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Abstract. The ontology engineering research community has focused
for many years on supporting the creation, development and evolution
of ontologies. Ontology forecasting, which aims at predicting semantic
changes in an ontology, represents instead a new challenge. In this paper,
we want to give a contribution to this novel endeavour by focusing on
the task of forecasting semantic concepts in the research domain. Indeed,
ontologies representing scientific disciplines contain only research topics
that are already popular enough to be selected by human experts or auto-
matic algorithms. They are thus unfit to support tasks which require the
ability of describing and exploring the forefront of research, such as trend
detection and horizon scanning. We address this issue by introducing the
Semantic Innovation Forecast (SIF) model, which predicts new concepts
of an ontology at time t + 1, using only data available at time t. Our
approach relies on lexical innovation and adoption information extracted
from historical data. We evaluated the SIF model on a very large dataset
consisting of over one million scientific papers belonging to the Computer
Science domain: the outcomes show that the proposed approach offers
a competitive boost in mean average precision-at-ten compared to the
baselines when forecasting over 5 years.

Keywords: Topic evolution · Ontology forecasting · Ontology evolu-
tion · Latent semantics · LDA · Innovation priors · Adoption priors ·
Scholarly data

1 Introduction

The mass of research data on the web is growing steadily, and its analysis is
becoming increasingly important for understanding, supporting and predicting
the research landscape. Today most digital libraries (e.g., ACM Digital Library,
PubMed) and many academic search engines (e.g., Microsoft Academic Search1,
1 http://academic.research.microsoft.com/.
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Rexplore [21], Saffron [18]) have adopted taxonomies and ontologies for repre-
senting the domain of research areas. For example, researchers and publishers in
the field of Computer Science are now well familiar with the ACM classification
and use it regularly to annotate publications.

However, these semantic classifications are usually hand-crafted and thus
are costly to produce. Furthermore, they grow obsolete very quickly, especially
in rapidly changing fields such as Computer Science. To alleviate this task is
possible to use approaches for ontology evolution and ontology learning. The
first task aims to extend, refine and enrich an ontology based on current domain
knowledge [23,26]. For example, an ontology of research areas should be updated
regularly by including topics which emerged after the last version of the ontol-
ogy was published. Ontology learning aims instead to automatically generate
ontologies by analysing relevant sources, such as relevant scientific literature
[20]. Nonetheless, these ontologies still reflect the past, and can only contain
concepts that are already popular enough to be selected by human experts or
automatic algorithms. Hence, while they are very useful to produce analytics
and examine historical data, they hardly support tasks which involve the ability
to describe and explore the forefront of research, such as trend detection and
horizon scanning. It is thus crucial to develop new methods to allow also the
identification of emerging topics in these semantic classifications.

Nonetheless, predicting the emergence of semantic concepts, is still a chal-
lenge. To the best of our knowledge, predicting the future iteration of a ontology
and the relevant concepts that will extend it, which we refer to as ontology
forecasting, is a novel open question.

For the particular case of scholarly data, being able to predict new research
areas can be beneficial for researchers, who are often interested in emerging
research areas; for academic publishers, which need to offer the most up-to-date
contents; and for institutional funding bodies and companies, which have to
make early decisions about critical investments.

In this paper, we address this challenge by presenting a novel framework for
the prediction of new semantic concepts in the research domain, which relies on
the incorporation of lexical innovation and adoption priors derived from histor-
ical data. The main contributions of this work can be summarised as follows:

1. We approach the novel task of ontology forecasting by predicting semantic
concepts in the research domain;

2. We introduce two metrics to analyse the linguistic and semantic progressive-
ness in scholarly data;

3. We propose a novel weakly-supervised approach for the forecasting of innov-
ative semantic concepts in scientific literature;

4. We evaluate our approach in a dataset of over one million documents belong-
ing to the Computer Science domain;

5. Our findings demonstrate that the proposed framework offers competitive
boosts in mean average precision at ten for forecasts over 5 years.
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2 Related Work

The state of the art presents several approaches for identifying topics in a col-
lection of documents and determining their evolution in time. The most adopted
technique for extracting topics from a corpus is Latent Dirichlet Allocation
(LDA) [4], which is a generative statistical model that models topics as a multino-
mial distribution over words. LDA has been extended in a variety of ways for
incorporating research entities. For example, the Author-Topic model (ATM)
[24] included authorship information in the generative model. Bolelli et al. [6]
extended it even further by introducing the Segmented Author-Topic model,
which also takes in consideration the temporal ordering of documents to address
the problem of topic evolution. In scenarios where it already exists a taxonomy
of research areas [21], it is also possible to use entity linking techniques [7] for
mapping documents to related concepts. For example, the Smart Topic Miner
[22], an application used by Springer Nature for annotating proceedings books,
maps keywords extracted from papers to the automatically generated Klink-2
Computer Science Ontology [20] with the aim of selecting a comprehensive set
of structured keywords.

The approaches for topic evolution can be distinguished in discriminative
and generative [13]. The first ones consider topics as a distribution over words
or a mixture over documents and analyse how these change in time using a
variety of indexes and techniques [25]. For example, Morinaga and Yamanishi
[19] employed a Finite Mixture Model to represent the structure of topics and
analyse diachronically the extracted component and Mei and Zhai [16] correlated
term clusters via a temporal graph model. However, these methods do not take
advantage of the identification of lexical innovations and their adoption across
years, but rather focus only on tracking changes in distributions of words.

The second class of approaches for topic evolution employ instead genera-
tive topic models [5] on document streams. For example, Gohr et al. [11] used
Probabilistic Latent Semantic Analysis and proposed a folding-in techniques for
a topic adaptation under an evolving vocabulary. He et al. [13] characterised the
analysis of the evolution of topics into the independent topic evolution (ITE)
and accumulative topic evolution (ATE) approaches. However, these models do
not cater for the identification of novel topics, but rather caters for tracking
change of existing ones.

In addition, some approaches aim at supporting ontology evolution by pre-
dicting extensions of an ontology. For example, Pesquita and Couto [23] intro-
duced a method for suggesting areas of biomedical ontologies that will likely be
extended in the future. Similarly Wang et al. [26] proposed an approach for fore-
casting patterns in ontology development, with the aim of suggesting which part
of an ontology will be next edited by users. Another relevant approach is iDTM
(infinite dynamic topic model) [1], which studies the birth, death and evolution
of topics in a text stream. iDTM can identify the birth of topics appearing on a
given epoch, such topics are considered new when compared to previous epochs.
In contrast to their work, our proposed model addresses the prediction of new
topics in future epochs based on past data rather than identifying topics on the
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current epoch. In addition, our work is different from all previous approaches
because we aim at predicting new classes (concepts) that will appear in the
future representations of an ontology.

3 Language and Semantic Progressiveness in Scientific
Literature

Previous work has studied the role of language evolution and adoption in online
communities showing that users’ conformity to innovation can impact the churn
or grow of a community [9]. Inspired by this fact, we follow the intuition that
language innovation and adoption could impact the generation and expiration
of semantic concepts modelling a shared conceptualisation of a domain.

This section presents a motivation for predicting semantic concepts in scien-
tific literature based on the study of the use of language in scholarly data. The
following Subsect. 3.1 introduces the dataset used in this paper and presents an
analysis of the evolution of language in the field of Computer Science during the
course of 14 years in Subsects. 3.2 and 3.3.

3.1 Dataset Description

Our dataset comprises of a collection of research articles relevant to the Com-
puter Science field extracted from Scopus2, one of the largest databases of peer-
reviewed literature. The full 14 years collection ranges from 1995–2008 with
a total of 1,074,820 papers. Each year consists of a set of papers categorised
within a semantic representation of the Computer Science domain. Such onto-
logical representation is generated per two year-corpus starting from 1998 using
the Klink-2 algorithm [20].

The Klink-2 algorithm combines semantic technologies, machine learning
and knowledge from external sources (e.g., the LOD cloud, web pages, calls
for papers) to automatically generate large-scale ontologies of research areas. It
was built to support the Rexplore system [21] a system that integrates statis-
tical analysis, semantic technologies and visual analytics to provide support for
exploring and making sense of scholarly data. In particular, the ontology gener-
ated by Klink-2 enhances semantically a variety of data mining and information
extraction techniques, and improves search and visual analytics.

The classical way to address the problem of classifying research topics has been
to adopt human-crafted taxonomies, such as the ACM Computing Classification
System and the Springer Nature Classification. However, the ontology created
by Klink-2 presents two main advantages over these solutions. Firstly, human-
crafted classifications tend to grow obsolete in few years, especially in fields such
as Computer Science, where the most interesting topics are the emerging ones.
Conversely, Kink-2 can quickly create a new ontology by running on recent data.
Secondly, Klink-2 is able to create huge ontologies which includes very large num-
ber of concepts which do not appear in current manually created classifications.
2 Scopus, https://www.elsevier.com/solutions/scopus.

https://www.elsevier.com/solutions/scopus
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Fig. 1. From left to right, (a) number of articles per year, (b) vocabulary size per year,
(c) number of classes per year.

For example, the current version of the full Klink-2 Computer Science ontology
includes 17 000 concepts and about 70 000 semantic relationships.

The data model of the Klink-2 ontology is an extension of the BIBO
ontology which in turn builds on SKOS. It includes three semantic relations:
skos:broaderGeneric, which indicates that a topic is a sub-area of another one
(e.g., Linked Data is considered a sub-area of Semantic Web); relatedEquivalent,
which indicates that two topics can be treated as equivalent for the purpose of
exploring research data (e.g., Ontology Matching, Ontology Mapping); and con-
tributesTo, which indicates that the research outputs of one topic significantly
contribute to research into another (e.g., Ontology Engineering contributes to
Semantic Web, but arguably it is not its sub-area).

The ontologies associated to different years were computed by feeding to
Klink-2 all publications up to that year, to simulate the normal situation in
which Klink-2 regularly updates the Computer Science ontology according to
most recent data. Figure 1 presents general statistics of the dataset including
number of articles, size of the vocabularies and number of semantic concepts per
year ontology. Each paper is represented by its title and abstract. Vocabulary
sizes where computed after removing punctuation, stopwords and computing
Porter stemming [27]. The data presented in Fig. 1 indicates that as years go by
the production of scholarly articles for the Computer Science increases. More-
over, it shows that as more articles are introduced each year, novel words – not
mentioned in previous years– are also appearing. When analysing the number of
semantic concept over time we see that every year there is also an augmentation
of the ontological concepts describing the Computer Science field. The following
subsections analyse language and ontology evolution on this dataset.

3.2 Linguistic Progressiveness

Language innovation in a corpus refers to the introduction of novel patterns of
language which do not conform to previously existing patterns [9]. Changes in
time on the use of lexical features within a corpus characterise the language
evolution of such corpus. To characterise such changes, here we first generate
a language model – probability distribution over sequences of words [15]– per
year. For this analysis we use the Katz back-off smoothing language model [14].
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Fig. 2. From left to right, (a) Language models’s perplexity per year; (b) Number of
new words per year (•), number of adopted words per year (�).

This model estimates the conditional probability of a word given the number of
times such word has been seen in the past.

To analyse differences in language models between consecutive years we use
the perplexity metric. Perplexity is commonly used in Natural Language Process-
ing to evaluate how well a language model predicts an unseen test set [8]. To
analyse changes in language patterns for consecutive years we: (1) obtained the
language model for year t(lmt) then; (2) we computed perplexity comparing lmt

to the unseen corpus at t + 1.
Perplexity predicts word-error rate well when only in-domain training data

is used, but poorly when out-of-domain text is added [8]. Figure 2, left, shows
that for the Computer Science domain perplexity increases as time goes by.
Therefore, language models representing language patterns trained in previous
years provide poor predictions when tested on future datasets, indicating that
language models can become outdated.

To analyse the impact of lexical innovation in language model changes, we
perform a progressive analysis based on lexical innovation and lexical adoption.
Let Dt be the collection of papers from corpus at year t. Let Vt be the vocabulary
of Dt; we define a lexical innovation in Dt, LIt, as the set of terms appearing in
Vt, which were not mentioned in Vt−1

3. We also define a lexical adoption in Dt,
LAt, as the set of terms appearing in LIt which also appear in Vt+1. Figure 2,
right, shows that while the number of novel words in Computer Science is high
in consecutive years, only few of these words are adopted.

Based on these two metrics we introduce the linguistic progressiveness
metric, LPt as the ratio of lexical adoption and lexical innovation, i.e., LPt =
|LAt|
|LIt| . The higher the adoption of innovative terms the more progressive the
language used in a domain. In Fig. 3, left, the data indicates that the Computer
Science domain has had a tendency towards being linguistically progressive. The
following subsection studies the impact of innovation and adoption on semantic
concepts in temporally consecutive ontologies of a domain.

3 Notice that we are following a one step memory approach, further historical data
could be used in future research.
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3.3 Semantic Progressiveness

Ontology evolution refers to the maintenance of an ontological structure by
adapting such structure with new data from a domain [28]. Such adaptation
can result in both the generation or expiration of an ontology’s concepts and
properties. Hence the introduction of new classes that better describe the con-
ceptualisation of a domain can be considered to be a semantic innovation. In
this subsection we analyse the introduction of new concepts to an ontological
per consecutive year.

Let (Dt, Ot) represent a tuple where Dt is a collection of articles belonging to
year t and Ot is the corresponding ontology representation computed with Klink-
2 over the Dt collection. Let CIt be the conceptual innovation in Dt, which we
define as the set of concepts appearing in Ot, which were not mentioned in
Ot−1. Also let CAt be the conceptual adoption in Dt, which consists on the
set of concepts in CIt that also appear in Ot+1. Based on these definitions
we introduce the semantic progressiveness metric, CPt, as the ratio of
conceptual adoption and conceptual innovation, i.e., CPt = |CAt|

|CIt| .
Figure 3, right, shows that the ontologies extracted for the Computer

Science domain indicate a tendency to be less semantically progressive. A ten-
dency towards a lower semantic progressiveness can be understood as a tendency
towards having a more stable representation of the domain. Notice that the
semantic progressiveness metric do not account for churn of semantic concepts
but focuses only of innovation and adoption.

Fig. 3. From left to right, (a) linguistic progressiveness per year, (b) semantic progres-
siveness per year

Both linguistic and semantic progressiveness characterise the rate of change
on the language and semantic conceptualisations used in a research field over
the years. This constant evolution of a scientific area motivates us to study the
prediction of semantic concepts that will likely enhance the current semantic rep-
resentation of a research domain. The following section introduces our proposed
model for forecasting concepts appearing on an ontology based on historical
data.
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4 Framework for Forecasting Semantic Concepts Based
on Innovation-Adoption Priors

The proposed framework relies on the representation of an ontology’s class as
a topic word distribution. Learning topic models from text-rich structured data
has been successfully used in the past [2,3,10]. Our proposed framework focuses
on the task defined as follows: Given a set of documents at year t and a set of
historical priors, forecast topic word distributions representing new concepts in
the ontology Ot+1.

The proposed framework breaks down into the following phases: (1) Predict-
ing new semantic concepts with the Semantic Innovation Forecast (SIF) model;
(2) Incorporating innovation priors; Inferring topics with SIF; (3) Matching pre-
dicted topics to the forecast year’s semantic concepts’ gold standard

The overall pipeline is depicted in Fig. 4.

Fig. 4. Pipeline of the proposed framework for predicting semantic concepts using
innovation/adoption priors.

4.1 Semantic Innovation Forecast (SIF) Model

We propose a weakly-supervised approach for forecasting innovative concepts
based on lexical innovation-adoption priors. We introduce the Semantic Inno-
vation Forecast (SIF) model which forecasts future semantic concepts in the
form of topic-word distributions. The proposed SIF model favours the genera-
tion of innovative topics by considering distributions that enclose innovative and
adopted lexicons based on word priors computed from historical data.

Assume a corpora consisting of a collection of documents grouped by con-
secutive years. Let a corpus of documents written at year t be denoted as
Dt = {d1, d2, . . .Dd

}. Let each document be represented as a sequence of Nd

words denoted by (w1, w2, . . . , wNd
); where each word in a document is an ele-

ment from a vocabulary index of Vt.
We assume that when an author writes an article, she first decides whether

the paper will be innovative or will conform to existing work. In the proposed gen-
erative model we consider that if a paper is innovative then a topic is drawn from
an innovation specific topic distribution θ. In such case each word in the article
is generated from either the background word distribution φ0 or the multinomial
word distribution for the innovation-related topics φz.
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Fig. 5. Semantic innovation forecasting model

The generative process for SIF is as follows:

– Draw ω ∼ Beta(ε), ϕ0 ∼ Dirichlet(β0), ϕ ∼ Dirichlet(β).
– For each topic z draw φz ∼ Dirichlet(λ × βT

z ).
– For each document m ∈ {1 . . . D},

• Choose θm ∼ Dirichlet(α)
• For each word n ∈ {1 . . . Nd} in document m,

∗ draw xm,n ∼ Bernoulli(ω);
∗ if xm,n = 0,

· draw a word wm,n ∼ Multinomial(ϕ0);
∗ if xm,n = 1,

· draw a topic zm,n ∼ Multinomial(θ),
· draw a word wm,n ∼ Multinomial(ϕzm,n

).

The SIF model can be considered as an adaptation of a smoothed LDA [4],
where we have added a per token latent random variable x which acts as a switch.
If x = 0, words are generated from a background distribution, which accumulates
words common to conformer articles. While if x = 1, words are sampled from
the topic-specific multinomial φz. Moreover, SIF encodes word priors generated
from historical data, such priors encapsulate innovation and adoption polarity
in the matrix λ and are explained in more detail in the following Subsection.

4.2 Incorporating Innovation-Adoption Priors

Word priors enable us to have a preliminary or prior model of the language
related to a topic of interest in the absence of any other information about
this topic. A word prior is a probability distribution that expresses one’s belief
about a word’s relevance to, in this case, being characteristic of innovative topics,
when no other information about it is provided. Since the aim is to discover new
semantic concepts, we propose to use lexical innovation and lexical adoption as
indicators of lexicons characterising innovative word distributions.

The procedure to generate such innovation-adoption priors is as follows;
to compute priors for a SIF model at time t we make use of two vocabularies,
the one at year t − 1 and t − 2. From these vocabularies we identify innov-
ative (at t − 2) and adopted (at t − 1) lexicons as described in Subsect. 3.2.
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The union of these lexicons constitute a vocabulary of size K. Then for each term
w ∈ {1, . . . K} in this vocabulary we assign it a weight. We experimented with
different weights and we found an optimum when assigning 0.7 if w ∈ LIt−2 and
0.9 if w ∈ LAt−1. This setting favours adoption over innovation since innovative
words may not necessarily be embraced by the Computer Science community in
the future. This weighted vocabulary constitutes the innovation priors λ.

Compared to the original LDA model [4] in SIF we have added a depen-
dency link of φ on the vector λ of size K. Therefore we use innovation priors as
supervised information and modify the topic-word Dirichlet priors for innovation
classification.

4.3 SIF Inference

We use Collapsed Gibbs Sampling [12] to infer the model parameters and topic
assignments for a corpus at year t + 1 given observed documents at year t. Such
sampling estimates empirically the target distribution. Let the index t = (m,n)
denote the nth word in document m and let the subscript −t denote a quantity
which excludes data from the nth word position in document m, the conditional
posterior of xt is:

P (xt = 0|x−t, z,w, β0, ε)

∝ {N0
m}−t + ε

{Nm}−t + 2ε
× {N0

wt
}−t + β0

∑
w′{Nw′}−t + V β0

, (1)

where N0
m denotes the number of words in document m assigned to the back-

ground component, Nm is the total number of words in document m, N0
wt

is the
number of times word wt is sampled from the background distribution.

P (xt = 1|x−t, z,w, β, ε)

∝ {Ns
m}−t + ε

{Nm}−t + 2ε
× {Ns

wt
}−t + β

∑
w′{Nw′}−t + V β

, (2)

where Ns
m denotes the number of words in document m sampled from the topic

distribution, Ns
wt

is the number of times word wt is sampled from the topic
specific distributions.

The conditional posterior for zt is:

(zt = j|z−t,w, α, β)

∝ N−t
d,j + αj

N−t
d +

∑
j αj

· N−t
j,wt

+ β

N−t
j + V β

, (3)

where Nd is the total number of words in document d, Nd,j is the number of
times a word from document d has been associated with topic j, Nj,wt

is the
number of times word wt appeared in topic j, and Nj is the number of words
assigned to topic j.
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When the assignments have been computed for all latent variables, then we
can estimate the model parameters {θ,ϕ,ϕ0,ω}. For our experiments we set
the symmetric prior ε = 0.5, β0 = β = 0.01. We learn the asymmetric prior α
directly from the data using maximum-likelihood estimation [17] and updating
this value every 40 iterations during the Gibbs sampling. In our experiments
we run the sampler for 1000 iterations, stopping once the log-likelihood of the
learning data has converged under the learning model.

5 Experimental Setup

Here we present the experimental set up used to assess the SIF framework. We
evaluate the accuracy of SIF in a semantic-concept forecasting task.

We perform this task by applying our framework on the dataset described
in Sect. 3.1. Each collection of documents per year is randomly partitioned into
three independent subsets contains respectively 20 %, 40 % and 40 % of the doc-
uments. For a given document collection at year t, the 20 % partition represents
a held-out dataset used to derive innovation priors (Dpt); while the other two
partitions represent the training (Dtraint) and testing sets(Dtestt).

5.1 Forecasting with SIF

To forecast semantic concepts for a corpus at year t+1, we assume no information
from t + 1 is known at the time of the forecast. We train a SIF model on year t
with Dtraint using innovative priors computed on the held-out datasets for the
two previous years: Dpt−1 and Dpt−2. Then using the trained model on year
t we perform inference over Dtestt and consider this output to be the forecast
for concepts aiming to match those in CIt+1 (concept innovation at t + 1, see
Subsect. 3.3). The output of this last step is a set of topics that are effectively
sets of word distributions, which we use to compare against our gold standard.

5.2 Gold Standard

We build our gold standard by generating a one-topic model per semantic-
concept appearing in CIt+1. This is performed by applying the standard LDA
model [4] over the test dataset for documents belonging to each concept at year
t + 1.

Table 1 shows some examples of the gold standard computed for each inno-
vative semantic concept of each year. The one-topic model representation of a
semantic-concept provides a word distribution, which can be compared against
the ones generated with SIF.

5.3 Baselines

We compare SIF against four baselines. For a year t forecasting for year t + 1:
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Table 1. Examples of semantic concepts’ gold-standard. For a given year, we present
a semantic concept and an extract of the word distribution representing such concept.
Each distribution is derived from a one-topic standard LDA model computed from
documents belonging to such concept. Words are presented stemmed, weights assigned
to each word are omitted in this example.

Year Semantic concept Top 10 LDA words

2000 Anthropomorph robot Robot, control, humanoid, human, anthropomorph,
mechan, system, design, skill, method

2002 Context-free-grammar Languag, grammar, model, context-fre, system,
algorithm, gener, method, show, paper

2004 Video-stream Video, stream, network, rate, system, applic, adapt,
bandwidth, packet, internet

2006 3D-reconstruct Reconstruct, imag, model, algorithm, structur, camera,
point, surfac, data, base

2008 Open-access Access, open, research, journal, repositori, publish,
articl, develop, data, institut

1. LDA Topics (LDA); referring to word distributions weighted by latent top-
ics extracted from the training Dtraint. This setting makes no assumption
over innovative/adopted lexicons. It outputs a collection of n topics per train-
ing set, which are compared against the gold standard.

2. LDA Innovative Topics (LDA-I); computes topics based on documents
containing at least one word appearing in LIt.

3. LDA Adopted Topics (LDA-A); computes topics based only on documents
containing at least one word appearing in LAt.

4. LDA Innovation/Adoption Topics (LDA-IA): this baseline filters docu-
ments based on words appearing λt.

Baselines 2–4 represent three strong baselines, which consider innovative and
adopted lexicons.

5.4 Estimating the Effectiveness of SIF

To estimate the effectiveness of SIF we consider how similar the predicted seman-
tic concepts for t+1 are from the reference gold standard concepts for that year.
To this end we based the similarity scores using the cosine similarity metric [15].
This metric ranges from 0 (no similarity exists between compared vectors) to 1
(the compared vectors are identical), therefore scoring a similarity higher than
0.5 indicates that the compared vectors are similar.

To compute this similarity metric we used the word vector representation
of a predicted topic and of the topics generated for that year’s gold standard.
Therefore when forecasting for t + 1 we computed the cosine similarity between
the predicted candidate topic x and each of the topic y in CIt+1, keeping as
matches the similar ones.
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We evaluated the semantic concept forecast task as a ranked retrieval task,
where the appropriate set of forecast concepts are given by the top retrieved
topic distributions. To measure the effectiveness on this task we used the Mean
Average Precision (MAP) metric [15], a standard metric for evaluating rank
retrieval results. For our experiments we computed MAP@10 to measure the
mean of precision scores obtained from the top 10 predicted topics ranked based
on topic-word distributions. The higher the word weights assigned on a topic the
higher in the rank the topic is within the set of predicted topics.

6 Experimental Results and Evaluation

In this section we report the experimental results obtained for the semantic
concept forecasting task. SIF and LDA require defining the number of topics to
extract before applying on the data4. For our experiments we considered a fixed
number of 100 topics, making no assumption on the expected number of new
concepts appearing on the forecast year. These 100 topics are ranked based on
topic-word distributions. The evaluation is done over the top 10 forecast topics
using MAP@10.

Results in all experiments are computed using 2-fold cross validation over 5
runs of different random splits of the data to evaluate results’ significance. Sta-
tistical significance is done using the T-test. The evaluation consists in assessing
the following:

(1) Measure and compare SIF against the proposed baselines introduced in
Subsect. 5.3.

(2) Investigate whether the proposed SIF approach effectively forecasts future
semantic concepts.

6.1 Semantic Concept Forecast Results

Table 2 presents MAP results for SIF and the four baselines. The first three
columns of Table 2 shows: (i) the year in which the model was trained; (ii) the
year from where the innovative priors were derived for that setting; (iii) the year
for which semantic concepts are forecast.

All baselines except LDA offer competitive results. LDA achieves a poor aver-
age result of 16 % over the 5 forecast years. For the predictions of 2002 and 2004,
LDA fails to generate concepts matching those from the gold standard. This is
expected since LDA alone do not make assumptions over linguistic innovation
and adoption, therefore it’s unlikely that the LDA-based generated topic based
on past data will predict future concepts. However, pre-filtering documents con-
taining either innovative lexicons, adopted lexicons or both appear instead to
have a positive effect in the forecasting task.

4 The data generated in the evaluation are available on request at http://technologies.
kmi.open.ac.uk/rexplore/ekaw2016/OF/.

http://technologies.kmi.open.ac.uk/rexplore/ekaw2016/OF/
http://technologies.kmi.open.ac.uk/rexplore/ekaw2016/OF/
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Table 2. MAP@10 for SIF and baselines. The number of topics is set to 100 for all
five models. The value highlighted in bold corresponds to the best results obtained in
MAP@10. A � denotes that the MAP@10 of SIF significantly outperforms the baselines.
Significance levels: p − value < 0.01.

Year forecast Year trained Year prior SIF LDA LDA-A LDA-I LDA-IA

2000 1999 1997–1999 0.7031 0.125 0.4761 0 0.408

2002 2001 1999–2001 0.8750 0 0.8227 0.6428 0.7486

2004 2003 2001–2003 0.9060 0 0.5822 0.5726 0.6347

2006 2005 2003–2005 0.8755 0.3069 0.7853 0.8385 0.6893

2008 2007 2005–2006 0.988 0.398 0.681 0.5661 0.7035

AVG 0.8695� 0.1659 0.6694 0.524 0.6368

In particular, the use of LDA-A over LDA-I gives a boost on MAP of 14.54 %,
indicating that adopted words features are better predictors of innovative seman-
tic concepts. LDA-A also improves in average upon the LDA-IA baseline with
a boost of 3 %. The proposed SIF model however outperforms significantly all
four baselines with an average boost: over LDA of 70 %; over LDA-A of 20 %;
over LDA-I of 34 %; over LDA-IA of 23 % (significant at p < 0.01). We could
have expected LDA-IA to achieve closer results to SIF, since it is computed on
documents filtered using both innovative and adopted lexicons. However, LDA-
IA do not assign any preference over distributions of words containing either of
such lexicons. In contrast, SIF takes innovation priors as a weighting strategy
to build a prior model of language which is potentially used in future semantic
concepts. The model is learnt over the full training set allowing to make use of
both documents containing innovative and adopted lexicons and otherwise. The
above results show the effectiveness of SIF for semantic concept forecasting over
the baselines.

Table 3 presents examples of SIF’s predicted topics that obtained a match in
the forecast year’s gold-standard (GS). While SIF do not forecast a specific name
for the new semantic concept, the information provided by the word distribution
gives context to the predicted concept. Table 3 presents top 10 words for the
forecast SIF and GS representation however similarity computations where made
using the whole topic-word representations. When comparing the SIF prediction
vs the GSs we observe very close matches in 2000–2006 while for 2008 it is
interesting to observe the appearance of words such as islam, victim, terror
which don’t match the top 10 of the corresponding GS (notice however they
may appear in the further topic-word representation of the GS), however the
word hate within the GS gives a insight of the use of mechatronics in violence-
related scenarios.
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Table 3. Examples of semantic concepts forecast with SIF for each year. The second
row describes the semantic concept matching the predicted topic obtained with SIF.
SIF columns presents top 10 words extracted from the word distribution of the SIF
topic prediction. GS columns present top 10 words extracted from the one-topic LDA
distribution.

2000 2002 2004 2006 2008

Wireless network Asynchronous

transfer mode

Image threedimension Cryptography Mechatronics

SIF GS SIF GS SIF GS SIF GS SIF GS

Control Control Network Network Activ Model Method Model Robot Robot

System System Service Servic Function Algorithm Structur Method model model

Propos Propos System Applic Show Function Data Algorithm Base Propos

Network Applic Mobil System Result Data Protocol System Perform Simul

Servic Network Protocol Mobil Image Result Secur Data Simul Process

Data Servic Wireless Protocol Respons Image Inform Process Islam Mechan

Time Commun Rout Base Effect Measure Signatur Scheme Time Control

Perform Compu Perform Perform Patient Cell Authenti User Control Applic

Distribut Manag Packet Algorithm Clinic Structure Detec Protocol Applic Dynam

Traffic Schem Control Packet Visual Patient Attack Secur Victim Hate

Protocol Mobil Scheme Control Brain Surfac Sequenc Inform Terror Best

7 Conclusions and Future Work

This work focused on the task of semantic concept forecasting, which aims at
predicting classes which will be added to an ontology at time t + 1 when only
information up to time t is available. To approach this task we proposed the
concepts of linguistic and semantic progressiveness, and introduced a strategy
to encode lexical innovation and adoption as innovation priors. Based on these
concepts we introduced the Semantic Innovation Forecast Model (SIF), which is
a generative approach relying on historical innovation priors for the prediction
of word distributions characterising a semantic concept.

In SIF each semantic concept is represented as a distribution of words
obtained from the one-topic model of the collection of documents belonging
to such concept. To this end we applied the proposed approach on a very large
dataset belonging to the Computer Science domain, consisting of over one million
papers on the course of 14 years. Our data analysis included the introduction of
two novel metrics namely the linguistic and semantic progressiveness; which gave
insights on the semantic trends in the Computer Science domain. Our experi-
ments indicate that adopted lexicon are better predictors for semantic classes.
Our experimental results also proof that the proposed approach is useful for the
innovative semantic concept forecasting task. The SIF model outperforms the
best baseline LDA-A showing an average significant boost of 23 %.

To the best of our knowledge this is the first approach to address the ontol-
ogy forecasting task in general and in particular the first one in addressing the
prediction of new semantic concepts. We believe that research on the prediction
of semantic concepts in particular and in general the forecast of changes in an
ontology can be beneficial to different areas of research not limited to the study
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of scholarly data. For the future, we plan to keep working on the integration
between explicit and latent semantics, improve further the performance of our
approach and introduce graph-structure information into the model. We also
intend to use this approach for detecting innovative authors and forecast topic
trends.

Acknowledgements. We would like to thank Elsevier BV and Springer DE for pro-
viding us with access to their large repositories of scholarly data.
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