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Abstract. The game of Go has recently been an exuberant topic for
AI research, mainly due to advances in Go playing software. Here, we
present an application of deep neural networks aiming to improve the
experience of humans playing the game of Go online. We have trained
a deep convolutional network on 188,700 Go game records to classify
players into three categories based on their skill. The method has a very
good accuracy of 71.5 % when classifying the skill from a single position,
and 77.9 % when aggregating predictions from one game. The perfor-
mance and low amount of information needed allow for a much faster
convergence to true rank on online Go servers, improving user experience
for new-coming players. The method will be experimentally deployed on
the Online Go Server (OGS).
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1 Introduction

Computer Go is a field which mainly focuses on developing programs for playing
the game. In this work, we focus on analyzing existing game records using deep
neural networks with the aim to improve current ranking systems on online Go
servers. This allows the servers to offer better suited opponents to the users, thus
enabling them to have a better gaming experience.

Deep neural networks are currently a very hot topic of research, radically
changing hard fields such as computer vision, or natural language processing
[1,9,10,19]. The boom in deep architectures is allowed by abundance of data,
graphical processing units (GPUs) with huge computational power and smart
models. As there is probably much room for improvement in all three factors,
we can only expect such models to proliferate.

Go is a two-player full-information board game played on a square grid (usu-
ally 19×19 lines) with black and white stones; the goal of the game is to control
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the board by means of surrounded territory and captured enemy stones. Go has
traditionally been an excellent testing ground for artificial intelligence, as the
game has been considered to be extremely challenging. Only recently has the AI
surpassed humans, when Google’s AlphaGo beat world’s top professional player
Lee Se-dol [20], causing much surprise among most computer Go researchers.

In the game of Go, the strength of amateur players is measured by kyu
(student) and dan (master) ranks. The kyu ranks decrease from about 25 kyu
(an absolute beginner) to 1 kyu (a fairly strong player), the scale continues
by dan ranks, 1 dan (somewhat stronger than 1 kyu), to 6 dan (a very strong
player). Often, the ranks are modelled using an underlying continuous quantity
called rating.

A rating system is a way to numerically express player’s strength. In online Go
servers, this is necessary so that users can be matched to other users with similar
skill and so that users’ skills can be compared. Often, mathematical models such as
ELO [5] orBayesian approaches [7] are used.After a game, these systems take infor-
mation about the result (win/loss/draw) and modify the user’s rating. As draws
are quite rare in Go, this makes up for only a slightly more than 1 bit of informa-
tion per game. As a result, the current systems take nontrivial number of games to
converge to true players’ rating, causing problems for new-coming players, often
forcing them to play games with opponents of unfitting skill.

For instance, after the AlphaGo vs. Lee Se-dol match, Online Go Server
(OGS) [17] had a large influx of beginners, who often chose incorrect rank as
their baseline, causing some frustration and work for intervening administrators.
A similar problem with ranking is also caused by players who are much stronger
than they declare. Such players often cause dismay amongst similarly-ranked
(yet weaker) players, and it is often again a task for administrator to find such
players and correct their rating.

Obviously, some more information about the players’ skill would be very
helpful and one of possible source are the games themselves. In our previous
work [2,11,14,15], we pioneered a machine-learning approach to predict the
player’s strength and playing style from game records. Our methods used features
based on various statistics (patterns played, etc.), but these required a sample of
at least 10 games to be reasonably accurate, which is still impractical to tackle
the rating problem. This paper presents a new approach to this problem.

In this work, we set out to investigate the possibilities of estimating the
strength of a player using as little information as possible, the natural starting
point being a single position. Such small sample sizes naturally call for smarter
utilization of the information; for this, we employ deep neural networks. The
proposed methodology is being experimentally deployed on OGS.

The rest of the paper is organized as follows. Section 2 presents the dataset,
preprocessing and augmentation used. Section 3 gives information about the
architecture of the deep neural network used. Section 4 gives an overview about
the experiments we have performed, and reflects on the results. The paper is
concluded by Sect. 5, which sums up the work, discusses the application and
proposes future work.



190 J. Moudř́ık and R. Neruda

2 Dataset

The dataset was created from 188,700 public game records from March 2015
to February 2016. The games were downloaded from OGS. Because OGS is
a relatively new server, it does not have many strong players (also not many
games played by them). Therefore, we only chose games in which players are
between 2 dan and 25 kyu. Of all the games, 20,000 were used as a validation set
(used for tuning hyper-parameters of the model) and 20,000 reserved for testing
(used for final evaluation). Each game is viewed as a sequence of positions.

The dataset consists of 3,426,489 pairs (X, y). Each sample X (an encoding
of a position and 4 last moves) is classified into 3 classes y based on the skill of
the player. The three classes used are: strong players (2 dan–7 kyu), intermediate
players (8 kyu–16 kyu) and weak players (17 kyu–25 kyu). Three classes were
chosen instead of direct regression (or a classification with more classes) because
the problem is quite hard and more precise methods would not work robustly
enough given the low amount of information from a single position.

In the following paragraphs, we describe the steps we took to process the
game records in order to create the dataset for the deep neural network.

Planes: Every single sample X was encoded as 13 binary planes, each of size
19×19. A point on each plane gives information about the particular intersection.
Out of the 13 planes, 4 encode the number of liberties (an empty intersection
next to a group of stones) for player whose turn it is (the planes being 1, 2,
3 or 4 and more liberties), 4 encode liberties for opponent stones in the same
fashion. One plane encodes positions of empty intersections and the last four
planes show the last move, the second-last move, the third-last move and the
fourth-last move. The planes used were proposed by D. Schmicker [18].

Subsampling: During training, the network tended to memorize positions from
the games, causing serious overfitting and poor performance on unseen data. To
fight this, we increased the number of games in a dataset and subsampled the
positions: every fifth position (plus previous four moves) is taken from each
game (randomly). For instance, from a game of 250 moves we get 50 pairs (X, y)
on average. Together with data augmentation, this prevented overfitting very
efficiently.

Data Augmentation: To prevent overfitting, we devised the following simple
data-augmenting strategy. During training, each sample from each mini-batch
was randomly transformed into one of its 8 symmetries; this is possible since
board in the game of Go is symmetrical under reflection and rotation. This
helps the network to build representations that are invariant to symmetry and
reflection, thus improving generalization.

Equalization and Shuffling: In the training data, we made sure that all the
classes have precisely the same number of examples. This makes comparison of
different models easy, as it makes sure that the network is not exploiting uneven
distribution of the targets.
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Finally, all the training examples were shuffled well, so that all batches in the
learning process have roughly the same distribution of targets, the motivation
being to improve the gradient in the batches. In our experience, uneven distri-
butions of classes among many consecutive mini-batches cause the network to
exploit the irregularities, leading to poor performance.

3 Architecture and Training

The network has 4 convolutional layers followed by two fully connected lay-
ers of 128 neurons and finally a 3-way softmax layer. The first convolutional
layer has filters of size 5 × 5, the remaining layers have filters of size 3 × 3.
All the neurons in the network were activated using non-saturating nonlinearity
f(x) = max(x, 0), the so-called rectified linear units (ReLUs) [16]. Compared to
saturating non-linear activations, such as tanh, ReLU units speed up the conver-
gence considerably. Every convolutional layer operated on the full 19×19 input,
outputs of the network were padded by zeros again to 19× 19, the convolutions
were applied with a stride of 1. The number of filters in the network is 512 for
the first layer and 128 for all the other layers. Batch normalization [8] was used
in all the convolutional layers. Batch normalization normalizes layer inputs as a
part of the model, allowing higher learning rates while acting as a regularizer.

All weights in the network were initialized with normalized initialization
as described in [6]. In total, the network has 6,985,475 parameters, majority
between the last convolutional and the first fully connected layer.

The best generalization and performance on the validation set was achieved
when we trained the network in two phases, see Fig. 2. For two epochs, we had
used stochastic gradient descent (SGD) with Nesterov momentum [3] of 0.8,
learning rate of 0.01, and mini-batches of size 32. After this, the network was
fine-tuned for 4 epochs using SGD without momentum, learning rate of 0.01 and
mini-batches of size 128.

The loss function used was the categorical cross-entropy:

L(t, p) = −
∑

i

t[i]log(p[i]),

where t is one-hot vector specifying the true label and p is the probability pre-
dicted by the softmax. The categorical cross-entropy basically penalizes confident
(high p[i]) predictions that are wrong, and the resulting numerical outputs can
thus be interpreted as class membership confidence.

Network was trained for 6 epochs and in total, the learning took 2 days on
NVIDIA GeForce GTX 580 with 1.5 GB of memory. To design, test and train
the model, we have used the Keras deep-learning framework [4].

4 Experiments and Results

We have performed several experiments, the baseline being the prediction from
a single position. Additionally, we have investigated possibilities for aggregating
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Table 1. Summary of results. All accuracies reported are measured on testing data.
The last column reports percentage of examples where the correct label was within
top two classes. The last three rows show accuracies of aggregated predictions from a
single game. Label Augmented indicates that prediction was made from 8 symmetrical
board positions and averaged, instead of simply predicting from the position alone.
Label Cropped indicates that only predictions from move 30 on were taken.

Model Accuracy Accuracy (Top-2)

Single position 71.5 % 94.6 %

Single position (Augmented) 72.5 % 94.9 %

Aggregated per game, mode (Augmented) 76.8 % N/A

Aggregated per game, sum (Augmented) 77.1 % 96.4 %

Aggregated per game, sum (Augmented, Cropped) 77.7 % 96.7 %

Aggregated per game, sum (Augmented, Weighted) 77.9 % 96.8 %

multiple predictions. Finally, we investigated the dependency of accuracy on
move number. All the experiments are described in paragraphs below. The results
are summarized in Table 1.

Predictions from Single Position: Firstly, we measured the baseline accu-
racy of prediction for single positions, which is 71.5 % on testing data, the confu-
sion matrix can be seen in Fig. 1. We further improved this accuracy by a novel
trick. Since we train the network on augmented positions (8 symmetries), the
network should be roughly invariant under reflection and rotation. Therefore,
it makes sense to present the network with all 8 symmetrical copies of a sin-
gle position and average the resulting predictions. This improves the accuracy
by roughly 1 %. The intuition why this works is that the symmetrical positions
essentially form an ensemble, averaging out outliers.

Aggregating Predictions: Another interesting thing to study is how to
improve accuracy by aggregating multiple predictions. A natural way is to sum
up predictions from individual positions and then take the class with the max-
imal sum (accuracy of 77.1 %). Another possibility we have tried is to take the
most frequent (mode) class (accuracy of 76.8 %).

Accuracy by Move: Next, we investigated the dependence of accuracy on
the move number, as shown in Fig. 3. The results indicate that the accuracy is
bad at the beginning of the game, but improves rapidly afterwards. This is very
understandable, as the games of Go often have very similar opening sequences
(e.g. players usually start by playing into the corners). The figure also shows
size of data samples at each move, as different games have different lengths.
This also explains why the accuracy curve jumps near the end, this is caused by
the low number of samples. The figure naturally suggests a way to improve the
aggregation, and that is either to crop off moves at the beginning of the game
(improvement in accuracy of 0.6 %, see Table 1), or — better — to weight the
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Fig. 1. Normalized confusion matrix of predictions on testing data.
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Fig. 2. Evolution of Loss function during training. The P point marks the place where
the fine tuning phase of training was started, see Sect. 3.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  20  40  60  80  100  120  140  160  180  200  220  240  260  280  300  320
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Accuracy

A
cc

ur
ac

y

Sa
m

pl
e

Si
ze

at
M

ov
e

Sample Size

Move Number

Fig. 3. Dependency of accuracy on the move number (measured on validation set).
The dashed line shows sample size at given move in testing data — some games end
earlier than others.

predictions proportionally to their accuracy (improvement of 0.8 % in accuracy).
As this weighting can be considered hyper-parameter tuning, the weights (as well
as Fig. 3) were computed using the validation set.
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5 Conclusions and Future Work

In this work, we have proposed a novel methodology for information-efficient way
of predicting player strength using deep neural networks. In comparison with
other approaches, much less information is needed. This is naturally balanced
by a relatively coarse discretization of the target domain (strength is divided
into 3 classes).

The methodology will be experimentally deployed on Online Go Server, aim-
ing to improve convergence of the rating system. The precise way to incorporate
the predicted class into the rating system is yet to be determined. A general idea
on how to do this is to use the predicted classes as a prior for the underlying
rating model. As the number of games in the model increases, the importance
of the prior would naturally decrease.

The results hint that the performance of the network is touching the limit
given by the amount of information provided. A natural next step would be to
extend the system to use information from one whole game. Recurrent neural
networks could be the ideal tool for this; we plan to investigate this in the near
future.

Resources. To promote further research and to ease reproducibility of this
study, we have published the game records, datasets and the model file (including
the weights of the best network we have found). All the files can be found at [13].

The dataset processing was performed using our open-source toolkit, see [12].
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