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Abstract. Building successful and meaningful interoperation with
external software APIs requires satisfying their conceptual interop-
erability constraints. These constraints, which we call the COINs,
include structure, dynamic, and quality specifications that if missed
they lead to costly implications of unexpected mismatches and running-
late projects. However, for software architects and analysts, manual
analysis of unstructured text in API documents to identify conceptual
interoperability constraints is a tedious and time-consuming task that
requires knowledge about constraint types. In this paper, we present our
empirically-based research in addressing the aforementioned issues by
utilizing machine learning techniques. We started with a multiple-case
study through which we contributed a ground truth dataset. Then, we
built a model for this dataset and tested its robustness through experi-
ments using different machine learning text-classification algorithms. The
results show that our model enables achieving 70.4 % precision and 70.2 %
recall in identifying seven classes of constraints (i.e., Syntax, Semantic,
Structure, Dynamic, Context, Quality, and Not-COIN). This achieve-
ment increases to 81.9 % precision and 82.0 % recall when identifying two
classes (i.e., COIN, Not-COIN). Finally, we implemented a tool proto-
type to demonstrate the value of our findings for architects in a practical
context.

Keywords: Interoperability analysis · Conceptual constraints · Black-
box interoperation · API documentation · Empirical study · Machine
learning

1 Introduction

Interoperating with externally developed black-box Web Service or Platform
APIs is restricted with their Conceptual interoperability constraints (COINs),
which are defined as the characteristics controlling the exchange of data or func-
tionalities at the following conceptual classes: Syntax, Semantics, Structure,
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Dynamics, Context, and Quality [2]. Hence, to build a successful interopera-
tion, software architects and analysts need to identify and fulfil these conceptual
constraints of the external APIs. Otherwise, unexpected conceptual mismatches
can prevent the whole interoperation or make its results meaningless. Conse-
quently, this causes resolution expenses at later stages of projects [8]. Therefore,
it is necessary to perform effective conceptual interoperability analysis for shared
documents about a software API of interest to identify its conceptual constraints.
This in turn offers a basis for analyzing interoperability on other levels, which
are out of our research scope, like organizational level (e.g., privacy concerns),
managerial level (e.g., budget restrictions), and technical level (e.g., network
protocols).

Current analysis approaches relies on manual investigation of shared API
documents [9]. However, such manual reading and inspection of natural language
text in these documents to find constraints is an exhausting, time-consuming,
and error-prone task [19]. Add to this, it requires knowledge about the different
conceptual constraints along with linguistic analysis skills.

In this paper, we elaborate on and extend our proposed conceptual inter-
operability analysis framework [2]. In particular, we automate the identification
of COINs in API documentations’ text by employing machine learning (ML)
techniques. Our goal is to assist software architects and analysts in performing
effective and efficient conceptual interoperability analysis. We followed a sys-
tematic empirically-based research methodology, which has two main parts. In
the first part, we conducted a multiple-case study that yielded our first contri-
bution, which is a ground truth dataset. This dataset is a community-reusable
asset in the form of a repository of textual sentences that we collected from
multiple API documents and manually labeled them with a specific COIN class.
In the second part, we contributed a classification model for the COINs in the
ground truth dataset, and we evaluated it through experiments using different
ML text-classification algorithms. Our experiments revealed promising results
towards automating the identification of COINs in text of API documents. We
achieved up to 70.4% precision and 70.2% recall for identifying seven classes
of constraints (i.e., Syntax, Semantics, Structure, Dynamics, Context, Quality,
and Not-COIN). This increased to reach 81.9% precision and 82.0% recall for
identifying two classes (i.e., COIN, Not-COIN). Finally, we developed a tool pro-
totype that demonstrates the value of our ideas in serving software architects
during their interoperability analysis task. In specific, the tool allows architects
to select sentences from API document webpages, and it checks and reports the
existence of COINs along with their types. Such a classification service would
enhance the interoperability analysis results, especially for inexperienced archi-
tects, as it helps in understanding the constraints’ impact and how to satisfy
them.

The rest of this paper is organized as follows. Section 2 introduces a back-
ground, Sect. 3 overviews the related works, and Sect. 4 outlines our research
methodology. Sections 5 and 6 detail our first and second research parts. Section 7
presents our tool support and Sect. 8 is the conclusion.
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2 Background

In this section we present a brief introduction to conceptual interoperability
constraints and the used machine learning techniques in our research.

2.1 Conceptual Interoperability Constraints

The presented work in this paper is based on the Conceptual Interoperability
Constraints (COIN) model [2], which focuses on the non-technical constraints
of interoperable software systems and can be applied to different types of soft-
ware systems (e.g., information systems, embedded systems, mobile systems,
etc.). COINs are the conceptual characteristics that govern the software systems
interoperability with other systems. Therefore, missing or wrong understanding
of COINs may defect the desired interoperability by leading to conceptual incon-
sistencies or meaningless results. There are six classes of COINs that we sum-
marize as the following: (1) Syntax COINs that state the constraints packaging
(e.g., used terminology or modeling language). (2) Semantic COINs that express
meaning-related constraints (e.g., goals of methods). (3) Structure COINs that
depict the systems elements, their relations, and arrangements affecting the inter-
operation results (e.g., data distribution). (4) Dynamic COINs that restrict the
behavior of interoperating elements (e.g., synchronization feature). (5) Context
COINs that pertain to external settings of the interoperation (e.g., user and
usage properties). (6) Quality COINs that capture quality characteristics related
to exchanged data and services (e.g., interoperation response time).

2.2 Machine Learning for Text Classification

In order to enable the automatic detection of COINs in text, we employed
ML text-classification algorithms (e.g., NäıveBayes [10] and Support Vector
Machine [18]). The accuracy results of such algorithms depend on the quality
and the size of the dataset [4] that consists of manually labeled sentences with
one of the predefined classification classes. Text classification process consists of:

- Building the classification model, in which all features of the sentences in the
dataset are identified and modeled mathematically. In our research, we used
popular techniques for building our model: (1) Bag of Words (BOWs) [6] that
considers each word in a sentence as a feature, and accordingly a document is
represented as a matrix of weighted values; (2) N-Grams [16] that considers each
N adjacent words in a sentence as a feature, where (N > 0).
- Evaluating the classification model, in which the manually labeled dataset is
divided into a training and testing sets. The training set is used for training
the ML classification algorithm on the features captured in the model, while
the testing set is for evaluating the classification accuracy. For our research, we
used k-fold Cross-validation [11], in which our ground truth dataset (i.e., COINs
Corpus) is divided into k folds. Then, (k− 1) folds are used for training and one
fold is used for testing. Finally, an average of k evaluation rounds is computed.
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3 Related Work

A number of previous works proposed automating the identification of some
interoperability constraints from API documents. Wu et al. [19] targeted para-
meters dependency constraints, Pandita et al. [13] inferred formal specifications
for methods pre/post conditions, and Zhong et al. [20] recognized resource spec-
ifications. We complement these works and elaborate on Abukwaik et al. [2] idea
of extracting a comprehensive set of conceptual interoperability constraints.

On a broader scope, other works proposed retrieving information to assist
software architects in different tasks. Anvaari and Zimmermann [3] retrieved
architectural knowledge from documents for architectural guidance purposes.
Figueiredo et al. [7] and Lopez et al. [12] searched for architectural knowledge in
emails, meeting notes, and wikis for proper documentation purposes. Although,
these are important achievements, they do not meet our goal of assisting archi-
tects in interoperability analysis tasks.

In general, our work and the aforementioned related works intersect in the
utilization of natural language processing techniques in retrieving specific kind
of information from documents. However, they used rule-based and ontology-
based retrieval approaches, while we explored ML classification algorithms that
are helpful for information retrieval in natural language text. Add to this, our
systematic research contributed a reusable ground truth dataset for all COIN
types that enables related research replication and results’ comparison.

4 Research Methodology

In this research, we systematically revealed the potentials of automating the
extraction of COINs from API documents using ML techniques. Our research
goal formulated in terms of GQM goal template [5] is: to support the concep-
tual interoperability analysis task for the purpose of improvement with respect to
effectiveness and efficiency from the viewpoint of software architects and analysts
in the context of analyzing text in API documentation within software integra-
tion projects. We translate this goal into the following research questions:

RQ1: What are the existing conceptual interoperability constraints, COINs, in
the text of API documentation?
This question explores the current state of COINs in real API documents. It
also aims at building the ground truth dataset (i.e. COINs Corpus represent-
ing a repository of sentences labeled with their COIN class). This forms a main
building block towards the envisioned automatic extraction idea.

RQ2: How effective and efficient would it be to use ML techniques in automating
the extraction of COINs from text in API documentations?
This question explores the actual benefits of utilizing ML in supporting software
architects and analysts in analyzing the text. It aims at building a classification
model that will be evaluated through well-known ML classification algorithms.
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In order to achieve the stated goal and answer the aforementioned questions,
we performed our research in two main parts as follows:

Research Part 1 (Multiple-case study). In this part, we systematically
explored the state of COINs in six cases of API documentations. The result of
this part is a ground truth dataset (i.e., COINs Corpus). We detail the study
design and results in Sect. 5.

Research Part 2 (Experiments). In this part, we started with using the
ground truth dataset, which resulted from the previous part, in building the
COIN Classification Model. Afterwards, we investigated the accuracy of different
ML classification algorithms in identifying the COINs in text by using our model.
We detail the process and results of this research part in Sect. 6.

Our systematic research provided us with traceability between the different
activities and their results. Moreover, it enables future researchers to indepen-
dently replicate our work and to compare the results.

5 Multiple-Case Study: Building the Ground Truth
Dataset for COINs

In this section, we describe our multiple-case study design, execution, and results.

5.1 Study Design

Study Goal. We aim at answering the first research question RQ1 that we
stated in Sect. 4. In order to do so, we needed to examine real-world API doc-
umentations to discover the state of conceptual interoperability constraints in
them.

Research Method. We decided to perform a multiple-case study with literal
replication of cases from different domains. Such a method aids in collecting
significant evidences and drawing generalizable results.

Case Selection. For systematic selection of cases of API documentations,
we considered the following selection criteria:

SC1: Mashup Score. This is a published statistical value1 for the popularity of
a Web Service API in terms of its integration frequency into new bigger APIs.
SC2: API Type. This can be either Web Service API or Platform API.
SC3: API Domain. This is the application domain for the considered API doc-
ument (e.g., social blogging, audio, software development, etc.).

Analysis Unit. Our case study has a holistic design, which means that we
have a single unit of analysis. This unit is “the sentences in API documents that
1 Programmable web: http://www.programmableweb.com/apis/directory.

http://www.programmableweb.com/apis/directory
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Fig. 1. Multiple-case study process

include COIN instances”. To document and maintain the analyzed sentences, we
designed a data extraction sheet that we implemented as an MS Excel sheet. This
sheet consists of demographic fields (i.e., API name, date of retrieval, mashup
score, API type, API domain, and no. of sentences) and analysis fields (i.e., case
id, sentence id, sentence textual value, and the COIN class).

Study Protocol. Our multiple-case study protocol includes three main activ-
ities that are adapted from the process proposed by Runeson [17]. The study
activities are case selection, case execution, and cross-case analysis as we sum-
marize in Fig. 1 below and describe in details within the next subsection.

5.2 Study Execution and Results

Based on our predefined case selection criteria, in August 2015 we chose six
API documentations. Four API documents from the Web Services type (i.e.,
SoundCloud, GoogleMaps, Skype, and Instagram) and two from the Platform
type (i.e., AppleWatch and Eclipse-Plugin Developer Guide). These cases cover
different application domains (i.e., social micro-blogging, geographical location,
telecommunication, social audio, and software development environment). With
regards to the mashup criteria, our four cases of Web Service APIs are chosen to
cover a wide range of scores starting from 30 for Skype and ending with 2582 for
GoogleMaps. After selecting our cases, we executed each case as the following:

Data Preparation. We started this step with fetching the API documentation
for the selected case from its online website. Then, we read the documents and
determined the webpages that had textual content offering conceptual software
description and constraints (e.g., the Overview, Introduction, Developer Guide,
API Reference, Summary, etc.). Subsequently, we started processing the text in
chosen webpages by performing the following:

- Automatic Filtering. We implemented a simple PHP code using Simple HTML
DOM Parser2 library to filter out the text noise (i.e., headers, images, tags,
symbols, html code, and JavaScript code). Thus, we passed the URL link of the
chosen webpage (input) to our implemented code. Then, we got back a .txt file
containing the textual content of the webpage (output).
- Manual Filtering. The automatic filtering fells short in excluding specific types
of noise (e.g., text and code mixture, references like “see also”, “for more infor-
mation”, “related topics”, copyrights, etc.). These sentences could mislead the
machine learning in our later research steps, so we removed them manually.
2 Simple HTML DOM: http://simplehtmldom.sourceforge.net/.

http://simplehtmldom.sourceforge.net/
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Data Collection. In this step, we cut the content of the text file resulted from
previous step into single sentences within our designed data extraction sheet
(.xsl file) that we described in Subsect. 5.1. We completed all the fields of the
data sheet for each sentence except for the “COIN class” filed that we did within
the next step. Note that, we maintained a data storage, in which we stored the
original HTML webpages of the selected API documentations, their text file, and
their excel sheet. This enables later replication of our work by other researchers
as documentations get changed so frequently.

Data Analysis. We manually analyzed each collected sentence in the extraction
sheet and carefully assigned it a COIN class. This classification was based on an
interpretation criteria, which is the COIN Model with its six classes (i.e., Syntax,
Semantic, Structure, Dynamic, Context, and Quality). We added a seventh class
for sentences with no COIN instance (i.e., Not-COIN class). For example, a
sentence like “A user is encapsulated by a read-only Person object.” was classified
as a “Structure COIN”. While, “You can also use our Sharing Kits for Windows,
OS X, Android or iOS applications” was classified as a “Not-COIN” as it did
not express a conceptual constraint, but rather a technical information.

The result of this step was a very critical point towards our envisioned auto-
matic COIN extraction idea. Hence, the data analysis was performed by two
researchers, who independently classified all sentences for each case. Then, in
multiple discussion sessions, the two researchers compared their classification
decisions and resolved conflicts based on consensus.

Obviously, the case execution process consumed time and mental effort, espe-
cially in the data analysis step. Table 1 summarizes the distribution of our col-
lected 2283 sentences among the cases along with the effort (in terms of hours)
that we spent in executing them. Noticeably, SoundCloud and Instagram have
small documents, and consequently they have the smallest share of sentences
included in our study (i.e., 9.5% and 11%). Meanwhile, Eclipse documentation
is the largest and consequently has the highest share of sentences (i.e., 28.5%).

Table 1. Case-share of sentences and execution effort

API document Total number of sentences Total execution efforts (Hours)

Sound cloud 219 7.7

GoogleMaps 473 6.5

AppleWatch 360 8.0

Eclipse plugin 651 12.0

Skype 325 4.5

Instagram 255 4.8

Total 2283 43.5
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Cross-Case Analysis (Answering RQ1: What are the Types of Exist-
ing Conceptual Interoperability Constraints, COINs, in the Text of
Current API Documentations?). After executing all cases, we arranged the
incrementally classified sets of sentences from all cases (i.e., 2283 sentences) into
one repository that we call the ground truth dataset or the COINs Corpus as
called in ML. We have developed two versions of this dataset as the following:

Seven-COIN Corpus, in which, each sentence belongs to one of the seven classes
(i.e., Not-COIN, Dynamic, Semantic, Syntax, Structure, Context, or Quality).
Two-COIN Corpus, in which, each sentence belongs to one of two classes rather
than seven (i.e., COIN or Not-COIN). In fact, the Two-COIN Corpus is derived
from the Seven-COIN Corpus by abstracting the six COIN classes into one class.
Table 2 shows the difference between the two Corpora with example sentences.

Table 2. Example of content in the Seven-COIN and Two-COIN Corpus

Sentence ID Sentence Seven-COIN class Two-COIN class

s1 You can also use ou Sharing Kits for Windows, OS

X, Android or iOS applications

Not-COIN Not-COIN

s2 When it is finished mainpulating the object, it

releases the lock

Dynamic COIN

s3 A user is encapsulated by a read-only Person object Structure COIN

s4 A user’s presence is a collection of information about

the users’ availability, their current activity, and their

personal note

Synatx COIN

s5 A dynamic notification interface lets you provide a

more enriched notification experience for the user

Semantic COIN

s6 This service is not designed to respond in real time

to user input

Context COIN

s7 Your interfaces need to display information quickly

and facilitate fast navigation and interactions

Quality COIN

The aim of building these two versions of the corpus is to better investigate
the performance results of the ML algorithms in the later research experiments.
We explain this in more details in Sect. 6.

COIN-Share in the Contributed Ground Truth Dataset. In Fig. 2, we illustrate
the distribution of sentences among the COIN classes within the Seven-COIN
Corpus (on the left) and the Two-COIN Corpus (on the right). It is noticed that
the Not-COIN class, which expresses technical constraints rather than concep-
tual ones, is the dominant among the other six classes (i.e., 42%). The Dynamic
and Semantic classes have the second and third biggest shares. Remarkably, the
Structure, Syntax, Quality, and Context instances are very few with convergent
shares ranging between 1% and 5% of the dataset.

COIN-Share in the Cases. On a finer level, we have investigated the state of
COINs in each case rather than in the whole ground truth dataset. We found that
the content of each API document was focused on the Not-COIN, Dynamic and
Semantic classes similarly as in the aggregated findings on the complete dataset
seen in Fig. 2. For example, in the case of AppleWatch documentation, 40.8% of



Towards Seamless Analysis of Software Interoperability 75

Fig. 2. COIN-share in the ground truth dataset

the content is for Not-COIN, 26.1% for Dynamic, and 25% for Semantic. Add to
this, all cases had less than 10% of its content to the Structure, Syntax, Quality,
and Context classes (e.g., Eclipse-Plugin gave them 8.5%).

5.3 Discussion

Technical-Oriented API Documentations. The Not-COIN class reserves
42% of the total sentences in the investigated parts of the API documents that
were supposed to be conceptual (i.e., overview and introduction sections). A
noteworthy example is the GoogleMaps case, which took it to an extreme level
of focus on the technical information (i.e., 63% of its content was under the Not-
COIN class, 11.2% for Dynamic class, 13.1% for Semantic class, and the rest is
shared by the other classes). Accordingly, it is important to raise a flag about
the lack of sufficient information about the conceptual aspects of interopera-
ble software units or APIs (e.g., usage context, terminology definitions, quality
attributes, etc.). This concern needs to be brought to the notice of researchers
and practitioners who care about the usefulness and adequacy of content in API
documentations. This obviously has a direct influence on the effectiveness of
architects and analysts in the conceptual interoperability analysis related activ-
ities.

Considerable Presence of Dynamic and Semantic Constraints. Our
study findings reveal that the Dynamic and Semantic classes have apparently
big shares in current API documents (i.e., 25% and 24% of the dataset). This
reflects the favorable awareness about the importance of proper and explicit
documenting of the API semantics (e.g., data meaning, service goal, conceptual
input and output, etc.) and dynamics (e.g., interaction protocol, flow of data,
pre- and post- conditions, etc.). Nevertheless, based on the tedious work we went
through our manual analysis for the six cases, we believe that it would be of great
help for architects and analysts to have clear boarders between these two classes
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of constraints within the verbose of text. For example, it would be easier to skim
the text, if the API goal get separated from its interaction protocol, rather than
blending them into long paragraphs. This would offer architects and analysts a
better experience and it would consequently enhance their analysis results.

COIN-Deficiency in Platform and Web Service API Documents. From
our investigated cases, we perceived a convention on assigning insignificant shares
for the Structure, Syntax, Quality, and Context classes. Interestingly, the cases
varied with regards to what they chose to slightly cover out of these four classes.

On one hand, the cases of Web Service APIs were the main contributors to the
Context, Quality, and Syntax classes in the ground truth dataset. That is, the
documents of GoogleMaps, SoundCloud, Skype, and Instagram provided 82.5%
of the Syntax COINs, 70.4% of the Quality COINs, and 92% of the Context
COINs. Such a contribution cannot be related to the nature of Web Service
APIs, as Platfrom ones need also to share these COINs explicitly. For example,
it is critical for a FarmerWatch application to know the offered response time
by the Notification service of AppleWatch APIs.

On the other hand, the Platform API documents participated with 56.1% of
the Structure COINs in the ground truth dataset, while the Web Service API
documents participated with 43.9%. Note that, this is not related to the larger
amount of sentences that these two documents contributed to the dataset, but
rather due to the internal case share of Structure COINs. On average, the Plat-
form API documents allocate about 6% of their content to structural constraints,
while Web Service API documents allocate about 3.6% for these constraints.

Observed Patterns for the Dominant Classes in the Ground Truth
Dataset. From the considerable amount of sentences for the Not-COIN, Seman-
tic, and Dynamic classes, we observed a number of patterns in terms of frequently
occurring terms and sentences. We envision that using the patterns in combi-
nation with the BOW in future experiments would enhance the results of the
automatic COIN identification. Below we describe some of these patterns.

- Patterns of the Not-COIN Class. We observed the presence of “Technical Key-
words”, which are abbreviations of software technologies (e.g., XML, iOS, XPath,
JavaScript, ASCII, etc.). With further analysis, we found that 30.7% of the Not-
COIN instances have technical keywords. Another pattern for this class is vari-
ables with special format (e.g., “XML responses consist of zero or more <route>
elements.”). Also, sentences starting with specific terms (e.g., “for example”, “for
more information”, “see”, etc.) recurred in 12.8% of the Not-COIN instances.
- Patterns of the Dynamic Class. We found a number of recurrent terms related
to actions and data/process flow thae we gathered into a list called the “Action
Verbs”, which includes: create, use, request, access, lock, include, setup, run, start,
call, redirect, and more. In fact, 35.8% of the sentences with Dynamic COINs have
one or more of these terms. Furthermore, 24% of the Dynamic COIN sentences
contain a conditional statement expressing a pre- or post- condition. For example,
the sentence “If a command name is specified, the help message for this command
is displayed” has a Dynamic COIN that states a pre-condition.
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- Patterns of the Semantic Class. We noticed repeated terms and organized them
into: “Input/Output Terms” (e.g., return, receive, display, response, send, result,
etc.) that are in 18.8% of the Semantic COIN sentences and “Goal Terms” (e.g.,
allow, enable, let, grant, permit, facilitate, etc.) that are in 16.4%. For example,
the sentence “A dynamic notification interface lets you provide a more enriched
notification experience for the user” has a Semantic COIN stating a goal.

5.4 Threats to Validity

Case Bias. To obtain significant results and draw generalizable conclusions,
we included multiple cases for building the ground truth that plays prominent
role in our research. We literally replicated six API documents (i.e., Sound-
Cloud, GoogleMaps, Skype, Instagram, AppleWatch and Eclipse-Plugin Devel-
oper Guide) from two different types (Web Service and Platform APIs).

Completeness. Due to resource limitations (i.e., time and manpower), we were
unable to analyze the large API documents completely. However, we were careful
with respect to selecting inclusive parts of such large documents. For example,
out of the huge document of Eclipse APIs, we covered the Plugin part.

Researcher Bias. To build our ground truth dataset in a way that guarantees
results accuracy and impartiality, we replicated the manual classification of the
cases sentences by two researchers separately based on the COINs Model as an
interpretation criteria. In multiple discussion sessions, the researchers compared
their classification decisions and resolved conflicts based on consensus.

6 Experiments: Automatic Identification of COINs Using
Machine Learning

In this section, we detail the experiments design, execution, and results.

6.1 Experiments Design

Experiments Goal. This part of our research aims at answering the second
research question RQ2 that we stated in Sect. 4. In order to do so, we needed to
examine ML techniques to discover their potentials in supporting architects and
analysts in automatically identifying the COINs in text of API documents.

Research Method. We built a classification model and ran multiple exper-
iments employing different ML text-classification algorithms. This method
enables comparing the algorithms results and drawing solid conclusions about
the ML advantages in addressing the challenges of manual interoperability
analysis.
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Evaluation Method and Metrics. We used k-fold Cross-validation, which
we explained in the background section, with k = 10. For evaluation metrics of
classification accuracy, we used the following commonly used measures [14]:

Precision: the ratio of correctly classified sentences by the classification algo-
rithm to the total number of sentences it classifies either correctly or incorrectly.
Recall : the ratio of correctly classified sentences by the classification algorithm
to the total number of sentences in the corpus.
F-Measure: the harmonic mean of precision and recall that is calculated as:
(2 ∗ Precision ∗ Recall)/(Precision + Recall).

Experiments Protocol. Our experiments protocol includes three main activi-
ties that are: feature selection, feature modeling, and ML algorithms evaluation.
We illustrate this protocol in Fig. 3, and we describe it in details within the next
subsection. We ran this protocol twice, once for the Seven-COIN Corpus and
another for the Two-COIN Corpus.

6.2 Experiments Execution and Results

We performed all our execution on Weka v3.7.113, which is a suite of ML
algorithms written in Java with result visualization capabilities. The execu-
tion started with processing the textual sentences in our contributed dataset
(i.e., COINs Corpus) using natural language processing (NLP) techniques. The
processing included tokenizing sentences into words, lowering cases, eliminating
noise words (e.g., is, are, in, of, this, etc.), and stemming words into their root
format (e.g., encapsulating and encapsulated are returned as encapsulate).

Feature Selection. After processing the text, we identified the most represen-
tative features or keywords for the COIN classes within the COINs Corpus using
the Bag-of-Words (BOWs) and N-Gram approaches, which we explained in the
background section. That is, each sentence was represented as a collection of
words. Then, each single word and each n-combination of words in the sentence
were considered as features, where N was between 1 and 3. For example, in a

Fig. 3. Experiments process

3 Weka: http://www.cs.waikato.ac.nz/ml/weka.

http://www.cs.waikato.ac.nz/ml/weka
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sentence like “A user is encapsulated by a read-only Person object”, the word
“encapsulate” and the combination “read-only” were considered as two of its
features. The output of this step was a set of features for the COINs Corpus.

Feature Modeling. In this stage, the whole COINs Corpus was transformed
into a mathematical model. That is, it was represented as a matrix, in which
headers contained all extracted features from the previous phase, while each row
represented a sentence of the corpus. Then, we weighted the matrix, where each
cell [row, column] held the weight of a feature in a specific sentence. For weight-
ing, we used the Term Frequency-Inverse Document Frequency (TF-IDF) [15],
which is often used for text retrieval. The result of this was the COINs Feature
Model (or the classification model), which is a reusable asset reserving knowl-
edge about conceptual interoperability constraints in API documents.

ML Algorithms Evaluation. We selected a number of well-known ML text-
classification algorithms (e.g., NäıveBayes versions, Support Vector Machine,
Random Forest Tree, K-Nearest Neighbor KNN, and more). Then, we ran these
algorithms on the classification model resulted from the modeling activity.

Table 3. COINs identification results using different ML algorithms

ML algorithm Seven-COIN Corpus Two-COIN Corpus

Precision Recall F-measure Precision Recall F-measure

ComplementNäıveBayes 70.4% 70.2% 70.0% 81.9% 82.0% 81.9%

NäıveBayesMutinomialupdatable 66.0% 65.1% 65.4% 81.9% 82.0% 81.8%

Support vector machine 59.3% 60.0% 59.0% 75.7% 75.7% 75.7%

Random forest tree 60.4% 56.3% 52.3% 73.7% 73.9% 73.7%

Simple logistic 52.5% 54.4% 52.4% 68.2% 68.4% 67.2%

KNN K=1 54.8% 45.5% 40.8% 64.2% 52.3% 47.8%

KNN K=2 49.8% 36.1% 30.1% 64.4% 48.7% 40.6%

Evaluation Results (Answering RQ2: How Effective and Efficient
Would it be to Use ML Techniques in Automating the Extraction
of COINs from Text in API Documentations?).

Effectiveness of Identifying the COINs using ML Algorithms. Here we report
the effectiveness results in terms of accuracy metrics in two cases:

- Seven-COIN Corpus Case. The evaluation results showed that the best accu-
racy in automatically identifying seven classes of interoperability constraints
in text was achieved by the ComplementNäıveBayes algorithm (see Table 3).
It achieved 70.4% precision, 70.2% recall, and 70% F-measure. In the second
place came NäıveBayesMutinomialupdatable algorithm with about 5% less accu-
racy than the former algorithm. The other algorithms had accuracy, F-measure,
between 62.8% and 59.0%. The worst results were from the KNN algorithms.
- Two-COIN Corpus Case. By applying the same algorithms on the Two-
COIN Corpus, we obtained better results. In particular, the accuracy increased
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with almost 11% compared to the results in the Seven-COIN case with the
ComplementNäıveBayes algorithm. That is, the precision increased to 81.9%,
recall to 82.0%, and F-measure to 81.9%. Similar to the previous case,
NäıveBayesMutinomialupdatable came in the second rank and the 2-Nearest
Neighbor algorithm had the worst results as seen in Table 3. Note, we have
achieved an improvement in accuracy compared to our preliminary investigation
results [1], in which we had F-measure of 62.2% using the NäıveBayes algorithm.

Efficiency of Identifying the COINs Using ML Algorithms. Obviously, the
machine beats the human performance in terms of the spent time in analyzing
the text. As we mentioned earlier, analyzing the documents costed us about 44
working hours, while, it took the machine way less time. For example, training
and testing the NäıveBayesMultinominalupdate took about 5 s on our complete
corpus with 2283 sentences). This efficiency would enhance when using machines
with faster and more powerful CPU (we ran the experiments on a machine with
Intel core i5 460 M CPU with 2.5 GHZ speed).

6.3 Discussion and Limitations

Towards Automatic Conceptual Interoperability Analysis. The achieved
effectiveness in the automatic identification of constraints (e.g., 81.9%
F-measure) is promising and shows the potentials of our ML classification model
in serving architects through their interoperability analysis tasks. We consider
this accuracy high, as we compared the algorithms’ results to our complete
sentence-by-sentence manual analysis for the API documents, which we did for
the sake of building a robust corpus. However, in practice, sentences are not
examined in such a heavy way, especially when projects are limited in time and
manpower. Hence, our model and its provided results in this work are a step
towards achieving a good level of automation intelligence for the classic software
engineering practices that are both error-prone and resource-consuming.

Larger Corpus, Better Accuracy Results. It is known in ML that the more
classification classes you want to train the machine on identifying, the more
training data it requires to be fed with. This explains the higher accuracy we
achieved using the Two-COIN Corpus compared to the Seven-COIN Corpus
even with the same amount of sentences in both. Therefore, we plan to enlarge
our corpus, to achieve better accuracy in identifying the seven COIN classes.

Unbalanced Amount of Instances for Each Class in the Corpus. As
noticed, the number of instances for the COIN classes is not balanced in the
corpus. That is, dominant classes (i.e., Not-COIN, Dynamic, and Semantic)
contribute with the majority of sentences in the data set (i.e., 91%). While,
the other classes (i.e., Structure, Syntax, Quality and Context) are smaller and
share the left 9% of the corpus. This affects the classification accuracy of the
classes with fewer instances. Therefore, in future work we intend to increase the
number of instances for these minor classes in the training data to achieve higher
accuracy results.
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7 Tool Support (A Prototype)

To bring our ideas to practical life, we designed a tool as a web browser plu-
gin that aims at assisting software architects and analysts in their conceptual
interoperability analysis task. The tool takes sentences from API documents,
recognizes if they have any conceptual interoperability constraint, and reports
their COIN classes within seconds. We implemented an easy-to-use prototype
for the tool, in which the architect can highlight a sentence in a webpage for an
API document to examine if it has any COIN (see Fig. 4).

The tool encapsulates our contributed classification model and mirrors its
efficiency and accuracy that we described in Subsect. 6.2. That is, the tool saves
time and manual effort by automatically identifying and classifying the concep-
tual constraints from text in seconds. This functionality offers critical input for
architects to understand the impact of the identified constraints and to satisfy
them based on their class. Hence, the tool has potentials to improve the effec-
tiveness of interoperability analysis, especially for inexperienced architects.

Fig. 4. Example of the tool identification for a Structure COIN in an API document

We implemented the prototype as a plugin for the Chrome web browser using
Java and JavaScript languages. The functionality is offered as a Web Service and
all communication is over the Simple Object Access Protocol (SOAP). The tool
design includes: (1) Front-End component that we developed using JavaScript to
provide the graphical user interface. (2) Back-End component that we developed
using Java and Weka APIs to be responsible for locating our service on the server,
passing it the input sentence, and carrying back the response.

8 Conclusion and Future Work

In this paper, we have presented our ideas about supporting software architects
in performing seamless conceptual interoperability analysis. The contribution
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pursued by this work was to utilize ML algorithms for effective and efficient iden-
tification of conceptual interoperability constraints in text of API documents.
Our systematic empirically-based research included a multiple case study that
resulted in the ground truth dataset. Then, we built a ML classification model
that we evaluated in experiments using different ML algorithms. The results
showed that we achieved up to 70.0% accuracy for identifying seven classes of
interoperability constraints, and it increased to 81.9% for two classes.

In the future, we plan to automate the manual filtering part of the data
preparation. We will also analyze further API documents to advance the gen-
eralizability of our results. This would enrich the ground truth dataset as well,
allowing better training for the ML algorithms and accordingly better accuracy
in identifying the conceptual interoperability constraints. With regards to the
tool, we will extend it to generate full reports about all interoperability con-
straints in a webpage and to collect instant feedback from users about automa-
tion results. In addition, we plan to empirically evaluate our ideas in industrial
case studies.
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