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Abstract. Several approaches have been proposed to study and provide
information about the evolution of a software system, but very few proposals
analyze and interpret this information at the architectural level. In this paper, we
propose an approach that supports the understanding of software evolution at the
architectural level. Our approach relies on the idea that an architectural tactic can
be mapped to a number of operational representations, each of which is a
transformation described using a set of elementary actions on source code
entities (e.g., adding a package, moving a class from a package to another, etc.).
These operational representations make it possible to: (1) detect architectural
tactics’ application (or cancellation) by analyzing different versions of the source
code of analyzed systems, and (2) understand the architectural evolution of these
systems. To evaluate the proposed approach, we carried out a case study on the
JFreeChart open source software. We focused on the modifiability tactics and
we analyzed a number of available releases of JFreeChart. The results of our
analysis revealed inconsistencies in the evolution of the system and some erratic
applications and cancellations of modifiability tactics.

Keywords: Software evolution � Architectural evolution � Architectural
tactics � Tactics detection

1 Introduction

Throughout the life of a software system, developers and maintainers will modify the
source code in order to add new features, correct or prevent defects. In doing so, they
will apply many simple coding techniques and patterns but they will also occasionally
introduce higher level elements that will be meaningful at an architectural level. While
there are many proposals concerned about evolution data at a low level [1], few
approaches have been proposed to analyze and interpret this information at the
architectural level. Even though several approaches that tackle the understanding and
formalization of architecture evolution have emerged (e.g., [2–8]), there exist very few
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tools to help designers track and group a set of low-level source code changes and
translate them into a more concise high-level architectural intention. A key challenge is
that some architectural elements may not be traced easily and directly to code elements
(e.g., architectural constraints). In fact, architectural elements include extensional ele-
ments (e.g., module or component) and intensional ones (e.g., design decisions,
rationale, invariants) while source code elements are extensional [9, 10]. This con-
tributes to the absence of the architectural intention at the source code level and the
divergence of the source code from this intention. Moreover, architectural decisions are
non-local [9] and often define and constrain the structure and the interactions of several
code elements. If the developer is aware of the architectural decisions and constraints,
the changes she made to the source code will be consistent with these. In fact, some of
these changes may derive from the architecture evolution of the software and they
reveal some intentions at the architectural level.

Thus, in this work, we hypothesize that some of the architectural intentions can be
inferred from the analysis of the evolution of the source code. Clustering a set of
changes made to the source code and analyzing the results may reveal a high level
decision. We focus on object-oriented (OO) systems and modifiability tactics [11, 12]
as they involve changes that can be detected through the analysis of different releases of
a software system. Thus we propose an approach that enables detecting tactics’
application (or cancellation) in an OO system and inferring an architectural evolution
trend through the system’s evolution. To do so, we map high level descriptions of
tactics, as introduced in [11], to a number of operational representations (i.e., source
code transformations). Tactics are intensional and thus may have several operational
representations. An operational representation is a pattern of evolution described using
elementary actions on source code entities (e.g., adding a class to a package, moving a
class from a package to another, etc.) and a set of constraints describing the structure of
the system before or after these actions. Using these operational representations, we
analyze available evolution data about the source code to retrieve architectural tactics
that were applied or cancelled during development or maintenance. We developed a
prototype tool that supports our approach and experimented on a set of modifiability
tactics and a number of versions of a Java open source project.

The paper is organized as follows. Section 2 proposes some background and related
work about architectural tactics and evolution. Section 3 presents an overview of our
approach while Sects. 4 and 5 detail two key aspects of our proposal: the definition of
operational representations of tactics and the detection of their occurrences respec-
tively. Section 6 proposes a case study for our approach and discussion of the obtained
results. Finally Sect. 7 summarizes our proposal and outlines future work.

2 Background and Related Work

2.1 Architectural Tactics

Architectural tactics are design decisions that achieve quality attributes [11, 12].
Quality attributes are measurable properties that indicate how well a given system
supports specific requirements [11]. Examples of these attributes include performance,
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availability and security. Bass et al. [11] introduced the concept of an architectural
tactic as an architecture transformation that supports the achievement of a single quality
attribute. They catalogued a set of common tactics that address availability, interop-
erability, modifiability, performance, security, testability and usability. This catalog of
tactics aims to support systematic design. For instance, performance tactics aim at
ensuring that the system responds to arriving events within some time constraints while
security tactics aim at resisting, detecting and recovering from attacks [11]. Examples
of performance tactics include increasing computational efficiency, managing the event
rate and introducing concurrency. Common security tactics include authenticating users
and maintaining data confidentiality. The designer chooses the appropriate tactics
according to the system’s context and trade-offs, and the cost to implement these
tactics.

2.2 Related Work

Developing approaches and tools that support the designers in understanding archi-
tectural evolution involves many theoretical and practical challenges [20]. Several
approaches were proposed to tackle the architectural evolution of software systems.
These approaches can be classified according to their goal: (1) supporting architects in
building software evolution plans at the architectural level (e.g., [2, 3]); (2) under-
standing and visualizing the evolution [5, 6, 13, 14]; and (3) evaluating architectural
stability [4, 8]. With the goal of supporting architects in building software evolution
plans at the architectural level, the concept of evolution paths was introduced in [2, 3].
An evolution path is a sequence of intermediate architectures starting from the initial
architecture of the system and leading to the desired architecture once the evolution is
complete. These evolution paths can be represented in an evolution graph where nodes
are (intermediate) architectures and edges are transitions among these architectures. To
support the architect in finding the optimal path, the authors propose analysis based on
constraints on the path evolution and functions that evaluate the path qualities. Even if
our focus is on tactics’ detection, our work can be seen as complementary as we
analyze existing software systems to infer architectural decisions that were applied
through the evolution of these systems and to check if the changes made to a given
system represent a consistent pattern of evolution.

In [6], the authors propose a method for differencing and merging component and
connector architecture views by comparing the structural elements composing these
views. The comparison and matching between different views may help to identify
architectural violations and synchronize the views. The proposed approach does not
tackle the particular problem of identifying architectural tactics when comparing
architecture views. The case studies presented in their paper are related to the syn-
chronization of an implementation-level architecture view (obtained using architecture
recovery) with a conceptual one (described using an ADL). This feature can be per-
ceived as complementary to our work. With the focus on visualization, both [5, 13]
propose techniques that exploit source code modifications to understand software
evolution at architectural level. In particular, McNair et al. [5] propose a diagram,
called architectural impact view, which is basically an entity-relationship diagram
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enhanced with colors to depict the impact of the code changes under study on the
entities and relationships of the system (e.g., added, deleted, etc.). D’Ambros et al. [13]
describe a general schema to analyze software repositories for studying software
evolution. This schema includes three essential steps: (1) modeling various aspects of
the software system and its evolution, (2) retrieving and processing the information
from the relevant data sources, and (3) analyzing the modeled and retrieved data using
appropriate techniques depending on the targeted software evolution problem. Though
we do not target the visualization of architecture evolution, our approach follows this
general schema and we also aim to help designers and developers understand and be
aware of the architectural evolution of a given system.

Le et al. [8] propose an approach called ARCADE (Architecture Recovery,
Change, And Decay Evaluator) which relies on various architecture recovery
techniques to build different views of the analyzed system and three metrics for
quantifying architectural changes at the system-level and component-level. ARCADE
was used in an empirical study. An interesting outcome of this study was that con-
siderable architectural change is introduced both between two major versions and
across minor versions. In [4], a metric-based approach is proposed to evaluate archi-
tectural stability. To do so, the approach starts by analyzing different releases of the
system under study and extracting facts from these releases. These facts are then
analyzed using some software metrics that are indicators of architectural stability (e.g.,
change rate, growth rate, cohesion and coupling). Our approach can be complementary
to these metric-based approaches as it relies on the detection of tactics applications or
cancellations to assess the architectural evolution of software systems.

Kim et al. [14] proposed Ref-Finder, an Eclipse plug-in, that automatically detects
refactorings that were applied between two versions of a given program. To do so,
Ref-Finder extracts logic facts from each program version and used predefined logic
queries to match program differences with the constraints of the refactorings under
study. This approach is more focused on the refactorings introduced in Fowler’s book
[15]. Unlike Ref-Finder, our goal is to detect evolution patterns that match architectural
tactics and to support the designer in defining any evolution pattern that might be of
interest in her context/domain.

3 An Approach for Inferring Architectural Evolution
from Source Code

In this paper, we propose an approach that supports the detection of architectural
tactics’ application (or cancellation) and the inference of the architectural trend through
the system’s evolution. Our approach assumes that high level descriptions of tactics, as
introduced in [11], can be mapped to a number of operational representations, i.e.,
source code transformations described using elementary actions on source code entities
(e.g., adding a package, moving a class from a package to another, etc.). Once these
operational representations are identified and precisely defined, it becomes possible to
use evolution data about the source code to retrieve architectural tactics that were
applied or cancelled during development or maintenance.
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Figure 1 presents an overview of our approach which defines two processes. The
first enables the designer to specify operational representations of a given tactic; this
process is described in Sect. 4. The second process aims at supporting the designer in
analyzing the evolution trend of a software system. It uses the operational represen-
tations of tactics and the available versions of the system under study and proceeds in
three steps (numbered 1 to 3 in Fig. 1). In the first step, a differencing tool is applied to
multiple versions of the system and generates deltas that are expressed using a number
of source code changes (e.g., removed package, added package, added class, removed
class, moved class, etc.). For this purpose, our approach uses MADMatch [16] a tool
that enables a many-to-many approximate diagram matching approach. The second
step matches the generated deltas to the operational representations of tactics to detect
applied or cancelled tactics. We designed and implemented a tool TacMatch which
generates on the fly detection algorithms from the operational representations of tactics
and executes these detection algorithms to find occurrences of tactics in the analyzed
delta of the source code. In the third step, the resulting occurrences are analyzed by the
designer to infer the architectural evolution trend of the analyzed system. The whole
process is described in detail in Sect. 5.

4 Defining Operational Representations of Tactics

4.1 High-Level Descriptions of Tactics

As stated above, a tactic can be seen as a transformation undergone by software
architecture to satisfy a specific quality attribute. Thus a tactic can be described as a set
of actions that may change the structure and behavior of the components of the system.
The type and magnitude of these actions depend on the tactic and the current archi-
tecture of the system to which the tactic is to be applied. We roughly divide these
actions into two types:

Process 2: Analyzing the evolution trend of software systems

   Process 1: Defining tactics

High-level
descriptions of tactics

Computing deltas (1)

Source code 
versions

Define operational 
representations

Select tactis to be 
detected

Detecting tactics 
occurrences (2)

Architectural 
evolution trend

Analysis (3)Select versions to 
be analyzed

Operational 
representations

Deltas

TacMatch

Occurrences of
tactics’s application 

and cancellation

TacMatch

MADMatch

Fig. 1. Overview of the approach
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• Actions on components: create, delete or modify components. A component may be
modified by adding new responsibilities, deleting its responsibilities or moving
some of its responsibilities to another component.

• Actions on connectors: add, modify or remove a connector.

Consider the modifiability quality attribute. Modifiability refers to the property of
changing easily the software with a minimal cost (i.e., time and resources). Tactics that
ensure this property are linked to four concerns that impact the modifiability [11, 12]:
the size of the modules, the cohesion of the modules, the coupling between the
modules, and the binding time of modification. Thus modifiability tactics are catego-
rized according to the concern they address: reducing the size of a module, increasing
cohesion, reducing coupling between modules, and deferring binding time of modifi-
cation. We focus on these tactics as they involve actions that can be detected through
static analysis of different releases of a software system; i.e., common modifiability
tactics involve splitting responsibilities, moving them from a component to another,
introducing intermediaries between components and encapsulating components.

For instance, the modifiability tactic “Abstract Common Services” (ACS) states
that common services should be abstracted so that modifications to them would be
localized to a single module. Figure 2 gives a high level representation of this tactic.
A and B are responsibilities that can be split respectively to A’ and A”, and B’ and B”
and where A’ and B’ provide a variant of a similar service to A” and B”, respectively.
In this case, the ACS tactic merges A’ and B’ into a more general and common service
(called C in the figure) and updates A’’ and B’’ to depend on the general service.
Applying the ACS tactic enables to localize modifications of the common services and
to prevent ripple effects as changes made to a module using the common services will
not impact other modules [11, 12].

Table 1 presents the high level description of the ACS tactic in terms of actions on
architectural components and connectors.

C
A

A’’A’

B

B’’B’
Abstract Common 

Services A’’ A’B’ B’’

Fig. 2. A high level representation of Abstract Common Services, adapted from [12].

Table 1. High-level description of Abstract Common Services

Type of action High-level description

Actions on components Create C
Actions on components Move A’ from A to C
Actions on components Move B’ from B to C
Actions on connectors Modify A” to depend now on C
Actions on connectors Modify B” to depend now on C
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4.2 Operational Representations of Tactics: Actions and Constraints

High-level descriptions of tactics must be refined in order to generate concrete
design/implementation strategies, while taking into consideration the system’s context.
In this paper, we target the analysis of object oriented (OO) systems. Thus, architectural
components involved in tactics’ application are matched with the entities of the system
such as packages and classes. The responsibilities of a given component are mapped to
fields and methods implemented by the classes that are part of this component. This
mapping introduces multiple possible concrete instances for a given tactic; e.g., we
may map the modules of the ACS tactic to packages in a concrete instance and to
classes in another instance. As for architectural connectors, they are not explicitly
supported by typical OO languages [17]; they are indirectly specified through method
calls, references and events. Thus our operational representations of tactics are
expressed as a set of actions (i.e., adding, deleting, modifying and moving) on
packages, classes, methods, fields, object references, method calls and events.

Furthermore, the same set of actions may be common to different tactics. For
instance, both Split Responsibility (SR) and Abstract Common Service (ACS) tactics
involve moving responsibilities from a module (i.e., package or class in our context) to
another. However, in case of ACS, the moved responsibilities belonged to different
modules before applying the tactic while in SR the moved responsibilities belonged to
the same module before applying the tactic. To distinguish these tactics, we added a set
of constraints on the elements or actions involved in a given tactic. Thus we express an
operational representation as a set of actions on architectural elements and a set of
constraints relating these elements or actions. Once an operational representation is
defined, its cancellation is simply derived by reversing the source and destination of the
different actions and constraints used in its definition. For example, if a tactic definition
involves adding a class, its cancellation would involve deleting a class. Table 2 lists
some examples of operational representations for four modifiability tactics in the
context of an object oriented system. For instance, Table 2 lists three different oper-
ational representations of the ACS tactic.

4.3 Tool Support

To support the developer in defining the operational representations of tactics or any
other relevant evolution pattern, we use a language that resembles the natural language
and eases the translation of the concrete representations into detection algorithms. In
fact, we wanted to provide a way for a user to specify the tactics (or any targeted
evolution pattern) without having to know a specific language to do so. The user has
only to know the actions of the tactic (or any targeted evolution pattern) on architec-
tural elements and how these elements are constrained.

Thus, to define operational representations of tactics, we designed and implemented
a custom interface that was inspired by query languages such as SQL and QBE (Query
By Example). Figure 3 displays the TacMatch interface for defining operational rep-
resentations of tactics. This interface is divided into four parts: (1) the name of the
tactic and the variant if there are many variants of the tactic; (2) a selector zone that
enables the user to select the type of changes/actions the tactic introduces (i.e., a set of
predefined actions are provided to the user); (3) a filter zone that enables the user to
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Table 2. Examples of operational representations

Tactic Concrete representation (s) Tactic Concrete representation (s)

Abstract
common
services
(ACS)

P: added or existing package
C: moved classes to P
Classes in C did not belong to the
same package in the previous
release

Split
responsibilities
(SR)

P: added package
C: moved classes to P
All classes in C belonged to
the same package in the
previous release

Abstract
common
services
(ACS)

C: added class or existing class
M: moved methods to C
Methods in M did not belong to
the same class in the previous
release

Split
responsibilities
(SR)

C: added class
E: moved elements (attribute
and method) to C
All elements in E belonged to
the same class in the previous
release

Abstract
common
services
(ACS)

C: added class
Inherits C: added inheritance
All classes involved in “Inherits
C” existed in the previous release
These classes belong to at least
two different packages in next
release

Use
encapsulation
(UE)

C: added class
Inherits C: added inheritance
All classes involved in
“Inherits C” existed in the
previous release
These classes belong to the
same package in the next
release

Increase
cohesion
(IC)

C: moved classes to package
Pdest

All classes in C belonged to the
same package (Psrc) in the
previous release
Pdest existed
Cohesion of Psrc increased

Increase
cohesion
(IC)

E: moved elements (attribute
and method) to class Cdest

Cdest existed
All elements in E belonged to
the same class (Csrc) in the
previous release
Cohesion of Csrc increased

1

2

3 

4 

Fig. 3. Defining an operational representation of a tactic using TacMatch
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specify the constraints on the selected elements; and (4) the preview zone that displays
the tactic’s specification in a form similar to an SQL query1. Figure 3 displays an
example of the ACS tactic (i.e., the variant described in row 3 of Table 2) where
multiple constraints were defined by the user using the filter zone (the “+” button
enables to add a constraint at a time to the specification). These declarative specifi-
cations are used by our tool TacMatch to generate on the fly (when the user launches an
analysis of a given system) the algorithm that retrieves the set of elements (from deltas)
that match the tactic’s application. This process is described in detail in Sect. 5.2.

5 Detecting Tactics Occurrences in Software Systems

Using the operational representations of tactics and two different versions of the
software system under study, TacMatch supports the designer in detecting occurrences
of these tactics in the system. To do so, TacMatch relies on MADMatch [16], a tool
that enables diagram matching, to compute the deltas between two different versions of
the same system. TachMatch uses the operational representation to generate on the fly
detection algorithms for the tactics selected by the designer in the current analysis of
the system. TachMatch executes these algorithms on the analyzed delta of the system
and returns tactics’ occurrences or cancellations. These occurrences can be used by the
designer to carry out different types of analysis and to evaluate the architectural evo-
lution of the analyzed system.

5.1 Computing and Storing Deltas Between Versions

Our approach relies on differencing tools able to supply our technique with elementary
source code changes that we can then analyze, regroup and possibly match to archi-
tectural tactics. One such tool is MADMatch [16], which is a recent tool that takes as
input graph representations of two different versions of the source code and generates
the delta between these versions. In our case, these graphs represent class diagrams that
were recovered using the Ptidej tool suite [18]. A generated delta describes the source
code changes that occurred between the two analyzed versions (e.g., removed package,
added package, added class, moved class, etc.). Deltas are serialized in CVS files. Our
proposed tool TacMatch analyzes these CVS files to extract relevant information on the
delta and saves this information in a database to which we will ultimately send cus-
tomized queries to detect tactics’ occurrences.

5.2 Detecting Tactics Occurrences

Given a generated delta from the system under study and a set of tactics chosen by the
user for her current analysis, TacMatch retrieves corresponding tactics specifications
and generates the corresponding detection algorithms on the fly and then execute them

1 For lack of space, we do not discuss in this paper the predefined actions and constraints that
TacMatch provides, nor the specification language used to describe the tactics.
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on the delta. To generate the detection algorithms, TacMatch relies on a set of classes
that read the specification of a tactic and generate different parts of the corresponding
algorithm. Figure 4 gives an excerpt of the core classes of TacMatch, which were
organized using the Chain of Responsibility (CoR) design pattern [19]. The Selector
class enables to select occurrences of the changes undergone by the system and that
correspond to those specified in the Select clause of the operational representation of
the tactic (e.g., see the first line of the preview in Fig. 3). The Filter type defines an
interface for filtering occurrences of the changes undergone by the system according to
a given constraint; i.e., sub-classes of Filter implement different constraints. We used
the CoR design pattern so that we can instantiate and configure, at runtime, the subset
of filters that correspond to the constraints defined by the tactic at hand. Moreover,
using the CoR design pattern makes it easy to add new filters (i.e., constraints).

TacMatch’s entry point is the class TacMatchEngine which reads the tactic’s
specification as entered by the designer and generates a collection of commands cor-
responding to the lines of the specification. These commands are then used to create an
ordered list of objects that starts with an instance of the Selector class followed by a
chain of the appropriate subset of the filters. This is done using the createChain method
which relies on the FilterFactory class to instantiate and set the appropriate filter for
each command2. The appropriate selector object and chain of filters are instantiated and
ordered in a dynamic way according to the operational representation of a tactic. This
corresponds to generating on the fly the skeleton of the detection algorithm for the
given tactic. For instance, given the operational representation described in the preview
zone of Fig. 3, TacMatch generates a selector object that is set to retrieve inheritance
relationships grouped by their superclass followed by a chain of two instances of the
Existence filter3 and one instance of the Cardinality filter.

The method executeChain enables execution of the detection algorithm related to a
given tactic. This method takes as input the selection object corresponding to the tactic
and it calls first the select() method of this object to retrieve the relevant occurrences of

Filter

+ doFilter(List<Occurrences>): List<Occurrences>

Cardinality

Cardinality(cmd: Command)

Existence

Existence(cmd: Command)

Selector

Selector(cmd: Command)
select(): List<Occurrences>

FilterFactory

createFilter(cmd: Command): Filter

TacMatchEngine

read(spec: String): List<Command>
createChain(List<Command>): Selector
executeChain(Selector): List<Occurrences> successor

firstFilter

Fig. 4. Generating the detection algorithms using a chain of responsibility

2 Both the Selector and the filter classes have their own fields which are set during their respective
instantiation using the command parameter received by their respective constructor.

3 In some tactics, the same filter class can be instantiated more than once using different parameters
(i.e., commands). Moreover, we use a filter class to instantiate a constraint or its opposite depending
on the tactic’s definition.
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changes from the delta. These occurrences are then sent to the first filter referenced by
the selector object and from one filter to its successor in the chain; each filter filters the
occurrences according to the constraint it implements (i.e., using the doFilter() method)
and passes the resulting occurrences to its successor in the chain.

6 Case Study: Analyzing the Architectural Evolution Trend
of JFreeChart

Our approach aims at mapping high-level descriptions of tactics to operational repre-
sentations that can be detected at the source-code level, and inferring the architectural
evolution trend of a software system by analyzing its available versions and detecting
occurrences of the operational representations. To evaluate the effectiveness of our
approach, we implemented a prototype tool that supports the definition and detection of
operational representations and we conducted a retrospective case study using an open
source software system.

In particular, the goal of our case study was to answer the following research
questions:

• RQ1: How effective is our technique at detecting applied tactics? To answer this
question, we used our prototype tool to analyze a number of versions of an open
source Java system in order to detect a common set of the modifiability tactics.
These tactics are: Split Responsibility (SR), Abstract Common Services (ACS), Use
Encapsulation (UE) and Increase Cohesion (IC). We focused on these tactics as they
involve actions that can be detected through static analysis of different releases of a
software system. We computed the precision and recall of the obtained results by
manually analyzing the changes made to the versions under study as reported by the
differencing tool MADMatch.

• RQ2: Are we able to derive an architectural evolution trend using our
approach and interpret this trend at the architectural level? To answer this
question, we studied the detected applications and cancellations of tactics to check
if the changes made to the system follow a comprehensible pattern of architectural
evolution. We also compared the results of our detection process when applied to
major releases versus minor releases versus revisions.

Our case study is focused on the analysis of JFreeChart, a Java open source
framework which was previously studied in many publications, including the MAD-
Match paper [16]. JFreeChart is a library that supports developers in displaying various
charts in their applications and it was used to develop a number of open-source and
commercial products. We analyzed 37 versions of JFreeChart including revisions,
minor and major releases starting from version 0.5.64 till version 1.0.6. The size of the
analyzed versions varies from 26 to 141 packages and from 100 to 1196 classes.

4 In this three sequence-based schema, the first sequence is the major number (incremented when there
are significant changes to the system), the second sequence is the minor number (incremented when
there are minor changes to the system or significant bug fixes) and the last sequence is the revision
number (incremented when minor bugs were fixed).
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6.1 Effectiveness for Detecting Architectural Tactics

Overall, using the 36 deltas generated from the 37 analyzed versions we detected 103
occurrences of tactics’ applications and 33 tactics’ cancellations. To compute the
precision and recall of our results, we used the output of MADMatch to manually
identify all the changes that correspond to true tactics applications or cancellations.
Regarding the occurrences of tactics applications, we were able to confirm that 85 of
these occurrences were true positives resulting in a precision of 82.52 %. We also
identified 3 occurrences of tactics applications that our tool did not detect, resulting in a
recall of 96.59 %. Interestingly, only 19 among the 33 occurrences of tactics cancel-
lations were true positives, giving a precision of 57.57 % while manual analysis of
MADMatch’s output did not reveal any false negatives, resulting in a recall of 100 %.

These results suggest that our operational representations are effective in detecting
the application of architectural tactics but may not be enough to automatically infer
cancellations. Indeed, our simple technique for inferring the opposite evolution pattern
from an operational representation of a tactic is not enough to precisely define the
tactic’s cancellation. The opposite evolution pattern may lead to a high number of
negatives identified as positives (high recall and low precision) or to a misinterpretation
of the appropriate tactic that was cancelled. For instance, during the transition from
version 0.7.0 to version 0.7.1, the Separate Responsibility tactic was applied by moving
a number of classes from the package com.jrefinery.chart into a new package com.
jrefinery.chart.combination. However, during the transition from version 0.8.1 to ver-
sion 0.9.0, the package com.jrefinery.chart.combination was deleted and its classes were
moved back into two different packages (com.jrefinery.chart and com.jrefinery.data).
This was recognized by our detection process as a cancellation of the Abstract Common
Services tactic. Indeed, the SR tactic that was detected the first time was in fact part of
the application of an ACS that was incrementally introduced through several transitions
from versions 0.7.0 to 0.8.1 and then cancelled later in version 0.9.0. Future work is
needed to define the relationships between operational representations so that we can
aggregate and correctly interpret a number of successive applications of some tactics and
thus define and appropriately trace cancellations to tactics.

To identify the factors that influence the effectiveness of our operational repre-
sentations, we examined in detail the false results (i.e., false positives and false neg-
atives) returned by our detection process. We uncovered that all these errors were due
to the external tools MADMatch (85 %) for the deltas and PtiDej (15 %) for the reverse
engineering of the project binaries. MADMatch sometimes returns incorrect matching
in its deltas in part because its default parameters, which we used, promote recall over
precision. We decided to leave these parameters unchanged in order to get more data
for our manual analysis and thus a better approximation of the recall. Experimentation
with different parameters is planned for future work.

6.2 Detecting Architectural Evolution Trends

Regarding our second research question, we investigated the applications and
cancellations of tactics that were manually confirmed. Table 3 displays the distribution
of both tactics applications and cancellations per deltas (i.e., the table displays true
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positives). To reduce the size of the table, we have omitted the deltas that do not have
any occurrences. In purely quantitative terms, if we consider the total numbers of the
tactics that were applied (85) and those cancelled (19) through all the analyzed ver-
sions, cancellations represent 22 % of applications. We further investigated the
observed cancellations to understand the causes of such a high percentage.

Our analysis revealed that out of the 19 cancellations of tactics, 11 cancellations
were related to tactics already present in the first available release 0.5.6 while 8 can-
cellations are related to tactics that were introduced during the subsequent versions. For
instance, in the revision from versions 0.9.16 to 0.9.17, the class org.jfree.chart.ren-
derer.AbstractSeriesRenderer was introduced as a superclass for two other existing
sub-classes but was deleted two revisions later (i.e., in 0.9.19). We also observed an
interesting evolution pattern which involves the introduction, through different ver-
sions, of a number of super-classes that centralize a number of common constants and
the deletion of these classes later in other versions. For instance, from 0.8.1 to 0.9.0, the
classes CategoryPlotConstants and ChartPanelConstants (both in the package com.
jrefinery.chart) were created to centralize a number of constants. CategoryPlotCon-
stants was deleted later in the revision from 0.9.9 to 0.9.10 and its content was moved
back to the class com.jrefinery.chart.CategoryPlot. Likewise ChartPanelConstants was
deleted later in the transition from 0.9.20 to 1.0.0 and its content was moved to org.
jfree.chart.ChartPanel. This tendency to apply and cancel tactics raises some questions
about the consistency of the evolution of the system in general and its conformance to
architectural decisions in particular. In fact, this could be construed as a motivational
case for the importance of detecting architectural tactics and reminding them to
developers (especially in open-source and collaborative settings) in order to prevent
seemingly erratic modifications.

We also compared the results of our detection process when applied to the deltas
from two successive minor (respectively major) releases versus those generated by the
intermediate revisions between these minor (respectively major) versions. We presume
that if the developer consistently evolves the system through the intermediate revisions
between two successive minor (respectively major) versions, the aggregated results of
our detection process through these revisions would lead to the same result than the one
generated using the two minor (respectively major) versions. Table 4 displays the
number of occurrences of both applications and cancellations of tactics generated from
successive minor or major revisions. Similar to Tables 3 and 4 displays true positives
and it omits minor and major releases for which no occurrences were found (e.g., from
0.6.0 to 0.7.0) and successive minor releases for which there was no intermediate
revisions (e.g., from 0.5.6 to 0.6.0).

From 0.7.0 to 0.8.0, the only tactic occurrence (out of 7) that was detected in the
delta between these two minor versions but not in the revisions between them, is an
incremental application of the User Encapsulation (UE) tactic; i.e., a class (Sig-
nalsDataset) was created in 0.7.1 and an inheritance relationship was added later in
0.7.2 between this class and an existing subclass (SubSeriesDataset). As for the
detected tactics applications and cancellations from 0.8.0 and 0.9.0 (i.e., 9 occur-
rences), they match the aggregated results of the detection when applied to the revi-
sions from 0.8.0 to 0.8.1 and from 0.8.1 to 0.9.0. Finally, we found 34 occurrences of
applications and cancellations of tactics from 0.9.0 to 1.0.0 which is a major revision.
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However, the aggregation of the results from all the intermediate revisions between
0.9.0 and 1.0.0 yields 85 occurrences. We identified three main reasons for this dis-
crepancy some of which were already discussed above. First, some tactics were applied
through one or several revisions but all the entities involved in these tactics appear as

Table 3. Number of tactics applied or cancelled per deltas generated from successive versions

Delta Application of
tactics

Cancellation of
tactics

SR UE ACS IC SR UE ACS IC

v0.5.6_v0.6.0 1 2 1
v0.7.0_v0.7.1 1
v0.7.3_v0.7.4 1 2
v0.7.4_v0.8.0 1
v0.8.0_v0.8.1 1
v0.8.1_v0.9.0 3 1 1 1 1 1
v0.9.1_v0.9.2 1
v0.9.2_v0.9.3 1
v0.9.4_v0.9.5 3 5 2 1
v0.9.6_v0.9.7 1 4 1
v0.9.8_v0.9.9 1 1 1 6
v0.9.9_v0.9.10 1 1 1
v0.9.11_v0.9.12 1 1 1 2
v0.9.12_v0.9.13 1 2
v0.9.13_v0.9.14 2 1
v0.9.14_v0.9.15 1 1
v0.9.15_v0.9.16 1 1
v0.9.16_v0.9.17 2 5
v0.9.18_v0.9.19 3 2 2 1
v0.9.19_v0.9.20 1
v0.9.20_v1.0.0 9 3 2 4 2 1
v1.0.2_v1.0.3 1
v1.0.4_v1.0.5 1
v1.0.5_v1.0.6 1

Table 4. Number of tactics applied or cancelled per deltas generated from successive minor or
major versions

Delta Application of
tactics

Cancellation of
tactics

Total

SR UE ACS IC SR UE ACS IC

v0.7.0_v0.8.0 2 5 7
v0.8.0_v0.9.0 4 1 1 1 1 1 9
v0.9.0_v1.0.0 10 5 14 1 4 34
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added in the major revision (i.e., the evolution pattern is visible through revisions but
not at the major versions level). For example, the UE tactic was incrementally applied
by adding a set of classes (e.g., ObjectList) in the revision from 0.9.9 to 0.9.10 and their
superclass (AbstractObjectList) in the revision from 0.9.11 to 0.9.12. This whole
evolution pattern is not detectable when we analyze the delta from 0.9.0 to 1.0.0; the
entire inheritance hierarchy appears to be newly created at the same time. Second, some
tactics were applied in an incremental way through changes spread over several revi-
sions starting from the revision 0.9.0. These occurrences are only detectable when we
analyze the delta from 0.9.0 to 1.0.0. Finally, as discussed before, several tactics were
applied and then cancelled through the revisions; these tactics are not present at major
versions level.

6.3 Threats to Validity

External validity: Our case study was carried out on a subset of the modifiability
tactics that we were able to detect through static analysis of different releases of a
software system. This is possible for most of the modifiability tactics and some other
tactics such as exception handling (for availability) and creating additional threads or
reducing the number of iterations (for performance). However, other tactics may
require a dynamic analysis of the code or are even not present in the source code (e.g.,
increasing computational efficiency or maintaining multiple copies of data). Thus, our
approach is limited to those tactics that have an observable impact on the source code.
As future work, we plan to extend our work to other tactics and identify precisely the
type of tactics to which our approach may be applied.

Internal validity: Some tactics (e.g., ACS) may be composed of several other more
elementary tactics (e.g., SR). Since we did not implement yet a mechanism that enables
to relate and aggregate detected tactics through a number of releases, we tend to
interpret each detected tactic locally and individually. This may have an impact on our
interpretation of the overall architectural evolution trend. Thus, as discussed in
Sect. 6.1, future work is needed to define the relationships between operational rep-
resentations and exploit these relationships to correctly aggregate and interpret a
number of successive applications of related tactics. Finally, our results are dependent
on the effectiveness of the other tools used, notably MADMatch that was used to
compute the deltas. We selected MADMatch because it is a recent tool which com-
pared favorably to other techniques [16] but other tools may provide different (better or
worse) results. Future work is planned for experimentation with different parameters of
MADMatch and different tools.

7 Conclusion and Future Work

In this paper, we present a first iteration of a tool-supported approach that allows the
definition and detection of architectural tactics or more general evolution patterns using
basic changes extractable from the differencing of software versions. Once these

Inferring Architectural Evolution from Source Code Analysis 163



architectural tactics or patterns are defined, our technique automatically generates
algorithms able to parse the differencing data in order to detect occurrences of the
application or cancellation of these tactics. A case study conducted on a well-studied
open source system (JFreeChart) suggest that the technique is effective at detecting the
occurrences of the application of defined tactics but is not as successful at detecting
their cancellation. While few occurrences of these tactics are missed by our technique,
there is some noise (lack of precision), especially for the detection of cancellations.
Many of these errors are related to the parameterizing of the external tool selected to
provide differencing data. Nevertheless, the study revealed many instances of cancel-
lations of tactics that may be ill-advised and could have been prevented if the devel-
opers had access to the history and present of tactics involving the code they are
working on or plan to work on.

The conclusions of this study are still preliminary and future work with case studies
involving different parameters, tools and systems is needed to confirm our findings.
Additionally, we intend to experiment with more evolution patterns and eventually
discover desirable or harmful patterns through analyses of the change and defect
proneness of the components they involve.
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