
Towards a Framework for Building SaaS
Applications Operating in Diverse

and Dynamic Environments

Ashish Agrawal(B) and T.V. Prabhakar

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur, UP 208016, India

{agrawala,tvp}@cse.iitk.ac.in

Abstract. Enterprises have increasingly adopted the Software-as-a-
service (SaaS) model to facilitate on-demand delivery of software appli-
cations. A SaaS customer - tenant - may operate in diverse environments
and may demand a different level of qualities from the application. A ten-
ant may also operate in a dynamic environment where expectations from
the application may change at run-time. To be able to operate in such
environments, SaaS application requires support at both the architecture
and implementation levels. This paper highlights the issues in building
a SaaS that can accommodate such diverse and dynamic environments.
We propose a methodological framework called Chameleonic-SaaS that
abstracts out the responsibilities involved and provides guidelines to real-
ize it. Our framework introduces variability in the architecture to manip-
ulate the architecture-level decisions, especially tactics. Feasibility of the
framework is demonstrated by an example of a MOOC application.

Keywords: Software as a service · Variability · Adaptive SaaS ·
Dynamic quality attributes

1 Introduction

Software-as-a-Service (SaaS) - a delivery model for software applications -
attracts customers by presenting features such as no up-front cost, on-demand
provisioning at an application-level of granularity and free from maintenance
[3,12]. In SaaS model, the service provider is responsible for managing all ser-
vice components (software and hardware) and ensuring application-level quality
attributes desired by a customer. These SaaS customers - “tenants” - may oper-
ate in diverse environments and may demand different levels of qualities (e.g.,
low or high availability) from the application [4,15]. For example, considering
an ERP SaaS, a small organization may need low availability (95 %) and an
enterprise may demand high availability (99.99 %). Similarly, a tenant may also
operate in a dynamic environment where expectations from the application may
change at run-time to accommodate changes in the environment. In our sce-
nario, the small organization may desire to have high availability for a time
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 291–306, 2016.
DOI: 10.1007/978-3-319-48992-6 22



292 A. Agrawal and T.V. Prabhakar

period such as peak load and business events. The motivation behind the need
for such dynamic quality requirements is the fact that some quality attributes
have an impact on the operational cost of the application, and the application
may not require high values of these quality attributes all the time. For example,
if an application achieves high availability by replicating to a redundant server,
this additional server will increase the operational cost. Figure 1 depicts a case
of quality expectations of tenants of a SaaS.

Fig. 1. An example showing diverse and dynamic quality expectations from a SaaS

To make the offering attractive to the tenants, a SaaS should have the abil-
ity to address diverse and dynamic quality requirements. From an architectural
perspective, two most common patterns [4,14] for building a SaaS are; (1) Multi-
tenant where all tenants share a common instance along with the code com-
ponents, and (2) Multi-instance where every tenant has a dedicated instance
allocated to it.

For building a SaaS operating in diverse and dynamic environments, Multi-
tenancy would be beneficial in terms of operational cost and maintenance. How-
ever, this pattern requires designing tenant-aware components that can increase
development cost and time to market. Although the development cost would
be high, it might be compensated by lower operational cost [6]. Contrary to
this, benefits of Multi-instance are; less time to market, lower design cost, and
flexibility for customization. However, Multi-instance pattern may have high
operational cost and high maintenance if there are a large number of tenants.
A service provider can select a pattern by analyzing these parameters in the
context of its business goals and policies. One can also use a combination of
these patterns where a group of tenants shares a common instance.

One thing to note here is that addressing diversity issues of the tenants in
Multi-tenancy may create a very complex architecture and design that can create
issues for maintaining the service. In some scenarios, it may be easy to maintain
multiple simple instances than a single complex instance. In this paper, we focus



Chameleonic-SaaS Framework 293

on using the Multi-instance pattern for implementing a SaaS as it provides more
flexibility to handle diverse and dynamic environments.

One way to accommodate diversity and dynamism is to identify the set of
possible quality requirements and build different versions of the application sep-
arately for every member of such a set. However, in this case, development
and maintenance cost would be very high. As the quality requirements are also
dynamic in nature, migrating between members of the set might not be possible.
Another approach could be to provide maximum values of quality attributes to
all tenants at all time. However, this may not be cost-effective from the provider’s
perspective. Diversity and dynamism can also be handled by customizing the
size of an instance (e.g., CPU, RAM, etc.) according to a tenant’s requirements.
However, only a few quality attributes (e.g., performance, capacity, etc.) can be
changed using this approach. Also, variations in quality values will be limited.

Our idea for solving these issues is to model quality attributes as scriptable
resources. That means that the application exposes a programmable interface
to the tenants for requesting quality attributes. To handle diversity, a tenant
can specify its quality requirements at the time of requesting a new instance i.e.
provisioning-time. To accommodate dynamic environments, a tenant can change
the quality attributes of its instance dynamically at run-time on demand basis.
To handle such requests from a tenant, application modifies the architecture-
level decisions of its instance such as tactics. To facilitate such features and to
manage all running instances, the application should be designed with the ability
to dynamically modify its architecture.

To realize our approach, we identify the suitable tactics and introduce vari-
ability in the architecture by modeling these tactics as variation points. To be
able to change the quality attributes dynamically, we model the service as an
adaptive system using the concepts of MAPE-K loop architecture [10]. Find-
ings of our investigation are formulated as a methodological framework called
Chameleonic-SaaS. Main contributions of this paper are:

– An idea to model quality attributes as scriptable resources.
– A methodological framework called Chameleonic-SaaS for building SaaS oper-

ating in diverse and dynamic environments. The framework abstracts out the
responsibilities involved and provides guidelines for the same.

The rest of the paper is organized as follows. Section 2 describes the problem
statement and our approach. Section 3 explains the Chameleonic-SaaS frame-
work in detail. Section 4 presents an example by building a MOOC applica-
tion. Section 5 provides a brief summary of existing work related to this paper.
Section 6 discusses benefits and limitations of our approach. Section 7 concludes
the paper with scope of future work.

2 Problem Statement and Approach

This section defines the problem statement and describes our approach.



294 A. Agrawal and T.V. Prabhakar

2.1 Problem Statement

This work aims to investigate the issues in building a SaaS operating in diverse
and dynamic environments. Requirements from such a SaaS are:

– Service should have the ability to address diverse quality requirements of dif-
ferent tenants at provisioning-time.

– Service should have the ability to change quality attributes for a particular
tenant dynamically at run-time.

– It should be easy to maintain the service.

2.2 Approach

Our idea is to expose quality attributes as scriptable resources to the tenants
of a SaaS. Using such resources, a tenant can customize the set of quality
attribute values provided by an application instance. Such customization can
occur either at provisioning-time or dynamically at run-time on demand basis.
Here, customizations in the quality attribute values are achieved by modifying
architecture-level decisions of the application.

This leads to the question of what architectural decisions need to be changed
in the architecture. Such architectural decisions should only impact quality
attributes of the application. We use the architectural tactics as the architectural
decisions that can be modified at run-time. A tactic is an architectural tool that
can be used to improve a particular quality attribute of an application [2]. For
example, Ping & Echo [2] is a tactic to improve the availability of an application
by detecting failures such as network failure. Thus, to modify quality attributes
of a tenant’s instance, SaaS can add or remove tactics in its architecture. The
approach mentioned above leads to a natural question:

– RQ1: How to externally add a tactic to an application instance deployed on
a virtual machine?

In architecture, realization of a tactic can be seen as a set of operations
(add, remove or modify) on architectural elements – components, connectors,
and links. We categorize the architectural elements into three groups; (1) pure
application elements incorporating application logic, (2) pure tactic elements
which are tactic elements that are independent of application logic, and (3)
application-specific tactic elements which are tactic elements that requires knowl-
edge of application logic. For example, Ping & Echo tactic can be implemented
using three pure tactic components; PingSender sends ping requests periodi-
cally, PingReceiver sends an echo for a received ping, and Monitor notifies the
occurrence of a failure.

One of the ways to achieve Ping & Echo tactic at a virtual machine level is
as follows. Deploy PingReceiver on the virtual machine that host the application
and deploy rest of the tactic components on a separate virtual machine. As there
are no links between the tactic components and the application components, we
can add this tactic without any modification to the application components.



Chameleonic-SaaS Framework 295

Some tactics may include application-specific components. For example,
implementation of the Passive Redundancy tactic requires a StateManager com-
ponent to fetch and update the application state. The StateManager being an
application-specific component, has to be a part of the application architecture.
If the application exposes an interface for the StateManager with dynamic bind-
ing then the Passive Redundancy tactic can be added to the application.

To be able to add a tactic, application architecture should provide support
by exposing application-specific tactic elements. This decision to implement such
elements in the application is based on the trade-off between customization
enabled by the tactic and its impact on the development cost. By examining such
support, we can decide whether it is feasible to use a tactic in the present con-
text. An application-specific tactic component may also enable multiple tactics.
For example, StateManager may enable both Passive Redundancy and Rollback.
These components have a higher impact on the ability to customize in compar-
ison with the development cost.

Not all tactics can be added using this approach. For example, tactics related
to quality attributes not discernible at run-time cannot be used here. Similarly,
if the application architecture does not provide support by exposing application-
specific tactic components and the ability to run-time binding, it may not be
possible to add such tactics. The capability of our approach to change qual-
ity attributes depends on the number of tactics supported by the application
architecture for dynamic addition.

These tactic-specific components may have an adverse effect on other qual-
ity attributes. In the case of a large number of such components, they should
be incorporated in only the instances whose tenants demand variations in the
respective qualities. Some tactic components may also have an exclusive rela-
tionship with other tactic components. Thus, to maintain the system easily and
dynamically select the tactics components, we introduce variability in the appli-
cation architecture where tactic components are modeled as variation points.

3 Chameleonic-SaaS Framework

Findings of our investigation on building SaaS applications for diverse and
dynamic environments are formulated as a methodological framework called
Chameleonic-SaaS. Applications built using this framework can provision
instances with different quality attributes to address diverse quality requirements
of SaaS-users. Quality attributes of such instances can also be changed dynami-
cally at run-time, to accommodate dynamic operating environments. This frame-
work abstracts out the responsibilities involved and provides architectural guide-
lines for building such SaaS applications. Steps of the framework (depicted in
Fig. 2) are explained in the following sections.

3.1 Identify QA Scenarios

The first step is to identify the quality requirements of the application that can
vary either at provisioning time or run-time. This task has to be done manually



296 A. Agrawal and T.V. Prabhakar

Fig. 2. Steps of the Chameleonic-SaaS framework

by analyzing the application requirements (using requirement specification or
user stories) and separate out such quality concerns. By this analysis, we identify
a list of quality attributes that can differ in multiple instances of the application
or can vary at run-time in a particular instance. For example, in a SaaS appli-
cation, availability requirements may vary with tenants from highly available to
moderate available. Similarly, a tenant having moderate availability initially, may
require high availability on an environmental change (e.g., peak load, business
event, etc.). The output of this step is a QA-Catalog that includes; (1) Quality
attributes identified by the analysis along with desired range of their values,
and (2) Scenarios for run-time variation in the quality attributes documented as
Quality Attribute Scenarios (QASs) [2].

3.2 Identify Suitable Tactics

In this step, we identify the architectural tactics that can be used to achieve the
desired quality requirements specified in the QA-Catalog. This task is done by
analyzing the tactics repositories [2,16] along with the application architecture
using the methodology specified in Sect. 2.2. Tactics may also have dependen-
cies with each other. For example, Active Redundancy and Passive Redundancy
tactics have an exclusive relationship with each other and cannot be applied
together in a system. Similarly, a tactic for one quality attribute may also have
an impact on other quality attributes. For example, Active Redundancy tactic
of availability can have an adverse impact on performance. This step aims to
identify a set of feasible tactics for every QAS specified in the QA-Catalog by
analyzing the architectural tactics, their relationships with each other and their
impact on the quality attributes. The output of this step is an artifact called
Tactics-Catalog that consists a list of mappings between a quality value and a
set of tactics that can be used to achieve that quality.

3.3 Design Application Architecture

In the previous step, we identified a set of tactics that can be incorporated into
the architecture to handle the desired QASs. These tactics need to be incorpo-
rated in the architecture design in a way such that their existence can vary with
tenants as well as with time for a particular tenant. Instead of designing multiple
architectures of the application, our approach is to introduce variability in the



Chameleonic-SaaS Framework 297

architecture for quality concerns. To model variability, we follow the Orthogonal
Variability Modeling (OVM) [13] approach and model the quality concerns sep-
arately from the application base architecture. Following the OVM approach,
we use the Common Variability Language (CVL) [8] to describe the variability.
CVL is a domain independent language for specifying variability models and has
an execution engine to generate the resolved models i.e. instance architectures.
In this step, we prepare the following models as depicted in Fig. 3. Examples of
these models in our context are presented in the Sect. 4.

Fig. 3. Models in the CVL approach

1. Application Model: This model captures the architectural elements that
are common to all tenants. Our approach is to capture quality related con-
cerns in a separate model and this model only includes the support required
to handle those concerns. This approach gives us the ability to re-use such
quality related concerns and manage them independently from the application
components. Thus, the Application Model includes pure application elements
and application-specific tactics elements (defined in Sect. 2.2). The model can
be described using any domain specific language such as UML.

2. Tactics Model: This model includes pure tactic elements that are agnostic
to the application logic.

3. Service Base Model: In order to describe variability, this model is prepared
by combining the Application Model and the Tactics Model. Apart from the
elements of these two models, this model also includes elements that establish
links between them. This model is considered as a base model to describe
variability.

4. Variability Specification (VSpecs): This model specifies the variability
at an abstract level i.e. irrespective of its mapping to the Service Base Model.
We incorporate the quality attributes and the tactics as first-class concepts
in this model. This approach provides us the ability to choose variations at
the granularity of tactics. Thus, the QA-Catalog and the Tactics-Catalog are
used to describe tactics and relationships between tactics. Such relationships
can be modeled as choice multiplicity or constraints. For example, a tactic
for fault recovery requires a tactic from fault detection. These variations are
captured as a tree structure of choices.



298 A. Agrawal and T.V. Prabhakar

5. Variation Points: This model includes variation points referencing to the
Service Base Model. Variation points are the modifications applied to the
Service Base Model to generate an instance architecture. For example, a vari-
ation point specifies the existence of a tactic component called PingSender.
To re-use the variation points related to pure tactics elements, they can be
combined and represented as Configurable Units. Every variation point has a
binding to exactly one VSpec.

6. Resolution Models: This model resolves VSpecs. For example, a choice
resolution may resolve a choice VSpec. In our case, every QAS is mapped to
a resolution model representing the tactics to be selected for that QAS. Thus,
QA-Catalog is used to generate different resolution models corresponding to
each QAS. These models are used to generate architectures of the instances
i.e. Resolved models.

3.4 Implement Components

In our scenario, tactic components are dynamically added to an existing instance
at run-time. Such operation requires modification in the connections between
application and tactics components. Thus, they should be implemented in such
a way so that their binding can be configured at run-time. Some techniques that
can be used for such implementation are:

– Encapsulate: Components should provide an explicit interface such as an API.
– Defer Binding : Components should defer their binding so that it can be

decided or changed at run-time.

3.5 Build Adaptation Manager

This component is responsible for managing the SaaS application (and its
instances) for adaptation at provisioning time and at run-time. It exposes an
interface to the tenants for two kinds of operations; (1) Provisioning of an
instance for a given set of quality requirements, and (2) Provisioning of a qual-
ity attribute value to an existing instance. Design of the Adaptation Manager is
based on the MAPE-K loop [10] of adaptive systems. Figure 4 depicts run-time
view of a SaaS application that includes the following components:

– Event Monitor: This component is responsible for capturing the events that
demands provisioning of instances or quality attributes. Sensors running on
an instance to monitor its environment can trigger the Event Monitor.

– Architecture Analyzer: On an adaptation request from the Event Monitor,
this component identifies the QAS from QA-Catalog and analyzes the cur-
rent architecture of the concerned instance (stored in Architectural Knowledge
Repository) to check the feasibility of the requested operation.

– Adaptation Planner: On the occurrence of a QAS, Planner component
identifies the desired tactics from the Tactic-Catalog and generate instance
architecture using a Resolution Model. Using the current architecture of the
concerned instance, it plans for changes to be applied to the instance.



Chameleonic-SaaS Framework 299

Fig. 4. A run-time scenario of a SaaS application

– Instance Deployer: This component executes the changes proposed by the
Planner component. To deploy the tactics related component, it uses the
programmable interfaces of underlying cloud resources.

– Architectural Knowledge Repository: This repository contains the archi-
tectural knowledge that is used by other components of the Adaptation Man-
ager such as Application Model, Tactic Model, Variability Model, QA-Catalog,
Tactics-Catalog and current architecture of all instances (Resolution Models).

4 Example

This section presents an example SaaS called MOOC Management System
(MMS) built using the methodology specified by the Chameleonic-SaaS frame-
work. This service facilitates provisioning of application instances to customers
(organizations or individuals) to deliver and manage online courses. Quality
attributes desired by a MMS instance such as capacity, availability and perfor-
mance may vary with the organizations depending on the factors such as the
number of students and credit vs. non-credit courses. For a particular organiza-
tion, quality expectations may also change during run-time on the occurrence of
events such as quizzes/exams and real-time hangout sessions. This study aims to
check the applicability of our approach by identifying QASs and tactics, design-
ing application architecture and deploying the service.



300 A. Agrawal and T.V. Prabhakar

In this study, we focus on the availability quality attribute of the MMS.
Availability is considered as an expensive quality attribute as its realization
through redundant resources increases operational cost. To make the offering
attractive to the customers, MMS facilitates customization of availability values
at provisioning time as well as at run-time. We categorize the range of avail-
ability values offered by the service into four types; (1) Default availability (no
additional support) (2) Low availability, (3) Moderate availability, and (4) High
availability. During provisioning of a new instance, service creates an appropriate
instance architecture according to the desired requirements of the tenant. MMS
also exposes a programmable interface to change availability of a provisioned
instance. Projecting availability as scriptable resources enables the tenant to
become cost-efficient by dynamically varying between the different availability
offerings.

Availability can be provisioned to an instance either on a direct request from
the customer or on the occurrence of an event in the application environment.
We identified four QASs that may demand variations in the availability values of
a running instance. The basic idea of these QASs is that in normal operations,
the application works with low availability values and additional availability is
provisioned only when these is a demand for the same. These QASs are:

– QAS-1: “During a quiz period, the application has high availability”. As
quizzes/exams have time duration associated with them, the application is
expected to have high availability to avoid or at least reduce any downtime.

– QAS-2: “If new course material is released, the application has moderate
availability”. It has been observed that release of course material (stimu-
lus) results in a large number of students accessing the application. Down-
time during such periods should be avoided. However, it is not as critical as
quizzes/exams.

– QAS-3: “In normal operations, the application has low availability”. In the
absence of any critical events, the application is expected to have low avail-
ability.

– QAS-4: “If the course is migrated to read-only (self-paced) mode, the appli-
cation has default availability”. The self-paced mode is a low priority scenario,
and the application does not need any additional support for availability (low
availability) to have minimum operational cost.

In our example, these requirements are handled by realization of three tactics;
Ping & Echo, Cold Spare and Passive Redundancy [2]. Figure 5 depicts mapping
of these tactics to their respective quality requirements along with the tactics
components used to realize them in the application. Realization of Cold Spare
and Passive Redundancy requires application to expose an application-specific
tactic component called State Manager to be able to get and set application
state.

Figure 6 depicts the Service Base Model along with variation points bound to
the VSpecs. The Service Base Model is prepared by integrating the Application
Model and the Tactic Model. In the VSpecs, availability is modeled as an optional



Chameleonic-SaaS Framework 301

Fig. 5. Availability requirements and the corresponding tactics

Fig. 6. Service base model with variation points bound to the VSpecs

choice that further has two child choices; FaultDetection and FaultRecovery.
There is also a constraint specifying that FaultRecovery requires FaultDetection
to be present in the instance. FaultDetection has PingEcho as a child choice that
is linked to various Variation Points relating to the existence of components
(PingSender, PingReceiver, etc.) and links. Figure 7 depicts resolution model for
QAS-1 where PassiveRedundancy choice is True but ColdSpare is False. Figure 8
depicts architectures of the various instances generated by the service depending
upon the resolution models.

For variation triggered by the events in the application environment, a sensor
to monitor events - course material release, quiz period and self-pace mode - is
implemented in the application that triggers the Event Monitor component of



302 A. Agrawal and T.V. Prabhakar

Fig. 7. Resolution model for QAS-1 (PingEcho and PassiveRedundancy)

Fig. 8. Architectures generated by the Adaptation Manager depending on the QAS

the Adaptation Manager. These events are analyzed to check occurrence of any
QAS.Adaptation Manager also exposes an API through which a customer can
directly request for an availability value (default, low, moderate, or high) to
an existing instance. Depending upon the current architecture of the instance
and the desired QAS, Adaptation Manager modifies the instance architecture by
adding or removing components.

Figure 9 presents experiments results conducted by dynamically provisioning
the availability values to a MMS instance. In our setup, service is offered by cre-
ating MMS instance over Linux containers (LXC). LXC containers were setup on
a virtual machine (1CPU Core, 2 GB RAM) running Ubuntu operating system.
For deployment of tactics components, we used the Puppet tool [18]. The results
show that adding quality to an existing instance is fast due to quick creation
of containers. Also, Passive Redundancy has less fault recovery time compared



Chameleonic-SaaS Framework 303

to Cold Spare tactic as the later requires creating a new container to recover.
These timings directly depend on our execution environment and should not be
used as benchmarks.

Fig. 9. Experiment results for availability scenarios in MMS (a) Provisioning time in
adding or removing the QASs, and (b) Availability benefits in terms of time consumed
in fault detection and fault recovery

5 Related Work

The demand for tenant-specific customization of a service has been highlighted
by several researchers [1,12,17]. Here, customization is desired in features, work-
flow, user-interface, etc., and facilitated using the virtualization techniques [4].
In context of SaaS applications, researchers have identified some architectural
patterns such as Multi-tenancy and Multi-instance and discussed their impact on
the quality attributes [4,6,14]. Koziolek [11] discussed various quality require-
ments from a SaaS such as resource sharing, scalability, maintainability, cus-
tomizability, and usability. The work also includes an architectural style called
SPOSAD based on multi-tier style. Software engineering issues with developing
SaaS applications have also been discussed [5].

Variability has been presented as a quality attribute of architecture [2] and
has been extensively used in Product Line Engineering (PLE). However, vari-
ability in quality attributes (performance variability, availability variability, etc.)
has not been much used and requires more explorations [7].

Several researchers have proposed techniques to design a SaaS as a Product
Line Architecture by introducing variability in the architecture [1,15,17]. Matar
et al. [1] discussed different kinds of variability for a SaaS such as application vari-
ability, business process variability and provisioning variability. However, most
of these works are focused only on the variations in the feature models. These
approaches are also not able to handle the environmental changes demanding
variations only in quality attributes. Horcas et al. [9] presented a technique to
inject functional quality attributes (that results in functional components) in an
application. In our work, our focus is on varying only the quality attributes of a
SaaS instance, by changing architectural decisions at a tactic level granularity.



304 A. Agrawal and T.V. Prabhakar

6 Discussion

Quality attributes exposed as scriptable resources enable variation in their values
for a running instance. As run-time quality attributes have an impact on the
operational cost of the instance, a tenant can exploit such resources to achieve
cost-efficiency by dynamically migrating between different offerings of quality
attributes on demand basis.

Modeling quality related concerns separately from the functional concerns
provides reusability of the quality concerns across multiple applications, and
modifiability of these concerns. For example, Tactics Model can be shared
between multiple applications. Similarly, in our MMS application, we can add
a new tactic such as Rollback without modifying the Application Model as the
support required by this new tactic (StateManager) is already exposed by the
Application Model. In our approach, all instances of the SaaS are generated
using a single architecture which makes the maintenance easier compared to the
approach where every instance is designed and build separately.

In our framework, tactics are modeled as first-class concepts in the Variability
Model. As tactics are standard validated tools to improve quality attributes, such
modeling helps in evaluating the variations in an instance architecture in terms
of their impact on the quality attributes.

The framework only considers variations in the architectural decisions of an
instance, and does not cover other decisions such as deployment-level decisions
(e.g., sizing of hardware resources, etc.), implementation-level details (e.g., code,
logging, etc.), or application functionality. We do not aim to replace the other
techniques but to augment their capability to reach more diverse levels of quality
attributes. In a holistic approach, variability at different levels (architecture,
deployment, implementation, features) can be combined.

Another limitation of our work is that we presented a methodological frame-
work where several steps of the framework like Identify Tactics, merging the
Application Model with the Tactic Model, etc. are not automated. In this paper,
we explored adding tactics at the top level of application architecture. How-
ever, variations may be desired at a lower level architecture element such as a
microservice. Our framework can be further extended to handle such scenarios.

Not all quality attributes can be modeled as scriptable resources. For exam-
ple, quality attributes not discernible at run-time such as modifiability cannot
be changed using our approach. The capability of our approach to change qual-
ity attributes depends on the number of tactics supported by the application
architecture for dynamic addition (in terms of application-specific tactic compo-
nents exposed by the application). Our approach has an impact on design and
development cost of the application. Re-using the tactics related concerns can
help in reducing such overhead.

7 Conclusion and Future Work

In this paper, we presented an approach to offer quality attributes of a SaaS
application as scriptable resources. To build such an application, we need to



Chameleonic-SaaS Framework 305

identify the suitable tactic-level architectural decisions, introduce variability in
the architecture and incorporate the ability to change an instance architecture
dynamically at run-time. In our methodological framework, tactics are modeled
as first-class concepts in the application architecture. This enables to articulate
the impact of architectural variations on the quality attributes. Our example
MOOC application facilitates a tenant to vary its availability values between
default, low, moderate, and high. The current version of the Chameleonic-SaaS
framework is applicable only for a multi-instance SaaS. To build a multi-tenant
SaaS with the ability to dynamically change quality attributes of tenants can be
further explored. To transform an existing application to a SaaS would also be
an interesting problem especially in the scenarios when the application does not
provide any direct support for adding the tactics externally.

Acknowledgment. The authors gratefully acknowledge the financial support from
Tata Consultancy Services and MHRD, Govt. of India for this work.

References

1. Abu Matar, M., Mizouni, R., Alzahmi, S.: Towards software product lines based
cloud architectures. In: 2014 IEEE International Conference on Cloud Engineering
(IC2E), pp. 117–126, March 2014

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional, Boston (2012)

3. Benlian, A., Hess, T.: Opportunities and risks of software-as-a-service: Findings
from a survey of IT executives. Decis. Support Syst. 52(1), 232–246 (2011)

4. Bezemer, C.P., Zaidman, A.: Multi-tenant SaaS applications: maintenance dream
or nightmare? In: Proceedings of the Joint ERCIM Workshop on Software Evo-
lution (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), IWPSE-EVOL 2010, pp. 88–92. ACM, New York (2010)

5. Cai, H., Wang, N., Zhou, M.J.: A transparent approach of enabling saas multi-
tenancy in the cloud. In: 2010 6th World Congress on Services (SERVICES-1), pp.
40–47, July 2010

6. Frederick Chong, G.C., Wolter, R.: Multi-tenant data architecture, June 2006.
http://msdn.microsoft.com/en-us/library/aa479086.aspx

7. Galster, M.: Architecting for variability in quality attributes of software systems.
In: Proceedings of the 2015 European Conference on Software Architecture Work-
shops, ECSAW 2015, pp. 23:1–23:4. ACM, New York (2015)

8. Haugen, O., et al.: Common variability language (CVL). OMG Submission (2012)
9. Horcas, J.M., Pinto, M., Fuentes, L.: Injecting quality attributes into software

architectures with the common variability language. In: Proceedings of the 17th
International ACM Sigsoft Symposium on Component-based Software Engineering,
CBSE 2014, pp. 35–44. ACM, New York (2014)

10. Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A practical guide to the
to the IBM autonomic computing toolkit, April 2004. http://www.redbooks.ibm.
com/redbooks/pdfs/sg246635.pdf

11. Koziolek, H.: The sposad architectural style for multi-tenant software applications.
In: 2011 9th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pp. 320–327, June 2011

http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf


306 A. Agrawal and T.V. Prabhakar

12. La, H.J., Kim, S.D.: A systematic process for developing high quality SaaS cloud
services. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol.
5931, pp. 278–289. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10665-1 25

13. Metzger, A., Pohl, K.: Software product line engineering and variability manage-
ment: achievements and challenges. In: Proceedings of the on Future of Software
Engineering, FOSE 2014, pp. 70–84. ACM, New York (2014)

14. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining different multi-tenancy
patterns in service-oriented applications. In: Proceedings of the 13th IEEE Inter-
national Conference on Enterprise Distributed Object Computing, EDOC 2009,
pp. 108–117. IEEE Press, Piscataway (2009)

15. Ruehl, S.T., Andelfinger, U.: Applying software product lines to create customiz-
able software-as-a-service applications. In: Proceedings of the 15th International
Software Product Line Conference, SPLC 2011, vol. 2, pp. 16:1–16:4. ACM,
New York (2011)

16. Scott, J., Kazman, R.: Realizing and refining architectural tactics: availability,
Technical report, CMU/SEI-2009-TR-006 ESC-TR-2009-006 (2009)

17. Tekinerdogan, B., Ozturk, K., Dogru, A.: Modeling and reasoning about design
alternatives of software as a service architectures. In: 2011 9th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 312–319, June 2011

18. Tool, P.: Puppet tool (retrieved, April 2016). http://puppetlabs.com/

http://dx.doi.org/10.1007/978-3-642-10665-1_25
http://puppetlabs.com/

	Towards a Framework for Building SaaS Applications Operating in Diverse and Dynamic Environments
	1 Introduction
	2 Problem Statement and Approach
	2.1 Problem Statement
	2.2 Approach

	3 Chameleonic-SaaS Framework
	3.1 Identify QA Scenarios
	3.2 Identify Suitable Tactics
	3.3 Design Application Architecture
	3.4 Implement Components
	3.5 Build Adaptation Manager

	4 Example
	5 Related Work
	6 Discussion
	7 Conclusion and Future Work
	References


