
Chapter 1
Introduction to Hardware Obfuscation:
Motivation, Methods and Evaluation

Bicky Shakya, Mark M. Tehranipoor, Swarup Bhunia and Domenic Forte

1.1 Introduction

While piracy of intellectual property (IP) relating to daily commodities such as cloth-
ing, medicine, and fashion items has had a long history, IP violation of technological
assets, such as computer software and hardware, has become a recent albeit concern-
ing problem. InApril 2016, aWisconsin grand jury slapped a $940million penalty on
Tata Consultancy Services for allegedly stealing Epic System Inc.’s healthcare data-
base management software and incorporating it into its own products [1]. In 2013,
two men, Jason Vuu and Glen Crissman, were indicted by the NY state Supreme
Court for allegedly stealing source code from their former employer, flow trader, and
amarket-trading software provider [2]. In the same year, there was also a high-profile
case involving Xilinx, a reputed and well-known FPGAmanufacturer, and Flextron-
ics International Ltd., a chip supplier. Xilinx alleged that Flextronics bought Xilinx’s
FPGA chips at a discounted rate (by lying about the intended end users), remarked
the chips as higher grade and sold them for elevated prices, thereby violating Xilinx’s
IP through misrepresentation and exposing them to liabilities [3]. In 2015, Versara,
a Texas-based software company, filed a lawsuit against automotive giant Ford [4].
The lawsuit alleged that Ford developed an in-house tool based on Versara’s intellec-
tual property, immediately after terminating its longtime contract with the company
which provided Ford with its proprietary vehicle management software. The inci-
dents highlighted above are just a modest sampling of the countless cases in which
the electronic intellectual property of companies (and people) was violated, resulting
in protracted litigation and massive loss of revenue/reputation.

B. Shakya (B) · M.M. Tehranipoor · S. Bhunia · D. Forte
University of Florida, Gainesville, FL, USA
e-mail: bshakya@ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_1

3

4 B. Shakya et al.

1.1.1 Obfuscation for Intellectual Property Protection

In a world of tough competition, companies often spend a great deal of time and
resources in reverse engineering and understanding their competitor’s products. This
routinely happens in industries ranging from automotive and computer software to
electronics. While reverse engineering in itself is not a crime (in fact, it is protected
by law), the information derived from reverse engineering could be used in a number
of malicious ways. Consider a company that exploits their competitor’s intellectual
property by incorporating the IP into their own products, without providing any
credit or compensation to the IP’s rightful owner. Now, think of this scenario in
the context of today’s global economy where IP protection laws (and the degree
of their enforcement) vastly vary from one part of the globe to another. Due to
such realities of today’s global economy, IP protection can no longer be limited to
passive methods such as patents, copyrights, and watermarks. An active approach to
intellectual property protection is required, of which obfuscation is a vital part.

1.1.1.1 Definitions

Obfuscation is defined as the technique of obscuring or hiding the true meaning of a
message or the functionality of a product, in order to protect the intellectual property
(IP) inherent in the product. A more formal definition of obfuscation, in the con-
text of ‘circuits’ (boolean operators computing a logic function) or programs (that
implement an algorithm or a function), has been provided in the field of cryptology.
Formally, an obfuscatorO is defined as a ‘compiler’ that transforms a program P into
its obfuscated version O(P) that has the same functionality as P yet is unintelligible
to an adversary trying to recover P fromO(P). The obfuscatorO has two key require-
ments: (i) O(P) computes the same function as P (i.e., it is functionality-preserving)
and (ii) anything that can be efficiently computed (in polynomial time) from O(P)
can also be computed given ‘oracle’ access to P (i.e., O(P) can be used as a ‘virtual
black box’) [5].

1.1.1.2 Encryption Versus Obfuscation

Encryption is the most effective way to achieve security and privacy of data and
communication, but it cannot provide a full-fledged solution for IP piracy. The over-
all differences between encryption algorithms and obfuscation are summarized in
Fig. 1.1. As is clear from the figure, algorithms, such as Advanced Encryption Stan-
dard (AES) and Rivest–Shamir–Adleman (RSA), are cryptographic primitives that
transform plaintext data into mathematically random ciphertext given a key (encryp-
tion phase). They also perform the reverse operation (ciphertext to plaintext) on
application of the same or different key (decryption phase). In contrast to encryp-
tion, obfuscation does not necessarily rely on key-based access control. It allows

1 Introduction to Hardware Obfuscation: Motivation … 5

Encryp onPlaintext
(Hello There!)

Ciphertext
(4R$w#!#@$H65)

Decryp on

Symmetric Asymmetric

(i)

Obfuscator
OF F’

In
(How are you?)

Out
(Good!)

(ii)

In
(How are you?)

Out
(Good!)

Fig. 1.1 a Encryption. b Obfuscation

an attacker to use the obfuscated program O(P) as a virtual black box and is only
concerned with the protection of the program P. Obfuscators are also commonly
used in the context of obfuscating programs that implement an algorithm as opposed
to general data (e.g., user information/authentication and passwords) that encryption
can be used for.

Unfortunately, one major weakness that obfuscation has in relation to encryption
is that the security of obfuscation techniques cannot be reduced to mathematically
‘hard’ problems such as integer factorization for RSA. In a landmark paper [5], it was
shown that the general notion of virtual black-box obfuscation is not achievable for
all programs. The authors argued that there exists a family of functions (represented
as boolean circuits) that were inherently ‘unobfuscatable.’ In other words, given
a program P′ that computes the same input–output relationship as P, the attacker
can feasibly reconstruct P or extract a secret s from P′ about P with non-negligible
probability. This means that unlike encryption, which does not prevent any set of
data from being encrypted securely, obfuscation is not a universal operation.

1.1.1.3 Alternative Definitions

In spite of the above, later work has shown that although ‘all functions’ cannot be
securely obfuscated (reduced to a ‘hard’ computational problem), some functions
(such as a point function, which can be thought of as a password checking program)
can be securely obfuscated [6]. Later, the authors in [7] showed that the virtual
black-box property, which implies that the program should leak absolutely no other
information than its input–output relationship, might be too strong to be achievable
in practice. They proposed a relaxed definition termed as ‘best possible obfuscation’
which states that an obfuscated programO(P) implementing a function F can leak as
little information as any other program that computes the same function F. In other
words, an adversary can learn no more information about the obfuscated program
O(P) than he or she can learn from any other program computing the same function.

6 B. Shakya et al.

While this does not guarantee what kind of information is securely hidden in O(P),
it assures that the obfuscation is literally the best possible [7].

In parallel, another definition of obfuscation, termed as ‘indistinguishability
obfuscation,’ has also been proposed [5]. This definition implies that given two
programs (or circuits) C1 and C2 which compute the same function F, an indistin-
guishability obfuscator O exists such that O(C1) and O(C2) are indistinguishable.
This means that an attacker only has a random chance of being able to figure out
whether he has C1 or C2 given possession of O(C1) or O(C2). Candidate con-
structions for such indistinguishability obfuscators have also been recently proposed
using multilinear maps [8]. Note that the definition of indistinguishability obfus-
cation does not consider the strength of obfuscation of C1 or C2, i.e., it only says
O(C1) and O(C2) are indistinguishable, not how strongly obfuscated they are on
their own. It should also be noted that such obfuscators, although provably secure,
are nowhere near practical at this point, as shown by a case study on a 16-bit point
function (consisting of 15 AND gates) which blew up to a 31.1GB file after running
on a 32-core server for 9h [9]. Nonetheless, the field of program obfuscation has
received a great amount of attention in the past few years. More developments in
optimization (as well as cryptanalysis) of these techniques can ensure practicality of
provably secure obfuscation in the near future. It can also help us to gradually move
away from ad hoc obfuscation practices such as code scrambling and white space
removal for software obfuscation (see Sect. 1.3), which rely on the highly contested
notion of ‘security through obscurity.’

1.2 Hardware Obfuscation

Hardware obfuscation, as it relates to circuits (combinational, sequential, or system-
on-chip), is concerned with protecting semiconductor intellectual property (IP). In
the context of hardware, IP refers to a reusable unit of logic, cell, or chip layout design
that is either licensed to another party or owned and used solely by a single party.
IP protection has become a hot topic for research (and practical implementation),
especially in light of today’s globalized semiconductor production flow where trust
between various entities in the supply chain is hard, if not impossible, to maintain.
While techniques for achieving hardware obfuscation may be completely different
than its software counterpart (see Sect. 1.3), the basic motivation remains the same
in both cases: protecting intellectual property from adversaries capable of reverse
engineering, piracy, andmalicious alteration. Before discussing howhardware obfus-
cation can be realized, it is vital to understand the semiconductor supply chain and
all the threats that are involved in the production of today’s integrated circuits (ICs).

1 Introduction to Hardware Obfuscation: Motivation … 7

1.2.1 Integrated Circuit Supply Chain

Figure1.2 shows the various steps involved in today’s semiconductor supply chain.
Each step is carried out in different parts of the globe by different entities (not
necessarily under the same company) in order to reduce the insurmountable costs
associated with producing state-of-the-art ICs and to reduce time-to-market.

• IP Vendor: Integrated circuits today are most commonly in the form of system-on-
chips or SoCs. This means that a single silicon die contains intellectual property
from several different vendors who could be scattered all across the globe. For
example, the power management circuitry may come from an analog IP vendor
in Texas, while the cryptographic IP core might come from a separate vendor in
Europe. With increasing complexity of today’s ICs and short turnaround times, it
only makes sense for a design house (or SoC integrator) to buy IPs from several
different vendors (usually at a much better rate) than to build the entire IC in-house
from scratch. These IPs can generally be classified as (i) soft IP (RTL level, e.g.,
in the form of Verilog or VHDL), (ii) firm IP (gate-level IPs), and (iii) hard IPs
(layout-level IPs, also known as hard macros, e.g., embedded SRAM).

• Design House/SoC Integrator: After collecting the necessary IP blocks, the
design house puts these IPs in a single design and performs exhaustive simu-
lations/verification to ensure that the overall design functions as intended. During
this stage, electronic design automation (EDA) tools, which are commonly pur-
chased from external EDA vendors, are heavily employed in order to perform
synthesis, place and route (P&R), timing analysis, and verification. Note that most
design houses today have gone ‘fabless’ meaning that they do not maintain their
own silicon production facility (i.e., foundry).

• Design-for-Test: Design-for-Test (DFT) is a stage in the IC design process where
infrastructures are integrated on-chip for post-manufacturing tests. A few decades
ago, itwas feasible to comprehensively test bare circuits aftermanufacturing so that
defects generated during fabrication (e.g., short-circuit, damaged gates) could be
detected quickly.However, with the sheer scale of ICs today, it is no longer possible
to engage in exhaustive logic testing post-fabrication. As a result, the design house
can choose to send its entire design (usually in gate-level form) to a separate DFT
facility that specializes in inserting test infrastructures into the circuit. This can
include specialized flip-flops (FFs) called scan FFs, which can allow a tester to
observe and control internal parts of the design (which, otherwise, might not be
accessible through the primary inputs of the circuit). Other advanced test structures
for self-diagnosis such as built-in-self-test or BIST and test compression can also
be incorporated at this stage to ensure good fault coverage of the circuit-under-test.

• Foundry: After performing comprehensive tests and design, the SoC integrator
generates a final layout file (usually in the form of a GDSII file) and sends it to
a semiconductor foundry. The foundry first generates a mask from the file and
then etches the patterns from the mask onto an actual silicon wafer to produce
the IC die (after dicing the wafer). The foundry may also test the individual die
at this point, using manufacturing test patterns that are provided by the design

8 B. Shakya et al.

Fig. 1.2 Semiconductor
supply chain

Market and End User

Mul ple IP Vendors
• So IP (VHDL, Verilog)
• Firm IP (Gate-Level)
• Hard IP (Layout)

Design House, SoC Integrator

Design-for-Test (DFT)

Semiconductor Foundry

Assembly

1 Introduction to Hardware Obfuscation: Motivation … 9

house/DFT facility. It is important to note that the foundry is usually the most
cost-intensive stage in the flow, as advanced nodes (<22nm) require state-of-
the-art tools for atomic layer deposition (ALD), extreme ultraviolet lithography
(EUV), and a large-scale clean room capable of high-volume production. As a
result, most foundry facilities are located offshore where labor and operation costs
can be kept to a minimum.

• Assembly: After a foundry manufactures the IC, they are sent to a separate facility
that specializes in packaging the die into a complete chip. The die is first mounted
on a substrate after which bond wires or solder bumps (for flip-chip packaging) are
used to connect the I/O, clock, and power ports on the die to actual pins on a plastic
packaging.1 After this, the packaged IC is again tested and ready for incorporation
within a larger electronic system.

• Market, End User: Once the ICs are integrated into a system, it usually reaches a
distributor who is then responsible for delivering the product to the final vendors,
after which it reaches the market and ultimately the consumer.

3D Integrated Circuits

While the flow described above applies to most ICs in production today, newer
technologies such as 3D or 2.5D integrated circuits add a few additional steps to the
pre-existing flow. Both 3D and 2.5D ICs allow the integration of multiple dies on
the same package (vertically for 3D and horizontally for 2.5D) with high-bandwidth
interconnects between them. They offer numerous advantages in terms of reduced
footprint for increased computational power, shorter average wire length for reduced
parasitics and power dissipation, possibility of heterogenous integration (e.g.,MEMs
stacking and dies at different technology nodes in the same package), and reduced
latency (e.g., when stacking processor and memory). In through-silicon-via (TSV)
enabled 3D ICmanufacturing,multiple dies (orwafers)with different partitions of the
design are fabricated separately. After fabrication, the die (orwafers) is aligned on top
of each other and die-to-die (orwafer-to-wafer) high-bandwidth interconnects (called
TSVs) are created to connect the partitions. In 2.5D IC, two (or more) dies are placed
on top of a single interposer layer and microbumps on the individual die connect to
wires in the interposer layer to create a final integrated die. Note that the die-to-die or
wafer-to-wafer integration can take place in the same foundry or a separate foundry.
More detailed discussions on these emerging integration technologies can be found
in their respective chapters in this book.

FPGA Manufacturing

While the IC design flow we presented is geared for ASICs (application-specific
integrated circuits), one could also consider the design flow for FPGAs (field-
programmable gate arrays), which are widely used today. While FPGA manufac-
turing follows the same flow as ASICs, the design flow for a FPGA-based product is
completely different. In the FPGA product flow, a design house simply buys FPGA
chips from a vendor (who specializes in manufacturing FPGAs). The design house

1Note that the foundry might also have packaging capabilities.

10 B. Shakya et al.

then combines soft IPs (frommultiple vendors as well as the design house itself) and
then integrates them into one final wrapper, which is then converted to a bitstream
file (using vendor EDA tools). This file configures the lookup tables (basic building
blocks of FPGAs) and routing resources of the FPGA to realize the design in sil-
icon. Note that this FPGA flow is much shorter (and simpler) than that of ASICs.
However, the high monetary cost associated with FPGAs (per unit), difficulty of
high-volume production, lower performance (in terms of clock speed), and higher-
power consumption limit the scope of FPGAs despite their flexibility. Nonetheless,
the protection of IP contained within the FPGA bitstream is an important area of
research.

PCB Manufacturing

Printed circuit board manufacturing, while not as complex as IC manufacturing, also
tends to have a distributed supply chain, which is described below.

• Design House

– A design house who manufacturers electronic/embedded systems first creates
the layout file of his or her PCBwith the help of an electronic design automation
tool. During this stage, ICs that are part of the PCB are placed onto a template
and wires are created between components by a combination of manual and
autorouting.

– After placement and routing, extensive simulations are performed to check the
integrity of signals as they pass through the board (e.g., in terms of cross talk
and signal degradation in the case of long wires).

– The final layout of the PCB (in the form of a Gerber file) is then produced with
contains information about (i) the number of layers in the board (modern PCBs
have as many as 8–10 layers stacked) and (ii) exact coordinates of vias, wires,
and components.

• PCB Manufacturer

– The (Gerber) design is then electronically transmitted to a PCB manufacturer
who uses it to produce the final board. The production can involve photolitho-
graphy, milling, silk-screen printing, or a combination of the three to create the
copper wire traces and vias on FR4 layers (the insulating base of a PCB). The
PCB manufacturer also usually offers services for mounting + soldering the
desired ICs on the board as well. After manufacturing, the PCB can go back to
the design house, but it is usually forwarded to an assembly or distributor, who
integrates the PCB into a complete electronic system.

1.2.2 Threats in the Supply Chain

It is clear that while the distributed supply chain for IC production has helped to
drive cost and time-to-market down, it has also created a number of security and

1 Introduction to Hardware Obfuscation: Motivation … 11

trust concerns among different entities. These threats, as they pertain to silicon IP
security, are discussed below.

1.2.2.1 Reverse Engineering

The goal of reverse engineering is for the malicious party to recover the IP. After
recovery, the malicious party can (i) use it to create a product that it can then sell
to other parties; (ii) use the IP in its own product without compensating the rightful
IP owner (breach of contract); (iii) find security vulnerabilities in the IP (e.g., weak
random number generation) and exploit it later on; and (iv) insert a targeted backdoor
in the IP after gaining a complete white box understanding of the IP. The threats could
be present in different stages.

• Design House: The design house could potentially reverse engineer the IP core it
receives from the IP vendor (firm and/or hard IP).

• Foundry: The design house provides the complete design in the formof aGDSII file
to the foundry, along with manufacturing test patterns. The foundry could easily
recover the netlist from the GDSII file by finding the connectivity information
from the layout and coupling it with the standard cell library it had previously
provided to the design house.

• Market: Once an adversary obtains a manufactured IC (either through the open
market or through theft), he or she could try to reverse engineer the chip through
destructive means to recover the complete design/IP [10]. Note that since we are
concernedwith IP protection here, side-channel/noninvasive/semi-invasive attacks
that try to recover the secret key will not be considered. For destructive reverse
engineering, the attack begins by decapsulating the chip from its packaging (either
by mechanical abrasion or by corrosive acids), which exposes the bare die. Once
the die is exposed, the attacker begins the slow process of imaging of all the layers
of the IC (via scanning/transmission electron microscopy, high-resolution optical
microscopy, focused ion beam, etc.). After imaging each layer, the attacker reaches
for the next layer by using techniques such as chemical mechanical polishing
(CMP) or plasma etching which helps to grind away a specific depth of the chip
(and specific materials, depending on the etchant used). Once images for each
layer are obtained, they are stitched together using automated image processing
algorithms to obtain the full layout of the IC. If a standard cell library is available,
the layout can then be converted to a gate-level netlist. While the process seems
extensive, there are dedicated companies (e.g., TechInsights and Chipworks in
Canada and Integrated Circuit Engineering Corp. in Arizona) that can perform the
RE tasks at reasonable price/turnaround time and impressive accuracy. For a more
detailed treatment of invasive reverse engineering, we refer the reader to [11].

– PCB Reverse Engineering: Similar kinds of destructive delayering and imaging
attacks can also be applied to PCBs in order to recover the design. Since PCB
traces are not nanoscale (yet), noninvasive techniques such as X-ray computed
tomography can be used to image each layer of the PCB and get the connectivity

12 B. Shakya et al.

information (which can be used to produce a Gerber file) in a matter of hours
[12].

– FPGAReverseEngineering:When it comes to an FPGA, the IP that an adversary
would try to steal would be the FPGA bitstream, which is usually stored in
an onboard/on-chip nonvolatile memory. If the bitstream is unencrypted, the
attacker could read out the memory, by either probing or imaging. In case of
an encrypted bitstream, side-channel attacks can first be used to recover the
encryptionkey [13].After recovering thebitstream, the attacker canuse it illicitly
on another FPGA device. He or she could also convert the bitstream to its
corresponding netlist [14].

1.2.2.2 IP Piracy

Apart from reverse engineering, an adversary in the supply chain could also use the
IP illicitly as is. With respect to the supply chain, the following threats are involved.

• Foundry: A foundry may only be contracted to produce a certain number of the
design house’s IP. However, since the foundry has the complete working design,
they may produce excess copies of the design and sell them in the market (as is or
relabeled/remarketed as a ‘cloned’ product). This effectively allows them to forgo
any research and development (R&D) costs and make a profit by illicitly using
someone else’s IP. This practice is referred to as ‘overproduction’.

• Design House: A design house may only be licensed to use a vendor’s IP core on a
limited number of chips (and paying royalties depending on howmany chips were
manufactured) or for a specified period of time. Unfortunately, if the IP vendor
does not have a means to ‘meter’ the number of chips produced or actively track
the IP’s license, the design house could engage in IP piracy by ‘overusing’ the IP.
This is in addition to the threat of the design house modifying the IP and selling it
under a new name to other unauthorized parties.

• Design-for-Test: An offshore untrusted DFT facility may also pirate the IP (by
producing a cloned version of the IP and selling it to unauthorized third parties),
as it has the complete gate-level design in its possession.

1.2.2.3 Tampering

An adversary in the supply chain could also tamper with the design and introduce
vulnerabilities or backdoors (i.e., hardware Trojans) into it. Two types of attacks
might be possible in this scenario: targeted and untargeted. In a targeted attack,
an adversary, such as an untrusted foundry, design house, DFT facility, or even an
untrusted EDA tool, could gain a partial or complete understanding of the IP-under-
attack and insert Trojans that bring about a specific malicious effects. For example,
a foundry could decrease the entropy produced by a random number generator in a
fabricated crypto-core [15]. It could also severely thin down the interconnect on a

1 Introduction to Hardware Obfuscation: Motivation … 13

critical path on the design, such that it fails prematurely. An untrusted DFT facility
could increase the observability of an internal node in the design, such that it reveals
a critical internal asset directly through its primary outputs.

In an untargeted attack, an adversary’s goal is sabotage or denial-or-service attack,
by exploiting some critical portions of the design (e.g., power supply net and clock
pin) andwithout gaining a complete understanding of the underlying design (through
reverse engineering). For example, a foundry, if it finds unused space in the layout
of the design, could implement a Trojan that, once triggered, resets a number of
flip-flops or dramatically decreases the clock speed in the design. Similar kind of
attacks could also be implemented by an untrusted DFT facility (without any space
constraints, since the design is at gate level). It should also be noted that such targeted
and untargeted Trojan attacks can also be implemented by an IP vendor (who perhaps
has cloned another vendor’s design introduced a Trojan into it and then sold it to a
design house). For a comprehensive review of hardware Trojan attacks, we refer the
readers to [16].

1.2.3 Why Isn’t Encryption a Solution?

Due to the convoluted nature of the supply chain, numerous attacks which could
compromise an entity’s IP rights are possible. On quick thought, one might naively
think that the solution to most, if not all of these issues, is to encrypt the IP. How-
ever, unlike software, encryption is not a viable option for ICs. While encryption
implies a certain storage or speed overhead in software, hardware encryption implies
actual gates. Since these gates are cast in silicon and encryption/decryption cores are
not exactly area-efficient, encryption becomes unreasonable. Moreover, during most
stages in the supply chain (such as foundry, DFT, and design house), the design is a
completewhite box to the adversary, i.e., information relating to all the gates and their
interconnections is available. Since most encryption/decryption cores have repeating
structures of arithmetic operations (e.g., AES-128 has 10 identical rounds of permu-
tation/substitution), they are easily identifiable under a white-box attack model. This
means that the adversary could simply go in and remove the core, thereby nullify-
ing the security provided by the crypto-core. Lastly, encryption, as we discussed in
Sect. 1.1.1.2, requires keys. This implies that a key management infrastructure must
be available throughout each stage of the supply chain, and the design would also
need to be periodically ‘unlocked’ in order to perform tests (especially in the case of
encrypted soft IP cores—see Sect. 1.2.4.1). This creates further logistical issues to
an already complex supply chain. Thus, alternatives are required in order to protect
semiconductor intellectual property which could potentially cost billions to develop.

14 B. Shakya et al.

Hardware
Obfusca on

RTL

IP Encryp on

RTL Locking

White-Box
Obfusca on

Gate

Logic
Encryp on

FSM Locking

Protocol-Based

Secure Test

Layout

Monolithic Split
Fabrica on

2.5D/3D IC Split
Fabrica on

Camouflaging

Instruc on Set
Obfusca on

Randomize

Thwart
Disassembly

PCB
Obfusca on

Permuta on
Block

Emerging
Techniques

Circuit Edit

Nano Device
Enabled

Fig. 1.3 A taxonomy of hardware obfuscation techniques

1.2.4 Techniques for Hardware Obfuscation

With the semiconductor supply chain and its inherent threats in mind, researchers
have developed numerous hardware obfuscation techniques over the past decade. A
taxonomy of these techniques is presented in Fig. 1.3 and is briefly introduced below.

1.2.4.1 RTL Level

Register-transfer level intellectual properties (IPs), also known as soft IPs, are com-
monly in the form of Verilog or VHDL code. Soft IP obfuscation can be achieved
through the following methods.

• IP Encryption: The entire soft IP can be encrypted by common encryption tech-
niques such as AES or RSA. In this setting, key management is usually handled by
the EDA tools (which are assumed to be trusted2) and the IP buyer simply uses the
encrypted IP as a black box. Unfortunately, the technique is limited to flexibility as
the buyer/customer might be limited to a particular EDA tool. Recently introduced
standards such as the IEEE P1735 encryption standard [17] have attempted to ease
the interoperability of encrypted IPs across various EDA tools.

• RTL-level Locking: The authors in [18, 19] have proposed separate key-based
locking approaches for RTL-based IPs. In these approaches, RTL code is first
represented as a data flow [18] or state transition graph [19]. The graph is then

2A trusted party is committed to ensuring a proper IC design/fabrication flow (i.e., does not insert
Trojans and protects IP confidentiality).

1 Introduction to Hardware Obfuscation: Motivation … 15

modified with key states, i.e., additional states in the FSM representation of the
code that must be traversed with the help of a key sequence [18] or code word
[19]. The IP comes into functional mode only when the correct keys are applied;
otherwise, the IP is stuck in a non-functional, obfuscated mode. After obfuscating
the graph and embedding locking features, the RTL code is regenerated from the
graph, resulting in the final obfuscated IP.

• White-box Obfuscation: Soft IPs can also be obfuscated in terms of intelligibil-
ity and readability. The authors in [20] have utilized techniques such as loop
transformations and reordering of statements in order to make a VHDL source
code unintelligible yet functionally akin to the original code. The work in [21]
explores control flow flattening, where a function or loop is broken into blocks
and delegated to ‘switch’ statements, due to which the control flow of the program
becomes much less obvious to an attack (as opposed to a simple ‘for’ loop where
the execution order is obvious). Both of these techniques are more in line with tra-
ditional software obfuscation, which will be explored in Sect. 1.3. Unfortunately,
such white-box obfuscation does not lock or obfuscate the functionality of the IP,
leaving it vulnerable to IP piracy and overuse.

1.2.4.2 Gate Level

Gate level IPs, commonly referred to as firm IPs, are expressed in the form of netlists.
In a netlist, the IP is expressed in the form of nets (connections) and a collection of
standard logic cells. In order to protect gate-level IP, traditional encryption can be
applied. However, this usually comes at the cost of significant hardware overhead
and possible ‘removal’ attacks, as we previously discussed in Sect. 1.2.3. With these
challenges in mind, several novel obfuscation techniques at the gate level have been
recently proposed, of which the notable ones include the following.

• Logic Encryption: In this technique, extra gates such as XOR, XNOR, and MUX
are inserted into the netlist of a design [22, 23]. These gates (and their logical out-
put) are controlled by key bits which can be stored in a tamper-resistant nonvolatile

Fig. 1.4 A logic-locked
circuit with three key gates
[23]

16 B. Shakya et al.

memory or be derived from PUFs (see Fig. 1.4). The security of this approach lies
in the fact that only the trusted design house knows and can apply all the cor-
rect key bits. Without the correct key bits, incorrect logical values are generated
in the internal circuit nodes which eventually lead to faulty outputs. This effec-
tively obfuscates the circuit to a third party who does not possess the correct key.
Unfortunately, such locking techniques are vulnerable to Boolean satisfiability
(SAT)-based attacks [24] as well as attacks that directly propagate the key bits
to the circuit outputs [23] (details regarding both these attacks can be found in
Sect. 1.2.5.2). Also, such techniques have only been studied on small-sized bench-
mark circuits, and their scalability is yet to be assessed.

• FSM-based locking: Several finite-state machine (FSM)-based locking techniques
that are geared specifically toward sequential circuits have also been proposed.
Among the most notable approaches, the authors in [25] have proposed the
embedding of an authenticating FSM into a gate-level design. This authenticating
FSM has to be traversed by an authorized user through a series of specific state
transitions which are triggered by applying a series of input patterns only known
to the user. If the chip is not unlocked via such a traversal, faulty values are gener-
ated by an additional modification kernel function and injected into the gate-level
design in order to obfuscate the functionality of the locked chip. The security of the
approach lies in the fact that the whole circuit is resynthesized after embedding the
authentication and obfuscation features into the design, leaving an attacker with an
insurmountable challenge of identifying (and removing) the implemented obfus-
cation. Although the authors propose utilizing pre-existing unreachable states in
the FSM to incorporate the locking mechanism, the technique remains high in
overhead (in terms of area, power, and delay).

• Protocol-level: The authors in [22, 26] have also utilized such locking techniques
at a protocol level (with key exchange), in order to prevent an untrusted foundry
from engaging in IC overproduction and IP piracy. These techniques are also
commonly referred to as hardware metering. In [26], the authors utilize the afore-
mentioned FSM-based locking technique, with the addition of a PUF to generate
a unique start-up state for each IC. Upon manufacturing, a foundry relays the
generated challenge–response pair from the PUFs so that the trusted design house
can compute a unique unlocking FSM sequence for each chip. Additionally, the
concept of black-hole states are introduced, which are irreversible state transitions
from which the FSM cannot be reset. These black-hole states help in tamper
detection in case a foundry attempts to randomly traverse the locked FSM.
Although a cryptographically secure construction of the locked FSM is provided in
[26] (via reduction to multi-point functions), such metering techniques are costly
in overhead and do not take into account the testing procedure for ICs, a concern
which has been more adequately addressed in [27].

• Secure Test: Recent work has shown that crypto-cores (AES, RSA, etc.) are par-
ticularly vulnerable to scan-based attacks, i.e., attacks that exploit scan flip-flops
(FFs) embedded in a design as part of DFT, in order to reveal internal circuit values
(including the secret key itself) [28]. These attacks are all possible because scan
FFs are just normal registers in a design that can either be configured as scan or

1 Introduction to Hardware Obfuscation: Motivation … 17

normal FFs, depending on a ‘scan enable bit’ that is loaded from a multiplexer
driving the D pin of the FF. Attackers who gain access to the scan chain can load
multiple plaintexts into the cryptographic core (e.g., DES and AES) and switch
from normal to scan mode. After doing this, they can flush out the corresponding
intermediate values in internal registers and use hamming distance-based analysis
to extract the secret key (or at least the individual round keys). Further, if the reg-
isters storing the round keys are part of the scan chain, the key could be directly
read out without any analysis [29]. In order to prevent the attacker from access-
ing the scan chain, various obfuscation techniques have been employed. Simple
solutions include the use of test compression structures that compress the value of
several scan flip-flops into a single output, thereby making the observation of indi-
vidual FF values unfeasible. Unfortunately, such compression-based obfuscation
technique comes at the cost of high area overhead. Locking techniques have also
been proposed that allow the designer to scramble the responses of the scan chain
(chain of scan FFs) unless a secret key is applied. The lock-and-key technique
proposed in [30] breaks up the scan chain into sub-chains. These sub-chains are
configured properly and can be fed with the patterns sequentially only when the
correct key is applied. If the wrong key is applied, the sub-chains are configured
incorrectly by an LFSR, resulting in a ‘lock’ of the scan chains, which then results
in wrong scan-out values. The work in [27] uses a similar concept to combat IC
piracy. In the proposed technique, a ‘scan locking block’ (composed of a scram-
bling block and an XOR network) is utilized in order to perturb the scan chain
responses. These perturbed responses can only be verified as correct by the design
house, who can then appropriately chose whether to ‘pass’ or ‘fail’ a chip, thereby
preventing the foundry from engaging in overproduction and allowing the design
house to meter the number of chips produced. This approach also prevents out-of-
spec/defective ICs from entering the market by giving the IP owner remote access
to test responses. A more detailed treatment of scan-based attack and defenses can
be found in the chapter on scan chain security in this book.

1.2.4.3 Layout Level

Layout-level IPs, also known as hard IPs, come in the form of geometrical and spatial
information about the designwhich can be directly fabricated by a foundry. In order to
protect the layout from piracy and possible Trojan insertion by an untrusted foundry,
several split-manufacturing techniques have been proposed [31–33] (see Fig. 1.5).

• Monolithic Integration: In a traditional split-manufacturing flow, an untrusted
foundry only fabricates the front-end-of-line (FEOL) layers, which include the
expensive and state-of-the-art transistor/active layers. After FEOL fabrication, the
design is sent back at the wafer level to the design house, who then uses a trusted
foundry in order to complete the less costly back-end-of-line (BEOL) metal lay-
ers (see Fig. 1.6). While such techniques hide connectivity information from the
foundry, attacks have been mounted on naive split manufacturing, which utilize

18 B. Shakya et al.

Fig. 1.5 A camouflaged
standard cell that can
function as a NAND,NOR,
or XOR, depending on
contact configuration [35]

proximity information from the assumptions that EDA tools use (e.g., gate distance
to minimize wire length) [34]. Moreover, the biggest hurdle to split manufactur-
ing is that the design house is still required to maintain a foundry to complete
the BEOL, whose cost might be prohibitively expensive depending on the split
layer. Further, foundry compatibility and wafer alignment with such monolithic
split-fabrication techniques may also hurt IC yield.

• 2.5D/3D IC: Attempts have also beenmade to utilize pre-existing 3D/2.5D IC tech-
nology to perform split manufacturing, as opposed to the monolithic integration
technique proposed in [31]. In [32], wire-lifting is performed on a layout so that
the lifted wires can be fabricated as separate layer at a trusted facility and the com-
plete IC can be assembled by through-silicon-via (TSV) bond points in a normal
3D IC design flow. The authors also introduce the notion of k-security, by which
every gate in the design in the FEOL layers is structurally akin to at least k other
gates in the same design (as the BEOL information of the upper tier is missing).

Fig. 1.6 Split
manufacturing leveraging
monolithic integration [37]

1 Introduction to Hardware Obfuscation: Motivation … 19

This makes it infeasible for the attacker (untrusted foundry) to identify the gates
and thus launch a targeted hardware Trojan attack. In [33], 2.5D IC technology
is leveraged in order to securely partition a gate-level design so that two or more
partitions of the design can be fabricated at an untrusted foundry and the inter-
poser layer connecting these partitions can be fabricated at a trusted facility. They
introduce the concept of ‘secure’ partitioning, in which gates are iteratively moved
from one partition to another until the global objective of a set wire-length penalty
and 50% hamming distance (see Sect. 1.3.1) is met. Unfortunately, split manufac-
turing based on 3D/2.5D IC technology has the same drawbacks of requiring a
separate fabrication facility. Further, these techniques require significant amounts
of gate-swapping and wire-rerouting operations for obfuscation, leading to large
area and delay overheads.

• Camouflaging: In order to protect against chip-level reverse engineering, the
authors in [35] have proposed the use of special camouflaged standard cells. These
cells have a layout that makes them appear the same to an invasive reverse engi-
neer, whether they implement aNAND,NOR, orXOR functions. This is achievable
through dummy contacts in the dielectric layer of the gate: Some contacts in the
gate go all the way through the dielectric layer and into the metal layers above,
while others are cut off. However, to an adversary, the contact looks the same
from the top regardless of whether the contact is cut off or joined, giving rise to
ambiguity while trying to identify the gate. This prevents the attacker from obtain-
ing the complete netlist of the design. On the downside, the camouflaged gates
themselves have a non-negligible power, area, and delay overhead, and a large
number of these gates might have to be used in a design to achieve strong security
for industrial designs. Further, recent attacks have shown that a design, even with
an unrealistic number of camouflaged gates, can be effectively ‘decamouflaged.’
These attacks leverage SAT solvers and discriminating input patterns to resolve
the hidden functionality of the camouflaged gates in negligible time [36].

1.2.4.4 Instruction Set Obfuscation

Every computer system has an underlying instruction set architecture (ISA) associ-
ated with it, which dictates the type of commands, data types, address space, and
operation codes (opcodes) it can handle. The ISA serves as an intermediary between
the software and hardware of the computer and is usually public knowledge. Unfor-
tunately, this also means that for any attacker trying to remotely attack a system (or
even invasively, via compromise of the memory unit holding the instructions), the
ISA is well defined too, and thus, he or she can plant the attack on all computers using
the same ISA. This serves as a basis for attacks such as buffer overflow. To combat the
predictability of the ISA, the authors in [38] proposed a technique to scramble each
byte of code (using pseudorandom numbers) and reversing the scrambling only when
the code is executed in machine. This means that any unauthorized program, which
was never scrambled, will be descrambled to random bits, thereby preventing any
targeted malicious behavior. A similar approach which XOR’s the instructions with

20 B. Shakya et al.

a secret key as they are transmitted between the processor and the main memory (as
implemented on a simulated x86 environment), was proposed in [39]. An attacker
without key access can only inject malicious code which is incorrectly decoded,
thereby raising a flag or causing a detectable error.

Another technique for instruction set obfuscation focuses on disrupting the disas-
sembly phase of reverse engineering (i.e., conversion of machine code, in hexadeci-
mal or binary form, to assembly code in human-readable form) [40]. This is achieved
by carefully inserting ‘junk bytes’ in the instruction stream of the code. These
junk bytes cause an automatic disassembler to either misinterpret the instructions
or the control flow of the program but do not affect the program’s functionality
(i.e., semantics) as they are unreachable instructions during run-time.

1.2.4.5 PCB Obfuscation

In order to prevent a PCB design from piracy, the authors in [41] propose the inclu-
sion of a permutation block on the board. The permutation block, implementedwith a
complex programmable logic device (CPLD) or an FPGA, takes in suitable pins (e.g.,
general-purpose I/O) from programmable component in the design (e.g., microcon-
trollers) and permutes its pin connections before they reach their destination. The
permutation is resolved to the correct configuration only when the correct key is
applied to the CPLD or the FPGA (the permutation block).

1.2.4.6 Emerging Techniques

There have also been a variety of novel obfuscation techniques that have been pro-
posed recently. A few of the notable ones are highlighted below.

• Chip Editor: The basic idea of circuit edit (CE) is to utilize technologies such as
focused ion beam (FIB) in order to edit an integrated circuit after fabrication on
a one-by-one basis. CE has been widely used in the semiconductor industry in
order to perform failure analysis and circuit/mask repair without undergoing the
humongous costs of remaking the IC mask. Recent work has focused on leverag-
ing circuit edit for logic obfuscation and trusted fabrication [42]. The proposed
technique called Chip Editor involves the inclusion of extra gates or wires into
the IC design which is then fabricated and tested by an untrusted foundry. After
fabrication, the IC is returned to the design house (or other trusted party), who
then uses circuit edit techniques such as FIB in order to remove the added gates
or wires and revert the circuit to its intended functionality. The security of the
approach lies in the fact that the foundry is unable to determine the gates or wires
that are added in or modified by the design house, even when the added gates have
been accommodated with design-for-circuit-edit features such as widened pads.
Figure1.7 shows one example of a gate insertion-based obfuscation enabled by
circuit edit, where anAND gate is inserted and is edited to a buffer post-fabrication,

1 Introduction to Hardware Obfuscation: Motivation … 21

Fig. 1.7 Gate insertion
enabled by circuit edit. a
Original design with selected
net i. b Gate D and wire k
added. c Wire k edited to
make gate D act as a buffer
[42]

by tying one of its inputs to VDD. The authors in [42] also outline several other
techniques for obfuscation, such as wire-swapping and insertion with other gate
types. Compared to split manufacturing and 2.5D/3D IC obfuscation, the circuit
edit technique removes the need for the design house to maintain a costly foundry
to complete the BEOL or interposer layers and only requires a moderate cost FIB
machine. The need for key management and secure key storage (e.g., in logic
encryption) is also alleviated. However, the drawback of the approach is that it
can only be utilized for low-volume IC production (since FIB operations take time
and can only be done on a one-by-one basis). Similar to split manufacturing and
2.5D/3D IC obfuscation, it also does not prevent the IC from being reverse engi-
neered once it enters the open market, thus limiting its scope to tightly controlled
supply chains (e.g., military and aerospace).

• Nanodevice enabled: Several other techniques leveraging emerging nanoscale
devices for circuit obfuscation have also been proposed. The authors in [43] pro-
pose the use of polarity-controllable silicon nanowire FETs (SiNWFETs) in order
to make low-overhead IC camouflaging gates. As opposed to traditional camou-
flaged gates which require as much as 12 transistors, the authors show that it is
possible to use only 4 SiNW to achieve a NAND, NOR, XNOR, and buffer func-
tionality from the same gate, resulting in significant area and power savings. They
also utilize SiNW FETs to make polymorphic gates, which can be configured to
be either a NAND or a NOR gate depending on how the VDD and GND termi-
nals are configured. Unfortunately, the drawback of using these novel devices is
that they suffer from high leakage current and fabrication issues (imprecise device
characteristics and limited scaling from top-down or traditional fabrication and
yield issues from bottom-up or gate-first fabrication) [44].

1.2.5 Key-Based Classification

Hardware obfuscation techniques can also be classified on the basis of whether they
employ a key-based locking mechanism or not.

22 B. Shakya et al.

1.2.5.1 Keyless

Keyless hardware obfuscation techniques ensure security by stripping away specific
information regarding the design from the adversary. This includes techniques such
as (i) white-box obfuscation for RTL (control flowgraph obfuscation, removing com-
ments, code compression, etc., to prevent reverse engineering); (ii) split fabrication
(take away BEOL connectivity information from foundry so that they do not have the
complete design); (iii) 2.5D/3D IC obfuscation (take away partition of a design, in
the form of a separate die, from the foundry); (iv) instruction set obfuscation (make
reverse engineering of code difficult); (v) IC camouflaging (make a gate incompre-
hensible for reverse engineers); and (vi) circuit edit (foundry is unable to find the
added/modified gates or wires), all of which were discussed in detail in Sect. 1.2.4.
While these techniques do not require key management, they usually have a more
restrictive attack model (e.g., tightly controlled supply chain so that an attacker does
not gain information about the design).

1.2.5.2 Key-Based

Key-based hardware obfuscation techniques include (i) IP encryption (via AES); (ii)
RTL/FSM locking (correct sequence of state transitions required to unlock IP/IC);
(iii) logic encryption (through embedding of locking key gates into design); and (iv)
permutation block PCB locking. These techniques rely on the fact that the key used
to unlock the design stays secret. Without the secret key, the design remains non-
functional to an adversary. The idealistic assumption is that the adversary is reduced
to using brute force in order to guess the correct secret key for the locked design.
Assuming a large enough key length, such attacks become quickly unfeasible for
most key-based obfuscation techniques (e.g., 2128 guesses for 128-bit key). However,
several recent attacks have shown that an attacker can domuch better than brute force
in order to extract the secret key from an unlocked IC (and thereby use it to unlock
other ICs) or check the correct key in far fewer tries than brute force. Some of these
attacks are discussed below.

• Boolean satisfiability (SAT) solvers: Logic encryption techniques have recently
been subjected to Boolean satisfiability (SAT) solver-based attacks [24]. In this
attack, it is assumed that an adversary gains an unlocked version of the IC from
the open market and uses this unlocked IC to query the correct input–output (IO)
functionality of the design. Using this correct IO information and a separate locked
IC implementing the same functionality, the attacker iteratively tries to rule out
multiple incorrect key values. This is done by inputting the circuit in conjunctive
normal form (CNF) to a SAT solver. Using the solver, the attacker identifies dis-
tinguishing input pairs (DIPs) that can help him or her to rule out multiple wrong
keys in a single guess. This drastically reduces the key search space, enabling the
attacker to deduce the right keys in a very reasonable amount of time.

1 Introduction to Hardware Obfuscation: Motivation … 23

• Key propagation attacks: The authors in [45] propose an automatic test pattern
generation (ATPG)-based attack on logic encryption. In this approach, test patterns
are generated, which can selectively ‘mute’ the effect of other gates in a circuit
(e.g., by applying non-controlling values, such as logic 0 to an OR gate) and cause
the key value on the key gates to propagate all the way to the primary outputs.
Thus, through a topological evaluation of the circuit and generation of appropriate
test patterns, the attacker can use to obtain the secret key and use it to unlock other
ICs.

More details regarding both of these attacks can be found in the following chapter
on logic encryption. The chapter also highlights appropriate countermeasures to
these attacks, such as interference graph-based logic encryption (allowing key gate
insertion at locations which do not allow propagation of the key bits to the output)
and SARLock (utilizing the output of one-way random functions such as AES to set
the key bits; this prevents an attacker from correlating the AES key to the circuit
outputs, making SAT attacks provably unfeasible). However, note that both of these
countermeasures are ad hoc in nature, thereby requiring large area overhead.

Besides these attacks based on intelligently stealing the key, key-basedHWobfus-
cation techniques also suffer from an array of issues arising due to key management.
Most of the obfuscation techniques rely on the key being stored in some form of non-
volatile memory, which themselves are prone to imaging and probing attacks [46].
Further, key management (i.e., exchange of keys through a network allowing remote
activation and authentication) is a non-trivial requirement, requiring area overhead
for key exchange circuitry (e.g., RSA) and a secure network resistant to man-in-the-
middle and replay attacks. An attempt at secure key exchange for remote authenti-
cation/activation of chips is presented in [47]. In the proposed FORTIS approach,
RSA is utilized for end-point authentication between the chip at the foundry and the
design house, and one-time pad (OTP) symmetric encryption is used for protecting
the keys during exchange. A detailed treatment of the entire protocol can be found
in the chapter on FORTIS in this book.

1.3 Software Obfuscation

Computer software is the field that the term ‘obfuscation’ is most commonly asso-
ciated with. While software obfuscation is beyond the scope of this book, we briefly
introduce the field and highlight some reasons for utilizing it below.

Informally, software obfuscation relates to the practice of programmers conceal-
ing the implementation of their algorithm in code. This can include techniques rang-
ing from simple comment or white space removal to more elaborate techniques such
as loop unrolling (from the control flow graph or CFG representation of the program)
[48]. While the overarching goal of obfuscation is IP protection (through prevention
of reverse engineering), more specific reasons for considering obfuscation include
the following.

24 B. Shakya et al.

• Protection against malicious intent: Computer vulnerabilities such as malware,
virus, and Trojan horses often require the adversary to have a complete white
box understanding of the software system they are targeting. For example, a buffer
overflowattack requires the attacker to exactly know the instruction set architecture
(ISA) of the victim’s host system. Obfuscation techniques such as address space
randomization [49] can be effective in preventing such attacks. Also, a software
company, on discovering a bug in their software, could obfuscate their program
with a patch to the bug and release it. This could be done so that an adversary
is unable to recover the original bug from the patched program, so that he/she is
prevented fromexploiting customers of the softwarewithout the patch. Conversely,
a malware could also employ obfuscation on itself in order to prevent detection
by antivirus or intrusion detection packages [50].

• Protection against IP theft and misuse: One of the strongest reasons for obfus-
cation, in terms of IP protection, is to prevent IP theft and misuse. The software
piracy cases that we discussed in Sect. 1.1 show the importance of strong obfus-
cation and why measures need to be taken to actively protect software IP from
competitors and even potential customers.

• Code Minification: Apart from IP protection, obfuscation is also routinely used in
the software industry in order to perform code compaction. Popular tools such as
ProGuard [51] work with specific programming languages such as Java in order
to simultaneously obfuscate and minimize code by removing unnecessary classes,
shortening variable names, etc. This helps to produce executables that are compact
in size and ease memory/storage constraints. Note that such ‘minification’ (and
software obfuscation, in general) does not affect the functionality of the original
code.

• Recreational Obfuscation: On a lighter note, competitions such as the international
obfuscated C code contest (IOCCC) encourage participants to reproduce a code
or algorithm in the most artistic or esoteric way possible [52] (Fig. 1.8).

1.3.1 Metrics for Hardware Obfuscation

Although we discussed the various techniques used for hardware obfuscation at
different levels of abstraction, it is also important to note the metrics that go into (i)
implementing and (ii) evaluating these techniques. Implementation metrics, which
can be used for performing ‘good’ obfuscation, have two key requirements. First,
they should be reasonably fast to compute (e.g., linear complexity) so that they can
still be practical when applied to large circuits. Second, they should ideally be able
to incorporate overhead (area, power, delay, etc.) and security constraints as the
obfuscation technique is iteratively applied to the circuit. In this way, the designer
does not have to wait till the entire obfuscation procedure is complete in order to
evaluate the resulting security and overheads.

1 Introduction to Hardware Obfuscation: Motivation … 25

Fig. 1.8 IOCCC Flight Simulator: Winning entry of the 1998 International Obfuscated C Code
Contest [53]

Evaluation metrics can be grouped into two categories: preobfuscation and post-
obfuscation. Preobfuscation evaluation metrics can be used to judge the difficulty
in obfuscating a circuit before the actual technique is applied to it. These kinds of
metrics help the designer to gauge the effort required (e.g., overheads that might

26 B. Shakya et al.

need to be committed and computation time) in order to obfuscate the circuit before
performing the actual obfuscation. They could also help in deciding from an array of
candidate obfuscation techniques. Post-obfuscation evaluation metrics are applied
to a circuit after the obfuscation is complete. In order to use these metrics, a golden
circuit (i.e., the unobfuscated circuit) is required which is then compared to the
obfuscated version in order to evaluate the resultant security and overheads.

Some of the metrics frequently which recur across different obfuscation tech-
niques and can be used for implementation and/or evaluation are briefly discussed
below.

• Implementation Metrics

– Fault Impact: The authors in [23] have used fault impact in order to judge the
appropriate locations to insert key gates into a circuit. The fault impact for a
gate can be expressed as the product of the total number of test patterns that
detect a stuck-at-0 fault at the gate’s output and the number of outputs that get
affected by the stuck-at-0 fault at the gate’s output (the total fault impact is the
sum of stuck-at-0 fault impact and stuck-at-1 fault impact). This metric roughly
tells how likely it is that a fault (which, in this case, is the bit-flip induced by
applying a wrong key at the key gate) can propagate to the outputs and cause
an output error. The shortcoming of this approach is that fault detection is a
computationally hard problem, and generating the patterns for detecting the
faults would require exponential run-time as the circuit size scales. The authors
in [33] have utilized a similar metric, which they term as mean observe and
control values (MOV/MCV). As opposed to a stuck-at fault detection approach
which was used by fault impact, MOV/MCV tracks the number of bit-flips in
a wire and the corresponding number of bit-flips of the outputs in output cone
(for MOV) or inputs in the input cone (for MCV) of the same wire. MOV/MCV
has the same linear computational complexity as logic simulation.

– k-security: The authors in [32] introduce the notion of k-security for indistin-
guishability of a gate in a circuit fabricated by split manufacturing. Given that
an attacker has the complete netlist of the design and a partial netlist recovered
from the FEOL layer, the authors claim that a design is k-secure if for every gate
in the FEOL design, there exists at least k subgraph isomorphisms, i.e., k distinct
gates in the complete netlist that the gate can be mapped to. For example, if a
gate in the FEOL netlist has k = 2, it implies that the attacker has to randomly
guess between two gates in the original netlist in order to identify the gate in
the FEOL netlist. Unfortunately, the authors showed that determining whether a
circuit is k − secure is NP-complete. Therefore, they employed a SAT solver to
gradually lift wires from the FEOL to the BEOL and heuristically check graph
isomorphism after each lifting operation to construct a k-secure circuit. This
also unfortunately leads to impractical area overheads.

1 Introduction to Hardware Obfuscation: Motivation … 27

• Evaluation Metrics

– Hamming Distance: Hamming distance (HD) is a metric used to evaluate the
difference between two given bitstreams b1 and b2. It performs a bit-by-bit
comparison of two bitstreams and uses a percentage figure to describe how
many bits are different between b1 and b2. For circuits, the output bits of a
combinational circuit (or a sequential circuit at the same time instance) can
be thought of as a bitstream. An average HD of 50% between b1, the output
of a circuit and b2, the output of its obfuscated or locked counterpart, tells
us that the responses between the two circuits can be the same only with a
probability that is as good as random chance. In other words, the obfuscated
circuit’s response is completely different than that of the original circuit. This
metric has been widely used for evaluating gate-level obfuscation techniques
such as logic locking [23] and also camouflaging [35]. It is either calculated once
post-obfuscation or recursively calculated after each change (e.g., after one key
or camouflaged gate insertion). The drawback of this metric is that it is based on
outputs and requires logic simulation which does not scale well with the number
of inputs and size of the circuit. Most techniques employing HD estimate the
figure by a random sampling of the input space (e.g., 1000 randomly selected
input vectors).

– Verification Failure: The authors in [25, 42] have used percentage verification
failure as ametric for evaluating theperformanceof their obfuscation techniques.
To calculate thismetric, formal verification tools such as Synopsys Formality are
used to perform logical equivalence checking between the obfuscated design and
its original counterpart. The equivalence checking involves the use of proprietary
static analysis techniques on the logic cones of the two designs to compare their
output ports and flip-flop outputs (pseudo-output ports). The final verification
failure figure is expressed as a percentage of failing comparison points (ports that
failed equivalence checking) to the total number of comparison points (total no.
of ports). The advantage of thismetric over simulation-basedHamming distance
is that it is much faster and scalable and does not suffer from the inaccuracies or
coverage issues that arise due to simulationwith a limited set of vectors/patterns.
However, for purely combinational circuits, the metric might not be applicable
due to the increased size of the logic cones (extending from the primary inputs
all the way to the primary outputs, without any flip-flops in between). Note that
verification failure can only be used as a post-obfuscation evaluation metric, as
it requires the complete obfuscated circuit and the original circuit.

– Entropy: Entropy refers to the amount of information contained in a system. In
terms of obfuscation, entropy is used to determine the extent of information that
can be non-trivially attained by an adversary by observing the obfuscated version
of the circuit. The authors in [54] have used entropy as a measure of how easy it
is for the attacker to gain information about the functionality of the circuit from
the distribution of gate types. For example, a circuit synthesized with only two
types of gates will have a very high entropy compared to a circuit synthesized
with 30 different types of gates, from which the attacker might deduce clues

28 B. Shakya et al.

(e.g., a collection of XOR gates might hint to the addRoundKey stage of AES).
Along the same lines, the authors also proposed a complimentary metric they
term as ‘standard cell composition bias.’ This metric analyzes the proportion
of standard cells (such as XOR, flip-flops, or arithmetic gates) in the design. A
design with high bias (e.g., with a lot of XORs and few FFs/arithmetic gates)
might indicate a cryptographic core, while a design with significantly more FFs
might indicate a state machine logic. The goal is to synthesize the design with
low bias, i.e., with equal proportion of different types of standard cells so that
the attacker cannot make a generalized guess about the high-level functionality
or purpose of the circuit. Both entropy and composition bias can be used as
preobfuscation and post-obfuscation evaluation metrics.

– Neighbor connectedness: The authors in [54] introduce neighbor connected-
ness, which gives us an idea of how connected a cell in a design (in layout form,
with respect to split manufacturing) is. If a cell is connected to a lot of other
cells in its neighborhood (e.g., a 4× 4 grid within a small radius R), its function-
ality/purpose could be deduced from the connectivity information. On the flip
side, if connected cells are more ‘spread out’ (i.e., R is increased), an attacker
without BEOL information could wrongly assume that a cell is connected to
another functionally unrelated cell. Therefore, a design with low neighbor con-
nectedness (i.e., where connected cells are far apart) would increase the reverse
engineering required by the adversary (as he or she would keep making wrong
connections based on distance (mis)information). Note that low neighbor con-
nectedness also unfortunately implies an increase in wire length. This metric
can be used for both preobfuscation and post-obfuscation evaluation.

Thus, there are an array of metrics that have been proposed in order to implement
as well as evaluate hardware obfuscation techniques. The key issue with most of the
proposed metrics is that they are impractical, either in terms of computing the met-
ric itself or implementing the design guided by the metric. For example, evaluation
metrics such as HD require logic simulation, which are unscalable on large designs,
have significant errors when estimated with a small set of random vectors, and cannot
be calculated as is by partitioning the design (as we discussed above). On the other
hand, metrics such as k-security end up being too strong and an unfeasible notion of
security, as is evident by the unacceptable area overhead that arises in trying to meet
the metric. Thus, there exists a delicate trade-off between the computational com-
plexity involved in metric computation and the overhead that results from adopting
a particular metric to guide obfuscation.

1.3.1.1 Software Obfuscation Metrics

Although an in-depth treatment of software obfuscation is beyond the scope of this
chapter/book, a few relevant metrics for software obfuscation, which indicate the
level of complexity in reverse engineering or comprehending a program, are high-
lighted below.

1 Introduction to Hardware Obfuscation: Motivation … 29

• Cyclomatic complexity relates to the control flow graph (CFG) representation of a
program. A program without any control statements (e.g., IF) would be assigned
a complexity of 1, whereas a program with one IF statement and one evaluation
condition would be assigned a complexity of 2 (one part evaluating to TRUE and
another evaluating to FALSE, for a total of two linearly independent paths in the
CFG). The complexity increases as more control flow statements are introduced
in the program, indicating an increase in the test cases required to comprehend the
program functionality.

• Halstead complexity metric defines a suite of measures such as program length,
difficulty, and effort, which are all based on the number of distinct operators and
operands that are utilized in the program [55]. Since this metric solely relies on
the operators + operands, it is language-independent and has no notion of control
flow. Nonetheless, the metric directly correlates to program execution time and
amount of time a reverse engineer has to spend to evaluate the program.

1.3.2 Hardware Obfuscation Benchmarks

In order to show the efficacy of their obfuscation techniques, researchers frequently
utilize ‘benchmark circuits’ on which they apply the technique and present results
on the incurred area/delay/power overhead and security metric utilized. For gate-
level techniques, popular examples of used benchmarks include the ISCAS ’85 [56],
’89 [57], and ITC ’99 [58] benchmark sets (which are widely available in synthe-
sized netlist form). Researchers have also utilized the placed-and-routed layout of
these benchmarks to explore split-manufacturing obfuscation. These benchmarks
were initially created as example designs (to be used as functional black boxes) for
researchers to explore test pattern generation, scan chain insertion, fault coverage,
and other VLSI test-related topics. As a result, their use in HW obfuscation has
been more or less ad hoc. Moreover, most of these benchmarks date back decades
and are only a few thousands in gate count. Due to these reasons, it becomes hard
to argue about the scalability of HW obfuscation techniques implemented on these
benchmarks to the million gate designs that are commonplace today.

1.4 Conclusion

In this chapter, we presented a general overview of hardware as well as software
obfuscation. Software obfuscation focuses on developing general-purpose obfuscat-
ing compilers that can work for all programs. However, hardware obfuscation can
vary in technique and scope, depending on the threat model and level of abstraction.
Due to this, there cannot be a one-size-fits-all solution for all hardware obfuscation
problems.

30 B. Shakya et al.

We also explored the various threats involved in each stage of the integrated circuit
supply chain and presented a brief review of obfuscation techniques that have been
developed to counter these threats. Lastly, we reviewed relevant metrics for HW
obfuscation that the reader will encounter throughout the rest of this book.

References

1. Weber J (2016) Epic systems wins $940 mln US jury verdict in Tata trade secret case, reuters.
http://www.reuters.com/article/us-tata-epic-verdict-idUSKCN0XD135. Accessed April 2016

2. Kirk J (2013) Three indicted in alleged source code theft from trading house,
PC world. http://www.pcworld.com/article/2053020/three-indicted-in-alleged-source-code-
theft-from-trading-house.html. Accessed Oct 2013

3. Rosenblatt J (2013) Xilinx sues Flextronics alleging fradulent chip resale, bloomberg technol-
ogy. http://www.bloomberg.com/news/articles/2013-12-11/xilinx-sues-flextronics-alleging-
fraudulent-chip-resale. Accessed Dec 2013

4. Bunkley N (2015) Ford accused by software maker of intellectual property theft, auto-
motive news. http://www.autonews.com/article/20150604/OEM06/150609919/ford-accused-
by-software-maker-of-intellectual-property-theft. Accessed June 2015

5. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan S, Yang K (2001) On the
(im) possibility of obfuscatingprograms.Annual international cryptology conference. Springer,
Heidelberg, pp 1–18

6. Canetti R, Dakdouk RR (2008) Obfuscating point functions with multibit output. Annual
international conference on the theory and applications of cryptographic techniques. Springer,
Heidelberg, pp 489–508

7. Goldwasser S, Rothblum GN (2007) On best-possible obfuscation. Theory of cryptography
conference. Springer, Heidelberg, pp 194–213

8. Garg S, Gentry C, Halevi S, Raykova M, Sahai A, Waters B (2013) Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In: IEEE 54th annual symposium
on foundations of computer science (FOCS). IEEE, pp 40–49

9. Apon D, Huang Y, Katz J, Malozemoff AJ (2014) Implementing cryptographic program obfus-
cation. IACR Cryptol ePrint Arch 2014:779

10. Torrance R, James D (2009) The state-of-the-art in ic reverse engineering. In: Cryptographic
Hardware and Embedded Systems-CHES. Springer, pp 363–381

11. Quadir SE, Chen J, Forte D, Asadizanjani N, Shahbazmohamadi S, Wang L, Chandy J, Tehra-
nipoor M (2016) A survey on chip to system reverse engineering. ACM J Emerg Technol
Comput Syst (JETC) 13(1):6

12. Asadizanjani N, Shahbazmohamadi S, Tehranipoor M, Forte D (2015) Non-destructive PCB
reverse engineering using x-raymicro computed tomography. In: 41st International symposium
for testing and failure analysis, ASM, 1–5 November 2015

13. Moradi A, Barenghi A, Kasper T, Paar C (2011) On the vulnerability of fpga bitstream encryp-
tion against power analysis attacks: extracting keys from xilinx virtex-ii fpgas. In: Proceedings
of the 18th ACM conference on Computer and communications security, pp. 111–124. ACM,
2011

14. Note JB, Rannaud E (2008) From the bitstream to the netlist. In: Proceedings of the 16th
international ACM/SIGDA symposium on field programmable gate arrays, series FPGA 2008,
New York, USA. ACM, pp 264–264. http://doi.acm.org/10.1145/1344671.1344729

15. Becker GT, Regazzoni F, Paar C, Burleson WP (2013) Stealthy dopant-level hardware trojans.
In: International workshop on cryptographic hardware and embedded systems. Springer, pp
197–214

16. Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan taxonomy and detection.
IEEE Des Test Comput 27(1):10–25

http://www.reuters.com/article/us-tata-epic-verdict-idUSKCN0XD135
http://www.pcworld.com/article/2053020/three-indicted-in-alleged-source-code-theft-from-trading-house.html
http://www.pcworld.com/article/2053020/three-indicted-in-alleged-source-code-theft-from-trading-house.html
http://www.bloomberg.com/news/articles/2013-12-11/xilinx-sues-flextronics-alleging-fraudulent-chip-resale
http://www.bloomberg.com/news/articles/2013-12-11/xilinx-sues-flextronics-alleging-fraudulent-chip-resale
http://www.autonews.com/article/20150604/OEM06/150609919/ford-accused-by-software-maker-of-intellectual-property-theft
http://www.autonews.com/article/20150604/OEM06/150609919/ford-accused-by-software-maker-of-intellectual-property-theft
http://doi.acm.org/10.1145/1344671.1344729

1 Introduction to Hardware Obfuscation: Motivation … 31

17. IEEE computer society, IEEE recommended practice for encryption and management of
electronic design intellectual property. https://standards.ieee.org/findstds/standard/1735-2014.
html. Accessed December 2014

18. ChakrabortyRS, Bhunia S (2010) RTLhardware IP protection using key-based control and data
flow obfuscation. In: 2010 23rd international conference on VLSI design. IEEE, pp 405–410

19. Desai AR, Hsiao MS, Wang C, Nazhandali L, Hall S (2013) Interlocking obfuscation for
anti-tamper hardware. In: Proceedings of the eighth annual cyber security and information
intelligence research workshop. ACM, p 8

20. Brzozowski, M, Yarmolik VN (2007) Obfuscation as intellectual rights protection in VHDL
language. In: 6th International conference on computer information systems and industrial
management applications, CISIM 2007. IEEE, pp 337–340

21. Kainth M, Krishnan L, Narayana C, Virupaksha SG, Tessier R (2015) Hardware-assisted code
obfuscation for FPGA soft microprocessors. In: Proceedings of the 2015 design, automation
and test in Europe conference and exhibition. EDA Consortium, pp 127–132

22. Roy JA, Koushanfar F, Markov IL (2008) Epic: ending piracy of integrated circuits. In: Pro-
ceedings of the conference on design, automation and test in Europe. ACM, pp 1069–1074

23. Rajendran J, PinoY, SinanogluO,Karri R (2012) Logic encryption: a fault analysis perspective.
In: Proceedings of the conference on design, automation and test in Europe. EDA Consortium,
pp 953–958

24. Subramanyan P, Ray S, Malik S (2015) Evaluating the security of logic encryption algorithms.
In: IEEE international symposium on hardware oriented security and trust (HOST) (2015).
IEEE, pp 137–143

25. Chakraborty RS, Bhunia S (2009) Harpoon: an obfuscation-based soc design methodology for
hardware protection. IEEE Trans Comput Aided Des Integr Circuits Syst 28(10):1493–1502

26. Koushanfar F (2012) Provably secure active IC metering techniques for piracy avoidance and
digital rights management. IEEE Trans Inf Forensics Secur 7(1):51–63

27. Contreras GK, Rahman MT, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: IEEE international symposium on defect and fault
tolerance in VLSI and nanotechnology systems (DFTS). IEEE, pp 196–203

28. Yang B, Wu K, Karri R (2004) Scan based side channel attack on dedicated hardware imple-
mentations of data encryption standard. In: Proceedings of the ITC international test conference
on 2004. IEEE, pp 339–344

29. Nahiyan A, Xiao K, Yang K, Jin Y, Forte D, Tehranipoor M (2016) AVFSM: a framework for
identifying and mitigating vulnerabilities in FSMS. In: Proceedings of the 53rd annual design
automation conference. ACM, p 89

30. Lee J, Tehranipoor M, Patel C, Plusquellic J (2007) Securing designs against scan-based side-
channel attacks. IEEE Trans Dependable Secure Comput 4(4):325–336

31. Vaidyanathan K, Liu R, Sumbul E, Zhu Q, Franchetti F, Pileggi L (2014) Efficient and secure
intellectual property (IP) design with split fabrication. In: IEEE international symposium on
hardware-oriented security and trust (HOST) 2014. IEEE, pp 13–18

32. Imeson F, Emtenan A, Garg S, Tripunitara M (2013) Securing computer hardware using 3d
integrated circuit (IC) technology and split manufacturing for obfuscation. In: Presented as
part of the 22nd USENIX security symposium (USENIX security 2013), pp 495–510

33. Xie Y, Bao C, Srivastava A (2015) Security-aware design flow for 2.5D IC technology. In:
Proceedings of the 5th international workshop on trustworthy embedded devices. ACM, pp
31–38

34. Rajendran JJ, Sinanoglu O, Karri R (2013) Is split manufacturing secure? In: Proceedings of
the conference on design, automation and test in Europe. EDA Consortium, pp 1259–1264

35. Rajendran J, Sam M, Sinanoglu O, Karri R (2013) Security analysis of integrated circuit
camouflaging. In: Proceedings of the 2013 ACM SIGSAC conference on computer and com-
munications security. ACM, pp 709–720

36. El Massad M, Garg S, Tripunitara MV (2015) Integrated circuit (IC) decamouflaging: reverse
engineering camouflaged ICS within minutes. In: NDSS

https://standards.ieee.org/findstds/standard/1735-2014.html
https://standards.ieee.org/findstds/standard/1735-2014.html

32 B. Shakya et al.

37. Vaidyanathan K, Das BP, Sumbul E, Liu R, Pileggi L (2014) Building trusted ICS using split
fabrication. In: 2014 IEEE international symposium on hardware-oriented security and trust
(HOST), pp 1–6, May 2014

38. Barrantes EG, Ackley DH, Palmer TS, Stefanovic D, Zovi DD (2003) Randomized instruc-
tion set emulation to disrupt binary code injection attacks. In: Proceedings of the 10th ACM
conference on Computer and communications security. ACM, pp 281–289

39. KcGS,Keromytis AD, Prevelakis V (2003) Countering code-injection attackswith instruction-
set randomization. In: Proceedings of the 10th ACM conference on computer and communi-
cations security. ACM, pp 272–280

40. Linn C, Debray S (2003) Obfuscation of executable code to improve resistance to static dis-
assembly. In: Proceedings of the 10th ACM conference on computer and communications
security. ACM, pp 290–299

41. Guo Z, Tehranipoor M, Forte D, Di J (2015) Investigation of obfuscation-based anti-reverse
engineering for printed circuit boards. In: Proceedings of the 52nd annual design automation
conference, series DAC 2015, New York, NY, USA. ACM, pp 114:1–114:6. http://doi.acm.
org/10.1145/2744769.2744862

42. Shakya B, Asadizanjani N, Forte D, Tehranipoor M (2016) Chip editor: leveraging circuit
edit for logic obfuscation and trusted fabrication. In: IEEE/ACM international conference on
computer-aided design (ICCAD)

43. Bi Y, Shamsi K, Yuan J-S, Gaillardon P-E, Micheli GD, Yin X, Hu XS, Niemier M, Jin Y
(2016) Emerging technology-based design of primitives for hardware security. ACM J Emerg
Technol Comput Syst (JETC) 13(1):3

44. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire
field effect transistors. Nano Lett 3(2):149–152

45. Rajendran J, Zhang H, Zhang C, Rose GS, Pino Y, Sinanoglu O, Karri R (2015) Fault analysis-
based logic encryption. IEEE Trans Comput 64(2):410–424

46. Skorobogatov SP (2005) Semi-invasive attacks: a new approach to hardware security analysis,
Ph.D. dissertation, Citeseer

47. Guin U, Shi Q, Forte D, Tehranipoor MM (2016) Fortis: a comprehensive solution for estab-
lishing forward trust for protecting IPS and ICS. ACM Trans. Des. Autom. Electron. Syst.,
21(4):63:1–63:20. http://doi.acm.org/10.1145/2893183

48. Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations. The
University of Auckland, New Zealand, Technical report, Department of Computer Science

49. Bhatkar S, DuVarneyDC, Sekar R (2003) Address obfuscation: an efficient approach to combat
a broad range of memory error exploits. Usenix Secur 3:105–120

50. You I, Yim K (2010) Malware obfuscation techniques: a brief survey. In: 2010 international
conference on broadband, wireless computing, communication and applications (BWCCA),
pp 297–300

51. Lafortune E et al. (2004) Proguard. http://proguard.sourceforge.net
52. Noll LC, Cooper S, Seebach P, Leonid AB (2005) The international obfuscated C code contest
53. IOCCC, IOCCC flight simulator. In: International obfuscated C code contest (1998). http://

www.ioccc.org/1998/banks.c
54. Jagasivamani M, Gadfort P, Sika M, Bajura M, Fritze M (2014) Split-fabrication obfuscation:

metrics and techniques. In: 2014 IEEE international symposium on hardware-oriented security
and trust (HOST), pp 7–12

55. Halstead MH Elements of software science, vol 7
56. Hansen MC, Yalcin H, Hayes JP (1999) Unveiling the iscas-85 benchmarks: a case study in

reverse engineering. IEEE Desi Test 16(3):72–80
57. Brglez F, Bryan D, Kozminski K (1989) Combinational profiles of sequential benchmark cir-

cuits. In: IEEE international symposium on circuits and systems. IEEE, pp 1929–1934
58. Corno F, ReordaMS, SquilleroG (2000) RT-level ITC 1999 benchmarks and first ATPG results.

Ieee Des Test Comput 17(3):44–53

http://doi.acm.org/10.1145/2744769.2744862
http://doi.acm.org/10.1145/2744769.2744862
http://doi.acm.org/10.1145/2893183
http://proguard.sourceforge.net
http://www.ioccc.org/1998/banks.c
http://www.ioccc.org/1998/banks.c

	1 Introduction to Hardware Obfuscation: Motivation, Methods and Evaluation
	1.1 Introduction
	1.1.1 Obfuscation for Intellectual Property Protection

	1.2 Hardware Obfuscation
	1.2.1 Integrated Circuit Supply Chain
	1.2.2 Threats in the Supply Chain
	1.2.3 Why Isn't Encryption a Solution?
	1.2.4 Techniques for Hardware Obfuscation
	1.2.5 Key-Based Classification

	1.3 Software Obfuscation
	1.3.1 Metrics for Hardware Obfuscation
	1.3.2 Hardware Obfuscation Benchmarks

	1.4 Conclusion
	References

