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Abstract. In recent years we have seen the emergence of a variety of scholarly
datasets. Typically these capture ‘standard’ scholarly entities and their con-
nections, such as authors, affiliations, venues, publications, citations, and others.
However, as the repositories grow and the technology improves, researchers are
adding new entities to these repositories to develop a richer model of the
scholarly domain. In this paper, we introduce TechMiner, a new approach,
which combines NLP, machine learning and semantic technologies, for mining
technologies from research publications and generating an OWL ontology
describing their relationships with other research entities. The resulting
knowledge base can support a number of tasks, such as: richer semantic search,
which can exploit the technology dimension to support better retrieval of pub-
lications; richer expert search; monitoring the emergence and impact of new
technologies, both within and across scientific fields; studying the scholarly
dynamics associated with the emergence of new technologies; and others.
TechMiner was evaluated on a manually annotated gold standard and the results
indicate that it significantly outperforms alternative NLP approaches and that its
semantic features improve performance significantly with respect to both recall
and precision.

Keywords: Scholarly data � Ontology learning � Bibliographic data � Scholarly
ontologies � Data mining

1 Introduction

Exploring, classifying and extracting information from scholarly resources is a com-
plex and interesting challenge. The resulting knowledge base could in fact bring
game-changing advantages to a variety of fields: linking more effectively research and
industry, supporting researchers’ work, fostering cross pollination of ideas and methods
across different areas, driving research policies, and acting as a source of information
for a variety of applications.

However, this knowledge is not easy to navigate and to process, since most pub-
lications are not in machine-readable format and are sometimes poorly classified. It is
thus imperative to be able to translate the information contained in them in a free, open
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and machine-readable knowledge graph. Semantic Web technologies are the natural
choice to represent this information and in recent years we have seen the development
of many ontologies to describe scholarly data (e.g., SWRC1, BIBO2, PROV-O3, AKT4)
as well as bibliographic repositories in RDF [1–3]. However, these datasets capture
mainly ‘standard’ research entities and their connections, such as authors, affiliations,
venues, publications, citations, and others. Hence, in recent years there have also been a
number of efforts, which have focused on extracting additional entities from scholarly
contents. These approaches have focused especially on the biomedical field and address
mainly the identification of scientific artefacts (e.g., genes [4], chemical components
[5]) and epistemological concepts [6–8] (e.g., hypothesis, motivation, experiments). At
the same time, the Linked Open Data cloud has emerged as an important knowledge
base for supporting these methods [9–11].

In this paper, we contribute to this endeavour by focusing on the extraction of
technologies, and in particular applications, systems, languages and formats in the
Computer Science field. In fact, while technologies are an essential part of the Com-
puter Science ecosystem, we still lack a comprehensive knowledge base describing
them. Current solutions cover just a little part of the set of technologies presented in the
literature. For example, DBpedia [12] includes only well-known technologies which
address the Wikipedia notability guidelines, while the Resource Identification Initiative
portal [13] contains mainly technologies from PubMed that were manually annotated
by curators. Moreover, the technologies that are described by these knowledge bases
are scarcely linked to other research entities (e.g., authors, topics, publications). For
instance, DBpedia often uses relations such as dbp:genre and dct:subject to link
technologies to related topics, but the quality of these links varies a lot and the topics
are usually high-level. Nonetheless, identifying semantic relationships between tech-
nologies and other research entities could open a number of interesting possibilities,
such as: richer semantic search, which can exploit the technology dimension to support
better retrieval of publications; richer expert search; monitoring the emergence and
impact of new technologies, both within and across scientific fields; studying the
scholarly dynamics associated with the emergence of new technologies; and others. It
can also support companies in the field of innovation brokering [14] and initiatives for
encouraging software citations across disciplines such as the FORCE11 Software
Citation Working Group5.

To address these issues, we have developed TechMiner (TM), a new approach
which combines natural language processing (NLP), machine learning and semantic
technologies to identify software technologies from research publications. In the
resulting OWL representation, each technology is linked to a number of related
research entities, such as the authors who introduced it and the relevant topics.

1 http://ontoware.org/swrc/.
2 http://bibliontology.com.
3 https://www.w3.org/TR/prov-o/.
4 http://www.aktors.org/publications/ontology.
5 https://www.force11.org/group/software-citation-working-group.
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We evaluated TM on a manually annotated gold standard of 548 publications and
539 technologies and found that it improves significantly both precision and recall over
alternative NLP approaches. In particular, the proposed semantic features significantly
improve both recall and precision.

The rest of the paper is organized as follows. In Sect. 2, we describe the TechMiner
approach. In Sect. 3 we evaluate the approach versus a number of alternative methods
and in Sect. 4 we present the most significant related work. In Sect. 5 we summarize
the main conclusions and outline future directions of research.

2 TechMiner

The TechMiner (TM) approach was created for automatically identifying technologies
from a corpus of metadata about research publications and describing them semanti-
cally. It takes as input the IDs, the titles and the abstracts of a number of research
papers in the Scopus dataset6 and a variety of knowledge bases (DBpedia [12],
WordNet [15], the Klink-2 Computer Science ontology [16], and others) and returns an
OWL ontology describing a number of technologies and their related research entities.
These include: (1) the authors who most published on it, (2) related research areas,
(3) the publications in which they appear, and, optionally, (4) the team of authors who
introduced the technology and (5) the URI of the related DBpedia entity. The input is
usually composed by a set of publications about a certain topic (e.g., Semantic Web,
Machine Learning), to retrieve all technologies in that field. However, TM can be used
on any set of publications.

We use abstracts rather than the full text of publications because we wanted to test
the value of the approach on a significant but manageable corpus; in particular, one for
which a gold standard could be created with limited resources. In addition, a prelim-
inary analysis revealed that publications which introduce new technologies, a key target
of our approach, typically mention them in the abstract.

Figure 1 illustrates the architecture of the system, shows the adopted knowledge
bases and lists the features that will be used by the classifier to detect if a candidate is a
valid technology. The TM approach follows these steps:

– Candidate Selection (Sect. 2.2). TM applies NLP techniques to extract from the
abstracts a set of candidate technologies.

– Candidate Expansion (Sect. 2.3). It expands the set of candidate technologies by
including all the candidates discovered on different input datasets during previous
runs which are linked to at least one of the input publications.

– Publication Expansion (Sect. 2.4). It expands the set of publications linked to each
candidate technology, using the candidate label and the research areas relevant to
the associated publications.

– Candidate Linking (Sect. 2.5). It applies statistical techniques to link each candidate
to its related topics, authors and DBpedia entities.

6 https://www.elsevier.com/solutions/scopus.
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– Candidate Analysis (Sect. 2.6). It analyses the sentences in which the candidates
appear and derives a weighted distribution of categories and terms.

– Technology Selection (Sect. 2.7). It applies a support vector machine classifier for
identifying valid technologies. If a candidate is not classified as a technology, TM
returns to the Candidate Expansion phase, tries to further expand the set of publi-
cations linked to the candidate technology and repeats the analysis.

– Triple Generations (Sect. 2.8). It produces the OWL ontology describing the
inferred technologies by means of their characteristics and related entities.
In the next sections we shall discuss the background data and each step in details7.

2.1 Background Data

For supporting the technology extraction task we manually crafted two ontologies:
sciObjCSOnto8 and verbSciOnto9. The first was derived from sciObjOnto10 [17] and
defines a number of categories of scientific objects in the Computer Science field and

Fig. 1. The TechMiner architecture.

7 The ontologies, the JAPE rules and all the materials used for the evaluation is available at http://
technologies.kmi.open.ac.uk/rexplore/ekaw2016/techminer/.

8 http://cui.unige.ch/*deribauh/Ontologies/sciObjCS.owl.
9 http://cui.unige.ch/*deribauh/Ontologies/verbSciOnto.owl.
10 http://cui.unige.ch/*deribauh/Ontologies/scientificObject.owl.
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their related terms. It contains 47 classes/individuals, and 64 logical axioms and covers
concepts such as: algorithm, application, software, implementation, model, approach
and prototype. The verbSciOnto ontology was created to represent the verbs usually
adopted for describing technologies (e.g., “describe”, “develop”, “implement”). It
contains 26 classes and 67 individuals and 89 logical axioms. Each verb is described
with its infinitive, past and present form.

In addition, TM exploits DBpedia, WordNet and the Klink-2 Computer Science
Ontology. DBpedia is a well-known knowledge base, which derives from a community
effort to extract structured information from Wikipedia and to make this information
accessible on the Web. TM uses it to find entities associated to the candidate tech-
nologies, with the aim of yielding additional information for the technology extraction
process. WordNet11 is a large lexical database of the English language created by the
Princeton University, and is widely used in the NLP field. TM exploits it to filter out
generic nouns from the set of candidate technologies.

The Klink-2 Computer Science Ontology (CSO) is a very large ontology of
Computer Science that was created by running the Klink-2 algorithm [16] on about 16
million publications in the field of Computer Science extracted from the Scopus
repository. The Klink-2 algorithm combines semantic technologies, machine learning
and external sources to generate a fully populated ontology of research areas. It was
built to support the Rexplore system [18] and to enhance semantically a number of
analytics and data mining algorithms. The current version of the CSO ontology
includes 17,000 concepts and about 70,000 semantic relationships. The CSO data
model12 is an extension of the BIBO ontology, which in turn builds on the SKOS
model13. It includes three semantic relationships: relatedEquivalent, which indicates
that two topics can be treated as equivalent for the purpose of exploring research data
(e.g., Ontology Matching, Ontology Mapping), skos:broaderGeneric, which indicates
that a topic is a sub-area of another one (e.g., Linked Data, Semantic Web), and
contributesTo, which indicates that the research output of a topic contributes to another
(e.g., Ontology Engineering, Semantic Web).

2.2 Candidate Selection

The aim of this first step is to identify a set of candidate technologies from an initial set
of publications. To this end, TM processes the text of the abstracts by means of
GATE14, a well-known open source NLP platform, and a number of GATE plugins:
OWLIM2, a module for importing ontologies, ANNIE, a component that forms a
pipeline composed of a tokenizer, a gazetteer, a sentence splitter and a part-of-speech
tagger, and JAPE (Java Annotation Patterns Engine), a grammar language for operating
over annotations based on regular expressions.

11 https://wordnet.princeton.edu/wordnet/.
12 http://technologies.kmi.open.ac.uk/rexplore/ontologies/BiboExtension.owl.
13 http://www.w3.org/2004/02/skos/.
14 https://gate.ac.uk/.
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The TM approach for identifying the set of candidates performs the following steps:
(1) it splits the abstracts into sequences of tokens and assigns them part-of-speech tags
(e.g., noun, verb and adverb) using ANNIE; (2) it selects technology candidates from
sentences which contain a number of clue terms defined in the sciObjCSOnto ontology
(e.g., “algorithm”, “tools”, “API”) and verbs from the verbSciOnto ontology (e.g.,
“implement”, “create”, “define”) by applying a sequence of JAPE rules; (3) it filters the
candidates by exploiting a number of heuristics.

A manual analysis on a variety of sentences about technologies revealed that the
technology name can be a proper noun, a common noun or a compound noun, and not
necessarily the subject or the object in the sentence. However, sentences about tech-
nologies are usually associated with a certain set of verbs and terms. For example, in
the sentence: “DAML + OIL is an ontology language specifically designed for its use
in the Web” the position of the noun “DAML + OIL” followed by the clue term
“language” and subject of “is a”, suggests that DAML + OIL may be the name of a
technology.

To identify similar occurrences, TM first uses 6 manually defined JAPE rules to
detect a list of candidate nouns or compound nouns which cannot be authors, venues,
journals or research topics. It then applies another set of 18 JAPE rules for identifying
the sentences that contain both these candidate nouns and the clue terms from the
sciObjCSOnto and verbSciOnto ontologies and for extracting the names of candidate
technologies.

The rules were created following the methodology introduced in [17, 19] to con-
struct JAPE rules from annotated examples. This approach clusters sentences that have
similarities in the sequence of deterministic terms (e.g., terms and verbs described in
the ontologies), then replaces these terms with either a JAPE macro or an ontology
concept. Non-deterministic terms are instead replaced by a sequence of optional tokens.
In this instance, the rules were generated using examples from a dataset of 300 man-
ually annotated publications from Microsoft Academic Search [19]. To improve the
recall, we also created some additional JAPE rules to select also nouns that are not
associated with any cue terms, but contain a number of syntactic grammatical patterns
usually associated with the introduction of technologies.

The resulting candidates are then filtered using the following heuristics. We use
WordNet to exclude common names by checking the number of synsets associated to
each term contained in a candidate technology. A candidate associated with more than
two synsets is considered a general term and gets discarded. However, we took in
consideration some relevant exceptions. A preliminary analysis revealed in fact that a
large number of technologies in the field of Computer Science are named after common
nouns that belong to one or several categories of the Lexicographer Files of WordNet,
such as animals (e.g., OWL, Magpie), artefacts (e.g., Crystal, Fedora) and food (e.g.,
Saffron, Java). Therefore, TM does not exclude the terms in these categories. In
addition, we implemented two other heuristics. The first one checks if the term is
capitalized or contains uppercase letters (e.g., Magpie, OIL, ebXML) and if so it
preserves it even if WordNet suggests that it is a common name. The second one
checks the terms that contain hyphens or underscore symbols. If both parts of the term
are lower-case (e.g., task-based), they will be analysed separately by the WordNet
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heuristic, otherwise (e.g., OWL-DL, OWL-s) they will be considered as one word. The
current prototype is able to process about 10,000 abstracts in one hour.

2.3 Candidate Expansion

The result of the previous phase is a set of candidate names linked to the publications
from which they were extracted. However, the JAPE rules may have failed to recognize
some valid technology which is actually mentioned in one of the input papers.
Nonetheless, the same technology may have been recognized in previous runs on a
different set of initial papers. This happens frequently when examining datasets in
different fields. For example, the application “Protégé”, may not be recognized when
running on a Machine Learning dataset, since the few papers that would mention it may
not have triggered the JAPE rules. However, if we already identified “Protégé” by
previously analysing a Semantic Web dataset, we can exploit this knowledge to
identify the instances of Protégé also in the Machine Learning dataset.

Therefore, in the candidate expansion phase TM enriches the set of candidates by
including the technologies discovered during previous runs which were linked to one of
the current input papers. This solution takes more time and can introduce some noise in
the data, but it is usually able to significantly improve recall without damaging pre-
cision too much. We will discuss pros and cons of this solution in the evaluation
section.

2.4 Publication Expansion

In this phase, we still may have missed a number of links between candidates and
publications. In fact, the full Scopus dataset may have many other publications, not
included in the initial dataset, that refer to the candidate technologies. It is thus useful to
expand the set of links to collect more data for the subsequent analysis. TM does so by
linking to a candidate technology all the papers in the Scopus dataset that mention the
candidate label in the title or in the abstract and address the same research area of the
set of publications associated to the candidate by the JAPE rules. In fact, taking into
account the research area in addition to the label is useful to reduce the risk of con-
fusing different technologies labelled with the same name. TM determines the research
areas by extracting the full list of topics associated to the initial papers and finding the
lowest common super topic which covers at least 75 % of them according to the CSO
ontology. For example, given a candidate technology such as “LODifier” [9], TM will
analyse the distribution of topics relevant to the associated papers and may find that
most of them are subsumed by the Semantic Web topic, it will then associate the
candidate with all the papers that contain the label “LODifier” and are tagged with
“Semantic Web” or with one of its sub areas according to CSO, such as “Linked Data”
and “RDF”.

Finally, the relationships between candidates and publications are saved in a
knowledge base and can be used to enrich the set of candidates in the following runs.
This process is naturally less accurate than the NLP pipeline and can introduce some
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incorrect links. However, as discussed in the evaluation, the overall effect is positive
since the abundance of links discovered in this phase fosters significantly the statistical
methods used in the next steps.

2.5 Candidate Linking

In this phase, TM applies a number of heuristics to link the candidate to related
research entities. In particular, it tries to link the candidate with (1) the team of authors
who appear to have introduced the technology, (2) related concepts in the CSO
ontology, and (3) related entities in DBpedia. The presence and quality of these links
will be used as features to decide if the candidate is a valid technology. For example,
the fact that a candidate seems to have been introduced by a well-defined team of
researchers and is associated to a cohesive group of topics is usually a positive signal.

The authors who first introduce a technology tend to have the highest number of
publications about it in the debut year and to be cited for these initial publications.
Hence, TM extracts the groups of authors associated to the candidate publications,
merges the ones that share at least 50 % of the papers, discards the ones who did not
publish in the debut year, and assigns to each of them a score according to the formula:

Iscore ¼
Xcur

i¼deb

pubi
tot pubi

ðiþ 1� debÞ�c þ
Xcur

i¼deb

citi
tot citi

ðiþ 1� debÞ�c ð1Þ

Here pubi, citi, tot_pubi, tot_citi are respectively the number of publications, cita-
tions, total publications (for all the papers associated to the candidate) and total cita-
tions in the i-th year; deb is the year of debut of the candidate; cur is the current year
and γ is a constant > 0 that modules the importance of each year (γ = 2 in the pro-
totype). Since raw citations follow a power law distribution, we use instead the ratio of
publications and citations [20]. Finally, we select the team associated with the highest
score, but only if this is at least 25 % higher than the second one. Therefore, only a
portion of the technology candidates will be associated with an author’s team. Its
presence will be used as binary feature in the classification process.

To identify the significant topics, TM extracts the list of keywords associated to the
publications and infers from them a set of research areas in the CSO ontology. It does
so by retrieving the concepts with the same label as the terms and adding also all their
super-areas (the technique is implemented in the Rexplore system and discussed
comprehensively in [18]). For example, the term “SPARQL” will trigger the homonym
concepts SPARQL and subsequently super-topics such as RDF, Linked Data, Semantic
Web and so on.

Finally, TM tries to link the candidate object with entities on DBpedia. It extracts
all the sentences in the abstracts and titles which contain the candidate label and
annotates them using DBpedia Spotlight [21]. The entity which is associated with at
least 25 % more instances than the others is selected as representative of the candidate.
If this exists, TM links the candidate to this entity and saves the alternative names, the
textual description in English (dbo:abstract), and a set of related entities via the
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dct:subject and rdf:type relations. The other entities annotated by DBpedia Spotlight
will be used for the subsequent linguistic analysis.

2.6 Candidate Analysis

Intuitively a technology should be associated with a semantically consistent distribu-
tion of terms related to a specific context (e.g., “tool”, “web browser”, “plugin”,
“javascript”). Learning these linguistic signs can help to detect a valid technology. The
papers retrieved during the paper expansion phases and the entities retrieved by
DBpedia should thus contain a good number of these kinds of terms. Hence, TM scans
(1) the abstracts of all related papers, (2) the labels of the entities annotated by DBpedia
Spotlight, and, if it exists, (3) the abstract of the linked DBpedia entity and the labels of
its related entities for significant terms in an automatically created gazetteer of key-
words related to technologies. The gazetteer was built by tokenizing the sentences
associated to the annotated technologies in the gold standard from [19] and extracting
the terms that were less than 5 tokens away from the technology names. We then
removed stop words and selected the most frequent terms from this distribution, ending
up with a gazetteer of 500 terms.

TM searches for the significant terms using five different techniques: (1) co-oc-
currence, in which it checks whether the terms occur in the same sentence as the
candidate; (2) proximity-based, in which it checks whether the terms appear five words
before or after a candidate; (3) definition-based, in which it checks whether each term
t appears as part of a definition linguistic pattern, such as ‘X is a t’ or ‘t such as X’;
(4) entity-based, in which it checks whether the terms appear as part of a linked
DBpedia entity; (5) topic-based, in which it checks whether the terms appear in the
related concepts of the CSO ontology. The result of this process is a distribution of
terms, in which each term is associated with the number of times it co-occurred with
the candidate label according to the different techniques. We then augment semanti-
cally these distributions by including all the concepts from the sciObjCSOnto ontology
and assigning to them the total score of the terms which co-occur the most with each
concepts label. For example, the category ‘application’ will co-occur the most with
terms such as ‘applications’, ‘prototype’, ‘system’ and so on; hence, it will be assigned
the sum of their scores.

The resulting distribution and the information collected in the previous phases are
then used as features for selecting the valid technologies from the candidate group.

2.7 Technology Selection

All information collected in the previous phases is then used by TM to decide whether
a candidate is a valid technology, by applying a support vector machine (SVM) clas-
sifier (adopting a radial basis function kernel) on the set of features extracted in
Sects. 2.4 and 2.5, representing both the linguistic signature of the associated papers
and the related research entities. We take in consideration the following features
(rescaled in the range [− 1, 1]): (i) number of publications and citations; (ii) the
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presence of an associated team of authors (Sect. 2.4, binary feature); (iii) number of
linked research areas in the first, second and third level of the CSO ontology
(Sect. 2.4); (iv) presence of a DBpedia entity with the same label (Sect. 2.4, binary
feature); (v) distribution of related categories and terms considering each of them as a
distinct feature (Sect. 2.5); (vi) number of definition-based sentences addressing the
candidate and one of the technology related terms (Sect. 2.5).

When a candidate is classified as a technology, TM saves the related information
and proceeds to analyse the next candidate, if it exists. When the candidate fails to be
classified as a technology, TM tries to expand the candidate selection by using in the
candidate expansion phase the super-topic of the previously high-level topic selected in
the CSO. If there are multiple super topics, it selects the one associated with the lowest
number of publications. For example, if the first topic was “Semantic Web”, the new
one will be “Semantics”. The process ends when the candidate is classified as a
technology, when the root ‘Computer Science’ is yielded, or after n failed attempts
(n = 2 in the prototype). The current prototype processes about 2,500 candidate
technologies in one hour, taking in account also the queries to external sources (e.g.,
DBpedia).

2.8 Triple Generation

In this phase, TM generates the triples describing the identified technologies by
associating each technology with: (1) the related papers, (2) the number of publications
and citations, (3) the team of authors who introduced the technology, (4) the main
authors, i.e., the 20 authors with most publications about the technology, (5) the main
topics, i.e., the 20 most frequent topics, (6) the categories from sciObjCSOnto (asso-
ciated with their frequency) and, possibly, (7) the equivalent DBpedia entity.

The output is a fully populated ontology of the technologies identified in the input
dataset. To this end, we crafted the TechMiner OWL ontology15. Our intention was not
to create ‘yet another ontology’ of the scholarly domain, but to craft a simple scheme
for representing our output. For this reason we reused concepts and relationships from a
number of well-known scholarly ontologies (including FABIO [22], FOAF16, CITO,
SKOS, SRO17, FRBR18) and introduced new entities and properties only when nec-
essary. The main classes of the TechMiner OWL ontology are Technology, foaf:Per-
son, to represent the researchers associated to the technology, Topic (equivalent to
frbr:concept and skos:concept) and Category, representing the category of the tech-
nology (e.g., application, format, language).

15 http://cui.unige.ch/*deribauh/Ontologies/TechMiner.owl.
16 www.xmlns.com/foaf/0.1/.
17 http://salt.semanticauthoring.org/ontologies/sro.
18 http://purl.org/spar/frbr.
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3 Evaluation

We tested our approach on a gold standard (GS) of manually annotated publications in
the field of the Semantic Web. To produce it, we first selected a number of publications
tagged with keywords related to this field (e.g., ‘semantic web’, ‘linked data’, ‘RDF’)
according to the CSO ontology. We then created an interface to annotate the abstracts
with names and types of technologies. Since recognizing technologies in a field
requires a certain degree of expertise, we asked a group of 8 Semantic Web experts
(PhD students, postdocs, and research fellows) from The Open University and Oxford
University to perform this task. In particular, we asked the annotators to focus on
specific technologies which could be identified with a label, and not to consider very
common ones, such as “web server”. Indeed, we wanted to focus on technologies used
or introduced by researches that would usually not be covered by generic knowledge
bases. To avoid typos or extremely uncommon labels, we discarded from the output the
technologies with labels appearing only once in the full set of 16 million abstracts from
the Scopus dataset of Computer Science. The resulting GS includes 548 publications,
each of them annotated by at least two experts, and 539 technologies. In this evaluation
we focus only on the identification of technologies, and not on the correctness of the
links between the technology and other entities (e.g., authors), whose presence is
simply used as features for the classification process and will be analysed in future
work.

Our aim was to compare the performances of the different techniques discussed in
this paper. In particular, we planned to assess the impact of the candidate linking and
candidate analysis phases (Sects. 2.5 and 2.6) versus the NLP pipeline, the effect of the
semantic features introduced in Sect. 2.6, and the impact of the candidate extension
phase (Sect. 2.3). Therefore, we compared the following approaches:

– NL: the classic NLP pipeline [19], as discussed in Sect. 2.2, with no additional
filters;

– NLW: the NLP pipeline which uses WordNet to discard generic terms;
– TMN: TM not using semantic features derived by linking the candidates to the

knowledge bases (CSO, sciObjCSOnto, DBpedia) nor candidate expansion;
– TM: The full TM approach not using candidate expansion;
– TMN_E: TMN using candidate expansion;
– TM_E: The full TM approach using candidate expansion.

The last four approaches were trained using the gold standard from [19], which
counts 300 manually annotated publications from Microsoft Academic Search.
TMN_E and TM_E were then applied on a 3,000 publication sample (other than our
GS) in the Semantic Web area and learned a total of 8,652 candidates, of which 1,264
were used during the evaluation run, being linked to the initial publications in the GS.

The evaluation was performed by running each approach on the abstracts of the 548
annotated publications in the GS. Since we intended to measure also how the popu-
larity of a technology would affect the outcomes of the approaches, we performed six
different tests with each method in which we considered only the technology labels
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which appeared at least 2, 5, 10, 20, 50 or 100 times in the full set of the Scopus dataset
for Computer Science.

We intended to assess both (1) the ability of extracting the technologies from a set
of publications, and (2) the ability of yielding a correct set of relationships between
those technologies and the publications in which they are addressed. Hence, we
computed recall and precision for both tasks. The significance of the results was
assessed using non-parametric statistical tests for k correlated data: Wilcoxon’s test for
k = 2 and Friedman’s test for k > 2.

Table 1 shows the performance of the approaches. We will first discuss the per-
formance of the technology extraction task. The NL method is able to retrieve about
half of the technologies with a precision of about 60 %, when considering all labels.
The introduction of the WordNet filter (NLW) improves significantly the precision
(+12.7 %, p = 0.03), but loses some recall (−4.6 %). TMN is able to further increase
precision over NLW (+12.6 %, p = 0.03), lowering the recall to about 44 %. The
introduction of the semantic features (TM) improves both precision (+2.1 %, p = 0.03)
and recall (+2.4 %, p = 0.03); in particular, TM obtains the best result among all
approaches regarding precision (87.6 %) and performs significantly better (p = 0.03)
than TMN, NLW and NL regarding F-measure.

The ability of TMN_E and TM_E to consider also pre-learnt candidates yields a
massive increase in recall (respectively +38.2 % and +38.8 %), paying a relative small
price in precision (−1.6 % and −1.9 %). Once again, the adoption of semantic features
increases both precision and recall, yielding no apparent drawbacks. Hence, TM_E
performs significantly better than TMN_E regarding F-measure (p = 0.028). In general,
TM_E outperforms all the other approaches for recall and F-measure (85.1 %), being
able to extract technologies with a recall of 84.2 % and a precision of 86 %.

Table 1. Precision and recall for the six runs of the six approaches. In bold the best result of
each run.
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The approaches that used only the NLP pipeline to identify the candidates (NL,
NLW, TMN, TM) improved their recall when considering more popular labels, but also
committed more errors. An analysis of the data reveals that this happens mainly
because they identify as technologies other kinds of popular named entities (e.g.,
universities, projects) that, being associated with a great number of publications, have a
large chance to be involved in some of the patterns that trigger the JAPE rules. The two
solutions that enhance the candidate set (TMN_E, TM_E) suffer from the opposite
problem; they tend to perform well when dealing with rare technologies with few
occurrences, and not considering them lowers their recall.

Figure 2 shows the F-measure for all the approaches. TM_E yields the best per-
formance (85.1 % when processing all the technologies in the GS), followed by
TMN_E, NLW, TMN and NL. The difference between the approaches is significant
(p < 0.0001).

The results regarding the extraction of links between technologies and publications
exhibit a very similar dynamic. As before, TM performs best in terms of precision and
TM_E in terms of recall. The main difference is that in this test TM_E and TMN_E
exhibit a lower precision. This is due to the fact that the method for linking pre-learnt
candidates to publications is more prone to error that the NLP pipeline, which links
only publications in which it finds a specific linguistic pattern. Figure 3 shows the
F-measure regarding relationships. TM_E is again the best solution, followed by the
other approaches in the same order as before. The difference among the methods is
again highly significant (p < 0.0001).

In conclusion, the evaluation shows that the TM approach yields significantly
better results than alternative NLP methods and that the introduction of semantic
features further improves the performance. The use of pre-learnt candidates introduces
a small amount of noise in the set of linked papers, but yields a important increase
in recall.

Fig. 2. F-measure of the technology extraction task.
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4 Related Work

Extracting knowledge from the full text of research publications is an important
challenge. A number of systems such as Microsoft Academic Search (academic.re-
search.microsoft.com), Google Scholars (scholar.google.com), and others automati-
cally extract the metadata of research publications and make them available online. The
semantic web community contributed to this process by creating a number of scholarly
repositories in RDF, such as Semantic Dog Food [1], RKBExplorer [2], Bio2RDF [3],
and others.

A number of approaches apply named entity recognition and similar techniques for
extracting additional information from the full text of research publications. These
methods usually address the identification of scientific artefacts (e.g., genes [4],
chemical [5]) and epistemological concepts [6] (e.g., hypothesis, motivation, back-
ground, experiment). For example, Groza [7] focused on the identification of con-
ceptualization zones through a novel approach based on the deep dependency structure
of the sentences. Ibekwe-Sanjuan and al [23] developed a methodology which com-
bines surface NLP and Machine Learning techniques for identifying categories of
information, such as objective, results, conclusion and so on. O’Seaghdha and Teufel
[24] addressed instead the identification of the rhetorical zoning (based on argumen-
tative zoning) using a Bayesian latent-variable model. The Dr. Inventor Framework
[25] is a publicly available collection of scientific text mining components which can
be used to support this kind of tasks.

TM can be classified under the first category, since technologies can be considered
scientific objects. As in other methods crafted for this task, it uses a pipeline which
includes NLP and machine learning; the main difference is that it focuses on tech-
nologies and introduces a number of new statistical and semantic techniques to foster
the identification process.

The use of the Linked Open Data cloud for supporting named entity recognition has
yielded good results. For example, the LODifier approach [9] combines deep semantic

Fig. 3. F-measure of the links between technologies and publications.
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analysis, named entity recognition and word sense disambiguation to extract named
entities and to convert them into an RDF representation. Similarly, the AGADISTIS
[10] system is a knowledge-base-agnostic approach for named entity disambiguation
which combines the Hypertext-Induced Topic Search algorithm with label expansion
strategies and string similarity measures. However, this kind of systems can be used
only for linking existing technologies to the related entities in knowledge bases, not for
discovering new ones. Sateli and Witte [11] presented a method which combines NLP
and named entity recognition based on the LOD cloud for identifying rhetorical entities
and generating RDF triples describing them. Similarly to TM, they use GATE for NLP
and DBpedia Spotlight [21] for linking terms in the publications to DBpedia entities.
However, TM uses a classifier to process a number of features derived from the linked
research entities.

A number of agencies in the field of innovation brokering and ‘horizon scanning’
identify new technologies by manually scanning the web [14], leading to high costs and
slow throughput. Automatic methods such as TM could bring a dramatic improvement
in their workflow, by allowing the selection of a set of candidate technologies with high
accuracy. The output produced by TM can also enrich a number of knowledge sources
which index technologies, especially considering that, a good number of these, such as
Google Patents, cover only patented technologies. As mentioned, DBpedia [12] also
includes a number of well-known technologies, even if they are not always described
thoroughly. Another interesting resource is the Resource Identification Initiative portal
[13], an archive which collects and assigns IDs to a number of scientific objects,
including applications, systems and prototypes.

5 Conclusions

We presented TechMiner, a novel approach combining NLP, machine learning and
semantic technologies, which mines technologies from research publications and
generates an OWL ontology describing their relationships with other research entities.
We evaluated TM on a gold standard of 548 publications and 539 technologies in the
field of the Semantic Web. The evaluation showed that the use of semantic features
significantly improves technology identification, and that the full hybrid method out-
performs NLP approaches. These results suggest that using a combination of statistical
information derived from the network of relevant of research entities (e.g., authors,
topics) and background knowledge offers a competitive advantage in this task.

TM opens up many interesting directions of work. We plan to enrich the approach
for identifying other categories of scientific objects, such as datasets, algorithms and so
on. This would allow us to conduct a comprehensive study on the resulting tech-
nologies, with the aim of better understanding the processes that lead to the creation of
successful technologies. We also intend to run our approach on a variety of other
research fields and to this end we are testing some methodologies to automatically
populate the supporting ontologies with terms automatically extracted from research
papers [26]. Finally, since similar experiences in the field of biotechnology [13]
highlighted the importance of manually curating this kind of data, we would like to
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build a pipeline for allowing human experts to correct and manage the information
extracted by TechMiner.
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