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Abstract. In 2015, the modified generalised fuzzy Petri nets (mGFP-
nets) were proposed. This paper describes an extended class of mGFP-
nets called flexible generalised fuzzy Petri nets (FGFP -nets). The main
difference between the latter net model and the mGFP-net concerns tran-
sition operator Out1 appearing in a triple of operators (In, Out1, Out2)
in a mGFP-net. The operator Out1 for each transition is determined
automatically by the GTVC algorithm, using the value of In and the
value of truth degree function β in the net. This modification has signifi-
cant influence on optimization of the modelled system by the FGFP -nets.
The choice of suitable operators for the modelled system is very impor-
tant, especially in systems described by incomplete, imprecise and/or
vague information. The proposed approach can be used both for control
design as well as knowledge representation and modelling of reasoning in
decision support systems.
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1 Introduction

Petri nets have become an important computational paradigm to represent and
analyse a broad class of systems. As a computational paradigm for intelligent
systems, they provide a graphical language to visualize, communicate and inter-
pret engineering problems [5,12]. The concept of a Petri net has its origin in C.A.
Petri’s dissertation [13]. In the last four decades, several extensions of Petri nets
have been proposed improving such aspects as hierarchical nets, high level nets
or temporal nets [6]. For some time Petri nets have been gaining a growing
interest among people in Artificial Intelligence and Systems Biology due to its
adequacy to represent the reasoning process as a dynamic discrete event system
[4,7,10,11]. In 1988, C.G. Looney proposed in [9] so called fuzzy Petri nets (FP -
nets). In his model logical propositions can be associated with Petri nets allowing
for logical reasoning about the modelled system. In this class of Petri net models
not only crisp but also imprecise, vague and uncertain information is admissible
and taken into account. Several authors proposed different classes of fuzzy Petri
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nets [4]. These models are based on different approaches combining Petri nets
and fuzzy sets introduced by L.A. Zadeh in 1965 [19]. Recently, a new class of
FP -nets (mGFP -nets [16]) has been introduced. The main difference between
this net model and the existing FP -nets [4] concerns the definition of the oper-
ator binding function δ. This function, similarly to generalised fuzzy Petri nets
(GFP -nets) [18], connects transitions with triples of operators (In,Out1, Out2).
The meaning of the first and third operator in the mGFP -nets is the same as in
the case of GFP -nets. However, in the mGFP -net model, the meaning of the sec-
ond operator in the triple (called transition operator) is significantly different. In
the GFP -net model the operator Out1 belongs to the class of t-norms, whereas
in the mGFP -net model it is assumed that it belongs to the class of inverted
fuzzy implications [15]. Due to this change the latter net model modifies existing
interpretation of transition firing rule in GFP -nets. Since there exist infinitely
numerous fuzzy implications in the field of fuzzy logic, and the nature of the
marking changes variously in given mGFP -nets depending on used implication
function, it is very difficult to select suitable implication functions for particular
applications. However, taking into account the GTVC algorithm for determin-
ing the optimal inverted fuzzy implication [15] for the transition operator Out1
depended on the current marking of the net, the net model presented in the
paper is more flexible than the mGFP -net one. The choice of suitable opera-
tors for the modelled system is very important, especially in control systems
described by incomplete, imprecise and/or vague information.

The aim of this paper is to describe an extended class of mGFP -nets called
flexible generalised fuzzy Petri nets. The main difference between the latter net
model and the mGFP -net concerns the transition operator Out1 appearing in a
triple of operators (In,Out1, Out2) in a mGFP -net. The operator Out1 for each
transition is determined automatically by the GTVC algorithm, using the value
of In and the value of truth degree function β in the net. This modification
has significant influence on optimization of the modelled system by the FGFP -
nets. The proposed approach can be used both for control design as well as
knowledge representation and modelling of approximate reasoning in decision
support systems.

The text is organized as follows. In Sect. 2, basic notions and notation con-
cerning triangular norms and fuzzy implications are recalled. Moreover, the
algorithm for determining the optimal inverted fuzzy implication from a set
of basic fuzzy implications is described. Section 3 provides a brief introduction
to mGFP -nets. In Sect. 4, FGFP -nets formalism is presented. A simple example
coming from the control domain is given in Sect. 5. Section 6 includes concluding
remarks.

2 Preliminary Notions

In this section, we remind both basic notions and notation concerning triangu-
lar norms and fuzzy implications, as well as the GTVC algorithm. For further
details, see [2,8,15].
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2.1 Triangular Norms

Let [0, 1] be the interval of real numbers from 0 to 1 (0 and 1 are included).
A function t : [0, 1] × [0, 1] → [0, 1] is said to be a t-norm if it satisfies, for all

a, b, c ∈ [0, 1], the following conditions: (1) it has 1 as the unit element, (2) it is
monotone, commutative, and associative. A function s : [0, 1] × [0, 1] → [0, 1] is
said to be an s-norm if it satisfies, for all a, b, c ∈ [0, 1], the following conditions:
(1) it has 0 as the unit element, (2) it is monotone, commutative, and associative.

More relevant examples of t-norms are the minimum t(a, b) = min(a, b) and
the algebraic product t(a, b) = a ∗ b. However, the examples of s-norms are the
maximum s(a, b) = max(a, b) and the probabilistic sum s(a, b) = a + b − a ∗ b.

The set of all triangular norms is denoted by TN .

2.2 Fuzzy Implications

A function I : [0, 1]× [0, 1] → [0, 1] is said to be a fuzzy implication if it satisfies,
for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions: (1) I(., y) is decreasing,
(2) I(x, .) is increasing, (3) I(0, 0) = 1, I(1, 1) = 1, and I(1, 0) = 0.

The set of all fuzzy implications is denoted by FI.
Table 1 contains a sample of basic fuzzy implications. For their extended list,

refer to ([2], page 4).

Table 1. A sample of basic fuzzy implications

Name Year Formula of basic fuzzy implication

Gödel 1932 IGD(x, y) =

{
1 if x ≤ y

y if x > y

Goguen 1969 IGG(x, y) =

{
1 if x ≤ y
y
x

if x > y

Kleene-Dienes 1938 IKD(x, y) = max(1 − x, y)

Yager 1980 IY G(x, y) =

{
1 if x = 0 and y = 0

yx if x > 0 or y > 0

In the paper [15], a method of choosing suitable fuzzy implications has been
proposed. The method assumes that there is given a basic fuzzy implication
z = I(x, y), where x, y belong to [0,1]. x is interpreted as the truth value of
the antecedent and is known, whereas z is interpreted as the truth value of
the implication and is also known. In order to determine the truth value of
the consequent y, the inverse function InvI(x, z) is needed to be computed.
Moreover, this method allows to compare two fuzzy implications. If the truth
value of the antecedent and the truth value of the implication are given, we can
easily optimize the truth value of the implication consequent by means of inverse
fuzzy implications. In other words, one can choose the fuzzy implication which
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Table 2. Inverted fuzzy implications for the fuzzy implications from Table 1

Formula of inverted fuzzy implication Domain of inverted fuzzy implication

InvIGD(x, z) = z 0 ≤ z < x, x ∈ (0, 1]

InvIGG(x, z) = x ∗ z 0 ≤ z < 1, x ∈ (0, 1]

InvIKD(x, z) = z 1 − x < z ≤ 1, x ∈ (0, 1]

InvIY G(x, z) = z
1
x 0 ≤ z ≤ 1, x ∈ (0, 1]

Fig. 1. The unit square [0, 1] × [0, 1] divided into 6 separable areas

has the greatest truth value of the implication consequent or greater truth value
than other implication. Using this method we formulate a new model of fuzzy
Petri nets proposed in this paper (see Sect. 4).

Table 2 lists inverse fuzzy implications and their domains for the fuzzy impli-
cations from Table 1. The resulting inverse functions can be compared with each
other so that it is possible to order them. However, in general case, some of
those functions are incomparable in the whole domain. Therefore, the domain is
divided into separable areas within which this property is fulfilled.

The division of the unit square into 15 areas allows to compare the fuzzy
implications with one another [15]. However, if we are only interested in finding
the optimal implication which has the greatest truth value of the implication
consequent, it is enough to divide the unit square into 6 areas A-F (see Fig. 1
and Table 3).

2.3 Algorithm

The algorithm presented below determines a basic fuzzy implication which has
the greatest truth value of the consequent, and the truth value of the antecedent
as well as the truth value of the implication are given. This algorithm uses the
inverse fuzzy implications and their domains are presented in Table 2. The if-
then clauses corresponding to specific cases are shown in Table 3.
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Table 3. Table of optimal functions

No Area The optimal function

A z ≥ x and z < x
x

1−x IGG

B z < x and z ≤ 1 − x IGD

C z > 1 − x and z < x IGD = IKD

D z > 1 − x and z ≥ x IKD

E z > x
x

1−x and z ≤ 1 − x IY G

F z = x
x

1−x and x ∈ (0, 1
2
] IGG = IY G

Algorithm GTVC

Input: x - the truth value of the antecedent, z - the truth value of the implication
Output: I - fuzzy implication which has the greatest truth value of the conse-
quent

if (z ≥ x and z < x
x

1−x ) or (z = x
x

1−x and x ∈ (0, 1
2 ]) then I ← IGG;

/* case A or F */
if (z < x and z ≤ 1 − x) or (z > 1 − x and z < x) then I ← IGD;
/* case B or C */
if (z > 1 − x and z ≥ x) then I ← IKD;
/* case D */
if (z > x

x
1−x and z ≤ 1 − x) then I ← IY G;

/* case E */
return I;

This algorithm is a compact version of the algorithm presented in [15].

3 Modified Generalised Fuzzy Petri Nets

In the paper, we assume that the reader is familiar with the basic notions of
Petri nets [12].

Definition 1. [16] A modified generalised fuzzy Petri net is said to be a tuple
N = (P, T, S, I,O, α, β, γ,Op, δ,M0), where: (1) P = {p1, p2, . . . , pn} is a finite
set of places; (2) T = {t1, t2, . . . , tm} is a finite set of transitions; (3) S =
{s1, s2, . . . , sn} is a finite set of statements; (4) the sets P , T , S are pairwise
disjoint; (5) I : T → 2P is the input function; (6) O : T → 2P is the output
function; (7) α : P → S is the statement binding function; (8) β : T → [0, 1] is
the truth degree function; (9) γ : T → [0, 1] is the threshold function; (10) Op =
TN ∪ FI is a union of triangular norms and inverted fuzzy implications called
the set of operators; (11) δ : T → Op×Op×Op is the operator binding function;
(12) M0 : P → [0, 1] is the initial marking, and 2P denotes a family of all subsets
of the set P .
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As for the graphical interpretation, places are denoted by circles and transi-
tions by rectangles. The function I describes the oriented arcs connecting places
with transitions, and the function O describes the oriented arcs connecting tran-
sitions with places. If I(t) = {p} then a place p is called an input place of a
transition t, and if O(t) = {p′}, then a place p′ is called an output place of t. The
initial marking M0 is an initial distribution of numbers in the places. It can be
represented by a vector of dimension n of real numbers from [0, 1]. For p ∈ P ,
M0(p) can be interpreted as a truth value of the statement s bound with a given
place p by means of the statement binding function α. Pictorially, the tokens are
represented by means of grey “dots” together with suitable real numbers placed
inside the circles corresponding to appropriate places.

We assume that if M0(p) = 0 then the token does not exist in the place p. The
numbers β(t) and γ(t) are placed in a net picture under the transition t. The first
number is usually interpreted as the truth degree of an implication corresponding
to a given transition t. The role of the second one is to limit the possibility of
transition firings, i.e., if the input operator In value for all values corresponding
to input places of the transition t is less than a threshold value γ(t) then this
transition cannot be fired (activated). The operator binding function δ connects
similarly to GFP -nets [18] transitions with triples of operators (In,Out1, Out2).
The meaning of the first and third operator is the same as in the case of GFP -
nets. The first operator in the triple is called the input operator, and the third
one is the output operator. The input operator In concerns the way in which
all input places are connected with a given transition t. In the case of the input
operator we assume that it can belong to one of two classes, i.e., t- or s-norms.
However, the second operator in the triple (i.e., Out1) is now called the transition
operator and its meaning is significantly different. In the GFP -net model the
operator Out1 belongs to the class of t-norms, whereas in the mGFP -net we
assume that it belongs to the class of inverted fuzzy implications. The transition
operator Out1 and the output operator Out2 concern the way in which the
next marking is computed after firing the transition t. In the case of the output
operator we assume similarly to GFP -nets that it can belong to the class of
s-norms.

Let N be a mGFP -net. A marking of N is a function M : P → [0, 1].
The mGFP -net dynamics defines how new markings are computed from the

current marking when transitions are fired.
Let N = (P, T, S, I,O, α, β, γ,Op, δ,M0) be a mGFP -net, M be a marking

of N , t ∈ T , I(t) = {pi1, pi2, . . . , pik} be a set of input places for a transition
t and β(t) ∈ (0, 1]. Moreover, let δ(t) = (In,Out1, Out2) and D be the domain
of a transition operator Out1, i.e., the domain of an inverted fuzzy implication
corresponding to the transition t.

A transition t ∈ T is enabled for marking M , if the value of input operator
In for all input places of the transition t by M is positive and greater than,
or equal to, the value of threshold function γ corresponding to the transition t,
and the value belongs to the domain of a transition operator Out1 of t, i.e., the
following two conditions must be satisfied:
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1. In(M(pi1),M(pi2), . . . , M(pik)) ≥ γ(t) > 0,
2. In(M(pi1),M(pi2), . . . , M(pik)) ∈ D.

Only enabled transitions can be fired. If M is a marking of N enabling
transition t and M ′ is the marking derived from M by firing transition t, then
for each p ∈ P a procedure for computing the next marking M

′
is as follows:

1. Numbers in all output places of t are modified in the following way: at first,
the value of input operator In for all input places of t is computed, next,
the value of output operator Out1 for the value of In and for the value of
truth degree function β(t) is determined, and finally, a value corresponding
to M ′(p) for each p ∈ O(p) is obtained as a result of output operator Out2
for the value of Out1 and the current marking M(p).

2. Numbers in the remaining places of net N are not changed.

Formally, for each p ∈ P

M ′(p) =

⎧
⎪⎨

⎪⎩

Out2(Out1(In(M(pi1),M(pi2), . . . ,M(pik)), β(t)),M(p))
if p ∈ O(t),

M(p) otherwise.

(a) (b)

Fig. 2. A mGFP-net with: (a) the initial marking, (b) the marking after firing t1

Example 2. Consider a mGFP -net in Fig. 2(a). For the net we have: the set
of places P = {p1, p2, p3}, the set of transitions T = {t1}, the input function
I and the output function O in the form: I(t1) = {p1, p2}, O(t1) = {p3}, the
set of statements S = {s1, s2, s3}, the statement binding function α : α(p1) =
s1, α(p2) = s2, α(p3) = s3, the truth degree function β : β(t1) = 0.8, the
threshold function γ: γ(t1) = 0.3, and the initial marking M0 = (0.5, 0.7, 0).
Moreover, there are: the set of operators Op = {ZtN,ZsN} ∪ {GGiFI}, where
ZtN(a, b) = min(a, b) (Zadeh t-Norm), ZsN(a, b) = max(a, b) (Zadeh s-Norm),
GGiFI(x, z) = x ∗ z (Goguen inverted Fuzzy Implication) (see Table 2) and the
operator binding function δ defined as follows: δ(t1) = (ZtN,GGiFI, ZsN). The
transition t1 is enabled by the initial marking M0. Firing transition t1 by the
marking M0 transforms M0 to the marking M

′
= (0.5, 0.7, 0.4) (Fig. 2(b)).

For further details, see [16].
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4 Flexible Generalised Fuzzy Petri Nets

This section presents the main contribution to the paper. Using the GTVC algo-
rithm from Subsect. 2.3 we reformulate the definition of mGFP -net as follows:

Definition 3. A flexible generalised fuzzy Petri net is said to be a tuple N ′ =
(P, T, S, I,O, α, β, γ,Op, δ,M0), where: (1) P, T, S, I,O, α, β, γ,M0 have the
same meaning as in Definition 1; (2) Op = TN ∪ OPTInvFI is a union of tri-
angular norms and optimal inverted fuzzy implications determined by the GTVC
algorithm (Subsect. 2.3) called the set of operators; (3) δ : T → Op × Op × Op is
the operator binding function.

The operator binding function δ connects similarly to mGFP -nets transitions
with triples of operators (In,Out1, Out2). The meaning of the first and third
operator is the same as in the case of mGFP -nets. However, in this net model,
the value of the second operator in the triple (i.e., Out1) for each transition t in
the FGFP -net is determined automatically by the GTVC algorithm using the
value of In and the value of truth degree function β.

It is easy to see that the role of a given transition t in the FGFP -net changes
dependently on the current marking of the net. In the mGFP -net model we also
assume that the operator belongs to the class of inverted fuzzy implications, but
this operator is defined in advance by the users depending on their knowledge
and experience.

In many cases, taking into account various combinations of the values of In
and the value of truth degree function β for a given transition t, the choice of
the suitable inverted fuzzy implication by the user is very difficult or sometimes
impossible. However, considering the GTVC algorithm (see Subsect. 2.3) the
user can indicate the operator Out1 as being chosen by the algorithm during the
execution of the FGFP -net.

The dynamics of FGFP -nets is defined in an analogous way to the case of
mGFP -nets.

Example 4. Consider an FGFP -net in Fig. 3(a). We assume that in the net: the
sets P , T , S, and the functions I, O, α, β, γ, M0 are described analogously
to Example 1. However, the set of operators Op = {ZtN,ZsN} ∪ {KDiFI},

(a) (b)

Fig. 3. A FGFP -net with: (a) the initial marking, (b) the marking after firing t1
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where KDiFI(x, z) = z (Kleene-Dienes inverted Fuzzy Implication, see Table 2)
denotes the optimal inverted fuzzy implication determined automatically by the
GTVC algorithm. The operator binding function δ is defined as follows: δ(t1) =
(ZtN,KDiFI, ZsN). The transition t1 is enabled by the initial marking M0.
Firing transition t1 by the marking M0 transforms M0 to the marking M

′
=

(0.5, 0.7, 0.8) (Fig. 3(b)).

5 Example

In order to illustrate our methodology, let us describe a simple example coming
from the domain of control. For this goal, we propose to consider the following
production rules describing the rule controller for a technical plant: (1) IF s2
THEN s4, (2) IF s1 AND s4 THEN s5, (3) IF s3 AND s4 THEN s6, (4) IF
s5 AND s6 THEN s7, where: s1 =‘Plant work is non-stable’, s2 =‘Temperature
sensor of plant indicates the temperature over 150 C degrees’, s3 =‘Plant cooling
does not work’, s4 =‘Plant temperature is high’, s5 =‘Plant is in failure state’,
s6 =‘Plant makes a huge hazard for environment’, s7 =‘Turn off plant supply’.

Fig. 4. An example of FGFP -net model of technical plant rule controller

In the further considerations we accept the assumptions as in Fig. 4, i.e., (1)
the logical operator AND we interpret as min (Zadeh t-Norm); (2) to the state-
ments s1, s2,..., s7 we assign the fuzzy values 0.7, 0.6, 0.9, 0, 0, 0, 0, respectively;
(3) the truth-values of transitions t1, t2, t3, t4 are equal to 0.9, 0.8, 0.7, 1.0, respec-
tively; (4) all the threshold values for these four transitions are equal to 0.1; (5)
the GTVC algorithm (Subsect. 2.3) determines the transition operator Out1 for
all net transitions. Firstly, assessing the statements s1, s2, s3, we see that the
transition t1 can be fired by the initial marking M0 = (0.7, 0.6, 0.9, 0, 0, 0, 0).
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Fig. 5. FGFP -net model from Fig. 4 after simulation with KDiFI interpretation for
the transition operator Out1

The GTVC algorithm determines the transition operator Out1 = KDiFI (the
Kleene-Dienes inverted fuzzy implication, see Table 2) for the transition t1 by
M0. If t1 is fired then we obtain the new marking M ′ = (0.7, 0.6, 0.9, 0.9, 0, 0, 0).
Two new transitions t2 and t3 are enabled by M ′. If one chooses a sequence of
transitions t2t3 then they obtain the marking M ′′ = (0.7, 0.6, 0.9, 0.9, 0.8, 0.7, 0).
After firing the enabled transition t4 the final value, corresponding to the state-
ment s7, equal to 1.0 is obtained (see Fig. 5). It is worth to observe that the
same inverted fuzzy implication as for the transition t1 is assigned by the GTVC
algorithm to the remaining transitions for all markings reachable from the initial
marking M0. Secondly, if we interpret these four transitions as the Goguen fuzzy
implications, and if we choose the same sequences of transitions as above, we
obtain the final value for the statement s7 equal to 0.38. We omit the detailed
computations performed in this case. Thirdly, if we execute the similar simula-
tion of approximate reasoning for four transitions considered above and, if we
interpret the transitions as the Yager fuzzy implications, we obtain the final
value for s7 equal to 1.0. It is easy to observe that the final value 1 for the
statement s7 is the greatest (optimal).

This example shows clearly that different interpretations of the transitions
may lead to quite different decision results. It is also possible to see that using
the GTVC algorithm we automatically obtain the best interpretation for fuzzy
implications. Certainly, it is limited to a set of considered fuzzy implications. In
the paper this set consists of only four fuzzy implications presented in Table 1.
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6 Concluding Remarks

In this paper, a flexible generalized fuzzy Petri net model has been proposed in
fuzzy environment with inverted fuzzy implications having some benefits com-
pared to those proposed in the literature which can be stated as follow:

1. This paper uses inverted fuzzy implications together with t-norms and as
such opens an approach towards the optimization of the truth degree at the
output places.

2. The generalized Petri net model with the inverted fuzzy implications has
significant influence on optimization of the modelled system by the FGFP -
nets.

3. The fuzzy Petri net model as proposed in this paper is more flexible and
hence distinct to usual ones in the sense that it gives the option to define
In and Out2 operators manually, and the third operator Out1 is determined
automatically by the algorithm presented in Subsect. 2.3. The choice of suit-
able operators In,Out1, and Out2 for the modelled system is very important,
especially in real systems described by incomplete, imprecise and/or vague
information.

The flexibility of choosing the operators inspires for an extension with the
weighted intuitionistic fuzzy sets [1] as proposed in [14]. When an weight is
associated with an input or output values then it is concerned with the reli-
ability of the information provided, leading to more generalization in approx-
imate reasoning process in decision support system but also it often leads to
computational complexity. The flexibility of choosing operators can minimize
such computational complexity. It makes the model simple and thus speeds up
the approximate reasoning process. Moreover, inverted fuzzy implication helps
in optimization but the method discussed here also opens the choice of using
other operators, e.g. t-norm operators, if the input values does not belong to
the domain of inverted fuzzy implication functions. This is the novelty of this
research work.

Using a simple real-life example suitability and usefulness of the proposed
approach have been proved for the control design. The elaborated approach looks
promising with regard to alike application problems that could be solved in a
similar manner. It is worth to mention that an experimental application has been
implemented in Java, consisting of an editor and a simulator. The editor allows
inputting and editing the FGFP -nets, while the simulator starts with a given
initial marking and executes enabled transitions visualising reached markings
and simulation parameters. All figures and simulation results presented in the
paper were produced by this application.

The following research problems of our concern are both the adaptation of
the FGFP -nets in modelling the reasoning in decision support systems using
intuitionistic fuzzy sets [1] as well as the use of this approach in Systems
Biology [7].
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2. Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Heidelberg (2008)
3. Bandyopadhyay, S., Suraj, Z., Grochowalski, P.: Modified generalized weighted

fuzzy petri net in intuitionistic fuzzy environment. In: Flores, V. (ed.) IJCRS 2016.
LNCS (LNAI), vol. 9920, pp. 342–351. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-47160-0 31

4. Cardoso, J., Camargo, H. (eds.): Fuzziness in Petri Nets. Springer, Heidelberg
(1999)

5. Desel, J., Reisig, W., Rozenberg, G. (eds.): ACPN 2003. LNCS, vol. 3098. Springer,
Heidelberg (2004)

6. Jensen, K., Rozenberg, G.: High-level Petri Nets. Springer, Heidelberg (1991)
7. Koch, I., Reisig, W., Schreiber, F. (eds.): Modeling in Systems Biology. The Petri

Net Approach. Springer, Heidelberg (2011)
8. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Boston (2000)
9. Looney, C.G.: Fuzzy petri nets for rule-based decision-making. IEEE Trans. Syst.,

Man, Cybern. 18(1), 178–183 (1988)
10. Pedrycz, W., Gomide, F.: A generalized fuzzy Petri net model. IEEE Trans. Fuzzy

Syst. 2–4, 295–301 (1994)
11. Pedrycz, W.: Generalized fuzzy Petri nets as pattern classifiers. Pattern Recog.

Lett. 20–14, 1489–1498 (1999)
12. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall Inc.,

Englewood Cliffs (1981)
13. Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für

Instrumentelle Mathematik, Bonn (1962)
14. Suraj, Z, Bandyopadhyay, S.: Generalized weighted fuzzy petri net in intuitionistic

fuzzy environment. In: Proceedings the IEEE World Congress on Computational
Intelligence, IEEE WCCI 2016, 25-29 July, 2016, Vancouver, Canada, pp. 2385–
2392, IEEE (2016)

15. Suraj, Z., Lasek, A., Lasek, P.: Inverted fuzzy implications in approximate reason-
ing. Fundam. Informat. 143, 151–171 (2015)

16. Suraj, Z.: Modified generalised fuzzy petri nets for rule-based systems. In: Yao, Y.,
Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds.) RSFDGrC 2015. LNCS (LNAI), vol.
9437, pp. 196–206. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25783-9 18

17. Suraj, Z., Lasek, A.: Toward optimization of approximate reasoning based on rule
knowledge. In: Proceedings 2nd International Conference on Systems and Infor-
matics, ICSAI 2014, November 15-17, 2014, Shanghai, China, IEEE Systems, Man
and Cybernetics Society, IEEE Catalog Numbers: CFP1473R-CDR ISBN: 978-1-
4799-5457-5, pp. 281–285 (2014)

18. Suraj, Z.: A new class of fuzzy Petri nets for knowledge representation and reason-
ing. Fundam. Inform. 128(1–2), 193–207 (2013)

19. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

http://dx.doi.org/10.1007/978-3-319-47160-0_31
http://dx.doi.org/10.1007/978-3-319-47160-0_31
http://dx.doi.org/10.1007/978-3-319-25783-9_18

	Flexible Generalized Fuzzy Petri Nets for Rule-Based Systems
	1 Introduction
	2 Preliminary Notions
	2.1 Triangular Norms
	2.2 Fuzzy Implications
	2.3 Algorithm

	3 Modified Generalised Fuzzy Petri Nets
	4 Flexible Generalised Fuzzy Petri Nets
	5 Example
	6 Concluding Remarks
	References


