Simulating Stochastic Dynamic Interactions
with Spatial Information and Flux

Ozan Kahramanogullar!-?

! Department of Mathematics, University of Trento, Trento, Italy
2 Centre for Computational and Systems Biology,
The Micrososft Research - University of Trento, Rovereto, Italy

Abstract. We present a conservative extension to rule based modeling
languages with constructs for component attributes and functions that
modify these attributes; the language has a stochastic semantics, and
it is equipped with flux analysis. We show that the constructs of this
language, called M, bring an ease especially in modeling biological sys-
tems, where spatial information is of essence. We discuss the language on
models from molecular biology such as membrane diffusion systems, and
actin polymerization networks, as well as models from ecology, where
spatial behavior of animals as in bird flocks and fish schools are studied.

1 Introduction

The recent advances in systems and synthetic biology are now giving rise to an
increased integration of modeling languages. The capabilities that these technolo-
gies offer make it possible to model, simulate and analyze biological phenomena
with the aim of complementing and accelerating the investigations in life sci-
ences. The compact constructs of such languages for expressing various phenom-
ena, as they are considered in different areas of biology, speed up the modeling
process. As a result, specialized domain-specific languages contribute to investi-
gations on a great variety of phenomena from molecular biology [1,5,10,15,16],
pharmacology [12], ecology [4,8,9], and others, e.g., [11].

Among many mathematical and computational formalisms used to model
biological systems, probably the most common representation schemes are those
that are based on chemical reaction networks (CRN). The formalism of CRN
is quite convenient as it finds deterministic and stochastic interpretations in
terms of simulations. While the deterministic simulations are easily performed as
numeric solutions of ordinary differential equation systems, the discrete stochas-
tic simulations, which we consider here, are commonly performed by resorting to
the Gillespie algorithm [6]. This algorithm and its many variations provide the
semantics for the rule based languages, commonly used in many systems biology
applications with results that provide insights to biological questions. In a nut
shell, the rule based languages such as BNG and Kappa [1,5,15] provide compact
representations for CRNs. This, in return, makes it possible for these languages
to express biological system models with only few rules, in contrast to many,
sometimes even infinite number of reactions of simple CRN representations.

© Springer International Publishing AG 2016
C. Martin-Vide et al. (Eds.): TPNC 2016, LNCS 10071, pp. 149-160, 2016.
DOI: 10.1007/978-3-319-49001-4_12

150 O. Kahramanogullar:

Here, we introduce a modeling language, called M, that extends some of the
more common notations that are in use in rule based languages with the gain of
an increased expressive power. M extends the constructs of the rule based lan-
guages with those for encoding attributes of model components and functions
that modify these attributes. These encodings become instrumental, for exam-
ple, for implementing spatial information and arbitrary constraints on model
dynamics that account for the encoded information. Our implementation of the
simulation engine conservatively extends the Gillespie algorithm to accommo-
date these features for the models that employ them. Moreover, the simulation
algorithm makes use of the analysis methods, introduced in [13], for quantifying
the stochastic fluxes due to the continuous time Markov chain semantics. The
constructs that we introduce bring an ease to the modeling and analysis of certain
phenomena that are more challenging in standard rule based languages. How-
ever, some of these constructs can be implemented by not-so-straight-forward
encodings in stochastic Pi-calculus, that is, SPiM [2,10,14,16].

In the following, we introduce the syntax and semantics of M, and discuss
its properties as a modeling language. We illustrate its features on a number
of example models with varying detail and structure of model components. In
particular, we present how simple CRN models and rule based models are accom-
modated, and how flux analysis can be easily applied to these models. We illus-
trate how geometric information can be encoded to capture classes of models
from biology and ecology such as those for protein diffusions on membranes,
and movements of animals as in bird flocks or fish schools. We show how the
geometric information can be used to render movies that reflect the emerging
geometric structures in molecular biology as in actin dynamics.!

2 Syntax

Each M model consists of a set of rules, a description of the initial state, and
a number of directives that specify the kind of data to be output at the end
of a simulation. These directives determine the data to be recorded besides the
time series resulting from the simulation. This is because simulations with these
models can generate different kinds of information such as the evolution of the
species in space with respect to their coordinates, stochastic fluxes at arbitrary
time intervals, or the evolution of other species parameters defined below.

The rules for the interactions are defined with the grammar in Fig. 1, where
the curly brackets denote the optional components. Here, Name, Species, z, y,
Z, V1, ..., Uk, Site, and Bond are strings. fy, f,, and f, as well as Rate and Exp
are functions with type float on any subset of all the variables in the rule. fy,
..., fx are also functions on any subset of the variables in the rule, however with
types Types, ..., Typek, respectively. If the Rate value is not given for a rule, it
is assigned a default value of 1.0. Sites is associative and commutative, so the
order of the Site expressions does not matter.

! Prototype modules that implement the language components are available for down-
load at our website. http://sites.google.com/site/ozankahramanogullari/M.

http://sites.google.com/site/ozankahramanogullari/M

Ll e

Simulating Stochastic Dynamic Interactions
{Name :} Reactants -> Products {with Rate} {if Condition} ;

Reactants ::= o | Reactant + --- + Reactant
Reactant ::= Species{ReactantArguments} | Reactant.Reactant

ReactantArguments ::= ({CoordinateVariables} ; {Variables} ; {Sites})

CoordinateVariables ::= c(z) | c(z,y) | c(z,y, 2)

Variables ::= vy : Typer,..., vg : Typex

Type = int | float | bool | string

Sites ::= Site{!Bond},..., Site{! Bond}

Products ::= o | Product + - -- + Product

Product ::= Species{ProductArguments} | Product.Product
ProductArguments ::= ({CoordinateFunctions}; {Functions} ; {Sites})
CoordinateFunctions ::=: cf(fy) | cf (fy,f,) | cf (fs,fy,f,;)

Functions ©:=:fy,...,

Condition ::= Atom |

not Condition | Condition && Condition | Condition or Condition

151

Atom ::= Exp > Exp | Exp >= Exp | Exp = Exp | Exp =< Exp | Exp < Exp

Fig. 1. The grammar that defines the rules of language M.

The definition of the rules above extends the standard definition of the chem-
ical reaction networks (CRN), and also rule based languages such as BNG [1],
Kappa [5], or others [15]. It is immediate that any chemical reaction of a
CRN can be written as a rule of the above form that does not involve any
CoordinateVariables, Variables, Sites or Condition expressions. Similarly, any BNG
rule can be mapped to a rule with Sites and Variables as defined above, and modi-
fications on complexes can be modeled by using the associative and commutative
‘. construct in Reactant and Product primitives. These permit a number of com-
mon modeling expressions, including BNG style rules; in particular, the following
are valid in language M:

Reactions (that create or destroy molecules), e.g., A+B -> C;
Rules for forming a bond, e.g., A(b) + B(a) -> A(b!0).B(a!0);
Rules for breaking a bond, e.g., A(b!0) .B(a!0) -> A(b) +B(a);
Rules for changing a component state, e.g., X(x) -> X(x+1);

Besides these expressions that are common to other modeling languages, the
definition above permits other constructs, in particular:

152 O. Kahramanogullar:

5. Variables and functions on species coordinates, and conditions on their inter-
actions, e.g., to model two species that exchange their locations if they are
less than 2 units apart from each other:

Alc(x,y)) +B(c(p,q)) -> Alc(p,q))+B(c(x,y)) if (x-p)2+(y-q)? < 4;

6. Other variables and functions on species, and conditions on their interactions
to model various attributes of species, e.g., to model state changes given as
modifications of arguments under specific conditions:

A(p,r) -> A(p*2,"very-high") if p > 10 && r = "high";

In any model, these constructs can be combined and used together to express
arbitrarily complex phenomena including conditional complexation and decom-
plexation, and positioning in space with respect to species interactions.

The initial state at the beginning of a simulation is defined by the grammar
below, which is used to describe the species that are present at time zero.

Quantity InitialSpecies ;

InitialSpecies ::= Species{SpeciesArguments} | InitialSpecies.|nitialSpecies
SpeciesArguments ::= ({Coordinates}; {Constants}; {Sites})
Coordinates ::= c(c) | clcx,cy) | clex,cy,Cp)
Constants ::= c1,...,¢C
Here, Quantity is an integer. ¢, ¢y, and ¢, are real numbers. ci,...,ck are con-

stants with types that agree with those in reactant and product definitions in
the rules. These constructs are used to specify the state of the system at time
zero, which is then modified by the rules at each simulation step.

The modifications performed by the rules are recorded in a number of log
files as state updates according to the directives of the model. Each of these log
files contain various aspects of the simulation trace, including the time series of
the model species. These directives are given by the following grammar:

{directive time-series OutputSpecies , ...,OutputSpecies;}

OutputSpecies ::= Species{OutputArguments} | OutputSpecies - OutputSpecies
OutputArguments ::= ({OutputCoordinates}; {OutputParameters}; {Sites})
OutputCoordinates ::= c(t) | c(tc,ty) | c(tc,ty,t;)

OutputParameters ::= ty,...,t

{directive coordinates;}
directive parameters;
P

{directive flux;}

Here, t,, ty, and t, vary over real numbers and variables. ti,...,tx vary over
constants and variables with types that agree with those in reactant and product

Simulating Stochastic Dynamic Interactions 153

definitions in the rules. These constructs are used to specify the species and
complexes, the time-series of which are recorded. If a coordinate or parameter is
specified with a variable instead of a constant, then all the species that match
that expression are counted. The instructions ‘directive coordinates’ and
‘directive parameters’, respectively, write to separate files the modifications
on species coordinates and species parameters by individual rule instances. This
way, for example, the movement of species in space as a result of the stochastic
simulation dynamics can be plotted as a movie. If ‘directive flux’ is included
in the model, then the initial state and the rules will be annotated off-line by
the preprocessing engine with respect to the algorithm described in [13]. In
this respect, the monitoring of the stochastic fluxes during simulation does not
require any syntactic notation in the modeling language. The flux information
is then written to a separate file.

Given a model with the syntax above, the pre-processing engine performs a
number of syntactic checks on the input model. These are as follows.

1. All the occurrences of the same species in different rules and initial conditions
agree with each other in terms of their arguments, their arity and their types.
For example, for a species A, the language does not permit two occurrences
with A(1.0,"free") and A("free",1.0), as one of them has a parameter
with type float as the first argument and the other with type string.

2. All the occurrences of all the species in different rules and initial conditions
agree with each other in terms of the arity of their coordinates. For example,
given two species A and B, the language does not permit two occurrences with
A(c(1.0)) and B(c(3.0,1.0)), as one of them has a coordinate with one
dimension whereas the other has two dimensions. However, species without
any coordinate parameter are permitted in the presence of others with coor-
dinates. These coordinate-free species are then to be interpreted as ”freely
diffusing”. (However, as it is explained below, the coordinate parameters do
not have any effect on the simulation dynamics, unless they are specified to
affect it by means of conditions or rate functions.)

3. Any Bond expression is permitted to occur at maximum two Site expressions
in any Reactants, Products, or Species expression.

4. The variable occurrences in any Reactant expression is a superset of those in
the Product, Rate and Condition expression of the same rule.

5. The Species expressions in the initial conditions are subset of those that occur
in the Reactants and Products expressions.

3 Semantics and Implementation

The models of language M that do not include any species parameters are CRN
models. Thus, it is immediate that the continuous time Markov chain (CTMC)
interpretation of CRNs, given by the Gillespie algorithm [6], provides a semantics
for simulations with these models. Similarly, rule-based models are implemented
by resorting to the CTMC semantics; this is done by generating the chemical
reactions from the rules at every state when they become applicable. This way,

154 O. Kahramanogullar:

a rule based model can be used to simulate a system that would potentially
require an infinite number of reactions as a simple CRN. Examples to such
models include polymerization models [2,3].

The semantics of language M extends the CTMC semantics of the rule based
languages to those models that include species coordinates and other parameters
and functions that operate on these parameters under given conditions. This is
done by considering any two species or any two complexes distinct if they differ
in terms of any of their parameters. As a result of this, species and complexes
at any state of the simulation that are modified by the rules are grouped with
respect to their bonds as in rule based models, and also with respect to their
parameters. For identifying and comparing the individual species and complexes,
we employ a canonical form for the complexes given by the ‘.” construct. Because
any syntactic expression A.B or B.A refer to the same complex, imposing a pre-
defined lexicographic order on these entities provides a canonical form.

Following the standard CTMC semantics of the CRN with respect to the
Gillespie algorithm, the propensity of each rule is computed in the usual way,
whereby the rate of the rule is multiplied by the number n of possible combi-
nations in the current state that match the Reactants. If a rule has a Condition,
only those matches that satisfy the Condition are considered; as the number of
such combinations is m < n, the propensity is computed by using m instead
of n. Then, as the rule to be applied is selected by the standard procedure of the
Gillespie algorithm, an instance of Reactants is randomly picked from m com-
binations, and the rule is applied to this instance. Although this procedure is
linear-time, considering the individual differences of the species with respect to
their parameters introduces an overhead to the simulation, which can be avoided
for the models that do not involve parameters such as pure CRN models. This is
done by inspecting the model automatically with respect to the constructs that
it employs, and by automatically simplifying the data structures and procedures
according to the level of complexity introduced by these constructs.

According to the algorithm in [13], the fluxes are computed by labeling each
species with a unique id, which is a natural number assigned to each species
during the creation of that species. If the flux directive is set in the model
description, the simulation engine performs this labeling to produce the simula-
tion trajectory with respect to the definitions in [13]. Fluxes are collected during
the simulation in terms of the flow of species between rules. The flux algorithm
conservatively extends the Gillespie algorithm, and thereby constructs several
data structures, which reveal a variety of statistics about resource creation and
consumption during the simulation. This information is logged into a file to be
used to quantify the causal interdependence and relative importance of the reac-
tions at arbitrary time intervals. As it is the case for complexes and parameters
of species, computation of fluxes introduces a computational overhead due to
the tracking of individuals. However, this overhead becomes relevant only if the
fluxes are being monitored during simulation.

Simulating Stochastic Dynamic Interactions 155

1: A + B -> B + B; 1200
2: C+ A -> A+ A; 1000
3: B+ C ->C + C; 800

600
900 A; 500 B; 100 C; 400
directive time-series e
A, B, C;

Fig. 2. M implementation of a CRN that models an oscillator, and a time-series of it.

4 Example Models

In the following, we present a number of models with varying expressivity to
illustrate the constructs above in use. While the individual models are valid in
isolation, the concepts they use can be combined for incrementally richer models.

Simple CRNs and Rule Based (BNG-Style) Models

CRN models as in [12] are implemented with the common notation. For a simple
example, consider the oscillator model in M, depicted in Fig. 2 together with a
time-series plot. Here, the rates are set to 1.0 by default.

EGFR Y1045
Y1 068
extracellular Y 1086 \

Y1045
br1oss| : Y1068E Q e
{Ymss L} Y1086 M
Y1086
EGFR)G’DQ \Y1045 /
Y oo Y1068

intracellular Y1086

Fig. 3. Schematic EGFR model. EGFR forms a dimer with another EGFR, and thereby
facilitates the binding of its ligand EGF. The ligand bound EGFR has a higher phos-
phorylation affinity of its tyrosin residues. The phosphorylated residues then become
binding sites for other proteins. The phosphorylated sites Y1068 or Y1086 become
available for the binding of the protein Grb2, whereas phosphorylated Y1045 is a bind-
ing site for Cbl. Cbl and Grb2 bind each other, independent from their binding to
EGFR.

Let us now consider a more complex model that would require hundreds of
reactions as a CRN model, however can be modeled with few rules in M as in
other rule based languages. We consider the Epidermal Growth Factor Receptor

156 O. Kahramanogullar:

1: EGFR(egfr) + EGFR(egfr) -> EGFR(egfr'!a).EGFR(egfr!a);
2: EGFR(1,egfr!b) + EGF(r) -> EGFR(1l!a,egfr!b) .EGF(r'a);

3: EGFR(p1,p2;1la) -> EGFR(p1+1,p2;1la) if pl = 0;
4: EGFR(p1,p2;1'a) -> EGFR(p1,p2+1;1!a) if p2 < 2;

5: EGFR(p1,p2;y45) + Cbl(egfr) ->
EGFR(pl,p2;y45!a) .Cbl(egfr'a) if pl = 1;
6: EGFR(pl,p2;y680r86) + Grb2(egfr) ->
EGFR(p1,p2;y680r86!a) .Grb2(egfr!a) if p2 > 0;
7: Grb2(c) + Cbl(g) -> Grb2(c'a).Cbl(g'!a);

100 EGFR(0,0;egfr,1,y45,y680r86); 100 EGF(r);
60 Cbl(egfr,g); 10 Grb2(egfr,c);

directive time-series EGFR(pl,p2;egfr'!a,l!b,y45!c,y680r86!d).
EGFR(p1,p2;egfr'a,l!f,y45!g,y680r86!h) ;

Fig. 4. A model that implements the dynamics depicted in Fig. 3.

(EGFR), as depicted in Fig.3. In the model in Fig.4, for simplicity we use
default rates, which can be easily replaced with the actual kinetic rates by using
the ‘with Rate’ construct. We also omit the reverse rules for simplicity. Here,
Rule 1 states that two EGFR form a dimer, no matter what the state of their
other binding sites are. Rule 2 states that an EGFR binds to its ligand if it is part
of a dimer. Rule 3 states that Y1045 on EGFR (pl) gets phosphorylated if it is
not already phosphorylated. Rule 4 states that one of Y1068 or Y1086 on EGFR
(p2) gets phosphorylated if both of them are not already phosphorylated. Rule
5 states that EGFR binds to Cbl if the Y1045 on EGFR (pl) is phosphorylated.
Rule 6 states that EGFR binds to Grb2 if at least one of Y1068 or Y1086 on
EGFR (p2) is phosphorylated. Rule 7 states that Cbl and Grb2 bind, no matter
what the state of their other binding sites are.

Stochastic Flux Analysis

Thanks to the automatic annotation of the model species, if ‘directive flux’
is included in the model, flux information is automatically generated and written
in a separate file with respect to the algorithm in [13]. For example, the oscillator
model in Fig. 2 produces the fluxes depicted in Fig. 5 at three distinct non-steady-
state intervals, denoted within the square brackets, where respectively A, B and
C increase. Here the fluxes quantify the amount of resources that flow between
the reactions within these intervals.

Models with Space and Geometric Information

The constructs of language M permit the definition of the dynamic behavior
of the species to depend on the geometric state or the spatial constraints. In

Simulating Stochastic Dynamic Interactions 157

A,
A 260 B 224 C 310

31
A, 1430 B, 1352 C, 1420
'B,884 C,894
C,1430 A,1352 B,1420 Sl

C 884 U,OQA 0& 1089

[0.0224, 0.0274] F[0.0160, 0.0208) F[0.0187, 0.0242]

Fig. 5. Flux configurations of the simulation with the oscillator network depicted in
Fig. 2, for different time intervals, where the species A, B and C increase.

this setting, species can alter their position in space with respect to arbitrary
functions defined on their parameters or the parameters of the species they
interact with. For a simple example, we consider a class of models that are
commonly used, for example, to study the behavior of diffusing proteins on
membranes [7]. A diffusion model on a two dimensional grid, where a particle
moves either north or east, is given by the two rules below.

move_x: A(c(x,y)) -> A(c(x+1l,y)); move_y: A(c(x,y)) -> A(c(x,y+1));
1 A(c(0,0)); directive coordinates;

Another class of models that we consider here as an example is individual
based models in ecology [4] that are used for simulating the spatial behavior of
animals in groups as in fish schools or bird flocks. The birds in a migrating flock of
birds, for instance, adjust their distances with their neighbors by synchronizing
on few simple rules [8,9,17]. This gives rise to the emergent behavior known as
flocking. Although there are much more refined characterizations, the most basic
form of flocking behavior is modeled by three simple principles:

1. Separation, that is, avoid crowding neighbors.
2. Alignment, that is, steer towards average heading of neighbors.
3. Cohesion, steer towards average position of neighbors.

The constructs of M permit describing these principles as model rules with arbi-
trary level of detail or precision. To illustrate this, let us take a simpler setting
on the two-dimensional plane, whereby all the birds move in the same direction
along the x-axis, and each bird synchronizes with its neighbors. Among other
rules that describe the movement of the birds, the rules below provide a simple
implementation of these three principles. However, models with arbitrary detail
can be similarly accommodated as well as rules with greater control.

separation_1: B(c(x,y)) + B(c(p,q)) -> B(c(x,y+0.1)) + B(c(p,q-0.1))
ify>qé&&y-q<1;

separation_2: B(c(x,y)) + B(c(p,q)) -> B(c(x,y-0.1)) + B(c(p,q+0.1))
if y<qé&& q-y<1;

alignment_1: B(c(x,y)) + B(c(p,q)) -> B(c(x+0.1,y)) + B(c(p,q))

if x<p&&p-x>1;
alignment_2: B(c(x,y)) + B(c(p,q)) -> B(c(x,y)) + B(c(p+0.1,q))

158 O. Kahramanogullar:

ifx>p&&x-p>1;
cohesion_1: B(c(x,y)) + B(c(p,q)) -> B(c(x,y-0.1)) + B(c(p,q+0.1))
ify>qé&&y-q>2;
cohesion_2: B(c(x,y)) + B(c(p,q)) —-> B(c(x,y+0.1)) + B(c(p,q-0.1))
if y<qé& q-y > 2;

Another class of models that are more than challenging for simple CRNs is
polymerization models as these models would require an infinite number of CRN
reactions to capture unbounded polymerization [3]. The situation gets even more
complicated when the polymers have rich structures as it is the case for actin
[2], where each monomer in a polymer can have a number of states depending
on being bound to ADP, ADP-P; or ATP or other actin binding proteins. The
following M model illustrates how polymerization can be modeled by two rules.

1: AQl,r) + AQl,r) -> A(c(0);1,r'a).A(c(1);1'a,r);
2: A(c(x);1lta,r) + A(L,r) > A(c(x);1l'a,r'b).A(c(x+1);1!b,1);

1000 A(1l,r); directive time-series A(l'a,r!'b); directive coordinates;

Here, Rule 1 states that two free monomers bind to form a dimer, and Rule
2 states that a free monomer binds to the right-end of a filament, and thereby
becomes the new end-most monomer of the filament. The important point to
observe in this model is how the coordinate information is updated, that is, each
free monomer gets a coordinate information when it binds to an existing fila-
ment. This concept, which is here illustrated for one dimensional space, can be
easily generalized for models in two or three dimensions. In particular, the images
depicted in Fig. 7 are obtained from the screen shots of movies generated by sto-
chastic simulation on actin polymerization models by applying theses ideas [2].2
These models are constructed by encoding the geometric information as coordi-
nate parameters and the dynamics as functions that alter this information.

The actin filaments in Fig. 6 are polymers of monomers that grow along an
axis [2,14]. As in the polymer model implementation above, the free actin do
not have coordinate parameters, because they are assumed to be free in the
cytosol. However, all the bound actin monomers are equipped with a coordinate

Af Af e Af Af Af
Al ar) (a a) ., (m (a) (a ar) (an) Ar

Ab m Ab Ab (ab) Ab

Fig. 6. Graphical representation of the formation of a polymer, consisting of three
monomers, that is, a trimer. Af denotes the monomer that is freely diffusing, whereas
Al and Ar, respectively, denote the monomers that are bound on the left and bound on
the right to other monomers. Ab denotes a monomer that is bound to other monomers
on both sides. The trimer then consists of the chain of Ar, Ab, and Al

2 https://www.youtube.com/watch?v=38KC{SnHQz0.

https://www.youtube.com/watch?v=38KCf8nHQz0

Simulating Stochastic Dynamic Interactions 159

Sooq
w
*00g,, { . so®
%o] .
o, oo?
o "o Gl
*eves, oo, o~ 0o
e, Cd
° ‘§ iﬂ :n 0"‘......
el el o»
/ td
o*
... L

Fig. 7. Example screen shots captured from the movies generated by stochastic simu-
lations with actin models that contain encodings of geometric information. The image
on the left is from a 2D simulation where the filaments branch, however they do not
rotate along the growth axis. The image on the right is obtained from a model that
contains the 3D encoding of the branching as well as the helical rotations.

parameter. When a free monomer binds to a filament, the free monomer evolves
to a bound state, while receiving the coordinate information from the filament
that it binds to. When branching filaments are considered, we adopt this idea
to include the rotation of the filaments with respect to the axis of growth. This
is because the angle between a mother actin filament and a daughter filament
is measured as 70 degrees. Moreover, actin filaments have a helical shape with
a rotating structure, repeating every 13 subunits. In order to model these rota-
tions, we equip each rule with a function that implements a rotation matrix
on the coordinates with respect to the growth vector of its filament axis. In
this setting, due to the inclusion of ‘directive coordinates’, as the simula-
tion evolves simulation steps are recorded in a separate file with respect to the
emerging coordinate dynamics. This information is then used, for example, to
render movies that reflect the dynamics emerging from the species interactions.

5 Discussion

We have introduced a modeling language that extends common rule based lan-
guages with constructs for encoding species attributes, and functions that modify
them, as well as features for stochastic flux analysis. The example models above
should provide a flavor of the possible applications that make use of spatial
information as well as flux analysis.

For the models that makes use of all the constructs of language M, the simu-
lation algorithm results in reduction in efficiency in comparison to, for example,
pure CRN models. This overhead is due to the increase in the information mon-
itored and modified within the data structures during simulation. However, our
design of the simulation algorithm inspects the constructs that are used in the
model, and enables certain data structures only if they are required for the model

160 O. Kahramanogullar:

in use. In this respect, ‘pure’ models that do not exploit M features can be easily
exported to other platforms that provide the fastest algorithm for the task.

Future work includes the implementation of a modeling platform that inte-
grates all the components of M, and incrementally extends it with various
dynamic and static analysis methods available in the literature.

References

1. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20, 3289-3292 (2004)

2. Cardelli, L., Caron, E., Gardner, P., Kahramanogullari, O., Phillips, A.: A process
model of actin polymerisation. In: FBTC 2008, vol. 229. ENTCS, pp. 127-144.
Elsevier (2008)

3. Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Hori-
moto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS,
vol. 5147, pp. 65-80. Springer, Heidelberg (2008). d0i:10.1007/978-3-540-85101-1_6

4. DeAngelis, D.L., Gross, L.J.: Individual-based Models and Approaches in Ecology.
Chapman and Hall, New York (1992)

5. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. PNAS 106(16), 6453-6458 (2008)

6. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phy.
Chem. 81, 2340-2361 (1977)

7. Gurry, T., Kahramanogullari, O., Endres, R.: Biophysical mechanism for ras-
nanocluster formation and signaling in plasma membrane. PLoS One. 4(7), 6148

2009

8. éleme)lrijk, C.K., Hildenbrandt, H.: Some causes of the variable shape of flocks of
birds. PLoS One. 6(8), €22479 (2011)

9. Hildenbrandt, H., Carere, C., Hemelrijk, C.K.: Self-organized aerial displays of
thousands of starlings: a model. Behav. Ecol. 21(6), 1349-1359 (2010)

10. Kahramanogullari, O., Cardelli, L.: An intuitive modelling interface for systems
biology. Int. J. Softw. Inf. 7(4), 655-674 (2013)

11. Kahramanogullari, O., Cardelli, L.: Gener: a minimal programming module for
chemical controllers based on DNA strand displacement. Bioinformatics (2015)

12. Kahramanogullari, O., Morpurgo, D., Fantaccini, G., Lecca, P., Priami, C.: Algo-
rithmic modeling quantifies the complementary contribution of metabolic inhibi-
tions to gemcitabine efficacy. PLoS One. 7(12), e50176 (2012)

13. Kahramanogullari, O., Lynch, J.: Stochastic flux analysis of chemical reaction net-
works. BMC Systems Biol. 7(133) (2013)

14. Kahramanogullari, O., Phillips, A., Vaggi, F., Process modeling, rendering of bio-
chemical structures: actin. In: Lecca, P. (ed.) Biomechanics of Cells and Tissues:
Experiments, Models and Simulations, vol. 9. LNCVB, pp. 45-63. Springer, Nether-
lands (2013)

15. Ollivier, J.F., Shahrezaei, V., Swain, P.S.: Scalable rule-based modelling of
allosteric proteins and biochemical networks. PLoS Comput. Biol. 6(11), €1000975

2010

16. %’hillil))s, A., Cardelli, L.: Efficient, Correct Simulation of Biological Processes in the
Stochastic Pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS, vol.
4695, pp. 184-199. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75140-3-13

17. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM
SIGGRAPH Comput. Graph., pp. 25-34 (1987)

http://dx.doi.org/10.1007/978-3-540-85101-1_6
http://dx.doi.org/10.1007/978-3-540-75140-3_13

	Simulating Stochastic Dynamic Interactions with Spatial Information and Flux
	1 Introduction
	2 Syntax
	3 Semantics and Implementation
	4 Example Models
	5 Discussion
	References

