
Natural and Efficient Subtraction Operation
in Carry Value Transformation (CVT)-Exclusive

OR (XOR) Paradigm

Jayanta Kumar Das1(B), Pabitra Pal Choudhury1(B), and Ayesha Arora2

1 Applied Statistics Unit, Indian Statistical Institute,
203 B. T. Road, Kolkata 700108, India

dasjayantakumar89@gmail.com, pabitrapalchoudhury@gmail.com
2 Mathematics and Computing Department, Birla Institute of Technology, Mesra,

Ranchi 835215, Jharkhand, India
ayeshaarora012@gmail.com

Abstract. Carry value transformation (CVT) and Exclusive OR (XOR)
operations on two non-negative integers have been defined previously in
several articles. In this paper, the definition of CVT and XOR operations
are extended from non-negative integer to integer domain. Thereafter
various cases of integer pairs towards their convergence behaviour are
thoroughly discussed. Our analyses through the convergence behavior of
integer pairs are easily directed to capture the natural subtraction opera-
tion in this paradigm by representing negative integer in 2’s complement
form. The average time complexity of the addition/subtraction opera-
tion is seen to be highly competitive in any bulk computation in real
life scenario. In other words, in the event of bulk addition/subtraction
operation to be performed, the average time complexity is seen to be
highly efficient.

Keywords: CVT-XOR operations · Subtraction · Convergence behav-
iour · Complexity

1 Introduction

For modern digital computer, faster Arithmetic Logic Unit (ALU) circuit design
is essential where portable computers have become as small as the size of palm
limitation. This had been possible over the decades due to the revolution that
took place in the area of Very Large Scale Integration (VLSI) design.

Various circuits are designed for the purpose of arithmetic computation
towards some specific directions such as fast binary adder with conditional carry
generator [1], carry save adder [2], self-time carry look ahead adder [3], a span-
ning tree carry look-ahead adder [4], low voltage full adder [5], recursive mech-
anism on a parallel self-time adder [6], fast two’s complement VLSI adder [7]
etc. Further, Quantum dot Cellular Automata (QCA) which is the transistor

c© Springer International Publishing AG 2016
C. Mart́ın-Vide et al. (Eds.): TPNC 2016, LNCS 10071, pp. 125–136, 2016.
DOI: 10.1007/978-3-319-49001-4 10

126 J.K. Das et al.

less computational model and is expected to provide high density nanotech-
nology implementations of various Complementary Metal Oxide Semiconductor
(CMOS) circuits are found in [8]. Also some theoretical studies are done in [9]
for the arithmetic addition and subtraction functions of logarithmic number sys-
tem. But all the designed circuits are combinational in nature and complexity
is dependent on the use of number of logic gates and associated delays. Integral
Value Transformation (IVT) is designed in 2009 [10] in discrete field of mathe-
matics which operates on strings of any base. Also, Carry Value Transformation
(CVT) which is a special case of IVT and Exclusive OR (XOR) are the two most
important transformations operating on bits of strings, recently found many of
their applications [11–15]. CVT and XOR transformations have been observed to
provide addition of two positive integers for any base of number system [12,13].

For the large scale cellular automata (CA) experiments, Cellular Automata
Machines (CAMs) become very special compared to any kind of computing
machine [16]. The first version of CAM machine is CAM-6 which is produced
commercially 20 years back and various CAMs are now available for all the
research communities. In CVT-XOR paradigm, CAM is used for the addition
of two non-negative integers where internal circuit is designed using AND and
XOR gates with carry bit shifting logic. It has been easily seen from the theory
of CVT-XOR convergence behavior that CVT-XOR using CAMs can perform
better than any other circuit. This is because the CAM used here operates on
clock cycle only (without any gate delays) [14]. Along with this multi number
CVT-XOR theory is developed and proposed to offer a parallel model for multi
number addition using CAM which can be implemented for VLSI design [13]. As
hardware complexity for addition or subtraction is same, it is highly needed for
the extension of CVT-XOR operations over the integer domain including both
positive and negative integers. This is the main agenda of this paper.

The addition of two non-negative integers (Say X and Y) is exactly equal to
their CVT and XOR operations sum i.e. X + Y = CVT (X, Y) + XOR (X, Y).
And using CVT and XOR operations in recursive manner the maximum number
of steps to get CVT = 0 is n+1 where n = MAX (X, Y) number of bits in
binary [12]. So in CVT-XOR paradigm, we have to check/concentrate on CVT
part which is to be zero to get for both the addition or subtraction result on
XOR part. Therefore understanding the dynamics of integer pair with regards to
convergence behaviour is an important task in this regard. And the convergence
behavior of integer pair is interdependent on bits representing the integer pair.

For example (Fig. 1), let there be a positive integer N = 14. There are 15
integer pairs as (X, Y) whose pair sum is 14 = (X + Y). Now in this paradigm
we can easily visualize the nature-inspired tree data structure. If we draw the
CVT-XOR convergence tree [17] whose nodes are represented by integer pairs
where first part is CVT value and second part is XOR value and root is with
CVT = 0 and XOR = X + Y. As can be seen from the following figure, among
the 15 integer pairs, seven integer pairs are ((10, 4), (12, 2), (4, 10), (8, 6), (14,
0), (6, 8), (2, 12)) which take one iteration to get CVT = 0 and similarly seven
integer pairs are ((7, 7)..., (1, 13)) which take two iterations to get CVT=0 and

Natural and Efficient Subtraction Operation in CVT-XOR Paradigm 127

Fig. 1. Nature inspired tree data structure for the non-negative integer 14 and pairs
(whose sum is 14) are converging towards (0, 14).

for one integer pair (0, 14) is taking zero iteration. Clearly, it can be seen that
the integer 14 is with binary 4 bits and all the integer pairs involving 14 get at
least one 4 bits number except the pair (7, 7) which needs 3 bits. So we are able
to get sum on XOR part most of the cases in lesser number of iterations.

The paper is organized as follows: Sect. 2 discusses the modified definition
of CVT and XOR operations. In Sect. 3, various cases of CVT-XOR proper-
ties towards their convergence behaviour to capture the subtraction operation
are proposed. Section 4 deals with the complexity and performance analysis of
subtraction operation. Lastly, Sect. 5 concludes the paper.

2 Modified Definition of CVT and XOR Operations
for Integer Domain

Let A and B are two integers and their signed binary representation be A =
asan...a1 and B = bsbn...b1 respectively where as and bs are the two sign bits in
Most Significant Bit (MSB) position. The CVT of A and B is as∧bsan∧bn...a1∧
b10 and XOR of A and B is as

⊕
bsan

⊕
bn...a1

⊕
b1. It is to be noted that ith

column bits of two integers with ANDing operation is saved in (i+ 1)th column
for CVT calculation with 0 padded in Least Significant Bit (LSB) position. In
this binary notation the negative integer is always represented in 2’s complement
form. Now three cases can happen for sign bits of two integers: (i) if as = bs =
1, then CVT is negative and obviously XOR is positive, (ii) if sign bits are
complement to each other i.e. as = 1 and bs = 0 or as = 0 and bs = 1, then
CVT is positive and XOR is negative and (iii) if as = bs = 0, then both the
CVT and XOR are positive.

128 J.K. Das et al.

Illustration 1: An example is shown in Table 1 taking one negative number
A = −6 (1010) and one positive number B = 12 (1100) and one extra bit (MSB)
considering for sign bit. All the most significant bits are the sign bits respectively.
The CVT of above two numbers is +16 and XOR is −10. Therefore, with regards
to the additive property of CVT and XOR operations [12], here 12 − 6 = 6 is equal
to 16 − 10 = 6.

Table 1. CVT and XOR operations for one negative integer (−6) and one positive
integer (12).

Operation Binary Decimal

CVT 0 1 0 0 0 0 16

1 1 0 1 0 −6

0 1 1 0 0 12

XOR 1 0 1 1 0 −10

3 Convergence Behaviour of CVT and XOR Operations
for Various Cases of Integer Pairs

Previously in [12] for any two non-negative integers A and B, A + B =
CV T (A,B) + XOR(A,B) and maximum number of iterations leading to
CVT = 0 or XOR = 0 is n + 1 are proved where n is the number of significant
bits of bigger number. Here we are dealing with integer domain and observe
different cases of CVT and XOR operations targeted mainly for capturing sub-
traction operation. The convergence behavior of different cases of integer pairs
are shown in different figures where CVT and XOR values are considered as x
and y coordinates respectively. We start with any (CVT, XOR) integer pair as
initial quadrant in the figure and traversing into the next (CVT, XOR) inte-
ger pair after calculating and so on serially one after another until CVT value
becomes 0. Thus the final result of addition/subtraction can be found on the y
axis except the non-converging case of CVT-XOR operations.

3.1 Both the Integers A and B Are Positive

Various properties are already discussed and some of them are in the form of
important theorems [11–13].

3.2 Both the Integers A and B Are Negative

Lemma 1. CVT and XOR will be negative and positive respectively after the
first iteration, but from the second iteration onwards, CVT will always be positive
and XOR will always be negative.

Natural and Efficient Subtraction Operation in CVT-XOR Paradigm 129

Proof: Let A = asan...a1 and B = bsbn...b1 be the signed binary representation
where the MSB are as and bs. As A and B are negative integers therefore as =
bs = 1. So CVT of two negative integers is negative and XOR is positive after
the first iteration. But from the second iteration onwards MSB is always 0 for
CVT and 1 for XOR operation, so XOR will always be negative and CVT will
always be positive and this would continue.

Illustration 2: Convergence behavior of three (negative, negative) integer pairs
are shown in Fig. 2 using state transition diagram: (a)(−14,−14) → (−28, 0) →
(0,−28), (b)(−1,−6) → (−12, 5) → (8,−15) → (0,−7), and (c)(−3,−11) →
(−22, 8) → (16,−30) → (0,−14). CVT patterns for all negative-negative integer
pairs (0, 0), (0, −1)...(−16, −16) are shown in Table 2 where from −1 to −16
with regards to rows and columns, a beautiful pattern is conserved having exactly
same 1st, 3rd and 4th quadrants.

−32−30−28−26−24−22−20−18−16−14−12−10−8−6−4−2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

−32
−30
−28
−26
−24
−22
−20
−18
−16
−14
−12
−10
−8
−6
−4
−2

2
4
6
8

10
12
14
16

(−14,−14)

(−28, 0)

(0,−28)

(−1,−6)

(−12, 5)

(8,−15)

(0
,−

7)

(−3,−11)

(−22, 8)

(16,−30)

(0,−14)

x

y

Fig. 2. State transition diagram of three integer pairs: (a) (−14, −14), (b) (−1, −6),
and (c) (−3, −11).

Lemma 2. For any two negative integers A and B, |CV T (A,B)| ≥ |CV T (A,A)|
where |A| ≥ |B|.
Proof: Let A = asan...a1 and B = bsbn...b1 be the signed binary representation
where |A| ≥ |B|. As MSB is 1 for both the integers, therefore MSB of both CVT
(A, B) and CVT (A, A) are 1. Hence the result can be seen very easily.

Illustration 3: CVT(−3, −2) = CVT(101, 110) = 1000 which is −8 and
CVT(−3, −3) = CVT(101, 101) = 1010 which is −6.

Lemma 3. |CV T (A,B)| ≥ [MAX(|A|, |B|) × 2].

130 J.K. Das et al.

Table 2. CVT pattern for negative-negative integer pairs.

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 −2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22 −24 −26 −28 −30 −32

−2 0 −4 −4 −8 −8 −12 −12 −16 −16 −20 −20 −24 −24 −28 −28 −32 −32

−3 0 −6 −8 −6 −8 −14 −16 −14 −16 −22 −24 −22 −24 −30 −32 −30 −32

−4 0 −8 −8 −8 −8 −16 −16 −16 −16 −24 −24 −24 −24 −32 −32 −32 −32

−5 0 −10 −12 −14 −16 −10 −12 −14 −16 −26 −28 −30 −32 −26 −28 −30 −32

−6 0 −12 −12 −16 −16 −12 −12 −16 −16 −28 −28 −32 −32 −28 −28 −32 −32

−7 0 −14 −16 −14 −16 −14 −16 −14 −16 −30 −32 −30 −32 −30 −32 −30 −32

−8 0 −16 −16 −16 −16 −16 −16 −16 −16 −32 −32 −32 −32 −32 −32 −32 −32

−9 0 −18 −20 −22 −24 −26 −28 −30 −32 −18 −20 −22 −24 −26 −28 −30 −32

−10 0 −20 −20 −24 −24 −28 −28 −32 −32 −20 −20 −24 −24 −28 −28 −32 −32

−11 0 −22 −24 −22 −24 −30 −32 −30 −32 −22 −24 −22 −24 −30 −32 −30 −32

−12 0 −24 −24 −24 −24 −32 −32 −32 −32 −24 −24 −24 −24 −32 −32 −32 −32

−13 0 −26 −28 −30 −32 −26 −28 −30 −32 −26 −28 −30 −32 −26 −28 −30 −32

−14 0 −28 −28 −32 −32 −28 −28 −32 −32 −28 −28 −32 −32 −28 −28 −32 −32

−15 0 −30 −32 −30 −32 −30 −32 −30 −32 −30 −32 −30 −32 −30 −32 −30 −32

−16 0 −32 −32 −32 −32 −32 −32 −32 −32 −32 −32 −32 −32 −32 −32 −32 −32

Proof: CV T (A,A) = as ∧ asan ∧ an...a1 ∧ a1 = asan...a10. The place val-
ues of CV T (ai, ai) is 2 times the place values of sign binary bits of A i.e.
CV T (A,A) = |2 × A|. Now CV T (A,B) ≥ CV T (A,A) for any |A| ≥ |B|
(Lemma 2). So |CV T (A,B)| ≥ [MAX(|A|, |B|) × 2].

3.3 The Integer A is Negative and the Integer B is Positive

Property 1. CV T (A,B) ≤ 2 × B.

Examples: CV T (−1, 11) = 22, CV T (−4, 11) = 16 < 22, CV T (−7, 2) = 0 < 4.
When |A| > |B| i.e. the Magnitude of the Negative Integer is Bigger.

In this case CVT will always converge. For the proof, similar arguments can
be seen from [12].

Illustration 4: Convergence behavior of two integer pairs (one negative and
another positive) are shown in Fig. 3 using state transition diagram: (a)(−17,
11) → (22,−28) → (8,−14) → (0,−6), (b)(−1,−6) → (−12, 5) → (8,−15) →
(0,−7) and (c)(−9, 1) → (2,−10) → (4,−12) → (8,−16) → (0,−8). CVT pat-
terns for all negative-positive integer pairs (0, 0),(−1, 0)...(−16, 16) are shown in
Table 3. Here 2nd, 3rd and 4th quadrants are exactly same.

Lemma 4. If B = |A| − 1, then their CVT = 0 and XOR = −1.

Proof: The binary representation of A and B are complement to each other
when A is negative and B = |A| − 1. So their CVT becomes 0. As A + B =
CV T (A,B) + XOR(A,B) and their CVT is 0, XOR = −1.

For e.g. Let A = −3 (1 0 1) and B = 2 (0 1 0). We can observe that signed
binary representation of A and B are complement to each other. So clearly their
CVT will be 0 (0000) and XOR will be −1 (111).

Natural and Efficient Subtraction Operation in CVT-XOR Paradigm 131

Table 3. CVT pattern for negative-positive integer pairs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

−2 0 0 4 4 8 8 12 12 16 16 20 20 24 24 28 28 32

−3 0 2 0 2 8 10 8 10 16 18 16 18 24 26 24 26 32

−4 0 0 0 0 8 8 8 8 16 16 16 16 24 24 24 24 32

−5 0 2 4 6 0 2 4 6 16 18 20 22 16 18 20 22 32

−6 0 0 4 4 0 0 4 4 16 16 20 20 16 16 20 20 32

−7 0 2 0 2 0 2 0 2 16 18 16 18 16 18 16 18 32

−8 0 0 0 0 0 0 0 0 16 16 16 16 16 16 16 16 32

−9 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 32

−10 0 0 4 4 8 8 12 12 0 0 4 4 8 8 12 12 32

−11 0 2 0 2 8 10 8 10 0 2 0 2 8 10 8 10 32

−12 0 0 0 0 8 8 8 8 0 0 0 0 8 8 8 8 32

−13 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 32

−14 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4 4 32

−15 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 32

−16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

Lemma 5. XOR will never be 0.

Proof: Here A is negative and B is positive so their sign bits are 1 and 0
respectively and hence XOR (1, 0) = 1. Therefore, XOR will never be 0.
When |A| < |B| i.e. the Magnitude of the Negative Integer is Smaller.

Lemma 6. CVT will always increase and never converge to 0.

Proof: Let the signed binary representation of A = asan...a1 and B = bsbn...b1.
As A is negative and B is positive, as = 1 and bs = 0. So XOR(as, bs) = 1.
Here we are considering that |A| < |B|, so A + B > 0 =⇒ CV T + XOR > 0
(A + B = CV T (A,B) + XOR(A,B)). But XOR is negative, so CVT will be
positive which is greater than the XOR value. Therefore, CVT can never converge
to 0.

Illustration 5:Convergence behavior of two integer pairs (positive integer magni-
tude is bigger) are shown in Fig. 4 using state transition diagram: (a)(17,−11) →
(34,−28) → (64,−58)... (b)(2,−1) → (4,−3) → (8,−7) → (16,−15) →
(32,−31) → (64,−58)....

Lemma 7. XOR will never be 0.

Proof: Same as Lemma 5.

132 J.K. Das et al.

−32−30−28−26−24−22−20−18−16−14−12−10−8−6−4−2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

−32
−30
−28
−26
−24
−22
−20
−18
−16
−14
−12
−10
−8
−6
−4
−2

2
4
6
8

10
12
14
16

(−17, 11)

(22,−28)

(8,−14)

(0,−6)

(−8, 7)

(0,−1)
(−9, 1)

(2,−10)
(4,−12)

(8,−16)

(0,−8)

x

y

Fig. 3. State transition diagram of three integer pairs: (a) (−17, 11), (b) (−8, 7), and
(c) (−9, 1).

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(17,−11)

(34,−28)

(64,−58)

(2,−1)

(4,−3)
(8,−7)
(16,−15)

(32,−31)

(64,−63)

x
y

Fig. 4. State transition diagram of two integer pairs: (a) (17, −11) and (b) (2, −1).

When |A| = |B| i.e. the Magnitude of the Negative and Positive Inte-
ger is equal.

Lemma 8. CVT will never converge to 0.

Proof: We know that XOR is negative. Here |A| = |B|, so A + B = 0 =⇒
CV T + XOR = 0, but XOR is a negative integer, so CVT must be a positive
integer with magnitude = |XOR|. Therefore CVT will never converge to 0.

Lemma 9. In the first iteration (A, B) will be (2, −2) when |A| = |B| is an
odd integer.

Natural and Efficient Subtraction Operation in CVT-XOR Paradigm 133

Proof: For equal odd integers with opposite sign, their signed binary represen-
tation is complement to each other except their LSB. So their CVT is of the form
in binary 00...10 which is decimal 2 and XOR is of the form in binary 11...10
which is decimal −2.

It is to be noted that the convergence behaviour for |A| = |B| is same as
the previous case (Fig. 4). In all the cases it may be noted that a straight line
is found starting with any random integer pair that signifies the same addi-
tion/subtraction result happening on the same straight line and having the final
destination on the y axis.

4 Performance Analysis and General Circuit Diagram
for CVT-XOR Operations

We have seen that the negative-negative integer pair on successive CVT-XOR
operations is converging to CVT = 0. Therefore, result of addition/subtraction is
stored in XOR part as in [14]. Similar is the case for negative-positive integer pair
where magnitude of negative integer is bigger (Sect. 3.3, when the magnitude of
negative integer is bigger), therefore expected result of addition/subtraction is
negative and is also converging; we are able to get the result from XOR part. On
the other hand, positive-negative integer pair where negative integer is smaller,
result of addition is positive (Sect. 3.3, when the magnitude of negative integer is
smaller). This is a case which is non-converging. The CVT part is increasing infi-
nitely keeping addition/subtraction result same, thereby increasing the number
of bits in binary to represent them. But in practical scenario, hardware register
slots (say width w) are fixed which can store finite number of bits for each integer
including the sign bit. Therefore, when CVT-XOR operations are performing we
have to concentrate only for fixed number of bits. Doing so we can ultimately
find that for both the cases CVT is converging and subtraction/addition result
can be found in XOR part. It has been seen that given an n bit integer, we have
to consider n+ 1 bits by padding zeros in MSB position for the positive integer.
Here we are dealing with general form for all integers and negative integer is
represented in 2’s complement form, we have to deal with n + 2 bits includ-
ing sign bit for maximum of n bit integer in our paradigm. We have to pad at
least two extra bits 0’s in MSB for positive integer and 1’s in MSB for negative
integer. Below Table 4 shows two examples when |A| ≤ |B| (Sect. 3.3, when the
magnitude of negative integer is smaller or equal to positive integer) for (14,
−11) and (2, −2) as initial pairs where CVT is not converging theoretically,
but in practical scenario by fixing the bit numbers it can be seen that CVT is
converging and XOR part is giving the expected result after maximum of n + 1
iterations. Here we obtained the result for (14, −11) pair in 4th iteration and
for (2,−2) pair in 3rd iteration. Iteration numbers can vary depending on the
integer pairs and their binary representation.

Therefore, the time complexity in general for getting the CVT part having
all zeros and XOR part holding expected result is of the order of n i.e. O (n)
where maximum is n+1 and minimum is 1 is same as [14]. Figure 5 shows the

134 J.K. Das et al.

Table 4. Repetitive CVT and XOR operations for one 4 bits (14, −11) and one 2 bits
(2,−2) integer pairs to get their subtraction result.

Iteration Operation Bit position 654321 Decimal Bit position 4321 Decimal

Iteration-0 CVT 001110 14 0010 2

XOR 110101 −11 1110 −2

Iteration-1 CVT 001000 8 0100 4

XOR 111011 −5 1100 −4

Iteration-2 CVT 010000 16 1000 8

XOR 110011 −13 1000 −8

Iteration-3 CVT 100000 32 0000 0

XOR 100011 −29 0000 0

Iteration-4 CVT 000000 0

XOR 000011 3

previous CAM circuit from [14], with redrawing to get easy understanding how
CVT-XOR operation is performing in parallel and recursive manner. We have
seen that we have to consider extra two bits in general. So with 5 slots circuit
(Fig. 5) which can performed the addition/subtraction result for 3 bit integer
pairs. Given any two integers, binary representation of one integer is stored in
CVT part right (LSB) to left (MSB) X1...X5 and another integer is stored in
XOR part right (LSB) to left (MSB) Y1...Y5. X1 is connected to voltage ground
zero. Therefore, once the operation is started from the second iteration onwards
X1 is always holding binary zero. Once all the positions of CVT part become
zeros, XOR part gives the expected result. If MSB of XOR part is binary 0

Fig. 5. Proposed CAM circuit diagram in simplified form for CVT-XOR operations in
general as discussed in [14]

Natural and Efficient Subtraction Operation in CVT-XOR Paradigm 135

number is positive, and if MSB of XOR part is binary 1 number is negative, in
this case we have to take 2’s complement of the number.

Looking back the descriptions of CVT-XOR tree in the introduction, we do
the experiment from positive integer 8 to 14 and results of average height can
be seen from 2.7, 1.9, 1.72, 1.25, 2.07, 1.05, and 1.4 respectively. It may be
remarked that when the number of bits are increasing signifying the larger pairs
the average heights are significantly less. On repeating the experiments with
random selection up-to 10 bit integer pairs, we find that average iterations is
under 3.5 to reach the root of the CVT-XOR tree.

5 Conclusion

In this paper, we have proved that CVT-XOR paradigm is valid for all integers.
It has been seen that main property A + B = CV T (A,B) + XOR(A,B) is
also valid for all integers i.e. both for the negative and positive. We thoroughly
discussed the convergence behaviour of all types of integer pairs. Some of the
related important theorems are proved and shown for the integer pairs in different
cases. When initial integer pairs are taken from 1st and 3rd quadrant, CVT of
the pair converge to 0 after maximum of n + 1 steps; where n is the number
of significant bits required for representing bigger integer including sign bit. On
the other hand, when initial integer pairs are taken from 2nd and 4th quadrant,
their CVT converges to 0 as usual when final result becomes negative. But if
the final result becomes zero or positive, CVT goes on increasing keeping their
sum result invariant. But under practical scenario, it has been seen that their
summation result can be observed in the XOR register after w = n + 1 steps.
Thus this CVT-XOR paradigm is naturally amenable to VLSI circuit design for
faster arithmetic computation.

Acknowledgments. Authors would like to thank Dr. Sudhakar Sahoo (Institute
of Mathematics and Applications, Bhubaneswar-751029, India) for his valuable
suggestion.

References

1. Lo, J.C.: A fast binary adder with conditional carry generation. IEEE Trans. Com-
put. 46(2), 248–253 (1997)

2. Ercegovac, M., Lang, T.: Digital Arithmetic. Morgan Kaufmann, San Francisco
(2004)

3. Cheng, F.-C., Unger, S.H., Theobald, M.: Self-timed carrylookahead adders. IEEE
Trans. Comput. 49(7), 659–672 (2000)

4. Lynch, T., Swartzlander, E.E.: A spanning tree carry lookahead adder. IEEE Trans.
Comput. 41(8), 931–939 (1992)

5. Lee, H., Sobelman, G.E.: A new low-voltage full adder circuit. In: Proceedings of
IEEE Great Lakes Symposium on VLSI, pp. 88–92 (1997)

6. Rahman, M.Z., Kleeman, L., Habib, M.A.: Recursive approach to the design of a
parallel self-timed adder. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(1),
213–217 (2015)

136 J.K. Das et al.

7. Dobson, J.M., Blair, G.M.: Fast two’s complement VLSI adder design. Electron.
Lett. 31(20), 1721–1722 (1995)

8. Chawla, R., Kumar, P., Yadav, P.: Adder circuit design using advanced quantum
dot cellular automata (AQCA). In: National Conference on Recent Advances in
Electronics and Computer Engineering (RAECE 2015) (2015)

9. Naziri1, S.Z.M., Ismail1, R.C., Shakaff, A.Y.M.: Arithmetic addition and subtrac-
tion function of logarithmic number system in positive region: an investigation. In:
2015 IEEE Student Conference on Research and Development (SCOReD) (2015).
978-1-4673-9572-4/15/$31.00

10. Hassan, Sk.S., Pal Choudhury, P., Nayak, B.K., Ghosh, A., Banerjee, J.: Integral
value transformations: a class of affine discrete dynamical systems and an applica-
tion. J. Adv. Res. Appl. Math. 7(7), 62–73 (2015)

11. Pal Choudhury, P., Sahoo, S., Nayak, B.K.: Theory of carry value transformation
and its application in fractal formation. In: IEEE International Advance Comput-
ing Conference (2009). doi:10.1109/IADCC.2009.4809146

12. Pal, S., Sahoo, S., Nayak, B.K.: Properties of carry value transformation. Int.
J. Math. Math. Sci. 2012, 10 pages (2012). doi:10.1155/2012/174372. Article ID
174372

13. Das, J.K., Pal Choudhury, P., Sahoo, S.: Multi-number CVT-XOR arithmetic oper-
ations in any base system and its significant properties. In: 2016 IEEE 6th Inter-
national Conference on Advanced Computing (2016). doi:10.1109/IACC.2016.147

14. Pal Choudhury, P., Sahoo, S., Chakraborty, M.: Implementation of basic arithmetic
operations using cellular automata, pp. 79–80. IEEE Computer Society (2008).
http://doi.ieeecomputersociety.org/10.1109/ICIT.2008.18

15. Pal Choudhury, P., Hassan, Sk.S., Sahoo, S., Nayak, B.K.: Act of CVT and EVT
in the formation of number theoretic fractals. Int. J. Comput. Cognit. 9(1), 18
(2011). http://www.ijcc.us

16. Toffoli, T., Margolis, N.: Cellular Automata Machines. MIT Press, Cambridge. MA
(1987)

17. Das, J.K., Pal Choudhury, P., Sahoo, S.: Carry Value Transformation (CVT) -
Exclusive OR (XOR) Tree and Its Significant Properties. https://arxiv.org/pdf/
1506.01544v1.pdf

http://dx.doi.org/10.1109/IADCC.2009.4809146
http://dx.doi.org/10.1155/2012/174372
http://dx.doi.org/10.1109/IACC.2016.147
http://doi.ieeecomputersociety.org/10.1109/ICIT.2008.18
http://www.ijcc.us
https://arxiv.org/pdf/1506.01544v1.pdf
https://arxiv.org/pdf/1506.01544v1.pdf

	Natural and Efficient Subtraction Operation in Carry Value Transformation (CVT)-Exclusive OR (XOR) Paradigm
	1 Introduction
	2 Modified Definition of CVT and XOR Operations for Integer Domain
	3 Convergence Behaviour of CVT and XOR Operations for Various Cases of Integer Pairs
	3.1 Both the Integers A and B Are Positive
	3.2 Both the Integers A and B Are Negative
	3.3 The Integer A is Negative and the Integer B is Positive

	4 Performance Analysis and General Circuit Diagram for CVT-XOR Operations
	5 Conclusion
	References

