
VoCol: An Integrated Environment to Support
Version-Controlled Vocabulary Development

Lavdim Halilaj1,2(B), Niklas Petersen1,2, Irlán Grangel-González1,2,
Christoph Lange1,2, Sören Auer1,2, Gökhan Coskun3, and Steffen Lohmann2

1 Enterprise Information Systems (EIS), University of Bonn, Bonn, Germany
{halilaj,petersen,grangel,langec,auer}@cs.uni-bonn.de

2 Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS),
Sankt Augustin, Germany

{Lavdim.Halilaj,Niklas.Petersen,Irlan.Grangel-Gonzalez,Christoph.Lange,
Soren.Auer,Steffen.Lohmann}@iais.fraunhofer.de

3 Bayer Business Services, Berlin, Germany
goekhan.coskun@bayer.com

Abstract. Vocabularies are increasingly being developed on platforms
for hosting version-controlled repositories, such as GitHub. However,
these platforms lack important features that have proven useful in vocab-
ulary development. We present VoCol, an integrated environment that
supports the development of vocabularies using Version Control Systems.
VoCol is based on a fundamental model of vocabulary development, con-
sisting of the three core activities modeling, population, and testing.
We implemented VoCol using a loose coupling of validation, querying,
analytics, visualization, and documentation generation components on
top of a standard Git repository. All components, including the version-
controlled repository, can be configured and replaced with little effort to
cater for various use cases. We demonstrate the applicability of VoCol
with a real-world example and report on a user study that confirms its
usability and usefulness.

Keywords: Vocabulary development · Version control system ·
Ontology engineering · Integrated development environment · IDE ·Git ·
GitHub · Webhook

1 Introduction

Vocabulary development is currently a major bottleneck for the wide realiza-
tion of the Semantic Web vision. It requires a significant investment, which is
difficult to make by a single person or organization. Identifying the terms and
concepts by finding a consensus among the involved stakeholders and defining a
shared vocabulary1 is an effective approach to tackle this problem. However, this

1 In this work, the term “vocabulary” is used to refer to lightweight ontologies, as they
are developed in initiatives like schema.org and defined by the W3C [23].

c© Springer International Publishing AG 2016
E. Blomqvist et al. (Eds.): EKAW 2016, LNAI 10024, pp. 303–319, 2016.
DOI: 10.1007/978-3-319-49004-5 20

http://schema.org/

304 L. Halilaj et al.

process, which we refer to as distributed vocabulary development, can be quite
complex. In fact, the main challenge for vocabulary engineers is to work collab-
oratively on a shared objective in a harmonic and efficient way, while avoiding
misunderstandings, uncertainty, and ambiguity.

On the other hand, Version Control Systems (VCS), such as Subversion
(SVN) or Git, are becoming increasingly popular for vocabulary development. In
our previous work, we proposed Git4Voc [6], a set of best practices which trans-
fer concepts of VCSs to vocabulary development, on the example of Git. We
discovered that several aspects of vocabulary development—in particular with
regard to revision management, access control, and some governance issues—are
already well covered by Git-based version control, especially if developers follow
the proposed best practices.

Many of the current vocabulary development activities take place on reposi-
tory hosting platforms like GitHub, GitLab, and BitBucket. In addition to mere
version-controlled (e.g. Git) repositories, these platforms provide features such
as change tracking (e.g. diffs), comments, issue tracking, wikis, and notifica-
tions. Examples of popular vocabulary projects that are publicly maintained on
GitHub include Schema.org, FOAF, BIBO, DOAP, and the Music Ontology.2

However, despite all benefits of developing vocabularies on repository hosting
platforms like GitHub, these platforms lack important features that have proven
useful in vocabulary development. In particular, they do not provide an inte-
grated environment typically found in systems dedicated to distributed vocabu-
lary development, such as WebProtégé [22] or VocBench [21].

We designed VoCol as a holistic approach for realizing a full-featured vocab-
ulary development environment centered around version control systems. VoCol
supports a fundamental round-trip model of vocabulary development, consist-
ing of the three core activities modeling, population, and testing. In the spirit of
test-driven software engineering, VoCol allows to formulate queries which rep-
resent competency questions for testing the expressivity and applicability of a
vocabulary a priori. For a posteriori testing, it supports the automatic detec-
tion of “bad smells” in the vocabulary design by employing SPARQL patterns.
For modeling, VoCol integrates a number of techniques facilitating the concep-
tual work, such as automatically generated documentations and visualizations
providing different views on the vocabulary as well as an evolution timeline sup-
porting traceability. For population, VoCol supports the integration of mappings
between data sources (e.g., R2RML mappings to relational databases) and the
vocabulary. The governance of distributed vocabulary development is supported
by the access control as well as the branching and merging mechanisms of the
underlying VCS.

As a result, VoCol bridges between the conceptual development of vocabular-
ies and the operational execution in a concrete IT landscape. The implementa-
tion of VoCol is based on a loose coupling, leveraging the webhook method pro-
vided by many VCSs with tools and techniques focusing on particular aspects of

2 See https://github.com/ + schemaorg/schemaorg, foaf/foaf, structureddynamics/Bi
bliographic-Ontology-BIBO, edumbill/doap, motools/musicontology, among others.

http://schema.org/
https://github.com/
https://github.com/schemaorg/schemaorg
https://github.com/foaf/foaf
https://github.com/structureddynamics/Bibliographic-Ontology-BIBO
https://github.com/structureddynamics/Bibliographic-Ontology-BIBO
https://github.com/edumbill/doap
https://github.com/motools/musicontology

VoCol: An Integrated Environment to Support Version-Controlled 305

vocabulary development. By proving Vagrant and Docker containers bundling all
tools and encapsulating dependencies, VoCol is easily deployable or even usable
as-a-service in conjunction with arbitrary VCS installations.

The remainder of this paper is structured as follows: Section 2 introduces
the fundamental round-trip model that VoCol is based on and lists requirements
that are critical for distributed vocabulary development. Based on the model and
requirements, we developed the VoCol system architecture that is presented in
Sect. 3. Section 4 introduces an implementation of VoCol that we realized on top
of Git. Section 5 reports on a qualitative evaluation of the usefulness and usability
of the VoCol environment. Finally, VoCol is compared to related environments
for distributed vocabulary development in Sect. 6, before the paper is concluded
in Sect. 7.

2 Round-Trip Model and Requirements

Deriving requirements for the envisioned development environment demands the
clarification of our understanding of the most fundamental vocabulary develop-
ment activities. A vocabulary comprises a terminology which is known as TBox.
The creation of this terminology is realized using a logical formalism during the
modeling activities [5]. This comprises the analysis and conceptualization of the
domain and the specification of the vocabulary terms, such as classes, proper-
ties, and the relationships between them. Once the vocabulary modeling has
been completed, the next activity is typically population. It includes the addi-
tion of actual data in line with the defined classes and properties, also known
as ABox [3]. To verify whether the created vocabulary correctly represents the
domain, a list of queries can be compiled from competency questions [17] and
used for testing purposes. Vocabulary engineers may iterate in an incremen-
tal fashion between the modeling, population, and querying activities. In fact,
these three core activities lead to the conception of round-trip development as
illustrated in Fig. 1a.

In order to develop an integrated environment that supports the described
round-trip development of vocabularies, corresponding requirements have to be
identified and addressed accordingly. In our previous work on Git4Voc [6], we
identified eleven requirements that are crucial for the successful adaptation of
Git to vocabulary development. We gathered these requirements by aggregating
insights from the state of the art and our own experiences with developing the
vocabularies MobiVoc and SCORVoc on GitHub.3 For the design of VoCol, we
revised these requirements and grouped them into four categories that need to
be addressed by an integrated environment that aims to support full-featured
vocabulary development (cf. Fig. 1b). In the following, we briefly summarize the
categories and requirements. For a more detailed description, please refer to the
Git4Voc paper [6] and referenced works (i.e. [4,8,11,13,14,17,20]).

Collaboration Support: The first category contains requirements that
ease collaboration in distributed settings. R1 Governance: Stakeholders with
3 See https://github.com/vocol/mobivoc and https://github.com/vocol/scor.

https://github.com/vocol/mobivoc
https://github.com/vocol/scor

306 L. Halilaj et al.

Fig. 1. (a) Round-trip vocabulary development supported by VoCol; (b) categories and
requirements to be addressed by an integrated vocabulary development environment.

different backgrounds and levels of expertise are involved in vocabulary devel-
opment. Consequently, the definition of roles and permissions is an impor-
tant requirement [14,20]. R2 Communication: The collaborative development
of vocabularies is about finding consensus among the different stakeholders. It is
essential that they share ideas, make agreements, and discuss issues during the
entire development life cycle [13,14]. R3 Provenance: It is also crucial to track
changes made by the contributors [14]. Each change in the vocabulary reflects
the understanding of the domain by the respective stakeholder. In case of dis-
agreements, it is necessary to know which change has been made by whom at
which time and for what reason. Furthermore, the development of vocabularies
should respond to the evolution of the knowledge domain [20]. Hence, support for
detecting and documenting provenance of information and semantic differences
between versions is needed during the entire development process.

Quality Assurance: This category comprises requirements for the systematic
checking of quality criteria that should be fulfilled by the vocabulary. R4 Syn-
tax, Semantic, and Constraint Validation: Syntactic and semantic correctness
as well as the application of best practices on designing vocabularies are rele-
vant quality aspects. Providing tool support for these aspects is essential to help
contributors in making fewer errors and ultimately increasing the quality of the
vocabulary. R5 Testing: Competency Questions, i.e., questions the vocabulary
must be able to answer, can be translated into queries and used as test cases for
the vocabulary [17]. An integrated vocabulary development environment should
provide means that allow users to execute such queries efficiently.

User Experience: This category groups requirements for enabling contrib-
utors to achieve their objectives effectively and in a user-centered manner.
R6 Documentation: Domain experts are often team members with little

VoCol: An Integrated Environment to Support Version-Controlled 307

technical expertise in knowledge representation and engineering tools. Thus, pre-
senting the current state of the vocabulary in a human-friendly way is vital. R7
Visualization: Visualization is known to have a positive impact on the modeling,
exploration, verification, and sense-making of vocabularies [11]. It is particularly
helpful for domain experts, but can also provide useful insights for knowledge
engineers. R8 Editor agnostic: In contrast to software code, vocabularies are con-
ceptual artifacts that can be serialized in different ways. Since contributors can
use various editors, which style the syntax differently, support for collaborative
vocabulary development should be editor-agnostic and syntax-independent.

Vocabulary Deployment: Finally, there are requirements concerning the
deployment of the developed vocabulary that also need to be taken into account
by an integrated environment. R9 Machine accessibility: An important require-
ment towards realizing the vision of the web as a global information space is to
provide details about the vocabulary terms in a representation that meets the
requested type and format [8], thus enabling machines to process the vocabulary
correctly. R10 Internationalization: The internationalization and localization of
vocabularies should also be supported by the environment. The translation of
terms into other languages enables a vocabulary to be applicable in different
cultures and communities [4]. R11 Querying: In order to check whether the
developed vocabulary is suitable for a certain use case and to easily retrieve
information for a specific task, the environment should support the execution of
user-defined queries.

3 System Architecture

In order to implement VoCol as an integrated environment, we developed the
system architecture illustrated in Fig. 2. It follows the principles of Component
Based Software Development (CBSD) [9], which promotes the reuse of compo-
nents to develop large-scale systems. In other words, it advocates selecting the
appropriate off-the-shelf components and assembling them into a well-defined
software architecture. Following this idea, we composed VoCol from a set of
smaller components according to the functionalities they provide. Each of these
components is exchangeable and can be replaced by alternatives. In the follow-
ing, the components are described in detail.

Version Control System: A VCS component is required for the management
of vocabulary changes. By capturing and storing the changes, various revisions
of the vocabulary are created. Contributors should work collaboratively, at best
without the need of sharing a common network or the necessity of being always
online. In addition, conflicts inevitably arise in environments where multiple
contributors are working simultaneously and changing vocabulary terms. The
VCS ensures conflict resolution and allows the integration of conflicting changes
in an effective and easy way.

Since the VCS is the first component that is aware of changes, we declared
it to be the core component of the overall VoCol system. Each additional com-
ponent that is necessary to support vocabulary development is triggered by the

308 L. Halilaj et al.

Fig. 2. VoCol architecture and workflow

VCS. We also integrated a repository hosting platform into the VoCol environ-
ment (cf. Fig. 2), as it provides low-threshold access to the repository. It acts
as the repository storage where the vocabulary files are saved and accessed. Its
feature for Access Control authenticates users and outputs a permit or a deny
message according to the set permissions. Furthermore, using the Issue Tracker
of the repository hosting platform, contributors are able to discuss the vocab-
ulary by proposing new terms or alternatives for existing ones. In cases where
sensitive information should be transmitted, the repository hosting platform can
deliver email notifications to private user accounts.

Syntax Validation: To ensure that the latest revision of the vocabulary in
the VCS is always syntactically correct, VoCol integrates a syntax validation
component. In principle, syntax validation could be executed at different stages
of the overall workflow. However, with the aim to keep the requirements on the
client side at a minimum level, we integrated the syntax validation as a service
in the backend. It rejects syntactically incorrect commits and provides a detailed
error report in those cases.

Unique Serialization Service: In a distributed environment, contributors use
different editors during the development process which may produce different
structures of vocabulary files. To avoid this problem, a service integrated into
VoCol creates a unique serialization of vocabulary terms before the changes are
pushed to the remote repository [7]. Thus, the VCS is prevented from indicating
false-positive conflicts.

Documentation Generation: A documentation generation service creates an
HTML representation of the vocabulary. This permits contributors to easily
navigate through the vocabulary by providing a human-friendly overview of it.

VoCol: An Integrated Environment to Support Version-Controlled 309

Visualization Generation: The integrated visualization component depicts
the vocabulary terms and their connections in a graphical way, and allows for the
interaction with the visualization. It complements the generated documentation
by particularly representing the structure, distribution, and relationships within
the vocabulary.

Evolution Tracking: The VCS takes care of maintaining the revision history of
the files. To detect semantic differences between vocabulary versions, an evolu-
tion tracking service is integrated into VoCol. It shows which classes and proper-
ties have been added, removed, or modified, enabling users to see the vocabulary
evolution over time.

Querying Service: VoCol integrates a SPARQL endpoint synchronized with
the latest version of the vocabulary. During testing, queries derived from com-
petency questions [17] can be used to verify whether the vocabulary fulfills the
domain requirements. These queries are stored in the repository and are pre-
loaded in the query user interface.

Inconsistency and Constraint Checking: After the changes have been
pushed to the remote repository, validations of semantic inconsistencies and
constraint violation are performed. As a result, two reports with detailed infor-
mation on respective findings are generated and can be used for corrections.

Machine Accessibility: Using content negotiation and dereferenceable URIs,
VoCol delivers various machine-comprehensible representations. By specifying
the content type in the HTTP header along with the resource URI, the vocab-
ulary can be accessed by different software agents compliant with Linked Data
principles.

Monitoring Service: Repository hosting platforms typically expose most of
their functionality via web service APIs, so that it can be controlled program-
matically. Any change to the repository is delivered as a payload event to a
monitoring service listening on VoCol. As a consequence, the services for docu-
mentation generation, visualization, evolution tracking, querying, etc. are auto-
matically invoked.

Configuration Service: This service provides a graphical user interface to
facilitate the configuration of VoCol. The system administrator can choose from
various tools for syntax validation and documentation generation. Furthermore,
the other services can be activated or deactivated simply by selecting the corre-
sponding checkboxes.

4 Implementation

We use the VCS Git at the core of the implementation, together with a set of
integrated components providing functionalities for syntax validation, visualiza-
tion, documentation and evolution report generation, querying, etc.4

4 A live demo of VoCol is available at http://vocol.visualdataweb.org.

http://vocol.visualdataweb.org

310 L. Halilaj et al.

(a) Configuration (b) Visualization

(c) Documentation (d) Evolution

Fig. 3. Screenshots of selected VoCol services

4.1 Configuration

We developed a service that allows the utilization of VoCol for different appli-
cation scenarios. Using this service, the system administrator configures VoCol
by entering the details of the vocabulary repository (i.e., repository URL, user
credentials, etc.) in the graphical user interface (cf. Fig. 3a). Next, different tools
can be chosen for syntax validation and documentation generation. Via check-
boxes, services for visualization, evolution report generation, querying, etc. can
be selected for automatic execution from VoCol. The administrator defines the
main branch of the repository by entering the value in the Branch Name field.
For this branch, all selected services will be provided by VoCol. If the option
Monitor Other Branches is chosen, some of the services are performed on the
other branches of the repository too.

Furthermore, the option Turtle Editor can be selected to integrate a tool for
the online editing of Turtle files into the vocabulary repository [16]. The option
Predefined Queries indicates that queries defined in files with the extension .rq
will automatically be loaded into the SPARQL interface. Finally, all serialization
formats that VoCol should support via content negotiation can be selected.

VoCol detects the used repository hosting platform (GitHub, BitBucket,
etc.) based on the URL entered for the vocabulary repository, and accesses the

VoCol: An Integrated Environment to Support Version-Controlled 311

platform’s API to create a webhook. This hook contains the address of the VoCol
server to which the repository hosting platform will henceforth send information
about any push event.

4.2 Client-Side Tasks

Client-side tasks refer to the tasks that are performed before pushing to the
repository. To reduce the efforts needed for subsequent corrections, VoCol vali-
dates the syntax before pushing the changed files to the repository. An adapted
pre-commit hook posts vocabulary files that have been changed with tools like
Protégé or TopBraid Composer5 from the local user repository to the VoCol
server. First, the server validates the vocabulary files for syntactic errors. If the
validation fails, the user receives a detailed error description, including the file
name, the affected lines in the files, and the type of error. If the syntax vali-
dation succeeds, a unique serialization of the vocabulary files is created using
the SerVCS service [7] we developed on top of the RDF serialization tool Rdf-
toolkit6. As a result, the vocabulary elements will be serialized in an alphabetic
order, which reduces the number of false-positive conflicts indicated by the VCS
during the merging process. Additionally, the integrated TurtleEditor [16] can
be used to edit the vocabulary files directly on the repository hosting plat-
form. Following the idea of a just-in-time debugger, this editor implements an
instant validator that immediately reports on all found syntax errors. Further-
more, it provides auto-completion of vocabulary terms according to the declared
namespaces.

4.3 Server-Side Tasks

Server-side tasks refer to tasks related to the validation and publication of arti-
facts in human and machine-comprehensible formats that are performed after a
Git push event.

Triggering Changes on the Repository: Using the PubSubHubbub protocol7,
on each push event, the repository hosting platform delivers a payload with
information about the last commit to a server subscribed to it. The Monitoring
Service implemented in VoCol receives the payload and pulls the vocabulary
from the remote repository.

Validation and Error Reporting: Next, the Syntax Validation service vali-
dates each file for syntax errors using tools like Rapper or Jena Riot8. This task
is rerun on the server side to avoid further processing of vocabularies with syntax
errors, which can happen if users do not validate the syntax on their commit.
If the validation fails, an HTML document is created with detailed information
about the errors.
5 http://protege.stanford.edu, http://www.topquadrant.com/composer/.
6 https://github.com/edmcouncil/rdf-toolkit.
7 https://pubsubhubbub.appspot.com.
8 http://librdf.org/raptor/, https://jena.apache.org/documentation/io/.

http://protege.stanford.edu
http://www.topquadrant.com/composer/
https://github.com/edmcouncil/rdf-toolkit
https://pubsubhubbub.appspot.com
http://librdf.org/raptor/
https://jena.apache.org/documentation/io/

312 L. Halilaj et al.

Publishing the Artifacts for Humans and Machines: If the syntax
validation process is passed successfully, all vocabulary files are merged into a sin-
gle file. After that, the following tasks are performed automatically; they gener-
ate updated artifacts for the evolution report, documentation, and visualization.

Documentation Generation: A human-friendly documentation of the vocabulary
is generated using tools such as the documentation generator of Schema.org or
Widoco9.

1. Using Schema.org: We developed an HTML generator that creates an RDFa
representation for each element of the vocabulary. Next, the content is ren-
dered by the Schema.org tool as one page per resource, which makes the
elements dereferenceable. An example of an HTML page generated for a
vocabulary term (ChargingPoint) is shown in Fig. 3c.

2. Using Widoco: A single HTML page listing all elements of the vocabulary is
generated by Widoco. This provides the user with a complete overview of the
vocabulary that can be easily navigated and searched.

Visualization Generation: The vocabulary is visualized using the web appli-
cation WebVOWL [10]. WebVOWL implements the Visual Notation for OWL
Ontologies (VOWL) by graphically representing the vocabulary terms and their
relations in a dynamic node-link diagram. An excerpt of a generated visualization
is shown in Fig. 3b.

Evolution Tracking: When semantic differences between versions of the vocabu-
lary exist, an evolution report is generated using the tool Owl2vcs [25]. It uses
algorithms for structural diffs and three-way merge tools along with OWL 2
direct semantics. The application of direct semantics eliminates problems with
blank nodes and allows comparing ontologies axiom by axiom. The report con-
tains each point in time when a new vocabulary revision has been pushed, and
lists semantic changes like the addition, removal, or modification of elements, as
shown in Fig. 3d.

Machine Accessibility: Machine-comprehensible formats of the vocabulary, such
as Turtle and RDF/XML produced by Rapper, are delivered through a web
server configured to perform content negotiation according to the best practices
for publishing vocabularies10. As a result, machines are provided with the latest
version of the vocabulary at any time.

Querying Service: An integrated SPARQL endpoint service using Jena Fuseki
allows performing queries and exporting the results in different formats. This
enables users to test whether the vocabulary meets their requirements. Addition-
ally, it checks for the existence of files with the extension .rq defining queries. All
files found are uploaded to this service by taking the file name as the query name,
and the content of the file as the query. Furthermore, we developed a tool that
automatically executes queries for constraint violation checking. Some examples

9 https://github.com/schemaorg/schemaorg/, https://github.com/dgarijo/Widoco.
10 http://www.w3.org/TR/swbp-vocab-pub/.

http://schema.org/
http://schema.org/
http://schema.org/
https://github.com/schemaorg/schemaorg/
https://github.com/dgarijo/Widoco
http://www.w3.org/TR/swbp-vocab-pub/

VoCol: An Integrated Environment to Support Version-Controlled 313

Table 1. Examples of predefined queries for constraint checking.

Query name Expected

value

Required

At least one owl:Ontology needs to be defined isNotEmpty Mandatory

Two resources should not have the same rdfs:label isEmpty Mandatory

Two resources should not have the same rdfs:comment isEmpty Mandatory

All resources should have rdfs:label and rdfs:comment in

English

isEmpty Optional

All resources must not have literals with “foo bar”,

“lorem” or “ipsum”

isEmpty Mandatory

All resources should have rdfs:label different from

rdfs:comment

isEmpty Optional

All resources should have rdfs:comment in different

languages

isEmpty Optional

All skos:Concepts should be skos:inScheme isEmpty Mandatory

All skos:Concepts should have a skos:broader statement isEmpty Optional

of these predefined queries, that can be easily changed or extended, are listed in
Table 1. Whenever the value that is returned after executing the corresponding
SPARQL query does not match the value in the “Expected Value” column, this
is an indication for constraint violation. The results of this validation process is
reported in HTML format. Listing 1 depicts the SPARQL query that checks for
missing rdfs:label and rdfs:comment in English.

1 SELECT DISTINCT ?r WHERE { ?r rdf:type ?type .
2 MINUS { ?r rdf:type skos:Concept. }
3 MINUS { ?r rdf:type skos:ConceptScheme. }
4 OPTIONAL { ?r rdfs:label ?label .
5 FILTER((STRLEN(?label) > 0) && langMatches(lang(?label),’en’))}
6 OPTIONAL { ?r rdfs:comment ?comment .
7 FILTER((STRLEN(?comment) > 0) && langMatches(lang(?comment),’en’))}
8 FILTER (!bound(?label) || !bound(?comment))
9 } ORDER BY ?r

Listing 1. Resources should have at least one English rdfs:label or rdfs:comment.

4.4 Deployment

We deploy the VoCol implementation as VirtualBox and Docker virtual machine
images, which can be installed with little effort. The VoCol environment thus
works as an isolated solution without affecting the rest of the physical machine.
This ensures high portability, allowing the administrator to easily start, stop,
move, or share it. With a few additional steps, the VoCol environment can be
installed and configured on a clean web server. All implementation details are
available on the VoCol website11.
11 http://vocol.visualdataweb.org.

http://vocol.visualdataweb.org

314 L. Halilaj et al.

5 Evaluation

We are currently applying VoCol in an industrial use case to evaluate its use-
fulness and effectiveness in a real-world setting. Furthermore, we conducted a
qualitative user study to get additional insights into the usefulness and usability
of VoCol.

5.1 Industry Application

VoCol is currently applied in an industrial use case to develop vocabularies for
describing formally the assets of an enterprise, including how they relate to each
other. All of these vocabularies, except the developed rami vocabulary12, are the
intellectual property of the industrial partner. We are restricted in the informa-
tion we can provide here, but would like to share at least some experiences and
insights.

A group of seven people contributed in parallel to the development of the
vocabularies. While the knowledge engineers conducted most of the formaliza-
tion, the domain experts participated by creating issues. In total, 46 issues were
created ranging from proposals to add, modify, or remove vocabulary terms to
VoCol environment issues, such as bug fixes and feature requests. The developed
vocabularies currently comprise 151 classes, 93 object properties, 225 datatype
properties, and 79 instances.

The loose coupling characteristic of VoCol allowed us to integrate a new com-
ponent for defining and establishing R2RML mappings between the developed
vocabularies and legacy data sources of the industrial partner. By doing so, users
were able to execute queries against the legacy systems and receive the results
in various representation formats, such as tabular, pie, and bar charts, etc.

VoCol provides very useful and effective support in this use case according
to the informal feedback of the involved stakeholders. In particular, the different
views on the vocabulary provided by VoCol are considered to be very helpful in
getting a better understanding and exploring the state of the art. The easy and
comfortable access to all services via one integrated web interface was praised
by all stakeholders.

Despite the benefits of VoCol for this use case, one of the drawbacks that
we experienced is the lack of a simple form-based editing of vocabulary terms.
This prevented domain experts from contributing their ideas directly to the
development, but required the continuous involvement of knowledge engineers.

5.2 User Study

We conducted a qualitative user study of VoCol under controlled conditions
using the Concurrent Think Aloud (CTA) method: Participants were observed
and asked to verbalize their thoughts while performing the given tasks [18]. At
the beginning of each session, the interviewer gave a general introduction into

12 http://w3id.org//i40/rami.

http://w3id.org//i40/rami

VoCol: An Integrated Environment to Support Version-Controlled 315

VoCol. The interaction with the system as well as comments and suggestions
were recorded for later analysis. After completing the tasks, participants had a
discussion with the interviewer about their experiences and any difficulties they
faced. To measure the usability and ease of use, participants were asked to fill a
questionnaire at the end of the interview.

Participants: To ensure that participants represent as closely as possible the
targeted user group of the VoCol system, we chose twelve users with different
levels of expertise, ranging from basic vocabulary modeling experience to more
advanced expertise in knowledge conceptualization and representation.

Tasks and Questionnaire: We designed a set of tasks that comprised all activ-
ities of the round-trip development described above (cf. Sect. 2): Starting from
the modeling activity, the first task was to define several classes with various
numbers of properties. The next task was concerned with the population of the
vocabulary, in which users had to create instances based on the defined classes.
The tasks were performed on the user machine by committing all changes to
the local repository first and later pushing those changes to the remote reposi-
tory. The SPARQL endpoint was used to execute test queries verifying whether
the developed vocabulary met certain criteria. All functionalities provided by
VoCol, including the syntax validation before commit and after push events to
the remote repository, documentation generation, visualization, etc. were covered
in the user study.

In addition, we asked the participants to fill an electronic post-study ques-
tionnaire composed of two main sections. The first section contained the USE
Questionnaire13, which uses five-point Likert scales for rating, ranging from 1
(strongly disagree) to 5 (strongly agree). We evaluated four usability dimensions:
(1) usefulness; (2) ease of use; (3) ease of learning; and (4) satisfaction. To get
more insights into specific areas, we defined three additional questions in the
second section of the questionnaire. With these questions, we aimed to get the
participants’ opinion about: (1) the importance of the individual services inte-
grated into VoCol; (2) negative and positive aspects of the system through an
open response question; and (3) possible services to be integrated in the future.
The evaluation material is available online.14

Results: We obtained the evaluation results by observation, discussions at the
end of each session, and the post-study questionnaires. The following are some
of the findings that we derived from the analysis of the observation notes and
discussions:

– Participants with prior knowledge about VCS, especially with Git, found
VoCol very easy to learn and use.

– A few participants expected to see provenance metadata in the browser, i.e.,
the date and author for each term added to the vocabulary.

– The instant syntax-checking and auto-completion feature of the TurtleEditor
was considered very helpful by the majority of the participants.

13 http://hcibib.org/perlman/question.cgi?form=USE.
14 https://figshare.com/articles/VoCol Evaluation Material/3438371.

http://hcibib.org/perlman/question.cgi?form=USE
https://figshare.com/articles/VoCol_Evaluation_Material/3438371

316 L. Halilaj et al.

Fig. 4. Importance of the VoCol services according to the study participants.

The results from the USE questionnaire showed that the responders rated
their experience with VoCol very high. The average scores received by each
dimension are as follows: usefulness = 4.34, ease of use = 3.97, ease of learning
= 4.35, and satisfaction = 4.31. These scores indicate a high usability of VoCol
(nearly all scores are > 4) and correlate with the oral feedback of the participants
that VoCol is “easy to learn and use”, as well as the informal feedback of the
stakeholders form the industrial use case that VoCol provides “very useful and
effective support”.

Figure 4 shows that each of the services provided by VoCol is of high relevance
to the study participants. For instance, 10 of the 12 participants consider syntax
validation a very important service, while the scores for the other services are
only slightly lower. Some interesting suggestions made by the participants were:
(1) creating a possibility for dynamically adding and removing tools from the
user interface; and (2) automatic recommendation of similar vocabularies (e.g.,
using the LOV15API).

6 Related Work

Vocabulary development is an active research topic in the Semantic Web com-
munity [15]. One area of research is concerned with the development of web
applications that offer low-barrier access to vocabulary development. A well-
known approach in this area is WebProtégé [22], which is a lightweight version
of the Protégé desktop editor. It offers change tracking and collaboration features
to support the distributed development of vocabularies, and comes with a cus-
tomizable user interface that can be adapted to different expertise levels of the
users. VocBench [21] is a web application targeted at editing SKOS and SKOS-
XL thesauri. It supports the workflow management, validation, and publication
of vocabularies, and provides a full history of changes as well as a SPARQL query
15 http://lov.okfn.org/dataset/lov/vocabs.

http://lov.okfn.org/dataset/lov/vocabs

VoCol: An Integrated Environment to Support Version-Controlled 317

endpoint. VocBench implements the separation of responsibilities through a role-
based access control mechanism, checking user privileges for the different tasks of
thesauri editing. SOBOLEO [24] also fosters the collaborative editing of SKOS
thesauri. It provides a specialized browser to navigate and change the taxonomy
and a semantic search engine for annotating web resources. SOBOLEO is used
in the domain of social networks and offers tag recommendations for describ-
ing people based on existing vocabularies. TopBraid Enterprise Vocabulary Net
(TopBraid EVN)16 is a proprietary tool to ease the collaborative creation of
SKOS taxonomies and ontologies. It incorporates change audits, role manage-
ment, concept search capabilities as well as data quality rules to check SKOS
and OWL constraints. Moreover, it enables the creation of hierarchy reports
through graphical user interfaces. MoKi [2] is a collaborative MediaWiki-based
tool to support the ontological modeling tailored for business processes. MoKi
associates a wiki page, containing both unstructured and structured informa-
tion, to each entity of the ontology and process model. PoolParty [19] provides
a web interface for building and managing SKOS thesauri. A user-friendly GUI
facilitates the participation of domain experts. It also allows to extract relevant
information from external Linked Data sources. TemaTres17 is a web application
optimized for SKOS thesauri. It includes an API to access the latest version of
the vocabulary, a WYSIWYG editor, and extensive quality assurance support.

The main objective of all these tools is to support the collaborative web-based
editing of vocabularies. Although they contain many interesting features for
vocabulary development, they are not focused on reusing existing VCSs as a core
component of the vocabulary development process. More closely related to VoCol
are approaches that aim to extend VCSs with additional features dedicated to
vocabulary development.

SVoNt [12] proposes to use Apache Subversion (SVN) as a VCS for the ver-
sioning of ontologies. SVoNt uses a separate server to store conceptual changes
between different versions of ontologies. These versions are generated as a result
of a diff operation between the modified and base ontology. SVoNt supports
conflict detection and resolution by comparing the structure and semantics of
the ontologies. Ontoology [1] is a tool for vocabulary development based on Git,
similar to the presented VoCol implementation. It generates a documentation
using Widoco, while an ontology pitfalls report is provided based on the OOPS
service18. Ontoology uses AR2DTool19 for creating class and taxonomy
diagrams. The generated artifacts can become part of the repository after a pull
request is performed. However, providing a user-friendly client which hides the
complexity of the version control system is not in the focus of these works. Thus,
these systems are rather suited for ontology development projects that involve
purely users with a strong technical background. Furthermore, they do not pro-
vide a set of services that is as comprehensive and integrated as that of VoCol.

16 http://www.topquadrant.com/products/topbraid-enterprise-vocabulary-net/.
17 http://www.vocabularyserver.com.
18 http://oops.linkeddata.es.
19 https://github.com/idafensp/ar2dtool.

http://www.topquadrant.com/products/topbraid-enterprise-vocabulary-net/
http://www.vocabularyserver.com
http://oops.linkeddata.es
https://github.com/idafensp/ar2dtool

318 L. Halilaj et al.

7 Conclusions and Future Work

We have presented VoCol, an integrated environment for distributed develop-
ment of vocabularies based on version control systems. We have defined distrib-
uted vocabulary development as the process of identifying the main terms and
concepts among the involved stakeholders and finding a consensus between them.
We argue that the development of an effective and efficient environment for dis-
tributed collaboration is the main challenge in this context. The presented VoCol
environment supports the identified requirements by extending the functionality
of plain version control systems with external tools via the webhook mechanism.

We implemented VoCol on the basis of the widely used VCS Git. Tasks such
as content negotiation, documentation and visualization generation, as well as
evolution tracking are performed in a fully automated way. In addition, a querying
service, synchronized with the latest version of the vocabulary, enables users to
execute SPARQL queries. The VoCol environment is easily expandable with other
tools to provide additional functionalities. The current implementation of VoCol
is tailored to small to medium size vocabularies. However, it can be adjusted for
various scenarios by replacing its components with adequate alternatives.

For future work, we plan to implement VoCol also for other VCSs, such as
Subversion and Mercurial. Furthermore, we envision an automatic population
service that creates data according to the defined terminology of the vocabulary.
Finally, we plan to provide VoCol as a service where users can simply subscribe
their repositories and benefit from all functionalities.

Acknowledgments. This work has been supported by the German Federal Ministry
of Education and Research (BMBF) in the context of the projects LUCID (grant no.
01IS14019C), SDI-X (no. 01IS15035C) and Industrial Data Space (no. 01IS15054).

References

1. Alobaid, A., Garijo, D., Poveda-Villalón, M., Santana-Perez, I., Corcho, Ó.: Ontool-
ogy, a tool for collaborative development of ontologies. In: ICBO 2015, CEUR-WS,
vol. 1515 (2015)

2. Ghidini, C., Rospocher, M., Serafini, L.: Moki: a Wiki-based conceptual modeling
tool. In: ISWC 2010 Posters and Demos, CEUR-WS, vol. 658 (2010)

3. Giuliano, C., Gliozzo, A.M.: Instance-based ontology population exploiting named-
entity substitution. In: COLING 2008, ACL, pp. 265–272 (2008)

4. Gracia, J., Montiel-Ponsoda, E., Cimiano, P., Gómez-Pérez, A., Buitelaar, P.,
McCrae, J.: Challenges for the multilingual web of data. J. Web Semant. 11, 63–71
(2012)

5. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies.
In: IJCAI95 Workshop on Basic Ontological Issues in Knowledge Sharing (1995)

6. Halilaj, L., Grangel-González, I., Coskun, G., Lohmann, S., Auer, S.: Git4Voc:
collaborative vocabulary development based on git. Int. J. Semant. Comput. 10(2),
167–192 (2016)

7. Halilaj, L., Grangel-González, I., Vidal, M.E., Lohmann, S., Auer, S.: Proactive
prevention of false-positive conflicts in distributed ontology development. In: IC3K
2016, to appear

VoCol: An Integrated Environment to Support Version-Controlled 319

8. Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth.
Lect. Semant. Web: Theor. Technol. 1(1), 1–136 (2011)

9. Kaur, A., Mann, K.S.: Component based software engineering. Int. J. Comput.
Appl. 2(1), 105–108 (2010)

10. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visual-
ization of ontologies. In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti, V.,
Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKAW 2014. LNCS (LNAI), vol.
8982, pp. 154–158. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17966-7 21

11. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semant. Web 7(4), 399–419 (2016)

12. Luczak-Rösch, M., Coskun, G., Paschke, A., Rothe, M., Tolksdorf, R.: SVoNt:
version control of OWL ontologies on the concept level. In: AST 2010, GI, pp.
79–84 (2010)

13. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution
in collaborative environments. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol.
4273, pp. 544–558. Springer, Heidelberg (2006)

14. Noy, N.F., Tudorache, T.: Collaborative ontology development on the semantic
web. In: AAAI Spring Symposium: Semantic Web and Knowledge Engineering,
pp. 63–68 (2008)

15. Palma, R., Corcho, O., Gómez-Pérez, A., Haase, P.: A holistic approach to collab-
orative ontology development based on change management. J. Web Semant. 9(3),
299–314 (2011)

16. Petersen, N., Coskun, G., Lange, C.: TurtleEditor: an ontology-aware web-editor
for collaborative ontology development. In: ICSC 2016, pp. 183–186. IEEE (2016)

17. Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: Presutti, V., d’Amato, C.,
Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol.
8465, pp. 752–767. Springer, Heidelberg (2014)

18. Russo, J., Johnson, E., Stephens, D.L.: The validity of verbal protocols. Mem.
Cogn. 17, 759–769 (1989)

19. Schandl, T., Blumauer, A.: PoolParty: SKOS thesaurus management utilizing
linked data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stucken-
schmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol.
6089, pp. 421–425. Springer, Heidelberg (2010)

20. Simperl, E., Luczak-Rösch, M.: Collaborative ontology engineering: a survey.
Knowl. Eng. Rev. 29(01), 101–131 (2014)

21. Stellato, A., Rajbhandari, S., Turbati, A., Fiorelli, M., Caracciolo, C.,
Lorenzetti, T., Keizer, J., Pazienza, M.T.: VocBench: a web application for col-
laborative development of multilingual thesauri. In: Gandon, F., Sabou, M., Sack,
H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS,
vol. 9088, pp. 38–53. Springer, Heidelberg (2015)

22. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: WebProtégé: a collaborative
ontology editor and knowledge acquisition tool for the web. Semant. Web 4(1),
89–99 (2013)

23. W3C: Vocabularies (2015). https://www.w3.org/standards/semanticweb/ontology
24. Zacharias, V., Braun, S.: Soboleo - social bookmarking and lighweight engineering

of ontologies. In: CKC Workshop at WWW 2007 (2007)
25. Zaikin, I., Tuzovsky, A.: Owl2vcs: Tools for distributed ontology development. In:

OWLED 2013, CEUR-WS, vol. 1080 (2013)

http://dx.doi.org/10.1007/978-3-319-17966-7_21
https://www.w3.org/standards/semanticweb/ontology

	VoCol: An Integrated Environment to Support Version-Controlled Vocabulary Development
	1 Introduction
	2 Round-Trip Model and Requirements
	3 System Architecture
	4 Implementation
	4.1 Configuration
	4.2 Client-Side Tasks
	4.3 Server-Side Tasks
	4.4 Deployment

	5 Evaluation
	5.1 Industry Application
	5.2 User Study

	6 Related Work
	7 Conclusions and Future Work
	References

