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Abstract. Industry 4.0 standards, such as AutomationML, are used to
specify properties of mechatronic elements in terms of views, such as elec-
trical and mechanical views of a motor engine. These views have to be
integrated in order to obtain a complete model of the artifact. Currently,
the integration requires user knowledge to manually identify elements in
the views that refer to the same element in the integrated model. Existing
approaches are not able to scale up to large models where a potentially
large number of conflicts may exist across the different views of an ele-
ment. To overcome this limitation, we developed Alligator, a deductive
rule-based system able to identify conflicts between AutomationML doc-
uments. We define a Datalog-based representation of the AutomationML
input documents, and a set of rules for identifying conflicts. A deductive
engine is used to resolve the conflicts, to merge the input documents and
produce an integrated AutomationML document. Our empirical evalua-
tion of the quality of Alligator against a benchmark of AutomationML
documents suggest that Alligator accurately identifies various types of
conflicts between AutomationML documents, and thus helps increasing
the scalability, efficiency, and coherence of models for Industry 4.0 man-
ufacturing environments.
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1 Introduction

In the engineering and manufacturing domain, there is an atmosphere of depar-
ture to a new era of digitized production, where traditional industrial engineer-
ing methods are synergistically combined with IT and internet technologies, such
as cyber-physical systems, sensor networks, big data analytics, and semantic
data integration. In different regions, initiatives in these directions are known
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under different names, such as industrie du futur in France, industrial internet
in the US or Industrie 4.0 in Germany. A core vision of these initiatives is to
make manufacturing and production more flexible, efficient, and less error-prone
by shifting more ‘intelligence’ to the edge. This shall be achieved by enabling sen-
sors, devices, machines, and storage and transport equipments to directly commu-
nicate with each other. To realize this Industry 4.0 vision, a vast variety of areas
related to manufacturing, security, and machine communication need to interop-
erate by aligning their information models using domain-specific standards.

The Automation Markup Language (AutomationML or AML) for exchang-
ing plant engineering information as specified by IEC 62714 [4,9,17,21] is one
of the core standards of Industry 4.0. AutomationML can describe plant com-
ponents and their sub-components from different perspectives, e.g., mechanical
or electrical. A key challenge in such settings is intra-standard interoperabil-
ity, i.e., the consistent integration of multiple pieces of information described in
AutomationML. To overcome this challenge, we present Alligator, a deduc-
tive approach to integrate AutomationML specifications, and potentially similar
document types.

We define an RDF-based representation of AutomationML input documents,
aiming to resolve structural semantic inconsistencies, such as granularity of rep-
resentations, schematic differences, and groupings and aggregations. Based on
this semantic representation, we define a set of Datalog rules for identifying
conflicts that generate structural semantic inconsistencies. A deductive engine
is used to compute the conflicts from the Datalog representations. Conflict res-
olution is utilized to merge the input documents and produce an integrated
AutomationML document.

By automatizing a crucial part of the engineering and modeling processes,
Alligator addresses a key pillar of the Industry 4.0 vision. To the best of our
knowledge, Alligator is the first comprehensive approach for automatically
resolving the semantic ambiguity of AutomationML. As a result, the Alliga-
tor approach enhances scalability, efficiency, and coherence of models for Indus-
try 4.0 manufacturing environments. Although our initial implementation and
evaluation of the approach focuses on AutomationML, the approach is easily
transferable to other Industry 4.0 standardization initiatives. We empirically
evaluated the quality of Alligator against a benchmark of AutomationML
documents. The evaluation results suggest that Alligator accurately identi-
fies various types of conflicts between AutomationML documents.

In summary, this work makes the following contributions:

1. Alligator, a deductive approach, that combines Deductive Database and
Semantic Web technologies for the integration of Industry 4.0 Standards.

2. A set of Datalog rules to characterize semantic heterogeneity types among
AutomationML documents.

3. An empirical evaluation that reveals the effectiveness of Alligator during
the integration of AutomationML documents.

The remainder of this paper is structured as follows. Section 2 motivates the
problem with a concrete example. Section 3 gives an overview on the background
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Fig. 1. Motivating example. Results of an engineering process where a motor engine
is modeled from different views: a mechanical and an electrical view. Identical elements
of the motor engine are defined as different elements in the views, resulting in conflicts
between the views.

and introduces the terminology relevant to our approach. Section 4 presents the
Alligator approach, which is evaluated in Sect. 6. Section 7 reviews related
work. Section 8 concludes and gives an outlook to future work.

2 Motivating Example

A typical scenario in the mechatronic domain is data exchange between engineer-
ing tools during the modeling process. Engineering tools are utilized in different
disciplines, such as mechanical and electrical engineering, or systems control.
Figure 1 illustrates the results of an engineering modeling process where a motor
engine is modeled from mechanical and electrical viewpoints. Mechanical engi-
neers design the motor engine from the mechanical point of view, whereas elec-
trical engineers model the electrical wiring topology inside the motor engine.
AutomationML is utilized in both views to semantically describe the engine.
However, because physical structures in these views are modeled with different
properties, conflicts might arise when integrating these designs, thus inducing
structural semantic inconsistencies.

Figure 2 details the mechanical and electrical views of the motor engine
given in Fig. 1. The motor engine is identified as 0173-1#01-AKE162#012 DC
Engine according to the eCl@ss product classification standard1. This refer-
ence enables the semantic description of the mechatronic component by point-
ing to the standard definition of a motor engine in eCl@ss. The AML document
Motor-Engine-Mec.aml (cf. Fig. 2a) specifies the motor in terms of its construc-
tion form as a DC Engine (mechanical view). The AML element RoleClassLib
(lines 2–23) comprises two AML elements RoleClass. The first RoleClass (lines
4–14) contains AML attributes with references to eCl@ss that semantically
describe the engine according to the standard definition of version, classification
in the eCl@ss catalog, and the International Registration Data Identifier (IRDI).
The second RoleClass (lines 15–20) is composed of an AML attribute that

1 http://www.eclasscontent.com/index.php?id=27022501&version=9 1&language=
en&action=det.

http://www.eclasscontent.com/index.php?id=27022501&version=9_1&language=en&action=det
http://www.eclasscontent.com/index.php?id=27022501&version=9_1&language=en&action=det
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defines the construction form of the DC Engine; RefSemantic (line 18) refers to
the eCl@ss standard definition of this AML attribute (0173-1#02-BAE069#007).

Figure 2b depicts an AML document that aims at defining the same engine
from the electrical viewpoint. As in the mechanical view, the first RoleClass
(lines 4–14) semantically describes the engine using eCl@ss, while the second
RoleClass (lines 15–20) defines not the engine as a whole, but a data cable in
the engine. The Attribute in line 16 specifies the data cable and includes the
semantic reference to eCl@ss (line 18).

Albeit the structural definition in these views of the DC Engine differs
in the AML documents, the specification of AutomationML and its eCl@ss
integration [19] imply that both descriptions are semantically equivalent. On one
hand, the references to eCl@ss indicate that the AML elements between lines
4 and 14 in the two views correspond to the same element in the real world.
For example, the specification of AutomationML states that two RoleClass
elements are semantically equivalent whenever they share the same eCl@ss ref-
erences for the AML attributes eClassVersion, eClassClassification, and
eClassIRDI [19]. However, these views describe different real-world objects, and
they should not be defined using RoleClass elements in the mechanical and
electrical views which are considered semantically identical according to AML.
Therefore, these elements are in conflict. Accordingly, there are five pairs of con-
flicting AML elements in this simplified example; each pair of these needs to be
merged into one AML element in case the two views are integrated.

Currently, this integration is performed manually by experts, negatively
affecting engineering processes. We present Alligator, a deductive framework
that exploits the features of logic programming and the RDF data model for
representing AML documents, as well as for detecting conflicts whenever AML
documents are integrated.

3 Background

AutomationML. AutomationML (Automation Markup Language, IEC 62714)
is a standard to exchange information about engineering tools, such as mechan-
ical plant engineering, electrical design, or robot control. AutomationML pro-
vides an XML Schema, incorporating three different standards for describing
real plant components [20]. At the top level there is the CAEX (IEC 62424)
format for plant topology, storing hierarchical object information, properties,
and libraries [8]. Secondly, the geometry (mechanical drawings) and kinemat-
ics (physical properties, such as force, speed, or torsion) are implemented with
COLLADA [3]. Finally, the logic (sequencing, behavior, and control information)
is implemented with PLCopen XML (IEC 61131).

AutomationML is built upon four main CAEX concepts: RoleClassLibrary,
SystemUnitClassLibrary, InterfaceClassLibrary, and InstanceHierarchy. Role-
ClassLibrary specifies vendor independent requirements for the specification
of system equipment objects; a RoleClassLibrary may comprise several Role-
Classes, which provide role descriptions of a given class. Such descriptions aim
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Fig. 2. Example of AML Documents. A motor engine is semantically described
in terms of the eCl@ss standard. Role classes (highlighted in red) model the engine
in terms of (a) a construction form and (b) a data cable. Elements of the same type
(highlighted in yellow) correspond to conflicts between the views. (Color figure online)

at representing a physical or logical object, e.g., a motor or a robot. The Inter-
faceClassLibrary defines a set of interfaces to describe a plant model. First, it
can define relations between the objects of a plant topology. Secondly, it can
reference external information, e.g., a 3D description of a motor. The Instance-
Hierarchy describes the plant topology, and defines specific equipment for actual
projects. Further, Attributes are used to define properties, e.g., length or size, of
AML objects, e.g., RoleClasses or Internal Elements. In this paper, we focus on
modeling topology information by means of the CAEX format.

AutomationML. Biffl et al. [4] and Kovalenko and Euzenat [11] have character-
ized mappings to deal with semantic heterogeneity in the engineering domain,
and specifically in AutomationML. The authors have identified the following
types of semantic heterogeneity: (M1) Value processing same properties are not
modeled equally, e.g., using different datatypes; (M2) Granularity same objects
are modeled at different levels of detail; (M3) Schematic differences differences
in the way how semantics is represented for the same object; (M4) Conditional
mappings relations between entities exist only if certain conditions occur; (M5)
Bidirectional mappings relations between entities have to be defined bidirection-
ally; (M6) Grouping and aggregation different semantic modeling criteria are
applied to group elements for the same object; and (M7) Restrictions on val-
ues mandatory values for properties in the object that have to be handled in
the mapping process. As a proof of concept, we focus on semantic heterogeneity
types, such as granularity (M2), schematic differences (M3), and grouping and
aggregation (M6). We selected these types because they present major semantic
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structural differences to describe similar objects. Additionally, they character-
ize semantic mappings between two AML elements that can be performed in
two ways:

1. Direct identification considers two elements to refer to the same entity if the
same identifier is used.

2. Indirect identification considers two elements to refer to the same entity if
both refer to the same identity-providing elements from an external catalog,
e.g., RoleClass or Attributes. For more complex structures as RoleClasses, it
is assumed that if the combination of the eCl@ss IRDI, classification level,
and version are equal, then the RoleClasses are considered to be the same.

AutomationML Vocabulary. Several approaches exist for adding semantics
to the AutomationML language by means of ontologies [1,2,5,6,12,15]. With
the exception of the AutomationML ontology2, designed for the AutomationML
Analyzer [16], none of the aforementioned ontologies covers all concepts given in
the AutomationML schema. Additionally, they are not available on the web for
consulting or querying. Crucial information for Alligator, such as the map-
ping with eCl@ass concepts, are not included in the AutomationML Analyzer
vocabulary. Therefore, we have developed an RDFS vocabulary describing the
main concepts of the AutomationML language.3 Also, we have included concepts
related to the integration with the eCl@ss standard.

4 Our Approach: ALLIGATOR

In this section, we present a formalization of AML documents, as well as the inte-
gration problems and proposed solution addressed by the Alligator approach.
Finally, the architecture of Alligator is described in detail.

4.1 ALLIGATOR Representation of AML Documents

Definition 1 (Alligator Document). An Alligator document is a tuple
Γ = 〈θ, V, F 〉 such that θ is a set of URIs that identify AML elements, V is a
set of properties in the AML vocabulary and F is an RDF graph composed of
triples in θ × V × (θ ∪ L) where L is a set of literals.

An Alligator document Γ = 〈θ, V, F 〉 can represent information from one or
several AML documents Di, where θ is the set of URIs that identify the AML
elements in Di, and the RDF graph F describes the relationships between the
AML elements in Di. In general, V can refer to different vocabularies, e.g., for
other standards than AML such as OPC UA, but in this work, we focus on the
AML vocabulary.

2 http://data.ifs.tuwien.ac.at/aml/ontology#.
3 https://w3id.org/i40/aml/.

http://data.ifs.tuwien.ac.at/aml/ontology#
https://w3id.org/i40/aml/
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Fig. 4. Ideal conflict-free ALLIGATOR document. (a) An RDF graph where there
is only one RDF resource for the conflicting resources in the mechanical and electrical
views of Fig. 6. (b) A homomorphism σ maps conflicting resources in the RDF graph
in Fig. 3 to the same resource in the ideal RDF graph.

Example 1. Consider the RDF graph F1 in Fig. 3. This graph comprises RDF
resources representing the AutomationML elements in the mechanical and elec-
trical views shown in Fig. 2; the AutomationML RDF vocabulary is used to
describe these resources. An Alligator document Γ1 = 〈θ1, V, F1〉 formally
describes this RDF representation of the two views, where θ1 is the set of the
resources in F1, and V is the AutomationML RDF vocabulary.

Definition 2 (Ideal Alligator Document). Given an Alligator document
Γ = 〈θ, V, F 〉, there is an ideal Alligator document Γ ∗ = 〈θ∗, V, F ∗〉 such that
Γ ∗ comprises only conflict-free AML elements. Additionally, there is a homo-
morphism σ : θ → θ∗. The RDF ideal graph F ∗ is defined as follows:

F ∗ = {(σ(s), p, σ(o)) | (s, p, o) ∈ F}

Example 2. Consider the RDF graph in Fig. 4a. The Alligator document Γ ∗ =
〈θ∗, V, F ∗〉 describes this RDF graph, where θ is the set of RDF resources in the
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graph, V is the AutomationML RDF vocabulary, and F ∗ is this RDF graph. Γ ∗

represents the ideal conflict-free Alligator document of Γ1. Figure 4b shows
a homomorphism σ that maps two conflicting resources in the RDF graph in
Fig. 3 to the same resource in Fig. 4a.

Definition 3. Consider an Alligator document Γ = 〈θ, V, F 〉, an ideal
conflict-free Alligator document Γ ∗ = 〈θ∗, V, F ∗〉, and a homomorphism
σ : θ → θ∗. A set of conflicts in Γ with respect to Γ ∗ and σ, conflicts(Γ | Γ ∗, σ),
corresponds to the set of AML element pairs (Ei, Ej) in θ × θ such that Ei and
Ej are different but that σ maps to the same target AML element in θ∗:

conflicts(Γ | Γ ∗, σ)={(Ei, Ej) | Ei, Ej ∈ θ and Ei �= Ej and σ(Ei) = σ(Ej)}

Example 3. Given Alligator documents Γ1 and Γ ∗ from Examples 1 and 2,
and the homomorphism σ in Fig. 4b. The set of conflicts(Γ1 | Γ ∗, σ) corresponds
to the set of pairs of RDF resources in the RDF graph of Fig. 3 that σ maps to
the same resource in the ideal RDF graph (Fig. 4b).

4.2 Problem Definition and Proposed Solution

Given an Alligator document Γ = 〈θ, V, F 〉, the AML Conflict Identification
problem determines if a pair (Ek, El) of AML elements in θ is conflicting.

Definition 4. Consider an Alligator document Γ = 〈θ, V, F 〉, an ideal
conflict-free Alligator document Γ ∗ = 〈θ∗, V, F ∗〉, and a homomorphism
σ : θ → θ∗. The AML Conflict Identification problem corresponds to the problem
of deciding if (Ek, El) ∈ θ × θ belongs to conflicts(Γ | Γ ∗, σ).

Solving the AML Conflict Identification problem requires the existence of the
ideal conflict-free AML document Γ ∗ and the homomorphism σ. However, in
practice neither Γ ∗ and σ is known, and Alligator computes an approximation
of the problem. We use SC(Γ ) to refer to the set of pairs (Ek, El) that correspond
to the solutions of this problem. Once a set SC(Γ ) of conflicting AML elements
in F is identified as the solution of the AML Conflict Identification problem, the
problem of AML Conflict Resolution corresponds to the problem of creating an
Alligator document where conflicts in SC(Γ ) are solved.

Definition 5. Consider an Alligator document Γ = 〈θ, V, F 〉 and a set
SC(Γ ) of pairs of conflicting AML elements in F . The problem of AML Con-
flict Resolution corresponds to the problem of creating an Alligator document
Γ ′ = 〈θ′, V, F ′〉 and a homomorphism σ′ : θ → θ′, such that:

– For each (Ei, Ej) in SC(Γ ), there is an AML element Em in θ′ such that
σ′(Ei) = σ′(Ej) = Em.

– F ′ = {(σ′(s), p, σ′(o)) | (s, p, o) ∈ F}.
Γ ′ represents the Alligator document where pairs of AML elements in SC(Γ )
are represented as one RDF AML element.
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Fig. 5. The ALLIGATOR Architecture. Alligator receives AML documents and
creates an integrated AML document. AML documents are represented as RDF graphs
and Datalog predicates (EDB); Datalog intentional rules (IDB) characterize semantic
heterogeneity types. A bottom-up evaluation of the Datalog program identifies conflicts
between AML documents

We developed Alligator, an integration tool that relies on deductive data-
base techniques for solving the problems of AML Conflict Identification and
AML Conflict Resolution. Figure 5 depicts the architectural components of Alli-
gator. Given a set of AML documents, the Alligator Data Model Creation com-
ponent generates an Alligator document Γ = 〈θ, V, F 〉 that formally describes
the union of these input AML documents. Additionally, a set of Datalog exten-
sional facts (EDB) representing the triples in the RDF document F is created.
The Deductive System Engine relies on the set of Datalog intentional rules (IDB)
to compute the set SC(Γ ) from the Datalog representation of Γ . The set of Dat-
alog intentional rules (IDB) defines different types of semantic heterogeneity
that can occur among AML documents that correspond to views of the same
mechatronic object definition. SC(Γ ) is computed as the least minimal fixpoint
of the Datalog rules in IDB and the facts in EDB. Further, SC(Γ ) is utilized by
the Integrated AML Document Creation component to solve the AML Conflict
Resolution problem, and to produce an integrated AML document where RDF
AML elements in SC(Γ ) are integrated as one AML element.

4.3 ALLIGATOR Data Model and Deductive System Engine

Alligator represents AML documents as RDF graphs. AML documents are
translated to RDF using Krextor [13], an XSLT-based framework for converting
XML to RDF. The RDF AML vocabulary is used to describe AML elements
and relations. Further, AML documents are modeled as facts in an extensional
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database (EDB) of a Datalog program P ; for each type of AML element in the
AutomationML standard exists an extensional Datalog predicate in P . Rules in
the intensional database (IDB) of the Datalog program P characterize types of
semantic heterogeneity. Intensional Datalog predicates represent conflicts that
can exist between the different AML elements according to the types of semantic
heterogeneity. The Alligator Deductive System Engine performs a bottom-up
evaluation of P following a semi-näıve algorithm that stops when the least fixed-
point is reached [7]. The intensional predicates inferred in the evaluation of P
correspond to the pairs of conflicts in the set SC(Γ ).

5 ALLIGATOR rule-based representation of
AutomationML Semantic Heterogeneity

One of the key innovations of Alligator revolves on the use of a Datalog-rule
approach to effectively solve types of semantic heterogeneity. We have devel-
oped a set of rules covering the main characteristics of AML. Regarding the
attributes, it is possible to determine that, if two attributes refer to the same
eCl@ss value, i.e., eCl@ss IRDI, it can be assumed that their semantic meaning
is the same. In detail, the AML element refSemantic refers to the eCl@ss IRDI
using CorrespondingAttributePath (cf. Fig. 2 line 18). Thereby, even if two
attributes are defined with different names, e.g., Length and StrictLength, they
can still be semantically equivalent whenever they are linked to the same IRDI
reference. It is important to remark that these rules have been defined taking
into account the AML vocabulary properties. Based on this, the rule in Listing 1
states when two attributes are semantically equivalent.

1 sameAttribute(X,Y) :- hasRefSemantic(X,T) & hasRefSemantic(Y,Z) &
2 sameRefSemantic(T,Z).
3 sameRefSemantic(X,Y) :- hasCorrespondingAttributePath(X,Z) &
4 hasCorrespondingAttributePath(Y,Z).

Listing 1. Rule 1: Semantic equivalence of two AML attributes

To determine that two RoleClasses are semantically equivalent according to
their reference to eCl@ss, they have to contain the same version, classification,
and IRDI. Based on these three conditions, Rule 2 (cf. Listing 2) defines two
semantically equivalent RoleClasses.

1 sameRoleClass(X,Y) :- type(X,roleClass) & type(Y,roleClass) & sameEClassIRDI(A,B)&

2 sameEClassClassification(C,D) & sameEClassVersion(E,F)&

3 hasAttribute(X,A) & hasAttribute(X,C) & hasAttribute(X,E)&

4 hasAttribute(Y,B) & hasAttribute(Y,D) & hasAttribute(Y,F).

Listing 2. Rule 2: Semantic equivalence of two RoleClasses

Rule 2 relies on simpler rules such as Rule 3 (cf. Listing 3), which defines
the equivalence of two eClassIRDI attributes. Similarly, we have defined rules
to decide if two values of eClassVersion and eClassClassification are the
same.
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1 sameEClassIRDI(X,Y) :- hasAttributeName(X,’eClassIRDI ’) &
2 hasAttributeName(Y,’eClassIRDI ’) &
3 hasAttributeValue(X,Z) & hasAttributeValue(Y,Z).

Listing 3. Rule 3: Semantic equivalence of two eClassIRDI AML attributes

These three rules are only examples of the type of rules implemented in
Alligator; the complete set of rules is given on GitHub4.

6 Empirical Evaluation

We studied the effectiveness of Alligator in the solution of the problems of
AML Conflict Identification and AML Conflict Resolution. In particular, we
assessed the following research questions: (RQ1) Is Alligator able to identify
pairs of conflicting AML elements in AML documents?; (RQ2) Does Alligator
exhibit equal behavior whenever different types of semantic heterogeneity occur
during the integration of AML documents? The experimental configuration to
evaluate these research questions was as follows:

Testbeds. Testbeds were based on the semantic mapping types M2 (granu-
larity), M3 (schematic differences), and M6 (grouping and aggregation), with
ten testbeds for each of them, respectively. First, a seed (AML document) was
manually created for each testbed according to the type of semantic mapping.
Next, we automatically generated two AML documents derived from this seed
containing a random number of conflicting AML elements5. The generation was
performed following a uniform distribution. Testbeds corresponded to pairs of
AML documents, and thirty testbeds were evaluated in the study6.

Gold Standard. To compile a Gold Standard, we relied on the generated test-
beds. Formally, the Gold Standard corresponds to an ideal conflict-free Alli-
gator document Γ ∗ = 〈θ∗, V, F ∗〉, for each pair of the AML documents in the
testbeds. The creation of the conflict-free document as well as the computation
of the conflicting elements and different elements was performed manually.

Metrics. We measured the behavior of Alligator in terms of the following
metrics:

(a) Precision is the fraction of the conflicts identified by Alligator (i.e.,
SC(Γ )) that are conflicts in an AML document (i.e., conflicts(Γ | Γ ∗, σ)).

Precision =
|SC(Γ ) ∩ conflicts(Γ | Γ ∗, σ)|

|SC(Γ )|

4 https://github.com/i40-Tools/AlligatorRules.
5 https://github.com/i40-Tools/AMLGoldStandardGenerator.
6 https://github.com/i40-Tools/HeterogeneityExampleData.

https://github.com/i40-Tools/AlligatorRules
https://github.com/i40-Tools/AMLGoldStandardGenerator
https://github.com/i40-Tools/HeterogeneityExampleData
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(b) Recall is the fraction of the conflicts in an AML document (i.e., conflicts(Γ |
Γ ∗, σ) that are identified by Alligator (i.e., SC(Γ )).

Recall =
|SC(Γ ) ∩ conflicts(Γ | Γ ∗, σ)|

|conflicts(Γ | Γ ∗, σ)|
(c) F-measure is the harmonic mean of Precision and Recall.

Implementation. Experiments were run on a Windows 8 machine with an Intel
I7-4710HQ 2.5 GHz CPU and 8 GB 1333 MHz DDR3 RAM. We implemented the
Deductive System Engine as a meta-interpreter in Prolog that follows the semi-
näıve bottom-up evaluation of Datalog programs [7]; we utilized SWI-Prolog
version 7.2.3 and the Prolog Development Tool (PDT7). An AML extraction
module was developed as a part of Krextor to transform AML documents into
RDF graphs. This module comprised a set of mapping rules8 that are executed
in Krextor to create RDF graphs using the AML vocabulary. Further, the trans-
formation of the RDF files into Datalog extensional predicates was implemented
in Java 1.8. The Alligator framework, the testbed generator, and the testbeds
evaluated in this experiment are publicly available on GitHub9.
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(a) Granularity (M2)
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(b) Schematic (M3)
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Fig. 6. Size of Integrated AML Documents. Per type of semantic heterogeneity:
Granularity (M2), Schematic (M3), and Grouping (M6), the size of the integrated AML
documents was reported in terms of the number of conflicts solved (light grey bars),
and the different AML elements in the document (dark grey bars). In all the evaluated
testbeds, the solved conflicts comprised at least 25 % of the total number of AML
elements in the AML document, showing the heterogeneity of the evaluated testbeds

7 https://sewiki.iai.uni-bonn.de/research/pdt/docs/start.
8 https://raw.githubusercontent.com/EIS-Bonn/krextor/master/src/xslt/extract/

aml.xsl.
9 https://github.com/i40-Tools/.

https://sewiki.iai.uni-bonn.de/research/pdt/docs/start
https://raw.githubusercontent.com/EIS-Bonn/krextor/master/src/xslt/extract/aml.xsl
https://raw.githubusercontent.com/EIS-Bonn/krextor/master/src/xslt/extract/aml.xsl
https://github.com/i40-Tools/
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Size of the Integrated AML Documents. The goal of this evaluation was
to analyze the size of the integrated AML documents with respect to conflicting
and different elements. For each type of semantic heterogeneity and testbed of
that type, we computed the number of conflicts solved by Alligator. Further,
the number of different AML elements was measured; a different AML element
corresponded to an element that appeared in one of the AML documents in the
testbed, and was not conflicting with any other AML element. For example,
the AML elements in line 15 of the two views in Figs. 2a and 2b are different
elements. In consequence, both should be included in the integrated AML doc-
ument. On the other hand, the AML elements in lines 2, 4, 6, 9, and 12 in both
views are pair-wise conflicted AML elements, and each pair should be integrated
into only one AML element. Figure 2 reports on the number of conflicted and dif-
ferent AML elements. We observed that a large number of AML elements in the
integrated AML documents result from solving the Conflict Resolution problem;
being the number of these AML elements at least 25 % of the total elements in
the integrated documents. These results illustrated the complexity of the eval-
uated testbeds, and clearly showed the enhancement assessed by Alligator
during the integration of AML documents.

Effectiveness of ALLIGATOR. The goal of this experiment was to answer
our research questions RQ1 and RQ2. Alligator was run on each of the 30
testbeds to create SC(Γ ), and precision, recall, and F-measure were computed
according to the Gold Standard (conflicts(Γ | Γ ∗, σ)). Table 1 reports on the
values of these metrics for each type of semantic heterogeneity, i.e., M2, M3,
and M6. We observed that for these semantic heterogeneity types, the value for
precision is 1.0, i.e., Alligator correctly detected all the conflicting elements
in conflicts(Γ | Γ ∗, σ). Further, recall and F-measure are also 1.0 in the test-
beds of semantic heterogeneity M2. These results suggest that Alligator rules
capture the knowledge required to accurately solve the AML Conflict Identifi-
cation problem. For the semantic heterogeneity types M3 and M6, Alligator
rules are not completely covering all possible conflicts generated between nested
structures composed of conflicting AML elements. Thus, Alligator could not
identify at most two conflicts in five out of 20 testbeds of type M3 and M6. These
results allowed us to positively answer research questions RQ1 and RQ2.

7 Related Work

In the literature, many different approaches are proposed for integrating CAEX
documents. In [18], a tool to map two CAEX files is presented. It allows to
integrate the AutomationML documents, their respective descriptions, and the
modified parts of one file into the other. Further, a mapping algorithm for CAEX
files is presented. Nevertheless, the process of mapping is performed manually.
Himmler [10] presents a framework to create standardized application interfaces
in plant engineering based on AutomationML. The work provides a function-
based based standardization framework for the plant engineering domain.
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Table 1. Effectiveness of ALLIGATOR. Per semantic heterogeneity type, the effec-
tiveness of Alligator is reported. In all the testbeds, precision is 1.0. Alligator
exhibits the highest performance in the testbeds of type M2 (F-measure is always 1.0),
while in M3 and M6, the F-measure values are at least 0.8

Granularity (M2)

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F-Measure 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Schematic (M3)

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0 0.83 1.0 0.88 0.75

F-Measure 1.0 1.0 1.0 1.0 1.0 1.0 0.90 1.0 0.94 0.85

Grouping (M6)

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 0.66 1.0 1.0 1.0 1.0 1.0 0.83

F-Measure 1.0 1.0 1.0 0.80 1.0 1.0 1.0 1.0 1.0 0.90

Persson et al. [14] utilize an RDF-based approach to integrate robotized pro-
duction information modeled with AutomationML. Kovalenko et al. [12] explore
how AutomationML can be represented by means of Model-Driven Engineering
and the Semantic Web. A small part of an AutomationML ontology is developed,
based on the main concepts of the language. Also, the use of rules for consis-
tency checking is proposed, using the Semantic Web Rule Language (SWRL),
but no explicit definition of the role of Semantic Web technologies on the inte-
gration problem is presented. The AutomationML Analyzer [16] is an online tool
to browse, query and analyse different AML data by means of Semantic Web
technologies; a conceptual design to overcome integration problems in AML is
described. All these approaches have the potential to solve specific integration
problems for AML. However, they solve rather isolated problems, and a general
method capable to automatically integrate AML information from different per-
spectives is not provided. Contrary, Alligator combines deductive databases
and Semantic Web technologies to effectively integrate documents specified using
Industry 4.0 Standards like AML.

8 Conclusions and Future Work

This paper presented Alligator, a deductive framework for the integration of
AML documents. Alligator relies on Datalog and RDF to accurately repre-
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sent the knowledge that characterizes different types of semantic heterogene-
ity in AML documents. The results of the empirical evaluation indicate that
Alligator is able to effectively solve the problems of AML Conflict Identifica-
tion and AML Conflict Resolution, and exhibits similar behavior for the three
studied semantic heterogeneity types, i.e., granularity (M2), schematic (M3),
and grouping (M6). In the future, we will empower the Alligator Deductive
System Engine with the expressiveness of Datalog with negation and built-in
predicates. Thus, Alligator will be able to represent other types of semantic
heterogeneity in AML, e.g., value processing (M1) and conditional mappings
(M4). Further, we plan to extend Alligator to integrate documents of other
Industry 4.0 Standards, such as the OPC-UA machine-to-machine communica-
tion protocol.
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