Task-Specific Architecture Documentation
for Developers

Why Separation of Concerns in Architecture
Documentation is Counterproductive for Developers

Dominik Rost™ and Matthias Naab

Fraunhofer IESE, Kaiserslautern, Germany
{dominik. rost,matthias.naab}@iese. fraunhofer. de

Abstract. It is widely agreed that architecture documentation, independent of
its form, is necessary to prescribe architectural concepts for development and to
conserve architectural information over time. However, very often architecture
documentation is perceived as inadequate, too long, too abstract, too detailed, or
simply outdated. While developers have tasks to develop certain features or
parts of a system, they are confronted with architecture documents that globally
describe the architecture and use concepts like separation of concerns. Then, the
developers have the hard task to find all information of the separated concerns
and to synthesize the excerpt relevant for their concrete task. Ideally, they would
get an architecture document, which is exactly tailored to their need of archi-
tectural information for their task at hand. Such documentation can however not
be created by architects in reasonable time. In this paper, we propose an
approach of modeling architecture and automatically synthesizing a tailored
architecture documentation for each developer and each development task.
Therefore architectural concepts are selected from the model based on the task
and an interleaving of concepts is done. This makes for example all interfaces
explicit, which a component has to implement in order to comply with security,
availability, etc. concepts. The required modeling and automation is realized in
the tool Enterprise Architect. We got already very positive feedback for this idea
from practitioners and expect a significant improvement of implementation
quality and architecture compliance.

Keywords: Architecture documentation - Architecture knowledge
Architecture realization + Developers * Implementation - Task - Separation of
concerns

1 Introduction

It is widely accepted that architecture documentation is necessary to prescribe archi-
tecture concepts and preserve architecture knowledge over time. This is particularly
true in complex project settings: When systems are large and have long lifecycles,
architecture documentation serves as a tool to preserve the most important design
decisions, and to facilitate communication between stakeholders. Also, software

© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 102-110, 2016.
DOI: 10.1007/978-3-319-48992-6_7

Task-Specific Architecture Documentation for Developers 103

development becomes a more and more distributed and globalized activity, often
delaying or even making direct communication impossible. In such settings, archi-
tecture documentation is a vital communication vehicle to allow a consistent realization
of the architecture.

Architecture documentation for such systems can become large. In our experience,
for large-scale projects several hundreds of pages are realistic. Working with such
documentation can be difficult, in particular for developers, who use it as the basis for
their implementation activities, for two main reasons:

First, the perspectives of architects and developers on the system diverge. Archi-
tects focus on the system as a whole, designing the overall principles of the system for a
multitude of stakeholders. They break down the big and complex problem of the
complete system into smaller parts, i.e. apply the principles of divide and conquer and
separation of concerns, to create concepts that address architecture drivers in a con-
sistent and uniform way. Examples are concepts for exception handling, validation,
scaling, etc. For a medium sized project this can easily lead to 20-50 different concepts.

Our central insight is that while separation of concerns is vital for architects, who
deal with a problem too large to handle as a whole, it is actually counter-productive
for a developer working on a task with a narrow focus on single entities, because the
separated concerns need to be located and synthesized again. When developers
implement single modules, they need to know and consider several architecture con-
cepts and realize them in their specific context. Such concepts are normally not
explicitly described for every element that needs to realize it, but once, in a general way
and then instantiated throughout the system (e.g. which interfaces to implement in
which way for the security concepts, for transaction handling, ...). This means, every
single developer needs to be aware of or search for relevant concepts for the devel-
opment task at hand (cf. Fig. 1).

large & complex —

apINSC

<<Architect>>

snbuo) B

<<Task>>

Implement
PersonDataService
<<Developer>> on Backend

small & focused

Relevant S
(5-20)

Fig. 1. Architect developer perspective difference

The second aspect is related to the architecture-code-gap [1]. When architects
design the system, they reason about the system in terms of components, layers, or
decisions. Developers on the other hand work with classes, packages, and interfaces.
While it is reasonable for the different roles to work with the elements that best suit
their needs, their inherent difference creates an obstacle for architecture realization:
There is an additional cognitive step to transform architecture concepts, to the code
level.

104 D. Rost and M. Naab

Both aspects lead to an architecture realization that is on the one hand less efficient,
because developers are required to search and identify relevant concepts in a large
amount of architecture information. On the other hand, it is error prone because devel-
opers under high time pressure might not take the time to consult the architecture doc-
umentation, causing architecture violations and consequently architecture erosion [2].

To address these problems, we propose an approach of automatically generating
architecture documentation specific for tasks of individual developers. An overview of
the approach is presented in Sect. 3 before we describe its details in Sect. 4. To get a
better understanding, we present an example in Sect. 5 and conclude in Sect. 6 with
validation and future work.

2 Related Work

The approach we present in this paper is built on the foundations of architecture
documentation and architecture views. Several different works cover these topics and
have presented their own documentation approaches and view sets: [3, 4], etc. Views
are a tool for separation of concerns during the design of a software system, but can
also be used to tailor information towards the readers [5]. This, however normally
refers to types of stakeholders, like developers in general, not more specific.

The idea of considering design decisions as an integral part of architecture and
documentation started the whole new research field Architecture Knowledge Man-
agement (AKM) Capilla et al. published a comprehensive analysis of the work done in
AKM in the past ten years [6]. Our approach is closely related to these approaches, in
particular those that provide some kind of personalization mechanism, i.e. making AK
specific for a target group. EAGLE [7], ADDM [8], and Decision Architect [9] are
examples.. However, none of them tackles the described challenges, either they focus
on personalization for stakeholder types, not individuals, or their goal of personal-
ization is different.

The approach we present in this paper is the advancement of the preliminary and
basic ideas we outlined in [10]. To align our work with the needs of industry we also
performed a comprehensive state of the practice analysis of architecture documentation
in industry in [11].

3 Approach Overview

3.1 Task-Specific Architecture Documentation

We frequently experience the challenges we describe in Sect. 1 in industrial projects
with our customers. For this reason, we developed an approach for creating architecture
documentation that is not only specific for a certain group of stakeholders, but for
individual developers and each of their individual development tasks. The resulting
architecture documentation centers around the specific architectural elements that
developers need to change, create, or delete. It provides detailed information on these
focus elements, together with all relevant information from architecture concepts that
need to be considered. Besides the elements, “relevant information” includes their

Task-Specific Architecture Documentation for Developers 105

internal structure, interfaces to provide, location in the source code, and relations to
create. These pieces of information are combined, so that a meaningful view on a very
specific part of the system is created. Thus, the architecture documentation for
developers contains only a minimum of overhead information, and in a form that
allows direct realization. Manually creating such documentation is economically
impossible, hence, task-specific architecture documentation needs to be created fully
automated with a tool.

3.2 Development Setting and Tooling

Task-specific architecture documentation is not bound to a particular development
process, but works best with highly iterative approaches with small increments, like
agile development. In each iteration, a user story or use case is selected for realization.
For the selected user story, a project manager, architect or even the team derive
development tasks. For each of these development tasks, the architect generates the
corresponding task-specific architecture documentation, which is used by developers
when they carry out the task. Normally, an architect has created an architecture design
for all relevant concepts in a previous iteration, so that it is ready for realization in
the next.

The architecture model is based on UML and the documentation generator is created
as an add-in for the widely used modeling tool Enterprise Architect (cf. Fig. 2). The
add-in works on task specifications, that reference elements from the architecture model.
Therefore, task specifications are created as elements in the architecture model as well
(in future versions an integration with issue tracking systems is planned). The resulting
documentation is created as a read-only document. In future versions, the result can be
generated as a small, tailored architecture model, that can be integrated with a viewer in
the IDE developers normally work with. This allows more interactive working the
documentation and more sophisticated linking between documentation and code.

<<Task>> <<impl.>> N
Implement
StaffVianager Arcmtecture

S
<<Developer>> Staff
on Backend DOU”W”‘H“"” Daniel Manager.java

el <<impl.>>{ &

Implement generate > =
StaffManager

on MobileDevice ““* (eCUe _ peveloperss siaff

Documentation
Donald Manager.m

<<Architect>><<Projectmanac

<<Architecture Model>> |
Farm Management System |

il

Documentation
Generator <<impl.>>]

<<Task>>
Implement
Stafful
on MobileDevice Architecture _ povelopers> staffu.m
Documentation Dennis.

Fig. 2. Development setting and tooling

3.3 Foundational Principles of the Modeling Approach

Our modeling approach has several similarities to many others, it is based on the
ISO/IEC/IEEE 42010 standard, uses UML, views, etc. Therefore, transferring the idea to
other architecture approaches should be simple. However, two aspects we need to

106 D. Rost and M. Naab

highlight, that are specific and have an influence on the documentation generation
approach. First, when we design architectures, we explicitly differentiate between
runtime and development time. We often see people drawing boxes and lines, mixing the
two arbitrarily, without understanding the differences. Runtime elements (components)
can be multiply instantiated and deployed. They are realized with development time
entities (modules), which for example represent classes. Different mappings are possible
between these entities. Components are normally realized by multiple modules; to
optimize reuse, one module can be used for the realization of many components.

The second aspect is femplate elements. They result from the idea of making
architecture modeling more efficient by grouping similarities. To eliminate the neces-
sity to describe a concept every time it is applied in the system, template elements are
used to describe a concept once. For example, if, as a part of the validation concept in a
system, we wanted to express that for every backend service in the system, there has to
be a corresponding validator component to validate the data received from clients, we
could model the template components T_Backend Service and T_Backend Service
Validator as shown in Fig. 3 and link them to concrete instances. With this idea, the
required amount of modeling to describe the architecture concepts of the system can be
reduced.

«Task»
«Component» S:] validate «Component» @ Implement staff data s:;f?ia;taassirxiée @
T_Backend client data T_Backend <<--- service [~ =
Service ‘«:s;»‘>* Service Validator «assigned «create»
«Developer» 1 {

Daniel

Fig. 3. Service validator concept Fig. 4. Example of a task specification

4 Detailed Approach

The documentation generation process realized in the documentation generator can be
divided into four distinct parts, which are explained in the following sections.

4.1 Task Specification

Development tasks are the starting point for the generation of task-specific architecture
documentation. They refer to one or a set of architecture elements to work on and are
carried out by a developer. Our approach focusses on the constructive task types, like
design and implementation, whereas deeply technical tasks, like bug fixing, which are
hardly covered in an architecture model, are out of scope.

Architects model task specifications in the architecture model, so that architecture
elements to which the task refers can be directly linked, traced and processed. A task
element has a name and a description. It references architecture elements, the focus
elements, with either a create, change, or delete relationship. And, a task is assigned to
a concrete developer who is responsible for carrying it out. Figure 4 shows an example
of a task specification in an architecture model.

Task-Specific Architecture Documentation for Developers 107

4.2 Selection

Selection is the automatic process of analyzing the architecture model and identifying
model elements that are relevant to consider for the subsequent steps. The starting point
for selection is always one or more focus elements. The following elements are
included in the selection processes: Developers need to know all details about the focus
elements, so all occurrences are included with their properties and description. The
hierarchy of the element’s template elements need to be included because all concepts
involving the templates are relevant for the focus elements as well. The mapped
development-time elements are included because they describe how an element needs to
be realized. In our modeling approach, design decisions are created in the architecture
model as well and relevant ones are included in the selection process. Finally,
descriptions of all elements and diagrams are included as well.

4.3 Concept Interleaving

Concept Interleaving is the central automatic processing step of integrating all pieces of
information, to create the task-specific architecture documentation. It takes the elements
from the selection step and extracts relevant information from them to merge it with the
focus elements. This includes the following elements, which are first shifted to
development time and then interleaved: Child elements describe the internal structure
of the element to implement and are normally depicted as within an element or have an
explicit “part of’-relationship. Child elements of the focus element, its templates and
development time elements are considered. Relation target elements refer to any ele-
ment being the target of an outgoing relation. This denotes, which elements to use and
create a relationship to. Interfaces show the functionality to provide t other elements.
Finally, DT parent elements denote the location in the source code project.

4.4 Development Time Shift

The collected information should be presented according to the developer’s perspec-
tive, to facilitate instant realization. The main idea of the Development Time (DT) Shift
is to translate elements from an architecture and runtime level to the code and devel-
opment time level. This is applied for all selected and elements of interleaved concepts.

We differentiate two ways of doing that: DT-Shift with explicit development time
mappings or implicit shifting rules. To ensure uniformity and a clean code structure and
to facilitate reuse, architects might decide to prescribe where in the source code the
elements of an architecture concept should be created. In this case, an element is
mapped with an explicit relation to development time elements, e.g. one component to
be realized by three classes. The documentation generator simply replaces such ele-
ments by the mapped development time elements for the resulting documentation.

In other cases, to save time and reduce complexity, he may also decide to rely on a
set of standard shifting rules. Table 1 provides an overview of these.

108 D. Rost and M. Naab

Table 1. Implicit shifting rules

Runtime element Development time element
Component (without Subcomponents) | Class
Component (with Subcomponents) Package
Component (template) Abstract module
Interface Interface
Connector Class
Data Class
5 Example

The following example illustrates the main ideas of the approach. The context is a farm
management system, a system with which farmers manage and plan machines, grain
supply, etc. [12]. The next user story to be implemented in the project is managing
staff. This includes the tasks to create the according database structure, the user
interfaces, etc. One task for a developer is to implement the backend service (cf.
Fig. 4).

«System»
Farming Backend «System»
provide operation data T_Farming Machine

«T_Backend g) FHHO<<--- e

T_Machine Service

«System»
Farming Client

«T_Backend ... _
T_Data Service g < getistore data_ | | «Componenty
SN Job Manager

wse»
«T_Backend ... g] 2 ~offline sync «Component» @
Sync Service 1T¢)é ******** T |Resource Manager
Syncinterface

Fig. 5. Example system services Fig. 6. Example dev. time mappings

Figure 5 shows an overview of the different kinds of services that are provided by
the backend. The services that provide the different kinds of data to the applications
running on the Farming Client are represented by the template component T_Data
Service.

The relevance of this template becomes clear when looking at Fig. 6. The diagram
shows the different kinds of services used in the application and an explicit mapping to
DT. In this case, for every service, an according package in the services package,
together with the processor and configuration classes have to be created. As one
example of an architecture concept, Fig. 3 shows a simple validation concept that
prescribes every backend service to use an according validator component.

The result of the generation process is depicted in Fig. 7. Colors denote corre-
sponding elements. The focus element Staff Data Service has been shifted to DT
according to the explicit mapping shown in Fig. 6, resulting in the Staff Data Service
package with the two contained modules. The relation target elements of these two

Task-Specific Architecture Documentation for Developers 109

modules, the two framework interfaces have been integrated. The interface provided by
the T_Data Service has been shifted and integrated with a realization relation. The
validation concept has been interleaved by adding the shifted validator module. Where
possible, the names of templates have been replaced by the name of the focus element.

«Package»
FarmingBackend
«Package»

Services

«Package»

Service Framework

«interface»
IServiceProcessor

«Module»
Staff Data Service
Validator

«Package”’ /\\
lidate cli « »
Staff Data qervice validate clintdata_ «wse

«Module»
Fig. 7. Example generation result

dnterface»
IServiceConfig

Staff Data Service
Interface

6 Validation and Future Work

As an applied research organization we work with many industry customers in
architecture and development projects. Our experience in these projects and first
feedback to the approach gives us good confidence that it will be beneficial to
developers in complex development settings. The discussions with our partners show
the high demand and positive feedback when we presented our approach. To acquire
more formal validation data, we are currently working on a controlled experiment to
conduct later this year at Technical University of Kaiserslautern. In this experiment, we
will gather data from groups of computer science students, working with task-specific
and generic architecture documentation. We will measure the time it takes to identify
relevant architecture information for a given development task, as well as errors made
when trying to understand the relevant architecture concepts.

In terms of tooling, we are currently developing a prototype according to the
conceptual approach presented in this paper and hope to have a running version ready
by the end of this year. In the future this is the basis for many possible extensions. For
example, IDE integration and feedback mechanisms to architects will provide the
opportunity to bring architecture and source code closer together.

References

1. Fairbanks: Just Enough Software Architecture: A Risk-Driven Approach. Marshall &
Brainerd (2010)

2. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT
Softw. Eng. Notes 17, 40-52 (1992)

110

10.

11.

12.

D. Rost and M. Naab

. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,

Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-Wesley
Professional, Boston (2002)

. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley

Professional, Boston (1999)

. Bayer, J., Muthig, D.: A view-based approach for improving software documentation

practices. In: 13th Annual IEEE International Symposium and Workshop on Engineering of
Computer-Based Systems, ECBS 2006, pp. 269-278 (10 p.) (2006)

. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software

architecture knowledge management: practice and future. J. Syst. Softw. 116, 191-205
(2015)

. Farenhorst, R., Lago, P., van Vliet, H.: EAGLE: effective tool support for sharing

architectural knowledge. Int. J. Coop. Inf. Syst. 16, 413-437 (2007)

. Chen, L., Babar, M.A., Liang, H.: Model-centered customizable architectural design

decisions management. In: 2010 21st Australian Software Engineering Conference, pp. 23—
32. IEEE (2010)

. Manteuffel, C., Tofan, D., Koziolek, H., Goldschmidt, T., Avgeriou, P.: Industrial

implementation of a documentation framework for architectural decisions. In: 2014
IEEE/IFIP Conference on Software Architecture, pp. 225-234. IEEE (2014)

Rost, D.: Generation of task-specific architecture documentation for developers. In: Proceedings
of the 17th International Doctoral Symposium on Components and Architecture - WCOP 2012,
p- 1. ACM Press, New York (2012)

Rost, D., Naab, M., Lima, C., Flach Garcia Chavez, C.: Software architecture documentation
for developers: a survey. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 72-88.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39031-9_7

Naab, M., Braun, S., Lenhart, T., Hess, S., Eitel, A., Magin, D., Carbon, R., Kiefer, F.: Why
data needs more attention in architecture design - experiences from prototyping a large-scale
mobile app ecosystem. In: 2015 12th Working IEEE/IFIP Conference on Software
Architecture, pp. 75-84. IEEE (2015)

http://dx.doi.org/10.1007/978-3-642-39031-9_7

	Task-Specific Architecture Documentation for Developers
	Abstract
	1 Introduction
	2 Related Work
	3 Approach Overview
	3.1 Task-Specific Architecture Documentation
	3.2 Development Setting and Tooling
	3.3 Foundational Principles of the Modeling Approach

	4 Detailed Approach
	4.1 Task Specification
	4.2 Selection
	4.3 Concept Interleaving
	4.4 Development Time Shift

	5 Example
	6 Validation and Future Work
	References

