ment of peripheral logic (akin to the secure layout approach discussed before), (b)
nonconventional design approaches for common logic blocks like decoders, and (c)
nonstandard, application-specific features to confound the attacker (in part, similar
to decoy cells discussed earlier).

Bi et al. [25] observe that for RF designs, removing the top metal layers has the
effect of hiding inductors from the design. Further removing lower metal layers hides
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capacitors from the design. As a consequence, the inductance and/or capacitance val-
ues in the design can be hidden from the attacker. The authors then posit that without
that an attacker cannot recover these values without knowing the original design
intent, for example, the center frequency. In many practical settings, RF designs for
standard operating bands, for example, the designer’s objectives are readily apparent
from the standards documentation. Whether or not the hidden inductance and capac-
itance values can be reverse engineered for this stronger attack model remains to be
addressed.

Otero et al. [23] have proposed techniques to obfuscate connections within stan-
dard cells, instead of across cells as we have discussed so far in this chapter. While
this fine-grained level of obfuscation enables even distinct standard cells to look
identical, it raises the bar on the capabilities of foundry entrusted with the BEOL
connections.

Finally, Xiao et al. [22] have proposed to leverage split manufacturing in a differ-
ent way, i.e., to obfuscate the implementation of built-in self-authentication circuits
(BISA) on the chip. BISA cells occupy what would otherwise be nonfunctional filler
cells and deter a foundry from using these cells for malicious purposes. Obfuscating
BISA using split fabrication makes it even harder for a foundry to maliciously mod-
ify the original netlist without triggering an alert. More details of this approach are
discussed in Chap.11.

Table10.2 provides a summary of the different proposals for the use of split
manufacturing to achieve obfuscation.

10.6 Conclusion

Split manufacturing is an emerging technique to defend against the threat of out-
sourced semiconductor fabrication at untrusted foundries. By hiding a part of the
design from the attacker, split manufacturing can be used to prevent IP theft and
targeted hardware Trojan insertion. In this chapter, we have discussed existing threat
models in the context of split manufacturing and presented state-of-the-art defense
mechanisms and associated security metrics to mitigate these threats. We have also
provided pointers to outstanding challenges that remain to be addressed and oppor-
tunities to further improve the effectiveness of split manufacturing.
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