
Evolution Style: Framework for Dynamic
Evolution of Real-Time Software Architecture

Adel Hassan1(B), Audrey Queudet2, and Mourad Oussalah1

1 University of Nantes, LINA CNRS UMR 6241, Nantes, France
{adel.hassan,audrey.queudet}@univ-nantes.fr

2 University of Nantes, IRCCyN UMR CNRS 6597, Nantes, France
Mourad.Oussalah@univ-nantes.fr

Abstract. Software systems need to be continuously maintained and
evolved in order to cope with ever-changing requirements and environ-
ments. Introducing these changes without stopping the system is a criti-
cal requirement for many software systems. This is especially so when the
stop may result in serious damage or monetary losses, hence a mechanism
for system change at runtime is needed. With the increase in size and
complexity of software systems, software architecture has become the cor-
nerstone in the lifecycle of a software system and constitutes the model
that drives the engineering process. Therefore, the evolution of software
architecture has been a key issue of software evolution research. Archi-
tects have few techniques to help them plan and perform the dynamic
evolution of software architecture for real-time systems. Thus, our app-
roach endeavors to capture the essential concepts for modeling dynamic
evolution of software architectures, in order to equip the architects with
a framework to model this process.

1 Introduction

With daily changes in technologies and business environments, software systems
must evolve in order to adopt to the new requirements of these changes. Gen-
erally, the software evolution is a complex process that requires a great deal
of knowledge and skills. This is due to the fact that all artifacts produced and
used in the software development life-cycle are subject to changes. Since software
systems change fairly frequently, it is essential that their architectures must be
restructured. With the increase in size and complexity of software systems, the
computing community acknowledges the importance of software architecture as
a central artifact in the lifecycle of a software system. In this respect, the archi-
tecture is specified early in the software lifecycle, and constitutes the model that
drives the engineering process [10]. In the evolution process, architecture can
elucidate the reason behind design decisions that guided the building of the sys-
tem. Moreover, it can permit planning and system restructuring at a high level
of modeling, where business goals and quality requirements can be ensured and
where an alternative scenario of evolution can be explored. Modeling architec-
ture evolution process can support architects in representing reusable practices
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 166–174, 2016.
DOI: 10.1007/978-3-319-48992-6 12



Evolution Style: Framework for Dynamic Evolution 167

in a domain-specific architecture evolution. Accordingly, the termevolution style
has been introduced (Oussalah et al. [2]) as an approach, the aim of which is
to capture the main characteristics of a set of activities performed for evolving
software architecture. It defines the set vocabulary of concepts necessary in order
to model the potential scenarios for evolving a domain-specific software archi-
tecture. These scenarios can be grouped together as a library of evolution styles.
Both the analysis and comparison of scenarios will assist architects in choosing
an evolution scenario for a future evolution [1].

Software evolution is a complex and multifaceted process that requires a
number of techniques and skills. This is particularly so when it is required to
introduce these changes without halting the system. Some critical issues like
synchronous task handling, schedulability analysis, consistency and integrity for
dynamic evolution of a real-time system deserve further exploration.

In our previous work [1], we presented the Meta-Evolution Style MES for
modeling software architecture evolution (static evolution style), but we did
not delve into the dynamic aspects of this process. Therefore, in this paper, we
endeavor to probe more deeply into the issues and rules which must be considered
when handling dynamic evolution of software architecture in order to extract the
needed information, which will be annotated with MES to fulfill the dynamic
evolution style. The research ultimately intends to establish a foundational step
of a generic process framework for dynamic evolution of software architecture
that could provide a means to facilitate analysis and to formally model software
architectures and their dynamic evolution processes. Likewise, this framework
should provide reusable concepts that could express the way(s) to dynamically
evolve software architecture and provide the means to compare these different
trajectories.

The rest of the paper is organized as follows. Section 2 briefly reviews
related works. Section 3 discusses the real-world issues in integrating architecture
changes at run-time [3]. Section 4 extends the meta-evolution style to embrace
the concepts of dynamic evolution. Finally, the paper contributions are summa-
rized in Sect. 5.

2 Related Work

The necessity of introducing change at runtime has resulted in different architec-
ture centric approaches for dynamic evolution. Dowling and Cahill [17] present
the K-Component model as a reflective framework for building self-adaptive
systems. K-Components are components with an architecture meta-model and
adaptation contracts to support their dynamic reconfiguration. Cuesta et al.
[16] present a reflective Architecture Description Language (ADL) named PiLar
which provides a framework to describe the dynamic change in software architec-
ture. It consists of a structural part and a dynamic part, which defines patterns
of change. Costa-Soria et al. [12] define a reflective approach for supporting
dynamic evolution of architectural types in a decentralized and independent
way. Their approach is applied to ADL, in particular to the PRISMA meta-
model, in order to develop an evolveable component type that is provided with



168 A. Hassan et al.

an infrastructure to support its evolution at run-time. Romero in his PhD the-
sis [13], develops a component-based framework support safety replacing the
real-time components. The approach implementation is integrated in the OSGi
platform in order to exploit the OSGi capabilities like load and unload of code
at runtime, and enhances the framework with all the required elements to pro-
vide a safe component replacement for real-time characteristics by supporting
on-line schedulability analysis. Richardson [9] presents an extension of the OSGi
Framework in order to be able to perform dynamic reconfiguration of real-time
systems. He proposes an RT-OSGi that can be used to develop real-time sys-
tems which are dynamically reconfigurable: by integrating the OSGi Framework
with the Real-Time Specification for Java (RTSJ). Unlike these approaches,
our work attempts to develop a framework to model such activities and tech-
niques in dynamic evolution of software architecture. This can support architects
in analyzing and better understanding the process of introducing changes at
run-time.

3 Issues in Dynamic Software Architecture Evolution

Irrespective of the mechanism of an evolution model that is used to perform the
dynamic architecture evolution, some issues [3] should be addressed by any app-
roach in order to efficiently handle the dynamic evolution process. This section
presents these issues in order to annotate MES with the required information,
which will be extracted from these issues to fulfill the requirements of dynamic
evolution modeling.

3.1 Safe Stopping of Running Artifacts

One of the main issues that must be considered when handling dynamic evolution
is to leave systems in a consistent state after a change is performed. Evolving
an artifact at runtime without considering its thread may disrupt or suspend
its service for an arbitrarily long time, which can lead real-time tasks to miss
some deadlines. Detecting when it is safe to actually evolve the artifacts is a
crucial key to guarantee that the system will not encounter an inconsistent state.
Therefore, various strategies have been defined in order to tackle this issue,
namely Quiescence [4] and Tranquility [5]. They differentiate the passive state
from the active state of software artifact and assume that an affected artifact
should be placed into a passive state before performing the evolution operation.

Generally, a real-time system consists mainly of a set of elements which
provide or/and create real-time services (threads). These real-time tasks can be
periodic, aperiodic or sporadic [15], depending on how their corresponding jobs
are activated. The passive elements in a real-time system are those that do not
have any execution thread, but typically provide services for other elements.
The quiescence and tranquility techniques can fit the dynamic evolution of these
passive elements. On the contrary, the active elements are those that have active
real-time threads; these techniques [4,5] require that elements should be shifted



Evolution Style: Framework for Dynamic Evolution 169

into a passive state in order to be modified. This means that the real-time
threads in the element would need to be suspended, thus potentially resulting
in deadline misses for the threads of the element being under evolution. This
behavior is, of course, undesirable for hard real-time systems. Therefore, the
evolution operation should respect the timing constraints of the active element
that is subject to change. In this respect, the evolution operation execution time
is part of the timing constraints of the real-time system itself. Therefore, it must
not exceed the safe state time of this element, i.e. the maximum duration of the
evolution operation should be less than the minimum separation between two
consecutive jobs of this element’s task.

3.2 Transferring State

Another crucial issue of system consistency that should be considered when
addressing a dynamic evolution is that of handling stateful elements (components
that may have internal information, or connectors that may have buffers full of
messages [6]). In the case of replacing elements, information integrity requires
that the state of the old element must be transferred, or possibly transformed
(in the case the data structure is different), to the new element. Meanwhile, this
step is not required for the replacement of stateless elements. This activity can
be more complex if the internal structure of the two elements is different, which
requires identifying and extracting the relevant data from the old element. These
date will be modified to fit the new element.

Practically, it is difficult to develop a generic abstract that can fit the inter-
nal data structure for all the system elements, in order to store the state of any
element during its evolution. Therefore, preserving and transferring or trans-
forming the internal state of elements is a specific step. Thus, if a transfer state
is required, this process should be specifically remedied with each operation.

3.3 Change Management

Another issue in dynamic evolution is relevant to the mechanism to preform this
process and how the changes are driven (activeness of change), how evolution
events can be detected, then how the suitable reactions can be effected. More
accurately, it relates to how this process can be managed.

Generally, the software system can be reactive (changes are driven exter-
nally), or proactive (drives changes to itself) [7]. Thus, either the system is
instrumented with change management, or with an interface to allow an exter-
nal agent to dynamically introduce the changes. In dynamic evolution, manage-
ment can be represented as an evoluter (Role) who is responsible for dynamically
performing the evolution. This can be formulated as a controlling system that
monitors a controlled system in order to detect and analyse an evolution event
when it occurs on the controlled system or its environment to select or synthesize
the appropriate action or scenario of evolution. The dynamic MES should pro-
vide a modeling concept to express both the controlling techniques for proactive
and reactive system.



170 A. Hassan et al.

3.4 Dynamic Evolution Scheduling

The issue of the timing constraints is more important when we handle a dynamic
evolution of a hard real-time system, which needs to maintain high levels of
application availability. In fact, whatever the change management system be
used, the dynamic evolution operation is considered as a real-time task, and
once this unscheduled task occurs, it should not affect the timing constraints of
system’s tasks.

System tasks are scheduled and executed according to their dynamic pri-
orities. Indeed, whatever the system tasks are, the evolution operation should
interact/behave without compromising the system tasks’ completion. Generally,
tasks in a hard real-time system have higher priority than the evolution oper-
ation, which is usually handled as a background task (with lower priority). In
this aspect, if a background priority task is used to evolve an element, this evo-
lution task can be preempted by any higher priority task (including a task from
the element under evolution), which can lead to an unsafe state or loss of the
internal state of the element. Therefore, an evolution task should directly derive
its priority from the element that undergoes its change. Thus, the management
change should be able to safely handle the evolution tasks while still guaran-
teeing the timing constraints of the system, e.g. it should dynamically prioritize
this unexpected event (evolution operation) within the system threads.

Furthermore, in the replacement and addition operations, it is necessary
to guarantee that the new element threads have taken over the role of the
old element threads without deadline violation, which also requires a dynamic
rescheduling in order to integrate the new element threads with the rest of the
system’s threads in the scheduler.

4 Dynamic Meta Evolution Style

MES consists in defining foundational meta-concepts for describing a software
architecture evolution. These essential concepts were used in modeling and ana-
lyzing static evolution styles [1]. MES can be refined to any other kind of archi-
tecture evolution. In this sense, the intent is not to define a new meta style for
modeling dynamic evolution of real-time and embedded systems, but to annotate
MES with information required to analyze and model this process. Hence, this
work focuses on integrating the concepts of dynamic interaction and schedula-
bility analysis into evolution styles. Figure 1 illustrates our proposition to extend
MES with the necessary information to fulfill the requirement for modeling the
dynamic evolution styles (gray boxes refer to MES elements; white boxes refer
to proposed additional elements). Actually, dynamic evolution of a real-time
system requires introducing changes in bounded time. Managing and perform-
ing this process without violating the timing constraints is more complex. This
requires a fast, interactive Role (intelligent change management) which mini-
mizes or eliminates the human intervention Role and shifts it from operational
to strategic. Thus, the Role in dynamic MES should support the concept of



Evolution Style: Framework for Dynamic Evolution 171

an automatic Role either as an internal instrument or an external agent. That
satisfies the change management requirement for dynamic evolution.

Fig. 1. Dynamic-evolution style

Indeed, the needs of an architectural element to change are required when
an evolution event has occurred. Therefore, the unexpected evolution events
must be assigned with their potential scenarios of reactions (evolution paths). A
strategy to synthesize the suitable reactions is defined such that all the affected
elements complete within their deadlines. In this sense, each evolution path con-
sists of a series of evolution operations and represents one choice to evolve the
architecture from the current state to the target state. Therefore, each simple
evolution operation must have a dynamic interface which provides the necessary
parameters (priority, time execution) in order to be safely handled and not cause
timing misbehavior. Several scheduling methods for the handling of unexpected
events in real-time systems have been proposed in the literature in order to ser-
vice aperiodic requests, where a set of hard aperiodic tasks is scheduled using the
Earliest Deadline First (EDF) algorithm [8]. Among them, the Total Bandwidth
Server (TBS) [14] and Earliest Deadline as Late as possible server (EDL) [11]
both provide an efficient aperiodic service under EDF. In TBS, worst-case execu-
tion time of aperiodic requests must be known in advance (which is not the case
of care evolution operation). That is why we will turn to EDL to dynamically
schedule this unexpected event jointly with the system threads. Thus, the Oper-
ation should provide the necessary parameters that are needed by a dynamic
scheduling algorithm in order to be scheduled.



172 A. Hassan et al.

The architectural element that can be changed at its active state must also
have the suitable (dynamic) interfaces to provide the required parameters in
order to be dynamically evolved. An interface is needed to handle the internal
state of the element during the replacement Operation. Another interface is also
needed to provide the time parameters for guaranteeing the safe stopping. These
scheduling parameters are required by the scheduler to dynamically schedule the
evolution operation and the threads of the new elements: Worst Case Execution
Time (WCET), deadline and release time. These parameters allow the schedu-
lability analysis of dynamic evolution of hard real-time systems.

Role: Generally, a Role is responsible for the evolution operation that performs
the changes. Managing and performing at run-time requires a highly interactive
Role (external agent or internal instrument).

Dynamic Operation: A dynamic evolution operation can be a simple evolu-
tion like add or delete, or a composite one like replacement. A dynamic evolution
process should be expressed in such a way that it supports both kinds of active-
ness, namely proactive and reactive. This can be achieved by separating evolution
requests (Events) from the evolution mechanisms (Actions). Therefore, the con-
struct of evolution operation is based of the ECA rules “On Event If Condition
Do Action At Time” which means: when an evolution Event occurs, if Condi-
tion is verified, then execute suitable Action at appropriate time. The dynamic
operation must offer a dynamic interface (plan) which provides relevant run-time
parameters that are needed to schedule the operation as soon as possible within
the system tasks.

Dynamic Architecture Elements: An architecture element must be evolu-
tionary open, which means it has an interface with the necessary parameters
that enables it to dynamically react to evolution operation. An element should
be able to provide its scheduling parameters to allow the Role to dynamically
effect the changes without breaking the timing constraints of the system.

Interaction: In fact, the dynamic evolution is a real-time task, so the inter-
action element must guarantee that evolution Operations are subject to the
timing constraints. The interaction element ensures the availability of required
interfaces and parameters among elements (Operation, Architecture Element,
Role) in the process.

Dynamic Interface: A dynamic element should have appropriate interface
which provides the required parameters to efficiently interact at run-time. Such
an interface is required, for example, to allow the Instrument (the Role in self-
managing system) to observe an architecture element in order to detect any
evolution event or to determine the appropriate time to effect the changes.

Process: Represents the dynamic configuration of the evolution elements which
transfers a software architecture from its current architecture style to a target
style. This configuration provides the temporal and topological organizing of
evolution operations while respecting the consistency and integrity of the archi-
tecture elements.



Evolution Style: Framework for Dynamic Evolution 173

5 Conclusions

In this paper, we propose a dynamic evolution style for specifying the dynamic
evolution for software architecture. Our intent is to provide a style sufficiently
rich to model the dynamic changes in software architecture of a real-time system
and to be able to represent the potential ways of performing these changes. To
better realize this intent, we integrate the behavior concepts of dynamic changes
into the MES so we can have a sound understanding of dynamic evolution issues
and constraints, which is a prerequisite to developing a modeling environment
that supports dynamic evolution styles. Our ongoing work is devoted to devel-
oping this environment.

References

1. Hassan, A., Oussalah, M.: Meta-evolution style for software architecture evolution.
In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol. 9587,
pp. 478–489. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49192-8 39

2. Oussalah, M., Tamzalit, D., Le Goaer, O., Seriai, A.: Updating styles challenge
updating needs within component-based software architectures. In: SEKE (2006)

3. Oreizy, P.: Issues in modeling and analyzing dynamic software architectures. In:
Proceedings of the International Workshop on the Role of Software Architecture
in Testing and Analysis (1998)

4. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE TSE 16(11), 1293–1306 (1990)

5. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: a low dis-
ruptive alternative to quiescence for ensuring safe dynamic updates. IEEE Trans.
Softw. Eng. 33(12), 856–868 (2007)

6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Companion of the 30th International Conference on
Software Engineering, pp. 899–910. ACM (2008)

7. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. J. Softw. Maint. Evol. Res. Pract. 17(5), 309–332 (2005)

8. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

9. Richardson, T.: Developing dynamically reconfigurable real-time systems with real-
time OSGi (RT-OSGi). Ph.D. dissertation, University of York (2011)

10. Garlan, D., Perry, D.E.: Introduction to the special issue on software architecture.
IEEE Trans. Softw. Eng. 21(4), 269–274 (1995)

11. Chetto, H., Chetto, M.: Some results of the earliest deadline scheduling algorithm.
IEEE Trans. Softw. Eng. 15(10), 1261–1269 (1989)

12. Costa-Soria, C. Hervás-Muñoz, D., Pérez, J., Carśı, J.Á: A reflective approach for
supporting the dynamic evolution of component types. In: 14th IEEE International
Conference, pp. 301–310 (2009)

13. Romero, C., J.Á: Contributions to the safe execution of dynamic component-based
real-time systems. Ph.D. dissertation, Carlos III University of Madrid (2012)

14. Spuri, M., Buttazzo, G.: Scheduling aperiodic tasks in dynamic priority systems.
Real-Time Syst. 10(2), 179–210 (1996)

15. Li, Q., Yao, C.: Real-Time Concepts for Embedded Systems. CRC Press, Boca
Raton (2003)

http://dx.doi.org/10.1007/978-3-662-49192-8_39


174 A. Hassan et al.

16. Cuesta, C.E., de la Fuente, P., Barrio-Solórzano, M., Beato, E.: Coordination in
a reflective architecture description language. In: Arbab, F., Talcott, C. (eds.)
COORDINATION 2002. LNCS, vol. 2315, pp. 141–148. Springer, Heidelberg
(2002). doi:10.1007/3-540-46000-4 15

17. Dowling, J., Cahill, V.: The K-component architecture meta-model for self-
adaptive software. In: Yonezawa, A., Matsuoka, S. (eds.) Reflection 2001. LNCS,
vol. 2192, pp. 81–88. Springer, Heidelberg (2001). doi:10.1007/3-540-45429-2 6

http://dx.doi.org/10.1007/3-540-46000-4_15
http://dx.doi.org/10.1007/3-540-45429-2_6

	Evolution Style: Framework for Dynamic Evolution of Real-Time Software Architecture
	1 Introduction
	2 Related Work
	3 Issues in Dynamic Software Architecture Evolution
	3.1 Safe Stopping of Running Artifacts
	3.2 Transferring State
	3.3 Change Management
	3.4 Dynamic Evolution Scheduling

	4 Dynamic Meta Evolution Style
	5 Conclusions
	References


