
Software Architecture Challenges
and Emerging Research in Software-Intensive

Systems-of-Systems

Flavio Oquendo(&)

IRISA – UMR CNRS/Univ. Bretagne Sud, Vannes, France
flavio.oquendo@irisa.fr

Abstract. Software-intensive systems are often independently developed,
operated, managed, and evolved. Progressively, communication networks
enabled these independent systems to interact, yielding a new kind of complex
system, i.e. a system that is itself composed of systems, the so-called
System-of-Systems (SoS). By its very nature, SoS is evolutionarily developed
and exhibits emergent behavior.
Actually, software architecture research has mainly focused on single sys-

tems, mostly large or very large distributed systems whose software architecture
is described as design-time configurations of components linked together
through connectors. However, it is well known that the restricted characteristics
of single (even very large distributed) systems lead to architectural solutions (in
terms of theories, languages, tools, and methods) that do not scale up to the case
of systems-of-systems.
Indeed, novel architectural solutions are needed to handle the complexity of

software-intensive systems-of-systems in particular regarding the software
architecture challenges implied by evolutionary development and emergent
behavior.
This paper presents the challenges facing software architecture research to

address software-intensive systems-of-systems. It analyzes the discriminating
characteristics of system-of-systems when compared with single systems from
the software architecture perspective and focuses on recent advances in software
architecture research to formally describe the architecture of software-intensive
systems-of-systems.

Keywords: Software architecture � Software-intensive system-of-systems �
Software architecture challenges � Research on formal architecture description �
Formal behavioral modeling � Emergent behavior

1 Introduction

The complexity of software and the complexity of systems reliant on software have
grown at a staggering rate. In particular, software-intensive systems have been rapidly
evolved from being stand-alone systems in the past, to be part of networked systems in
the present, to increasingly become systems-of-systems in the coming future [18].

© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 3–21, 2016.
DOI: 10.1007/978-3-319-48992-6_1



De facto, the pervasiveness of the communication networks increasingly has made
possible to interconnect software-intensive systems that were independently developed,
operated, managed, and evolved, yielding a new kind of complex system, i.e. a system
that is itself composed of systems, the so-called System-of-Systems (SoS) [23].

SoSs are evolutionary developed from independent systems to achieve missions not
possible to be accomplished by a system alone. They are architected to exhibit
emergent behavior [20], i.e. behaviors that stem from the interactions among inde-
pendent constituent systems which cannot be deduced from the behaviors of the
constituent systems themselves. It means that the behavior of the whole SoS cannot be
predicted through analysis only of the behaviors of its constituent systems, or stated
simply: “the behavior of the whole SoS is more than the sum of the behaviors of its
constituent systems”.

This is the case of SoSs found in different areas as diverse as aeronautics, auto-
motive, energy, healthcare, manufacturing, and transportation [10, 22]; and application
domains that address societal needs as e.g. environmental monitoring, emergency
coordination, traffic control, smart grids, and smart cities [18]. Moreover, ubiquitous
platforms such as the Internet of Things (generalizing wireless sensor/actuator net-
works in the Cloud) and nascent classes of SoSs such as Cyber-Physical ones are
accelerating the deployment of software-intensive SoSs, i.e. SoSs where software
contributes essential influences to their design, construction, deployment, and evolution
[17], as depicted in Fig. 1.

Additionally, besides SoSs that are developed in specific localities, e.g. a
smart-city, some SoSs are being developed with a world-wide scope, e.g. the Global
Earth Observation SoS (GEOSS) [13] that links Earth observation resources
world-wide targeting missions for biodiversity and ecosystem sustainability.

Fig. 1. SoSs and related enabling platforms

4 F. Oquendo



It is worth highlighting that complexity is intrinsically associated to SoSs by its
very nature that implies emergent behaviors. Note also that in SoSs, missions are
achieved through emergent behaviors drawn from the local interactions among con-
stituent systems.

Hence, complexity poses the need for separation of concerns between architecture
and engineering [23]: (i) architecture focuses on designing and reasoning about
interactions of parts and their emergent properties; (ii) engineering focuses on
designing and constructing such parts and integrating them as architected.

Definitely, a key facet of the design of any software-intensive system is its archi-
tecture, i.e. the fundamental organization of a system embodied in its constituents, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution, as defined in the ISO/IEC/IEEE Standard 42010 [17].

In particular, the ISO/IEC/IEEE Standard 42010 states the importance of having
software architecture description as an essential first-class citizen artifact (similarly to
the case of other architecture fields, e.g. civil architecture and naval architecture).
Thereby, Architecture Description Languages (ADLs) are needed to express archi-
tecture descriptions. Note that we use the term ADL in the wider meaning defined by
the ISO/IEC/IEEE Standard 42010: any form of expression enabling architecture
descriptions.

Conceiving ADLs has been the subject of intensive research in the last 20 years
resulting in the definition of several ADLs for modeling initially static architectures and
then dynamic architectures of (often large or very large) single systems [24, 25, 35].
However, none of these ADLs have the expressive power to describe the architecture of
a software-intensive SoS [14, 21].

It is worth to recall here that software intensive systems-of-systems are in general
critical and very often safety-critical what is not the case of most of the software-only
systems that were the subject of the research on software architecture description. It is
also worth noting that among the ADLs proposed in the literature [24], the one that had
a widely industrial adoption is AADL, the SAE Standard AS5506 [37], dedicated to
safety-critical software-intensive systems in the avionics and automotive domains,
where the architecture has a key role to satisfy safety-related requirements.

Therefore, to address the research challenges brought by SoSs, a novel ADL is
needed for enabling the formal architecture description of software-intensive SoSs, in
particular for the case of critical software-intensive SoSs [14]. This ADL must provide
the expressive power to address the challenges raised by SoSs especially regarding
correctness properties related to evolutionary development and emergent behavior.
SoSs have indeed evolutionary architectures. Moreover, it must enable to prescribe SoS
architectures abstractly at design-time without knowing which will be the actual con-
crete systems that will participate in the SoS at run-time.

The remainder of this paper is organized as follows. Section 2 discusses the notion
of software-intensive SoS. Section 3 presents the main roadmaps for SoS research.
Section 4 analyzes the distinctive characteristics of SoSs and their implications in terms
of software architecture challenges. Section 5 discusses and introduces the essential
SoS architectural concepts. Section 6 introduces emerging research on novel formal
approaches for describing SoS architectures, focusing on SosADL, an emerging formal
ADL for SoS. In Sect. 7, we present a case study, excerpt from a real SoS project,

Software Architecture Challenges and Emerging Research in SiSoS 5



summarizing lessons learnt from the application of SosADL in practice. In Sect. 8, we
present related work on SoS architecture description. To conclude we summarize, in
Sect. 9, the main contributions of this paper and outline future work.

2 The Notion of System-of-Systems

The notion of system and the related notion of software-intensive system are well
known and defined in the ISO/IEC/IEEE Standard 42010. A system is a combination of
components organized to accomplish a specific behavior for achieving a mission.
Hence, a system exists to fulfill a mission in an environment. A software-intensive
system is a system where software contributes essential influences to the design,
construction, deployment, and evolution of the system as a whole [17].

The notion of software-intensive system-of-systems is however relatively new,
being the result of the ubiquity of computation and pervasiveness of communication
networks.

A System-of-Systems (SoS, as stated) is a combination of constituents, which are
themselves systems, that forms a more complex system to fulfill a mission, i.e. this
composition forms a larger system that performs a mission not performable by one of
the constituent systems alone [23], i.e. it creates emergent behavior.

For intuitively distinguishing an SoS from a single system, it is worth to recall that
every constituent system of an SoS fulfills its own mission in its own right, and
continues to operate to fulfill its mission during its participation in the SoS as well as
when disassembled from the encompassing SoS.

For instance, an airport, e.g. Paris-Charles-de-Gaulle, is an SoS, but an airplane
alone, e.g. an Airbus A380, is not. Indeed, if an airplane is disassembled in compo-
nents, no component is a system in itself. In the case of an airport, the constituent
systems are independent systems that will continue to operate, e.g. the air traffic control
and the airlines, even if the airport is disassembled in its constituents.

Operationally, an airport is an SoS spanning multiple organizations, categorized
into major facilities: (i) passenger, (ii) cargo, and (iii) aircraft departure, transfer and
arrival. Each facility is shared and operated by different organizations, including air
navigation services providers, ground handling, catering, airlines, various supporting
units and the airport operator itself. The airport facilities are geographically distributed,
managed by independent systems, and fall under multiple legal jurisdictions in regard
to occupational health and safety, customs, quarantine, and security. For the airport to
operate, these numerous constituent systems work together to create the emergent
behavior that fulfill the airport mission.

As a software-intensive SoS, an airport is composed of independent systems that
enable passengers, cargo, airplanes, information and services to be at the right place at
the right time via the seamless collaboration of these constituent systems, from
check-in, to security, to flight information displays, to baggage, to boarding, stream-
lining airport operations.

It is worth noting that the level of decentralization in the control of the constituent
systems of an SoS varies, e.g. regarding airports, the level of subordination in a military
airport and in a civil airport are very different. It is also worth noting that in some cases

6 F. Oquendo



the SoS has a central management, as it is the case of civil and military airports, and in
others do not, as it is the case e.g. in a metroplex, i.e. the set of airports in close
proximity sharing the airspace serving a city.

SoSs may be classified in four categories according to the levels of subordination
and awareness of the constituent systems on the SoS [8, 23]:

• Directed SoS: an SoS that is centrally managed and which constituent systems have
been especially developed or acquired to fit specific purposes in the SoS – the
constituent systems maintain the ability to operate independently, but their actual
operation is subordinated to the central SoS management (i.e. the management
system of the coalition of constituent systems); for instance, a military airport.

• Acknowledged SoS: an SoS that is centrally managed and which constituent sys-
tems operate under loose subordination – the constituent systems retain their
independent ownership; for instance, a civil airport.

• Collaborative SoS: an SoS in which there is no central management and constituent
systems voluntarily agree to fulfill a central mission – the constituent systems
operate under the policies set by the SoS; for instance, a metroplex.

• Virtual SoS: an SoS in which there is no central management or centrally agreed
mission – the constituent systems operate under local, possibly shared, policies; for
instance, the airports of a continent such as Europe.

These different categories of SoSs bring the need to architect SoSs where local
interactions of constituent systems influence the global desired behavior of the SoS
taking into account the levels of subordination and awareness of the constituent sys-
tems on the SoS.

3 Roadmaps for the Research on Systems-of-Systems

Currently, the research on software-intensive SoSs is still in its infancy [14, 21]. In
addition, SoSs are developed mostly in a case-by-case basis, not addressing neither
cross-cutting concerns nor common foundations across SoS application domains [7].

Actually, the relevance and timeliness of progressing the state of the research for
developing critical software-intensive SoSs from now on are highlighted in several
roadmaps targeting year 2020 and beyond [9, 11, 41]. The needs for research on
software-intensive SoSs have been addressed in different studies carried out by the
initiative of the European Commission in the H2020 Program, as part of the European
Digital Agenda [7].

More precisely, in 2014, two roadmaps for SoSs were proposed (supported by the
European Commission) issued by the CSAs ROAD2SoS (Development of strategic
research and engineering roadmaps in Systems-of-Systems) [9] and T-Area-SoS
(Transatlantic research and education agenda in Systems-of-Systems) [11]. In 2015, the
CSA CPSoS [16] presented a research agenda for developing cyber-physical SoSs.

All these roadmaps show the importance of progressing from the current situation,
where software-intensive SoSs are basically developed in ad-hoc ways in specific
application sectors, to a scientific approach providing rigorous theories, languages,
tools, and methods for mastering the complexity of SoSs in general (transversally to
application domains).

Software Architecture Challenges and Emerging Research in SiSoS 7



These roadmaps highlight that now is the right time to initiate research efforts on
SoS to pave the way for developing critical software-intensive SoSs in particular
regarding architectural solutions for trustworthily harnessing emergent behaviors to
master the complexity of SoSs.

Overall, the long-term grand challenge raised by critical software-intensive SoSs
calls for a novel paradigm and novel scientific approaches for specifying, architecting,
analyzing, constructing, and evolving SoSs deployed in unpredictable open environ-
ments while assuring their continuous correctness.

In Europe, this effort started more intensively in 2010 when the European Com-
mission launched a first Call for Research Projects addressing SoS as the main
objective of study; in 2013 another Call for Projects had again SoS as an objective and
in 2016 the third was opened. The projects funded in the first European Call have now
ended: COMPASS (Comprehensive modelling for advanced Systems-of-Systems, from
Oct. 2010 to Sept. 2014) [3] and DANSE (Designing for adaptability and evolution in
System-of-Systems engineering, from Nov. 2010 to Oct. 2014) [4]. The projects of the
second Call started in 2014 [7]: AMADEOS (Architecture for multi-criticality agile
dependable evolutionary open System-of-Systems), DYMASOS (Dynamic manage-
ment of coupled Systems-of-Systems), and LOCAL4GLOBAL (System-of-Systems
that act locally for optimizing globally).

Regarding other parts of the world, in the USA, different research programs
specifically targets SoS, in particular in the Software Engineering Institute [42] and
Sandia National Laboratories [41] among others. In these programs, it is interesting to
pinpoint the different research actions that have evaluated current technologies
developed for single systems in terms of suitability/limitation for architecting and
engineering SoSs. In addition, prospective studies have highlighted the overwhelming
complexity of ultra-large-scale SoSs [12].

Note also that different industrial studies and studies from the industrial viewpoint
have highlighted the importance, relevance and timeliness of software-intensive SoSs
[10, 22].

4 Software Architecture Challenges in Systems-of-Systems

Due to its inherent complex nature, architecting SoSs is a grand research challenge, in
particular for the case of critical software-intensive SoSs.

Precisely, an SoS is defined as a system constituted of systems having the following
five intrinsic characteristics [23]:

• Operational independence: every constituent system of an SoS operate indepen-
dently from each other for fulfilling its own mission;

• Managerial independence: every constituent system of an SoS is managed inde-
pendently, and may decide to evolve in ways that were not foreseen when they were
originally combined;

• Geographical distribution: the constituent systems of an SoS are physically
decoupled (in the sense that only information can be transmitted between con-
stituent systems, nor mass neither energy);

8 F. Oquendo



• Evolutionary development: as a consequence of the independence of the constituent
systems, an SoS as a whole may evolve over time to respond to changes in its
constituent systems and operational environment; moreover, the constituent systems
are only partially known at design-time;

• Emergent behaviors: in an SoS, new behaviors emerge from the local interaction of
its constituent systems (i.e. an emergent behavior that cannot be performed by a
constituent system alone); furthermore, these emergent behaviors may be ephemeral
because the systems composing the SoS evolve independently, which may impact
their availability.

The combination of these five defining characteristics turns the architecture of SoSs
to be naturally highly evolvable, frequently changing at run-time in unpredictable
ways. SoSs have thereby evolutionary architectures (with the meaning that they
dynamically adapt or evolve at run-time subject to the evolutionary development of the
SoS).

Much work has addressed the issue of describing software architecture (in the sense
of architecture of software-only systems as well as software-intensive systems). Most
of the work carried out addressed static architectures (architectures which do not
change at run-time) and some tackled dynamic architectures (architectures which may
change at run-time). Therefore, we must pose the question whether these ADLs provide
enough expressive power for describing SoS evolutionary architectures.

To address this question we will first analyze how and why SoSs are different from
single systems, then analyze what are the implications of these distinctive character-
istics for SoS architecture.

A single system and an SoS are both systems and as such they are developed with
the purpose of fulfilling a mission. In both cases, they are themselves constituted of
parts that architected together will provide the capabilities of the system as a whole to
achieve the specified missions. The distinctive nature of an SoS when compared to a
single system derives from its five defining characteristics.

To well understand what in an SoS is different from a single system, it is worth
recalling that we are addressing software-intensive systems (not software-only systems)
in this comparison. It is also worth noting that, in Systems Engineering, it is well
known that the formalisms and technologies for single systems are not suitable to SoSs
from a long time [23], SoS having its first dedicated international conference organized
10 years ago: the IEEE International Conference on System-of-Systems Engineering
(SoSE), being in its 11th edition in 2016. In particular, the limitations of employing
theories, languages, tools, and methods conceived for the architecture of single systems
to the architecture of SoSs are well recognized and triggered a new thread of research
[18–20, 23].

Let us now enumerate in Table 1 the key differences between both kind of systems
(i.e. single systems and SoSs) by analyzing, for each distinctive characteristic, the
nature of the constituent parts and the nature of the relationship between the whole and
its constituent parts (see [8] for a deeper survey on the distinctive characteristics that
differentiate systems-of-systems from single systems and their different graduations).

Software Architecture Challenges and Emerging Research in SiSoS 9



Table 1. Differences between single system and system-of-systems

Characteristic Single system System-of-systems (SoS)

Nature of the constituent parts
Operational
independence of
constituents

• None: constituent components have
no operational independence, i.e.
they operate as designed to provide
its functionality

• Partial or Total: constituent
systems have operational
independence, i.e. they
operate independently
(at least partially) from the
SoS to fulfill its own
mission

Managerial
independence of
constituents

• None: constituent components have
no managerial independence, i.e. all
decisions are made at the system
level

• Partial or Total: constituent
systems have managerial
independence (at least
partially) from the SoS to
fulfill its own mission, in
particular they may decide to
evolve in ways that were not
foreseen when they were
originally combined in
the SoS

Geographical
distribution of
constituents

• None or Partial: constituent
components may be physically
coupled (in the sense that mass and
energy can be transmitted between
constituent components)

• Total: constituent systems of an
SoS are physically decoupled, i.e.
only information can be
transmitted between constituent
systems, never mass nor energy

Nature of the relationships between the whole and its constituent parts
Initial
development of
system

• Total: a single system is architected
to meet a mission using constituent
components developed or acquired
to fit the mission at design-time

• None or Partial: an SoS is
architected to meet a mission, but
very often not knowing the
constituent systems that will
support the mission at run-time

Evolutionary
development of
system

• None or Partial: after initial
development, constituent
components may evolve under the
control of the system at run-time

• Total: an SoS has no (or at most
partial) control on how the
constituent systems may evolve,
in particular as their missions may
not be aligned with the SoS
mission

Emergent
behavior of
system

• None: constituent components have
predictable behaviors from the
system perspective as well as system
behaviors are predictable from the
behavior of the constituent
components

• Partial or Total: even if the
behaviors of constituent systems
are predictable, their
independence turns the SoS
behavior unpredictable from the
SoS perspective producing also
emergent behaviors from local
interactions

10 F. Oquendo



Undoubtedly, the main difference between an SoS and a single system is the nature
of their constituent systems, specifically their level of independence, and the exhibition
of emergent behavior.

Complexity is thereby innate to SoSs as they inherently exhibit emergent behavior:
in SoSs, missions are achieved through emergent behavior drawn from the local
interaction among constituent systems. In fact, an SoS is conceived to create desired
emergent behaviors for fulfilling specific missions and may, by side effect, create
undesirable behaviors possibly violating safety, which needs to be avoided. A further
complicating factor is that these behaviors may be ephemeral because the systems
constituting the SoS evolve independently, which may impact their availability.
Additionally, the environment in which an SoS operates is generally known only
partially at design-time and almost always is too unpredictable to be summarized
within a fixed set of specifications (thereby there will inevitably be novel situations,
possibly violating safety, to deal with at run-time).

Overall, major research challenges raised by software-intensive SoSs are funda-
mentally architectural: they are about how to organize the local interactions among
constituent systems to enable the emergence of SoS-wide behaviors and properties
derived from local behaviors and properties (by acting only on their interactions,
without being able to act in the constituent systems themselves) subject to evolutions
that are not controlled by the SoS due to the independent nature of constituents.

Therefore, enabling to describe SoS architectures is a grand research challenge.

5 Enhancing Architectural Concepts for SoS

Remember that a software architecture is defined to be the fundamental organization of
a system embodied in its constituents, their relationships to each other, and to the
environment, and the principles guiding its design and evolution [17]. In the archi-
tecture description of single systems, the core architectural concepts are the one of
“component” to represent the constituents, the one of “connector” to represent the
interactions among constituents, and the one of “configuration” to represent their
composition.

As the restricted meaning of these concepts do not cope with the nature of SoS
architectures, it is important to define novel concepts for describing SoS architectures
as well as to name the new terms aligned with the SoS terminology.

These SoS concepts are the ones of “constituent system” of an SoS, “mediator”
among constituent systems of an SoS, and “coalition” of mediated constituent systems
of an SoS.

In addition, SoS architectures must be described in abstract terms at design-time
(recall that concrete systems that will become constituents of the SoS are generally not
known at design-time). The defined abstract architecture will then be evolutionarily
concretized at run-time, by identifying and incorporating concrete systems.

In Table 2 we summarize these concepts and indicate how they are different and
extends the ones of single systems.

Software Architecture Challenges and Emerging Research in SiSoS 11



Table 2. SoS architectural concepts

SoS architectural concepts
Constituent system Systems are the constituents of an SoS: a system has its own

mission, is operationally independent, managerially
independent, and may independently evolve. The concept of
constituent system focuses on the capabilities to deliver system
functionalities
• Note that the concept of constituent system subsumes the
concept of component in single systems: a component can be
perceived as a “constituent system that is totally subordinated”,
oppositely to constituent systems in general that are, by
definition, generally independent

• Constituent systems exist independently of the SoS
Mediator Mediators mediate the interaction of constituent systems of an

SoS: a mediator has the purpose to achieve a specific emergent
behavior by mediating the interaction among different
constituent systems
• Note that the concept of mediator in SosADL subsumes the
concept of connector in single systems: mediators have a
coordination role, while connectors have basically
communication roles

• Note that mediators are both operationally and managerially
dependent of the SoS, and evolves under the control of the SoS
for achieving emergent behaviors (an SoS has total control on
mediators: it can create, evolve and destroy mediators at
run-time)

Coalition A coalition constitutes a temporary alliance for coordinated
action among constituent systems connected via mediators (it is
dynamically formed to fulfill the SoS mission through emergent
behaviors)
• Coalitions can be recomposed in different ways or with
different systems in order to fulfil a specified SoS mission

• Coalitions are declared by expressing SoS policies to select and
bind existing constituent systems using mediators created by
the SoS itself

• Note that the SoS totally controls its mediators, but not at all its
constituent systems, which are independent from the SoS

Design-time use of the architectural concepts
Abstract architecture
defined by intention

By the nature of SoSs, concrete systems that will actually
participate are generally not known at design-time, therefore the
SoS architecture needs to be defined abstractly, i.e. specifying
constraints to select possible constituent systems and contracts
to be fulfilled by constituent systems in mediators
• Note that this is the opposite of the case of single systems
where almost always the architecture is complete decided at
design-time including all its concrete components

(continued)

12 F. Oquendo



Therefore, in an SoS architecture description:

• Constituent systems are SoS architectural elements defined by intention (declara-
tively in terms of abstract systems) and selected at run-time (concretized).

• Mediators are SoS architectural elements defined by intention (declaratively in
terms of abstract mediators) and created at run-time (concretized by the SoS) to
achieve a goal, part of an encompassing mission (note that its architectural role is to
mediate the interaction of constituent systems for creating emergent behavior).

• Coalitions are SoS architectural compositions of mediated constituent systems,
defined by intention (declaratively in terms of possible systems and mediators and
policies for their on-the-fly compositions) and evolutionarily created at run-time
(concretized) to achieve an SoS mission in an operational environment.

6 Emerging Research on SoS Architecture Description

To address the research challenge of formally describing SoS architectures, in particular
regarding its evolutionary development and the modeling of SoS emergent behaviors,
we have started in 2013 a research project in collaboration with industrial SoS
architects.

From this research emerged a novel architectural solution in terms of formal lan-
guages and supporting tools, especially conceived for formally modeling and analyzing
the architecture of software-intensive SoSs. This novel solution for SoS architecture
brings the following contributions to the state-of-the-art:

• A novel formal foundation for modeling SoS architectures: we conceived a novel
process calculus in the family of the p-Calculus [26], named p-Calculus for SoS (for
details on the p-Calculus for SoS see [31] in the proceedings of the 2016 IEEE SoS

Table 2. (continued)

• Note that the concept of abstract architecture is different and
does not have the same purpose as the concept of architectural
style or pattern. Both, style and pattern, are codifications of
design decisions used as architectural knowledge for designing
abstract or concrete architectures. An abstract architecture is
the expression of all possible valid concrete architectures in
declarative terms. A concrete architecture is the actual
architecture that operates at run-time

Run-time use of the architectural concepts
Concrete architecture
defined by extension

Once an SoS is initiated, concrete systems coping with the
specified system abstractions needs to be identified to create
concrete coalitions at run-time with the assistance of mediators
• Note that a concrete system may enter or leave the SoS at
run-time by its own decision (the SoS has no control on
concrete systems); mediators oppositely are dynamically
created and evolve under the control of the SoS

Software Architecture Challenges and Emerging Research in SiSoS 13



Engineering Conference (SoSE 2016) which presents its formal definition and
operational semantics).

• A novel formal architectural language embodying the SoS architectural concepts of
constituent system, mediator, and coalition: grounded on the p-Calculus for SoS, we
conceived a novel ADL based on the separation of concerns between architectural
abstractions at design-time and architectural concretions at run-time (for details see
[30] in the proceedings of the 2016 IEEE SoS Engineering Conference (SoSE 2016)
which presents the concepts and notation of this novel ADL, named SosADL).

• A novel temporal logic for expressing correctness properties of highly dynamic
software architectures (including SoS architectures) and verifying these properties
with statistical model checking: we conceived a novel temporal logic, named
DynBLTL, for supporting analysis of SoS architectures (for details on this temporal
logic see [36] in the proceedings of the 2016 International Symposium On Lev-
eraging Applications of Formal Methods, Verification and Validation (ISOLA
2016)); in addition we developed a novel statistical model checking method for
verifying properties expressed on DynBLTL on architecture descriptions based on
the p-Calculus (for details see [2] in these proceedings of ECSA 2016).

• A novel formalization for checking the architectural feasibility of SoS abstract
architecture descriptions and for creating concrete architectures from SoS abstract
architectures: it supports automated creation of concrete architectures from an
abstract architecture given selected concrete constituent systems as well as supports
the evolution of concrete architectures by automated constraint solving mechanisms
(for details see [15] in the proceedings of the 2016 IEEE SoS Engineering Con-
ference (SoSE 2016) which presents this novel formal system mechanizing the
solving of concurrent constraints of SosADL).

• A novel approach for modeling SoS missions in terms of goals relating them to
mediators and required SoS emergent behaviors (for details see [38] in the pro-
ceedings of the 2015 IEEE SoS Engineering Conference (SoSE 2015) which pre-
sents the SoS mission description notation and the supporting tool).

• The field validation of SosADL and its underlying p-Calculus for SoS drew from a
real pilot project and related case study of a Flood Monitoring and Emergency
Response SoS, summarized in the next section (for details see [32] in the pro-
ceedings of the 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2016)).

Additionally, we have developed an SoS Architecture Development Environment
(SosADE) for supporting the architecture-centric formal evolutionary development of
SoSs using SosADL and associated analysis languages and tools. This toolset provides
a model-driven architecture development environment where the SosADL meta-model
is transformed to different analysis meta-models and converted to input languages of
analysis tools, e.g. Kodkod for concurrent constraint solving, UPPAAL for model
checking, DEVS for simulation, and PLASMA for statistical model checking.

14 F. Oquendo



7 Lessons Learnt from Applying SosADL in a Case Study

Formally defined in terms of the p-Calculus SoS, SosADL provides architectural
concepts and notation for describing SoS architectures. The notation of SosADL is in
particular presented in [30] and formally defined in [31]. Hereafter we will focus on its
expressiveness as an ADL for describing SoS architectures by focusing in an excerpt of
a case study carried out for architecting an SoS for Flood Monitoring and Emergency
Response [32].

Flood Monitoring and Emergency Response SoSs address the problem of flash
floods, which raise critical harms in different countries over rainy seasons. This
becomes particularly critical in cities that are crossed by rivers such as the city of Sao
Carlos, SP, Brazil, crossed by the Monjolinho river as shown in Fig. 2.

This Flood Monitoring and Emergency Response SoSs has the five defining
characteristics of an SoS. Let us now briefly present this in vivo field study in Table 3.

The aim of this field study was to assess the fitness for purpose and the usefulness
of SosADL to support the architectural design of real-scale SoSs.

The result of the assessment based on this pilot project shown that the SosADL met
the requirements for describing SoS architectures. As expected, using a formal ADL
compels the SoS architects to study different architectural alternatives and take key
architectural decisions based on SoS architecture analyses.

Learning SosADL in its basic form was quite straightforward; however, using the
advanced features of the language needed interactions with the SosADL expert
group. The SoS architecture editor and simulator were in practice the main tools to
learn and use SosADL and the SoS architecture model finder and model checker were
the key tools to show the added value of formally describing SoS architectures.

In fact, a key identified benefit of using SosADL was the ability, by its formal
foundation, to validate and verify the studied SoS architectures very early in the
application lifecycle with respect to the SoS correctness properties, in particular taking
into account emergent behavior in a critical set as the one of flash flood.

Fig. 2. Monjolinho river crossing the city of Sao Carlos with deployed wireless river sensors

Software Architecture Challenges and Emerging Research in SiSoS 15



The experimentation and the corresponding assessment have shown that SosADL
and its toolset, SosADE, are de facto suitable for formally describing and analyzing
real-scale SoS architectures.

8 Related Work on SoS Formal Architecture Description

Software-intensive SoS is a nascent domain. According to [14], ca. 75 % of the
publications addressing software-intensive SoSs appeared in the last 5 years and ca.
90 % in the last 10 years.

Table 3. Field study of SosADL on a flood monitoring and emergency response SoS

Field study for architecting a WSN-based flood monitoring and emergency response SoS

Purpose The aim of this field study of a Flood Monitoring and Emergency Response SoS
was to assess the fitness for purpose and the usefulness of SosADL and
underlying formal foundation to support the architectural design of real-scale
SoSs

Stakeholders The SoS stakeholder is the DAEE (Sao Paulo’s Water and Electricity
Department), a government organization of the State of Sao Paulo, Brazil,
responsible for managing water resources, including flood monitoring of urban
rivers. Stakeholders of the constituent systems are the different city councils
crossed by the Monjolinho river and the policy and fire departments of the city
of Sao Carlos that own Unmanned Aerial Vehicles (UAVs) and have cars
equipped with Vehicular Ad-hoc Networks (VANETs). The population, by
downloading an App from the DAEE department, are involved as target of the
alert actions. They may also register for getting alert messages by SMS

Mission The mission of this SoS is to monitor potential flash floods and to handle
related emergencies

Emergent
behaviors

In order to fulfil its mission, this monitoring SoS needs to create and maintain
an emergent behavior where sensor nodes (each including a sensor mote and an
analog depth sensor) and UAVs (each including communication devices) will
coordinate to enable an effective monitoring of the river and once a risk of flood
is detected, to prepare the emergence response for warning vehicles with
VANETs and drivers with smartphones approaching the flood area as well as
inhabitants that live in potential flooding zones. Resilience of the SoS, even in
case of failure of sensors and UAVs need to be managed as well as its operation
in an energy-efficient way. The emergence response involves warning the
policy and fire departments as well

SoS
architecture

The architecture of this Flood Monitoring and Emergency Response SoS was
described in SosADL as a Collaborative SoS having a self-organizing
architecture based on mediators for connecting sensors and forming multihop
ad-hoc networks for both flood monitoring and emergency response. The
designed SoS architecture allows for continuous connections and
reconfigurations around broken or blocked paths, supported by the SoS
evolutionary architecture with possible participation of UAVs and VANETs
(see [32] for details on the SoS architecture description)

16 F. Oquendo



We carried out a Systematic Literature Review (SLR)1 to establish the state-of-
the-art on architecture description of SoSs [14], which permitted to collect, evaluate,
and summarize the research related to the following question: Which modeling lan-
guages (including ADLs) have been used to describe SoS architectures?

As a result of the SLR [14], the following modeling languages have been identified
as the main ones used for SoS architecture description: UML (semi-formal) [40],
SysML (semi-formal) [39], and CML [16] (formal). These findings are compatible with
the findings of another SLR see [21] conducted independently.

More specifically, SysML was the baseline of two European FP7 projects
(COMPASS [3] and DANSE [4]) for which they developed extensions for SoSs.

DANSE did not develop an ADL, but used SysML to semi-formally describe
executable architectures that are then tested against interface contracts. The tests are
applied to the traces obtained by executing architectures, against interface contracts
expressed on GCSL (Goal Contract Specification Language) [4].

COMPASS developed a formal approach, in contrast to DANSE that extended a
semi-formal one. In COMPASS, CML [28] was specifically designed for SoS mod-
eling and analysis.

CML is not an ADL. It is a contract-based formal specification language to com-
plement SysML: SysML is used to model the constituent systems and interfaces among
them in an SoS and CML is used to enrich these specifications with interface contracts.
A CML model is defined as a collection of process definitions (based on CSP/Circus
[28]), which encapsulate state and operations written in VDM (Vienna Development
Method) as well as interactions via synchronous communications.

CML is a low-level formal language, of which a key drawback (stated by their
authors) is that SysML models when mapped to CML produce huge unintelligible
descriptions (it was one of the lessons learned from COMPASS [28]).

In contrast to CML, SosADL enables the formal description of an SoS architecture
as a whole being a full ADL according to the criteria of ISO/IEC/IEEE Standard 42010
[17], while CML is not, focusing only on contracts of interactions. Moreover, regarding
SoS behavioral modeling, SosADL subsumes CML in terms of expressive power by its
mathematical foundation based on the p-Calculus for SoS [31], subsuming CSP/Circus.

It is worth to recall here that SosADL as a formal architectural language follows
previous work that focused on formalisms for describing software architectures which
are dynamic [29] and self-evolving [27] in the scope of single systems. In particular,
achievements of the ArchWare European Project [33] (FP5 ICT Program) were pre-
sented in a keynote [27] ten years ago in the 1st ECSA concentrating on an active
architecture framework for supporting self-evolving software-intensive (single) sys-
tems architecturally described in p-ADL [29, 33] and currently supported by modern
concurrent languages [1] in the Cloud.

Complementary to ADLs, software architecture models, patterns, and styles as well
as software architecture-based frameworks have been studied for different kinds of

1 We conducted automatic searches on the major publication databases related to the SoS domain
(IEEE Xplore, ISI Web of Science, Science Direct, Scopus, SpringerLink, and ACM Digital
Library), after having the defined the SLR protocol (see [14] for details on the SLR).

Software Architecture Challenges and Emerging Research in SiSoS 17



single systems exhibiting dynamic architectures, especially for autonomic systems,
self-adaptive systems, self-organizing systems and more generally self-* systems.
However, these different works have not targeted SoS and in particular have not at all
addressed the key issue of emergent behavior as they have de facto limited their scope
to single systems, e.g. [5].

Another thread of related work on SoSs is the one of implementation platforms. For
the particular case of homogeneous constituent systems, a new generation of compo-
nent frameworks and modeling languages have been designed to develop a specific
class of SoSs, the so-called “ensembles” (an SoS that is only composed of homoge-
neous systems), e.g. DEECo (Dependable Ensembles of Emerging Components) [44]
and SCEL (Service Component Ensemble Language) [44].

It is worth noting that “ensembles” denote a specific implementation style, which
may be used to develop the implementation of SoS architectures designed with an
SosADL. In this case, SoS homogeneous architectures described and analyzed with
SosADL can be transformed to implementation models using SCEL or DEECo.

In summary, based on the study of the state-of-the-art carried out through the SLR,
SosADL is positioned as a pioneering ADL having the expressive power to formally
describe SoS architectures, no existing ADL being able to express these evolutionary
architectures [14, 21]. Regarding detailed design and implementation in specific styles,
it is complementary to technologies developed for e.g. “ensembles” as well as more
generally to service-oriented architectural styles [43] applied to SoS implementation.

9 Conclusion and Future Work

This paper introduced the notion of software-intensive SoS, raised key software
architecture challenges in particular related to SoS architecture description and briefly
surveyed emerging research on ADLs for SoS addressing these challenges based on a
paradigm shift from single systems to systems-of-systems.

Oppositely to single systems, SoSs exhibit emergent behavior. Hence, whether the
behavior of a single system can be understood as the sum of the behaviors of its
components, in SoSs, this reductionism fails: an SoS behaves in ways that cannot be
predicted from analyzing exclusively its individual constituents. In addition, SoS is
characterized by evolutionary development enabling to maintain emergent behavior for
sustaining SoS missions.

Software-intensive SoS has become a hotspot in the last 5 years, from both the
research and industry viewpoints. Indeed, various aspects of our lives and livelihoods
have progressively become overly dependent on some sort of software-intensive SoS.

If SoS is a field well established in Systems Engineering and SoS architecture has
been studied for two decades, it is yet in its infancy in Software Engineering and
particularly in Software Architecture. Only 3 years ago, the first workshop on the
architecture and engineering of software-intensive SoSs was launched: the first ACM
Sigsoft/Sigplan International Workshop on Software Engineering for Systems-of-
Systems was organized with ECSA 2013 [34] and since 2015 has been organized with
ACM/IEEE ICSE, being in 2016 in its fourth edition. The first conference track ded-
icated to software-intensive SoS, SiSoS, will be organized only in 2017 at ACM SAC.

18 F. Oquendo



Beyond these initiatives of scientific forums, it is worth to highlight the increasing
number of research initiatives targeting software-intensive SoSs such as the national
research networks launched recently in France (CNRS GDR GPL/Research Network
on Software-intensive Systems-of-Systems) and UK (VaVaS Research Network for the
Verification and Validation of Autonomous SoSs), and the national programs been
launched in different countries, e.g. Labex MS2T (Control of Technological
Systems-of-Systems) and IRT SystemX (Engineering the Digital Systems of the
Future) in France and the SoS Agenda initiative in Sweden.

These different initiatives are paving the way for the future software-intensive SoSs
enabling to architect and engineer software-intensive SoSs in different application
domains with guaranteed trustworthy properties [6], harnessing emergent behaviors for
trustworthily achieving SoS missions in critical SoSs.

Regarding emergent research on SoS and more specifically on SosADL, future
work is mainly related with the application of SosADL and its related languages and
toolset in industrial-scale projects. They include joint work with DCNS for applying
SosADL to architect naval SoSs, with IBM for applying SosADL to architect
smart-farms in cooperative settings, and with SEGULA for applying SosADL to
architect SoSs in the transport domain.

References

1. Cavalcante, E., Batista, T.V., Oquendo, F.: Supporting dynamic software architectures: from
architectural description to implementation. In: Proceedings of the 12th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Montreal, Canada, pp. 31–40, May 2015

2. Cavalcante, E., Quilbeuf, J., Traonouez, L.M., Oquendo, F., Batista, T., Legay, A.:
Statistical model checking of dynamic software architectures. In: Tekinerdogan, B., et al.
(eds.) ECSA 2016. LNCS, vol. 9839, pp. 185–200. Springer, Heidelberg (2016)

3. COMPASS: Comprehensive Modelling for Advanced Systems of Systems. http://www.
compass-research.eu

4. DANSE: Designing for Adaptability and Evolution in System-of-Systems Engineering.
http://www.danse-ip.eu

5. Lemos, R., et al.: Software engineering for self-adaptive systems: a second research
roadmap. In: Lemos, R., Giese, H., Müller, Hausi, A., Shaw, M. (eds.). LNCS, vol. 7475,
pp. 1–32. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35813-5_1

6. ERCIM: Special Theme: Trustworthy Systems-of-Systems, ERCIM News, vol. 102, July
2015. http://ercim-news.ercim.eu/en102/

7. European Commission (EC) - Horizon 2020 Framework Program: H2020 Digital Agenda on
Systems-of-Systems. https://ec.europa.eu/digital-agenda/en/system-systems

8. Firesmith, D.: Profiling systems using the defining characteristics of systems of systems
(SoS), software engineering institute. SEI Technical report: CMU/SEI-2010-TN-001, 87 p.,
February 2010

9. FP7 CSA Road2SoS (Roadmaps to Systems-of-Systems Engineering) (2011–2013):
Commonalities in SoS Applications Domains and Recommendations for Strategic Action.
http://road2sos-project.eu/

Software Architecture Challenges and Emerging Research in SiSoS 19

http://www.compass-research.eu
http://www.compass-research.eu
http://www.danse-ip.eu
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://ercim-news.ercim.eu/en102/
https://ec.europa.eu/digital-agenda/en/system-systems
http://road2sos-project.eu/


10. FP7 CSA Road2SoS (Roadmaps to Systems-of-Systems Engineering): Survey on Industrial
Needs and Benefits of SoS in Different SoS Domains: Multi-site Industrial Production
Manufacturing, Multi-modal Traffic Control, Emergency and Crisis Management,
Distributed Energy Generation and Smart Grids. http://road2sos-project.eu/

11. FP7 CSA T-AREA-SoS (Trans-Atlantic Research and Education Agenda on
Systems-of-Systems) (2011–2013): Strategic Research Agenda on Systems-of-Systems
Engineering. https://www.tareasos.eu/

12. Feiler, F., et al.: Ultra-Large-Scale Systems: The Software Challenge of the Future, Software
Engineering Institute – SEI/CMU, 150 p., June 2006

13. GEO (Group on Earth Observations): Global Earth Observation System-of-Systems
(GEOSS). http://www.earthobservations.org/geoss.php

14. Guessi, M., Nakagawa, E.Y., Oquendo, F.: A systematic literature review on the description
of software architectures for systems-of-systems. In: Proceedings of the 30th ACM
Symposium on Applied Computing (SAC), Salamanca, Spain, pp. 1–8, April 2015

15. Guessi, M., Oquendo, F., Nakagawa, E.Y.: Checking the architectural feasibility of
systems-of-systems using formal descriptions. In: Proceedings of the 11th
System-of-Systems Engineering Conference (SoSE), June 2016

16. H2020 CSA CPSoS (Roadmap for Cyber-Physical Systems-of-Systems) (2013–2016),
Roadmap: Analysis of the State-of-the-Art and Future Challenges in Cyber-Physical
Systems-of-Systems. http://www.cpsos.eu/

17. ISO/IEC/IEEE 42010:2011: Systems and Software Engineering – Architecture Description,
46 p., December 2011

18. Jamshidi, M.: System-of-Systems Engineering: Innovations for the 21st Century. Wiley,
Hoboken (2009)

19. Jaradat, R.M., et al.: A histogram analysis for system-of-systems. Int. J. Syst.-Syst. Eng. 5
(3), 193–227 (2014)

20. Johnson, C.W.: Complexity in design and engineering. Reliab. Eng. Syst. Saf. 91(12), 1475–
1588 (2006)

21. Klein, J., van Vliet, H.: A systematic review of system-of-systems architecture research. In:
Proceedings of the 9th International Conference on Quality of Software architectures
(QoSA), Vancouver, Canada, pp. 13–22, June 2013

22. Korsten, P., Seider, C.: The World’s 4 Trillion-Dollar Challenge: Using a
System-of-Systems Approach to build a Smarter Planet, IBM, 20 p., January 2010. ibm.
com/iibv

23. Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng. 1(4), 267–284
(1998)

24. Malavolta, I., et al.: What industry needs from architectural languages: a survey. IEEE Trans.
Softw. Eng. 39(6), 869–891 (2013)

25. Medvidovic, N., Taylor, R.: A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)

26. Milner, R.: Communicating and Mobile Systems: The p-Calculus, 174 p. Cambridge
University Press, Cambridge (1999)

27. Morrison, R., Balasubramaniam, D., Oquendo, F., Warboys, B., Greenwood, R.M.: An
active architecture approach to dynamic systems co-evolution. In: Oquendo, F. (ed.) ECSA
2007. LNCS, vol. 4758, pp. 2–10. Springer, Heidelberg (2007). doi:10.1007/978-3-540-
75132-8_2

28. Nielsen, C.B., et al.: Systems-of-systems engineering: basic concepts, model-based
techniques, and research directions. ACM Comput. Surv. 48(2), 1–41 (2015)

20 F. Oquendo

http://road2sos-project.eu/
https://www.tareasos.eu/
http://www.earthobservations.org/geoss.php
http://www.cpsos.eu/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/
http://dx.doi.org/10.1007/978-3-540-75132-8_2
http://dx.doi.org/10.1007/978-3-540-75132-8_2


29. Oquendo, F.: p-ADL: architecture description language based on the higher-order typed
p-calculus for specifying dynamic and mobile software architectures. ACM Sigsoft Softw.
Eng. Not. 29(3), 1–14 (2004)

30. Oquendo, F.: Formally describing the software architecture of systems-of-systems with
SosADL. In: Proceedings of the 11th IEEE System-of-Systems Engineering Conference
(SoSE), June 2016

31. Oquendo, F.: p-calculus for SoS: a foundation for formally describing software-intensive
systems-of-systems. In: Proceedings of the 11th IEEE System-of-Systems Engineering
Conference (SoSE), June 2016

32. Oquendo, F.: Case study on formally describing the architecture of a software-intensive
system-of-systems with SosADL. In: Proceedings of 15th IEEE International Conference on
Systems, Man, and Cybernetics (SMC), October 2016

33. Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R., Gallo, F., Garavel, H.,
Occhipinti, C.: ArchWare: architecting evolvable software. In: Oquendo, F., Warboys,
Brian, C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 257–271. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24769-2_23

34. Oquendo, F., et al.: Proceedings of the 1st ACM International Workshop on Software
Engineering for Systems-of-Systems (SESoS), Montpellier, France, July 2013

35. Ozkaya, M., Kloukinas, C.: “Are we there yet? Analyzing architecture description languages
for formal analysis, usability, and realizability. In: Proceedings of the 39th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), Santander,
Spain, pp. 177–184, September 2013

36. Quilbeuf, J., Cavalcante, E., Traonouez, L.-M., Oquendo, F., Batista, T., Legay, A.: A logic
for the statistical model checking of dynamic software architectures. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 806–820. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-47166-2_56

37. SAE Standard AS5506-2012: Architecture Analysis & Design Language (AADL), 398 p.,
September 2012

38. Silva, E., Batista, T., Oquendo, F.: A mission-oriented approach for designing
system-of-systems. In: Proceedings of the 10th IEEE System-of-Systems Engineering
Conference (SoSE), pp. 346–351, May 2015

39. SysML: Systems Modeling Language. http://www.omg.org/spec/SysML
40. UML: Unified Modeling Language. http://www.omg.org/spec/UML
41. US Sandia National Laboratories, Roadmap: Roadmap for the Complex Adaptive

Systems-of-Systems (CASoS) Engineering Initiative. http://www.sandia.gov/
42. US Software Engineering Institute/Carnegie Mellon University: System-of-Systems Pro-

gram. http://www.sei.cmu.edu/sos/
43. Wirsing, M., Hölzl, M.: Rigorous Software Engineering for Service-Oriented Systems, 748

p. Springer, Heidelberg (2015)
44. Wirsing, M., et al.: Software Engineering for Collective Autonomic Systems, 537

p. Springer, Heidelberg (2015)

Software Architecture Challenges and Emerging Research in SiSoS 21

http://dx.doi.org/10.1007/978-3-540-24769-2_23
http://dx.doi.org/10.1007/978-3-319-47166-2_56
http://www.omg.org/spec/SysML
http://www.omg.org/spec/UML
http://www.sandia.gov/
http://www.sei.cmu.edu/sos/

	Software Architecture Challenges and Emerging Research in Software-Intensive Systems-of-Systems
	Abstract
	1 Introduction
	2 The Notion of System-of-Systems
	3 Roadmaps for the Research on Systems-of-Systems
	4 Software Architecture Challenges in Systems-of-Systems
	5 Enhancing Architectural Concepts for SoS
	6 Emerging Research on SoS Architecture Description
	7 Lessons Learnt from Applying SosADL in a Case Study
	8 Related Work on SoS Formal Architecture Description
	9 Conclusion and Future Work
	References


