
Architecture Enforcement Concerns
and Activities - An Expert Study

Sandra Schröder(B), Matthias Riebisch, and Mohamed Soliman

Department of Informatics, University of Hamburg,
Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany

{schroeder,riebisch,soliman}@informatik.uni-hamburg.de

Abstract. Software architecture provides the high-level design of soft-
ware systems with the most critical decisions. The source code of a system
has to conform to the architectural decisions to guarantee the systems’
success in terms of quality properties. Therefore, architects have to con-
tinuously ensure that architecture decisions are implemented correctly
to prevent architecture erosion. This is the main goal of Architecture
Enforcement. For an effective enforcement, architects have to be aware of
the most important enforcement concerns and activities. Unfortunately,
current state of the art does not provide a concrete structure on how
the process of architecture enforcement is actually applied in industry.
Therefore, we conducted an empirical study in order to gain insight in
the industrial practice of architecture enforcement. For this, we inter-
viewed 12 experienced software architects from different companies. As a
result, we identified the most important concerns that software architects
care about during architecture enforcement. Additionally, we investigated
which activities architects usually apply in order to enforce those concerns.

Keywords: Software architecture · Architecture enforcement · Software
architecture in industry · Empirical study

1 Introduction

Software architecture [1] builds the basis for the high-level design for a software
system and provides the basis for its implementation. It defines the fundamental
rules and guidelines that developers have to follow to ensure achieving quality
attributes such as performance or security.

In software engineering literature and community, the role of the architect is
widely discussed, especially in the context of agile development processes. For
example, McBride [14] defined the role of the architect as being “responsible
for the design and technological decisions in the software development process”.
However, the software architect role [7,12] is not only limited to making architec-
ture design decisions [10]. Additionally, the software architect is also responsible
for “sharing the results of the decision making with the stakeholders and the
project team, and getting them accepted” [23]. This task is called Architecture
Enforcement.
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 247–262, 2016.
DOI: 10.1007/978-3-319-48992-6 19

248 S. Schröder et al.

During implementation or maintenance activities, developers could intention-
ally or accidentally deviate from the prescribed architecture. This may result in
the degradation of architectural quality. Consequently, the architect needs to pro-
actively care about the adherence of the implementation to the chosen architec-
ture decisions as a necessary part of the architecture enforcement task. For this,
he needs to detect implementation decisions made by developers that indicate
architectural violations, i.e. low-level decisions that do not follow the prescribed
architectural constraints. The accumulation of architectural violations results in
a phenomenon called architecture erosion [17,20].

Architecture enforcement faces several challenges such as the high effort
required to assess the adherence of the implementation to architecture decisions,
as well as the social and technical complexities in dealing with the development
team. Facing these challenges requires methods and tools to support the archi-
tect during the architecture enforcement activities. To the best of our knowledge
there is no detailed study about what are the necessary responsibilities and con-
cerns related with architecture enforcement and about how architects actually
monitor an implementation of architecture decisions.

As a starting point to achieve this goal, we conducted an empirical study with
the purpose of understanding the process of architecture enforcement in indus-
try. We interviewed 12 experienced architects from various companies. Based on
their answers, we elaborated the most important concerns that are targeted by
software architects during architecture enforcement, together with the related
architects’ activities and Best Practices. By defining the most important con-
cerns, we provide the basis for focusing architecture enforcement on the essential
aspects.

The following two research questions guided the empirical study:

– RQ1: What are the concerns which architects consider during the
enforcement process? With this question we investigate which categories
of concerns software architects usually consider important. This will give us
further directions for our research activities in terms of detection and pri-
oritization of architectural violations concerning decisions that are especially
important for software practitioners.

– RQ2: What are the activities performed by the architects in order
to enforce and validate those concerns? The answer to this question
gives us a basis for developing appropriate approaches that best integrate
with methods that are currently used in practice in order to gain acceptance
by practitioners for new approaches.

2 Background and Related Work

In this section we present topics that are related with our study. We first present
related work concerning architecture decision enforcement. After that we present
related studies that investigate the concerns and activities of software architects
and discuss to which degree those studies consider architecture enforcement.

Architecture Enforcement Concerns and Activities - An Expert Study 249

2.1 Architecture Decision Enforcement

Zimmermann et al. propose a model-driven approach called decision injection in
order to enforce the correct implementation of decisions in the source code [23].
Jansen et al. implemented a tool that allows the management of architectural
decisions [11]. Among other things Jansen et al. emphasize that the tool should
provide appropriate support for checking the implementation against architec-
tural decisions. The tool implemented by the authors warns the architect or the
developer if the team ignores a specific decision or introduces a violation against
a decision. However, it is not clear what type of decision violations are detected
with this tool. In order to control erosion of architecture decisions, traceability
approaches as proposed by Mirakhorli and Cleland-Huang [15] can be applied.
Their approach allows tracing architectural tactics to architecture-relevant pieces
of code and warns the developer if he/she changes code of this significant part.

Software architecture conformance checking is another enforcement method.
It allows the enforcement of the modular structure and dependencies of the soft-
ware system. Well-known approaches encompass reflexion modeling [16], depen-
dency structure matrices [18], design tests [2], or domain specific languages [3,21]
- to name a few. However, static conformance checking methods are restricted
to the modular structure and are not able to enforce arbitrary types of deci-
sions, e.g. for checking constraints of architectural styles or the adherence to the
separation of concerns principle.

2.2 Architects’ Concerns and Activities During Enforcement

In [5] the authors conducted an empirical study about the architects’ concerns.
They present some interesting findings. For example they found that “People
quality is as important as structure quality”. This is also confirmed by our study,
but we investigate in a more detailed fashion which are the actual dimensions
of “people quality”. Additionally, the authors’ understanding about “architects’
concerns” is a bit more general than ours. While they actually regard all the
phases (i.e. architecture analysis, evaluation, architecture design, realization etc.)
during the software engineering process as architects’ concerns, we especially
focus on the concerns that architects have corresponding to the architecture
enforcement process.

The study of Caracciolo et al. [4] is similar to ours. They investigated how
quality attributes are specified and validated by software architects and there-
fore also investigated what are important concerns for architects in terms of
quality attributes. They also conducted expert interviews as part of their study.
They identified several quality attributes that are important to software archi-
tects. Nevertheless, they solely concentrate on quality attributes and they do
not especially focus on architectural enforcement and by which activities it is
achieved.

250 S. Schröder et al.

3 Study Design

In our study we followed a qualitative research approach by applying a process
with two main phases: Practitioners Interviews, and Literature Categories’ Inte-
gration. The main purpose of the first phase is to explore the important aspects
in the current state of the practice regarding architecture enforcement, while
the second phase complements and relates the interviews’ findings with existing
concepts from the current state of the art. The two phases will be explained in
the following sub-sections.

3.1 Phase 1: Practitioners Interviews

In order to collect data, we used expert interviews with open questions. Those
interviews are an integral part of this type of research and are commonly used
in order to generate new knowledge about a specific topic. An interview guide
helped us to focus on the research questions, but also let the participants speak
freely about their experiences. In this way, we could get as many examples as pos-
sible about architects’ concerns and architectural rules and the methods archi-
tects use in the context of architecture enforcement. We followed the interviews
with an inductive content analysis for the interview transcripts, from which we
were able to derive our concepts.

Selection of Interview Participants. As participants of the study, we tar-
geted experienced software architects from industry. Those architects come from
different companies from Germany and Switzerland. All study participants had
at least a master’s degree or a similar qualification in computer science or related
fields, e.g. electrical engineering or physics. In total, we interviewed 12 architects
from 11 different companies. The interview participants are listed in Table 1. The

Table 1. List of study participants, their domain and their years of experience.

Domain Role(s) Exp. (years)

A Enterprise (application, integration) Software architect >15

B Enterprise Software architect consulting 10–15

C Enterprise Software architect >20

D Logistic/enterprise Software architect agile test engineer 10

E Accounting/enterprise (migration) Software architect section manager 10–15

F Enterprise Software architect lead developer 10–15

G Enterprise/embedded Software architect coach 10–15

H Insurance/enterprise Software architect project manager 5–10

I Medical Software architect software developer 5–10

J Government/enterprise (application) Software architect consulting 10

K Logistic/enterprise Software architect 5–10

L Banking, control systems, enterprise Software architect project manager >20

Architecture Enforcement Concerns and Activities - An Expert Study 251

professional experience of the participants ranged from 5 to over 20 years, with
an average of 13 years. They worked in teams of size varying between 2 and
200 developers (team size not shown in the table). All of them work as a soft-
ware architect or made significant practical experience in architectural design.
Other participants are also responsible for project management tasks. The main
criteria of choosing participants for this study was that architects should be
closely involved with the implementation of the software architecture, for exam-
ple in code reviews, and that they consider the maintenance of architectures
with a long-term perspective. That means that architects should not solely par-
ticipate in the modeling phase, but also in the implementation and maintenance
phase. We did not focus on any specific domains, since we believe that architec-
ture enforcement problem is a relevant and well-known problem in almost every
domain.

Interview Guide Design and Conduction of the Interviews. The inter-
view guide was designed for a semi-structured interview containing open ques-
tions that were chosen according to the research questions. The method helps
to gain a possibly comprehensive overview of the state of the practice [9]. As we
wanted to collect as much new knowledge as possible, we let the participants
talk freely about their experiences concerning architectural enforcement.

The interview guide contains three parts. In the first part, we wanted to clas-
sify the experiences and background of the participants such as the domain in
which they are working, years of experience, the team size and the development
process (agile, waterfall etc.). The second part is related to the first research
question. In this interview part we let the experts talk freely about their expe-
riences concerning violations against decisions and important concerns. In the
third part, we wanted to discover methods that are used by the architects in
order to enforce architecture. The detailed interview guide is given in the sup-
plementary and can be accessed via the paper’s website1. When presenting our
study results in the next sections, we are going to present some of the questions
from the guide and the corresponding responses of the participants.

The interviews were conducted personally or via Skype by the same person
and were recorded on agreements using a Dictaphone on the interviewers laptop
or a call recorder for Skype conversations. The twelve interviews took between 40
and 90 min and 56 min on average. The interview guide directed the interviews,
so that no important questions were missed concerning the research goals.

Data Analysis Phase. For further analyses, all interviews were transcribed
word-by-word. After transcribing the interviews and checking them for cor-
rectness and completeness, we followed an inductive method for data analysis.
Instead of defining codes before analyzing the interviews, we let the categories
directly emerge from the data. For this, we first adapted Open Coding [19]. In
this step phenomena in the data are identified and labeled using a code that

1 http://swk-www.informatik.uni-hamburg.de/∼schroeder/ECSA2016/.

http://swk-www.informatik.uni-hamburg.de/~schroeder/ECSA2016/

252 S. Schröder et al.

summarizes the meaning of the data. During this process, emerging codes are
compared with earlier ones in order to find similarities and maybe to merge
similar codes. Then we compared codes with each other and aggregated them
where possible to a higher level category. We used AtlasTi2 in order to support
the codification process.

3.2 Phase 2: Literature Categories’ Integration

In this phase, we integrate our findings from Phase 1 with existing categories in
the current state of the art. We analyzed existing related work (see Sect. 2), and
identified categories related to architecture enforcement. The analysis has been
done independently of the concepts derived from the interviews. We combined
deductively the results of inductive content analysis (Phase 1) with the identified
categories from existing literature. We used Mind Mapping in order to visualize
the categories. By comparing the categories derived from both phases, we found
that some of the categories derived by the literature review act as high level
categories for inductively derived categories. On the other hand, some of the
inductive categories could not be related to existing categories from the literature
review. Section 4 presents our identified categories.

4 Results

Because of space limitations we discuss only the most interesting aspects in more
detail. The complete discussion with the data used is provided as supplementary
material and can be accessed through the paper’s website (see footnote 1).

4.1 Enforcement Concerns

As Enforcement Concerns (Fig. 1) we summarized all aspects that have to be
assessed by architects to ensure the correct implementation of decisions. Figure 1
gives an overview over the identified concerns from the interviews.

Macro and Micro Architecture Decisions. When talking about software
architecture, it was interesting that experts differentiate basically between deci-
sions in two different views, namely macro architecture and micro architecture
[22]. Other terms like strategic or global (i.e. macro) and tactical or local (i.e.
micro) views were used. The architect can decide which decisions are located in
the macro architecture, and which decisions are left open for the development
team. In this way the architect can decide how much freedom he gives teams in
designing the micro architecture. The macro architecture represents the general
idea (or “philosophy”, the “spirit”, the “big picture” or metaphor) of the system
and its fundamental and most critical architectural decisions, e.g. on structures,
components, data stores, communication style or architectural styles: “. . . it is
2 http://atlasti.com/.

http://atlasti.com/

Architecture Enforcement Concerns and Activities - An Expert Study 253

important how you regard it. For me there do exist basically two views about
how software is built. First you have the global view [. . .] There I decide how
I design my software, for example using Domain Oriented Design or SOA.”
(code: two different views of architecture, Participant D) and another partici-
pant reported: “. . . then we have the micro architecture, this is the architecture
within each team. A team can decide for its own component for which it is respon-
sible which libraries it wants to use.” (code: two different views of architecture,
macro architecture, micro architecture; Participant K). Those two views define
what architects basically consider as important for architecture enforcement in
different ways. The architects report to be concerned with macro architecture
issues and consider the micro architecture as developers’ responsibility, except
the coding style because of its relevance for maintainability: “. . . architecture is
also present in a single code statement. Code styles belong to it. Or simple things
like how do I define an interface. . . ” (code: micro architecture, Participant J).

Fig. 1. Overview of the identified categories of Enforcement Concerns from the inter-
views and the corresponding participant. Concerns marked with an asterisk are not
explained in detail in this paper but are available in the supplementary on the paper’s
website (see footnote 1).

Appropriate Use of Technology. Technology was also mentioned as an
important concern. The architect may not check technologies used within a single
component, but may for example enforce the technology for the communication
style between several components. Since technologies like frameworks or libraries
offer a lot of complex functionality, software architects also monitor the way how
those technologies are used by developers. One architect stated that developers
can easily violate important architecture rules due to this complexity. Some
architects reported that developers often tend to use a lot of tools and technolo-
gies that are not necessary: “. . . aim for technologies is the biggest problem. And
if you like to use those frameworks because they are providing gross things, but
those gross things cannot be controlled. . . ” (code: aim for technologies, Partici-
pant J). They stated that software architecture is likely to erode where too much
technology is used, because this part of code is hard too understand (see also
“Support for Evolution and Maintenance”). This is why some experts empha-
sized it is important to control what kind of technologies are used.

254 S. Schröder et al.

Patterns. The architect may want to ensure that patterns are implemented
accordingly. Patterns related with the macro architecture view have to be
enforced and validated, patterns on the micro level are mostly considered as
a developers’ concern. But sometimes, pattern implementations are also checked
by architects on the micro architecture level, e.g. in order to discover what types
of design and architecture patterns are implemented and if they fit in the spe-
cific context: “which patterns are used and in which context. Are they only used
just because I have seen it in a book or because I wanted to try it or is it really
reasonable at this place. . . ” (code: pattern suitability, Participant C).

Visibility of Domain Concepts in Code. Some experts emphasize a clear
representation of domain concepts in the architecture, e.g. by expressing a map-
ping between them. For this, some architect strive to use a domain oriented ter-
minology, that means using terms and names adapted from the business domain:
“. . . I like to be guided by the domain instead of using technical terms [. . .] both
can work, but from my experience using domain oriented terms is easier to under-
stand. . . ” (code: domain oriented terminology, Participant J). This additionally
helps to talk with domain experts about the software design and to easier locate
where changes have to be made in case of new or adapted requirements.

Visibility of Architecture in Code. Some architects consider it as important
to make the architecture visible in the code, e.g. by using appropriate naming
conventions and package structure: “. . . therefore it is important that the archi-
tecture is recognizable in the source code. This is absolutely essential for the
structure of the project.” (code: making architecture visible in the code, Partic-
ipant J). This is helpful for tools like Sonargraph3 that for example use naming
conventions in order to highlight layers. It was also mentioned to be useful during
code inspections in order to easily locate architecture decisions in code. This con-
cern is similar to the idea using an architecturally-evident coding style suggested
by Fairbanks [6].

Support for Evolution and Maintenance. A challenge in constructing long-
lived system is to make decisions that support the software system’s ability to
easily be adapted to future changes, that is, we need support for evolution and
maintenance during the entire software lifecycle.

– Code Comprehensibility was explicitly mentioned as a concern, on the
basis that comprehensibility helps preventing architectural violations: “if you
strictly follow this approach then you have very readable code and normally
readable Code - from my experience - tends to be stable that is conform con-
cerning architecture and does not have any [architecture] violations. . . ” (code:
code comprehensibility, code comprehensibility supports architecture confor-
mance; Participant J).

3 https://www.hello2morrow.com/products/sonargraph.

https://www.hello2morrow.com/products/sonargraph

Architecture Enforcement Concerns and Activities - An Expert Study 255

– Design for Testability. Another interesting aspect that might be surprising
was that architects are strongly concerned with tests. Systems that cannot be
properly tested, cannot be changed successfully since software modifications
during maintenance and implementation activities may lead to errors. That is
why testability is an important concern especially in the context of evolution
and maintenance. Participants aim a high test coverage in order to avoid
architectural violations: “. . . in case there exist only a few tests, then it is
likely people do not build it correctly. This leads to incomprehensible code and
consequently to architectural violations.” (test coverage supports architecture
conformance, Participant J). Tests are therefore an important concern for
enforcement.

4.2 Architects’ Activities for Enforcement

During the interview we asked all participants the question: “How do you ensure
that your architecture and your concerns are implemented as intended? Do you
follow any strategies?”. The result of this question is a categorization of activities
that architects apply in order to enforce and validate their architecture decisions.
Figure 2 shows the identified categories. In the following we describe the two cat-
egories Coaching and Supporting, and Assessing the Decisions’ Implementation
in more detail. Moreover we discovered several dimensions that are important for
those activities. The complete mindmap with a mapping of codes and interview
statements is provided in the supplementary (see footnote 1).

Fig. 2. Identified categories of enforcement activities.

We discovered the need for a distinction between situations with more or
less equal architectural skills among the development team, as typical for agile
processes, and situations with a leading role of the architect, frequently referred
to as “architecture-first” approach. The latter is for example driven by limited
skills of developers, or by stronger constraints and higher risks of the project. The
first situation was mentioned by participant B, and the second one by participant
H. In both situations, enforcement is necessary with different priorities, affecting
the balance between the different dimensions of coaching and supporting (see
below) on the one side, and assessment on the other side.

(1) Coaching and Supporting. It is important that architects provide guid-
ance during the implementation phase in order to support developers in their

256 S. Schröder et al.

programming activities. Coaching was mentioned to be highly important, both
for explanation and motivation. Both is crucial to provide a clear picture and a
shared understanding for architecture solutions, the corresponding design deci-
sions, together with its goals, motivation and benefits: “I have to explain [the
developers] the term “architecture” and they have to internalize and understand
what are the goals of architectural design and what has to be supported by the
architecture. . . ” (code: architect as a coach, Participant B) or “. . . as an archi-
tect you are committed to teach the developers and explain them what it [the
architecture] is about. . . ” (code: architect as a coach, Participant G). A com-
bination of coaching and supporting can be done in several ways. For example,
the architect can provide architectural templates and prototypes in order
to guide how a specific decision has to be implemented or a specific technol-
ogy has to be used, and he provides support by pre-fabricated building blocks.
Architectural prototyping is another effective technique that combines support
for developers with early identification and solution of high-risk aspects dur-
ing early stages of the development process. Those templates can also be used
to provide a reference during the implementation for the developers, that is
for coaching and guiding purposes: “. . . you build something as an example and
present it to the developers. . . ” (code: architectural templates, Participant A).
It was emphasized by participant A, that those templates should be built pre-
cisely and carefully according to architectural decisions and state-of-the-art best
practices. Otherwise developers could violate the underlying decisions without
knowing it because the architect did not show it correctly.

Dimensions for Feedback and Coaching. During the enforcement activities
it is important to consider the different dimensions for feedback and coaching
in an integrated way. Both dimensions emphasize that personal quality is an
important factor in architecture enforcement. If those dimensions are not appro-
priately addressed during enforcement activities, it is likely that concerns as
presented in the previous sections cannot be satisfied. We found the following
dimensions during the analysis:

– Skills, Experiences, Programming Habits. Every developer has a dif-
ferent set of skills and experiences, e.g. from previous projects and from his
education. Those qualities and together with personal programming habits
influence greatly how developers make low-level decisions and how they imple-
ment architectural decisions. The low-level decisions could violate important
architecture decisions: “. . . and if I leave it to the developers then it does not
work since every developer has a different background and experiences. When I
tell them that they should start with programming, then this leads to chaos. . . ”
(code: programming habits and experience of developers).

– Architecture acceptance. We define architecture acceptance as the degree
to which a programmer is willing to implement the prescribed architec-
ture. The architect should always be “. . . anxious for getting the architecture
accepted by the developers and that they [the developers] want to implement it

Architecture Enforcement Concerns and Activities - An Expert Study 257

this way.” (codes: encourage acceptance of developers for architecture, willing-
ness; Participant B). The architects have to encourage developers to achieve
the architecture’s acceptance, otherwise it is likely that architecture rules are
not followed and consequently violated.

– Architecture awareness. Describes the consciousness of developers regard-
ing the prescribed architecture, its rationale and its goals that have to be
achieved with it: “skilled people do automatically know how they ensure archi-
tecture, because they know, why it should be like that. Then - without help -
developers have the architecture in their mind and recognize if architectural
goals are ensured or not.” (codes: architecture awareness, personal quality;
Participant B). If developers are not aware of architecture goals it might
happen that they unintentionally violate the architecture. The architect is
responsible for achieving and encouraging architecture awareness appropri-
ately; coaching and supporting are activities to address this dimension.

– Shared understanding. There must be a coherence of concepts between the
members of a team about how an architecture looks like. Mostly, an architec-
ture is constructed in the mind of the developers and the architects – either
supported by models, diagrams or by speech – and it is important that all of
them have the same imagination about the architecture in their mind: “a com-
mon picture - keyword modeling - is very important here, to have a starting
point and to have it started in the same direction” (code: common under-
standing of architecture, using models for comprehension, Participant B). If a
shared understanding about the architecture is achieved it is more likely that
architectural rules are ensured and followed by the developers.

(2) Assessing the Decisions’ Implementation. During the interviews we
asked all participants the following question: “What are the specific steps when
you inspect the source code in order to assess the implementation of the archi-
tecture decisions?” We developed the following categories of activities that are
strongly interwoven.

– Code Review. We found that code review is a consent activity for assessing
the decisions’ implementation. One architect stated that this activity “is sim-
ilar to the comprehension process of a developer who is new in the team and
tries to understand how the software systems works. But developers and archi-
tects have each different goals during this process. The developer mainly wants
to implement new features, while the architect wants to check architecture con-
formance” (participant C). Architects form a mental model of a software
system and its relation to implementation based on architectural decisions.
By doing this they have specific imagination about what they expect in the
code: “. . . a picture about if the components are appropriate, if the modules are
implemented according to how it was intended. . . ” (Code: expectation about
intended design, Participant C). In this process, software architects often ask
questions about the observed software systems that entail exploration and
navigation, such as who implemented this component and where is a spe-
cific feature, architectural pattern, design pattern, technology implemented or

258 S. Schröder et al.

used. It is then evaluated informally if an implementation roughly represents
this mental model. During this process, code analysis tools can be used as a
source of information: “. . . what you can do is, you run a code analysis tool
and then you are looking at the spots that are interesting. . . ” (code: finding
hot spots, results from code analysis tools as first impression, Participant K).

– Repository Mining. One expert uses review systems in order to review the
implementation concerning architecture issues. In this way it is possible to
investigate what type of changes were applied on a set of classes and espe-
cially who did the change. Moreover they can trace back how an architecture
violation was introduced. They reproduce the steps of implementation and
try to understand rationale and code-level decisions behind past changes. If
an architect knows about the individual skills in a team, he can focus source
code inspections on changes by developers with less skills, inexperienced, or
new to a project. In this way he can raise his overall productivity as well
as reducing the risks: “. . . you know basically who works on which parts, this
means if I know from experience that I have to have a closer look on what he or
she has created then it is possible that I have to inspect each class [. . .] because
he or she can create an unusual solution on the most unobtrusive parts” (code:
focused inspection based on individual skills of developer, Participant C).

– Model-Code-Comparison. We asked the participants how and if the archi-
tecture documentation and models are used in assessments. Some experts (B,
I, J, L) use documented diagrams and models for conformance validation
between implemented software system and architecture. For this, they use
UML class diagrams, sequence diagrams or component diagrams and compare
them with models extracted from the underlying implementation. The com-
parison is performed manually. For example they check if a message exchange
between components complies to the prescribed behavior by comparing UML
sequence diagrams extracted from source code with prescribed sequence dia-
grams.

– Automatic Validation of Architectural Constraints. We also asked
architects to which degree they formalize architectural aspects in order to
allow a formal validation of a software architecture. We found that architects
seem not to formalize to a great extent. Some experts formalize and evaluate
the adherence to the layer pattern or general module dependency rules auto-
matically by using tools such as Sonargraph. Additionally software architects
define rules concerning such as naming conventions, thresholds for complex-
ity metrics or other low-level rules that can be performed automatically by
tools like Sonarqube or Checkstyle. Other aspects of software architectures,
for example other architectural patterns, are not formalized.

5 Discussion

In this section we discuss the results of the study and additionally impor-
tant implications of these results for future approaches concerning architecture
enforcement.

Architecture Enforcement Concerns and Activities - An Expert Study 259

Social Dimensions of Architecture Enforcement. Based on our findings
we can summarize that experienced practitioners understand enforcement as
a supportive process for developers, instead of an authoritative, dictating or
leadership-like process. They actively want to involve developers, and gather
feedback on the architectural solutions. They strive a shared understanding
about the software architecture. While motivating, encouraging and supporting
developers in implementing the architecture, architects are open for revisions
of their architecture solutions to minimize the risks of malfunction, misunder-
standings or failures. Moreover, architects need to be anxious for encouraging
acceptance and architecture awareness of the developers to decrease the proba-
bility of intentional and unintentional architecture violations. We propose that
future approaches and tools should also respect the social dimension.

Developers’ Flexibility and Responsibility. As stated in the introduction,
an architecture violation can result from a piece of code that contradicts the
rules defined by the software architecture. Nevertheless, software architecture
is described on a higher level of abstraction, whereas developers are working
on a lower level. Consequently, violations may occur that cannot be avoided
due to this abstraction gap. That is why architects need to define the degree
of flexibility and when developers are allowed to violate certain aspects of the
architecture. It needs to be further investigated which criteria are needed to
define this flexibility, e.g. based on the qualification of the developers.

Appropriate Formalization Support. Formalization in context of software
engineering and especially software architecture is still not widely accepted, due
to the expected extra effort as well as the lack of usability and appropriate
tool support [13]. This can be also implied from the findings of our study. For
example, we found that static dependencies are often used as a main crite-
ria to define architectural constraints. Constraints concerning layer dependen-
cies are validated regularly, whereas other types of architectural solutions, e.g.
Model-View-Controller-Pattern, architectural tactics or communication styles,
are not validated. One reason for this could be that there is a manifold and well-
established tool support for static conformance checking, e.g. by Sonargraph or
Structure1014. Therefore we can conclude that the availability of easy-to-use tool
support strongly influences the acceptance of formalization approaches. A conse-
quence might be that research should provide easy-to-use verification including
tool support for other architectural aspects as well.

Guidance for Software Architects in Violation Detection and Prioriti-
zation. Based on the statements we can conclude that architects evaluate the
severity of architectural violations rather intuitively. As we can imply from the
results of our survey, architects often use metrics for example on static pack-
age dependencies in order to find hot spots that could give hints for crucial
4 http://structure101.com/.

http://structure101.com/

260 S. Schröder et al.

architectural violations. We suggest that a better guidance is needed for soft-
ware architects in order to evaluate architecture violations and their severity. For
this, a catalog could be developed that lists common and well-known architecture
violations, similar to a pattern catalog. The catalog maps decisions to possible
violations. Furthermore, corresponding detection and repair strategies can be
recorded in the catalog. Architects can use the catalog during code reviews to
focus on the implementation of the most important decisions. Moreover, appro-
priate guidance in metrics analysis and interpretation is still missing. We think
that research does not necessarily needs to invent new metrics, but needs to
investigate how those metrics can be appropriately used during the analysis of
implemented architectures.

5.1 Limitations

Gasson et al. proposed the criteria confirmability, dependability, internal con-
sistency, and transferability [8] in order to evaluate qualitative studies. As we
described and captured the background of all the study participants we address
transferability. Confirmability is addressed by repeatedly discussing and restruc-
turing the categories in an iterative process. In order to address dependability
we followed a research process (Sect. 3) and described all the steps that were con-
ducted. In terms of internal consistency the statements and the corresponding
codes were cross-checked by another researcher. As similar to other qualitative
studies we have a limited number of participants. However since we wanted to
generate new knowledge and not to evaluate or confirm existing knowledge we
find that this limited number is acceptable.

Another limitation might be that we did not consider specific dimensions that
could influence the experts’ view on enforcement concerns. For example, skills
and tasks of a software architect could influence his view about what are impor-
tant concerns and activities in context of architecture enforcement. The domain
a software application is developed for could also influence the importance of
specific concern or even add further concerns to the list presented in this study.
As we tried to get a general overview about architecture enforcement concerns,
this was not the focus of our study and creating the correlation between specific
dimensions and enforcement concerns is left for future work.

6 Conclusion and Future Work

An expert study with the goal of understanding architecture enforcement process
in practice has been presented. To reach this goal, we gathered data by inter-
viewing experienced software architects from several companies. Our contribu-
tion in this paper is the determination of the most important concerns, which
are considered by architects, as well as the activities performed by them during
the architecture enforcement process. In addition, our results show the impor-
tant role of architects during system implementation, and the importance of the

Architecture Enforcement Concerns and Activities - An Expert Study 261

relationship between software architect and development team, in order to prop-
erly implement software architecture decisions. The findings of this paper con-
tribute towards methods for systematic and goal-oriented architecture enforce-
ment. Thus, we are willing to extend our study to additionally explore some of
the architecture enforcement concerns and activities in detail, and to determine
which methods and tool support is required for each. Furthermore, we intend to
merge our findings on essential enforcement concerns with architecture modeling
approaches for agile development processes.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional, Boston (2012)

2. Brunet, J., Serey, D., Figueiredo, J.: Structural conformance checking with design
tests: an evaluation of usability and scalability. In: 27th IEEE International Con-
ference on Software Maintenance (ICSM), pp. 143–152. IEEE Computer Society,
Washington, DC, September 2011

3. Caracciolo, A., Lungu, M.F., Nierstrasz, O.: A unified approach to architecture
conformance checking. In: 12th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), pp. 41–50. IEEE Computer Society, Washington, DC, May 2015

4. Caracciolo, A., Lungu, M.F., Nierstrasz, O.: How do software architects spec-
ify and validate quality requirements? In: Avgeriou, P., Zdun, U. (eds.) ECSA
2014. LNCS, vol. 8627, pp. 374–389. Springer, Switzerland (2014). doi:10.1007/
978-3-319-09970-5 32

5. Christensen, H.B., Hansen, K.M., Schougaard, K.R.: An empirical study of software
architects’ concerns. In: 16th Asia-Pacific Software Engineering Conference, pp.
111–118. IEEE Computer Society, Washington, DC, December 2009

6. Fairbanks, G.: Just Enough Software Architecture: A Risk-Driven Approach. Mar-
shall & Brainerd, Boulder (2010)

7. Fowler, M.: Who needs an architect? IEEE Softw. 20(5), 11–13 (2003)
8. Gasson, S.: Rigor in grounded theory research: an interpretive perspective on gen-

erating theory from qualitative field studies. In: The Handbook of Information
Systems Research, pp. 79–102 (2004)

9. Hove, S.E., Anda, B.: Experiences from conducting semi-structured interviews in
empirical software engineering research. In: 11th IEEE International Software Met-
rics Symposium (METRICS 2005), pp. 10–23, September 2005

10. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: 5th Working IEEE/IFIP Conference on Software Architecture, WICSA
2005, pp. 109–120. IEEE Computer Society, Washington, DC (2005)

11. Jansen, A., van der Ven, J., Avgeriou, P., Hammer, D.K.: Tool support for archi-
tectural decisions. In: Sixth Working IEEE/IFIP Conference on Software Archi-
tecture, WICSA 2007, p. 4. IEEE Computer Society, Washington, DC (2007)

12. Kruchten, P.: What do software architects really do? J. Syst. Softw. 81(12), 2413–
2416 (2008)

13. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

14. McBride, M.R.: The software architect. Commun. ACM 50(5), 75–81 (2007)

http://dx.doi.org/10.1007/978-3-319-09970-5_32
http://dx.doi.org/10.1007/978-3-319-09970-5_32

262 S. Schröder et al.

15. Mirakhorli, M., Cleland-Huang, J.: Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Trans. Softw. Eng. 42(3), 205–220 (2016)

16. Murphy, G.C., Notkin, D., Sullivan, K.: Software reflexion models: bridging the gap
between source and high-level models. In: Proceedings of the 3rd ACM SIGSOFT
Symposium on Foundations of Software Engineering, SIGSOFT 1995, pp. 18–28.
ACM, New York (1995)

17. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

18. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 167–176. ACM, New York (2005)

19. Strauss, A., Corbin, J., et al.: Basics of Qualitative Research, vol. 15. Sage,
Newbury Park (1990)

20. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing, Chichester (2009)

21. Terra, R., Valente, M.T.: A dependency constraint language to manage object-
oriented software architectures. Softw. Pract. Exper. 39(12), 1073–1094 (2009)

22. Vogel, O., Arnold, I., Chughtai, A., Kehrer, T.: Software Architecture: A Compre-
hensive Framework and Guide for Practitioners. Springer, Heidelberg (2011)

23. Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable
architectural decision models for enterprise application development. In: Overhage,
S., Szyperski, C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880,
pp. 15–32. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77619-2 2

http://dx.doi.org/10.1007/978-3-540-77619-2_2

	Architecture Enforcement Concerns and Activities - An Expert Study
	1 Introduction
	2 Background and Related Work
	2.1 Architecture Decision Enforcement
	2.2 Architects' Concerns and Activities During Enforcement

	3 Study Design
	3.1 Phase 1: Practitioners Interviews
	3.2 Phase 2: Literature Categories' Integration

	4 Results
	4.1 Enforcement Concerns
	4.2 Architects' Activities for Enforcement

	5 Discussion
	5.1 Limitations

	6 Conclusion and Future Work
	References

