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Preface

Welcome to the European Conference on Software Architecture (ECSA), which is the
premier European software engineering conference. ECSA provides researchers and
practitioners with a platform to present and discuss the most recent, innovative, and
significant findings and experiences in the field of software architecture research and
practice. The tenth edition of ECSA was built upon a history of a successful series of
European workshops on software architecture held from 2004 through 2006 and a
series of European software architecture conferences from 2007 through 2016.

The technical program included a main research track of accepted papers, three
keynote talks, an industry track, a doctoral symposium track, and a tool demonstration
track. In addition, we also offered several workshops and tutorials on diverse topics
related to the software architecture discipline.

The role of women in the computing area has gained more and more importance
with the emerging information age. To this end, the first special track on “Women in
Software Architecture” collocated with ECSA 2016 brought together students, young
and senior researchers, as well as practitioners to present, share, and celebrate their
technical accomplishments and experiences making research and/or working in the
software architecture field.

For the main research track, we received 84 submissions in the three main categories:
full research and experience papers, short papers for addressing emerging research, and
education and training papers. Based on the recommendations of the Program Com-
mittee, we accepted 12 papers as full papers, and 11 papers as short papers. Hence
the acceptance rate for the full papers was 14.28 % and for both full and short papers
27.38 % for ECSA 2016.

The conference attracted papers (co-)authored by researchers, practitioners, and aca-
demia from 17 countries (Australia, Brazil, Canada, Czech Republic, Finland, France,
Germany, Israel, Italy, The Netherlands, New Zealand, Norway, Spain, Sweden, Turkey,
UK, USA).

It was a great pleasure to have prominent keynote speakers at ECSA 2016. The
opening day keynote was delivered by Volker Gruhn from the University of Duisburg-
Essen. He spoke on “Engineering Cyber-Physical Systems – A Paradigm Shift in
Software Architectures?” The second keynote was presented by Mehmet Aksit from
the University of Twente, on “9 C’s: A conceptual Framework for Understanding the
Trends in Software Technology.” The third and final keynote was delivered by Flavio
Oquendo. He spoke about “Software Architecture Challenges and Emerging Research
in Software-Intensive Systems-of-Systems.”

We were grateful to the members of the Program Committee for helping us to seek
submissions and provide valuable and timely reviews. Their efforts enabled us to put
together a high-quality technical program for ECSA 2016. We would like to thank the
members of the Organizing Committee of ECSA 2016 for playing an enormously
important role in successfully organizing the event with several new tracks and



collocated events. We also thank the workshop organizers and tutorials presenters, who
also made significant contributions to the success of ECSA.

Owing to unfortunate events the conference had to be relocated from Istanbul,
Turkey, to Copenhagen, Denmark. We are grateful to the local Organizing Committee
at Kültür University in Istanbul for the initial organizations. We would like to thank the
management of IT University of Copenhagen, Denmark, for taking over the local
organization in a smooth way and providing its facilities and professionally trained staff
for the organization of ECSA 2016.

The ECSA 2016 submission and review process was extensively supported by the
EasyChair Conference Management System. We acknowledge the prompt and pro-
fessional support from Springer, who published these proceedings in printed and
electronic volumes as part of the Lecture Notes in Computer Science series.

September 2016 Bedir Tekinerdogan
Uwe Zdun

Muhammad Ali Babar
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Software Architecture Challenges
and Emerging Research in Software-Intensive

Systems-of-Systems

Flavio Oquendo(&)

IRISA – UMR CNRS/Univ. Bretagne Sud, Vannes, France
flavio.oquendo@irisa.fr

Abstract. Software-intensive systems are often independently developed,
operated, managed, and evolved. Progressively, communication networks
enabled these independent systems to interact, yielding a new kind of complex
system, i.e. a system that is itself composed of systems, the so-called
System-of-Systems (SoS). By its very nature, SoS is evolutionarily developed
and exhibits emergent behavior.
Actually, software architecture research has mainly focused on single sys-

tems, mostly large or very large distributed systems whose software architecture
is described as design-time configurations of components linked together
through connectors. However, it is well known that the restricted characteristics
of single (even very large distributed) systems lead to architectural solutions (in
terms of theories, languages, tools, and methods) that do not scale up to the case
of systems-of-systems.
Indeed, novel architectural solutions are needed to handle the complexity of

software-intensive systems-of-systems in particular regarding the software
architecture challenges implied by evolutionary development and emergent
behavior.
This paper presents the challenges facing software architecture research to

address software-intensive systems-of-systems. It analyzes the discriminating
characteristics of system-of-systems when compared with single systems from
the software architecture perspective and focuses on recent advances in software
architecture research to formally describe the architecture of software-intensive
systems-of-systems.

Keywords: Software architecture � Software-intensive system-of-systems �
Software architecture challenges � Research on formal architecture description �
Formal behavioral modeling � Emergent behavior

1 Introduction

The complexity of software and the complexity of systems reliant on software have
grown at a staggering rate. In particular, software-intensive systems have been rapidly
evolved from being stand-alone systems in the past, to be part of networked systems in
the present, to increasingly become systems-of-systems in the coming future [18].

© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 3–21, 2016.
DOI: 10.1007/978-3-319-48992-6_1



De facto, the pervasiveness of the communication networks increasingly has made
possible to interconnect software-intensive systems that were independently developed,
operated, managed, and evolved, yielding a new kind of complex system, i.e. a system
that is itself composed of systems, the so-called System-of-Systems (SoS) [23].

SoSs are evolutionary developed from independent systems to achieve missions not
possible to be accomplished by a system alone. They are architected to exhibit
emergent behavior [20], i.e. behaviors that stem from the interactions among inde-
pendent constituent systems which cannot be deduced from the behaviors of the
constituent systems themselves. It means that the behavior of the whole SoS cannot be
predicted through analysis only of the behaviors of its constituent systems, or stated
simply: “the behavior of the whole SoS is more than the sum of the behaviors of its
constituent systems”.

This is the case of SoSs found in different areas as diverse as aeronautics, auto-
motive, energy, healthcare, manufacturing, and transportation [10, 22]; and application
domains that address societal needs as e.g. environmental monitoring, emergency
coordination, traffic control, smart grids, and smart cities [18]. Moreover, ubiquitous
platforms such as the Internet of Things (generalizing wireless sensor/actuator net-
works in the Cloud) and nascent classes of SoSs such as Cyber-Physical ones are
accelerating the deployment of software-intensive SoSs, i.e. SoSs where software
contributes essential influences to their design, construction, deployment, and evolution
[17], as depicted in Fig. 1.

Additionally, besides SoSs that are developed in specific localities, e.g. a
smart-city, some SoSs are being developed with a world-wide scope, e.g. the Global
Earth Observation SoS (GEOSS) [13] that links Earth observation resources
world-wide targeting missions for biodiversity and ecosystem sustainability.

Fig. 1. SoSs and related enabling platforms
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It is worth highlighting that complexity is intrinsically associated to SoSs by its
very nature that implies emergent behaviors. Note also that in SoSs, missions are
achieved through emergent behaviors drawn from the local interactions among con-
stituent systems.

Hence, complexity poses the need for separation of concerns between architecture
and engineering [23]: (i) architecture focuses on designing and reasoning about
interactions of parts and their emergent properties; (ii) engineering focuses on
designing and constructing such parts and integrating them as architected.

Definitely, a key facet of the design of any software-intensive system is its archi-
tecture, i.e. the fundamental organization of a system embodied in its constituents, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution, as defined in the ISO/IEC/IEEE Standard 42010 [17].

In particular, the ISO/IEC/IEEE Standard 42010 states the importance of having
software architecture description as an essential first-class citizen artifact (similarly to
the case of other architecture fields, e.g. civil architecture and naval architecture).
Thereby, Architecture Description Languages (ADLs) are needed to express archi-
tecture descriptions. Note that we use the term ADL in the wider meaning defined by
the ISO/IEC/IEEE Standard 42010: any form of expression enabling architecture
descriptions.

Conceiving ADLs has been the subject of intensive research in the last 20 years
resulting in the definition of several ADLs for modeling initially static architectures and
then dynamic architectures of (often large or very large) single systems [24, 25, 35].
However, none of these ADLs have the expressive power to describe the architecture of
a software-intensive SoS [14, 21].

It is worth to recall here that software intensive systems-of-systems are in general
critical and very often safety-critical what is not the case of most of the software-only
systems that were the subject of the research on software architecture description. It is
also worth noting that among the ADLs proposed in the literature [24], the one that had
a widely industrial adoption is AADL, the SAE Standard AS5506 [37], dedicated to
safety-critical software-intensive systems in the avionics and automotive domains,
where the architecture has a key role to satisfy safety-related requirements.

Therefore, to address the research challenges brought by SoSs, a novel ADL is
needed for enabling the formal architecture description of software-intensive SoSs, in
particular for the case of critical software-intensive SoSs [14]. This ADL must provide
the expressive power to address the challenges raised by SoSs especially regarding
correctness properties related to evolutionary development and emergent behavior.
SoSs have indeed evolutionary architectures. Moreover, it must enable to prescribe SoS
architectures abstractly at design-time without knowing which will be the actual con-
crete systems that will participate in the SoS at run-time.

The remainder of this paper is organized as follows. Section 2 discusses the notion
of software-intensive SoS. Section 3 presents the main roadmaps for SoS research.
Section 4 analyzes the distinctive characteristics of SoSs and their implications in terms
of software architecture challenges. Section 5 discusses and introduces the essential
SoS architectural concepts. Section 6 introduces emerging research on novel formal
approaches for describing SoS architectures, focusing on SosADL, an emerging formal
ADL for SoS. In Sect. 7, we present a case study, excerpt from a real SoS project,

Software Architecture Challenges and Emerging Research in SiSoS 5



summarizing lessons learnt from the application of SosADL in practice. In Sect. 8, we
present related work on SoS architecture description. To conclude we summarize, in
Sect. 9, the main contributions of this paper and outline future work.

2 The Notion of System-of-Systems

The notion of system and the related notion of software-intensive system are well
known and defined in the ISO/IEC/IEEE Standard 42010. A system is a combination of
components organized to accomplish a specific behavior for achieving a mission.
Hence, a system exists to fulfill a mission in an environment. A software-intensive
system is a system where software contributes essential influences to the design,
construction, deployment, and evolution of the system as a whole [17].

The notion of software-intensive system-of-systems is however relatively new,
being the result of the ubiquity of computation and pervasiveness of communication
networks.

A System-of-Systems (SoS, as stated) is a combination of constituents, which are
themselves systems, that forms a more complex system to fulfill a mission, i.e. this
composition forms a larger system that performs a mission not performable by one of
the constituent systems alone [23], i.e. it creates emergent behavior.

For intuitively distinguishing an SoS from a single system, it is worth to recall that
every constituent system of an SoS fulfills its own mission in its own right, and
continues to operate to fulfill its mission during its participation in the SoS as well as
when disassembled from the encompassing SoS.

For instance, an airport, e.g. Paris-Charles-de-Gaulle, is an SoS, but an airplane
alone, e.g. an Airbus A380, is not. Indeed, if an airplane is disassembled in compo-
nents, no component is a system in itself. In the case of an airport, the constituent
systems are independent systems that will continue to operate, e.g. the air traffic control
and the airlines, even if the airport is disassembled in its constituents.

Operationally, an airport is an SoS spanning multiple organizations, categorized
into major facilities: (i) passenger, (ii) cargo, and (iii) aircraft departure, transfer and
arrival. Each facility is shared and operated by different organizations, including air
navigation services providers, ground handling, catering, airlines, various supporting
units and the airport operator itself. The airport facilities are geographically distributed,
managed by independent systems, and fall under multiple legal jurisdictions in regard
to occupational health and safety, customs, quarantine, and security. For the airport to
operate, these numerous constituent systems work together to create the emergent
behavior that fulfill the airport mission.

As a software-intensive SoS, an airport is composed of independent systems that
enable passengers, cargo, airplanes, information and services to be at the right place at
the right time via the seamless collaboration of these constituent systems, from
check-in, to security, to flight information displays, to baggage, to boarding, stream-
lining airport operations.

It is worth noting that the level of decentralization in the control of the constituent
systems of an SoS varies, e.g. regarding airports, the level of subordination in a military
airport and in a civil airport are very different. It is also worth noting that in some cases
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the SoS has a central management, as it is the case of civil and military airports, and in
others do not, as it is the case e.g. in a metroplex, i.e. the set of airports in close
proximity sharing the airspace serving a city.

SoSs may be classified in four categories according to the levels of subordination
and awareness of the constituent systems on the SoS [8, 23]:

• Directed SoS: an SoS that is centrally managed and which constituent systems have
been especially developed or acquired to fit specific purposes in the SoS – the
constituent systems maintain the ability to operate independently, but their actual
operation is subordinated to the central SoS management (i.e. the management
system of the coalition of constituent systems); for instance, a military airport.

• Acknowledged SoS: an SoS that is centrally managed and which constituent sys-
tems operate under loose subordination – the constituent systems retain their
independent ownership; for instance, a civil airport.

• Collaborative SoS: an SoS in which there is no central management and constituent
systems voluntarily agree to fulfill a central mission – the constituent systems
operate under the policies set by the SoS; for instance, a metroplex.

• Virtual SoS: an SoS in which there is no central management or centrally agreed
mission – the constituent systems operate under local, possibly shared, policies; for
instance, the airports of a continent such as Europe.

These different categories of SoSs bring the need to architect SoSs where local
interactions of constituent systems influence the global desired behavior of the SoS
taking into account the levels of subordination and awareness of the constituent sys-
tems on the SoS.

3 Roadmaps for the Research on Systems-of-Systems

Currently, the research on software-intensive SoSs is still in its infancy [14, 21]. In
addition, SoSs are developed mostly in a case-by-case basis, not addressing neither
cross-cutting concerns nor common foundations across SoS application domains [7].

Actually, the relevance and timeliness of progressing the state of the research for
developing critical software-intensive SoSs from now on are highlighted in several
roadmaps targeting year 2020 and beyond [9, 11, 41]. The needs for research on
software-intensive SoSs have been addressed in different studies carried out by the
initiative of the European Commission in the H2020 Program, as part of the European
Digital Agenda [7].

More precisely, in 2014, two roadmaps for SoSs were proposed (supported by the
European Commission) issued by the CSAs ROAD2SoS (Development of strategic
research and engineering roadmaps in Systems-of-Systems) [9] and T-Area-SoS
(Transatlantic research and education agenda in Systems-of-Systems) [11]. In 2015, the
CSA CPSoS [16] presented a research agenda for developing cyber-physical SoSs.

All these roadmaps show the importance of progressing from the current situation,
where software-intensive SoSs are basically developed in ad-hoc ways in specific
application sectors, to a scientific approach providing rigorous theories, languages,
tools, and methods for mastering the complexity of SoSs in general (transversally to
application domains).
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These roadmaps highlight that now is the right time to initiate research efforts on
SoS to pave the way for developing critical software-intensive SoSs in particular
regarding architectural solutions for trustworthily harnessing emergent behaviors to
master the complexity of SoSs.

Overall, the long-term grand challenge raised by critical software-intensive SoSs
calls for a novel paradigm and novel scientific approaches for specifying, architecting,
analyzing, constructing, and evolving SoSs deployed in unpredictable open environ-
ments while assuring their continuous correctness.

In Europe, this effort started more intensively in 2010 when the European Com-
mission launched a first Call for Research Projects addressing SoS as the main
objective of study; in 2013 another Call for Projects had again SoS as an objective and
in 2016 the third was opened. The projects funded in the first European Call have now
ended: COMPASS (Comprehensive modelling for advanced Systems-of-Systems, from
Oct. 2010 to Sept. 2014) [3] and DANSE (Designing for adaptability and evolution in
System-of-Systems engineering, from Nov. 2010 to Oct. 2014) [4]. The projects of the
second Call started in 2014 [7]: AMADEOS (Architecture for multi-criticality agile
dependable evolutionary open System-of-Systems), DYMASOS (Dynamic manage-
ment of coupled Systems-of-Systems), and LOCAL4GLOBAL (System-of-Systems
that act locally for optimizing globally).

Regarding other parts of the world, in the USA, different research programs
specifically targets SoS, in particular in the Software Engineering Institute [42] and
Sandia National Laboratories [41] among others. In these programs, it is interesting to
pinpoint the different research actions that have evaluated current technologies
developed for single systems in terms of suitability/limitation for architecting and
engineering SoSs. In addition, prospective studies have highlighted the overwhelming
complexity of ultra-large-scale SoSs [12].

Note also that different industrial studies and studies from the industrial viewpoint
have highlighted the importance, relevance and timeliness of software-intensive SoSs
[10, 22].

4 Software Architecture Challenges in Systems-of-Systems

Due to its inherent complex nature, architecting SoSs is a grand research challenge, in
particular for the case of critical software-intensive SoSs.

Precisely, an SoS is defined as a system constituted of systems having the following
five intrinsic characteristics [23]:

• Operational independence: every constituent system of an SoS operate indepen-
dently from each other for fulfilling its own mission;

• Managerial independence: every constituent system of an SoS is managed inde-
pendently, and may decide to evolve in ways that were not foreseen when they were
originally combined;

• Geographical distribution: the constituent systems of an SoS are physically
decoupled (in the sense that only information can be transmitted between con-
stituent systems, nor mass neither energy);
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• Evolutionary development: as a consequence of the independence of the constituent
systems, an SoS as a whole may evolve over time to respond to changes in its
constituent systems and operational environment; moreover, the constituent systems
are only partially known at design-time;

• Emergent behaviors: in an SoS, new behaviors emerge from the local interaction of
its constituent systems (i.e. an emergent behavior that cannot be performed by a
constituent system alone); furthermore, these emergent behaviors may be ephemeral
because the systems composing the SoS evolve independently, which may impact
their availability.

The combination of these five defining characteristics turns the architecture of SoSs
to be naturally highly evolvable, frequently changing at run-time in unpredictable
ways. SoSs have thereby evolutionary architectures (with the meaning that they
dynamically adapt or evolve at run-time subject to the evolutionary development of the
SoS).

Much work has addressed the issue of describing software architecture (in the sense
of architecture of software-only systems as well as software-intensive systems). Most
of the work carried out addressed static architectures (architectures which do not
change at run-time) and some tackled dynamic architectures (architectures which may
change at run-time). Therefore, we must pose the question whether these ADLs provide
enough expressive power for describing SoS evolutionary architectures.

To address this question we will first analyze how and why SoSs are different from
single systems, then analyze what are the implications of these distinctive character-
istics for SoS architecture.

A single system and an SoS are both systems and as such they are developed with
the purpose of fulfilling a mission. In both cases, they are themselves constituted of
parts that architected together will provide the capabilities of the system as a whole to
achieve the specified missions. The distinctive nature of an SoS when compared to a
single system derives from its five defining characteristics.

To well understand what in an SoS is different from a single system, it is worth
recalling that we are addressing software-intensive systems (not software-only systems)
in this comparison. It is also worth noting that, in Systems Engineering, it is well
known that the formalisms and technologies for single systems are not suitable to SoSs
from a long time [23], SoS having its first dedicated international conference organized
10 years ago: the IEEE International Conference on System-of-Systems Engineering
(SoSE), being in its 11th edition in 2016. In particular, the limitations of employing
theories, languages, tools, and methods conceived for the architecture of single systems
to the architecture of SoSs are well recognized and triggered a new thread of research
[18–20, 23].

Let us now enumerate in Table 1 the key differences between both kind of systems
(i.e. single systems and SoSs) by analyzing, for each distinctive characteristic, the
nature of the constituent parts and the nature of the relationship between the whole and
its constituent parts (see [8] for a deeper survey on the distinctive characteristics that
differentiate systems-of-systems from single systems and their different graduations).
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Table 1. Differences between single system and system-of-systems

Characteristic Single system System-of-systems (SoS)

Nature of the constituent parts
Operational
independence of
constituents

• None: constituent components have
no operational independence, i.e.
they operate as designed to provide
its functionality

• Partial or Total: constituent
systems have operational
independence, i.e. they
operate independently
(at least partially) from the
SoS to fulfill its own
mission

Managerial
independence of
constituents

• None: constituent components have
no managerial independence, i.e. all
decisions are made at the system
level

• Partial or Total: constituent
systems have managerial
independence (at least
partially) from the SoS to
fulfill its own mission, in
particular they may decide to
evolve in ways that were not
foreseen when they were
originally combined in
the SoS

Geographical
distribution of
constituents

• None or Partial: constituent
components may be physically
coupled (in the sense that mass and
energy can be transmitted between
constituent components)

• Total: constituent systems of an
SoS are physically decoupled, i.e.
only information can be
transmitted between constituent
systems, never mass nor energy

Nature of the relationships between the whole and its constituent parts
Initial
development of
system

• Total: a single system is architected
to meet a mission using constituent
components developed or acquired
to fit the mission at design-time

• None or Partial: an SoS is
architected to meet a mission, but
very often not knowing the
constituent systems that will
support the mission at run-time

Evolutionary
development of
system

• None or Partial: after initial
development, constituent
components may evolve under the
control of the system at run-time

• Total: an SoS has no (or at most
partial) control on how the
constituent systems may evolve,
in particular as their missions may
not be aligned with the SoS
mission

Emergent
behavior of
system

• None: constituent components have
predictable behaviors from the
system perspective as well as system
behaviors are predictable from the
behavior of the constituent
components

• Partial or Total: even if the
behaviors of constituent systems
are predictable, their
independence turns the SoS
behavior unpredictable from the
SoS perspective producing also
emergent behaviors from local
interactions
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Undoubtedly, the main difference between an SoS and a single system is the nature
of their constituent systems, specifically their level of independence, and the exhibition
of emergent behavior.

Complexity is thereby innate to SoSs as they inherently exhibit emergent behavior:
in SoSs, missions are achieved through emergent behavior drawn from the local
interaction among constituent systems. In fact, an SoS is conceived to create desired
emergent behaviors for fulfilling specific missions and may, by side effect, create
undesirable behaviors possibly violating safety, which needs to be avoided. A further
complicating factor is that these behaviors may be ephemeral because the systems
constituting the SoS evolve independently, which may impact their availability.
Additionally, the environment in which an SoS operates is generally known only
partially at design-time and almost always is too unpredictable to be summarized
within a fixed set of specifications (thereby there will inevitably be novel situations,
possibly violating safety, to deal with at run-time).

Overall, major research challenges raised by software-intensive SoSs are funda-
mentally architectural: they are about how to organize the local interactions among
constituent systems to enable the emergence of SoS-wide behaviors and properties
derived from local behaviors and properties (by acting only on their interactions,
without being able to act in the constituent systems themselves) subject to evolutions
that are not controlled by the SoS due to the independent nature of constituents.

Therefore, enabling to describe SoS architectures is a grand research challenge.

5 Enhancing Architectural Concepts for SoS

Remember that a software architecture is defined to be the fundamental organization of
a system embodied in its constituents, their relationships to each other, and to the
environment, and the principles guiding its design and evolution [17]. In the archi-
tecture description of single systems, the core architectural concepts are the one of
“component” to represent the constituents, the one of “connector” to represent the
interactions among constituents, and the one of “configuration” to represent their
composition.

As the restricted meaning of these concepts do not cope with the nature of SoS
architectures, it is important to define novel concepts for describing SoS architectures
as well as to name the new terms aligned with the SoS terminology.

These SoS concepts are the ones of “constituent system” of an SoS, “mediator”
among constituent systems of an SoS, and “coalition” of mediated constituent systems
of an SoS.

In addition, SoS architectures must be described in abstract terms at design-time
(recall that concrete systems that will become constituents of the SoS are generally not
known at design-time). The defined abstract architecture will then be evolutionarily
concretized at run-time, by identifying and incorporating concrete systems.

In Table 2 we summarize these concepts and indicate how they are different and
extends the ones of single systems.
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Table 2. SoS architectural concepts

SoS architectural concepts
Constituent system Systems are the constituents of an SoS: a system has its own

mission, is operationally independent, managerially
independent, and may independently evolve. The concept of
constituent system focuses on the capabilities to deliver system
functionalities
• Note that the concept of constituent system subsumes the
concept of component in single systems: a component can be
perceived as a “constituent system that is totally subordinated”,
oppositely to constituent systems in general that are, by
definition, generally independent

• Constituent systems exist independently of the SoS
Mediator Mediators mediate the interaction of constituent systems of an

SoS: a mediator has the purpose to achieve a specific emergent
behavior by mediating the interaction among different
constituent systems
• Note that the concept of mediator in SosADL subsumes the
concept of connector in single systems: mediators have a
coordination role, while connectors have basically
communication roles

• Note that mediators are both operationally and managerially
dependent of the SoS, and evolves under the control of the SoS
for achieving emergent behaviors (an SoS has total control on
mediators: it can create, evolve and destroy mediators at
run-time)

Coalition A coalition constitutes a temporary alliance for coordinated
action among constituent systems connected via mediators (it is
dynamically formed to fulfill the SoS mission through emergent
behaviors)
• Coalitions can be recomposed in different ways or with
different systems in order to fulfil a specified SoS mission

• Coalitions are declared by expressing SoS policies to select and
bind existing constituent systems using mediators created by
the SoS itself

• Note that the SoS totally controls its mediators, but not at all its
constituent systems, which are independent from the SoS

Design-time use of the architectural concepts
Abstract architecture
defined by intention

By the nature of SoSs, concrete systems that will actually
participate are generally not known at design-time, therefore the
SoS architecture needs to be defined abstractly, i.e. specifying
constraints to select possible constituent systems and contracts
to be fulfilled by constituent systems in mediators
• Note that this is the opposite of the case of single systems
where almost always the architecture is complete decided at
design-time including all its concrete components

(continued)
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Therefore, in an SoS architecture description:

• Constituent systems are SoS architectural elements defined by intention (declara-
tively in terms of abstract systems) and selected at run-time (concretized).

• Mediators are SoS architectural elements defined by intention (declaratively in
terms of abstract mediators) and created at run-time (concretized by the SoS) to
achieve a goal, part of an encompassing mission (note that its architectural role is to
mediate the interaction of constituent systems for creating emergent behavior).

• Coalitions are SoS architectural compositions of mediated constituent systems,
defined by intention (declaratively in terms of possible systems and mediators and
policies for their on-the-fly compositions) and evolutionarily created at run-time
(concretized) to achieve an SoS mission in an operational environment.

6 Emerging Research on SoS Architecture Description

To address the research challenge of formally describing SoS architectures, in particular
regarding its evolutionary development and the modeling of SoS emergent behaviors,
we have started in 2013 a research project in collaboration with industrial SoS
architects.

From this research emerged a novel architectural solution in terms of formal lan-
guages and supporting tools, especially conceived for formally modeling and analyzing
the architecture of software-intensive SoSs. This novel solution for SoS architecture
brings the following contributions to the state-of-the-art:

• A novel formal foundation for modeling SoS architectures: we conceived a novel
process calculus in the family of the p-Calculus [26], named p-Calculus for SoS (for
details on the p-Calculus for SoS see [31] in the proceedings of the 2016 IEEE SoS

Table 2. (continued)

• Note that the concept of abstract architecture is different and
does not have the same purpose as the concept of architectural
style or pattern. Both, style and pattern, are codifications of
design decisions used as architectural knowledge for designing
abstract or concrete architectures. An abstract architecture is
the expression of all possible valid concrete architectures in
declarative terms. A concrete architecture is the actual
architecture that operates at run-time

Run-time use of the architectural concepts
Concrete architecture
defined by extension

Once an SoS is initiated, concrete systems coping with the
specified system abstractions needs to be identified to create
concrete coalitions at run-time with the assistance of mediators
• Note that a concrete system may enter or leave the SoS at
run-time by its own decision (the SoS has no control on
concrete systems); mediators oppositely are dynamically
created and evolve under the control of the SoS
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Engineering Conference (SoSE 2016) which presents its formal definition and
operational semantics).

• A novel formal architectural language embodying the SoS architectural concepts of
constituent system, mediator, and coalition: grounded on the p-Calculus for SoS, we
conceived a novel ADL based on the separation of concerns between architectural
abstractions at design-time and architectural concretions at run-time (for details see
[30] in the proceedings of the 2016 IEEE SoS Engineering Conference (SoSE 2016)
which presents the concepts and notation of this novel ADL, named SosADL).

• A novel temporal logic for expressing correctness properties of highly dynamic
software architectures (including SoS architectures) and verifying these properties
with statistical model checking: we conceived a novel temporal logic, named
DynBLTL, for supporting analysis of SoS architectures (for details on this temporal
logic see [36] in the proceedings of the 2016 International Symposium On Lev-
eraging Applications of Formal Methods, Verification and Validation (ISOLA
2016)); in addition we developed a novel statistical model checking method for
verifying properties expressed on DynBLTL on architecture descriptions based on
the p-Calculus (for details see [2] in these proceedings of ECSA 2016).

• A novel formalization for checking the architectural feasibility of SoS abstract
architecture descriptions and for creating concrete architectures from SoS abstract
architectures: it supports automated creation of concrete architectures from an
abstract architecture given selected concrete constituent systems as well as supports
the evolution of concrete architectures by automated constraint solving mechanisms
(for details see [15] in the proceedings of the 2016 IEEE SoS Engineering Con-
ference (SoSE 2016) which presents this novel formal system mechanizing the
solving of concurrent constraints of SosADL).

• A novel approach for modeling SoS missions in terms of goals relating them to
mediators and required SoS emergent behaviors (for details see [38] in the pro-
ceedings of the 2015 IEEE SoS Engineering Conference (SoSE 2015) which pre-
sents the SoS mission description notation and the supporting tool).

• The field validation of SosADL and its underlying p-Calculus for SoS drew from a
real pilot project and related case study of a Flood Monitoring and Emergency
Response SoS, summarized in the next section (for details see [32] in the pro-
ceedings of the 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2016)).

Additionally, we have developed an SoS Architecture Development Environment
(SosADE) for supporting the architecture-centric formal evolutionary development of
SoSs using SosADL and associated analysis languages and tools. This toolset provides
a model-driven architecture development environment where the SosADL meta-model
is transformed to different analysis meta-models and converted to input languages of
analysis tools, e.g. Kodkod for concurrent constraint solving, UPPAAL for model
checking, DEVS for simulation, and PLASMA for statistical model checking.
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7 Lessons Learnt from Applying SosADL in a Case Study

Formally defined in terms of the p-Calculus SoS, SosADL provides architectural
concepts and notation for describing SoS architectures. The notation of SosADL is in
particular presented in [30] and formally defined in [31]. Hereafter we will focus on its
expressiveness as an ADL for describing SoS architectures by focusing in an excerpt of
a case study carried out for architecting an SoS for Flood Monitoring and Emergency
Response [32].

Flood Monitoring and Emergency Response SoSs address the problem of flash
floods, which raise critical harms in different countries over rainy seasons. This
becomes particularly critical in cities that are crossed by rivers such as the city of Sao
Carlos, SP, Brazil, crossed by the Monjolinho river as shown in Fig. 2.

This Flood Monitoring and Emergency Response SoSs has the five defining
characteristics of an SoS. Let us now briefly present this in vivo field study in Table 3.

The aim of this field study was to assess the fitness for purpose and the usefulness
of SosADL to support the architectural design of real-scale SoSs.

The result of the assessment based on this pilot project shown that the SosADL met
the requirements for describing SoS architectures. As expected, using a formal ADL
compels the SoS architects to study different architectural alternatives and take key
architectural decisions based on SoS architecture analyses.

Learning SosADL in its basic form was quite straightforward; however, using the
advanced features of the language needed interactions with the SosADL expert
group. The SoS architecture editor and simulator were in practice the main tools to
learn and use SosADL and the SoS architecture model finder and model checker were
the key tools to show the added value of formally describing SoS architectures.

In fact, a key identified benefit of using SosADL was the ability, by its formal
foundation, to validate and verify the studied SoS architectures very early in the
application lifecycle with respect to the SoS correctness properties, in particular taking
into account emergent behavior in a critical set as the one of flash flood.

Fig. 2. Monjolinho river crossing the city of Sao Carlos with deployed wireless river sensors
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The experimentation and the corresponding assessment have shown that SosADL
and its toolset, SosADE, are de facto suitable for formally describing and analyzing
real-scale SoS architectures.

8 Related Work on SoS Formal Architecture Description

Software-intensive SoS is a nascent domain. According to [14], ca. 75 % of the
publications addressing software-intensive SoSs appeared in the last 5 years and ca.
90 % in the last 10 years.

Table 3. Field study of SosADL on a flood monitoring and emergency response SoS

Field study for architecting a WSN-based flood monitoring and emergency response SoS

Purpose The aim of this field study of a Flood Monitoring and Emergency Response SoS
was to assess the fitness for purpose and the usefulness of SosADL and
underlying formal foundation to support the architectural design of real-scale
SoSs

Stakeholders The SoS stakeholder is the DAEE (Sao Paulo’s Water and Electricity
Department), a government organization of the State of Sao Paulo, Brazil,
responsible for managing water resources, including flood monitoring of urban
rivers. Stakeholders of the constituent systems are the different city councils
crossed by the Monjolinho river and the policy and fire departments of the city
of Sao Carlos that own Unmanned Aerial Vehicles (UAVs) and have cars
equipped with Vehicular Ad-hoc Networks (VANETs). The population, by
downloading an App from the DAEE department, are involved as target of the
alert actions. They may also register for getting alert messages by SMS

Mission The mission of this SoS is to monitor potential flash floods and to handle
related emergencies

Emergent
behaviors

In order to fulfil its mission, this monitoring SoS needs to create and maintain
an emergent behavior where sensor nodes (each including a sensor mote and an
analog depth sensor) and UAVs (each including communication devices) will
coordinate to enable an effective monitoring of the river and once a risk of flood
is detected, to prepare the emergence response for warning vehicles with
VANETs and drivers with smartphones approaching the flood area as well as
inhabitants that live in potential flooding zones. Resilience of the SoS, even in
case of failure of sensors and UAVs need to be managed as well as its operation
in an energy-efficient way. The emergence response involves warning the
policy and fire departments as well

SoS
architecture

The architecture of this Flood Monitoring and Emergency Response SoS was
described in SosADL as a Collaborative SoS having a self-organizing
architecture based on mediators for connecting sensors and forming multihop
ad-hoc networks for both flood monitoring and emergency response. The
designed SoS architecture allows for continuous connections and
reconfigurations around broken or blocked paths, supported by the SoS
evolutionary architecture with possible participation of UAVs and VANETs
(see [32] for details on the SoS architecture description)
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We carried out a Systematic Literature Review (SLR)1 to establish the state-of-
the-art on architecture description of SoSs [14], which permitted to collect, evaluate,
and summarize the research related to the following question: Which modeling lan-
guages (including ADLs) have been used to describe SoS architectures?

As a result of the SLR [14], the following modeling languages have been identified
as the main ones used for SoS architecture description: UML (semi-formal) [40],
SysML (semi-formal) [39], and CML [16] (formal). These findings are compatible with
the findings of another SLR see [21] conducted independently.

More specifically, SysML was the baseline of two European FP7 projects
(COMPASS [3] and DANSE [4]) for which they developed extensions for SoSs.

DANSE did not develop an ADL, but used SysML to semi-formally describe
executable architectures that are then tested against interface contracts. The tests are
applied to the traces obtained by executing architectures, against interface contracts
expressed on GCSL (Goal Contract Specification Language) [4].

COMPASS developed a formal approach, in contrast to DANSE that extended a
semi-formal one. In COMPASS, CML [28] was specifically designed for SoS mod-
eling and analysis.

CML is not an ADL. It is a contract-based formal specification language to com-
plement SysML: SysML is used to model the constituent systems and interfaces among
them in an SoS and CML is used to enrich these specifications with interface contracts.
A CML model is defined as a collection of process definitions (based on CSP/Circus
[28]), which encapsulate state and operations written in VDM (Vienna Development
Method) as well as interactions via synchronous communications.

CML is a low-level formal language, of which a key drawback (stated by their
authors) is that SysML models when mapped to CML produce huge unintelligible
descriptions (it was one of the lessons learned from COMPASS [28]).

In contrast to CML, SosADL enables the formal description of an SoS architecture
as a whole being a full ADL according to the criteria of ISO/IEC/IEEE Standard 42010
[17], while CML is not, focusing only on contracts of interactions. Moreover, regarding
SoS behavioral modeling, SosADL subsumes CML in terms of expressive power by its
mathematical foundation based on the p-Calculus for SoS [31], subsuming CSP/Circus.

It is worth to recall here that SosADL as a formal architectural language follows
previous work that focused on formalisms for describing software architectures which
are dynamic [29] and self-evolving [27] in the scope of single systems. In particular,
achievements of the ArchWare European Project [33] (FP5 ICT Program) were pre-
sented in a keynote [27] ten years ago in the 1st ECSA concentrating on an active
architecture framework for supporting self-evolving software-intensive (single) sys-
tems architecturally described in p-ADL [29, 33] and currently supported by modern
concurrent languages [1] in the Cloud.

Complementary to ADLs, software architecture models, patterns, and styles as well
as software architecture-based frameworks have been studied for different kinds of

1 We conducted automatic searches on the major publication databases related to the SoS domain
(IEEE Xplore, ISI Web of Science, Science Direct, Scopus, SpringerLink, and ACM Digital
Library), after having the defined the SLR protocol (see [14] for details on the SLR).
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single systems exhibiting dynamic architectures, especially for autonomic systems,
self-adaptive systems, self-organizing systems and more generally self-* systems.
However, these different works have not targeted SoS and in particular have not at all
addressed the key issue of emergent behavior as they have de facto limited their scope
to single systems, e.g. [5].

Another thread of related work on SoSs is the one of implementation platforms. For
the particular case of homogeneous constituent systems, a new generation of compo-
nent frameworks and modeling languages have been designed to develop a specific
class of SoSs, the so-called “ensembles” (an SoS that is only composed of homoge-
neous systems), e.g. DEECo (Dependable Ensembles of Emerging Components) [44]
and SCEL (Service Component Ensemble Language) [44].

It is worth noting that “ensembles” denote a specific implementation style, which
may be used to develop the implementation of SoS architectures designed with an
SosADL. In this case, SoS homogeneous architectures described and analyzed with
SosADL can be transformed to implementation models using SCEL or DEECo.

In summary, based on the study of the state-of-the-art carried out through the SLR,
SosADL is positioned as a pioneering ADL having the expressive power to formally
describe SoS architectures, no existing ADL being able to express these evolutionary
architectures [14, 21]. Regarding detailed design and implementation in specific styles,
it is complementary to technologies developed for e.g. “ensembles” as well as more
generally to service-oriented architectural styles [43] applied to SoS implementation.

9 Conclusion and Future Work

This paper introduced the notion of software-intensive SoS, raised key software
architecture challenges in particular related to SoS architecture description and briefly
surveyed emerging research on ADLs for SoS addressing these challenges based on a
paradigm shift from single systems to systems-of-systems.

Oppositely to single systems, SoSs exhibit emergent behavior. Hence, whether the
behavior of a single system can be understood as the sum of the behaviors of its
components, in SoSs, this reductionism fails: an SoS behaves in ways that cannot be
predicted from analyzing exclusively its individual constituents. In addition, SoS is
characterized by evolutionary development enabling to maintain emergent behavior for
sustaining SoS missions.

Software-intensive SoS has become a hotspot in the last 5 years, from both the
research and industry viewpoints. Indeed, various aspects of our lives and livelihoods
have progressively become overly dependent on some sort of software-intensive SoS.

If SoS is a field well established in Systems Engineering and SoS architecture has
been studied for two decades, it is yet in its infancy in Software Engineering and
particularly in Software Architecture. Only 3 years ago, the first workshop on the
architecture and engineering of software-intensive SoSs was launched: the first ACM
Sigsoft/Sigplan International Workshop on Software Engineering for Systems-of-
Systems was organized with ECSA 2013 [34] and since 2015 has been organized with
ACM/IEEE ICSE, being in 2016 in its fourth edition. The first conference track ded-
icated to software-intensive SoS, SiSoS, will be organized only in 2017 at ACM SAC.

18 F. Oquendo



Beyond these initiatives of scientific forums, it is worth to highlight the increasing
number of research initiatives targeting software-intensive SoSs such as the national
research networks launched recently in France (CNRS GDR GPL/Research Network
on Software-intensive Systems-of-Systems) and UK (VaVaS Research Network for the
Verification and Validation of Autonomous SoSs), and the national programs been
launched in different countries, e.g. Labex MS2T (Control of Technological
Systems-of-Systems) and IRT SystemX (Engineering the Digital Systems of the
Future) in France and the SoS Agenda initiative in Sweden.

These different initiatives are paving the way for the future software-intensive SoSs
enabling to architect and engineer software-intensive SoSs in different application
domains with guaranteed trustworthy properties [6], harnessing emergent behaviors for
trustworthily achieving SoS missions in critical SoSs.

Regarding emergent research on SoS and more specifically on SosADL, future
work is mainly related with the application of SosADL and its related languages and
toolset in industrial-scale projects. They include joint work with DCNS for applying
SosADL to architect naval SoSs, with IBM for applying SosADL to architect
smart-farms in cooperative settings, and with SEGULA for applying SosADL to
architect SoSs in the transport domain.
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Abstract. Software design is a complicated process, and novice design-
ers have seldom been taught how to reason with a design. They use a
naturalistic approach to work their way through software design. In order
to impart the use of design techniques, a card game was developed to
help design reasoning. This game was tested on groups of students and
resulted in noticeable differences between the control and test groups.
Those who used the cards produced better design arguments: the groups
with the card game on average perform 75 % more reasoning than the
control groups. The results show that the design strategy used by the
groups is a clear indicator for how many and what kind of design prob-
lems are designed, while the cards influence how the designers solve these
problems.

1 Introduction

Software architecture design is a complicated process, mostly revolving around
problem-solving activities. Within software development many things have to be
taken into consideration, not least being the requirements, but also what avail-
able technologies there are, the needs of stakeholders, and those of the developers
and future redesign teams. This is known as a wicked problem, meaning that
problem and solution are intertwined so that understanding the problem depends
on how the designer wants to solve it. Such problems are inherently ill-defined
and have no standard solution [17]. As a result it is the design decisions made at
this stage that have the greatest influence on the eventual product. But people
do not always use logical thinking, instead making decisions based on instinct,
what is known as naturalistic decision making [10]. This can cause flawed rea-
soning, especially when the problem is complex and/or new, combined with the
designers lack of expertise.

In order to resolve these problems, designers need to move from naturalistic
decision making to logical reasoning decision making, especially when designers
are not experienced with either the problem domain or the solution domain.
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There has been some software design reasoning research, but there is no sim-
ple and comprehensive method that can be used in practice. In this paper, we
propose a card game for this purpose. The card game combines techniques in a
simple form, and is developed to help novice designers to consider certain rea-
soning steps during design. This card game has been tested in an experiment
involving students of a Software Architecture course. The aim of the experiment
is to assess any obvious differences among control and test groups, and to estab-
lish if the card game had a positive influence on the logical reasoning process
using qualitative analysis.

The card game is based on the reasoning techniques described in Tang and
Lago [25]. The main reasoning techniques are the identification of assumptions,
risks and constraints. The students also need to carry out trade-offs and artic-
ulate the contexts, problems, and solutions. Novice designers can forget that
they need to reason about certain things. Razavian et al. [15] proposed to use
a reflection system to remind designers. In their experiment, reflective thinking
was applied using reasoning techniques to trigger student designers to use log-
ical reasoning. In our experiment, cards were used to remind novice designers
to use reasoning techniques. The choice for cards instead of a software tool was
made because many software tools, such as those used for Design Rationale,
have been developed but are not prevalently used in the design world. The most
common reason for this is that the adoption and use of these systems take too
much time and are too costly to be effectively used [24]. The cost-effectiveness
of such a system isin fact the most important characteristic for consideration
by software companies [12]. Cards do not cost much to produce or to use, and
depending on the rules do not needextensive time to learn. Additionally, cards
are not unfamiliar in software design, as already several card games exist and
designers are familiar with their uses. For example, IDEO method cards are used
for stimulating creativity [8], Smart Decisions card are used for learning about
architecture design [3], and planning poker is played during release planning to
estimate the time needed to implement a requirement [5]. Our card game addi-
tionally includes several reflection periods during the experiment to encourage
participants toexplicitly reason with the design.

We compare novice designers equipped with reasoning techniques to the con-
trol groups using natural design thinking. The results show that the test groups
came up with many more design ideas than the control group.

In the following sections more background information on design reasoning
are given, together with reasoning techniques which stimulate logical reasoning
(Sect. 2). Next, we introduce the student experiment, how it has been performed,
and how validation of the results has been reached (Sect. 3). After this the results
of the experiment will be explained, ending with an analysis of the results and
further discussion on how the card game can be used for further experiments
(Sect. 4). Threats to validity are discussed in Sect. 5. Section 6 concludes the
paper.
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2 Design Reasoning

Design reasoning depends on logical and rational thinking to support arguments
and come to a decision. In a previous research, it has been found that many
designers do not reason systematically and satisfice results easily [29]. Designers
often use a naturalistic process when making decisions where experience and
intuition play a much larger role [31]. As such, people need to be triggered to
consider their decisions in a more rational manner. This can be done by using
reasoning techniques. Previous research has shown that supporting designers
with reasoning analysis techniques can positively influence design reasoning [15,
27,28]. There are other issues with design thinking, which can be categorized as:
cognitive bias, illogical reasoning, and low quality premises.

Cognitive bias occurs when judgments are distorted because the probability of
something occurring is not inferred correctly or there is an intuitive bias. This can
be seen with representativeness bias and availability bias, where the probability
of an event is mistaken because it either looks more typical, or representative,
or because it is more easily envisioned. An example is anchoring, where software
designers choose solutions for a design problem based on familiarity, even when
it is ill-suited to solve the problem [21,23].

Illogical reasoning is when the design reasoning process is not used and prob-
lems occur with identifying the relevant requirements. The basis premises and
arguments being used in the design discussion are not based on facts.

Low quality premises for design argumentation can be caused by missing
assumptions, constraints or context. Premises of poor quality can be caused by
either an inaccurate personal belief or the premise being incomplete or missing.
Much of reasoning depends on the quality of the premises themselves, if these are
not explicitly stated or questioned, software designers are more likely to make
incorrect decisions [23,26]. The basis of how such reasoning problems can develop
lies in the difference between the two design thinking approaches: the naturalistic
decision making, and the rational decision making. This is sometimes referred
to as a dual thinking system: System 1 is fast and intuitive with unconscious
processes, i.e., naturalistic decision making. System 2 is slow and deliberate with
controlled processes, i.e., rational decision making [9]. People naturally defer to
System 1 thinking, and so in the case of software design designers need to be
triggered to use System 2 thinking for decision making. This is done by invoking
reflective thinking or prompting, which in the simplest sense is thinking about
what you are doing, meaning that the person consciously evaluates their ideas
and decisions [18,22].

2.1 Design Reasoning Techniques

In order to trigger logical reasoning several design reasoning techniques can be
implemented during design, such as risk analysis [14], trade-offs [1], assumption
analysis [11], and problem structuring [16]. These reasoning techniques support
logical reasoning by means of analysis of various aspects of design decisions.
These techniques are well known. However, to combine these techniques in a
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simple form to teach and remind students to consider certain reasoning steps
during design is new.

The reasoning techniques chosen for this experiment are not exhaustive and
are instead a selection of common techniques already used in software architec-
ture: problem structuring, option generation, constraint analysis, risk analysis,
trade-off analysis and assumption analysis.

Problem structuring is the process of constructing the problem space by
decomposing the design into smaller problems. These then lead to reasoning
about requirements and the unknown aspects of the design [19]. This reasoning
technique focuses on identifying design problems and how these can be resolved
when the situation is one the designer is unfamiliar with. It is used to identify
the problem space and the key issues in design by asking questions related to
the problem, such as what are the key issues. Its aim is to prevent the designer
from overlooking key issues because of unfamiliarity with the problem. The more
time spend on problem structuring the more rational an approach the designer
uses.

Solution Option generation is a technique specifically directed at the prob-
lem of anchoring by designers, in which the first solution which comes to mind
is implemented without considering other options. With option analysis the
designer looks at each decision point at what options are available to solve a
design problem.

Constraint analysis looks at the constraints exerted by the requirements,
context and earlier design decisions and how they impact the design. These
constraints are often tacit and should be explicitly expressed in order to take
them into account. Trade-offs can come from conflicting constraints.

Risk analysis is a technique to identify any risks or unknowns which might
adversely affect the design. Risks can come from the designer not being aware
if the design would satisfy the requirements, in which case the design needs
to be detailed in order to understand these risks and mitigate them. Or the
design might not be implementable because designers are unaware of the business
domain, technology being used and the skill set of the team. These risks should
be explicated and estimated.

Trade-off analysis is a technique to help assess and make compromises when
requirements or design issues conflict. It can be used for prioritization of prob-
lems and to weigh the pros and cons of a design which can be applied to all key
decisions in a design [25].

Assumption analysis is a technique used to question the validity and accuracy
of the premise of an argument or the requirements. It focusses mainly on finding
hidden assumptions. It is a general technique which can be used in combination
with the other reasoning techniques [23].

We propose a simple method that combines the main design reasoning tech-
niques, and use a card game to prompt novice designers. In our research, we test
the effectiveness of this technique.
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3 Student Experiment

The theory studied in this paper is that applying reasoning techniques, through
the use of a card game, has a positive influence on design reasoning with software
designers. This theory is tested using an experiment focusing on inexperienced
designers or novices. This experiment involved test and control groups carrying
out a design. The results of the two groups are compared to one another. We
use simple descriptive statistics and qualitative analysis to analyse the results.

The subjects for the experiment are 12 teams of Master students from the
University of Utrecht, following a Software Architecture course. These were split
into 6 control teams and 6 test teams, with most having three designers working
together, two teams with two designers, and one team with four designers. Based
on an earlier assessment, the teams were ranked, from which they were randomly
selected for the test or control groups to ensure an equal amount of skill.

3.1 Experiment Design and Pilot Testing

Before the student experiment, a pilot study was run to test the card game
and refine it by finding any major flaws or misunderstandings. The pilot study
was performed by two Master students whom had already completed the course.
The results of the pilot resulted in several important changes being made to the
card game. Firstly, the cards were simplified and reduced to 7 cards, to simplify
card play as the initial number of cards made it difficult to choose from them.
The final card game is show in Fig. 1. The pilot showed that card play tapered
off towards the end of the design session. To enforce card play, three reflective

Fig. 1. Final cards of the card game



Software Architecture Design Reasoning 27

periods were added evenly spread throughout the session when cards have to
be played. Lastly, the card rules were simplified to remove restrictions on fluid
discussion. This resulted in the following set of playing rules:

1. The game is played in terms of a discussion;
2. The discussion starts when you play a card;
3. Others contribute to the discussion by playing their own cards;
4. When a decision is made the cards related to that topic can be removed.

The assignment used in the experiment is the same as used in the Irvine
experiment performed at the University of California [30]. This assignment is
well known in the field of design reasoning, as participants to the workshop
analysed the transcripts made and submitted papers on the subject [13]. The
assignment is to design a traffic simulator. Designers are provided with a problem
description, requirements, and a description of the desired outcomes. The design
session takes two hours. The assignment was slightly adjusted to include several
viewpoints as end products in order to conform to the course material [1]. The
sessions were recorded with audio only and transcribed by two researchers.

The card game is constructed based on an earlier experiment [15] which incor-
porated the reasoning techniques as reflective questions by an external observer
who served as a reflection advocate to ask reflective questions. The card game
replaces these questions with cards. Four of the reasoning techniques previously
given were made directly into cards; constraint, assumption, risk and trade-off.
Problem structuring and option generation would be triggered by using these
techniques and looking at the design activities; context, problem and solution.

Three reflection periods were created at 15 min, 45 min and 1 h and 45 min.
In these pre-set times, the students in the test groups were asked to use the
cards to prompt discussion and support collaboration. The cards were paired
with a table showing suggested questions to ask. Combining the cards enables
different questions, such as: which constraints cause design problems? The con-
trol groups performed the same assignment without the card game, nor having
pre-set reflection periods to revise their discussions.

A deductive analysis approach is used for coding the transcripts. The coding
scheme is based on the design activities and reasoning techniques. The results
of the experiment are analysed using qualitative measures, in this case with
discourse analysis performed on the transcripts.

3.2 Results

In this section the results of the experiment are shown. The results show that
there are significant differences between the control and test groups, supporting
the theory that reasoning techniques influence design reasoning in a positive
manner by having them use these techniques more.

Design Session Length. The first and most obvious difference is the time
taken for the design session between the control and test groups. Though all
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groups were given two hours to complete their session, it is mostly the test
group which took full advantage of this (Table 1). Half of the control groups
finished their design before the 1.5 h mark. Only one test group did the same.
From the audio recording, we conclude that this was due to a misunderstanding,
as the group believed they had already breached the two hour mark. One test
group even surpassed the two hour mark by almost half an hour.

Table 1. Design session times

Control group Time Test group Time
C1 1:43:51 T1 2:01:23
C2 1:57:15 T2 1:23:00
C3 1:22:47 T3 1:59:56
C4 1:13:39 T4 2:24:42
C5 1:17:20 T5 1:54:48
C6 2:05:33 T6 1:51:34

Card Game Influence. To establish if there are any noticeable differences in
the use of the reasoning techniques, the frequencies in which these were used are
measured and compared (Table 2). The results show that there is a noticeable
difference in the frequencies in which the reasoning techniques are used. From
the techniques directly influenced by the cards especially assumption and risk
analysis are consistently more used by the test groups.

Table 2. Design reasoning techniques frequencies

Analysis techniques T1 T2 T3 T4 T5 T6 Total

Assumption analysis 14 6 9 5 8 7 49

Constraint analysis 7 9 2 7 8 10 43

Risk analysis 6 7 6 5 5 5 34

Trade-off analysis 5 2 2 4 2 1 16

Option generation 19 2 11 6 6 8 52

Problem structuring 33 19 24 25 20 25 146

Total 84 45 54 52 49 56 340

Analysis techniques C1 C2 C3 C4 C5 C6 Total

Assumption analysis 2 0 2 3 1 3 11

Constraint analysis 4 6 10 7 7 5 39

Risk analysis 2 2 3 4 1 3 15

Trade-off analysis 1 1 0 3 0 1 6

Option generation 1 3 4 6 9 7 30

Problem structuring 15 20 18 12 15 13 93

Total 25 39 37 35 33 32 194
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Option generation and problem structuring, which are indirectly influenced
by the cards, are also more prevalent with the test groups. The test groups on
average perform 75 % more reasoning than the control groups.

Constraint analysis on the other hand is about even among the test and
control groups, and does not show the same rise in use of reasoning techniques. To
better understand these results, we examine the distinct values of the individual
reasoning elements. The reasoning techniques themselves are overarching and can
contain several elements, and elements can be repeated. The distinct number of
design elements identified by the two groups is given in Table 3. The groups can
repeatedly discuss the same assumption for instance, but the number of distinct
assumptions identified shows that the reasoning techniques help designers find
new design information. The distinct design elements are shown in the grey
columns in Table 3. The percentage difference shows 77 % more identification of
distinct reasoning elements by the test groups.

Table 3. Design reasoning elements – no. of distinct identification

Design reasoning T1 T2 T3 T4 T5 T6 Total distinct
elements elements identified

Assumption 15 15 6 6 10 6 5 5 11 8 7 7 47
Constraint 9 8 17 8 5 4 9 7 13 8 18 7 42
Risk 6 6 7 6 7 5 7 7 7 7 8 6 37
Total 126

Design reasoning C1 C2 C3 C4 C5 C6 Total distinct
elements elements identified

Assumption 2 2 1 1 2 2 5 5 1 1 3 3 14
Constraint 4 4 12 8 17 9 9 5 22 8 16 8 42
Risk 2 2 2 2 3 3 4 4 1 1 3 3 15
Total 71

Our results show that assumptions and risks occur with a similar frequency
as with their reasoning techniques. The constraints are shown to have an even
more similar frequency across the test and control groups, there is hardly any
difference at all. Although trade-off analysis shows an obvious difference, it is
the lowest in frequency with both test and control groups. This is a surprising
result as option generation shows a much greater difference in frequency. How-
ever, trade-off analysis, which concerns options, does not. To investigate these
results we need to look at the elements which make up trade-offs; pros and cons
(Table 4). Taking a closer look towards the results, the differences between the
test and control group becomes more obvious. The frequencies of pros and cons
more closely match that of option generation. More pros and cons for various
options are given; only the combination of both pro and con is scarce. As the
coding scheme used requires a trade-off to have both a pro and a con for an
option explains why trade-off analysis has such low frequencies. Interestingly, in
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comparison to the control groups, the test groups use both more pro with 53 %
more, but also far more cons to argue about their options, tripling the amount
with 269 % compared to the control group.

Table 4. Trade-off analysis, pros and cons elements

T1 T2 T3 T4 T5 T6 Total

Tradeoff analysis 5 2 2 4 2 1 16

Pros 17 4 10 8 4 3 46

Cons 10 2 8 13 9 6 48

C1 C2 C3 C4 C5 C6 Total

Tradeoff analysis 1 1 0 3 0 1 6

Pros 2 4 5 12 3 4 30

Cons 1 2 0 4 2 4 13

Table 5. Design problem, option and solution elements

T1 T2 T3 T4 T5 T6 Total

Design problems 29 10 17 17 8 13 94

Design options 42 9 33 28 18 18 148

Design solutions 29 10 17 17 8 11 92

C1 C2 C3 C4 C5 C6 Total

Design problems 3 8 13 19 16 11 70

Design options 5 10 14 18 25 23 95

Design solutions 4 9 13 20 17 11 74

Looking at the identified design problems, options and solutions we find that
mostly the design options have increased in the test groups compared to the
control group, with a percentage difference of 56 % (Table 5). This corroborates
with the increase in option generation established before. The identified design
problems and solutions have increased with the test groups, but not by much: a
percentage difference of 34 % in design problems, and 24 % with design solutions.

4 Discussion

The results of the experiment show significant differences in applying reason-
ing between the control and test groups. The cards overall trigger more design
reasoning in the test groups. More assumptions and risks are identified, more
options are generated and more key issues are defined with problem structuring.
In this section we analyse the results and discuss their meaning.
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4.1 Thorough Reasoning vs Satisficing

A first result is the marked difference in the time spent in design. The test
groups took longer for their design session, while the control groups took less
time overall.

The test groups found more things to discuss and reason using the cards,
whereas the control group is more partial to satisficing behaviour, which is a
phenomenon where designers do not look exhaustively for every potential solu-
tion to a problem, but go with the first solution that is satisfying [20,29]. This
suggests that due to the cards, the test groups were reminded to reason with the
reasoning topics, and were encouraged to explore more about the design. This
supports our finding that the card game leads to applying more reasoning
techniques.

The test groups were less easily satisfied with their decisions since they found
more issues that they had to address. We can see this difference in attitude by
examining the transcripts. The test groups often mention how they have run out
of time before they are completely satisfied with their design. As can be seen in
the extract of T5 (Fig. 2), a new design issue was mentioned, but there was no
time to solve it.

The control groups on the other hand, especially those which did not reach
the two hour mark, simply ran out of issues to resolve. In the extract of C5
(Fig. 2) they were touching on design issues that they needed to solve, but they
convinced themselves that what they had was good enough (satisficing). They
did not go further into detail to explore more about that decision but instead
ended the discussion. Hence, the card game combats satisficing behaviour.

The control groups were easier satisfied with their decisions and design, even
when they had not reached the full two hours given. For the test groups, the
card game stimulated the designers to keep refining their design and consider
their decisions, and often the time given was too short for these groups to fully
explore the design.

4.2 How Cards Influence Design Discourse

The cards directly influence the design discourse in two ways. Firstly, the cards
provide inspirations for students to investigate a certain topic. Secondly, the
students use the cards to reassess their previous discussion by classifying it in
card terms, e.g. a system rule is later identified as having been a constraint.
Examples like the extract from T3 show how these cards are used for inspiration
(Fig. 2). Person 2 was looking over the cards searching for issues to discuss and
came up with a risk, which needed to be clarified for the other person. This
risk made the designers reconsider an earlier assumption, that the program is a
web-based application, which later turned into a nearly 5 minute long trade-off
discussion.

With the extract from T2 we can see the cards being used for classification
(Fig. 2). Here they had just discussed a problem and found a solution for it. But
when they reassessed the discussion as a problem, they realized that in order to
solve the problem, they had also identified risks and used assumptions.
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T5 (1:52:06-1:52:15)
PERSON 2: So we have we got everything. I think maybe only the traffic light is not taken into account and that’s
connected to intersection.
PERSON 1: Yeah. Definitely need to be there just make it here. And do we also model dependencies.
PERSON 2: Okay I think we don’t have the time to put in. Maybe we can sketch it.

C5 (1:16:38 1:17:19)
PERSON 2: Oh ok. Do we have to say something more? Are we done actually? Or do they actually also wanna know
how we include the notation and such, because-
PERSON 1: No they also get the documents, so they can see
PERSON 2: Yeah ok, but maybe how we come up with the- I dont know. No? isnt necessary?
PERSON 3: Mm
PERSON 1: Its just use UML notation, for all
PERSON 2: For all?
PERSON 1: No, and lifecycle model, and petri net. No, no petri net
PERSON 2: Perhaps petri net. Ok, shall we- shall I just?
PERSON 1: Yeah
PERSON 2: Ok

T3 (0:20:31-0:21:10)
PERSON 2: HTML 5 yeah? Information would of course [inaudible] constraints or risk or trade-offs, we have to
make- a risk might be of course that- of course there is a [inaudible] so while you are travelling. For example, when
you have an older device that could be a problem of course. So then you couldnt use the navigation maybe, the- well,
[inaudible] right?
PERSON 1: What do you mean exactly? For example.
PERSON 2: Yeah well, for example, if you are travelling and you want to use the
application. You want to use the traffic simulator, then of course that might be the case that your device is not suitable
for it. For example. So, on the other hand

T2 (0:28:14-0:28:28)
PERSON 1: So this was a problem
PERSON 3: This was a problem
PERSON 1: Yeah
PERSON 2: Yeah. Because [inaudible]
PERSON 1: And a risk right
PERSON 2: A constraint? Yeah but it was also like an assumption that you have a minimum length. That is our
assumption right or-
PERSON 3: Yeah we created that now, and thats ok because its our own system

T4 (1:25:13-1:26:05)
PERSON 1: So that’s the trade-off. The other side is good to have in the cloud because you can easily push a new
update every hour if you want but you need really really strong server for all this simulations. Now professor did not
say how much money she has. So it can be also. There can be also an option to pay for usage of this server for every
simulation or for every hour of simulation.
PERSON 2: I don’t think so.
PERSON 1: There can be an option. But it can be also very expensive so when I think about everything I think that is
cheaper and easier to have local stand-alone version.
PERSON 2: Yeah.
PERSON 3: Yeah.

Fig. 2. Transcript extracts
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4.3 Reasoning with Risk, Assumption and Trade-Off

A main purpose of the reasoning card game is to prompt the students to consider
design elements. The results of the experiment show that especially risks and
assumptions are considered more by the test groups. Trade-off analysis does not
show much difference, whereas constraint remained the same.

In many cases, the test groups considered the design scope to be clear at
first glance. But when they started using the cards and thought more about the
design topics, they found out that it actually is more complicated than they first
realized. The designers reflect on their previous ideas, discuss and redefine them,
which clearly shows that the cards trigger reasoning in designers.

For the control groups it is clear that considering assumptions and risks
for decision making about the design is not at the forefront of their minds, as
indicated by their low distinct element frequencies. With the test groups, the
cards remind the designers to take these considerations into account, as again
can be seen in T3 where person 2 lists the cards, which prompts him to identify
a risk (Fig. 2).

For the trade-off analysis few pros and cons were discussed, contributing to
the low number of trade-offs. However, the test groups generated many pros,
and especially more cons to argue against the solution options than the control
group. The control groups also generate many pros, but fewer cons (Table 4).
This suggests that the control groups are more concerned with arguments that
support their options, or arguing why these are good, instead of looking at
potential problems that could invalidate their options (cons). The test groups
are more critical of their choices and look at options from different viewpoints.
The extract of T4 shows part of a larger trade-off analysis in which several
options are heavily discussed: mostly to have either a standalone program, or
one which is cloud or web-based (Fig. 2). In this part, person 1 mentions that a
pro for a cloud based program would be that you can update every hour, but
a con is that a strong server is necessary which would be costly. The person
then proceeds to suggest another option to ask users to pay for the usage of
the server. This is not well-received by the group and person 1 admits that this
option would still be a very expensive one and gives a pro to their first option:
a local standalone version to which the others agree.

Even though the group eventually went with their first option, they took the
time to explore multiple options and critically assess them by providing both
pros and cons. The control groups had fewer of such discussions.

4.4 Reasoning with Design Context, Problems and Solutions

The effect of the card game is to combat satisficing behaviour and lack of design
reasoning by stimulating the designers to reconsider their options and decisions,
ultimately taking more time to delve into the issues. And yet, when we look at the
design problems and design solutions identified by both groups, the percentage
difference is much lower than that of the other elements, such as options and
problems structuring. The cards prompt designers to consider their problems
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and explore more of the design, but problems are not identified as much by the
test groups, as the other reasoning techniques are used.

Design problems identification can be influenced by other factors, such as
design strategy and designer experience. Design strategies such as problem-
oriented, or solution-oriented can influence the information seeking behaviour
of designers [16]. The approach used for problem-solving, whether to focus on
finding problems or solutions first, seems to have more of an impact on the design
problems being identified. When comparing groups with similar strategies, the
influence of the cards becomes clearer.

As an example, we have groups T2 and C1. Both use a satisficing strategy,
where they actively avoided going into the details. They preferred to view a
problem as being outside of their scope. Their option generation and trade-off
analysis results are very similar. But the problem structuring, risk, assumption
and constraint analysis of T2 is at least double of that of C1. Despite their
adherence to a minimum satisficing strategy, the cards prompted T2 to recognize
problems which often resulted from identified risks and constraints, for which
they made assumptions to simplify the problem and solution.

It seems that the design strategy used by the groups is a clearer indicator
for how many and what kind of design problems are identified, while the cards
influence how the designers solve these problems. This supports our finding that
problem identification depends more on the design strategy than on
the card game.

4.5 Constraint Identification

The card game seems to have no influence on constraint analysis. The individual
constraints identified by both groups are the same. This result in itself is inter-
esting, considering the effect of the cards on the other reasoning techniques. The
question here is why constraint analysis is different. One possible explanation for
this is that the very nature of constraints, i.e. limitations on the design, as seen
by novice designers, is intrinsically bound to the requirements. When thinking
about design and what the system must accomplish, novice designers think of
what is required, and what is not required. As a result both test and control
groups identify constraints as things that are not allowed or rules that the sys-
tem must follow. What is interesting here is that both groups identify much of
the same constraints, with many coming directly from the requirements in the
assignment, even taking on the same wording.

We find that both test and control groups frequently take over the literal
requirements presented in the text as constraints. To give a more detailed rep-
resentation of this, for the test groups there are 11 identified constraints which
are shared in various degrees amongst the groups. There are 11 other constraints
which they do not share and had to be inferred from the assignment, with 5 of
these being identified by only one group. The control groups share 12 constraints
from the text, and only 5 are other.

This then goes to explain the similar results when it comes to constraint
analysis, many of them are found literally in the text of the assignment and
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require minimal effort to find. It is easy to see why these constraints would be in
the text as requirements, as it is to the clients benefit to give clear instructions
on what the program should and should not do. This means that constraints
are easier to identify, causing the cards to have little influence, as these are
given as requirements. The card game provides no noticeable difference
in constraint identification. The other techniques, such as assumptions and
risks, must all be inferred from the text and are not clearly given. The effect of
the cards is more obviously shown there.

5 Threats to Validity

We recognise the threats to validity in this research, especially those revolving
around generalization. For the transcripts, discourse analysis was used to inter-
pret the text, which in itself is subjective and reliant on the view of the researcher
[7]. This paper is an empirical research in the form of an experiment involving
an example assignment. Empirical research is one of the main research methods
within the software architecture research field, relying on evidence to support
the research results. We address the internal and external validity of the results
acknowledging any limitations which may apply [4].

5.1 Internal Validity

Internal validity is about how far a valid conclusion can be made from the
experiment and data collected. Firstly, this research makes use of the Irvine
assignment which has been used and tested in other research and is well-known
in the field of design reasoning [13]. This limits the results of this research to
those applicable to this kind of design assignment.

Secondly, participants were randomly selected for their situational represen-
tativeness, as students of software architecture, and the result of this research
is limited to novice designers in the Netherlands. However, we have found con-
vincing results to show that the card game made a difference to the reasoning
capability of novice designers. We argue that these two limitations do not impose
a major threat to the interpretation of the evidence that the cards have a positive
effect on design reasoning by novices.

5.2 External Validity

External validity is about to what extent the results from the case study can
be generalized across other published design reasoning articles. The results
of this case study are supported by similar experiments [6,15,27,28], showing
that in the case of novice designers, being made aware of reasoning techniques
actively counteracts satisficing behaviour and results in performing more design
reasoning.

But the results also show a discrepancy when it comes to constraints, which
did not show any difference across test and control groups. There are two possi-
bilities for this discrepancy, either a requirement naturally leads to constraints,
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or the assignment itself is too clearly defined by explicitly including constraints.
Whether the constraint card would have any influence on an assignment which
did not mention constraints in their requirements cannot be proven at this point.

For the design problems and solutions there seems to be a design strategy
component which has an influence on the amount of design problems being
identified. This makes it unclear how much of an influence the cards have.

5.3 Reliability

Reliability is about ensuring that the results found in the study are consistent,
and would be the same if the study is conducted again. To ensure that the coding
of the transcripts is reliable it was tested for inter-reliability using Cohens kappa
coefficient [2] to measure the level of agreement. The transcripts were each coded
by two researchers using Nvivo 10. The average kappa coefficient of each of the
transcripts was above 0.6 which is considered to show a good level of agreement.
The average of all transcripts combined is 0.64.

6 Conclusions

Software design is a complicated problem-solving process, which due to its effect
on the later stages of software development, is one of the most important stages
to consider. Problems occurring at this stage which are not solved immediately
will result in problems later during development or implementation, costing
money and time. Problems with software design can result from problematic
design decisions, which are easily influenced by designer biases. These biases can
be avoided by using more logical reasoning.

In this paper, we propose a simple card game to help novice designers? use
design reasoning. Design reasoning means using logic and rational thinking in
order to make decisions, something which people as a whole find difficult due to
the usual way they think. In order to prompt design reasoning several common
reasoning techniques were chosen to be represented by the card game. These
techniques are; problem structuring, option generation, constraint analysis, risk
analysis, trade-off analysis, and assumption analysis.

To study the effect of the card game, we designed an experiment based on 12
student groups following a software architecture course. These 12 groups were
divided into 6 control and 6 test groups. The 12 groups were asked to construct
a software design. The transcripts of these experiments were analysed using
discourse analysis. The results show a notable difference between the test and
control groups on nearly all technique usages. The effect of the cards is to trigger
the designers to use design reasoning techniques to reason with different aspects
of design, to prompt new discussion topics, or to reconsider previous discussions.
In all manners, the cards trigger reasoning and lead to more discussion and
reconsideration of previous decisions. Those who use the card game generally
identify more distinct design elements and spend more time reasoning with the
design. Only the constraint analysis technique shows no obvious difference.
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Further research includes to study the effect of the card game to professional
designers, i.e., those who are experienced in the field. Professionals have more
experience. Therefore, it would be interesting to observe how such a simple card
game works with people who are more aware of design techniques. The card
game could also be used as a learning tool for novice designers, to further their
understanding of software architecture and learn design issues from the reasoning
angles.
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Abstract. The relation between architectural patterns (or styles) and
quality attributes has been widely addressed in the literature. However,
the knowledge is fragmented over a wide range of heterogeneous studies.
Our aim is to build a systematic body of knowledge to support architec-
tural decision-making and design. If available, this knowledge helps archi-
tects in addressing quality requirements consciously and more explicitly,
i.e. in quality-driven pattern-based design. In order to build that body
of knowledge we carried out a systematic literature review. We identi-
fied 99 primary studies for the analysis. The resulting data shows a wide
spectrum of approaches encompassing patterns and quality attributes. In
this study we (1a) present in which way patterns and quality attributes
interact and (1b) provide quantitative data on the frequency of appear-
ance for both patterns and quality attributes; (2) give an overview of the
approaches we elicited from the analysis; and (3) provide our insights
regarding a specific challenge (combination of patterns). Our analysis is
a first step toward a theory on the architectural patterns and quality
attribute interaction.

Keywords: Architectural patterns · Architectural styles · Quality
attributes · Decision making

1 Introduction

Architectural patterns and styles are recurrent solutions to common problems.
Among others, they include knowledge on quality attributes (QAs) [1]. For the
sake of simplicity, throughout the paper we use the term architectural pattern
to mean both. In fact, according to Buschmann [2], patterns and styles are very
similar as every architectural style can be described as an architectural pattern.
However, some differences can be considered as essential, the most relevant being
that patterns are more problem oriented, while styles do not refer to a specific
design situation [2]. Accordingly, in our analysis we make explicit if and why
authors adopt the term pattern or style. We observe a similar problem with the
definition of quality attribute. Again, for the sake of simplicity, we adopt the
term quality attribute. In our analysis, if necessary, we make explicit the term
c© Springer International Publishing AG 2016
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used by the authors such as non-functional requirement, quality property, quality
dimension, etc. Architectural patterns include knowledge on quality attributes.
Architects rely on that knowledge for effective architectural decision-making.
Increasing that knowledge means increasing the role of patterns in satisfying
quality attributes. The aim of this paper is to present our results of the System-
atic Literature Review (SLR), hence providing some conceptual building blocks
on patterns and quality attributes interaction. Those conceptual blocks can be
used for building a systematic theoretical framework. We also aim to encourage
the discussion in the software architecture community.

Paper Overview: Section 2 offers a description of background knowledge and
related work. Section 3 presents our study design. Section 4 presents our analy-
sis and results, while Sect. 5 includes threats to validity. Section 6 summarizes
conclusions and future work.

2 Background and Related Work

In the literature there are several works that, to various degrees, address the
interaction between architectural patterns and quality attributes. Many have
been included as primary studies of our SLR. In this section, we focus on
two additional works, Buschmann [2] and Harrison and Avgeriou [1], holis-
tic in nature and hence providing an excellent starting point for our SLR.
Buschmann [2] is the cornerstone of architectural patterns and many later pub-
lications refer to its taxonomy of patterns. The approach is holistic. Firstly,
software architecture design is considered more than a simple activity with a
limited scope. Software architecture design has system-wide goals. Secondly, it
aims at providing systematic support beyond that of a single pattern. As the title
of the book suggests, patterns are framed in a system of patterns. For our pur-
pose, we have considered the work of Buschmann in a pattern-quality interaction
perspective, i.e. with a special focus on such interaction. In particular, the rela-
tionship between patterns and quality is based on a quality model that includes
Changeability, Interoperability, Reliability, Efficiency, Testability and Reusabil-
ity. Several quality attributes (called in [2] non-functional properties) present
one or more sub-characteristics. Each quality attribute has been exemplified
by means of scenarios. Some good fitting solutions (pattern-quality attribute)
are given, for instance an example of fitting solution for changeability is the
pattern Reflection. Trade-off and prioritization of quality properties have been
mentioned. Non-functional properties can be classified according to the architec-
tural techniques for their achievement. Patterns provide a support for building
high-quality software system in a systematic way given some quality properties
and functionalities. According to [2], the final assessment of quality properties in
software architecture is still a difficult task. Indeed, although quality properties
are crucial for the design, we still have to solve problems in their measurement.
The lack of quantification makes the choice mostly based on the intuition and
knowledge of software architects [2]. Similar to [2], Harrison and Avgeriou [1]
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holistically cover architectural patterns; differently, they propose to extend pat-
terns with the knowledge about their impact on quality attributes: by knowing
the consequences of adopting a certain pattern, architects would ideally make
better-informed design decisions. The authors provide some evidence regarding
the impact of patterns and quality attributes. Their ultimate goal is to organize
a body of knowledge in a way that is accessible and informative for architects,
in order to support an architectural decision making process. This goal is shared
with ours. There are other studies that aimed to address the interaction between
architectural patterns and quality attributes. For instance, Babar [3] focuses on
the synergy between architectural patterns, quality attributes and scenarios. He
provided a framework for collecting and representing the knowledge of that syn-
ergic interaction. His motivation is the lack of systematic knowledge about that
synergy that might support software design. Babar proposes a valuable template,
but he does not go beyond a methodological proposal, without bringing exper-
imental evidence. In [4], Zdun focuses on pattern combinations. He proposes a
pattern language grammar in order to keep track of patterns relationships. The
formalized pattern language grammar has been considered also with effects to
quality goals. This work fits with our purpose. However the level of analysis is
on design patterns; as such it does not qualify as primary study for our SLR,
because, we decided to explore only the highest level of abstraction (patterns and
styles) excluding design and idiom level. This decision was necessary to scope the
amount of information to a manageable size within a single SLR. The rationale
is the amount of information would have been difficult to manage in a single
systematic review study. Weyns [5] explains how patterns capture expert knowl-
edge in the domain of multi-agent systems. The knowledge accumulated over
years of practice and research has been represented by a pattern language. The
interaction between patterns and quality attributes appear in a primary repre-
sentation that includes quality attributes, constituent elements, responsibilities,
interfaces explaining how elements have been used together and design rationale
behind the architectural choices. Finally, Costa et al. [6] built a collection of sce-
narios useful for a particular architectural style evaluation. Such methodological
approach can be extended to other patterns, or pattern combinations (system of
patterns).

3 Study Design

Our systematic literature review has been carried out according to Kitchenham
guidelines [7]. Few studies focus exactly on the interaction between quality
attributes and architectural patterns. Therefore, we have decided to carry out
this SLR with the motivation of detecting the widespread knowledge and build
it in a systematic theoretical framework.

3.1 Research Questions

It is widely known that architectural patterns and quality attributes are not
independent by implying (explicitly or not) significant interactions [8]. Such
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interactions can be represented as reusable knowledge elements. In this line of
reasoning, for instance, Layered architecture presents a trade-off between effi-
ciency and maintainability, where the second quality attribute is better fit [1].
Architects in search for assuring a high maintainability for their software archi-
tecture might take decisions on the basis of the knowledge reported above, and
hence adopt a Layered pattern, but sacrificing something regarding efficiency.
In this light, the knowledge on the interaction between patterns and quality
attributes is a foundation for architectural decisions. Therefore, this study aims
to assess if that type of reusable knowledge elements is widely accepted in the
literature or if there are substantial differences in evaluating which pattern is
more adequate for achieving specific quality attributes (QAs). Accordingly, we
will address the following research questions (RQs):

– RQ1: What types of relations exist between architectural patterns and quality
attributes?
This research question has two goals. Firstly, it aims to explore the character-
ization of those relations (e.g., impact, dependencies, interaction, synergies or
quantitative). Secondly, the type of relations can be evaluated and classified
according to frequency of various patterns and QAs and related combinations.

– RQ2: What types of approaches address the relations between architectural
patterns and quality attributes?
This research question aims to understand and classify the various method-
ologies, frameworks, models, etc. available in the literature that addresses the
relation between pattern and QAs.

– RQ3: What are the most important challenges for a quality-driven and
pattern-based design?
This research question aims to identify the most important challenges for
building a theory of pattern-QAs interaction. We consider challenges as spe-
cific issues that emerge from the primary studies and for which better/explicit
knowledge can help in addressing them better.

3.2 Data Sources and Search Strategy

Piloting the review protocol is essential [9]. We identified a set of 12 pilot stud-
ies. This set includes key studies we knew upfront as relevant and expected
to find back in our systematic search, and at least one study on every sin-
gle architectural pattern considered for the analysis. In this way it is possible
to assess if the generic term architectural pattern can catch specific patterns
(for instance Layered). Firstly, we have been collecting keywords for shaping
the search string from the following studies. In case authors keywords were not
available, we selected keywords by reading the abstract. Secondly, the search
string has been tested on Google Scholar and other customary search engines in
order to verify if the pilot studies would be detected. Our final search string is:
(architecture pattern OR architectural pattern OR architecture style OR archi-
tectural style) AND (quality attribute OR quality characteristic OR quality
properties OR non-functional requirement OR no functional requirement OR
quality dimension).
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3.3 Study Selection

We run the search string on the following search engines with the corresponding
results: ACM Digital Library (422 studies); IEEE eXplore (129); SpringerLink
(1395); Scopus (499); Web of Science (79) and Science Direct (418). The total
was of 2942 hits collected in November 2015, covering a time span of 26 years
(1990–2015). Subsequently we merged the hits in a reference manager database
(Mendeley). SpringerLink has been analyzed on a spreadsheet due to some tech-
nical difficulties in importing references to Mendeley. The primary-study selec-
tion was organized in four rounds (Round 1: based on title and abstract; Round
2: skimming reading; Round 3: Full reading; Round 4: Snowballing. One level of
Snowballing has been performed on the citations of the included studies). The
Round 1 and Round 2 were aimed to clear the set of studies from out of scope
works and duplicates. We started the Round 3 with 283 studies and we applied
the Inclusion and Exclusion criteria. Inclusion and exclusion used the following
criteria. Inclusion criteria are: (1) A study that offers knowledge elements on the
interaction between at least one architectural patterns and at least one quality
attribute; (2) A study that is carried out by either academics or practitioners;
(3) A study that is written in English. Exclusion criteria are: (1) A study that
does not provide directly or indirectly any description for the quality attributes
taken into account; (2) A study that does not provide directly or indirectly
any description for the architectural patterns taken into account; (3) A study
that does not focus on architectural patterns of applications; (4) A study that
focuses on pre-pattern or anti-patterns; (5) A study that the analysis is at design
or idiom level. We focus only on a higher level of abstraction (patterns/styles)
and (6) A study that is not available, or is a book or a workshop note. After
applying inclusion and exclusion criteria through a skimming reading we had
back 160 studies that where reduced to 88 after a whole reading. By snowballing
we retrieved other additional 11 studies. So doing, study selection resulted in a
total of 99 primary studies.

4 Analysis and Results

We extracted the data from all the primary studies by using a structural coding
procedure. Structural coding captures a conceptual area of the research interest
[10]. All the knowledge has been classified in four main categories: Decision-
Making, Patterns, Quality Attributes and Patterns-QAs Interaction. We decided
for four categories according to our previous work [11]. Subsequently, data analy-
sis has been reported with a descriptive approach. Due to the extensive amount
of knowledge gathered, for the focused scope of promoting the discussion in the
community, in this work we present our most interesting preliminary results.

4.1 RQ1: On Pattern-QA Relations

As previously stated, RQ1 has a dual goal. First we want to uncover how the var-
ious studies characterize the interaction between patterns and quality attributes.
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That interaction remains mostly undefined. Other main important characteriza-
tions are indirect by means of tactics and according to quantitative measures. In
the first case the interaction between patterns and quality is supported by tac-
tics. In the second case quantitative models shape the interaction according to
specific QAs measures. Table 1 shows the summary of this analysis part. In par-
ticular, it shows the various ways of addressing the interaction between quality
attributes and patterns.

Table 1. Interaction patterns-quality attributes

Number of studies
per type

Type of interaction described Total number
of studies

35 Undetermined 35

12 Tactics 12

8 Measurability 8

7 Fitness & satisfaction 7

6 Interaction as knowledge 5

5 Trade-offs 5

3 Scenario-based; characterization of patterns
with a QA

6

2 Functional-Non-functional; Markov Model;
Views and Viewpoint; Materialization; Tech-
nical; Real world requirements (QAs)-Systems
specification (Patterns);

12

1 Responsibilities; Appropriateness; Capturing;
Actors and dependencies; Relationship; Repre-
sentability; Softgoals; Problem space-Solution
space interaction; Transformation

9

The highest frequency is the category Undetermined. In this case it was
not possible to identify one specific type of interaction. Category Tactics pro-
vides an intermediate mechanism between quality attributes and patterns. Cat-
egory Trade-offs focuses on specific techniques for comparing and assessing sev-
eral quality attributes at the same time. Different types of interactions work
at different levels of abstraction. For instance: while Scenario-based provides
the (external) context for analyzing the interaction, Measurability addresses the
(internal) quantification of such interaction. In other words, we may have types
of interactions relating to the external context and others capturing the inter-
nal functioning of a certain system. A type of interaction pursues another goal:
assessing the quantitative value of a quality attribute inside a specific system
solution (pattern). The second goal of RQ1 is to single out how patterns and
quality attributes interact as witnessed in the primary studies. Firstly we have
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Fig. 1. Most frequent architectural patterns

gathered the frequency of both patterns and attributes. Figure 1 shows the pat-
terns identified in the primary studies with the related frequency of appearance.

According to Fig. 1, the most frequent patterns (with a frequency of five
or higher) are those 10 enlisted patterns plus a set of pattern combinations
(see Combination). In fact, there are 44 additional patterns (not displayed in
the figure) with frequency between 1 to 5. Among these less frequent patterns,
multi-agent system patterns show a good potential for further research. Our
online protocol provides the frequency table for the full list of patterns.

We performed a similar analysis about the found quality attributes, which
provide a similar picture with an extended landscape of exotic quality attributes.
In this case we have found 43 quality attributes (plus a residual category of not
recognizable QAs) with a frequency mean of 15,6. Figure 2 includes only the
quality attributes that appear at least 13 times in our primary studies. Like for
patterns, the less frequent QAs are available in the online protocol1. Finally we
have combined the two data pools (Patterns-QAs Frequency, see Table 2). In
particular, we identified 711 couples pattern-QA. Of these, 422 (62 %) are cou-
ples composed by one of the most frequent patterns and one of the most frequent
quality attributes. Interestingly, 166 couples out of 711 (23 %) are composed by
one of the most frequent quality attributes listed in Fig. 2. Other combinations
are much lower, for instance the couple “most frequent patterns-less frequent
quality attributes” appears just in 62 cases (9 %) and expectably the couple
“less frequent patterns-less frequent QAs” appears in even less cases (41, corre-
sponding to 6 %).

Regarding the frequency of patterns and QAs, we observe that the set of
most frequent quality attributes covers 85 % of all identified couples pattern-
QA. Only 70 % of the identified couples are composed by a pattern belonging to
the set of most frequent patterns. This might suggest that the set of most fre-
quent QAs is mature enough to be considered as a backbone for an architectural
quality model. On the other hand, patterns as a category is to be considered as

1 www.s2group.cs.vu.nl/gianantonio-me/.

www.s2group.cs.vu.nl/gianantonio-me/


46 G. Me et al.

Fig. 2. Most frequent quality attributes

Table 2. Patterns and quality attributes combinations

Combinations Most frequent QAs Less frequent QAs Total

Most frequent patterns 62 % 9 % 71%

Less frequent patterns 23 % 6 % 29%

Total 85 % 15 % 100%

potentially unlimited: combinations of patterns or new patterns might be con-
tinuously created. This poses a challenge on how to capture the heterogeneity
in a continuum, and represent it in a body of reusable knowledge.

4.2 What Do We Learn? (Answer to RQ1)

We identified several ways of characterizing patterns and QAs interaction. The
highest frequency belongs to an Undetermined interaction, which means that
the elements provided by the study were not clear or sufficient for defining the
patterns-QAs interaction. One important mechanism for addressing quality in
patterns, however, is the architectural tactic. Other studies focus on how to
measure the interaction between patterns and quality, by offering quantitative
knowledge for supporting architectural decisions. We also identified both a set
of most frequent patterns and QAs. We discovered that most quality attributes
frequent cover the large part of the couples pattern-QA we identified in the
literature.

4.3 RQ2: On Classifying the Approaches

Table 3 provides an overview of the types of approaches identified in the
99 primary studies. We clustered the different approaches according to
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the characterizing elements for each study. For instance, Decision-Making
approaches highlight the role of architectural decisions. Tactics might belong
to the Decision-Making category because they highlight a specific mechanism
for design decision-making. Studies that focus on quantitative modeling for pre-
diction aim to support architectural decisions by measuring the QAs. Therefore,
overlaps of approaches are very likely to arise.

Table 3. Types of approaches

Type of approach Nr. of
studies

Focus on

Decision-making 22 How to support architectural decisions: e.g. hierar-
chies of QAs for prioritizing decisions

Quantitative-
prediction and/or
formal model

16 Support of architectural choice with quantita-
tive assessment of QAs Design Method 8 Holistic
method, focus on the process of designing systems
architecture

Knowledge based 8 Reusable and well-known knowledge on patterns
and QAs

Evaluation
method

7 The focus is on the process of evaluating architec-
ture Pattern QA characterization 7 Patterns are
characterized by a single QA (e.g. Security Broker)

Ontology-
pattern language
topology-
taxonomy

6 The focus is on the description and definition both
of patterns, or quality attributes (Taxonomies)

Specific domain
method

6 Those studies focus on a specific context, e.g. multi-
agent system

Views-scenario
based

6 Those studies extract information on patterns-QAs
interaction using scenarios as particular instance of
the system

Quality driven
method

5 Those studies consider the entire process of archi-
tecting as achieving quality

Business process-
real world
oriented

3 Those studies explore how patterns and QAs can
effectively address specific real world challenges

Functionality
oriented

3 Those studies explore the link between functional-
ities and quality

Technical method 2 Those studies explore the patterns and QAs in
terms of how to capture technological complexity

Basically, each type of approach represents an element potentially common to
other approaches. For instance, studies that focus on Business Processes and/or
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Real World needs shed light on an intrinsic goal of the other methodologies,
namely to design systems that match business processes needs.

We have identified 13 different types of approaches. However, overlaps are
very common (e.g. knowledge-based and decision-making). A reason for this
overlap is that the approaches are at different levels of abstraction. For instance,
scenario-based approaches provide the space were patterns and quality will be
assessed; functionality-oriented approaches zoom in how the considered pattern
both satisfies functionality and quality, zooming in implementation level. Over-
all we noticed that Decision-Making elements are widespread in all the identi-
fied approaches. Many studies have the goal to provide support for decisions,
so decision-making can be considered as a cross-characterizing element for all
the methodologies. In the same line of reasoning, knowledge-based approaches
present a body of reusable knowledge for adopting decisions. In general, we
observe redundant elements proposed as new/different methodologies. Table 4
proposes a possible key of reading the holistic relation we uncovered in the 13
approaches we identified.

Table 4. Unified framework for pattern-quality based architecting

Type of approach Meaning

Decision-making Goal

(Pattern) quality driven
method

Rationale

Design method General framework

Evaluation method General framework

Specific domain method Context

Business process-real world
oriented

Context

Knowledge-based Support for decision-
making

Knowledge-based contents Quantitative-prediction
formal model

Architectural knowl-
edge element

Pattern QA characteri-
zation

Architectural knowl-
edge element

Ontology-pattern
language topology-
taxonomy

Architecture descrip-
tion technique

Views- scenario based Architectural evalu-
ation technique

Functionality oriented Architectural knowl-
edge element

Technical method Architectural imple-
mentation technique
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The essence of architecting is taking decisions. Therefore, (effective) Decision-
Making represents the main goal of the overall process of architecting. From top
to bottom:

– We aim to a unified framework where the rationale behind Decision-Making is
quality- and pattern-driven. There are two ways to organize decision-making
in a methodological framework: evaluation and design method.

– Evaluation methods focus on assessing how and how much system architectures
achieve quality.

– Design methods focus on the process of architecting, defining the system archi-
tecture.

– Those methodological frameworks are intertwined. Architecting is contextual-
ized into a specific domain (see Specific Domain Method), a Business Process
or in general into a Real World need.

– Concrete support for decision-making is provided by reusable knowledge.
Knowledge-based approaches encompass several knowledge elements or tech-
niques. They can be used in combination or in isolation, according to the needs
of the system in focus. Knowledge-based contents does consider the type of
interaction between patterns and quality attributes, but mostly implicitly.

4.4 What Do We Learn? (Answer to RQ2)

We identified 13 main types of approaches. Each of them is characterized by
a specific element. We observed multiple overlaps of approaches. For instance,
Decision-Making aspects can be identified in all other approaches, although they
focus on other specific elements. Our proposal, rather than invent a new app-
roach, is to unify in a holistic framework all the essential and shared elements
widespread in several, apparently different, approaches. We offered a prototype
of that holistic approach, by isolating and highlighting the characterizing aspects
of each single approach.

4.5 RQ 3-Challenges: Combination of patterns

In looking for the interaction between architectural patterns and QAs it emerged
that a quality-driven combination of architectural patterns is among the most
important challenges in developing modern software systems. We zoomed into
the effect that combining multiple patterns may have on the overall quality deliv-
ered by the combination. I.e., while individually two patterns may contribute (or
hinder) a certain quality attribute, their combination might have a positive (or
conflicting) impact on the same. “Combination of patterns” can find a place
in our Unified Framework among the Knowledge-based elements. Interestingly
enough, among our 99 primary studies, we found only 8 papers mentioning such
a combination, as described in the following.

Background Works on Combination of Patterns. Study [1] considers the
research on combination of patterns as a great challenge, considering the lack
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of knowledge we have on the interaction between combinations of architectural
patterns and quality attributes. In [2] combinations of patterns are considered
crucial: patterns do not operate in isolation. However, according to [2] a combi-
nation of patterns is not software architecture yet because more refinements are
required. Finally in [4] the focus is also on pattern combinations. In order to keep
track of patterns relationship a pattern language grammar has been proposed.
The formalized pattern language grammar has been considered also with effects
to quality goals. Relationships between patterns are also in [12]. However those
last two studies work on design pattern level of abstraction that, at least for the
moment, is out of scope for our research.

Examples of Combinations of Patterns. The best source of information for
combination of patterns is [13]. The study offers a wide list of combinations of
patterns and some quantitative data. Table 5 summarizes the knowledge on the
interaction between combination of architectural patterns and quality attributes.

4.6 Combination of Patterns

Lee et al. [14] present a method for evaluating quality attributes. This uses con-
joint analysis in order to quantify QAs preferences. It can be used in combination
with the ATAM. In this study the decision of a Layered+ MVC architecture is
the result of a composition of customers needs. The approach of [14] suggests
a conceptual building block where combinations of patterns reflect the result of
negotiation between stakeholders.

In [15] the authors provided a knowledge base for architecting wireless ser-
vices. They propose a knowledge-based model with a service taxonomy, a ref-
erence architecture and basic services as backbone. Regarding combinations of
patterns, in [15] the focus is on service sub-domain. Combinations of patterns are
solutions to achieve quality attributes in specific sub-domain. They are applied to
basic services and shape the reference architecture. The approach of [15] selects
the Layered as a main pattern for building the software architecture. The ratio-
nale is in the type of quality attributes supported and the popularity among
engineers. This study offers the conceptual idea that a combination of patterns
can be classified according the main pattern.

In [17] the authors are aiming for an architectural pattern language for
embedded middleware systems. The core architecture is a Layered+ Microkernel.

In [18] the authors proposed a framework for early estimation of energy con-
sumption, according to particular architectural styles, in distributed software
systems. In their experiment styles have been tested in isolation. Further, one
combination of them has been assessed regarding energy consumption. The com-
bination of patterns (called in the study hybrids) showed less energy consumption
and overhead with the same amount of data shared respect to each single pat-
tern. In that case the impact on the quality attributes is not merely addictive;
indeed combining patterns reduces the energy consumption of a single pattern.

In [16] a full model for architectural patterns and tactics interaction has been
analyzed, with the aim of linking strategic decisions (decisions that affect the
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Table 5. Pattern combinations and quality attributes

N Combination
of patterns

Quality Attributes Study Approach and/or type of
interaction according to
Tables 1 and 2

1 Layered,
model
view controller

Performance, usability,
availability, modifiability
and security

[14] Measurability;
quantitative-prediction
formal model

2 Model view
controller, bro-
ker

Modifiability, interoper-
ability and reusability

[15] Interaction as knowledge;
knowledge based

3 Layered,
blackboard,
presentation
abstraction
control

Interoperability, integra-
bility, portability and
modifiability

[15] Idem

4 Pipes &
Filters, presen-
tation abstrac-
tion control

Simplicity and
integrability

[15] Idem

5 Broker, reposi-
tory, layered

Performance (capacity,
response time), reliability
(availability and fault tol-
erance)

[16] Tactics; decision-making

6 Layered+,
microkernel

A wide set of QAs [17] Measurability;
quantitative-prediction
formal model

7 Public
subscribe,
client server

Energy efficiency [18] Undetermined;
quantitative-prediction-
formal model

8 Pipes &
Filters, model
view controller

Flexibility [19] Undetermined; evaluation
method

9 Reflective
blackboard

Performance, maintain-
ability, manageability
and reusability

[20] Undetermined; specific
domain

overall architecture) and tactics (clear-cut implementations that achieve specif-
ically a quality attribute). Regarding combination of patterns the study shows
a Broker combined with a Repository and a Layered. In the case study the
overall level of performance has been augmented by the introduction of a new
component. The new component allows Broker to bypass some Layers and this
increases performance. Tactics for Fault Tolerance can be implemented in the
Broker, without changing the overall structure. The valuable knowledge element
from this study is that tactics can support pattern combinations.
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Study [19] focuses on a specific software architecture style for applications
performing distributed, asynchronous parallel processing of generic data streams.
The combination of patterns here presented highlights data stream and user
interactivity. This leads to increased flexibility. Unfortunately, the study does
not provide enough information to support generalization about combinations
of patterns. Finally, study [20] shows an interesting motivation for combination
of patterns. The analysis is framed in the context of multi-agent systems. The
combination of Reflection pattern and Blackboard allows effective separation of
concerns, contributing to high manageability of several agents.

4.7 What Do We Learn? (Answer to RQ3)

In spite of its systematic nature, the SLR does not provide enough knowledge for
building either univocal types of interactions between given couples pattern-QA
or pattern combinations. Usually, if a given pattern addresses a particular QA
positively that interaction would be replicated in the combination. Generally all
the combinations reported above address QAs in the same way of each single
pattern. That means, for instance, that a Layered pattern addresses positively
Portability (according to [1]) also when Layered is combined with other pat-
terns. Similarly, combination 3 [15] supports portability as well. The only clear
(reported) exception regards Energy Efficiency, for which the QA measure seems
better if the patterns are combined instead of implemented in isolation. More evi-
dence is needed to confirm this result [21]. Finally, an interesting and promising
research path is to consider combinations of patterns as specific design-solutions
for real world problems.

5 Threats to Validity

As customary, for the analysis we followed a SLR protocol. However, there
are potential threats to validity. Firstly, the search string might not catch all
the relevant papers available. We mitigated this risk by adding a snowballing
phase, checking references of primary studies. Secondly, the process of inclusion
and exclusion criteria applications has been conducted by only one researcher.
Thirdly, there are almost no studies that explicitly address the focus of our
analysis. This means that the knowledge is widespread in a heterogeneous spec-
trum of studies. Relevant information might be hidden in studies not detectable
by a sound search string. To cope with this issue we performed a pilot study
for testing and refining the search string. Finally, the threats to validity for the
analysis results and conclusions might be considered as a problem of general-
ization. Since we are in search of a theory, our results should be generalizable
to different contexts. Our strategy mitigation for this issue has been the adop-
tion of a coding procedure. However, the context specifications still represent an
important challenge for this research work.
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6 Conclusion

We performed a systematic literature review in order to shed light on the inter-
action between architectural patterns and quality attributes. We answered three
main research questions. For the first research question we identified the ways
of addressing the interaction between quality attributes and patterns. We dis-
covered that relation remains mainly unexplored, with a high number of studies
showing an Undetermined type of interaction. We also analyzed the frequency
of recurring patterns and recurring quality attributes. The main finding was
that the set of most frequent quality attributes covers 85 % of the identified
couples patterns-QAs. We can conclude that the set of quality attributes we
found can act as backbone for a quality model. The second research question
was answered by identifying different types of approaches for addressing quality
through architectural patterns. We observed redundancy and overlapping, so we
described basic elements for a pattern-quality driven architecting and we unified
them in a holistic framework. The third research question, about challenges in
quality and patterns interaction, allowed us to explore combinations of patterns.
We realized that we still lack extended knowledge on this specific challenge in
particular. Overall, the knowledge gathered so far puts the basis for a further
development of a theory for pattern-quality driven architecting. However, in spite
of architectural patterns and quality attributes being both widely explored and
practiced, there is still a lot to learn on their interaction—a long way to go.
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Abstract. We use real options theory to evaluate the options of diver-
sity in design by looking at the trade-offs between the cost and long-
term value of different architectural strategies under uncertainty, given
a set of scenarios of interest. As part of our approach, we extend one of
the widely used architecture trade-offs analysis methods (Cost-Benefit
Analysis Method) to incorporate diversification. We also use a case study
to demonstrate how decision makers and architects can reason about sus-
tainability using a diversified cost-value approach.

1 Introduction

Design Diversity is “the approach in which the hardware and software elements
that are to be used for multiple computations are not copies, but are indepen-
dently designed to meet a system’s requirements” [2]. It is the generation of
functionally equivalent versions of a software system, but implemented differ-
ently [2]. Design diversification has the potential to mitigate risks and improve
the dependability in design for situations exhibiting uncertainty in operation,
usage, etc. On the other hand, architecture sustainability is “the architecture’s
capacity to endure different types of change through efficient maintenance and
orderly evolution over its entire life cycle” [1]. In this paper, we argue that we
can link diversity and sustainability from a value-based perspective. The link
can summarize the success of engineering and evolution decisions in meeting the
current and future changes to users, system, and environment requirements. We
are concerned with how to employ diversity in the architecture as a mechanism
to better support future changes. This requires rethinking architecture design
decisions by looking at their link to long-term value creation in enabling change
and reducing their debt, etc. The focus is on how we can sustain the architec-
ture, which requires treatment for not only short-term costs and benefits but
also for long-term ones and their likely debts. As the valuation shall take into
consideration uncertainty, we appeal to options thinking [7] to answer the above
question. Our novel contribution is an architecture-centric method, which builds
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 55–63, 2016.
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on Cost-Benefit Analysis Method (CBAM) [5] and options theory [7] to evaluate
and reason about how architectural diversification decisions can be employed
and their augmentation to long-term value creation. In particular, the approach
uses real options analysis [7] to quantify the long-term contribution of these
decisions to value and determine how that value can assist decision-makers and
software architects in reasoning about sustainability in software. Our exploratory
case analysis is based on provisional data gathered from the GridStix prototype,
deployed at River Ribble in the North West England [4].

2 Background

CBAM: A Cost-Benefit Analysis Method that intends to develop an economic
model of software and systems that helps a designer select amongst different
architectural options at design-time [5]. CBAM extends ATAM with explicit
focus on the costs and benefits of the architecture decisions in meeting scenarios
related to quality attributes (QA) as illustrated in Fig. 1. Interested reader can
refer to [5] for more details.

Real Options Analysis: We view architecting for sustainability through diver-
sification as an option problem. Real options analysis is well-known paradigm
used for strategic decision-making [7]. It emphasizes the value-generating power
of flexibility under uncertainty. An option is the right, but not the obligation, to
make an investment decision in accordance to given circumstances for a partic-
ular duration into the future, ending with an expiration date [7]. Real options
are typically used for real assets (non-financial), such as a property or a new
product design. We used call options, which give the right to buy an uncer-
tain future valued asset for the strike price by a specified date. In this paper,
we consider different architectural strategies and different options, and use the
Binomial option pricing model [7] to value real options. The choice of this model
gives the architect the freedom to estimate the up and down in the value over
time, backed up by their experience.

Fig. 1. Steps of classical CBAM [5] Fig. 2. Proposed approach
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GridStix: We present a case study based on the GridStix prototype, a grid-
based technique to support flood prediction by implementing embedded sensors
with diverse networking technologies [4]. The water depth and flow rate of the
river are continuously observed using sensors located along the river. Data are
collected in real-time and dispatched over GPRS to a prediction model [4] for
flood anticipation. GridStix has a highly dynamic environment, and is influenced
by numerous QAs and different architectural components [4]. Our evaluation,
shown in Sect. 5, is performed using hypothetical data, aiming to measure the
long-term impact of implementing a diversified vs non-diversified design decisions
on system QAs, cost, and value.

3 Architecture Diversification as a Real Options Problem

Diversified software architecture is composed of architectural strategies (ASs). It
can meet some quality goals of interest and trade-offs by implementing a set of
diversified ASs. At run-time, switching between diversified AS is allowed. Suppose
that k denotes a particular capability, including connectivity, routing technology,
data management, etc., as depicted in GridStix.ASka indicates the software archi-
tectural component a implementing capability k. Some of the following ASs are
envisioned as a way to implement diversification in GridStix: AS11, AS12, AS13

are connect node with gateway via Wifi, Bluetooth (BT), and GPRS respectively;
AS21, AS22 are search for the best path between gateway and node using Fewest
Hop (FH), Shortest Path (SP) routing algorithm, respectively.

Inspired by options theory [7], we consider each different possible diversified
architecture as an option. Therefore, we refer to them as Diversified Architecture
Options (DAOs). An example of DAO would be DAO1 = (AS11, AS12, AS21),
meaning that the system can switch between AS11 and AS12 at run-time.
Another example would be DAO2 = (AS11, AS12, AS13, AS21, AS22), meaning
that the system can switch between AS11, AS12 and AS13, and between AS21

and AS22 at run-time.
The value of these options is long-term and can cross-cut many dimensions.

In particular, the valuation of the options can be performed in accordance to
sustainability dimensions, which can be technical, individual, economics, envi-
ronment, and social [3]. In this paper, we attempt to link technical decision to
cost and long-term value. When evolving an existing system, the current imple-
mentation of the system has a direct ramification on the selection of a DAO. It
could provide an intuitive indication about whether the current system architec-
ture needs to grow, alter, defer, etc. To exemplify, if the current system archi-
tecture has low long-term value, hence it is obvious that another DAO should
be employed instead.

The goal of our approach is to help the architect to choose a DAO that
provides a good trade-off between cost and long term value, given some quality
goals. This is done by evaluating a portfolio of DAOs.
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4 The Approach

The proposed approach is a CBAM-based method for evaluating diversified
architectural options (DAO) with real options theory, as illustrated in Fig. 2.

Step 1: Choosing the business goals, Scenarios and DAOs. Our method
focuses on QAs and their responses with respect to scenarios of interest that are
related to sustainability. DAOs are the architectural options that deal with these
scenarios. In our approach, DAOs are represented as a portfolio of options. Exer-
cising each DAO can be formulated as call option [7], with an exercise price and
uncertain value. We aim to provide a good trade-off between the benefit and cost
of applying diversified options on system’s QA over time, given the following: 1 - A
set of diversified architectural options {DAO1,DAO2,DAOn}, where each DAO
is composed of integrated architectural strategies among candidate diversified ones
{AS1, AS2, ASm}. 2 - One or more ASs are selected as candidates for diversifica-
tion ASk, as shown in figure 2. 3 - The diversified ASs are denoted by ASka, where
0 <= k <= x, 0 <= a <= y. 4 - Each DAO comes with a cost CostDAOi

(t) and a
benefit BenefitDAOi

(t), which may vary over time.
Among the business goals, which we consider to illustrate our approach are

the accuracy of flood anticipation and reasonable warning time prior to the
flood. In our method, we mainly test and evaluate the application of diver-
sity versus no diversity. Therefore, non − diversified − option = Wifi + FH,
DAO1 = Wifi + BT + FH, and the following scenario Messages transmission
between any given sensor node and gateway should arrive in ≤ 30ms (address-
ing the performance QA) are employed for evaluation. We set 60 % target for
improvement of average network latency backed up by [4].

Step 2: Assessing the relative importance of QAs (Elicit QAWeightj).
The architect assigned a weight to the QA according to equation in Table 1.

Step 3: Quantifying the benefits of the DAOs (Elicit ContribScorej).
The impact of Non-diversified option and DAOi on the QAs are elicited from
the stakeholders with respect to BenefitDAOi

equation in Table 1.

Step 4: Quantifying the costs of DAOs and Incorporating Scheduling
implications. Classical CBAM uses the common measures for determining the
costs, which involves the implementation costs only. Unlike CBAM, our approach
embraces the switching costs between decisions, which is equivalent to the pri-
mary payment required for purchasing a stock option. This is in addition to the
costs of deploying DAOs, configuration costs, and maintenance costs, similarly
to the exercise price, denoted by Cost(DAOi). It is essential to note that CBAM
implements the ASs with high benefit and low cost [5]. On the other hand, we
believe that some ASs could provide high cost with low benefit initially or high
cost with high benefit, but a much higher benefit in the long-term that outweighs
the cost. The long-term benefit is the key factor for ASs evaluation.
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Table 1. Approach notations

Variable Description Formulation/application on
GridStix

DAOi Diversified architectural
options

DAOs as a portfolio of call options

QA Quality attribute Performance (Perf), Reliability
(Rel), Availability (Ava), Security
(Sec), Scalability (Sca), & Energy
Efficiency (Ene)

QAWeightj The relative importance of
QAs

Should satisfy∑
j QAWeightj = 100, Perf(20),

Rel(30), Ava(20), Sec(5), Sca(5),
& Ene(15)

ContribScorej Impact of each DAO on
QAs

DAO1: Perf(1), Rel(1), Ava(0.8),
Sec(0.5), Sca(0.7), Ene(-0.4),
Cost(60)

BenefitDAOi Benefit of a DAO BenefitDAOi =∑
j QAWeightj ∗ ContribScorei,j

Cost(DAOi) Switching, deployment,
configuration, &
maintenance costs

∀i : Cost(DAOi) � Budget

SDAOi System value SDAOi = Vs + BenefitDAOi

SDAOi(t) System value over time t SDAOi(t) = Vs + BenefitDAOi(t)

u, d System value
(corresponding to stock
price) benefiting/being hurt
from DAO i.e. value rise

Should satisfy d < 1 + r < u [6]

r Risk-free interest rate 0.5 %

fu The likely rise of payoff
from implementing a DAO

fu =
max(0, uSDAOi(t) − Cost(DAOi))

fd The likely fall of payoff
from implementing a DAO

fd =
max(0, dSDAOi(t) − Cost(DAOi))

p Risk-adjusted probability p = 1+r−d
u−d

f Option price f = pfu+(1−p)fd
1−r

Step 5: Calculate the Return of each DAO for the scenarios. We used
binomial option pricing calculation [7] and steps inspired by [6]. Binomial option
pricing model is a constructive aid aiming to show the suitable time slot for
exercising an option i.e. the cost-benefit of diversified options over time. For
each step of the binomial tree, the up and down node values are important in
determining the system value rise and fall, which is ultimately used to calculate
the option price. Our method aims to determine the impact of applying each
DAO (i.e. utility) on the system QAs, which is computed at every time slot t,
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Fig. 3. Enhanced Utility versus Reporting Latency in case of implementing additional
nodes for non-diversified and diversified decisions

where t = l indicates that the time equals to l unit time of interest i.e. months in
GridStix. For example, currently, the approximate number of deployed gridstix
nodes is 14 [4]. It is likely that adding extra nodes may improve the system’s
safety due to the presence of backup nodes and providing wider network coverage.
This in turn promotes the accuracy of flood prediction, satisfying our main
business driver, thus sustaining the GridStix software. Figure 3 envisages the
enhanced utility gained with/without diversification versus reporting latency in
accordance to offering up to 20 nodes, based on the graphs in [4]. The following
steps are necessary for valuation of options using the binomial option pricing
model.

1. Calculate the system value after factoring diversification into the
decisions: As a start, SDAO is evaluated with respect to the initial system
value denoted by Vs and resultant benefit of deploying DAO as shown in
Table 1. Also SDAO(t) is the system value after implementing a particular
DAO causing either incremental improvement or degradation at time t, which
is equivalent to the uncertain stock price when modeling an American call
option.

2. Calculate the likely rise and fall of payoff with DAOs: fu and fd are
computed using equations depicted in Table 1.

3. Calculate the option price of exercising a DAO: This step reveals at
what time t, it is favorable to take the decision i.e. exercise an option using f
as seen in Table 1. It also illustrates the long-term performance of a system,
which in turn aids in promoting sustainability.

5 Preliminary Evaluation

Without Diversification Outcome: A preliminary analysis of the method
without diversifying ASs is necessary. The architecture comprising Wifi and FH
was evaluated. The utility values for the implementation of the latter architecture
is depicted in Fig. 4 along with utilities of other DAOs, which are elicited from
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(a) Non-Diversified (b) DAO1

Fig. 4. Anticipated values for the utility of non-diversified and DAO1

stakeholders. Decision makers can vary the base value at cell A (guided by the
chart in Fig. 4a) to perform what-if analysis. In this example, possible values
range from $400 to $1500. The likely value of each architecture is different.
The valuation of non-diversified option over varying time slots for uncertainty
of implementing additional nodes is clearly shown in Fig. 5. In this example,
Vs is $1750. For detailed analysis, consider cell D for the evaluation of two-
unit time as presented in Fig. 5, which is the upper cell value: Snon−div(2) =
Vs+Benefitnon−div(2) = 1750+1000 = $2750. The lower cell value is computed
as follows: fnon−div(2) = max(0, Suu − Costnon−div) = max(0, 2750 − 1250) =
$1500. The option price formula f of non-diversified is:fnon−div = fDAOnon−div1

+
fnon−div2 + fnon−div3 = 905.47 + 910.79 + 915.60 = $2732.22.

Diversification Outcome: DAO1 is employed for method evaluation. The pre-
dicted utility values for the implementation of DAO1 are revealed in Fig. 4b,
which is elicited from stakeholders. By applying the same logic used to cal-
culate the option value for non-diversified decision, the valuation of DAO1

over varying time slots for uncertainty of implementing additional nodes is
shown in Fig. 6, where the orange cells represent fDAOi

(t) and green cells
denote the SDAOi

(t). For detailed analysis, Consider cell D for the evalua-
tion of two-unit time as presented in Fig. 6, which is the upper cell value:
SDAO1(2) = Vs + BenefitDAO1(2) = 1750 + 1300 = $3050. The lower cell

Fig. 5. Valuation of non-diversified option staged over 3 time periods
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Fig. 6. Valuation of diversified option (DAO1) staged over 3 time periods

value is computed as follows: fDAO4(2) = max(0, Suu − Cost(DAO4)) =
max(0, 3050− 1500) = $1550. Therefore, the option price formula f of DAO1 is:
fDAO1 = fDAO1.1 + fDAO1.2 + fDAO1.3 = 1049.8+1049.60+1049.56 = $3148.91.

Summary of Evaluation: From the above, the value of non-diversified is $2750
and the value of DAO1 is $3150. The costs are $2732.22 and $3148.91, respec-
tively. Although DAO1 has higher cost than non-diversified option, yet it has
higher long-term benefit. This proves that implementing high cost options would
provide higher long-term benefit i.e. high option value.

6 Conclusion

We have described an approach, which makes a novel extension of CBAM. The
approach reasons about diversification in software architecture design decisions
using real options. The fundamental premise is that diversification embeds flex-
ibility in an architecture. This flexibility can have value under uncertainty and
can be reasoned using Real Options. In particular, the approach can be used by
the architect and the decision maker to apprise the value of architecting for sus-
tainability via diversification based on binomial trees. For instance, the method
can be used to inform whether an architecture decision needs to be diversified
and what the trade-offs between cost and long term value resulting from diversi-
fication are. This trade-off can be used to reflect on sustainability. Our case study
illustrates that the method can provide systematic assessment for the interlink
between sustainability and diversity using value-based reasoning. In the future,
we plan to evaluate our model at run-time using machine learning techniques as
well as apply it on several case studies.
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Abstract. Building successful and meaningful interoperation with
external software APIs requires satisfying their conceptual interop-
erability constraints. These constraints, which we call the COINs,
include structure, dynamic, and quality specifications that if missed
they lead to costly implications of unexpected mismatches and running-
late projects. However, for software architects and analysts, manual
analysis of unstructured text in API documents to identify conceptual
interoperability constraints is a tedious and time-consuming task that
requires knowledge about constraint types. In this paper, we present our
empirically-based research in addressing the aforementioned issues by
utilizing machine learning techniques. We started with a multiple-case
study through which we contributed a ground truth dataset. Then, we
built a model for this dataset and tested its robustness through experi-
ments using different machine learning text-classification algorithms. The
results show that our model enables achieving 70.4 % precision and 70.2 %
recall in identifying seven classes of constraints (i.e., Syntax, Semantic,
Structure, Dynamic, Context, Quality, and Not-COIN). This achieve-
ment increases to 81.9 % precision and 82.0 % recall when identifying two
classes (i.e., COIN, Not-COIN). Finally, we implemented a tool proto-
type to demonstrate the value of our findings for architects in a practical
context.

Keywords: Interoperability analysis · Conceptual constraints · Black-
box interoperation · API documentation · Empirical study · Machine
learning

1 Introduction

Interoperating with externally developed black-box Web Service or Platform
APIs is restricted with their Conceptual interoperability constraints (COINs),
which are defined as the characteristics controlling the exchange of data or func-
tionalities at the following conceptual classes: Syntax, Semantics, Structure,
c© Springer International Publishing AG 2016
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Dynamics, Context, and Quality [2]. Hence, to build a successful interopera-
tion, software architects and analysts need to identify and fulfil these conceptual
constraints of the external APIs. Otherwise, unexpected conceptual mismatches
can prevent the whole interoperation or make its results meaningless. Conse-
quently, this causes resolution expenses at later stages of projects [8]. Therefore,
it is necessary to perform effective conceptual interoperability analysis for shared
documents about a software API of interest to identify its conceptual constraints.
This in turn offers a basis for analyzing interoperability on other levels, which
are out of our research scope, like organizational level (e.g., privacy concerns),
managerial level (e.g., budget restrictions), and technical level (e.g., network
protocols).

Current analysis approaches relies on manual investigation of shared API
documents [9]. However, such manual reading and inspection of natural language
text in these documents to find constraints is an exhausting, time-consuming,
and error-prone task [19]. Add to this, it requires knowledge about the different
conceptual constraints along with linguistic analysis skills.

In this paper, we elaborate on and extend our proposed conceptual inter-
operability analysis framework [2]. In particular, we automate the identification
of COINs in API documentations’ text by employing machine learning (ML)
techniques. Our goal is to assist software architects and analysts in performing
effective and efficient conceptual interoperability analysis. We followed a sys-
tematic empirically-based research methodology, which has two main parts. In
the first part, we conducted a multiple-case study that yielded our first contri-
bution, which is a ground truth dataset. This dataset is a community-reusable
asset in the form of a repository of textual sentences that we collected from
multiple API documents and manually labeled them with a specific COIN class.
In the second part, we contributed a classification model for the COINs in the
ground truth dataset, and we evaluated it through experiments using different
ML text-classification algorithms. Our experiments revealed promising results
towards automating the identification of COINs in text of API documents. We
achieved up to 70.4% precision and 70.2% recall for identifying seven classes
of constraints (i.e., Syntax, Semantics, Structure, Dynamics, Context, Quality,
and Not-COIN). This increased to reach 81.9% precision and 82.0% recall for
identifying two classes (i.e., COIN, Not-COIN). Finally, we developed a tool pro-
totype that demonstrates the value of our ideas in serving software architects
during their interoperability analysis task. In specific, the tool allows architects
to select sentences from API document webpages, and it checks and reports the
existence of COINs along with their types. Such a classification service would
enhance the interoperability analysis results, especially for inexperienced archi-
tects, as it helps in understanding the constraints’ impact and how to satisfy
them.

The rest of this paper is organized as follows. Section 2 introduces a back-
ground, Sect. 3 overviews the related works, and Sect. 4 outlines our research
methodology. Sections 5 and 6 detail our first and second research parts. Section 7
presents our tool support and Sect. 8 is the conclusion.
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2 Background

In this section we present a brief introduction to conceptual interoperability
constraints and the used machine learning techniques in our research.

2.1 Conceptual Interoperability Constraints

The presented work in this paper is based on the Conceptual Interoperability
Constraints (COIN) model [2], which focuses on the non-technical constraints
of interoperable software systems and can be applied to different types of soft-
ware systems (e.g., information systems, embedded systems, mobile systems,
etc.). COINs are the conceptual characteristics that govern the software systems
interoperability with other systems. Therefore, missing or wrong understanding
of COINs may defect the desired interoperability by leading to conceptual incon-
sistencies or meaningless results. There are six classes of COINs that we sum-
marize as the following: (1) Syntax COINs that state the constraints packaging
(e.g., used terminology or modeling language). (2) Semantic COINs that express
meaning-related constraints (e.g., goals of methods). (3) Structure COINs that
depict the systems elements, their relations, and arrangements affecting the inter-
operation results (e.g., data distribution). (4) Dynamic COINs that restrict the
behavior of interoperating elements (e.g., synchronization feature). (5) Context
COINs that pertain to external settings of the interoperation (e.g., user and
usage properties). (6) Quality COINs that capture quality characteristics related
to exchanged data and services (e.g., interoperation response time).

2.2 Machine Learning for Text Classification

In order to enable the automatic detection of COINs in text, we employed
ML text-classification algorithms (e.g., NäıveBayes [10] and Support Vector
Machine [18]). The accuracy results of such algorithms depend on the quality
and the size of the dataset [4] that consists of manually labeled sentences with
one of the predefined classification classes. Text classification process consists of:

- Building the classification model, in which all features of the sentences in the
dataset are identified and modeled mathematically. In our research, we used
popular techniques for building our model: (1) Bag of Words (BOWs) [6] that
considers each word in a sentence as a feature, and accordingly a document is
represented as a matrix of weighted values; (2) N-Grams [16] that considers each
N adjacent words in a sentence as a feature, where (N > 0).
- Evaluating the classification model, in which the manually labeled dataset is
divided into a training and testing sets. The training set is used for training
the ML classification algorithm on the features captured in the model, while
the testing set is for evaluating the classification accuracy. For our research, we
used k-fold Cross-validation [11], in which our ground truth dataset (i.e., COINs
Corpus) is divided into k folds. Then, (k− 1) folds are used for training and one
fold is used for testing. Finally, an average of k evaluation rounds is computed.
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3 Related Work

A number of previous works proposed automating the identification of some
interoperability constraints from API documents. Wu et al. [19] targeted para-
meters dependency constraints, Pandita et al. [13] inferred formal specifications
for methods pre/post conditions, and Zhong et al. [20] recognized resource spec-
ifications. We complement these works and elaborate on Abukwaik et al. [2] idea
of extracting a comprehensive set of conceptual interoperability constraints.

On a broader scope, other works proposed retrieving information to assist
software architects in different tasks. Anvaari and Zimmermann [3] retrieved
architectural knowledge from documents for architectural guidance purposes.
Figueiredo et al. [7] and Lopez et al. [12] searched for architectural knowledge in
emails, meeting notes, and wikis for proper documentation purposes. Although,
these are important achievements, they do not meet our goal of assisting archi-
tects in interoperability analysis tasks.

In general, our work and the aforementioned related works intersect in the
utilization of natural language processing techniques in retrieving specific kind
of information from documents. However, they used rule-based and ontology-
based retrieval approaches, while we explored ML classification algorithms that
are helpful for information retrieval in natural language text. Add to this, our
systematic research contributed a reusable ground truth dataset for all COIN
types that enables related research replication and results’ comparison.

4 Research Methodology

In this research, we systematically revealed the potentials of automating the
extraction of COINs from API documents using ML techniques. Our research
goal formulated in terms of GQM goal template [5] is: to support the concep-
tual interoperability analysis task for the purpose of improvement with respect to
effectiveness and efficiency from the viewpoint of software architects and analysts
in the context of analyzing text in API documentation within software integra-
tion projects. We translate this goal into the following research questions:

RQ1: What are the existing conceptual interoperability constraints, COINs, in
the text of API documentation?
This question explores the current state of COINs in real API documents. It
also aims at building the ground truth dataset (i.e. COINs Corpus represent-
ing a repository of sentences labeled with their COIN class). This forms a main
building block towards the envisioned automatic extraction idea.

RQ2: How effective and efficient would it be to use ML techniques in automating
the extraction of COINs from text in API documentations?
This question explores the actual benefits of utilizing ML in supporting software
architects and analysts in analyzing the text. It aims at building a classification
model that will be evaluated through well-known ML classification algorithms.
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In order to achieve the stated goal and answer the aforementioned questions,
we performed our research in two main parts as follows:

Research Part 1 (Multiple-case study). In this part, we systematically
explored the state of COINs in six cases of API documentations. The result of
this part is a ground truth dataset (i.e., COINs Corpus). We detail the study
design and results in Sect. 5.

Research Part 2 (Experiments). In this part, we started with using the
ground truth dataset, which resulted from the previous part, in building the
COIN Classification Model. Afterwards, we investigated the accuracy of different
ML classification algorithms in identifying the COINs in text by using our model.
We detail the process and results of this research part in Sect. 6.

Our systematic research provided us with traceability between the different
activities and their results. Moreover, it enables future researchers to indepen-
dently replicate our work and to compare the results.

5 Multiple-Case Study: Building the Ground Truth
Dataset for COINs

In this section, we describe our multiple-case study design, execution, and results.

5.1 Study Design

Study Goal. We aim at answering the first research question RQ1 that we
stated in Sect. 4. In order to do so, we needed to examine real-world API doc-
umentations to discover the state of conceptual interoperability constraints in
them.

Research Method. We decided to perform a multiple-case study with literal
replication of cases from different domains. Such a method aids in collecting
significant evidences and drawing generalizable results.

Case Selection. For systematic selection of cases of API documentations,
we considered the following selection criteria:

SC1: Mashup Score. This is a published statistical value1 for the popularity of
a Web Service API in terms of its integration frequency into new bigger APIs.
SC2: API Type. This can be either Web Service API or Platform API.
SC3: API Domain. This is the application domain for the considered API doc-
ument (e.g., social blogging, audio, software development, etc.).

Analysis Unit. Our case study has a holistic design, which means that we
have a single unit of analysis. This unit is “the sentences in API documents that
1 Programmable web: http://www.programmableweb.com/apis/directory.

http://www.programmableweb.com/apis/directory
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Fig. 1. Multiple-case study process

include COIN instances”. To document and maintain the analyzed sentences, we
designed a data extraction sheet that we implemented as an MS Excel sheet. This
sheet consists of demographic fields (i.e., API name, date of retrieval, mashup
score, API type, API domain, and no. of sentences) and analysis fields (i.e., case
id, sentence id, sentence textual value, and the COIN class).

Study Protocol. Our multiple-case study protocol includes three main activ-
ities that are adapted from the process proposed by Runeson [17]. The study
activities are case selection, case execution, and cross-case analysis as we sum-
marize in Fig. 1 below and describe in details within the next subsection.

5.2 Study Execution and Results

Based on our predefined case selection criteria, in August 2015 we chose six
API documentations. Four API documents from the Web Services type (i.e.,
SoundCloud, GoogleMaps, Skype, and Instagram) and two from the Platform
type (i.e., AppleWatch and Eclipse-Plugin Developer Guide). These cases cover
different application domains (i.e., social micro-blogging, geographical location,
telecommunication, social audio, and software development environment). With
regards to the mashup criteria, our four cases of Web Service APIs are chosen to
cover a wide range of scores starting from 30 for Skype and ending with 2582 for
GoogleMaps. After selecting our cases, we executed each case as the following:

Data Preparation. We started this step with fetching the API documentation
for the selected case from its online website. Then, we read the documents and
determined the webpages that had textual content offering conceptual software
description and constraints (e.g., the Overview, Introduction, Developer Guide,
API Reference, Summary, etc.). Subsequently, we started processing the text in
chosen webpages by performing the following:

- Automatic Filtering. We implemented a simple PHP code using Simple HTML
DOM Parser2 library to filter out the text noise (i.e., headers, images, tags,
symbols, html code, and JavaScript code). Thus, we passed the URL link of the
chosen webpage (input) to our implemented code. Then, we got back a .txt file
containing the textual content of the webpage (output).
- Manual Filtering. The automatic filtering fells short in excluding specific types
of noise (e.g., text and code mixture, references like “see also”, “for more infor-
mation”, “related topics”, copyrights, etc.). These sentences could mislead the
machine learning in our later research steps, so we removed them manually.
2 Simple HTML DOM: http://simplehtmldom.sourceforge.net/.

http://simplehtmldom.sourceforge.net/
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Data Collection. In this step, we cut the content of the text file resulted from
previous step into single sentences within our designed data extraction sheet
(.xsl file) that we described in Subsect. 5.1. We completed all the fields of the
data sheet for each sentence except for the “COIN class” filed that we did within
the next step. Note that, we maintained a data storage, in which we stored the
original HTML webpages of the selected API documentations, their text file, and
their excel sheet. This enables later replication of our work by other researchers
as documentations get changed so frequently.

Data Analysis. We manually analyzed each collected sentence in the extraction
sheet and carefully assigned it a COIN class. This classification was based on an
interpretation criteria, which is the COIN Model with its six classes (i.e., Syntax,
Semantic, Structure, Dynamic, Context, and Quality). We added a seventh class
for sentences with no COIN instance (i.e., Not-COIN class). For example, a
sentence like “A user is encapsulated by a read-only Person object.” was classified
as a “Structure COIN”. While, “You can also use our Sharing Kits for Windows,
OS X, Android or iOS applications” was classified as a “Not-COIN” as it did
not express a conceptual constraint, but rather a technical information.

The result of this step was a very critical point towards our envisioned auto-
matic COIN extraction idea. Hence, the data analysis was performed by two
researchers, who independently classified all sentences for each case. Then, in
multiple discussion sessions, the two researchers compared their classification
decisions and resolved conflicts based on consensus.

Obviously, the case execution process consumed time and mental effort, espe-
cially in the data analysis step. Table 1 summarizes the distribution of our col-
lected 2283 sentences among the cases along with the effort (in terms of hours)
that we spent in executing them. Noticeably, SoundCloud and Instagram have
small documents, and consequently they have the smallest share of sentences
included in our study (i.e., 9.5% and 11%). Meanwhile, Eclipse documentation
is the largest and consequently has the highest share of sentences (i.e., 28.5%).

Table 1. Case-share of sentences and execution effort

API document Total number of sentences Total execution efforts (Hours)

Sound cloud 219 7.7

GoogleMaps 473 6.5

AppleWatch 360 8.0

Eclipse plugin 651 12.0

Skype 325 4.5

Instagram 255 4.8

Total 2283 43.5
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Cross-Case Analysis (Answering RQ1: What are the Types of Exist-
ing Conceptual Interoperability Constraints, COINs, in the Text of
Current API Documentations?). After executing all cases, we arranged the
incrementally classified sets of sentences from all cases (i.e., 2283 sentences) into
one repository that we call the ground truth dataset or the COINs Corpus as
called in ML. We have developed two versions of this dataset as the following:

Seven-COIN Corpus, in which, each sentence belongs to one of the seven classes
(i.e., Not-COIN, Dynamic, Semantic, Syntax, Structure, Context, or Quality).
Two-COIN Corpus, in which, each sentence belongs to one of two classes rather
than seven (i.e., COIN or Not-COIN). In fact, the Two-COIN Corpus is derived
from the Seven-COIN Corpus by abstracting the six COIN classes into one class.
Table 2 shows the difference between the two Corpora with example sentences.

Table 2. Example of content in the Seven-COIN and Two-COIN Corpus

Sentence ID Sentence Seven-COIN class Two-COIN class

s1 You can also use ou Sharing Kits for Windows, OS

X, Android or iOS applications

Not-COIN Not-COIN

s2 When it is finished mainpulating the object, it

releases the lock

Dynamic COIN

s3 A user is encapsulated by a read-only Person object Structure COIN

s4 A user’s presence is a collection of information about

the users’ availability, their current activity, and their

personal note

Synatx COIN

s5 A dynamic notification interface lets you provide a

more enriched notification experience for the user

Semantic COIN

s6 This service is not designed to respond in real time

to user input

Context COIN

s7 Your interfaces need to display information quickly

and facilitate fast navigation and interactions

Quality COIN

The aim of building these two versions of the corpus is to better investigate
the performance results of the ML algorithms in the later research experiments.
We explain this in more details in Sect. 6.

COIN-Share in the Contributed Ground Truth Dataset. In Fig. 2, we illustrate
the distribution of sentences among the COIN classes within the Seven-COIN
Corpus (on the left) and the Two-COIN Corpus (on the right). It is noticed that
the Not-COIN class, which expresses technical constraints rather than concep-
tual ones, is the dominant among the other six classes (i.e., 42%). The Dynamic
and Semantic classes have the second and third biggest shares. Remarkably, the
Structure, Syntax, Quality, and Context instances are very few with convergent
shares ranging between 1% and 5% of the dataset.

COIN-Share in the Cases. On a finer level, we have investigated the state of
COINs in each case rather than in the whole ground truth dataset. We found that
the content of each API document was focused on the Not-COIN, Dynamic and
Semantic classes similarly as in the aggregated findings on the complete dataset
seen in Fig. 2. For example, in the case of AppleWatch documentation, 40.8% of
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Fig. 2. COIN-share in the ground truth dataset

the content is for Not-COIN, 26.1% for Dynamic, and 25% for Semantic. Add to
this, all cases had less than 10% of its content to the Structure, Syntax, Quality,
and Context classes (e.g., Eclipse-Plugin gave them 8.5%).

5.3 Discussion

Technical-Oriented API Documentations. The Not-COIN class reserves
42% of the total sentences in the investigated parts of the API documents that
were supposed to be conceptual (i.e., overview and introduction sections). A
noteworthy example is the GoogleMaps case, which took it to an extreme level
of focus on the technical information (i.e., 63% of its content was under the Not-
COIN class, 11.2% for Dynamic class, 13.1% for Semantic class, and the rest is
shared by the other classes). Accordingly, it is important to raise a flag about
the lack of sufficient information about the conceptual aspects of interopera-
ble software units or APIs (e.g., usage context, terminology definitions, quality
attributes, etc.). This concern needs to be brought to the notice of researchers
and practitioners who care about the usefulness and adequacy of content in API
documentations. This obviously has a direct influence on the effectiveness of
architects and analysts in the conceptual interoperability analysis related activ-
ities.

Considerable Presence of Dynamic and Semantic Constraints. Our
study findings reveal that the Dynamic and Semantic classes have apparently
big shares in current API documents (i.e., 25% and 24% of the dataset). This
reflects the favorable awareness about the importance of proper and explicit
documenting of the API semantics (e.g., data meaning, service goal, conceptual
input and output, etc.) and dynamics (e.g., interaction protocol, flow of data,
pre- and post- conditions, etc.). Nevertheless, based on the tedious work we went
through our manual analysis for the six cases, we believe that it would be of great
help for architects and analysts to have clear boarders between these two classes
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of constraints within the verbose of text. For example, it would be easier to skim
the text, if the API goal get separated from its interaction protocol, rather than
blending them into long paragraphs. This would offer architects and analysts a
better experience and it would consequently enhance their analysis results.

COIN-Deficiency in Platform and Web Service API Documents. From
our investigated cases, we perceived a convention on assigning insignificant shares
for the Structure, Syntax, Quality, and Context classes. Interestingly, the cases
varied with regards to what they chose to slightly cover out of these four classes.

On one hand, the cases of Web Service APIs were the main contributors to the
Context, Quality, and Syntax classes in the ground truth dataset. That is, the
documents of GoogleMaps, SoundCloud, Skype, and Instagram provided 82.5%
of the Syntax COINs, 70.4% of the Quality COINs, and 92% of the Context
COINs. Such a contribution cannot be related to the nature of Web Service
APIs, as Platfrom ones need also to share these COINs explicitly. For example,
it is critical for a FarmerWatch application to know the offered response time
by the Notification service of AppleWatch APIs.

On the other hand, the Platform API documents participated with 56.1% of
the Structure COINs in the ground truth dataset, while the Web Service API
documents participated with 43.9%. Note that, this is not related to the larger
amount of sentences that these two documents contributed to the dataset, but
rather due to the internal case share of Structure COINs. On average, the Plat-
form API documents allocate about 6% of their content to structural constraints,
while Web Service API documents allocate about 3.6% for these constraints.

Observed Patterns for the Dominant Classes in the Ground Truth
Dataset. From the considerable amount of sentences for the Not-COIN, Seman-
tic, and Dynamic classes, we observed a number of patterns in terms of frequently
occurring terms and sentences. We envision that using the patterns in combi-
nation with the BOW in future experiments would enhance the results of the
automatic COIN identification. Below we describe some of these patterns.

- Patterns of the Not-COIN Class. We observed the presence of “Technical Key-
words”, which are abbreviations of software technologies (e.g., XML, iOS, XPath,
JavaScript, ASCII, etc.). With further analysis, we found that 30.7% of the Not-
COIN instances have technical keywords. Another pattern for this class is vari-
ables with special format (e.g., “XML responses consist of zero or more <route>
elements.”). Also, sentences starting with specific terms (e.g., “for example”, “for
more information”, “see”, etc.) recurred in 12.8% of the Not-COIN instances.
- Patterns of the Dynamic Class. We found a number of recurrent terms related
to actions and data/process flow thae we gathered into a list called the “Action
Verbs”, which includes: create, use, request, access, lock, include, setup, run, start,
call, redirect, and more. In fact, 35.8% of the sentences with Dynamic COINs have
one or more of these terms. Furthermore, 24% of the Dynamic COIN sentences
contain a conditional statement expressing a pre- or post- condition. For example,
the sentence “If a command name is specified, the help message for this command
is displayed” has a Dynamic COIN that states a pre-condition.
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- Patterns of the Semantic Class. We noticed repeated terms and organized them
into: “Input/Output Terms” (e.g., return, receive, display, response, send, result,
etc.) that are in 18.8% of the Semantic COIN sentences and “Goal Terms” (e.g.,
allow, enable, let, grant, permit, facilitate, etc.) that are in 16.4%. For example,
the sentence “A dynamic notification interface lets you provide a more enriched
notification experience for the user” has a Semantic COIN stating a goal.

5.4 Threats to Validity

Case Bias. To obtain significant results and draw generalizable conclusions,
we included multiple cases for building the ground truth that plays prominent
role in our research. We literally replicated six API documents (i.e., Sound-
Cloud, GoogleMaps, Skype, Instagram, AppleWatch and Eclipse-Plugin Devel-
oper Guide) from two different types (Web Service and Platform APIs).

Completeness. Due to resource limitations (i.e., time and manpower), we were
unable to analyze the large API documents completely. However, we were careful
with respect to selecting inclusive parts of such large documents. For example,
out of the huge document of Eclipse APIs, we covered the Plugin part.

Researcher Bias. To build our ground truth dataset in a way that guarantees
results accuracy and impartiality, we replicated the manual classification of the
cases sentences by two researchers separately based on the COINs Model as an
interpretation criteria. In multiple discussion sessions, the researchers compared
their classification decisions and resolved conflicts based on consensus.

6 Experiments: Automatic Identification of COINs Using
Machine Learning

In this section, we detail the experiments design, execution, and results.

6.1 Experiments Design

Experiments Goal. This part of our research aims at answering the second
research question RQ2 that we stated in Sect. 4. In order to do so, we needed to
examine ML techniques to discover their potentials in supporting architects and
analysts in automatically identifying the COINs in text of API documents.

Research Method. We built a classification model and ran multiple exper-
iments employing different ML text-classification algorithms. This method
enables comparing the algorithms results and drawing solid conclusions about
the ML advantages in addressing the challenges of manual interoperability
analysis.
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Evaluation Method and Metrics. We used k-fold Cross-validation, which
we explained in the background section, with k = 10. For evaluation metrics of
classification accuracy, we used the following commonly used measures [14]:

Precision: the ratio of correctly classified sentences by the classification algo-
rithm to the total number of sentences it classifies either correctly or incorrectly.
Recall : the ratio of correctly classified sentences by the classification algorithm
to the total number of sentences in the corpus.
F-Measure: the harmonic mean of precision and recall that is calculated as:
(2 ∗ Precision ∗ Recall)/(Precision + Recall).

Experiments Protocol. Our experiments protocol includes three main activi-
ties that are: feature selection, feature modeling, and ML algorithms evaluation.
We illustrate this protocol in Fig. 3, and we describe it in details within the next
subsection. We ran this protocol twice, once for the Seven-COIN Corpus and
another for the Two-COIN Corpus.

6.2 Experiments Execution and Results

We performed all our execution on Weka v3.7.113, which is a suite of ML
algorithms written in Java with result visualization capabilities. The execu-
tion started with processing the textual sentences in our contributed dataset
(i.e., COINs Corpus) using natural language processing (NLP) techniques. The
processing included tokenizing sentences into words, lowering cases, eliminating
noise words (e.g., is, are, in, of, this, etc.), and stemming words into their root
format (e.g., encapsulating and encapsulated are returned as encapsulate).

Feature Selection. After processing the text, we identified the most represen-
tative features or keywords for the COIN classes within the COINs Corpus using
the Bag-of-Words (BOWs) and N-Gram approaches, which we explained in the
background section. That is, each sentence was represented as a collection of
words. Then, each single word and each n-combination of words in the sentence
were considered as features, where N was between 1 and 3. For example, in a

Fig. 3. Experiments process

3 Weka: http://www.cs.waikato.ac.nz/ml/weka.

http://www.cs.waikato.ac.nz/ml/weka
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sentence like “A user is encapsulated by a read-only Person object”, the word
“encapsulate” and the combination “read-only” were considered as two of its
features. The output of this step was a set of features for the COINs Corpus.

Feature Modeling. In this stage, the whole COINs Corpus was transformed
into a mathematical model. That is, it was represented as a matrix, in which
headers contained all extracted features from the previous phase, while each row
represented a sentence of the corpus. Then, we weighted the matrix, where each
cell [row, column] held the weight of a feature in a specific sentence. For weight-
ing, we used the Term Frequency-Inverse Document Frequency (TF-IDF) [15],
which is often used for text retrieval. The result of this was the COINs Feature
Model (or the classification model), which is a reusable asset reserving knowl-
edge about conceptual interoperability constraints in API documents.

ML Algorithms Evaluation. We selected a number of well-known ML text-
classification algorithms (e.g., NäıveBayes versions, Support Vector Machine,
Random Forest Tree, K-Nearest Neighbor KNN, and more). Then, we ran these
algorithms on the classification model resulted from the modeling activity.

Table 3. COINs identification results using different ML algorithms

ML algorithm Seven-COIN Corpus Two-COIN Corpus

Precision Recall F-measure Precision Recall F-measure

ComplementNäıveBayes 70.4% 70.2% 70.0% 81.9% 82.0% 81.9%

NäıveBayesMutinomialupdatable 66.0% 65.1% 65.4% 81.9% 82.0% 81.8%

Support vector machine 59.3% 60.0% 59.0% 75.7% 75.7% 75.7%

Random forest tree 60.4% 56.3% 52.3% 73.7% 73.9% 73.7%

Simple logistic 52.5% 54.4% 52.4% 68.2% 68.4% 67.2%

KNN K=1 54.8% 45.5% 40.8% 64.2% 52.3% 47.8%

KNN K=2 49.8% 36.1% 30.1% 64.4% 48.7% 40.6%

Evaluation Results (Answering RQ2: How Effective and Efficient
Would it be to Use ML Techniques in Automating the Extraction
of COINs from Text in API Documentations?).

Effectiveness of Identifying the COINs using ML Algorithms. Here we report
the effectiveness results in terms of accuracy metrics in two cases:

- Seven-COIN Corpus Case. The evaluation results showed that the best accu-
racy in automatically identifying seven classes of interoperability constraints
in text was achieved by the ComplementNäıveBayes algorithm (see Table 3).
It achieved 70.4% precision, 70.2% recall, and 70% F-measure. In the second
place came NäıveBayesMutinomialupdatable algorithm with about 5% less accu-
racy than the former algorithm. The other algorithms had accuracy, F-measure,
between 62.8% and 59.0%. The worst results were from the KNN algorithms.
- Two-COIN Corpus Case. By applying the same algorithms on the Two-
COIN Corpus, we obtained better results. In particular, the accuracy increased
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with almost 11% compared to the results in the Seven-COIN case with the
ComplementNäıveBayes algorithm. That is, the precision increased to 81.9%,
recall to 82.0%, and F-measure to 81.9%. Similar to the previous case,
NäıveBayesMutinomialupdatable came in the second rank and the 2-Nearest
Neighbor algorithm had the worst results as seen in Table 3. Note, we have
achieved an improvement in accuracy compared to our preliminary investigation
results [1], in which we had F-measure of 62.2% using the NäıveBayes algorithm.

Efficiency of Identifying the COINs Using ML Algorithms. Obviously, the
machine beats the human performance in terms of the spent time in analyzing
the text. As we mentioned earlier, analyzing the documents costed us about 44
working hours, while, it took the machine way less time. For example, training
and testing the NäıveBayesMultinominalupdate took about 5 s on our complete
corpus with 2283 sentences). This efficiency would enhance when using machines
with faster and more powerful CPU (we ran the experiments on a machine with
Intel core i5 460 M CPU with 2.5 GHZ speed).

6.3 Discussion and Limitations

Towards Automatic Conceptual Interoperability Analysis. The achieved
effectiveness in the automatic identification of constraints (e.g., 81.9%
F-measure) is promising and shows the potentials of our ML classification model
in serving architects through their interoperability analysis tasks. We consider
this accuracy high, as we compared the algorithms’ results to our complete
sentence-by-sentence manual analysis for the API documents, which we did for
the sake of building a robust corpus. However, in practice, sentences are not
examined in such a heavy way, especially when projects are limited in time and
manpower. Hence, our model and its provided results in this work are a step
towards achieving a good level of automation intelligence for the classic software
engineering practices that are both error-prone and resource-consuming.

Larger Corpus, Better Accuracy Results. It is known in ML that the more
classification classes you want to train the machine on identifying, the more
training data it requires to be fed with. This explains the higher accuracy we
achieved using the Two-COIN Corpus compared to the Seven-COIN Corpus
even with the same amount of sentences in both. Therefore, we plan to enlarge
our corpus, to achieve better accuracy in identifying the seven COIN classes.

Unbalanced Amount of Instances for Each Class in the Corpus. As
noticed, the number of instances for the COIN classes is not balanced in the
corpus. That is, dominant classes (i.e., Not-COIN, Dynamic, and Semantic)
contribute with the majority of sentences in the data set (i.e., 91%). While,
the other classes (i.e., Structure, Syntax, Quality and Context) are smaller and
share the left 9% of the corpus. This affects the classification accuracy of the
classes with fewer instances. Therefore, in future work we intend to increase the
number of instances for these minor classes in the training data to achieve higher
accuracy results.
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7 Tool Support (A Prototype)

To bring our ideas to practical life, we designed a tool as a web browser plu-
gin that aims at assisting software architects and analysts in their conceptual
interoperability analysis task. The tool takes sentences from API documents,
recognizes if they have any conceptual interoperability constraint, and reports
their COIN classes within seconds. We implemented an easy-to-use prototype
for the tool, in which the architect can highlight a sentence in a webpage for an
API document to examine if it has any COIN (see Fig. 4).

The tool encapsulates our contributed classification model and mirrors its
efficiency and accuracy that we described in Subsect. 6.2. That is, the tool saves
time and manual effort by automatically identifying and classifying the concep-
tual constraints from text in seconds. This functionality offers critical input for
architects to understand the impact of the identified constraints and to satisfy
them based on their class. Hence, the tool has potentials to improve the effec-
tiveness of interoperability analysis, especially for inexperienced architects.

Fig. 4. Example of the tool identification for a Structure COIN in an API document

We implemented the prototype as a plugin for the Chrome web browser using
Java and JavaScript languages. The functionality is offered as a Web Service and
all communication is over the Simple Object Access Protocol (SOAP). The tool
design includes: (1) Front-End component that we developed using JavaScript to
provide the graphical user interface. (2) Back-End component that we developed
using Java and Weka APIs to be responsible for locating our service on the server,
passing it the input sentence, and carrying back the response.

8 Conclusion and Future Work

In this paper, we have presented our ideas about supporting software architects
in performing seamless conceptual interoperability analysis. The contribution
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pursued by this work was to utilize ML algorithms for effective and efficient iden-
tification of conceptual interoperability constraints in text of API documents.
Our systematic empirically-based research included a multiple case study that
resulted in the ground truth dataset. Then, we built a ML classification model
that we evaluated in experiments using different ML algorithms. The results
showed that we achieved up to 70.0% accuracy for identifying seven classes of
interoperability constraints, and it increased to 81.9% for two classes.

In the future, we plan to automate the manual filtering part of the data
preparation. We will also analyze further API documents to advance the gen-
eralizability of our results. This would enrich the ground truth dataset as well,
allowing better training for the ML algorithms and accordingly better accuracy
in identifying the conceptual interoperability constraints. With regards to the
tool, we will extend it to generate full reports about all interoperability con-
straints in a webpage and to collect instant feedback from users about automa-
tion results. In addition, we plan to empirically evaluate our ideas in industrial
case studies.
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9. Hallé, S., Bultan, T., Hughes, G., Alkhalaf, M., Villemaire, R.: Runtime verification

of web service interface contracts. Computer 43(3), 59–66 (2010)
10. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers.

In: Conference on Uncertainty in Artificial Intelligence (1995)

http://dx.doi.org/10.1007/978-3-319-09970-5_4


Towards Seamless Analysis of Software Interoperability 83

11. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Ijcai, vol. 14 (1995)
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Abstract. Despite the abundance of research on methodologies for the
documentation of design decisions and the evidence linking documenta-
tion to the improvement in the systems evolution, their practical adop-
tion seems to be sparse. To understand this issue, we have conducted
an overview of state-of-the-art on documentation of design decisions.
We pursue an identification of characteristics of the different techniques
proposed in the literature, such as the final goal of the documentation,
the quantity of information attached to each decision documentation,
the rigour of the proposed technique or its level of automation. To unveil
these, we propose six classification dimensions, relevant for the industrial
application, and use them to structure and analyse the review results.
This work contributes with a taxonomy of the area, a structured overview
covering 96 publications and a summary of open questions, which can be
addressed by future research to facilitate practical adoption.

1 Introduction

Software architecture is comprised of non-trivial design decisions, and their docu-
mentation is crucial for improved system evolution [1–6]. However, while there is
usually at least some kind of architectural model available, the underlying design
decisions are seldom documented in practice [7–9]. From the other side, there is
plenty of research work on documentation of design decisions, which practical
adoption seems to be still sparse [8,10–15]. To understand this issue we have
conducted a literature review on documentation of design decisions covering 96
publications dating from 2004 to 2015.

In this work, we treat “software architecture” and “software design” as syn-
onyms. Under software architecture we understand “a set of principal design
decisions made about the system” [2], and is “a structure or structures of the
system, which comprise software elements, the externally visible properties of
those elements, and the relationships among them” [16]. Architectural design
decision is “an outcome of a design process during the initial construction or
the evolution of a software system, which is a primary representation of archi-
tecture” (adopted from Tyree and Akerman [17], Jansen and Bosch [18] and
Kruchten [19]).
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 84–101, 2016.
DOI: 10.1007/978-3-319-48992-6 6
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To structure the overview results, we propose 6 classification dimensions rel-
evant for the industrial applicability: Goal, Formalisation, Context, Extension,
Tool-support, and Evaluation (definitions are provided in Sect. 3). The dimen-
sions were inspired by the conclusions of related reviews provided in Sect. 2.
We than analyse resulting research area taxonomy to propose further research
directions to understand and close the gap between the state of research and its
industrial application.

To summarize, the contributions of this paper are (1) a taxonomy of the
area, (2) a structured overview covering 96 publications and (3) a summary of
open questions, which can be addressed by future research to facilitate practical
adoption. In depth evaluation of selected approaches was out of scope of the
review and is a subject of future work.

The remainder of this paper is structured as follows: Sect. 2 provides overview
of the related reviews, Sect. 3 outlines our overview method, including proposed
classification dimensions. Section 4 presents the results: Structured overview of
96 publications and summary of open research questions. Limitations of the work
and lessons learned are discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Literature Reviews

This section provides an overview of related reviews in a chronological order.
A survey by Regli et al. [20] provides an overview of design rationale research

area, focusing on prototype systems from different domains. While the survey
was published over a decade ago, the observed problems are still relevant nowa-
days: Little information on successful application of rationale documentation in
industry and a limited adoption of design rationale systems.

Babar et al. [15] provide an overview of 8 approaches for architectural knowl-
edge management, four of which are relevant for decision documentation and are
also included into our review. Additionally, the authors categorize approaches
between codification (knowledge capturing and sharing via repositories) and per-
sonalization (knowledge sharing via individuals). They observe that while the
research mostly focuses on codification, industry seems to unintentionally rely
on personalization strategies.

Kruchten et al. [3] describe “evolution” of the decision’s view, provide a brief
overview of tools supporting the design rationale, and observe that documenta-
tion process is not yet fully integrated into software engineering practice.

Shahin et al. [21] provide an overview and comparison of several design deci-
sion models and tools using the criteria for effective tool support defined by
Farenhorst et al. [22]. The latter provide observations on knowledge sharing
from an industrial organisation, define the criteria and apply these criteria to 6
software architecture tools.

Bu et al. [23] analyse several approaches from three perspectives: Knowledge
modelling, decision making and rationale management. Findings include: Scarce
support of the identification of architecture-significant requirements, deficits in
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support of cross-cutting decisions, provided decision processes and software-
lifecycle, and sometimes incomplete modelling of architectural knowledge. Hent-
tonen and Matinlassi [24] provide a framework to evaluate knowledge sharing
tools and apply to three tool examples.

Tang et al. [14] provide evaluation and a comprehensive comparison of 5
knowledge management tools. The authors confirm the observation by Babar
et al. [15] on the preference in personalization approaches to knowledge manage-
ment (knowledge is passed between individuals, rather than via repositories).
Previous work by Tang et al. [5] provides an overview of architecture design
rationale state-of-the-practice by surveying 81 practitioners. Lack of methodol-
ogy and tool support are listed between the main findings of the survey.

Hoorn et al. [25] report on a study on sharing architectural knowledge with
279 architects. The results provide several valuable insights on the architecting
process and architect’s desires in regard to knowledge sharing support.

Our overview extends on the related work described above, providing an
extended overview of design decision documentation research area and proposing
possible future research directions.

3 Overview Methodology

Our overview is based on methodology described in Kitchenham [26], de Boer
and Farenhorst [27], Koziolek [28] and Aleti et al. [29]. The overview covers
publications from 2004 to 2015, as Kruchten et al. [3] referred to 2004 as a
starting date for research area growth. The work was finished in Q1 of 2016,
therefore, some of the more recent publications could be skipped due to the
missing indexation in search engines. The goal of this work is to provide an
overview of the design decision documentation research and to identify further
research directions, rather than to evaluate single approaches for their industrial
applicability. Such an evaluation is subject of future work.

The rest of this section describes the classification dimensions, process (incl.
venues, keywords and search string), and inclusion and exclusion criteria.

3.1 Classification Dimensions

To structure the overview, classification dimensions are required that are (1) rel-
evant for the industrial adoption of the decision documentation approaches, and
(2) obtainable from publications. Inspired by the related work Sect. 2, we propose
6 following dimensions: 1. Goal – what is the goal of decision documentation.
2. Formalisation – what formalisation approach is used in the publication.
3. Extent – does the work attempt to capture all the decisions or it applies
some selection criteria. 4. Context – what additional artefacts or trace links to
other artefacts are captured together with the decisions. 5. Tool-support – is
there any tool-support, and if yes what kind of. 6. Evaluation – what type of
evaluation is described in the publication (Table 1).
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Table 1. Literature sources

AES  Elsevier Advances in Engineering Software ESEC FSE Eu. Sw. Eng. Conf. and the ACM SIGSOFT Symposium on the Found. of Sw. Eng.
Comp  IEEE Computer Europlop Conference of pattern languages
JSA  Elsevier Journal of Systems Architecture FASE International Conference on Fundamental Approaches to Software Engineering
JSME  Journal of Software: Evolution and Process ICMS IEEE International Conference on Software Maintenance
JSS  Elsevier Journal of Systems and Software ICSR International Conference on Software Reuse 
SE  Wiley Journal of Systems Engineering IWPSE EVOL
SoSyM  Springer Journal on Software and Systems Modelling Models International Conference on. Model Driven Engineering Languages and Systems
SW  IEEE Software QOSA International ACM Sigsoft Conference on the Quality of Software Architectures
TOSEM  ACM Transactions on Software Engineering and Methodology RE IEEE International Requirements Engineering conference
TSC  IEEE Transactions on Services Computing SHARK SHaring and Reusing Architectural Knowledge
TSE  IEEE Transactions on Software Engineering SPLC International Software Product Line Conference
ASE   IEEE/ACM International Conference. Automated Sw. Engineering TOOLS International Conference on Objects, Models, Components, Patterns 
CBSE  Int. ACM Sigsoft Symposium on Component-Based Sw. Eng. TwinPeaks International Workshop on the Twin Peaks of Requirements and Architecture 
CSMR  European Conference on Sw. Maintenance  and Reengineering

While there might be other relevant dimensions, such information is not
necessarily present in publications. For example, information on quality of doc-
umented decisions or supported project development phases is seldom in texts.

3.2 Overview Process

In out work, we have followed the following process:
S1. Identification of literature sources, whereby we focused on the

main venues in software engineering, software evolution and software architec-
ture research fields to limit the overall review effort. The venues were selected
based on conference rankings available in [30], and are listed in Fig. 1.

S2. Definition of classification dimensions to structure the search and
to derive results taxonomy. Section 3.1 presented the outcome of this step.

S3. Selection of the keywords and definition of the search string.
We have defined a set of keywords, and have conducted a manual search through
the series of ECSA (European Conference on Software Architecture) to be able
to verify keywords for correctness. We than defined a search string and checked
whether it was capable of finding most of the ECSA publications that we have
identified manually. More general conferences like ICSE and FSE seemed less
suitable for a manual check, as overall number of publications was too high to
manage with a reasonable effort.

The logical representation of the search string is: (“Design*” OR “Architec-
ture*”) AND (“Decision” OR “Documentation” OR “Knowledge” OR “Archi-
tectural specification” OR “Rationale”). The search engines used are: IEEE [31],
DBLP [32] and ACM [33]. We did not use Google as all selected venues are cov-
ered by the other search engines. S4. Automated search through the literature
sources using the search engines and search string defined in step 3. Manual fil-
tering of publications based on the information contained in the title, abstract,
introduction and conclusion to discard the false-positives of the search.

S5. Full-text analysis of publications selected in step 4. Definition of a
taxonomy comprising categories for each of the dimensions identified in step 2.
Final structuring and analysis of the results.



88 Z. Alexeeva et al.

3.3 Inclusion and Exclusion Criteria

Documentation of design decisions is a broad research area. While it is related to
architectural knowledge management, only some of the publications in the field
are concerned with documentation of decisions as such. Thus, only publications
that explicitly cover documentation of design decisions and explain the process are
included into the overview. This criteria also applies to publications on product-
lines, feature and architecture models, reference architectures, code and others.

Publications on support or documentation of decision making process, archi-
tecture recovery and visualisation of design decisions were excluded from the
overview unless design decision documentation was explicit.

Furthermore, we define a set of publications on evolution of one approach
over several years as a “publication-line”. Such set is merged to one publication
entry in the result tables, and the most recent publication is taken as a reference.

4 Overview Results

We have found 432 publications that matched our keywords and the search
string. The preliminary evaluation in process step 4 reduced the number to
160 publications, and a full-text evaluation in step 5 reduced the number to
96 publications that truly matched the overview scope. The top-represented
venues are (Fig. 1): ECSA (29), SHARK (19), WICSA (15) and QoSA (10).
Furthermore, 56 papers were identified as “publication-lines” and clustered to
18 main representative publications. Thus, in overall, we report on 58 unique
approaches in the remainder of this section. The unique publication does not
mean unique authors, but the approach presented in the publication.

Fig. 1. Distribution of publications between venues and years

The distribution of publication between years on Fig. 1 could suggest that
the popularity of the topic is gradually reducing over the last years, which could
mean that the research area has achieved a certain maturity degree and the next
step would be a transfer of the research results into practical adoption. However,
the latter remains a challenging step as observed by [8,10,13–15].
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4.1 Results Taxonomy and Structured Overview

The obtained taxonomy and structured overview of design decision documenta-
tion publications are provided in Table 2. The detailed results are explained in
the following.

Table 2. Taxonomy and structured overview of decision documentation publications

Goal Formalisation Tool-Support Extent Context Evaluation
Documentation/Capture Formal Commercial addon All Decisions Industrial Case Study
Consistancy/Compliance Semi-Formal Eclipse-Based Selected by Type Rationale Real-life Case Study
Evolution Informal Web-based Selective by Quality/Number Requirements Research Case Study
Extraction Other Other Research Example
Impact Anaysis Not available Empirical
Reuse Not available
Sharing
Traceability
Visualisation

Goals Publications

Documentation/
Capture

[6, 8, 11, 15, 88, 27, 17–21, 23, 25, 26,
29, 30, 32, 34–40, 47, 46, 44, 49, 53,
56, 58, 60, 62, 22, 66, 72–74, 78, 80,
82, 81, 83, 85, 86, 75, 89–94]

Consistency/ Com-
pliance

[10, 29, 30, 47, 44, 49, 54, 58, 60, 63,
66, 80]

Decision/ Rationale
Extraction

[23, 46, 60, 63]

Evolution [21, 28, 35, 40, 53, 54, 57, 58, 66, 94]

Impact Analysis [30, 35, 44, 58, 66, 82]

Reuse [32, 11, 20, 38, 49, 92, 94]

Sharing [6, 10, 8, 18, 19, 27, 31, 47, 44, 60, 66,
72, 74, 93, 94]

Traceability [10, 13, 18, 28, 35, 47, 44, 54, 57, 58,
60, 63, 22, 72, 78, 85, 86, 89, 91, 27,
94]

Visualisation [7, 56, 60, 66, 72]

Formalization

Informal [11, 73]

S-F, Template [30, 32, 36, 37, 39, 57, 63, 86, 94]

S-F, Ontology [7, 8, 53, 56]

S-F, Meta-Model [10, 13, 17–21, 23, 28, 31, 35, 47, 49,
54, 62, 22, 66, 72, 74, 80, 89, 92, 93]

S-F, Other and ADLs [6, 14, 25, 27, 40, 46, 44, 58, 78, 90,
91]

S-F, Other [34, 38, 75]

Formal [29, 60, 81–83, 85]

Extent

All [6, 10, 7, 8, 11, 13, 14, 27, 17–21, 23,
25, 28, 31, 34, 35, 38, 47, 46, 44, 49,
53, 54, 56, 57, 60, 22, 66, 72, 74, 75,
78, 83, 85, 91–94]

Selective by Decision
Type

[29, 36, 37, 39, 40, 58, 62, 63, 73, 80,
89, 90]

Selective by Qual./ # [30, 32, 81, 82, 86]

Context Publications

Decision All

Rationale [6, 8, 13, 14, 27, 17–21, 23, 25, 28,
30–32, 38, 40, 47, 53, 54, 56, 60, 62,
63, 22, 66, 72–74, 78, 86, 89, 94]

Requirements [6, 8, 13, 14, 17–21, 23, 25, 28, 31, 35,
40, 47, 44, 60, 62, 22, 66, 75, 85, 86,
89, 91, 94]

Other [6, 10, 8, 11, 13, 14, 17–21, 23, 25,
28–31, 34, 36, 35, 38–40, 47, 46, 44,
54, 56, 58, 60, 62, 63, 22, 66, 73, 75,
78, 80–82, 85, 86, 89, 91, 93, 94]

Tool-Support Publications

Commercial Addon [19, 31, 49, 78, 94]

Eclipse-Based [13, 14, 25, 28, 47, 44, 54, 58, 60, 22,
81, 90, 93]

Web-Based [6, 18, 66]

Other (Wiki, Word
plugin)

[7, 8, 11, 29, 53, 56, 62, 63, 72, 73, 75,
80, 92]

Not available [10, 27, 17, 20, 21, 23, 30, 32, 34–40,
46, 57, 74, 82, 83, 85, 86, 89, 91]

Evaluation Publications

Industrial Case
Study

[10, 8, 18, 19, 21, 30, 31, 38, 56, 58,
60, 75, 78, 92–94]

Real-Life Case Study [7, 23, 38, 22, 57]

Research Case Study [10, 20, 47, 46, 54, 60, 63, 66, 74]

Research Example [13, 14, 17, 25, 28, 34, 36, 37, 40, 47,
49, 72, 73, 80, 82, 85, 86, 89–91]

Empirical [18, 32, 40, 44, 58, 78, 83]

Not available [6, 11, 27, 35, 39, 53, 62, 81]

1. Goal. While all the publications deal with documentation of design deci-
sions, they follow different goals: a. Documentation/Capture – focus solely on
documentation of architectural knowledge including decisions, only on design
decisions and/or on design rationale. b. Consistency/Compliance – documenta-
tion of decisions in order to enable architecture consistency or compliance checks.
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c. Evolution – documentation of decisions in order to manage and support evo-
lution of a system, including managing evolution of decisions in some of the
cases. Publications dealing with the evolution only implicitly were not included
into the category. d. Extraction – focus on extraction of information in order
to support documentation of design decisions, rationale and/or trace links. e.
Impact Analysis – documentation of decisions in order to run impact analysis in
architecture on decision changes, and in some cases, to estimate effort required
for implementation of changes. f. Reuse – documentation of decisions in order
to facilitate design reuse. g. Sharing – documentation of decisions in order to
facilitate explicit sharing of architectural knowledge. h. Traceability – documen-
tation of decisions in order to explicitly facilitate traceability between design
artefacts. e. Visualisation – focus on documentation and improved visualisation
of documented decisions.

If a publication followed on several goals, it was assigned to several categories
in the result tables. Obviously, the majority of publications (80 %) focus on the
documentation as their primary goal, closely followed by traceability (36 %),
knowledge sharing (26 %) and consistency checks (21 %).

Although such brown-field scenario is predominant in an industrial setting,
there is a low number of approaches on decision and rationale extraction out
of already existing artefacts (7 %). The evolution of the system, including the
evolution of decisions as such, is also important in industrial context [11,34].
But, only few approaches consider system evolution as their goal (10 %), and
even less approaches foresee a possibility of a decision to evolve (4 approaches,
comprising only 7 % of the overall number).

2. Formalisation. Classification of publications by Formalisation is the follow-
ing: a. Formal – use of formal methods, such as repertory grids, formal ADLs
and others. b. Semi-Formal – use of semi-formal methods, such as meta-models,
ADLs, ontologies, text-based templates and others. c. Informal – use of informal
methods, such as free text or white board cards and photos.

There is a good balance between formal and informal approaches. The pre-
dominance of meta-modelling formalisation approaches (40 %) may be explained
via benefits of tool-chain generation. However, at the moment of our analysis, 9
approaches did not use presumed meta-modelling benefits for the tool-support.
Only 3 of these approaches offered a decision documentation and management
add-on to a commercial tool [35–37], 6 offered an Eclipse pug-in [38–43], and 5
offered some other tool-support [44–48].

3. Extent. Extent of decision documentation can be divided into: a. All – all
design decisions are documented and if multiple decision types are defined –
all of the types are documented. b. Selected by decision type – focus on one or
several decision types and documentation is limited to these types. c. Selected
by quality or number – documentation only of some design decisions, e.g. based
on decision quality or relevance for certain components.
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In large systems, there might be hundreds of design decisions evolving over
time, and not all decisions are important to be documented. Assumptions shall
be made on what decisions must be documented and to what extent. Moreover,
manual documentation and management of such number of decisions is infeasible
and a tool-support on documentation generation or automatic documentation
would be required. However, selective decision documentation based on decision
number or quality is considered only by 5 publications (9 %), and 13 (22 %)
publications consider filtering decisions by type.

4. Context. Classification of publications is the following: a. Decisions – focus
on documentation of design decisions, no documentation of other project arte-
facts. b. Requirements – requirements are co-documented with decisions as part
of the proposed approach. In some cases, these requirements are captured as trig-
gers or rationale for a decision. c. Rationale – decision rationale is co-documented
with decisions. In some cases, requirements are linked as part of the rational,
but usually the rationale is captured as a free-text explanation. d. Other –
other artefacts, e.g. decision alternatives, solutions, tracelinks, and others are
co-documented with decisions.

If a publication proposed co-documentation of multiple items, it was assigned
to several categories in the result tables. Most of the approaches document not
only design decisions but also other related artefacts, such as triggering require-
ments (47 %), rationale (60 %) and other (80 %), such as code, thus providing a
comprehensive context to a decision.

5. Tool-Support. Tool-support of documentation of decisions can be clas-
sified as: a. Commercial Add-on – an add-on to a commercial tool, such as
an architecting tool (i.g., Enterprise Architect), requirements management tool
(i.g., Polarion), and others. b. Eclipse-Based – an Eclipse-based research tool. c.
Web-Based – a Web-based research tool, often with a goal to support a collab-
orative work on architecture. d. Other (Wiki, Word plug-in) – a research tool
based on other technologies, e.g. Wikis, Word plug-ins, and others. e. n/a – no
tool-support or no information on tool-support is available.

While tool-support is crucial for industrial application, 24 approaches (41 %)
have no tool-support or provide no information on it, and 5 publications (9 %)
describe an extension to a commercial tool, such as Enterprise Architect. While
we do not have a statistical information on which exact tools are widespread in
industry, we do know that these are usually commercial tools. The low number
of tool-support suitable for integration into the industrial tool-chain may be an
impediment for the industrial applicability of approaches.

6. Evaluation. Evaluation of approached can be classified as: a. Industrial
Case Study – an industrial application, executed at industrial site, e.g. by a
company or in a company project. b. Real-Life Case Study – a real-life case study,
executed at the research site or provided details were insufficient to categorize it
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as a pure industrial case study. c. Research Case Study – a research case study.
d. Research Example – a research example, on the contrary to the case study
meaning a smaller application, usually in a de-attached context. e. Empirical –
an empirical evaluation of the proposed approach. f. Not available – no evaluation
or no information available.

Publication reporting several types of evaluation were added to multiple cat-
egories. While evaluation is important, publications with no evaluation or with
evaluation based on a research example comprise 48 %. About 28 % of the pub-
lications report evaluation in industrial context and 7 % real-life case studies,
which is a prerequisite towards industrial applicability. However, despite the
reported positive feedback, there seem to be no follow-up actions or reports on
a more long-term application by the involved companies. We can conclude that
the adoption of approaches in organisations likely remains a problem even if the
first positive results were achieved.

4.2 Research Area Open Questions

Analysing the selected publications, we have identified several potential direc-
tions for further research in the area. We list the suggestions based on assumed
importance, where the first point is evaluated as more urgent, and the last as
less urgent.

Q1. Industrial Applicability Requirements. We found only few reports
on industrial experience or listing requirements on approaches coming from the
industry. Several few examples are: Work by Manteuffel et al. [7], Zimmermann
et al. [34] and Dragomir et al. [11], where the authors focus on the situation
in an individual company. Survey Tang et al. [5] from 2006 reports on design
rationale practices based on perception of 81 practitioners. Work by Farenhorst
et al. [22] reports observations on knowledge sharing from an individual company.
In addition, Falessi et al. [12], Tang et al. [14] and Babar et al. [15] list several
possible requirements for the area.

A systematic survey of state-of-the-practice on decision documentation and
definition of industrial applicability requirements would be a significant contri-
bution to the research area.

Q2. Brownfield Support. Few publications explicitly define whether they tar-
get a new system development or an existing system. Implicitly, the majority of
the approaches deal with new development (so-called “greenfield” development),
except for [49–51]. To our best knowledge, system development in industry often
includes brownfield. Therefore, we see the support of legacy systems as a highly
reasonable research direction (“brownfield” support).

Q3. Evolution of Decisions. Design decisions pass through different stages
and evolve over time together with system development. While documentation
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of stages of design decisions is a common feature (e.g. via status as new, accepted
or deprecated), documentation of decision evolution is not sufficiently covered.
Some exclusions are work by Zimmermann et al. [34], Dragomir et al. [11], van
Heesch et al. [52], Szlenk et al. [53] and Nowak and Pautasso [54].

Q4. Quality and Extent of Captured Decisions. Quality evaluation of
captured design decisions was addressed by few publications, such as [12,17,55],
and most of the approaches seem to focus on capturing all design decisions. Many
do not specify which attributes are mandatory and which are optional. As large
systems potentially include 100s of design decisions that address various aspects
of a system at different levels of granularity, a more refined approach would be
required. The scalability of extensive documentation for larger systems requires
further investigation.

Q5. Tool-Support. Approaches extending commercial tools for architectural
modelling are [34–37,56]. We suggest to address the following related open
research questions: “What (architectural) tools are used in industry?”; “Can the
proposed approaches be meaningfully integrated into such tools?”, and “What
organisational changes are required for the approach and tool adoption?”.

Q6. Industrial Evaluation. Evaluation presented in publications is mostly
performed on research examples or case studies. Few publications report on
evaluation in an industrial setting, however, there are no follow up reports on
the long-term application. Investigation of latter could provide insights on what
aspects are to be addressed by the future research.

Q7. Overhead Connected to Documentation. Work by Capilla and Ali
Babar [57] is one of the few examples addressing a question on how much extra
overhead is actually caused by decision documentation. Further investigation
of overhead associated with the approaches versus the obtained benefit seems
relevant to us.

Q8. Reuse of Design Decisions Between Projects and Systems. Con-
sidering the effort required to prepare and document a decision, reuse of such
knowledge between projects and systems would seem beneficial for practical
adoption. Only few approaches from address this issue, e.g. [12,34,48,58]. Here,
open research questions could be: “In what cases could reuse be beneficial?”,
“How could design decisions could be captured for reuse?”, “Are there expert
systems on software architecting available, and are they applied on practice?”.

Q9. Common Terminology Definition. The terminology in the area of archi-
tectural research is not yet completely established. Terms are often overloaded
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or used to describe different concepts, such as architecture, design, model, com-
ponent, interface and others. The majority of publications neither defines what
is understood under architecture and design, nor defines design decision and
related attributes as such. This observation matches with the observation of de
Boer and Farenhorst [27] for the architectural knowledge. An action needs to be
taken to define and to agree on a common glossary for the research area. In our
opinion, such discussion could be best carried as a panel discussion in a larger
conference on software architecture, such as ECSA.

5 Discussion

This section discusses limitations of the overview and the lessons learned.

5.1 Limitations

In the following, we discuss the limitations of the literature overview presented
in this paper.

Scope Limitation. This overview structures scientific work on design decision
documentation that was published in recognized journals and conferences. The
overview does not include overview or evaluation of commercial tools unless the
information on them was published as scientific work. Evaluation of approaches
proposed in scientific publications or their quality is also out of scope and is
subject of future work.

Completeness of the Results. The overview provides a comprehensive view
on the research area, however, an absolute completeness cannot be warranted.
The overview is based on the automatic venue search and relies on keywords,
which were derived from a selective manual search. Filtering of the publications
according to the overview scope was conducted by two persons, nevertheless, a
mistake of false-negative evaluation cannot be excluded.

We limit relevant publications years starting from 2004 up to 2015, based on
reference by Kruchten et al. [3], which is also a common practice in the literature
overviews. In addition, some related research areas, e.g. code generation from
models or decision-making support, can be also seen as a way to capture design
decisions, but our overview does not include these. It follows the inclusion and
exclusion criteria provided in Sect. 3.

Dimension Limitations. The dimensions, that are proposed to structure the
literature overview, may be subjective to our opinion. There may be other
industry-relevant dimensions, however, we did not discover any other informa-
tion manageable in a systematic way.
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Categorisation Validity. All publications were carefully analysed, but a
human mistake cannot be excluded completely.

5.2 Lessons Learned

We have learned several lessons that we would like to share with community:

Keywords are Venue-Specific. This observation is opposite to the common
review practice that we have also followed on. However, keywords are often
venue-specific and the search string shall be defined per venue with venue-specific
keywords. Such definition would significantly improve the accuracy of search.

Terms are Used Differently. We have encountered significant differences in
terms usage e.g., “evolution of decisions” could mean evolution of decisions as
such, evolution of system design with decisions only implicitly evolving, evolution
of requirements leading to new decisions or evolution of a general system.

Automated Search Accuracy Cannot Be 100 %. As we used selective man-
ual search to define our keywords, we could compare our manual search results
with automated search results. An accuracy of 100 % could not be achieved, no
matter how we modified the keywords and the search string. Moreover, some
engines had problems with indexation of some conferences and workshops (i.g.,
SHARK workshop was partially absent from previous version of DBLP). Our
final conclusion is that the manual search might be quicker and more precise
than the automated search.

DBLP is Sufficient as a Search Engine. We could obtain the best search
results using the DBLP search, especially after a new version of DBLP was
rolled-out in 2015. It allowed quick access to the materials of multiple publishers,
in addition to easy definition of keywords and rich filter criteria. DBLP only
allows to search through the meta-information, such as title or keywords (if
available). However, it proved to be enough and led to comparably low number
of false-positives if compared to i.e. IEEE search in our observation. Based on
this experience, we would prefer a manual search over the automatic search, but
in cases where automatic search is beneficial, e.g. high number of publications
across many venues, we would choose to use DBLP as the only engine.

Classification of Approaches May Be Non-trivial. Presentation of infor-
mation may strongly vary between publications, and, in some cases, the avail-
able information cannot be compared without a direct approach application or
detailed case study reports. For example, industrial evaluation vs. evaluation
described as real-life case study was challenging to classify and compare due to
sparse information provided.
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6 Conclusion and Future Work

This paper presents a structured overview of 96 publications covering 58 unique
approaches on documentation of design decisions. Despite the high number of
research and evidence linking decision documentation to improved system evolu-
tion, the industrial adoption of design decision documentation approaches seems
still sparse. Our observations suggest that the following factors may be respon-
sible for this gap: Absence of industrial applicability requirements, only mar-
ginal support of brownfield development (legacy systems), insufficient consider-
ation of the additional overhead produced by the extensive documentation of
decisions, simplified or often missing perspective on evolution of systems and
involved design decisions, and lack of tool-support and integration with com-
mercial tools. We also see definition of common terminology in the software
architecture research field and reuse of design decisions between projects and
systems as two important research challenges.

Our future work focuses on systematic investigation of industrial applicability
requirements and definition of generic applicability guidelines. The investigation
shall include consolidation of currently available experience reports and review
results, such as by Zimmermann et al. [34], Tang et al. [14], Savolainen et al. [59],
Miksovic and Zimmermann [60], Lago et al. [61], and Komiya [62]. We also plan
to investigate into additional industrial applicability dimensions. In the long
term, future work shall include evaluation of the most mature approaches and
definition of application guidelines for practitioners.
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Abstract. It is widely agreed that architecture documentation, independent of
its form, is necessary to prescribe architectural concepts for development and to
conserve architectural information over time. However, very often architecture
documentation is perceived as inadequate, too long, too abstract, too detailed, or
simply outdated. While developers have tasks to develop certain features or
parts of a system, they are confronted with architecture documents that globally
describe the architecture and use concepts like separation of concerns. Then, the
developers have the hard task to find all information of the separated concerns
and to synthesize the excerpt relevant for their concrete task. Ideally, they would
get an architecture document, which is exactly tailored to their need of archi-
tectural information for their task at hand. Such documentation can however not
be created by architects in reasonable time. In this paper, we propose an
approach of modeling architecture and automatically synthesizing a tailored
architecture documentation for each developer and each development task.
Therefore architectural concepts are selected from the model based on the task
and an interleaving of concepts is done. This makes for example all interfaces
explicit, which a component has to implement in order to comply with security,
availability, etc. concepts. The required modeling and automation is realized in
the tool Enterprise Architect. We got already very positive feedback for this idea
from practitioners and expect a significant improvement of implementation
quality and architecture compliance.

Keywords: Architecture documentation � Architecture knowledge �
Architecture realization � Developers � Implementation � Task � Separation of
concerns

1 Introduction

It is widely accepted that architecture documentation is necessary to prescribe archi-
tecture concepts and preserve architecture knowledge over time. This is particularly
true in complex project settings: When systems are large and have long lifecycles,
architecture documentation serves as a tool to preserve the most important design
decisions, and to facilitate communication between stakeholders. Also, software

© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 102–110, 2016.
DOI: 10.1007/978-3-319-48992-6_7



development becomes a more and more distributed and globalized activity, often
delaying or even making direct communication impossible. In such settings, archi-
tecture documentation is a vital communication vehicle to allow a consistent realization
of the architecture.

Architecture documentation for such systems can become large. In our experience,
for large-scale projects several hundreds of pages are realistic. Working with such
documentation can be difficult, in particular for developers, who use it as the basis for
their implementation activities, for two main reasons:

First, the perspectives of architects and developers on the system diverge. Archi-
tects focus on the system as a whole, designing the overall principles of the system for a
multitude of stakeholders. They break down the big and complex problem of the
complete system into smaller parts, i.e. apply the principles of divide and conquer and
separation of concerns, to create concepts that address architecture drivers in a con-
sistent and uniform way. Examples are concepts for exception handling, validation,
scaling, etc. For a medium sized project this can easily lead to 20–50 different concepts.

Our central insight is that while separation of concerns is vital for architects, who
deal with a problem too large to handle as a whole, it is actually counter-productive
for a developer working on a task with a narrow focus on single entities, because the
separated concerns need to be located and synthesized again. When developers
implement single modules, they need to know and consider several architecture con-
cepts and realize them in their specific context. Such concepts are normally not
explicitly described for every element that needs to realize it, but once, in a general way
and then instantiated throughout the system (e.g. which interfaces to implement in
which way for the security concepts, for transaction handling, …). This means, every
single developer needs to be aware of or search for relevant concepts for the devel-
opment task at hand (cf. Fig. 1).

The second aspect is related to the architecture-code-gap [1]. When architects
design the system, they reason about the system in terms of components, layers, or
decisions. Developers on the other hand work with classes, packages, and interfaces.
While it is reasonable for the different roles to work with the elements that best suit
their needs, their inherent difference creates an obstacle for architecture realization:
There is an additional cognitive step to transform architecture concepts, to the code
level.

Fig. 1. Architect developer perspective difference
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Both aspects lead to an architecture realization that is on the one hand less efficient,
because developers are required to search and identify relevant concepts in a large
amount of architecture information. On the other hand, it is error prone because devel-
opers under high time pressure might not take the time to consult the architecture doc-
umentation, causing architecture violations and consequently architecture erosion [2].

To address these problems, we propose an approach of automatically generating
architecture documentation specific for tasks of individual developers. An overview of
the approach is presented in Sect. 3 before we describe its details in Sect. 4. To get a
better understanding, we present an example in Sect. 5 and conclude in Sect. 6 with
validation and future work.

2 Related Work

The approach we present in this paper is built on the foundations of architecture
documentation and architecture views. Several different works cover these topics and
have presented their own documentation approaches and view sets: [3, 4], etc. Views
are a tool for separation of concerns during the design of a software system, but can
also be used to tailor information towards the readers [5]. This, however normally
refers to types of stakeholders, like developers in general, not more specific.

The idea of considering design decisions as an integral part of architecture and
documentation started the whole new research field Architecture Knowledge Man-
agement (AKM) Capilla et al. published a comprehensive analysis of the work done in
AKM in the past ten years [6]. Our approach is closely related to these approaches, in
particular those that provide some kind of personalization mechanism, i.e. making AK
specific for a target group. EAGLE [7], ADDM [8], and Decision Architect [9] are
examples.. However, none of them tackles the described challenges, either they focus
on personalization for stakeholder types, not individuals, or their goal of personal-
ization is different.

The approach we present in this paper is the advancement of the preliminary and
basic ideas we outlined in [10]. To align our work with the needs of industry we also
performed a comprehensive state of the practice analysis of architecture documentation
in industry in [11].

3 Approach Overview

3.1 Task-Specific Architecture Documentation

We frequently experience the challenges we describe in Sect. 1 in industrial projects
with our customers. For this reason, we developed an approach for creating architecture
documentation that is not only specific for a certain group of stakeholders, but for
individual developers and each of their individual development tasks. The resulting
architecture documentation centers around the specific architectural elements that
developers need to change, create, or delete. It provides detailed information on these
focus elements, together with all relevant information from architecture concepts that
need to be considered. Besides the elements, “relevant information” includes their
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internal structure, interfaces to provide, location in the source code, and relations to
create. These pieces of information are combined, so that a meaningful view on a very
specific part of the system is created. Thus, the architecture documentation for
developers contains only a minimum of overhead information, and in a form that
allows direct realization. Manually creating such documentation is economically
impossible, hence, task-specific architecture documentation needs to be created fully
automated with a tool.

3.2 Development Setting and Tooling

Task-specific architecture documentation is not bound to a particular development
process, but works best with highly iterative approaches with small increments, like
agile development. In each iteration, a user story or use case is selected for realization.
For the selected user story, a project manager, architect or even the team derive
development tasks. For each of these development tasks, the architect generates the
corresponding task-specific architecture documentation, which is used by developers
when they carry out the task. Normally, an architect has created an architecture design
for all relevant concepts in a previous iteration, so that it is ready for realization in
the next.

The architecture model is based on UML and the documentation generator is created
as an add-in for the widely used modeling tool Enterprise Architect (cf. Fig. 2). The
add-in works on task specifications, that reference elements from the architecture model.
Therefore, task specifications are created as elements in the architecture model as well
(in future versions an integration with issue tracking systems is planned). The resulting
documentation is created as a read-only document. In future versions, the result can be
generated as a small, tailored architecture model, that can be integrated with a viewer in
the IDE developers normally work with. This allows more interactive working the
documentation and more sophisticated linking between documentation and code.

3.3 Foundational Principles of the Modeling Approach

Our modeling approach has several similarities to many others, it is based on the
ISO/IEC/IEEE 42010 standard, uses UML, views, etc. Therefore, transferring the idea to
other architecture approaches should be simple. However, two aspects we need to

Fig. 2. Development setting and tooling
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highlight, that are specific and have an influence on the documentation generation
approach. First, when we design architectures, we explicitly differentiate between
runtime and development time. We often see people drawing boxes and lines, mixing the
two arbitrarily, without understanding the differences. Runtime elements (components)
can be multiply instantiated and deployed. They are realized with development time
entities (modules), which for example represent classes. Different mappings are possible
between these entities. Components are normally realized by multiple modules; to
optimize reuse, one module can be used for the realization of many components.

The second aspect is template elements. They result from the idea of making
architecture modeling more efficient by grouping similarities. To eliminate the neces-
sity to describe a concept every time it is applied in the system, template elements are
used to describe a concept once. For example, if, as a part of the validation concept in a
system, we wanted to express that for every backend service in the system, there has to
be a corresponding validator component to validate the data received from clients, we
could model the template components T_Backend Service and T_Backend Service
Validator as shown in Fig. 3 and link them to concrete instances. With this idea, the
required amount of modeling to describe the architecture concepts of the system can be
reduced.

4 Detailed Approach

The documentation generation process realized in the documentation generator can be
divided into four distinct parts, which are explained in the following sections.

4.1 Task Specification

Development tasks are the starting point for the generation of task-specific architecture
documentation. They refer to one or a set of architecture elements to work on and are
carried out by a developer. Our approach focusses on the constructive task types, like
design and implementation, whereas deeply technical tasks, like bug fixing, which are
hardly covered in an architecture model, are out of scope.

Architects model task specifications in the architecture model, so that architecture
elements to which the task refers can be directly linked, traced and processed. A task
element has a name and a description. It references architecture elements, the focus
elements, with either a create, change, or delete relationship. And, a task is assigned to
a concrete developer who is responsible for carrying it out. Figure 4 shows an example
of a task specification in an architecture model.

«Component»
T_Backend 

Service Validator

«Component»
T_Backend 

Service

validate
client data

«use»

Fig. 3. Service validator concept

«Developer»
Daniel

«T_Data Servi...
Staff Data Service

«Task»
Implement staff data 

service
«assigned

to»
«create»

Fig. 4. Example of a task specification
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4.2 Selection

Selection is the automatic process of analyzing the architecture model and identifying
model elements that are relevant to consider for the subsequent steps. The starting point
for selection is always one or more focus elements. The following elements are
included in the selection processes: Developers need to know all details about the focus
elements, so all occurrences are included with their properties and description. The
hierarchy of the element’s template elements need to be included because all concepts
involving the templates are relevant for the focus elements as well. The mapped
development-time elements are included because they describe how an element needs to
be realized. In our modeling approach, design decisions are created in the architecture
model as well and relevant ones are included in the selection process. Finally,
descriptions of all elements and diagrams are included as well.

4.3 Concept Interleaving

Concept Interleaving is the central automatic processing step of integrating all pieces of
information, to create the task-specific architecture documentation. It takes the elements
from the selection step and extracts relevant information from them to merge it with the
focus elements. This includes the following elements, which are first shifted to
development time and then interleaved: Child elements describe the internal structure
of the element to implement and are normally depicted as within an element or have an
explicit “part of”-relationship. Child elements of the focus element, its templates and
development time elements are considered. Relation target elements refer to any ele-
ment being the target of an outgoing relation. This denotes, which elements to use and
create a relationship to. Interfaces show the functionality to provide t other elements.
Finally, DT parent elements denote the location in the source code project.

4.4 Development Time Shift

The collected information should be presented according to the developer’s perspec-
tive, to facilitate instant realization. The main idea of the Development Time (DT) Shift
is to translate elements from an architecture and runtime level to the code and devel-
opment time level. This is applied for all selected and elements of interleaved concepts.

We differentiate two ways of doing that: DT-Shift with explicit development time
mappings or implicit shifting rules. To ensure uniformity and a clean code structure and
to facilitate reuse, architects might decide to prescribe where in the source code the
elements of an architecture concept should be created. In this case, an element is
mapped with an explicit relation to development time elements, e.g. one component to
be realized by three classes. The documentation generator simply replaces such ele-
ments by the mapped development time elements for the resulting documentation.

In other cases, to save time and reduce complexity, he may also decide to rely on a
set of standard shifting rules. Table 1 provides an overview of these.
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5 Example

The following example illustrates the main ideas of the approach. The context is a farm
management system, a system with which farmers manage and plan machines, grain
supply, etc. [12]. The next user story to be implemented in the project is managing
staff. This includes the tasks to create the according database structure, the user
interfaces, etc. One task for a developer is to implement the backend service (cf.
Fig. 4).

Figure 5 shows an overview of the different kinds of services that are provided by
the backend. The services that provide the different kinds of data to the applications
running on the Farming Client are represented by the template component T_Data
Service.

The relevance of this template becomes clear when looking at Fig. 6. The diagram
shows the different kinds of services used in the application and an explicit mapping to
DT. In this case, for every service, an according package in the services package,
together with the processor and configuration classes have to be created. As one
example of an architecture concept, Fig. 3 shows a simple validation concept that
prescribes every backend service to use an according validator component.

The result of the generation process is depicted in Fig. 7. Colors denote corre-
sponding elements. The focus element Staff Data Service has been shifted to DT
according to the explicit mapping shown in Fig. 6, resulting in the Staff Data Service
package with the two contained modules. The relation target elements of these two

Table 1. Implicit shifting rules

Runtime element Development time element

Component (without Subcomponents)
Component (with Subcomponents)
Component (template)

Class
Package
Abstract module

Interface Interface
Connector Class
Data Class

«System»
Farming Client

«System»
Farming Backend

«T_Backend ...
T_Machine Service MachineInterface

«T_Backend ...
T_Data Service

T_DataServiceInterface

«T_Backend ...
Sync Service

SyncInterface

«System»
T_Farming Machine

«Component»
Job Manager

«Component»
Resource Manager

get/store data

«use»

offline sync

provide operation data
«use»

Fig. 5. Example system services

Development TimeRuntime

«T_B...
T_Data 
Service

«T_B...
Sync 

Service

«T_B...
T_Machine 

Service

«Com...
T_Backend 

Service

«T_D...
Staff Data 
Service

«T_Dat...
Resource 

Data Service

«T_D...
Crop Data 

Service

«Package»
FarmingBackend

«Package»
Services

«Package»
Service Framework

«Package»
T_Backend Service

«Module»
T_Backend 

Service Processor

«Module»
T_Backend 

Service Config

«interface»
IServiceConfig

«interface»
IServiceProcessor

Fig. 6. Example dev. time mappings
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modules, the two framework interfaces have been integrated. The interface provided by
the T_Data Service has been shifted and integrated with a realization relation. The
validation concept has been interleaved by adding the shifted validator module. Where
possible, the names of templates have been replaced by the name of the focus element.

6 Validation and Future Work

As an applied research organization we work with many industry customers in
architecture and development projects. Our experience in these projects and first
feedback to the approach gives us good confidence that it will be beneficial to
developers in complex development settings. The discussions with our partners show
the high demand and positive feedback when we presented our approach. To acquire
more formal validation data, we are currently working on a controlled experiment to
conduct later this year at Technical University of Kaiserslautern. In this experiment, we
will gather data from groups of computer science students, working with task-specific
and generic architecture documentation. We will measure the time it takes to identify
relevant architecture information for a given development task, as well as errors made
when trying to understand the relevant architecture concepts.

In terms of tooling, we are currently developing a prototype according to the
conceptual approach presented in this paper and hope to have a running version ready
by the end of this year. In the future this is the basis for many possible extensions. For
example, IDE integration and feedback mechanisms to architects will provide the
opportunity to bring architecture and source code closer together.
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Abstract. Self-adaptive software-intensive cyber-physical systems (sasiCPS)
encounter a high level of run-time uncertainty. State-of-the-art architecture-
based self-adaptation approaches assume designing against a fixed set of situ-
ations that warrant self-adaptation; as a result, failures may appear when
sasiCPS operate in environment conditions they are not specifically designed
for. In response, we propose to increase the homeostasis of sasiCPS, i.e., the
capacity to maintain an operational state despite run-time uncertainty, by
introducing run-time changes to the architecture-based self-adaptation strategies
according to environment stimuli. In addition to articulating the main idea of
architectural homeostasis, we describe three mechanisms that reify the idea:
(i) collaborative sensing, (ii) faulty component isolation from adaptation, and
(iii) enhancing mode switching. Moreover, our experimental evaluation of the
three mechanisms confirms that allowing a complex system to change its
self-adaptation strategies helps the system recover from runtime errors and
abnormalities and keep it in an operational state.

Keywords: Cyber-physical systems � Software architecture � Run-time
uncertainty � Self-adaptation strategies

1 Introduction

Cyber-Physical Systems (CPS) [1] are large complex systems that rely more and more
on software for their operation—they are becoming software-intensive CPS [2, 3]. Such
systems, e.g., intelligent transportation systems, smart grids, are typically comprised of
several million lines of code. A high level view achieved via focusing on software
architecture abstractions is thus becoming increasingly important for dealing with such
scale and complexity during development, deployment, and maintenance.

These systems continuously sense physical properties in order to actuate physical
processes. Due to the close connection to the physical world that is hard to predict at
design time and control at run-time, they encounter a high level of uncertainty in their

© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 113–128, 2016.
DOI: 10.1007/978-3-319-48992-6_8



operating conditions—run-time uncertainty [4]. Such kind of uncertainty is typically
rooted in (i) unexpected changes in the run-time infrastructure (e.g., communication
latencies, disconnections, sensor malfunctioning); (ii) unexpected changes in the
environment (e.g., harsh weather conditions); (iii) the evolution of other cyber or
physical systems that interface with the CPS in question; and (iv) the randomness
introduced by human interaction. Run-time uncertainty can cause numerous failures
ranging from temporary service unavailability to complete system crash [4].

A promising way to tackle run-time uncertainty is to endow software-intensive CPS
with self-adaptive capabilities, i.e., with capabilities of adjusting their own structure
and behavior at run-time based on their internal state and the perceived environment,
while considering their run-time goals and requirements [5]. In our work, we focus on
self-adaptation approaches implemented at the architectural level (e.g. Stitch [6–10]).
One of the limitations in the state-of-the-art architecture-based self-adaptation
approaches is that they assume designing against a fixed set of situations that war-
rant self-adaptation [11]. However, when run-time uncertainty is high, anticipating all
potential situations upfront (i.e. at design time) and designing corresponding actions is
a costly, lengthy, and sometimes not even a viable option [4, 12].

In our work, instead of trying to identify all potential situations and corresponding
actions (strategies in architecture-based self-adaptation), we propose to engineer
flexibility in the strategies of a self-adaptive software-intensive CPS (sasiCPS further
on) in the form of run-time changes to these strategies. This way we try to increase the
software homeostasis of sasiCPS, i.e. the capacity for the system to maintain its normal
operating state and implicitly repair abnormalities or deviations from expected behavior
[13], by specifically focusing at the architectural level—architectural homeostasis.

We claim that supporting architectural homeostasis at run-time helps tackle the
run-time uncertainty in sasiCPS. The underlying assumptions of our approach are that
(i) fixed architecture-based self-adaptation strategies result in brittle systems in domains
with high run-time uncertainty; (ii) allowing the components of a complex system to
change their self-adaptation strategies in a slightly different way while still aiming at a
common goal can have positive results in the overall utility of a self-adaptive system.
The last point is common in other domains (e.g., communication protocols that try to
reestablish a connection in some random manner in order to avoid a flood of
reconnections).

The main contribution of this paper lies in presenting three concrete homeostatic
mechanisms that operate at the architectural level and effectively increase the capacity
of a sasiCPS to maintain an operational state despite run-time uncertainty. The sec-
ondary contribution lies in implementing the proposed mechanisms in a development
and run-time framework for sasiCPS—DEECo component framework [14]—and in
evaluating their feasibility and effectiveness in a controlled experiment. In the exper-
imental setup, the mechanisms worked both independently and in combination with
each other. The results show that using the proposed mechanisms increase in the
overall utility of the system in face of runtime errors and abnormalities (high-level
exceptions).

The rest of the paper is structured as follows. Section 2 presents our running
example and the background of our work. Section 3 presents the main idea of archi-
tectural homeostasis, together with its reification into three concrete homeostatic
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mechanisms. Section 4 details our evaluation based on implementing the mechanisms
and quantifying their effects in the running example, together with discussing the
interesting points, extensions, and limitation of our approach. Finally, Sect. 5 compares
our work to existing ones in the literature and Sect. 6 concludes.

2 Running Example and Background

2.1 Cleaning Robots Example

In the scenario used throughout the paper, four Turtlebots (http://www.turtlebot.com/)
are deployed in a large 2D space with the task to keep it as clean as possible. The space
is covered by tiles that can get dirty at some arbitrary points in time. Each robot is able
to move around, identify dirty tiles via its downwards-looking camera and humidity
sensor, and clean them. Each robot also works on a specific energy budget; before it
expires, the robot needs to reach a docking station and recharge. Several docking
stations exist in the space. Figure 1 depicts a scenario with three robots and two
docking stations.

The robots communicate with each other to exchange information about the lastly
cleaned tiles to avoid unnecessary trips. They also communicate with the docking
stations to determine the most convenient station for recharging.

This example, although a toy one, comprises a number of situations where run-time
uncertainty creeps in. These include situations where a robot loses the ability of reliably
detecting dirty tiles (e.g. due to a failure in its humidity sensor) or loses the ability of
communicating with the docking stations. Docking stations may also stop working.
Run-time uncertainty is also manifested in the unpredictable pace and position where
dirt appears in the space.

Fig. 1. Cleaning robots example (screenshot from the tool).
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2.2 DEECo Model of Cleaning Robots – Running Example

DEECo is a development and run-time framework for sasiCPS [14]. In DEECo, a
component is an independent entity of development and deployment. Two component
types were identified in our running example: Robot and DockingStation. Every
DEECo component contains data (knowledge) and functionality in the form of peri-
odically invoked processes which map input knowledge to output knowledge; each
process is associated with one or more component mode(s). In the running example,
each Robot comprises knowledge about its position, dirtinessMap, etc.
(Figure 2, lines 9–14), and several processes, e.g. clean (lines 25–31), move, and
charge. A process belongs to one or more modes – e.g., the Robot’s clean
process belongs to cleaning mode (line 25). The modes of each component are
switched at run-time according to the component’s mode-state machine (Fig. 7).
A component in DEECo has a number of roles, each allowing a subset of knowledge
fields to become subject to component interaction. In the running example, each
Robot features the Dockable and Cleaner roles (lines 1–4, 8).

Fig. 2. Excerpt from DSL of DEECo components of the cleaning robots example.
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Components do not interact with each other directly. Their interaction is dependent on
their membership in dynamic groups called ensembles. An ensemble is dynamically
created/disbanded depending on which components satisfy its membership condition.
The key task of an ensemble is to periodically exchange knowledge parts between its
coordinator and member components (determined by their roles). At design-time, an
ensemble specification consists of (i) ensemble roles that the member and coordinator
components should feature, and (ii) a membership condition prescribing the condition
under which components should interact (Fig. 3, lines 45–51), and (iii) a knowledge
exchange function, which specifies the knowledge exchange that takes place between the
components in the ensemble (lines 52–53). For instance, the components featuring the
Dockable role (e.g. Robot) can form an ensemble with components featuring the
Dock role (i.e. with a DockingStation) to coordinate on the docking activity (lines
36–37).

Matching of a component role and an ensemble role can be interpreted as estab-
lishing a connector in a classical component model; such a connector lasts only until
the next evaluation of the membership condition. This semantics provides for software
architecture that is dynamically adapted to the current components’ knowledge values.

Self-adaptation in DEECo. The semantics of switching modes within a component
reflects the idea of the MAPE-K self-adaptation loop (Monitor-Analyze-Plan-Execute
over Knowledge) [15]: Consider a component C and its associated mode-state machine
MC. In MC, the transition guards from the current state are periodically evaluated based
on monitoring the variables (knowledge parts featured in the guards) of C; then it is
analyzed which of the eligible transition should be selected by so that the next mode is
planned. Finally, the next mode is brought to action (executed).

Fig. 3. Excerpt from DSL of DEECo ensembles of the cleaning robots example.
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The semantics of ensembles also reflects the idea of MAPE-K: Consider an
ensemble E. The membership condition MC of E is evaluated (analyzed) periodically,
requiring systematic monitoring of the variables (knowledge parts) in all components
featuring E’s roles. From all of these components considered in a particular MC
evaluation, only those satisfying MC are planned to be the members/coordinator of E.
This plan is then executed and communication of the members/coordinator via
knowledge exchange is then realized.

Overall, in DEECo, self-adaptation is performed by two mechanisms applied in
parallel: (i) mode-switching at the level of individual components, (ii) dynamic par-
ticipation of components in ensembles. In principle, each instance of a self-adaptation
mechanism defines a particular self-adaptation strategy (in the sense of [6]), being
characterized in each component by a specific mode-state machine, and in each
ensemble instance by a specific membership condition and knowledge exchange
function. Technically, this is realized by an Adaptation manager (part of the runtime
framework of DEECo [14]), which takes the specification of mode-state machines and
ensembles as definition of self-adaptation strategies and invokes them accordingly.

3 Homeostasis at the Architectural Level

Our approach modifies/adds/removes self-adaptation strategies at run-time when the
system requirements and/or environment assumptions which the strategies have been
designed for are not met anymore. Our approach realizes this in an additional adap-
tation layer (homeostasis layer). Conceptually, the three layers presented in Fig. 4
follow the three-layered architecture for evolution of dynamically adaptive systems
proposed by Perrouin et al. [16]. Contrary to their work, however, we do not use an
evolution layer to switch between self-adaptation strategies. Instead, we propose the
top layer to change the employed self-adaptation strategies by homeostatic mechanisms
(H-mechanisms) based on a MAPE-K loop governed by an H-Adaptation Manager
(Fig. 4).

Fig. 4. Three-layered architecture with homeostasis layer
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To illustrate the concepts of the Homeostasis Layer, we present three
H-mechanisms. H-Adaptation manager coordinates monitoring of exceptional/
unanticipated situations at the Adaptation Layer and reacts by activation of a selected
H-mechanism, which, in turn, modifies a self-adaptation strategy at the Adaptation
Layer. Technically, the Adaptation Manager coordinates the application of
self-adaptation mechanisms (to avoid conflicts in adaptation); a similar coordination role
has the H-Adaptation Manager with respect to application of H-mechanisms. Moreover,
the H-Adaptation manager can force the Adaptation Manager to postpone any adapta-
tion based on the self-adaptation strategy being modified.

In principle the Homeostasis Layer could be avoided by enhancing the Adaptation
Layer to handle all the exceptional situations; however, this would make their speci-
fication clumsy and error prone. Therefore we hoist the handling of these exceptional
situations to the architectural level and modify the Adaptation Layer by the
Homeostasis Layer at run time. Moreover, the adoption of such an architecture style
provides more design flexibility by the allowing incremental tuning up of the Adap-
tation Layer.

As a reference implementation, the Adaptation Layer in our running example is
built upon the self-adaptation mechanisms in DEECo (mode-state machines, ensem-
bles), by modifying/adding/removing the self-adaptation strategies defined by their
instances at run-time.

3.1 H-Mechanism #1: Collaborative Sensing

sasiCPS are often large data-intensive systems with components that perform sensing
of physical properties via hardware sensors (e.g. GPS, accelerometer, thermometer)
with various reliability margins. When components rely on sensor readings for satis-
fying important functional requirements (e.g. a robot needs to know its position in
order to plan its path to a destination), it becomes extremely important to deal with
sensor malfunctioning to still enable environment sensing at run-time.

A way to overcome the problem of sensor malfunctioning is to take advantage of
the data dependencies and redundancies that may exist in sasiCPS due to components
sensing the same or similar property P. Collaborative sensing (CS) H-mechanism
provides an adequate approximation of property P for a faulty component. CS is based
on defining a new self-adaptation strategy on the fly – technically, in DEECo, by
creating an additional ensemble specification with knowledge exchange function pro-
viding the desired approximation.

CS involves two computational steps: (i) CS Analysis—identification of data
dependencies and (ii) CS Plan—approximation of P. While CS Plan is relatively easy
to realize once a dependency relation is identified, for the two main tasks of CS
Analysis (Fig. 5), there are multiple alternatives involving different trade-offs: A major
issue is the computational overhead of data collection vs. the readiness of dependency
relation when the need for applying CS is acute.

For illustration of CS Analysis, in the following we consider the subtasks (a)-(i)-(I)
and (b)-(i). Let us assume that the H-Adaptation Manager collects the values of pre-
selected knowledge fields of the set of components of the same type in the latest time
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instances t ¼ 1::n. Furthermore, for acquiring the dependency relation, CS Analysis
checks all the aggregated knowledge to find out which knowledge fields are dependent
on others. Let Ci:ktl be the value of knowledge field kl of component Ci at a time
instance t, and Ci:klf gn1 denote the time series of the knowledge field kl of component
Ci at time instances 1 to n. Further let lkl Ci:ktl ;Cj:ktl

� �
be the distance between two

knowledge values of ktl in components Ci and Cj measured by metric l specific to kl.
Then, for all component pairs Ci;Cj; i 6¼ j, having the fields kl and km, CS Analyze
computes the boundary Dkl such that the implication lkl Ci:ktl ;Cj:ktl

� �
\Dkl )

lkm Ci:ktm;Cj:ktm
� �

\Tkm for the time instances t ¼ 1::n is satisfied in (at least) the
specified percentage of all the cases (confidence level akm , e.g. 90 %). Here Tkm rep-
resents the tolerable distance threshold and is provided for each km. The CS Analysis
concludes that the value of Ci:ktm is close to the value of Cj:ktm (and vice versa) for t
such that the values of Ci:ktl and Cj:ktl are close as well.

Thus, when a component Cf fails to sense the values of km, an approximation of this
property has to take place. This is done by CS Plan by creating an ensemble with the
exchange function Cf :km :¼ Cj:km and membership condition lklðCf :kl;Cj:klÞ\Dkl . If
more than one Cj satisfies the membership condition, an arbitrary one is selected. The
ensemble is deployed and started by CS Execute.

The task to compute the boundary Dkl is resource and time demanding but there are
techniques that can lower the time needed to finish, such as sorting the data according to
lkm Ci:ktm;Cj:ktm

� �
or using sampling of the gathered data to obtain a statistically sig-

nificant answer. There are of course a number of other methods to detect dependencies
between data such as linear regression, k-nearest neighbors, neural networks, etc.

For illustration, consider the situation where the downwards-looking camera of a
robot R starts failing and consequently R loses the ability to detect dirtiness on the floor
(and, to update its dirtinessMap). This situation will trigger the CS H-mechanism
which will create a DirtinessMapExchange ensemble, the membership condition
of which states that R becomes the coordinator and the other robots that are closer to R
than the given threshold (obviously, when their positions are close, their maps are
“close”) become its members. By knowledge exchange, R adopts the dirtinessMap of
the closest member (Fig. 6) and can resume its cleaning operation.

a. Data collection 
(i) On a real system 

I. Preventively 
II. Ex-post 

(ii) By simulation 
b. Acquiring dependency relation 

(i) Regression/machine learning 
(ii) Empirical knowledge 

Fig. 5. Alternative subtasks of CS analysis (identification of data dependencies).
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3.2 H-Mechanism #2: Faulty Component Isolation from Adaptation

The idea of the faulty component isolation from adaptation (FCIA) H-mechanism is
rooted in the well-known fault-tolerance mechanism: When a component starts mal-
functioning it has to be isolated from the rest of the system and its activity taken over
by another non-faulty component providing the same functionality. In essence, FCIA
addresses the situation where a component A starts emitting faulty values of its property
P. In such a case, FCIA modifies the adaptation strategies that count on P in order to
prevent the “contamination” of other components with faulty values of P.

For illustration, consider a situation where a docking station DS due to some error
or malfunction is not able of having docked robots charge anymore, while still being
advertised as operational to robots, which are technically members of the Dock-
ingInformationExchange ensemble associated with DS (Fig. 3). As a result, a
Robot may still queue at the faulty DS. This is a trigger for applying the FCIA
H-mechanism by the H-Adaptation Manager. In essence, FCIA modifies the Dock-
ingInformationExchange specification in such a way that DS is excluded from
being the coordinator of one of its instances. Technically, this can be done by modi-
fying the membership condition to make it not satisfiable for DS.

3.3 H-Mechanism #3: Enhancing Mode Switching

The motivation behind the enhancing mode switching (EMS) H-mechanism is that
there are cases where the behavior of a component specified by its mode-state machine
is over-constrained. Thus, instead of being stuck in situations that have not been
anticipated at design time, it can be beneficial to relax the constraints and enlarge the
space of actions that can be tried out to handle such situations. Building on this idea,
the EMS H-mechanism adjusts the self-adaptation strategy implemented as a
mode-state machine associated with a particular component. Specifically, EMS
(i) creates new probabilistic transitions from every mode to every other one, and
(ii) introduces probabilities to the existing mode transitions (in Fig. 7 the introduced
probabilities have a value of 0.01; however, the actual probability learned in our

Fig. 6. DSL excerpt from specification of collaborative sensing ensemble of the cleaning robots.
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experiments is much smaller). The resulting mode-state machine is represented by a
fully connected probabilistic graph. An important part of EMS is a fitness function
assessing the impact of a specific modification to the mode-state machine (e.g. by
evaluation of system performance). EMS monitors the value of the fitness function and
triggers the change of probabilities when the value is low. This change is subject to
iterations to tune the fitness value to the desired threshold (e.g. by simulated annealing).

For illustration, consider the unanticipated situation that there are far more Robots
than DockingStations. Assuming similar energy depletion and similar initial
energy budgets, if all Robots follow the mode-state machine depicted in Fig. 7, they
might all switch to Charging mode at similar points in time (when their energy falls
below 20 %). This would result in an increase in the average charging time, since
robots will need to queue up at the docking stations. The situation when the queuing
and consequently charging time of robots takes longer than usual will act as a trigger
for EMS. It will change the mode-state machine of affected robots by adding new
transitions and guards (depicted in green in Fig. 7). The new transitions have a
probability of 0.01. This is just for illustration; the actual probabilities learned in our
experiments are much smaller (see Sect. 4.2). It is important to realize that each
component may find itself in the triggering situation of EMS at a different time and that
the mode-state machine evolution is also specific to an individual component.

The EMS H-mechanism effectively allows the transition from every mode to every
other mode with a given probability. This, however, can be dangerous when there exist
modes that should be entered only under certain circumstances (e.g., because they
involve operations with non-revertible effects). To address this issue, we assume that
there is a way to specify such forbidden transitions in the mode-state machine.

Fig. 7. Mode-state machine capturing the mode switching logic of the Robot component. Each
state (mode) is associated with several processes. Transitions are guarded by conditions upon the
Robot’s knowledge. Changes introduced by the EMS H-mechanism are marked in (bold) green –

transitions are now guarded by a condition/probability pair. States that are not allowed to have
incoming transitions are marked in grey background. (Color figure online)
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4 Evaluation and Discussion

4.1 Experiment Design and Testbed

In order to quantitatively assess the effects of the three H-mechanisms, we applied them
to the running example (Sect. 2.1) in its JDEECo implementation (JDEECo is a Java
implementation of the DEECo component model [14]). We implemented them as
plugins to the JDEECo framework, taking advantage of its modeling and simulation
capabilities. All these realizations of H-mechanisms1 are governed by the H-Adaptation
Manager implemented as an isolated DEECo component.

To show that the application of the H-mechanisms increases the overall utility of
the system in case of faults, a controlled experiment was designed and conducted. This
was based on a number of simulation runs of predefined scenarios, each being a
combination of deliberatively introduced faults to be addressed by a particular
H-mechanism (or their combination). In total, we considered the 8 different scenarios,
each of them containing four robots, depicted in Fig. 8. To measure the overall utility
of a system run, we used an application-specific metric returning the 90th percentile of
the time required for a tile that got dirty until it is cleaned.

4.2 Results and Discussion

Results. Each scenario was run in 100 iterations. Figure 9 shows the values of the
overall system utility in the form of boxplot diagrams where the number associated
with the red line denotes the median of the sample. System utility is expressed by the
time needed to clean a tile after it gets dirty, the smaller the time the better.

Scenar-
io  msinahceMtluaF

Number of docking 
stations 

3--1

2 A robot’s dirtiness sensor malfunctions - 3 

3 A robot’s dirtiness sensor malfunctions CS 3 

4 A docking station emits wrong availability data - 3 

5 A docking station emits wrong availability data FCIA 3 

6 Too many robots w.r.t. docking stations - 1 

7 Too many robots w.r.t. docking stations EMS 1 

8 All 2-evoba

9 All above CS+FCIA+EMS 2 

Fig. 8. Scenarios considered in the controlled experiment. Simulation duration is 600 s (with
extra 300 s “learning phase” in scenarios 7 & 9), environment size is 20 × 20, number of robots
is 4.

1 Available at: https://github.com/d3scomp/uncertain-architectures.
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Scenario 1 represents the vanilla case (no faults – no H-mechanism active), acting
as the baseline. Not surprisingly, in other scenarios the 90th percentile of the time to
clean a tile increases when a fault occurs and is not counteracted by an H-mechanism
(scenarios 2, 4, 6, 8). When an H-mechanism counteracts the fault (scenarios 3, 5, 7, 9),
the overall utility improves, but does not reach the baseline scenario. Below we
comment more on CS and EMS, since the application of FCIA was straightforward.

As to the application of CS (scenario 2), a dependency relation (Sect. 3.1) was
identified such that the closeness of the positions of Robot components implied
similar values in their dirtinessMaps. This resulted in the creation and deployment
of the DirtinessMapExchange of Fig. 6. The used metrics, tolerable distances,
and confidence levels are depicted in Fig. 10.

The effect of EMS is illustrated in scenarios 6 and 7. In both scenarios, only a single
docking station is active, corresponding to the situation that one of the two docking
stations gets unavailable at run-time. When EMS is applied (scenario 7), due to the
introduced probabilistic mode switching, the robots started visiting the docking station

Fig. 9. Simulation results. Smaller values are better.

Fig. 10. Distance metrics, tolerable distances, and confidence levels in Robot knowledge fields.
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at different times. Hence, the overall queueing time was reduced and the overall utility
increased. EMS needs time to auto-calibrate (set to 300 s) as it searches for the
probability value for the added transitions that yields the highest fitness value following
a simulated annealing algorithm. In Fig. 9, the results have been split into the learning
phase (7a) and the execution run with learned values (7b). The solution naturally
underperforms in the learning phase compared to the case without EMS (6) because of
the trial and error that the learning involves. However, once the learning period is over
and EMS uses the learned values, it yields a significantly better behavior compared to
(6). The fitness value was calculated as the inverse of the average time it takes the robot
to clean a tile since it discovered the dirt. Since EMS was running independently for
each robot, the local searches returned different optimal probabilities for each robot
found by the search (with values close to 0.0001).

In scenario (8) all the faults are introduced and in (9) they are handled by all the
three H-mechanisms; this illustrates that all of them can be active at the same time
without worsening the overall utility of the system. Since the fitness function in EMS
was selected in such a way that it does not depend on the faults triggering CS and
FCIA, all the three H-mechanisms behaved as orthogonal.

Discussion. We use two distinct architectural layers—“standard” self-adaptation and
adaptation of self-adaptation strategies (the task of H-mechanisms). Hence, our solution
basically follows the principle of architectural hoisting [17] —separating concerns by
assigning the possibility for a global system property (here self-adaptation) to system
architecture. Even though the H-mechanisms layer can be interpreted as (high-level)
exception handling in self-adaptation settings and can be implemented at the same level
of abstraction as the self-adaptation itself, achieving the same functionality without the
H-mechanism layer would make the code of ensembles and components very clumsy.
Architectural hoisting makes the separation of these concerns much easier and elegant.

Depending on the particular fitness function applied, EMS may be triggered in a
situation that is also covered by other H-mechanisms (e.g. by CS). In such a case it is
important to address this interference and state which H-mechanism has precedence in
order to avoid unnecessary side effects. This is the task of the H-Adaptation Manager.

Fig. 11. Distance metric for dirtinessMap field of Robot component.
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Limitations. In general, the extra layer demands additional computational load, since
monitoring of the triggering events is inherent to all three H-mechanisms. Even though
it is minor for CS and FCIA, in the case of EMS it depends on the complexity of the
associated fitness function. Obviously, the most computationally demanding step is the
data collection in CS if done preventively at runtime. This can be reduced by limiting
the time window for collecting data, or by starting it ex-post, i.e. when a need be.

Another limitation of the work presented in this paper is that the proposed
H-mechanisms have been only evaluated so far with DEECo self-adaptation strategies.
Investigating the generalizability of our homeostasis concept with other self-adaptation
approaches (e.g. Stitch) is an interesting topic of our future work.

5 Related Work

In this paper we focus on handling run-time uncertainty in the context of sasiCPS
engineered as self-adaptive systems. We thus discuss related literature on the topics of
handling uncertainty in cyber-physical as well as self-adaptive systems, in addition to
works on solving run-time architecture problems.

Managing uncertainty has been identified as one of the major challenges in engi-
neering software for self-adaptive systems [5]. Self-adaptive systems can be affected by
different kinds of uncertainty: Requirements, design and run-time uncertainty [4]. We
reflect on the major works in uncertainty affecting self-adaptive systems. On the
requirements uncertainty level, Ramirez et al. have introduced the RELAX language
which allows to make requirements more tolerant to environmental uncertainty [18].
Esfahani et al. propose POISED – an approach based on possibility theory for handling
internal uncertainty that affects the system in making adaptation decisions [19]. Internal
uncertainty is caused by the difficulty of determining the impact of adaptation on the
system’s quality objectives. Knauss et al. contribute with ACON – a learning based
approach to deal with unpredictable environment and sensor failure [20]. It uses
machine learning to keep the context in which contextual requirements are valid
up-to-date. In contrast to the approaches discussed on handling uncertainty in
self-adaptive systems, only ACON focuses on the same kind of uncertainty as we do in
this paper – the run-time uncertainty. However, in this paper we take an architectural
view and focus on ways to evolve self-adaptive logic at run-time to counteract run-time
uncertainty, while ACON focuses on keeping requirements up to date.

On architecture-based run-time adaptation, the works by Oreizy et al. [21] on the
adaptation and evolution management and Garlan et al. on the Rainbow framework
[22] are important. Rainbow supports the reuse of adaptation strategies and infras-
tructure to apply them. A running system is monitored for violations and appropriate
adaptation strategies are employed to resolve them. However, only predesigned
strategies are used, which also do not evolve at run-time.

Elkhodary et al. present FUSION that allows a self-adaptive system to self-tune its
adaptation logic in case of unanticipated conditions [23]. It uses a feature-oriented
system model and learns the impact of feature selection and feature interaction. In
contrast to this, we do not use a learning-based approach, but advocate introducing
flexibility in self-adaptation strategies as a method to deal with run-time uncertainty.

126 I. Gerostathopoulos et al.



Villegas et al. focus on supporting context-awareness in self-adaptive systems [24].
Their DYNAMICO reference model supports dynamic monitoring and requirements
variability to allow satisfying system goals under highly changing environments.
DYNAMICO supports adaptation at the model level (i.e., control objectives, context,
and context monitors). We focus on supporting self-adaptation at the architectural level.

6 Conclusions

This paper focused on tackling uncertainty in the operating conditions of self-adaptive
software-intensive cyber-physical systems. The general idea is to equip such a system
with architecture homeostasis – the ability to change its self-adaptation strategies at
run-time according to environment stimuli. This idea was exemplified in three concrete
homeostatic mechanisms, which, when triggered, adjust self-adaptation strategies that
work at the software architecture level. The conducted experiments showed that
hoisting modification of self-adaptation strategies at the architectural level is a viable
option.

In our future work, we intend to conduct further research on the classification
algorithms to effectively determine situations that trigger homeostatic mechanisms, and
investigate, concretize, and experiment with more homeostatic mechanisms.
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Abstract. Most Software Architecture Description Languages (ADLs) lack
explicit support for executing an architecture description. In the execution view,
the runtime behavior of an architecture is simulated to validate its logic
regarding satisfaction of behavioral requirements. In this paper, we present the
executable viewpoint of SysADL, a SysML Profile for modeling the architecture
of software-intensive systems, which brings together the expressive power of
ADLs for architecture description with a standard modeling language widely
accepted by the industry, i.e. SysML. SysADL encompasses three integrated
viewpoints: structural, behavioral, and executable. This paper focuses on the
executable viewpoint that enables the description of the execution model of a
software architecture. In this viewpoint, SysADL provides an extended action
language subsuming the ALF action language based on fUML, adapted for
SysML. In this paper, we use a Central Conditioner System as a case study to
illustrate SysADL execution views.

Keywords: Architecture Description Language � Execution viewpoint �
SysML � ALF action language

1 Introduction

Architecture Description Languages (ADLs) describe a software architecture as a
configuration of components whose interactions are mediated by connectors [4].
Although more than 120 ADLs [1] have been proposed since the 1990s, most ADLs do
not support multiple viewpoints, which are essential for the stakeholders in the
industry. In addition, none of them have a broad adoption in the industry according to
the survey presented by Malavolta et al. [3], even if a few ADLs were adopted in the
industry for particular application domains. On the other hand, the Unified Modeling
Language (UML)1 is very popular in the software development community and
industry, however it has limitations for describing software architectures. Moreover, the
Systems Modeling Language (SysML)2, an evolution of UML for systems engineering,

1 http://www.omg.org/spec/UML/.
2 http://www.omg.org/spec/SysML/.
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has been increasingly used by systems engineers, inheriting the popularity of UML.
It enriches UML with new concepts, diagrams, and it has been widely adopted to
design software-intensive systems. However, in terms of architectural description,
SysML inherits the limitations of UML: architectural constructs are basically the same
as UML with the exception of richer features for the definition of ports.

The abovementioned problems motivated us to define SysADL as a specialization
of SysML to the architectural description domain, with the aim of bringing together the
expressive power of ADLs for architecture description with a standard language widely
accepted by the industry, which itself provides hooks for specialization. SysADL,
reconciles the expressive power of ADLs with the use of a common notation in line
with the SysML standard for modeling software-intensive systems, while also coping
with the ISO/IEC/IEEE 42010 Standard in terms of multiple viewpoints.

SysADL has a rigorous operational semantics, which allows the analysis (in terms
of verification of both safety and liveness properties) and execution (in terms of sim-
ulation for validation) of the architecture. It is structured according to three viewpoints:
(i) structural; (ii) behavioral; and (iii) executable. In a previous paper [2], we presented
the profile for the structural viewpoint with stereotypes to represent the well-known
architectural concepts of component, connector, port, and configuration. In another
previous paper [7], we presented the behavioral viewpoint, which complements the
structural viewpoint with the specification of behaviors for each structural element of
the architecture. However, these descriptions are not executable. To be able to execute
the architecture description, an action semantics is needed for all of them. In fact, most
ADLs lack explicit support for executing an architecture description. In the execution
view, the runtime behavior of an architecture is simulated to validate its logic regarding
satisfaction of behavioral requirements. Thus, an architecture description can be exe-
cuted, debugged, tested, and analyzed.

In this paper our focus is on the SysADL executable viewpoint that provides the
constructs to describe the execution of a software architecture. SysADL provides its
executable viewpoint by defining the execution semantics of the structural constructs
(components, connectors, and configurations), and of the behavioral constructs (actions
and activities). It also defines the data and control flow concepts for describing the body
of actions and activities. For this viewpoint, SysADL provides an extended action
language subsuming the ALF action language3 based on fUML4, adapted for SysML.
We use a Room Temperature Controller (RTC) system as a case study to illustrate the
concepts. We investigated the applicability of SysADL through two case studies and
interviews with software architecture specialists.

This paper is structured as follows. Section 2 briefly summarizes the SysADL
structural and behavioral viewpoints. Section 3 presents the executable viewpoint
of SysADL. Section 4 presents related work. Section 5 contains our concluding
remarks.

3 http://www.omg.org/spec/ALF/.
4 http://www.omg.org/spec/FUML.
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2 Overview of SysADL Structural and Behavioral
Viewpoints

SysADL defines three architectural viewpoints to communicate the architecture to the
involved stakeholders. They express the architecture from a high-level conceptual
model to an executable model. In this section we overview the structural and behavioral
viewpoints presented in previous papers, i.e. [2, 7] respectively. Section 2.1 gives an
overview of the structural viewpoint. Section 2.2 summarizes the behavioral viewpoint.
To illustrate the use of SysADL in practice, we design a software architecture to control
the temperature of a room: a Room Temperature Controller (RTC) system. It has two
temperature sensors to capture the current temperature in different areas. A user sets the
desired temperature. A central controller receives the values from the temperature
sensors, compares them with the desired temperature and turns the cooler or the heater
on or off. It also has a presence sensor to detect if there is someone in the room. In case
of presence, the system operates to provide the desired temperature. Otherwise, it
maintains 22 °C.

2.1 Structural Viewpoint Overview

The SysADL structural viewpoint specializes the SysML model elements to describe
the well-known architectural elements: component, connector, and configuration.

Component. In SysADL, a component is represented using a block classifier with a
stereotype «component» and its name and type. A component uses ports to interact
with its environment. A component can have in ports, to required data, and out ports, to
provided data. In Fig. 1 the central component of the RTC System, RoomTempera-
tureControllerCP. is connected to two TemperatureSensorCP components that give the
temperature in Fahrenheit values in their FTemperatureOPT ports. The Pres-
enceCheckerCP informs a Boolean value in the PresenceOPT port. UserInterfaceCP
delivers the user-defined temperature value in Celsius. The CoolerCP and HeaterCP
components receive the command values in their respective ports.

Port. A port is a part of a component. The data flow is represented using an arrow
inside the port square indicating its direction. For instance, the s1 and s2 components
(Fig. 1) has a current out port of the type FTemperatureOPT.

Connector. A connector links ports of components, allowing data to flow between
them. In SysADL, a connector type is defined as an association block with a «con-
nector» stereotype followed by its name and two port types as participants. The
association specifies that it can connect any component that has compatible with the
participant ports, as shown in Fig. 1, which illustrates the connectors that link each
component to the central controller. Also, in Fig. 1, most connectors are direct links
that transmit the data from an out port to an in port except for the FahrenheitToCel-
siusCN connector that has the responsibility of converting values from Fahrenheit to
Celsius value units.
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Configuration. A configuration refers to the structural organization of an architecture,
a composite component or a composite connector in terms of other components and
connectors. Figure 1 shows the definition of the architecture configuration of our RTC.

Diagram. In SysADL two diagrams organize the structural view: the block definition
diagram (bdd) and the internal block diagram (ibd). Types are defined using bdd,
architecture configurations are represented using ibd. The complete definition of the
RTC System is available at http://consiste.dimap.ufrn.br/sysadl/.

2.2 Behavioral Viewpoint Overview

The basic concepts used to represent the behavior are: activity, action, and equation.
The behavioral viewpoint includes: (i) the definition and use of activities and actions
and their data parameters; (ii) the definition and use of equations that specifies the
semantics of activities and actions by defining constraints, i.e. pre- and post-conditions,
on the data parameters. In the executable viewpoint we define the executable construct
to specify the execution body of an action.

Activity. An activity depicts the behavior of a software architecture element by
expressing: (i) how the element consumes and produces data; (ii) the basic actions that
execute that process; and (iii) the control and data that flow through the actions. An
activity type describes its pins, actions and flows. Pins are representations of param-
eters and specify a stream of data. In pins represent input parameters, while out pins
represent output parameters. Flows represent the control and data flows. It must link in
and out pins, as they represent how the data flows and control flows concurrently

Fig. 1. The software architecture configuration of RTC System
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progress from an action to another within an activity. Actions are atomic behaviors that
execute from beginning to end receiving parameters and returning a result. The
behavior also encompasses the protocol of ports and constraints.

Protocol. The behavioral specification of a port is expressed by a protocol in an
activity diagram. For instance, in the case of energy management of the temperature
sensor in the RTC System, the CTemperatureOPT port is specified to notify when the
energy level is low (represented by a threshold value).

The behavior of the SensorsMonitorCP component, depicted in Fig. 2, is defined in
terms of an activity, CalculateAverageTemperatureAC, specified in the behavioral
view. It declares the input and output parameters that are directly associated to the ports
of the component. This activity itself calls an action, CalculateAverageTempera-
tureAN. The behavior of this component is: it repeatedly waits to receive a value of
temperature in °C from port S1 and another value from port S2 (in any order) and after
calculating the average by calling action CalculateAverageTemperatureAN, it sends the
result through its port average. Both the activity and the action are specified in the
behavioral view. In the execution view, we need to complement it with the body
implementing the action specified in terms of pre- and post-conditions.

Action. An action is specified by its parameters, its pre-conditions expressed in terms
of input parameters, and its post-conditions expressed in terms of input and output
parameters. Pre- and post-conditions are expressed using equations. An example of a
post-condition is the equation expressing that the average between two temperatures is
the sum of them divided by 2 (or that 2 times the average is equal to their sum).
Figure 3. An action and its corresponding equation shows the specification of the
CalculateAverageTemperatureAN action type with three parameters (t1, t2, aver-
ageTemp), and the CalculateAverageTemperatureEQ(t1,t2, averageTemp) equation.

Fig. 2. A component and its corresponding specified activity

Fig. 3. An action and its corresponding equation
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Equation. An equation specifies the constraints that must satisfy all executions of
actions and activities. It is defined by a logical expression using the input/output
parameters, where an output parameter is calculated using the input parameters.
SysADL extends OCL (part of UML adapted to SysML) to express equation
constraints.

3 SysADL Executable Viewpoint

After having overviewed the structural and behavioral viewpoints in the previous sec-
tion, we now present the executable viewpoint of SysADL. In the behavior viewpoint
we saw how to express the activities and interactions to achieve the required system
functionality. However, that behavior is not executable. To make an architecture exe-
cutable, the executable viewpoint provides the SysADL constructs to describe the
execution semantics of the body of actions. It comprises the data and control flow
concepts. The executable viewpoint is expressed by describing the body of the actions
expressing the computation. The SysADL notation to represent the body of the actions is
based on ALF (See footnote 3), part of UML and SysML. The architect will, then, be
able to run the executable architecture description for understanding the dynamics of the
structure and observing the specified behavior via concrete executions. For filling the
behavioral semantic gap of SysML for architecture description, we defined the opera-
tional semantics of SysADL based on the π-calculus [5]. We have enhanced it with
datatypes for expressing data values and data structures, and with logical assertions for
specifying constraints, as defined in the extended π-calculus, named π-ADL [6].

3.1 The Executable Element

In SysADL, we apply the executable construct to specify the body of actions. An
executable depicts the action body by expressing: its parameters: the pins that consume
and produce data; its body: the statements that execute how the output pin is computed
from the input pins.

Figure 4 shows two examples of executables. In the left, the CalculateAver-
ageTemperatureEX executable is defined to the CalculateAverageTemperatureAN
action described in the previous section. The specification includes its parameters (t1,
t2, result) and the body that calculates the average of temperatures coming from the
inputs pins and returns the result in the output pin (result). A more complex example is
the CompareTemperatureEX executable. It defines parameters (averageTemp, tar-
getTemp, result) and the body that: (i) uses the let statement to declare the heater and
cooler variables of Command type and to initialize them with the off value; (ii) uses the
if statement to compare averageTemp with targetTemp to decide which commands
must be set to on or off and set the values of each of them; (iii) uses the new statement
to create a value that is an instance of Commands datatype; and (iv) uses the return
statement to return the Commands instance in the output pin.
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3.2 Action Language

The action language of the executable viewpoint allows the definition of the executable
action body providing statements such as assignment, for, while, if, return among
others. We will illustrate hereafter some of these statements with the RTC System. We
first illustrate variable declarations (Fig. 5). They require the specification of a type and
an optional expression that returns a value.

In Fig. 6 we show two examples of executable body. In the first example in this
figure, a search for an element (searchedTemp) is performed in a sequence of tem-
perature values in the RTC System, knowing that the sequence is stored in a variable
named temps. while is used to allow the searching loop until the searched temperature
is found. if is used to evaluate if the searched element is found. In the second example
in the same figure, it computes the sum of a sequence of temperature values in the RTC
System, stored in a variable named temps. A for declares a t to iterates over all the
elements of the temps sequence. In each iteration, t refers to an element of the sequence
(from the first to the last), and its value is added to the current sum.

SysADL provides a complete action language for describing the executable body of
actions. It is worth noting that the execution view is given by the interleaving of the
operational semantics of the description of structure, behavior and executable bodies.
The executable viewpoint, jointly with the structural and behavioral ones, is supported

Fig. 4. Two examples of executable specifications

defaultTemperature : CelsiusTemperature = 22; 
targetTemperature = defaultTemperature - 2; 
temperatures : CelsiusTemperature[] = new CelsiusTemperature[]{20,22};

Fig. 5. Variable declaration in the RTC System example
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by a tool and has been validated by as presented in this section. We have developed
SysADL Studio as a plug-in for Eclipse, an open source IDE. The applicability of the
executable viewpoint presented in this paper was validated by the description of two
executable architectures: the one of the RTC System and the one of a Parking system.
More details about can be found at http://consiste.dimap.ufrn.br/sysadl.

4 Related Work

The importance of executable architecture descriptions is recognized in several works
as a means of early validating the design of software architectures. This is also the
general trend of modeling languages, in particular with the Executable Founda-
tional UML (fUML), an intermediary between UML models and platform executable
languages. fUML allows the building of executable models. Its declarative semantics is
specified in first order logic and based on Process Specification Language. It is more
verbose than the SysADL executable language as it mixes architectural abstractions
and code that is not proper for architectural descriptions. There are several related
works on simulation of UML or SysML design models. Most of them rely on con-
verting UML/SysML models in other executable model, such as Petri Nets and
Modelica. This approach is different from ours that provides execution as a first-class
property of architectural elements and specializes ALF for providing the action
language.

5 Conclusion

In this paper we presented the executable viewpoint of SysADL, defined as a spe-
cialization of SysML based on its profile mechanism and filling the semantic variation
gaps needed for architecture description. SysADL, as a lightweight extension of an
existing standard, can be easily adopted by the software and systems community, both
from academy and industry. In addition, as SysADL enriched SysML with
ADL-related concepts, it benefits both ADL and SysML skilled architects.

found = false; 
i = 1; 
while(not found) { 
   if (searchedTemp == temps[i]) found = true;
   else i++; 
} 

sum = 0; 
for (t in temps) { 
   sum = sum + t; 
} 

Fig. 6. While and For in the RTC System example
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Abstract. Separation through hardware/software virtualization on
operating system (OS) layer reduces complexity in automotive soft-
ware. Automotive software is categorized into domains (e.g. comfort,
safety related features, driver assistance) and each domain is handled
by a separate OS, which contains domain-specific applications. A com-
mon user interface (UI) for all applications from all domains is created
through an UI-Compositor, which composites and manages the different
input/output modalities.

While interactions with a single OS with multiple applications and
input/output modalities are well known, we find that a composition of
applications from different OSs or a composition of multiple OSs into a
single UI is challenging. In this paper we investigate architectural pat-
terns for an UI-Compositor for Multi-OS environments and suggest a
new architecture that supports the concept of separation.

1 Introduction

Automotive UIs have changed a lot over the last decades. Comparing car dash-
boards from 30 years ago to today’s dashboards leaves no doubt about the sig-
nificance and impact of modern UIs. The complexity of automotive software
rises with every new generation [3]. Up to 70 % of newly introduced features are
software related [1] and categorized into domains: safety related features (e.g.
ASP, ESP), driver assistance (e.g. distance checking, lane assist) and comfort
(e.g. entertainment, navigation).

The increasing amount of features hence influences the dashboards of cur-
rent and future cars, which is possible through advances in technology (e.g. freely
programmable instrument clusters (FPKs), touch-screens, etc.). System and soft-
ware architectures have to cope with the correlated complexity and increasing
dependencies. A current approach is the separation through hardware/software
virtualization to reduce complexity and dependencies and to mitigate the risks
of interferences by separating safety critical and non-safety critical applications.

A domain represents an OS, which encapsulates domain-specific applications
and services. This is also known as Multi-OS environment. When applications
from different domains share resources, such as a common UI, a component called
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 138–145, 2016.
DOI: 10.1007/978-3-319-48992-6 10
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UI-Compositor handles the actual composition. As an example, when multiple
applications share a single screen, the screen is the shared resource and the UI-
Compositor handles the interaction with those applications and e.g. places the
graphical user interfaces (GUIs) on the screen. This central component allows
to unify interactions and provide a homogeneous user experience towards all
applications.

However, there are problems with compositing UIs from different OSs, such
as different interaction styles, different input (e.g. multi-touch instead of mouse)
or output devices (e.g. different display resolution). An UI-Compositor has to
solve those problems.

Current approaches propose software architectures that require applications
to be developed for a certain target environment and set strict rules about
how applications are connected with and composed into a unified UI. There-
fore specialized frameworks or software development kits (SDKs) are used for
the development of applications for Multi-OS environments, which support var-
ious ways of inter-VM-communication. This provides high flexibility and rich
UIs, but breaks previously intended separation concepts [7].

Considering the previous effort in the development of Multi-OS environments,
which is the separation into domains to increase security and to decrease com-
plexity and dependencies, we find that current approaches actually introduce
new issues by raising the complexity and dependencies in the overall UI.

Our contributions in this paper are: (1) a universal description of an
UI-Compositor; (2) an investigation into the tasks and problems of an UI-
Compositor; (3) a comparison of current approaches and (4) the proposal of a
new software architecture for an UI-Compositor, that complies with the concept
of separation.

2 Related Work

One of the strongest motivations for virtualization in embedded systems is prob-
ably security [4]. Embedded systems are highly integrated and their subsystems
have to cooperate to contribute to the overall function of the system. Heiser [4]
states that “isolating them from each other interferes with the functional require-
ments of the system”. While isolation, i.e. the separation through virtualization,
increases security, it is still necessary to control or interact with subsystems.

Multi-OS environments use a type one hypervisor to run different OS types
concurrently on a multi-core hardware [10, p. 167]. If OSs of mixed criticality
are used it is categorized as a mixed-criticality system. A Hypervisor assigns
hardware resources, such as peripheral devices or hardware components, to a
certain OS. Accessing resources of other OSs is therefore only possible via inter-
VM-communication. Multi-OS environments aim to improve the software archi-
tecture attributes modifiability, security, availability and testability. Interoper-
ability is required to some extent, but every interconnection might mitigate the
encapsulation of an OS and lead to a security risk [9].

Compositing can take place in different layers, such as Hardware, OS, Appli-
cation or UI layer. Higher layers depend on lower layers and lower layers define
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constraints to higher layers, which causes a variety of challenges, especially when
a homogeneous UI has to be created [6].

The compositing of GUIs of a partitioned in-vehicle infotainment system
(IVIS) is shown in [8]. Each partition, i.e. domain, provides multiple applica-
tions, which are combined in a GUI using a compositor. Applications and com-
positor communicate via inter-VM-communication and exchange pixel data and
touch events via shared memory (SHM). Plain pixel data “obviates the need to
interpret information and hence mitigate security issues such as code injection”
[8]. A homogeneous UI is integrating applications, all with their respective UI,
from different domains. These applications combined form the actual homoge-
neous UI. In order to differentiate between the overall UI and the UI provided
by an application, we call the latter UI-Artefact (cmp. [8]).

3 UI-Compositor

An UI-Compositor assembles, i.e. blends, scales or places, and provides user
interaction with the different UI-Artefacts. This includes the redirection of input
events to one or more designated applications and the composition of different
types of output.

If multiple applications use the same type of UI, the UI-Compositor has to
decide how the composition is done. Figure 1 depicts a composition of multiple
UI-Artefacts based on an example of three UIs.

The UI-Compositor is also responsible to provide the primary UI-Logic,
which includes for example the mapping of input events to a certain application.
When a GUI is displayed and a user clicks inside one of many displayed GUIs,
the UI-Compositor has to calculate/map the actual position of the mouse click
to an relative coordinate of the GUI. The application does not know, whether
its GUI is displayed in an UI-Compositor or not.

Fig. 1. Abstract representation of tasks of a compositor; UIA: User-Interface Artifact;
Key: hard-/soft-keys and/or keyboard; Red/dashed lines show decisions to be made by
the compositor. (Color figure online)
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3.1 Layers of Decision Making

If two applications on the same hierarchical layer have to negotiate about pri-
orities of each other, e.g. who’s window is to be displayed topmost, it usually
concludes in a tie. It also requires interconnections among all participating appli-
cations, which raises the complexity and dependencies.

A solution is a delegation of the decision to a higher instance (e.g. a UI-
Compositor, window manager, etc.), where contextual information is available.
This can be achieved through an implementation of UI-Logic. In case of the
Windows Icon Menu Pointer (WIMP) interaction style, the UI-Logic inside the
window manager handles all windows, including the current active window. Stor-
ing the information about the currently active window allows to determine where
keyboard events have to be sent.

3.2 Hierarchies in Multi-OS Environments

In a single OS the highest instance is determined by the OS itself. In Multi-
OS environments this is different. There is a hypervisor, which as a lower layer
manages all OS and their dedicated resources. As soon as resources, such as input
or output devices, are shared among multiple OSs, a delegation is required.

This means, that all OSs with non-shared input and output devices therefore
have no dependencies to other OSs, which is a rare case. However, in a Multi-OS
environment there are two delegations commonly made.

An input event is received in the UI-Compositor, which is the delegate of
all OSs. The UI-Compositor knows all domains and therefore the event can be
redirected to one (or more) of the given domains, which are represented by OSs.
When an OS receives an event, it redirects the event to an application.

A similar procedure has to be followed for the composition of outputs of all
applications. When an application e.g. uses an audio output, the audio stream
is mixed or regulated through the OS. The OS redirects its audio output to
an UI-Compositor, which again mixes or regulates all audio streams from all
domains.

3.3 Influence of Modalities

The amount and diversity of available interaction techniques, devices and inter-
action styles affect the UI-Compositors decision making. The following enumer-
ation provides some examples, that outline the general problem.

Pointing Devices. Pointing devices like mouse or touch screens depend on
the actual GUI output. A mouse click is associated with a GUI element,
by comparing mouse coordinates with the geometry of the GUI. If the OS
sends its complete desktop to the UI-Compositor, which is similar to a remote
desktop session, then the UI-Compositor can send back a mouse event relative
to its size. The decision of which application will receive this mouse event is
thus already made and the OS only needs to execute it.
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Hard-Keys or Keyboard. For key events in the WIMP interaction style, the
decision making already requires contextual information: the current active
window. A user selects a window and then uses the keyboard to enter text.
Another variant would be to assign a key directly to an application. This
e.g. could be a hard key to always start the navigation program. In this case
the compositor would always redirect this specific input event directly to the
respective OS.

Stream Based Input. Stream-based input types, such as an interaction via
voice or speech, have no clear action points, such as e.g. button pressed
or button released, and are more difficult to handle. A microphone records
sound waves and whether or not those sound waves include a voice or speech
has to be determined by a speech recognition component. This component
translates or interprets the given raw data continuously. Delegating would
require to pre-interpret the raw data to determine its meaning. In order to
select a certain domain, a user would have to say a keyword to choose the
domain. Afterwards, an OS might use an own speech recognition to handle
incoming raw data.

Another variant would be to only have one speech recognition compo-
nent for all domains. However, this would cause more dependencies, because
a common protocol or interface between this component and each applica-
tion would be necessary. Applications would have to define, which speech
commands they expect, so that an UI-Compositor could redirect those com-
mands. Nevertheless, multiple applications could use the same speech com-
mand, which again causes a delegation.

3.4 Other Approaches

While all of the previous variants enforce an actual decision, there are also pat-
terns that allow an alternative approach.

Hard Coded Presets. Instead of a component that decides how events are
distributed/redirected, all input and output events could be assigned fixed
or part of a specification. For example KeyX is assigned to AppY and thus
it will always be redirected to this single application. Conflicts are avoided
by specification, but this also results in less flexibility.

Priority Based. The chain of responsibility pattern for example could be used
to redirect an input event to a certain domain. Therefore all domains have to
be sorted based on their assigned priority. An input event is always send to
the domain with the highest priority first. Domains may consume an event,
which causes the event not to be send to another domain. Therefore high
priority applications always receive events.

Broadcast. Another approach could be a broadcast of all input events to all
domains at the same time. Multiple applications may expect and receive
the same input events and trigger functions simultaneously. This will cause
the UI to be unusable, because an user looses the ability to make distinct
decisions for a certain application.
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Those approaches require a predefined specification of mappings between
input event and each application. Conflicts have to be ruled out from the begin-
ning, otherwise certain events might never reach an application through priority
conflicts or multiple applications might be triggered concurrently.

4 Architecture

In the previous sections we introduced Multi-OS environments, the definition
of an UI-Compositor and showed how the hierarchic structure of an Multi-OS
environment influences the distribution of input events and the composition of
outputs. In this section we compare a standard client/server architecture with
our new architecture and show advantages as well as disadvantages in both
architectures.

4.1 Client/Server Architecture

Current implementations use a client/server architecture, where the application
as a client connects to a compositor as a server. Protocols, such as Wayland or
the X Window System, are based on this architecture.

A client/server architecture can be implemented in a Multi-OS environment,
where inter-VM-connections are used as communication channels to allow clients
from one OS to connect to a server on another OS. Applications as clients must
be aware of the compositor as a server to some extent, because a connection has
to be established.

Therefore SDKs and frameworks integrate and provide interfaces to lower
layers for inter-VM-communication. A common way is the use of virtual network
adapters, which provide access to a virtual network among all virtual machines
(VMs). Usually those networks are protected by firewalls, which are based on
a set of rules and configuration files. However, network stacks are basically re-
implemented to provide inter-VM-communication and therefore re-introduce the
same problems and complexity from standard network connections.

Interconnections between multiple applications and multiple UI-Compositors
would also create a network of dependencies among multiple OSs. They also
increase the chance of fault propagation.

Another problem in client/server architecture is that data is transferred
between client and server via serialization. This copying requires the data to
be synchronized. Multi-OS environments can actually use SHM to share data
between two OSs without serialization and copying. Synchronization mechanisms
between two OSs are the only dependency actually required.

4.2 Publish/Subscribe and Data-Container Architecture

Publish/subscribe [2, p. 242] is a concept for loosely coupled communication
partners in a network. Here, client and server do not communicate directly.
Instead both use an intermediary message broker for dispatching messages.
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Client(s) and server(s) can subscribe to messages as well as publish messages
at the same time. The format of the message is the common base. Message
subscribers are notified via the message broker as soon as new messages are
available.

Data container [11, p. 349] is another architecture that describes the use
of SHM between two processes. The data container is an area in a SHM that
contains data. The architecture defines that data is never sent to another process
via serialization or copying. Instead a data container contains the data, and the
process, that is supposed to receive this data, is notified via update events and
then reads data from the SHM. Therefore data is not copied and the receiver
will always read up-to-date data.

In our architecture we combine both architectures. A data container in Multi-
OS environments can be placed in SHM, which is shared among multiple OSs.
The SHM is partitioned and each OS owns, i.e. can write into, its assigned parti-
tion, but may read from all other partitions. In order to provide a loose coupling
between all OSs, we introduce the publish/subscribe architecture to notify OSs
about changes in a certain data container. This allows an inherently many-to-
many asynchronous communication, which is fault resilient, thus supporting the
concept of separation on OS layer.

However some changes on each OS have to be made to be able to use this
concept for an UI-Compositor. Applications have to publish their UI output to
the SHM and subscribe to input events.

Publishing UI output from applications to a SHM has to be implemented for
each OS. A local OS specific window manager could be modified to achieve that.

The data container should contain information about the provided data in
such a way, that a subscriber can determine the type of UI used. This information
is necessary to implement an UI-Logic in an UI-Compositor. This includes the
expected input (e.g. sound, multi-touch, etc.) for an application and depending
on the interaction style it might be necessary to include application states (e.g.
key stroke expected).

5 Conclusion

Interaction styles play an important role in architecture of Multi-OS environ-
ments. They define the common interfaces between application, OS and Compos-
itor. Without knowing the type of UI used by an application, an unwanted flexi-
bility in protocols has to be implemented. An exact definition of an application’s
UI, in terms of its inputs and outputs, allows to use minimal inter-connections
and well-defined interfaces, which reduces the overall complexity.

In Multi-OS environments the separation and secure encapsulation of
domains is the primary goal. Inter-connections between domains cause unwanted
dependencies and raise the complexity, which was supposed to be decreased
through separation.

Using the herein proposed compositor architecture allows a loose coupling
between UI-Compositor and applications from all domains by applying the pub-
lish/subscriber and data container architecture. Therefore applications are not
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directly connected to a server, but write content to a data container in a SHM.
Inter-VM-communication is only used to report/send notifications about changes
in certain data containers. It is therefore lightweight and neither serialization nor
copying has to be used.

The proposed architecture supports the concept of separation in Multi-
OS environments while providing loosely coupled interconnections for an UI-
Compositor.

6 Future Work

Based on our research basic prototypes to verify the suggested approach were
implemented [5]. However, a fully working UI-Compositor for Multi-OS environ-
ments with support for different interaction styles for applications from different
OSs, is a complex task that will be implemented in the future. Also examples for
voice controlled UIs in a Multi-OS environment are subject of further research.
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Abstract. Several approaches have been proposed to study and provide
information about the evolution of a software system, but very few proposals
analyze and interpret this information at the architectural level. In this paper, we
propose an approach that supports the understanding of software evolution at the
architectural level. Our approach relies on the idea that an architectural tactic can
be mapped to a number of operational representations, each of which is a
transformation described using a set of elementary actions on source code
entities (e.g., adding a package, moving a class from a package to another, etc.).
These operational representations make it possible to: (1) detect architectural
tactics’ application (or cancellation) by analyzing different versions of the source
code of analyzed systems, and (2) understand the architectural evolution of these
systems. To evaluate the proposed approach, we carried out a case study on the
JFreeChart open source software. We focused on the modifiability tactics and
we analyzed a number of available releases of JFreeChart. The results of our
analysis revealed inconsistencies in the evolution of the system and some erratic
applications and cancellations of modifiability tactics.

Keywords: Software evolution � Architectural evolution � Architectural
tactics � Tactics detection

1 Introduction

Throughout the life of a software system, developers and maintainers will modify the
source code in order to add new features, correct or prevent defects. In doing so, they
will apply many simple coding techniques and patterns but they will also occasionally
introduce higher level elements that will be meaningful at an architectural level. While
there are many proposals concerned about evolution data at a low level [1], few
approaches have been proposed to analyze and interpret this information at the
architectural level. Even though several approaches that tackle the understanding and
formalization of architecture evolution have emerged (e.g., [2–8]), there exist very few
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tools to help designers track and group a set of low-level source code changes and
translate them into a more concise high-level architectural intention. A key challenge is
that some architectural elements may not be traced easily and directly to code elements
(e.g., architectural constraints). In fact, architectural elements include extensional ele-
ments (e.g., module or component) and intensional ones (e.g., design decisions,
rationale, invariants) while source code elements are extensional [9, 10]. This con-
tributes to the absence of the architectural intention at the source code level and the
divergence of the source code from this intention. Moreover, architectural decisions are
non-local [9] and often define and constrain the structure and the interactions of several
code elements. If the developer is aware of the architectural decisions and constraints,
the changes she made to the source code will be consistent with these. In fact, some of
these changes may derive from the architecture evolution of the software and they
reveal some intentions at the architectural level.

Thus, in this work, we hypothesize that some of the architectural intentions can be
inferred from the analysis of the evolution of the source code. Clustering a set of
changes made to the source code and analyzing the results may reveal a high level
decision. We focus on object-oriented (OO) systems and modifiability tactics [11, 12]
as they involve changes that can be detected through the analysis of different releases of
a software system. Thus we propose an approach that enables detecting tactics’
application (or cancellation) in an OO system and inferring an architectural evolution
trend through the system’s evolution. To do so, we map high level descriptions of
tactics, as introduced in [11], to a number of operational representations (i.e., source
code transformations). Tactics are intensional and thus may have several operational
representations. An operational representation is a pattern of evolution described using
elementary actions on source code entities (e.g., adding a class to a package, moving a
class from a package to another, etc.) and a set of constraints describing the structure of
the system before or after these actions. Using these operational representations, we
analyze available evolution data about the source code to retrieve architectural tactics
that were applied or cancelled during development or maintenance. We developed a
prototype tool that supports our approach and experimented on a set of modifiability
tactics and a number of versions of a Java open source project.

The paper is organized as follows. Section 2 proposes some background and related
work about architectural tactics and evolution. Section 3 presents an overview of our
approach while Sects. 4 and 5 detail two key aspects of our proposal: the definition of
operational representations of tactics and the detection of their occurrences respec-
tively. Section 6 proposes a case study for our approach and discussion of the obtained
results. Finally Sect. 7 summarizes our proposal and outlines future work.

2 Background and Related Work

2.1 Architectural Tactics

Architectural tactics are design decisions that achieve quality attributes [11, 12].
Quality attributes are measurable properties that indicate how well a given system
supports specific requirements [11]. Examples of these attributes include performance,
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availability and security. Bass et al. [11] introduced the concept of an architectural
tactic as an architecture transformation that supports the achievement of a single quality
attribute. They catalogued a set of common tactics that address availability, interop-
erability, modifiability, performance, security, testability and usability. This catalog of
tactics aims to support systematic design. For instance, performance tactics aim at
ensuring that the system responds to arriving events within some time constraints while
security tactics aim at resisting, detecting and recovering from attacks [11]. Examples
of performance tactics include increasing computational efficiency, managing the event
rate and introducing concurrency. Common security tactics include authenticating users
and maintaining data confidentiality. The designer chooses the appropriate tactics
according to the system’s context and trade-offs, and the cost to implement these
tactics.

2.2 Related Work

Developing approaches and tools that support the designers in understanding archi-
tectural evolution involves many theoretical and practical challenges [20]. Several
approaches were proposed to tackle the architectural evolution of software systems.
These approaches can be classified according to their goal: (1) supporting architects in
building software evolution plans at the architectural level (e.g., [2, 3]); (2) under-
standing and visualizing the evolution [5, 6, 13, 14]; and (3) evaluating architectural
stability [4, 8]. With the goal of supporting architects in building software evolution
plans at the architectural level, the concept of evolution paths was introduced in [2, 3].
An evolution path is a sequence of intermediate architectures starting from the initial
architecture of the system and leading to the desired architecture once the evolution is
complete. These evolution paths can be represented in an evolution graph where nodes
are (intermediate) architectures and edges are transitions among these architectures. To
support the architect in finding the optimal path, the authors propose analysis based on
constraints on the path evolution and functions that evaluate the path qualities. Even if
our focus is on tactics’ detection, our work can be seen as complementary as we
analyze existing software systems to infer architectural decisions that were applied
through the evolution of these systems and to check if the changes made to a given
system represent a consistent pattern of evolution.

In [6], the authors propose a method for differencing and merging component and
connector architecture views by comparing the structural elements composing these
views. The comparison and matching between different views may help to identify
architectural violations and synchronize the views. The proposed approach does not
tackle the particular problem of identifying architectural tactics when comparing
architecture views. The case studies presented in their paper are related to the syn-
chronization of an implementation-level architecture view (obtained using architecture
recovery) with a conceptual one (described using an ADL). This feature can be per-
ceived as complementary to our work. With the focus on visualization, both [5, 13]
propose techniques that exploit source code modifications to understand software
evolution at architectural level. In particular, McNair et al. [5] propose a diagram,
called architectural impact view, which is basically an entity-relationship diagram
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enhanced with colors to depict the impact of the code changes under study on the
entities and relationships of the system (e.g., added, deleted, etc.). D’Ambros et al. [13]
describe a general schema to analyze software repositories for studying software
evolution. This schema includes three essential steps: (1) modeling various aspects of
the software system and its evolution, (2) retrieving and processing the information
from the relevant data sources, and (3) analyzing the modeled and retrieved data using
appropriate techniques depending on the targeted software evolution problem. Though
we do not target the visualization of architecture evolution, our approach follows this
general schema and we also aim to help designers and developers understand and be
aware of the architectural evolution of a given system.

Le et al. [8] propose an approach called ARCADE (Architecture Recovery,
Change, And Decay Evaluator) which relies on various architecture recovery
techniques to build different views of the analyzed system and three metrics for
quantifying architectural changes at the system-level and component-level. ARCADE
was used in an empirical study. An interesting outcome of this study was that con-
siderable architectural change is introduced both between two major versions and
across minor versions. In [4], a metric-based approach is proposed to evaluate archi-
tectural stability. To do so, the approach starts by analyzing different releases of the
system under study and extracting facts from these releases. These facts are then
analyzed using some software metrics that are indicators of architectural stability (e.g.,
change rate, growth rate, cohesion and coupling). Our approach can be complementary
to these metric-based approaches as it relies on the detection of tactics applications or
cancellations to assess the architectural evolution of software systems.

Kim et al. [14] proposed Ref-Finder, an Eclipse plug-in, that automatically detects
refactorings that were applied between two versions of a given program. To do so,
Ref-Finder extracts logic facts from each program version and used predefined logic
queries to match program differences with the constraints of the refactorings under
study. This approach is more focused on the refactorings introduced in Fowler’s book
[15]. Unlike Ref-Finder, our goal is to detect evolution patterns that match architectural
tactics and to support the designer in defining any evolution pattern that might be of
interest in her context/domain.

3 An Approach for Inferring Architectural Evolution
from Source Code

In this paper, we propose an approach that supports the detection of architectural
tactics’ application (or cancellation) and the inference of the architectural trend through
the system’s evolution. Our approach assumes that high level descriptions of tactics, as
introduced in [11], can be mapped to a number of operational representations, i.e.,
source code transformations described using elementary actions on source code entities
(e.g., adding a package, moving a class from a package to another, etc.). Once these
operational representations are identified and precisely defined, it becomes possible to
use evolution data about the source code to retrieve architectural tactics that were
applied or cancelled during development or maintenance.
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Figure 1 presents an overview of our approach which defines two processes. The
first enables the designer to specify operational representations of a given tactic; this
process is described in Sect. 4. The second process aims at supporting the designer in
analyzing the evolution trend of a software system. It uses the operational represen-
tations of tactics and the available versions of the system under study and proceeds in
three steps (numbered 1 to 3 in Fig. 1). In the first step, a differencing tool is applied to
multiple versions of the system and generates deltas that are expressed using a number
of source code changes (e.g., removed package, added package, added class, removed
class, moved class, etc.). For this purpose, our approach uses MADMatch [16] a tool
that enables a many-to-many approximate diagram matching approach. The second
step matches the generated deltas to the operational representations of tactics to detect
applied or cancelled tactics. We designed and implemented a tool TacMatch which
generates on the fly detection algorithms from the operational representations of tactics
and executes these detection algorithms to find occurrences of tactics in the analyzed
delta of the source code. In the third step, the resulting occurrences are analyzed by the
designer to infer the architectural evolution trend of the analyzed system. The whole
process is described in detail in Sect. 5.

4 Defining Operational Representations of Tactics

4.1 High-Level Descriptions of Tactics

As stated above, a tactic can be seen as a transformation undergone by software
architecture to satisfy a specific quality attribute. Thus a tactic can be described as a set
of actions that may change the structure and behavior of the components of the system.
The type and magnitude of these actions depend on the tactic and the current archi-
tecture of the system to which the tactic is to be applied. We roughly divide these
actions into two types:

Process 2: Analyzing the evolution trend of software systems

   Process 1: Defining tactics

High-level
descriptions of tactics

Computing deltas (1)

Source code 
versions

Define operational 
representations

Select tactis to be 
detected

Detecting tactics 
occurrences (2)

Architectural 
evolution trend

Analysis (3)Select versions to 
be analyzed

Operational 
representations

Deltas

TacMatch

Occurrences of
tactics’s application 

and cancellation

TacMatch

MADMatch

Fig. 1. Overview of the approach
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• Actions on components: create, delete or modify components. A component may be
modified by adding new responsibilities, deleting its responsibilities or moving
some of its responsibilities to another component.

• Actions on connectors: add, modify or remove a connector.

Consider the modifiability quality attribute. Modifiability refers to the property of
changing easily the software with a minimal cost (i.e., time and resources). Tactics that
ensure this property are linked to four concerns that impact the modifiability [11, 12]:
the size of the modules, the cohesion of the modules, the coupling between the
modules, and the binding time of modification. Thus modifiability tactics are catego-
rized according to the concern they address: reducing the size of a module, increasing
cohesion, reducing coupling between modules, and deferring binding time of modifi-
cation. We focus on these tactics as they involve actions that can be detected through
static analysis of different releases of a software system; i.e., common modifiability
tactics involve splitting responsibilities, moving them from a component to another,
introducing intermediaries between components and encapsulating components.

For instance, the modifiability tactic “Abstract Common Services” (ACS) states
that common services should be abstracted so that modifications to them would be
localized to a single module. Figure 2 gives a high level representation of this tactic.
A and B are responsibilities that can be split respectively to A’ and A”, and B’ and B”
and where A’ and B’ provide a variant of a similar service to A” and B”, respectively.
In this case, the ACS tactic merges A’ and B’ into a more general and common service
(called C in the figure) and updates A’’ and B’’ to depend on the general service.
Applying the ACS tactic enables to localize modifications of the common services and
to prevent ripple effects as changes made to a module using the common services will
not impact other modules [11, 12].

Table 1 presents the high level description of the ACS tactic in terms of actions on
architectural components and connectors.

C
A

A’’A’

B

B’’B’
Abstract Common 

Services A’’ A’B’ B’’

Fig. 2. A high level representation of Abstract Common Services, adapted from [12].

Table 1. High-level description of Abstract Common Services

Type of action High-level description

Actions on components Create C
Actions on components Move A’ from A to C
Actions on components Move B’ from B to C
Actions on connectors Modify A” to depend now on C
Actions on connectors Modify B” to depend now on C
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4.2 Operational Representations of Tactics: Actions and Constraints

High-level descriptions of tactics must be refined in order to generate concrete
design/implementation strategies, while taking into consideration the system’s context.
In this paper, we target the analysis of object oriented (OO) systems. Thus, architectural
components involved in tactics’ application are matched with the entities of the system
such as packages and classes. The responsibilities of a given component are mapped to
fields and methods implemented by the classes that are part of this component. This
mapping introduces multiple possible concrete instances for a given tactic; e.g., we
may map the modules of the ACS tactic to packages in a concrete instance and to
classes in another instance. As for architectural connectors, they are not explicitly
supported by typical OO languages [17]; they are indirectly specified through method
calls, references and events. Thus our operational representations of tactics are
expressed as a set of actions (i.e., adding, deleting, modifying and moving) on
packages, classes, methods, fields, object references, method calls and events.

Furthermore, the same set of actions may be common to different tactics. For
instance, both Split Responsibility (SR) and Abstract Common Service (ACS) tactics
involve moving responsibilities from a module (i.e., package or class in our context) to
another. However, in case of ACS, the moved responsibilities belonged to different
modules before applying the tactic while in SR the moved responsibilities belonged to
the same module before applying the tactic. To distinguish these tactics, we added a set
of constraints on the elements or actions involved in a given tactic. Thus we express an
operational representation as a set of actions on architectural elements and a set of
constraints relating these elements or actions. Once an operational representation is
defined, its cancellation is simply derived by reversing the source and destination of the
different actions and constraints used in its definition. For example, if a tactic definition
involves adding a class, its cancellation would involve deleting a class. Table 2 lists
some examples of operational representations for four modifiability tactics in the
context of an object oriented system. For instance, Table 2 lists three different oper-
ational representations of the ACS tactic.

4.3 Tool Support

To support the developer in defining the operational representations of tactics or any
other relevant evolution pattern, we use a language that resembles the natural language
and eases the translation of the concrete representations into detection algorithms. In
fact, we wanted to provide a way for a user to specify the tactics (or any targeted
evolution pattern) without having to know a specific language to do so. The user has
only to know the actions of the tactic (or any targeted evolution pattern) on architec-
tural elements and how these elements are constrained.

Thus, to define operational representations of tactics, we designed and implemented
a custom interface that was inspired by query languages such as SQL and QBE (Query
By Example). Figure 3 displays the TacMatch interface for defining operational rep-
resentations of tactics. This interface is divided into four parts: (1) the name of the
tactic and the variant if there are many variants of the tactic; (2) a selector zone that
enables the user to select the type of changes/actions the tactic introduces (i.e., a set of
predefined actions are provided to the user); (3) a filter zone that enables the user to
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Table 2. Examples of operational representations

Tactic Concrete representation (s) Tactic Concrete representation (s)

Abstract
common
services
(ACS)

P: added or existing package
C: moved classes to P
Classes in C did not belong to the
same package in the previous
release

Split
responsibilities
(SR)

P: added package
C: moved classes to P
All classes in C belonged to
the same package in the
previous release

Abstract
common
services
(ACS)

C: added class or existing class
M: moved methods to C
Methods in M did not belong to
the same class in the previous
release

Split
responsibilities
(SR)

C: added class
E: moved elements (attribute
and method) to C
All elements in E belonged to
the same class in the previous
release

Abstract
common
services
(ACS)

C: added class
Inherits C: added inheritance
All classes involved in “Inherits
C” existed in the previous release
These classes belong to at least
two different packages in next
release

Use
encapsulation
(UE)

C: added class
Inherits C: added inheritance
All classes involved in
“Inherits C” existed in the
previous release
These classes belong to the
same package in the next
release

Increase
cohesion
(IC)

C: moved classes to package
Pdest

All classes in C belonged to the
same package (Psrc) in the
previous release
Pdest existed
Cohesion of Psrc increased

Increase
cohesion
(IC)

E: moved elements (attribute
and method) to class Cdest

Cdest existed
All elements in E belonged to
the same class (Csrc) in the
previous release
Cohesion of Csrc increased

1

2

3 

4 

Fig. 3. Defining an operational representation of a tactic using TacMatch
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specify the constraints on the selected elements; and (4) the preview zone that displays
the tactic’s specification in a form similar to an SQL query1. Figure 3 displays an
example of the ACS tactic (i.e., the variant described in row 3 of Table 2) where
multiple constraints were defined by the user using the filter zone (the “+” button
enables to add a constraint at a time to the specification). These declarative specifi-
cations are used by our tool TacMatch to generate on the fly (when the user launches an
analysis of a given system) the algorithm that retrieves the set of elements (from deltas)
that match the tactic’s application. This process is described in detail in Sect. 5.2.

5 Detecting Tactics Occurrences in Software Systems

Using the operational representations of tactics and two different versions of the
software system under study, TacMatch supports the designer in detecting occurrences
of these tactics in the system. To do so, TacMatch relies on MADMatch [16], a tool
that enables diagram matching, to compute the deltas between two different versions of
the same system. TachMatch uses the operational representation to generate on the fly
detection algorithms for the tactics selected by the designer in the current analysis of
the system. TachMatch executes these algorithms on the analyzed delta of the system
and returns tactics’ occurrences or cancellations. These occurrences can be used by the
designer to carry out different types of analysis and to evaluate the architectural evo-
lution of the analyzed system.

5.1 Computing and Storing Deltas Between Versions

Our approach relies on differencing tools able to supply our technique with elementary
source code changes that we can then analyze, regroup and possibly match to archi-
tectural tactics. One such tool is MADMatch [16], which is a recent tool that takes as
input graph representations of two different versions of the source code and generates
the delta between these versions. In our case, these graphs represent class diagrams that
were recovered using the Ptidej tool suite [18]. A generated delta describes the source
code changes that occurred between the two analyzed versions (e.g., removed package,
added package, added class, moved class, etc.). Deltas are serialized in CVS files. Our
proposed tool TacMatch analyzes these CVS files to extract relevant information on the
delta and saves this information in a database to which we will ultimately send cus-
tomized queries to detect tactics’ occurrences.

5.2 Detecting Tactics Occurrences

Given a generated delta from the system under study and a set of tactics chosen by the
user for her current analysis, TacMatch retrieves corresponding tactics specifications
and generates the corresponding detection algorithms on the fly and then execute them

1 For lack of space, we do not discuss in this paper the predefined actions and constraints that
TacMatch provides, nor the specification language used to describe the tactics.
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on the delta. To generate the detection algorithms, TacMatch relies on a set of classes
that read the specification of a tactic and generate different parts of the corresponding
algorithm. Figure 4 gives an excerpt of the core classes of TacMatch, which were
organized using the Chain of Responsibility (CoR) design pattern [19]. The Selector
class enables to select occurrences of the changes undergone by the system and that
correspond to those specified in the Select clause of the operational representation of
the tactic (e.g., see the first line of the preview in Fig. 3). The Filter type defines an
interface for filtering occurrences of the changes undergone by the system according to
a given constraint; i.e., sub-classes of Filter implement different constraints. We used
the CoR design pattern so that we can instantiate and configure, at runtime, the subset
of filters that correspond to the constraints defined by the tactic at hand. Moreover,
using the CoR design pattern makes it easy to add new filters (i.e., constraints).

TacMatch’s entry point is the class TacMatchEngine which reads the tactic’s
specification as entered by the designer and generates a collection of commands cor-
responding to the lines of the specification. These commands are then used to create an
ordered list of objects that starts with an instance of the Selector class followed by a
chain of the appropriate subset of the filters. This is done using the createChain method
which relies on the FilterFactory class to instantiate and set the appropriate filter for
each command2. The appropriate selector object and chain of filters are instantiated and
ordered in a dynamic way according to the operational representation of a tactic. This
corresponds to generating on the fly the skeleton of the detection algorithm for the
given tactic. For instance, given the operational representation described in the preview
zone of Fig. 3, TacMatch generates a selector object that is set to retrieve inheritance
relationships grouped by their superclass followed by a chain of two instances of the
Existence filter3 and one instance of the Cardinality filter.

The method executeChain enables execution of the detection algorithm related to a
given tactic. This method takes as input the selection object corresponding to the tactic
and it calls first the select() method of this object to retrieve the relevant occurrences of

Filter

+ doFilter(List<Occurrences>): List<Occurrences>

Cardinality

Cardinality(cmd: Command)

Existence

Existence(cmd: Command)

Selector

Selector(cmd: Command)
select(): List<Occurrences>

FilterFactory

createFilter(cmd: Command): Filter

TacMatchEngine

read(spec: String): List<Command>
createChain(List<Command>): Selector
executeChain(Selector): List<Occurrences> successor

firstFilter

Fig. 4. Generating the detection algorithms using a chain of responsibility

2 Both the Selector and the filter classes have their own fields which are set during their respective
instantiation using the command parameter received by their respective constructor.

3 In some tactics, the same filter class can be instantiated more than once using different parameters
(i.e., commands). Moreover, we use a filter class to instantiate a constraint or its opposite depending
on the tactic’s definition.
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changes from the delta. These occurrences are then sent to the first filter referenced by
the selector object and from one filter to its successor in the chain; each filter filters the
occurrences according to the constraint it implements (i.e., using the doFilter() method)
and passes the resulting occurrences to its successor in the chain.

6 Case Study: Analyzing the Architectural Evolution Trend
of JFreeChart

Our approach aims at mapping high-level descriptions of tactics to operational repre-
sentations that can be detected at the source-code level, and inferring the architectural
evolution trend of a software system by analyzing its available versions and detecting
occurrences of the operational representations. To evaluate the effectiveness of our
approach, we implemented a prototype tool that supports the definition and detection of
operational representations and we conducted a retrospective case study using an open
source software system.

In particular, the goal of our case study was to answer the following research
questions:

• RQ1: How effective is our technique at detecting applied tactics? To answer this
question, we used our prototype tool to analyze a number of versions of an open
source Java system in order to detect a common set of the modifiability tactics.
These tactics are: Split Responsibility (SR), Abstract Common Services (ACS), Use
Encapsulation (UE) and Increase Cohesion (IC). We focused on these tactics as they
involve actions that can be detected through static analysis of different releases of a
software system. We computed the precision and recall of the obtained results by
manually analyzing the changes made to the versions under study as reported by the
differencing tool MADMatch.

• RQ2: Are we able to derive an architectural evolution trend using our
approach and interpret this trend at the architectural level? To answer this
question, we studied the detected applications and cancellations of tactics to check
if the changes made to the system follow a comprehensible pattern of architectural
evolution. We also compared the results of our detection process when applied to
major releases versus minor releases versus revisions.

Our case study is focused on the analysis of JFreeChart, a Java open source
framework which was previously studied in many publications, including the MAD-
Match paper [16]. JFreeChart is a library that supports developers in displaying various
charts in their applications and it was used to develop a number of open-source and
commercial products. We analyzed 37 versions of JFreeChart including revisions,
minor and major releases starting from version 0.5.64 till version 1.0.6. The size of the
analyzed versions varies from 26 to 141 packages and from 100 to 1196 classes.

4 In this three sequence-based schema, the first sequence is the major number (incremented when there
are significant changes to the system), the second sequence is the minor number (incremented when
there are minor changes to the system or significant bug fixes) and the last sequence is the revision
number (incremented when minor bugs were fixed).
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6.1 Effectiveness for Detecting Architectural Tactics

Overall, using the 36 deltas generated from the 37 analyzed versions we detected 103
occurrences of tactics’ applications and 33 tactics’ cancellations. To compute the
precision and recall of our results, we used the output of MADMatch to manually
identify all the changes that correspond to true tactics applications or cancellations.
Regarding the occurrences of tactics applications, we were able to confirm that 85 of
these occurrences were true positives resulting in a precision of 82.52 %. We also
identified 3 occurrences of tactics applications that our tool did not detect, resulting in a
recall of 96.59 %. Interestingly, only 19 among the 33 occurrences of tactics cancel-
lations were true positives, giving a precision of 57.57 % while manual analysis of
MADMatch’s output did not reveal any false negatives, resulting in a recall of 100 %.

These results suggest that our operational representations are effective in detecting
the application of architectural tactics but may not be enough to automatically infer
cancellations. Indeed, our simple technique for inferring the opposite evolution pattern
from an operational representation of a tactic is not enough to precisely define the
tactic’s cancellation. The opposite evolution pattern may lead to a high number of
negatives identified as positives (high recall and low precision) or to a misinterpretation
of the appropriate tactic that was cancelled. For instance, during the transition from
version 0.7.0 to version 0.7.1, the Separate Responsibility tactic was applied by moving
a number of classes from the package com.jrefinery.chart into a new package com.
jrefinery.chart.combination. However, during the transition from version 0.8.1 to ver-
sion 0.9.0, the package com.jrefinery.chart.combination was deleted and its classes were
moved back into two different packages (com.jrefinery.chart and com.jrefinery.data).
This was recognized by our detection process as a cancellation of the Abstract Common
Services tactic. Indeed, the SR tactic that was detected the first time was in fact part of
the application of an ACS that was incrementally introduced through several transitions
from versions 0.7.0 to 0.8.1 and then cancelled later in version 0.9.0. Future work is
needed to define the relationships between operational representations so that we can
aggregate and correctly interpret a number of successive applications of some tactics and
thus define and appropriately trace cancellations to tactics.

To identify the factors that influence the effectiveness of our operational repre-
sentations, we examined in detail the false results (i.e., false positives and false neg-
atives) returned by our detection process. We uncovered that all these errors were due
to the external tools MADMatch (85 %) for the deltas and PtiDej (15 %) for the reverse
engineering of the project binaries. MADMatch sometimes returns incorrect matching
in its deltas in part because its default parameters, which we used, promote recall over
precision. We decided to leave these parameters unchanged in order to get more data
for our manual analysis and thus a better approximation of the recall. Experimentation
with different parameters is planned for future work.

6.2 Detecting Architectural Evolution Trends

Regarding our second research question, we investigated the applications and
cancellations of tactics that were manually confirmed. Table 3 displays the distribution
of both tactics applications and cancellations per deltas (i.e., the table displays true
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positives). To reduce the size of the table, we have omitted the deltas that do not have
any occurrences. In purely quantitative terms, if we consider the total numbers of the
tactics that were applied (85) and those cancelled (19) through all the analyzed ver-
sions, cancellations represent 22 % of applications. We further investigated the
observed cancellations to understand the causes of such a high percentage.

Our analysis revealed that out of the 19 cancellations of tactics, 11 cancellations
were related to tactics already present in the first available release 0.5.6 while 8 can-
cellations are related to tactics that were introduced during the subsequent versions. For
instance, in the revision from versions 0.9.16 to 0.9.17, the class org.jfree.chart.ren-
derer.AbstractSeriesRenderer was introduced as a superclass for two other existing
sub-classes but was deleted two revisions later (i.e., in 0.9.19). We also observed an
interesting evolution pattern which involves the introduction, through different ver-
sions, of a number of super-classes that centralize a number of common constants and
the deletion of these classes later in other versions. For instance, from 0.8.1 to 0.9.0, the
classes CategoryPlotConstants and ChartPanelConstants (both in the package com.
jrefinery.chart) were created to centralize a number of constants. CategoryPlotCon-
stants was deleted later in the revision from 0.9.9 to 0.9.10 and its content was moved
back to the class com.jrefinery.chart.CategoryPlot. Likewise ChartPanelConstants was
deleted later in the transition from 0.9.20 to 1.0.0 and its content was moved to org.
jfree.chart.ChartPanel. This tendency to apply and cancel tactics raises some questions
about the consistency of the evolution of the system in general and its conformance to
architectural decisions in particular. In fact, this could be construed as a motivational
case for the importance of detecting architectural tactics and reminding them to
developers (especially in open-source and collaborative settings) in order to prevent
seemingly erratic modifications.

We also compared the results of our detection process when applied to the deltas
from two successive minor (respectively major) releases versus those generated by the
intermediate revisions between these minor (respectively major) versions. We presume
that if the developer consistently evolves the system through the intermediate revisions
between two successive minor (respectively major) versions, the aggregated results of
our detection process through these revisions would lead to the same result than the one
generated using the two minor (respectively major) versions. Table 4 displays the
number of occurrences of both applications and cancellations of tactics generated from
successive minor or major revisions. Similar to Tables 3 and 4 displays true positives
and it omits minor and major releases for which no occurrences were found (e.g., from
0.6.0 to 0.7.0) and successive minor releases for which there was no intermediate
revisions (e.g., from 0.5.6 to 0.6.0).

From 0.7.0 to 0.8.0, the only tactic occurrence (out of 7) that was detected in the
delta between these two minor versions but not in the revisions between them, is an
incremental application of the User Encapsulation (UE) tactic; i.e., a class (Sig-
nalsDataset) was created in 0.7.1 and an inheritance relationship was added later in
0.7.2 between this class and an existing subclass (SubSeriesDataset). As for the
detected tactics applications and cancellations from 0.8.0 and 0.9.0 (i.e., 9 occur-
rences), they match the aggregated results of the detection when applied to the revi-
sions from 0.8.0 to 0.8.1 and from 0.8.1 to 0.9.0. Finally, we found 34 occurrences of
applications and cancellations of tactics from 0.9.0 to 1.0.0 which is a major revision.
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However, the aggregation of the results from all the intermediate revisions between
0.9.0 and 1.0.0 yields 85 occurrences. We identified three main reasons for this dis-
crepancy some of which were already discussed above. First, some tactics were applied
through one or several revisions but all the entities involved in these tactics appear as

Table 3. Number of tactics applied or cancelled per deltas generated from successive versions

Delta Application of
tactics

Cancellation of
tactics

SR UE ACS IC SR UE ACS IC

v0.5.6_v0.6.0 1 2 1
v0.7.0_v0.7.1 1
v0.7.3_v0.7.4 1 2
v0.7.4_v0.8.0 1
v0.8.0_v0.8.1 1
v0.8.1_v0.9.0 3 1 1 1 1 1
v0.9.1_v0.9.2 1
v0.9.2_v0.9.3 1
v0.9.4_v0.9.5 3 5 2 1
v0.9.6_v0.9.7 1 4 1
v0.9.8_v0.9.9 1 1 1 6
v0.9.9_v0.9.10 1 1 1
v0.9.11_v0.9.12 1 1 1 2
v0.9.12_v0.9.13 1 2
v0.9.13_v0.9.14 2 1
v0.9.14_v0.9.15 1 1
v0.9.15_v0.9.16 1 1
v0.9.16_v0.9.17 2 5
v0.9.18_v0.9.19 3 2 2 1
v0.9.19_v0.9.20 1
v0.9.20_v1.0.0 9 3 2 4 2 1
v1.0.2_v1.0.3 1
v1.0.4_v1.0.5 1
v1.0.5_v1.0.6 1

Table 4. Number of tactics applied or cancelled per deltas generated from successive minor or
major versions

Delta Application of
tactics

Cancellation of
tactics

Total

SR UE ACS IC SR UE ACS IC

v0.7.0_v0.8.0 2 5 7
v0.8.0_v0.9.0 4 1 1 1 1 1 9
v0.9.0_v1.0.0 10 5 14 1 4 34
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added in the major revision (i.e., the evolution pattern is visible through revisions but
not at the major versions level). For example, the UE tactic was incrementally applied
by adding a set of classes (e.g., ObjectList) in the revision from 0.9.9 to 0.9.10 and their
superclass (AbstractObjectList) in the revision from 0.9.11 to 0.9.12. This whole
evolution pattern is not detectable when we analyze the delta from 0.9.0 to 1.0.0; the
entire inheritance hierarchy appears to be newly created at the same time. Second, some
tactics were applied in an incremental way through changes spread over several revi-
sions starting from the revision 0.9.0. These occurrences are only detectable when we
analyze the delta from 0.9.0 to 1.0.0. Finally, as discussed before, several tactics were
applied and then cancelled through the revisions; these tactics are not present at major
versions level.

6.3 Threats to Validity

External validity: Our case study was carried out on a subset of the modifiability
tactics that we were able to detect through static analysis of different releases of a
software system. This is possible for most of the modifiability tactics and some other
tactics such as exception handling (for availability) and creating additional threads or
reducing the number of iterations (for performance). However, other tactics may
require a dynamic analysis of the code or are even not present in the source code (e.g.,
increasing computational efficiency or maintaining multiple copies of data). Thus, our
approach is limited to those tactics that have an observable impact on the source code.
As future work, we plan to extend our work to other tactics and identify precisely the
type of tactics to which our approach may be applied.

Internal validity: Some tactics (e.g., ACS) may be composed of several other more
elementary tactics (e.g., SR). Since we did not implement yet a mechanism that enables
to relate and aggregate detected tactics through a number of releases, we tend to
interpret each detected tactic locally and individually. This may have an impact on our
interpretation of the overall architectural evolution trend. Thus, as discussed in
Sect. 6.1, future work is needed to define the relationships between operational rep-
resentations and exploit these relationships to correctly aggregate and interpret a
number of successive applications of related tactics. Finally, our results are dependent
on the effectiveness of the other tools used, notably MADMatch that was used to
compute the deltas. We selected MADMatch because it is a recent tool which com-
pared favorably to other techniques [16] but other tools may provide different (better or
worse) results. Future work is planned for experimentation with different parameters of
MADMatch and different tools.

7 Conclusion and Future Work

In this paper, we present a first iteration of a tool-supported approach that allows the
definition and detection of architectural tactics or more general evolution patterns using
basic changes extractable from the differencing of software versions. Once these
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architectural tactics or patterns are defined, our technique automatically generates
algorithms able to parse the differencing data in order to detect occurrences of the
application or cancellation of these tactics. A case study conducted on a well-studied
open source system (JFreeChart) suggest that the technique is effective at detecting the
occurrences of the application of defined tactics but is not as successful at detecting
their cancellation. While few occurrences of these tactics are missed by our technique,
there is some noise (lack of precision), especially for the detection of cancellations.
Many of these errors are related to the parameterizing of the external tool selected to
provide differencing data. Nevertheless, the study revealed many instances of cancel-
lations of tactics that may be ill-advised and could have been prevented if the devel-
opers had access to the history and present of tactics involving the code they are
working on or plan to work on.

The conclusions of this study are still preliminary and future work with case studies
involving different parameters, tools and systems is needed to confirm our findings.
Additionally, we intend to experiment with more evolution patterns and eventually
discover desirable or harmful patterns through analyses of the change and defect
proneness of the components they involve.
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Abstract. Software systems need to be continuously maintained and
evolved in order to cope with ever-changing requirements and environ-
ments. Introducing these changes without stopping the system is a criti-
cal requirement for many software systems. This is especially so when the
stop may result in serious damage or monetary losses, hence a mechanism
for system change at runtime is needed. With the increase in size and
complexity of software systems, software architecture has become the cor-
nerstone in the lifecycle of a software system and constitutes the model
that drives the engineering process. Therefore, the evolution of software
architecture has been a key issue of software evolution research. Archi-
tects have few techniques to help them plan and perform the dynamic
evolution of software architecture for real-time systems. Thus, our app-
roach endeavors to capture the essential concepts for modeling dynamic
evolution of software architectures, in order to equip the architects with
a framework to model this process.

1 Introduction

With daily changes in technologies and business environments, software systems
must evolve in order to adopt to the new requirements of these changes. Gen-
erally, the software evolution is a complex process that requires a great deal
of knowledge and skills. This is due to the fact that all artifacts produced and
used in the software development life-cycle are subject to changes. Since software
systems change fairly frequently, it is essential that their architectures must be
restructured. With the increase in size and complexity of software systems, the
computing community acknowledges the importance of software architecture as
a central artifact in the lifecycle of a software system. In this respect, the archi-
tecture is specified early in the software lifecycle, and constitutes the model that
drives the engineering process [10]. In the evolution process, architecture can
elucidate the reason behind design decisions that guided the building of the sys-
tem. Moreover, it can permit planning and system restructuring at a high level
of modeling, where business goals and quality requirements can be ensured and
where an alternative scenario of evolution can be explored. Modeling architec-
ture evolution process can support architects in representing reusable practices
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 166–174, 2016.
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in a domain-specific architecture evolution. Accordingly, the termevolution style
has been introduced (Oussalah et al. [2]) as an approach, the aim of which is
to capture the main characteristics of a set of activities performed for evolving
software architecture. It defines the set vocabulary of concepts necessary in order
to model the potential scenarios for evolving a domain-specific software archi-
tecture. These scenarios can be grouped together as a library of evolution styles.
Both the analysis and comparison of scenarios will assist architects in choosing
an evolution scenario for a future evolution [1].

Software evolution is a complex and multifaceted process that requires a
number of techniques and skills. This is particularly so when it is required to
introduce these changes without halting the system. Some critical issues like
synchronous task handling, schedulability analysis, consistency and integrity for
dynamic evolution of a real-time system deserve further exploration.

In our previous work [1], we presented the Meta-Evolution Style MES for
modeling software architecture evolution (static evolution style), but we did
not delve into the dynamic aspects of this process. Therefore, in this paper, we
endeavor to probe more deeply into the issues and rules which must be considered
when handling dynamic evolution of software architecture in order to extract the
needed information, which will be annotated with MES to fulfill the dynamic
evolution style. The research ultimately intends to establish a foundational step
of a generic process framework for dynamic evolution of software architecture
that could provide a means to facilitate analysis and to formally model software
architectures and their dynamic evolution processes. Likewise, this framework
should provide reusable concepts that could express the way(s) to dynamically
evolve software architecture and provide the means to compare these different
trajectories.

The rest of the paper is organized as follows. Section 2 briefly reviews
related works. Section 3 discusses the real-world issues in integrating architecture
changes at run-time [3]. Section 4 extends the meta-evolution style to embrace
the concepts of dynamic evolution. Finally, the paper contributions are summa-
rized in Sect. 5.

2 Related Work

The necessity of introducing change at runtime has resulted in different architec-
ture centric approaches for dynamic evolution. Dowling and Cahill [17] present
the K-Component model as a reflective framework for building self-adaptive
systems. K-Components are components with an architecture meta-model and
adaptation contracts to support their dynamic reconfiguration. Cuesta et al.
[16] present a reflective Architecture Description Language (ADL) named PiLar
which provides a framework to describe the dynamic change in software architec-
ture. It consists of a structural part and a dynamic part, which defines patterns
of change. Costa-Soria et al. [12] define a reflective approach for supporting
dynamic evolution of architectural types in a decentralized and independent
way. Their approach is applied to ADL, in particular to the PRISMA meta-
model, in order to develop an evolveable component type that is provided with
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an infrastructure to support its evolution at run-time. Romero in his PhD the-
sis [13], develops a component-based framework support safety replacing the
real-time components. The approach implementation is integrated in the OSGi
platform in order to exploit the OSGi capabilities like load and unload of code
at runtime, and enhances the framework with all the required elements to pro-
vide a safe component replacement for real-time characteristics by supporting
on-line schedulability analysis. Richardson [9] presents an extension of the OSGi
Framework in order to be able to perform dynamic reconfiguration of real-time
systems. He proposes an RT-OSGi that can be used to develop real-time sys-
tems which are dynamically reconfigurable: by integrating the OSGi Framework
with the Real-Time Specification for Java (RTSJ). Unlike these approaches,
our work attempts to develop a framework to model such activities and tech-
niques in dynamic evolution of software architecture. This can support architects
in analyzing and better understanding the process of introducing changes at
run-time.

3 Issues in Dynamic Software Architecture Evolution

Irrespective of the mechanism of an evolution model that is used to perform the
dynamic architecture evolution, some issues [3] should be addressed by any app-
roach in order to efficiently handle the dynamic evolution process. This section
presents these issues in order to annotate MES with the required information,
which will be extracted from these issues to fulfill the requirements of dynamic
evolution modeling.

3.1 Safe Stopping of Running Artifacts

One of the main issues that must be considered when handling dynamic evolution
is to leave systems in a consistent state after a change is performed. Evolving
an artifact at runtime without considering its thread may disrupt or suspend
its service for an arbitrarily long time, which can lead real-time tasks to miss
some deadlines. Detecting when it is safe to actually evolve the artifacts is a
crucial key to guarantee that the system will not encounter an inconsistent state.
Therefore, various strategies have been defined in order to tackle this issue,
namely Quiescence [4] and Tranquility [5]. They differentiate the passive state
from the active state of software artifact and assume that an affected artifact
should be placed into a passive state before performing the evolution operation.

Generally, a real-time system consists mainly of a set of elements which
provide or/and create real-time services (threads). These real-time tasks can be
periodic, aperiodic or sporadic [15], depending on how their corresponding jobs
are activated. The passive elements in a real-time system are those that do not
have any execution thread, but typically provide services for other elements.
The quiescence and tranquility techniques can fit the dynamic evolution of these
passive elements. On the contrary, the active elements are those that have active
real-time threads; these techniques [4,5] require that elements should be shifted
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into a passive state in order to be modified. This means that the real-time
threads in the element would need to be suspended, thus potentially resulting
in deadline misses for the threads of the element being under evolution. This
behavior is, of course, undesirable for hard real-time systems. Therefore, the
evolution operation should respect the timing constraints of the active element
that is subject to change. In this respect, the evolution operation execution time
is part of the timing constraints of the real-time system itself. Therefore, it must
not exceed the safe state time of this element, i.e. the maximum duration of the
evolution operation should be less than the minimum separation between two
consecutive jobs of this element’s task.

3.2 Transferring State

Another crucial issue of system consistency that should be considered when
addressing a dynamic evolution is that of handling stateful elements (components
that may have internal information, or connectors that may have buffers full of
messages [6]). In the case of replacing elements, information integrity requires
that the state of the old element must be transferred, or possibly transformed
(in the case the data structure is different), to the new element. Meanwhile, this
step is not required for the replacement of stateless elements. This activity can
be more complex if the internal structure of the two elements is different, which
requires identifying and extracting the relevant data from the old element. These
date will be modified to fit the new element.

Practically, it is difficult to develop a generic abstract that can fit the inter-
nal data structure for all the system elements, in order to store the state of any
element during its evolution. Therefore, preserving and transferring or trans-
forming the internal state of elements is a specific step. Thus, if a transfer state
is required, this process should be specifically remedied with each operation.

3.3 Change Management

Another issue in dynamic evolution is relevant to the mechanism to preform this
process and how the changes are driven (activeness of change), how evolution
events can be detected, then how the suitable reactions can be effected. More
accurately, it relates to how this process can be managed.

Generally, the software system can be reactive (changes are driven exter-
nally), or proactive (drives changes to itself) [7]. Thus, either the system is
instrumented with change management, or with an interface to allow an exter-
nal agent to dynamically introduce the changes. In dynamic evolution, manage-
ment can be represented as an evoluter (Role) who is responsible for dynamically
performing the evolution. This can be formulated as a controlling system that
monitors a controlled system in order to detect and analyse an evolution event
when it occurs on the controlled system or its environment to select or synthesize
the appropriate action or scenario of evolution. The dynamic MES should pro-
vide a modeling concept to express both the controlling techniques for proactive
and reactive system.
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3.4 Dynamic Evolution Scheduling

The issue of the timing constraints is more important when we handle a dynamic
evolution of a hard real-time system, which needs to maintain high levels of
application availability. In fact, whatever the change management system be
used, the dynamic evolution operation is considered as a real-time task, and
once this unscheduled task occurs, it should not affect the timing constraints of
system’s tasks.

System tasks are scheduled and executed according to their dynamic pri-
orities. Indeed, whatever the system tasks are, the evolution operation should
interact/behave without compromising the system tasks’ completion. Generally,
tasks in a hard real-time system have higher priority than the evolution oper-
ation, which is usually handled as a background task (with lower priority). In
this aspect, if a background priority task is used to evolve an element, this evo-
lution task can be preempted by any higher priority task (including a task from
the element under evolution), which can lead to an unsafe state or loss of the
internal state of the element. Therefore, an evolution task should directly derive
its priority from the element that undergoes its change. Thus, the management
change should be able to safely handle the evolution tasks while still guaran-
teeing the timing constraints of the system, e.g. it should dynamically prioritize
this unexpected event (evolution operation) within the system threads.

Furthermore, in the replacement and addition operations, it is necessary
to guarantee that the new element threads have taken over the role of the
old element threads without deadline violation, which also requires a dynamic
rescheduling in order to integrate the new element threads with the rest of the
system’s threads in the scheduler.

4 Dynamic Meta Evolution Style

MES consists in defining foundational meta-concepts for describing a software
architecture evolution. These essential concepts were used in modeling and ana-
lyzing static evolution styles [1]. MES can be refined to any other kind of archi-
tecture evolution. In this sense, the intent is not to define a new meta style for
modeling dynamic evolution of real-time and embedded systems, but to annotate
MES with information required to analyze and model this process. Hence, this
work focuses on integrating the concepts of dynamic interaction and schedula-
bility analysis into evolution styles. Figure 1 illustrates our proposition to extend
MES with the necessary information to fulfill the requirement for modeling the
dynamic evolution styles (gray boxes refer to MES elements; white boxes refer
to proposed additional elements). Actually, dynamic evolution of a real-time
system requires introducing changes in bounded time. Managing and perform-
ing this process without violating the timing constraints is more complex. This
requires a fast, interactive Role (intelligent change management) which mini-
mizes or eliminates the human intervention Role and shifts it from operational
to strategic. Thus, the Role in dynamic MES should support the concept of
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an automatic Role either as an internal instrument or an external agent. That
satisfies the change management requirement for dynamic evolution.

Fig. 1. Dynamic-evolution style

Indeed, the needs of an architectural element to change are required when
an evolution event has occurred. Therefore, the unexpected evolution events
must be assigned with their potential scenarios of reactions (evolution paths). A
strategy to synthesize the suitable reactions is defined such that all the affected
elements complete within their deadlines. In this sense, each evolution path con-
sists of a series of evolution operations and represents one choice to evolve the
architecture from the current state to the target state. Therefore, each simple
evolution operation must have a dynamic interface which provides the necessary
parameters (priority, time execution) in order to be safely handled and not cause
timing misbehavior. Several scheduling methods for the handling of unexpected
events in real-time systems have been proposed in the literature in order to ser-
vice aperiodic requests, where a set of hard aperiodic tasks is scheduled using the
Earliest Deadline First (EDF) algorithm [8]. Among them, the Total Bandwidth
Server (TBS) [14] and Earliest Deadline as Late as possible server (EDL) [11]
both provide an efficient aperiodic service under EDF. In TBS, worst-case execu-
tion time of aperiodic requests must be known in advance (which is not the case
of care evolution operation). That is why we will turn to EDL to dynamically
schedule this unexpected event jointly with the system threads. Thus, the Oper-
ation should provide the necessary parameters that are needed by a dynamic
scheduling algorithm in order to be scheduled.
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The architectural element that can be changed at its active state must also
have the suitable (dynamic) interfaces to provide the required parameters in
order to be dynamically evolved. An interface is needed to handle the internal
state of the element during the replacement Operation. Another interface is also
needed to provide the time parameters for guaranteeing the safe stopping. These
scheduling parameters are required by the scheduler to dynamically schedule the
evolution operation and the threads of the new elements: Worst Case Execution
Time (WCET), deadline and release time. These parameters allow the schedu-
lability analysis of dynamic evolution of hard real-time systems.

Role: Generally, a Role is responsible for the evolution operation that performs
the changes. Managing and performing at run-time requires a highly interactive
Role (external agent or internal instrument).

Dynamic Operation: A dynamic evolution operation can be a simple evolu-
tion like add or delete, or a composite one like replacement. A dynamic evolution
process should be expressed in such a way that it supports both kinds of active-
ness, namely proactive and reactive. This can be achieved by separating evolution
requests (Events) from the evolution mechanisms (Actions). Therefore, the con-
struct of evolution operation is based of the ECA rules “On Event If Condition
Do Action At Time” which means: when an evolution Event occurs, if Condi-
tion is verified, then execute suitable Action at appropriate time. The dynamic
operation must offer a dynamic interface (plan) which provides relevant run-time
parameters that are needed to schedule the operation as soon as possible within
the system tasks.

Dynamic Architecture Elements: An architecture element must be evolu-
tionary open, which means it has an interface with the necessary parameters
that enables it to dynamically react to evolution operation. An element should
be able to provide its scheduling parameters to allow the Role to dynamically
effect the changes without breaking the timing constraints of the system.

Interaction: In fact, the dynamic evolution is a real-time task, so the inter-
action element must guarantee that evolution Operations are subject to the
timing constraints. The interaction element ensures the availability of required
interfaces and parameters among elements (Operation, Architecture Element,
Role) in the process.

Dynamic Interface: A dynamic element should have appropriate interface
which provides the required parameters to efficiently interact at run-time. Such
an interface is required, for example, to allow the Instrument (the Role in self-
managing system) to observe an architecture element in order to detect any
evolution event or to determine the appropriate time to effect the changes.

Process: Represents the dynamic configuration of the evolution elements which
transfers a software architecture from its current architecture style to a target
style. This configuration provides the temporal and topological organizing of
evolution operations while respecting the consistency and integrity of the archi-
tecture elements.
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5 Conclusions

In this paper, we propose a dynamic evolution style for specifying the dynamic
evolution for software architecture. Our intent is to provide a style sufficiently
rich to model the dynamic changes in software architecture of a real-time system
and to be able to represent the potential ways of performing these changes. To
better realize this intent, we integrate the behavior concepts of dynamic changes
into the MES so we can have a sound understanding of dynamic evolution issues
and constraints, which is a prerequisite to developing a modeling environment
that supports dynamic evolution styles. Our ongoing work is devoted to devel-
oping this environment.
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Abstract. Component & connector architecture description languages
(C&C ADLs) provide hierarchical decomposition of system functional-
ity into components and their interaction. Most ADLs fix interaction
configurations at design time while some express dynamic reconfigura-
tion of components to adapt to runtime changes. Implementing dynamic
reconfiguration in a static C&C ADL by encoding it into component
behavior creates implicit dependencies between components and forfeits
the abstraction of behavior paramount to C&C models. We developed
a mechanism for retrofitting dynamic reconfiguration into the static
C&C ADL MontiArcAutomaton. This mechanism lifts reconfiguration
to an architecture concern and allows to preserve encapsulation and
abstraction of C&C ADLs. Our approach enables efficient retrofitting
by a smooth integration of reconfiguration semantics and encapsulation.
The new dynamic C&C ADL is fully backwards compatible and well-
formedness of configurations can be statically checked at design time.
Our work provides dynamic reconfiguration for the C&C ADL Monti-
ArcAutomaton.

1 Introduction

Component & connector (C&C) architecture description languages (ADLs) [1,2]
combine the benefits of component-based software engineering with model-driven
engineering (MDE) to abstract from the accidental complexities [3] and nota-
tional noise [4] of general-purpose programming languages (GPLs). They employ
abstract component models to describe software architectures as hierarchies of
connected components. This allows to abstract from ADL implementation details
to a conceptual level applicable to multiple C&C ADLs.

In many ADLs, including MontiArcAutomaton [5], the configuration of C&C
architectures is fixed at design time. The environment or the current goal of the
system might however change during runtime and require dynamic adaptation
of the system [6] to a new configuration that only includes a subset of already
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existing components and their interconnections as well as introduces new com-
ponents and connectors. To support dynamic adaptation, a C&C architecture
either has to adapt its configuration at runtime or it must encode adaptation
in the behaviors of the related components. This encoding introduces implicit
dependencies between components and forfeits the abstraction of behavior para-
mount to C&C models. It imposes co-evolution requirements on different lev-
els of abstraction and across components. Dynamic reconfiguration mechanisms
and their formulation in ADLs help to mitigate these problems by formaliz-
ing adaptation as structural reconfiguration. This ensures that components keep
encapsulating abstractions over functionality.

We develop a concept for retrofitting controlled dynamic adaptation into
the static C&C ADL MontiArcAutomaton. The concept lifts reconfiguration to
the conceptual level of components and connectors to preserve the fundamental
abstraction and encapsulation mechanisms of C&C ADLs. It is controlled in the
sense that it enables a restricted dynamism to benefit from greater run-time
flexibility without loosing the validation properties of static configurations and
their testability. Our concept enables efficient retrofitting by a smooth integra-
tion of reconfiguration semantics and encapsulation. It is implemented in the
C&C ADL MontiArcAutomaton and its code generation framework. Our design
for retrofitting reconfiguration kept changes to the language and code generation
local and the resulting dynamic C&C ADL is fully backwards compatible.

Section 2 gives an example to demonstrate benefits of dynamic reconfigura-
tion. Afterwards, Sect. 3 introduces our concept of controlled dynamic recon-
figuration for MontiArcAutomaton and describes its implementation. Section 4
discusses our approach and compares it to related work and Sect. 5 concludes.

2 Example

Automatic transmission is a commonly used type of vehicle transmission, which
can automatically change gear ratios as a vehicle moves. The driver may choose
from different transmission operating modes (TOMs) such as Park, Reverse,
Neutral, Drive, Sport, or Manual while driving. Depending on the chosen TOM,
a transmission control system decides when to shift gears.

A C&C architecture might provide one component for each different shift-
ing behavior. If the architecture is static, components must exchange control
information at runtime to decide whether they take over the shifting behav-
ior. The architect then has to define and implement inter-component protocols
for switching between different behaviors. Dynamic reconfiguration enables to
model structural flexibility in composed software components explicitly. Here,
the transmission control system’s architecture uses only components related to
the selected transmission operating mode by reconfiguring connections between
components as well as by dynamic component activation and instantiation.

Figure 1 (top) depicts a C&C model showing the composed component
ShiftController. It contains the three subcomponents manual, auto, and
sport for the execution of different gear shifting behaviors and the subcom-
ponent scs for providing sensor data comprising the current revolutions per
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Fig. 1. Three configurations of the ShiftController component. Top: initial con-
figuration. Middle: configuration for shifting gears during the transmission operating
mode Sport. Bottom: configuration for shifting gears during the transmission operat-
ing mode Manumatic.

minute (rpm), the vehicle inclination (vi), and the throttle pedal inclination
(tpi) encoded as integers. The component ShiftController has an interface
of type TOM to receive the currently selected TOM and one interface of type
GSCmd to emit commands for shifting gears. Immediately after engine start up
all subcomponents are neither active nor connected (top configuration). Once the
currently selected TOM is known to component ShiftController, it changes
its configuration accordingly and starts the contributing subcomponents (bottom
configurations). While the currently selected TOM is Sport (bottom left con-
figuration), only subcomponents scs and sport are active to emit sensor data
and commands for shifting gears, whereas only subcomponent manual is active
when the currently selected TOM is Manumatic (bottom right configuration).
Making the active components and connectors explicit increases comprehensibil-
ity of the architecture. The deactivation of components at runtime has further
practical benefits, such as saving computation time and power consumption.

3 Retrofitting Controlled C&C Reconfiguration

We present a concept for retrofitting dynamic reconfiguration into the Monti-
ArcAutomaton ADL [5]. All possible component configurations and their tran-
sitions are defined at design time, which allows static analysis to prevent mal-
formed configurations from being deployed. At runtime, the reconfiguration is
applied when pre-defined conditions for reconfiguration are met. No configura-
tion validity changes are required at runtime. The reconfiguration mechanism
is self-directed and pre-defined: Initiation and application of dynamic reconfig-
uration can only be applied by a component itself. This allows independent and
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reusable specifications of composed components. All reconfiguration possibilities
are specified and fully available in the reconfiguring component. This facilities
analysis and application. In addition, our approach enables component instanti-
ation and removal to gain greater flexibility.

This section describes preliminaries on the MontiArcAutomaton ADL, an
overview of our concept, and its implementation within MontiArcAutomaton.

3.1 The MontiArcAutomaton ADL

MontiArcAutomaton [5] is an architecture modeling infrastructure comprising
the MontiArcAutomaton C&C ADL [7] as well as model transformation and
code generation capabilities. The MontiArcAutomaton ADL enables to model
C&C architectures as hierarchies of connected components. Components are
black-boxes that consume input messages and produce output messages. Atomic
components employ embedded behavior models or attached GPL artifacts to
perform computations. The behavior of composed components emerges from the
interaction of their subcomponents. These interact via unidirectional connectors
between the typed ports of their interfaces. Components and connectors cannot
be instantiated, nor removed at runtime. The data types of ports are defined in
terms of class diagrams. The MontiArcAutomaton ADL distinguishes component
types from instances, supports component configuration, and components with
generic type parameters. Its infrastructure supports transformation of platform-
independent architecture models into platform-specific models and composition
of code generators to reuse generation capabilities for different aspects.

3.2 Overview: Component Modes for Dynamic Reconfiguration

Our approach for modeling dynamic reconfiguration relies on explicit modes,
which fully define possible configurations. A mode is a configuration of a com-
posed component and components can only switch between their pre-defined
modes. In modes, we distinguish subcomponent instantiation and activation: the
lifecycle of instantiated subcomponents ends with any mode switch, while deac-
tivated subcomponents retain their state between modes. Components switch
between their modes via mode transitions, which are again fixed at design time.
Each mode transition consists of a source mode, a target mode, and a guard
expression (e.g., over ports of the composed component and its direct subcom-
ponents). Intuitively, when the source mode equals the current mode of a corre-
sponding component instance, and the guard is satisfied, reconfiguration to the
target mode takes place. The mode transitions of a component define a state
machine over the state space of component modes with input of data messages
observable within the component.

MontiArcAutomaton distinguishes component types and instances. Modes
and mode transitions are defined on the component type level of MontiArc-
Automaton. However, at runtime each component instance reconfigures itself
independently based on its current mode and observable messages. Thus there
is no synchronization overhead induced by component types.
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MontiArcAutomaton

1 component ShiftController {
2 port in TOM tom, out GSCmd cmd;
3

4 component ManShiftCtrl manual;
5 component AutoShiftCtrl auto;
6 component SCSensors scs;
7

8 mode Idle {} mode Manumatic { /* ... */ } mode Auto { /* ... */ }
9

10 mode Sport, Kickdown {
11 activate scs;
12 component SportShiftCtrl sport;
13 connect scs.rpm -> sport.rpm; connect scs.vi -> sport.vi;
14 connect scs.tpi - sport.tpi; connect sport.cmd -> cmd;
15 }
16

17 modetransitions {
18 initial Idle;
19 Idle -> Auto [tom == DRIVE];
20 Auto -> Kickdown [scs.tpi > 90 && tom == DRIVE];
21 Kickdown -> Auto [scs.tpi < 90 && tom == DRIVE]; // further transitions
22 }
23 }

Listing 1. Excerpt of the ShiftController component type definition with five
modes (ll. 8–15) and a mode transition automaton (ll. 17–22).

3.3 Defining Component Modes

The C&C core concepts identified in [1] and implemented in MontiArc-
Automaton consist of components with interfaces, connectors, and architec-
tural configurations (i.e., topologies of subcomponents). In MontiArcAutomaton,
architectural configurations are defined locally within composed components. For
dynamic reconfiguration we extend the existing single component configuration
with multiple modes, where each mode expresses one configuration. We continue
the ShiftController example depicted in Fig. 1 in MontiArcAutomaton syn-
tax with support for modes shown in Listing 1.

Subcomponents with instances shared between multiple modes are defined
in the body of the composed component and can be activated or deactivated in
modes. As an example, the subcomponent scs of type SCSensors is defined
in Listing 1, l. 6 and activated in modes Sport and Kickdown in l. 11.
Subcomponents are deactivated by default, e.g., subcomponents manual and
auto, ll. 4–5 are deactivated in mode Sport, ll. 10–15. In addition, subcompo-
nents can be instantiated when entering a mode and destroyed when switch-
ing to another mode. As an example, instances of subcomponent sport of
type SportShiftCtrl as defined in l. 12 are unique to modes Sport and
Kickdown. Connectors between components are defined for each mode.

For each mode we can determine at design time whether the expressed con-
figuration is a valid MontiArcAutomaton component configuration. In addition
some well-formedness rules need to be checked: (1) Each mode of each composed
component type has a unique name. (2) Each subcomponent instantiated in a
mode has a unique name in the context of the component containing the mode.
(3) Each subcomponent instance referenced in a mode exists.
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3.4 Defining Mode Transitions

Composed components with multiple modes change their configuration based on
observable messages. The messages observable by a component are messages on
its own ports and messages on ports of its subcomponent instances.

All mode transitions are defined locally within the composed compo-
nent. An example is shown in Listing 1, ll. 17–22. Following the keyword
modetransitions, the mode automaton contains a single initial mode decla-
ration (l. 18) and multiple transitions (ll. 19–21). These describe mode switches
and their conditions in guard expressions. Guard expression are written in a
language resembling expressions in an object-oriented GPL (e.g., it uses dot-
notation to reference messages on ports of components).

The following well-formedness rules apply for the definition of mode tran-
sitions: (4) Each composed component type has exactly one initial mode. (5)
The subcomponent interface elements referenced in guards exist. (6) Modes ref-
erenced in transitions exist in the containing component.

3.5 Implementation Details of Retrofitting

We now highlight some implementation details of retrofitting dynamic reconfig-
uration into the MontiArcAutomaton infrastructure.

On the language level, modes reuse existing modeling elements for subcompo-
nents, ports, and connectors. Mode transitions reuse the automata modeling ele-
ments presented in [7], which allowed us to reuse existing well-formedness rules
of the MontiArcAutomaton ADL to describe the static semantics of dynamic
reconfiguration. We added the well-formedness rules described above.

We extended the existing code generators [5] to enable integration of
dynamic reconfiguration with the dynamic semantics of MontiArcAutomaton.
Due to localizing the impact of reconfiguration in composed components only,
retrofitting into code generation was straightforward. The extended MontiArc-
Automaton ADL and the generated code are backwards compatible because we
could transfer the encapsulation of reconfiguration from the model level to the
code level.

4 Discussion and Related Work

The importance of dynamic reconfiguration has long been recognized [8] and
is implemented for multiple ADLs [9–17]. Nonetheless, many ADLs focus on
other aspects and support static architectures only (e.g., DiaSpec [18], Palla-
dio [19], xADL [20]). Also, there is no consensus on how architectural mod-
els describe dynamic reconfiguration. Usually, specific modeling elements exist
[10–13,15–17].

Similar to our concept, some ADLs (e.g., AADL [15], AutoFocus [16,17])
enable dynamic reconfiguration in a controlled fashion. Here, composed com-
ponents change between configurations (called “modes”) predefined at design
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time only. Specific transitions control when components may change their con-
figuration. While this restricts arbitrary reconfiguration (cf. π-ADL [11], Arch-
Java [10]), it increases comprehensibility and guarantees static analyzability.

Dynamic reconfiguration can be programmed or ad-hoc [21]. In programmed
reconfiguration (e.g., ACME/Plastik [13], AADL [15], ArchJava [10]), conditions
and effects specified at design time are applied at runtime. Ad-hoc reconfigura-
tion (e.g., C2 SADL [9], Fractal [14], ACME/Plastik [13]) does not necessarily
have to be specified at design time and takes place at runtime, e.g., invoked by
reconfiguration scripts. It introduces greater flexibility, but component models
do not reflect the reconfiguration options. This enables simulating unforeseen
changes to test an architecture’s robustness, but it complicates analysis and
evolution. For the latter reason MontiArcAutomaton’s concept solely includes
programmed reconfiguration.

Besides modeling dynamic removal and establishment of connectors, Monti-
ArcAutomaton supports dynamic instantiation and removal of components. In
ACME/Plastik [13], so-called actions can remove and create connectors and com-
ponents. ArchJava [10] embeds architectural elements in Java and, hence, enables
instantiating corresponding component classes as Java objects. C2 SADL [9] sup-
ports ad-hoc instantiation and removal of components. Fractal [14] provides sim-
ilar concepts in its aspect-oriented Java implementation. π-ADL’s [11] language
constructs enable instantiation, removal, and movement of components.

5 Conclusion

We have developed and presented a concept for retrofitting controlled dynamic
reconfiguration into the static ADL MontiArcAutomaton. Our concept main-
tains important abstraction and encapsulation mechanisms. Dynamic reconfig-
urable components have modes and mode automata to switch between con-
figurations declaratively programmed at design time. The state of components
during runtime can be either retained between different configurations or com-
ponents can be instantiated and removed. We implemented our concept within
the MontiArcAutomaton architecture modeling infrastructure. The implementa-
tion includes an extended syntax, analysis tools, and a code generator realizing
semantics of dynamic reconfigurable components with synchronous communica-
tion. Interesting future work could investigate the applicability of our concept
for retrofitting dynamic reconfiguration into further ADLs.
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Abstract. The critical nature of many complex software-intensive
systems calls for formal, rigorous architecture descriptions as means of
supporting automated verification and enforcement of architectural prop-
erties and constraints. Model checking has been one of the most used
techniques to automatically verify software architectures with respect to
the satisfaction of architectural properties. However, such a technique
leads to an exhaustive exploration of all possible states of the system,
a problem that becomes more severe when verifying dynamic software
systems due to their typical non-deterministic runtime behavior and
unpredictable operation conditions. To tackle these issues, we propose
using statistical model checking (SMC) to support the verification of
dynamic software architectures while aiming at reducing computational
resources and time required for this task. In this paper, we introduce
a novel notation to formally express architectural properties as well as
an SMC-based toolchain for verifying dynamic software architectures
described in π-ADL, a formal architecture description language. We use
a flood monitoring system to show how to express relevant properties to
be verified. We also report the results of some computational experiments
performed to assess the efficiency of our approach.

Keywords: Dynamic software architecture · Architecture description
language · Formal verification · Statistical model checking

1 Introduction

One of the major challenges in software engineering is to ensure correctness
of software-intensive systems, especially as they have become increasingly com-
plex and used in many critical domains. Ensuring these concerns becomes more
important mainly when evolving these systems since such a verification needs
to be performed before, during, and after evolution. Software architectures play
an essential role in this context since they represent an early blueprint for the
system construction, deployment, execution, and evolution.
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The critical nature of many complex software systems calls for rigorous archi-
tectural models (such as formal architecture descriptions) as means of supporting
the automated verification and enforcement of architectural properties. However,
architecture descriptions should not cover only structure and behavior of a soft-
ware architecture, but also the required and desired architectural properties, in
particular the ones related to consistency and correctness [15]. For instance, after
describing a software architecture, a software architect might want to verify if it
is complete, consistent, and correct with respect to architectural properties.

In order to foster the automated verification of architectural properties based
on architecture descriptions, they need to be formally specified. Despite the
inherent difficulty of pursuing formal methods, the advantage of a formal ver-
ification is to precisely determine if a software system can satisfy properties
related to user requirements. Additionally, automated verification provides an
efficient method to check the correctness of architectural design. As reported by
Zhang et al. [19], one of the most popular formal methods for analyzing software
architectures is model checking, an exhaustive, automatic verification technique
whose general goal is to verify if an architectural specification satisfies architec-
tural properties [8]. It takes as inputs a representation of the system (e.g., an
architecture description) and a set of property specifications expressed in some
notation. The model checker returns true if the properties are satisfied, or false
with the case in which a given property is violated.

Despite its wide and successful use, model checking faces a critical challenge
with respect to scalability. Holzmann [10] remarks that no currently available
traditional model checking approach is exempted from the state space explosion
problem, that is, the exponential growth of the state space. This problem is exac-
erbated in the contemporary dynamic software systems for two main reasons,
namely (i) the non-determinism of their behavior caused by concurrency and
(ii) the unpredictable environmental conditions in which they operate. In spite
of the existence of a number of techniques aimed at reducing the state space,
such a problem remains intractable for some software systems, thereby making
the use of traditional model checking techniques a prohibitive choice in terms of
execution time and computational resources. As a consequence, software archi-
tects have to trade-off the risks of possibly undiscovered problems related to the
violation of architectural properties against the practical limitations of applying
a model checking technique on a very large architectural model.

In order to tackle the aforementioned issues, this paper proposes the use of
statistical model checking (SMC) to support the formal verification of dynamic
software architectures while striving to reduce computational resources and time
for performing this task. SMC is a probabilistic, simulation-based technique
intended to verify, at a given confidence level, if a certain property is satis-
fied during the execution of a system [13]. Unlike model checking, SMC does
not analyze the internal logic of the target system, thereby not suffering from
the state space explosion problem [12]. Furthermore, an SMC-based approach
promotes better scalability and less consumption of computational resources,
important factors to be considered when analyzing software architectures for
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complex critical systems. An architect wishing to verify the correctness of a
software architecture with SMC has to build an executable model of the system,
a task that is much easier than building a model of the system that is abstract
enough to be used by a model checker and still detailed enough to detect mean-
ingful errors.

The main contribution presented in this paper is an SMC-based toolchain for
verifying dynamic software architectures described in π-ADL, a formal language
for describing dynamic software architectures [5,16]. π-ADL does not natively
allow for a probabilistic execution, but rather provides a non-deterministic speci-
fication of a dynamic architecture. Therefore, we obtain a probabilistic model by
resolving non-determinism by probabilities, enforced by a stochastic scheduler.
We also make use of DynBLTL [18], a new logic to express properties about
dynamic systems. Using a real-world flood monitoring system, we herein show
how to express relevant properties to be verified and we report the results of some
computational experiments performed to assess the efficiency of our approach.

The remainder of this paper is organized as follows. Section 2 briefly presents
the SMC technique. Section 3 details how to stochastically execute π-ADL archi-
tecture descriptions. Section 4 introduces our notation to formally express prop-
erties of dynamic software architectures. Section 5 presents the developed tool-
chain to verify dynamic software architectures. Section 6 uses the flood monitor-
ing system as case study to show how to express properties with DynBLTL, as
well as it reports the results of experiments on the computational effort to verify
these properties. Finally, Sect. 7 contains concluding remarks.

2 Statistical Model Checking

The SMC approach consists of building a statistical model of finite executions of
the system under verification and deducing the probability of satisfying a given
property within confidence bounds. This technique provides a number of advan-
tages in comparison to traditional model checking techniques. First (and perhaps
the most important one), it does not suffer from the state space explosion prob-
lem since it does not analyze the internal logic of the system under verification,
neither requires the entire representation of the state space, thus making it a
promising approach for verifying complex large-scale and critical software sys-
tems [12]. Second, SMC requires only the system be able to be simulated, so that
it can be applied to larger classes of systems, including black-box and infinite-
state systems. Third, the proliferation of parallel computer architectures makes
the production of multiple independent simulation runs relatively easier. Fourth,
despite SMC can provide approximate results (as opposed to exact results pro-
vided by traditional model checking), it is compensated by a better scalability
and less consumption of computational resources. In some cases, knowing the
result with less than 100 % of confidence is quite acceptable or even the unique
available option. Therefore, SMC allows trading-off between verification accuracy
and computational time by selecting appropriate precision parameter values.

Figure 1 illustrates a general schema on how the SMC technique works. A sta-
tistical model checker basically consists of a simulator for running the system
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under verification, a model checker for verifying properties, and a statistical ana-
lyzer responsible for calculating probabilities and performing statistical tests. It
receives three inputs: (i) an executable stochastic model of the target system M ;
(ii) a formula ϕ expressing a bounded property to be verified, i.e., a property
that can be decided over a finite execution of M ; and (iii) user-defined precision
parameters determining the accuracy of the probability estimation. The model
M is stochastic in the sense that the next state is probabilistically chosen among
the states that are reachable from the current one. Depending on the probabilis-
tic choices made during the executions of M , some executions will satisfy ϕ and
others will not. The simulator executes M and generates an execution trace σi

composed of a sequence of states. Next, the model checker determines if σi sat-
isfies ϕ and sends the result (either success or failure) to the statistical analyzer,
which in turn estimates the probability p for M to satisfy ϕ. The simulator
repeatedly generates other execution traces σi+1 until the analyzer determines
that enough traces have been analyzed to produce an estimation of p satisfying
the precision parameters. A higher accuracy of the answer provided by the model
checker requires generating more execution traces through simulations.

Fig. 1. Working schema of the SMC technique.

3 Stochastic Execution of π-ADL Models

In this section, we briefly recall how the π-ADL language allows describing
dynamic software architectures. As SMC is a stochastic technique, the executable
model representing the system needs to be stochastic, a feature that π-ADL does
not possess. For this reason, we have provided a way of producing a stochastic
executable model from π-ADL architecture descriptions, thus allowing for prop-
erty verification using SMC. Finally, we show how to extract execution traces
from a stochastic execution.

3.1 Modeling Dynamic Architectures in π-ADL

π-ADL [16] is a formal, well-founded theoretically language intended to describe
software architectures under both structural and behavioral viewpoints. In order
to cope with dynamicity concerns, π-ADL is endowed with architectural-level
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primitives for specifying programmed reconfiguration operations, i.e., foreseen,
pre-planned changes described at design time and triggered at runtime by the
system itself under a given condition or event [5]. Additionally, code source
in the Go programming language [1] is automatically generated from π-ADL
architecture descriptions, thereby allowing for their execution [6].

From the structural viewpoint, a software architecture is described in π-ADL
in terms of components, connectors, and their composition to form the system,
i.e., an architecture as a configuration of components and connectors. From
the behavioral viewpoint, both components and connectors comprise a behav-
ior, which expresses the interaction of an architectural element and its internal
computation and uses connections to send and receive values between architec-
tural elements. The attachment of a component to a connector (and vice-versa)
is made by unifying their connections. Therefore, the transmission of a value
from an architectural element to another is possible only if (i) the output con-
nection of the sender is unified to the input connection of the receiver, (ii) the
sender is ready to send a value through that output connection, and (iii) the
receiver is ready to receive a value on that input connection.

In π-ADL, dynamic reconfiguration is obtained by decomposing architectures
[5]. The decomposition action removes all unifications defined in the original
architecture, but it does not terminate its elements. The decomposition of a given
architecture A is typically called from another coexisting architecture B, which
results from a reconfiguration applied over A. After calling the decomposition of
A, B can access and modify the elements originally instantiated in A.

3.2 Resolving Non-determinism in π-ADL

In π-ADL, non-determinism occurs in two different ways. First, whenever several
actions are possible, any one of them can be executed as the next action, i.e., the
choice of the next action to execute is non-deterministic. Second, some functions
and behaviors can declared as unobservable, thus meaning that its internal oper-
ations are concealed at the architectural level. In this case, the value returned by
the function is also non-deterministic because it is not defined in the model. As
performing SMC requires a stochastic process, we resolve the non-determinism
of π-ADL models by using probabilities. In the following, we describe how to
proceed in the aforementioned cases.

Resolving Non-determinism in the Choice of the Next Action. The
Go code from a π-ADL architecture description encodes architectural element
(component or connector) as a concurrent goroutine, a lightweight process similar
to a thread. The communication between architectural elements takes place via
a channel, another Go construct. If several communications are possible, the Go
runtime chooses one of them to execute according to a FIFO policy, which is not
suitable for SMC since it is necessary to specify how the next action is chosen.

To support the stochastic scheduling of actions, we have implemented a sched-
uler as a goroutine controlling all non-local actions, i.e., composition, decomposi-
tion, and communication. Whenever an architectural element needs to perform a
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non-local action, it informs the scheduler and blocks until the scheduler responds.
The scheduler responds with the action executed (if the component has submit-
ted a choice between several actions) and a return value, corresponding either
to the receiving side of a communication or a decomposed architecture.

Figure 2 depicts the behavior of the scheduler. The scheduler waits until all
components and connectors have indicated their possible actions. At this step,
the scheduler builds a list of possible rendezvous by checking which declared uni-
fications have both sender and receiver ready to communicate. For this purpose,
the scheduler maintains a list of the active architectures and the correspond-
ing unifications. The possible communications are added to the list of possible
actions and the scheduler chooses one of them according to a probabilistic choice
function. The scheduler then executes the action and outputs its effect to the
statistical model checker. Finally, the scheduler notifies the components and
connectors involved in the action.

Fig. 2. Scheduler to support the stochastic simulation of a π-ADL model.

Resolving Non-determinism in Unobservable Functions Functions
declared as unobservable require an implementation to allow simulating the
model. In practice, this implementation is provided in form of a Go function
whose return value can be determined by a probability distribution. Such an
implementation relies on the Go libraries implementing usual probability distri-
butions. In particular, such functions can model inputs of the systems that have
a known probabilistic value, i.e., input to a component, time to the next failure
of a component, etc.

3.3 Trace of a Stochastic Execution

In order to verifying dynamic software architectures with SMC, we abstract
away the internal structure of architectural elements and represent a state of
the system as a directed graph g = (V,E) in which V is a finite set of nodes
and E is a finite set of edges. Each node v ∈ V represents an architectural
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element (component or connector) whereas each direct edge e ∈ E represents a
communication channel between two architectural elements.

The SMC technique relies on checking multiple execution traces resulted
from simulations of the system under verification against the specified properties.
Therefore, as a simulation ω results in a trace σ composed of a finite sequence
of states, σ can be defined as a sequence of state graphs gi (i ∈ N), i.e., σ =
(g0, g1, . . . , gn). Aiming at obtaining an execution trace from an architecture
description in π-ADL, the simulation emits explicit messages recording a set of
actions on the state graph.

4 A Novel Notation for Expressing Properties
in Dynamic Software Architectures

Most architectural properties to be verified by using model checking techniques
are temporal [19], i.e., they are qualified and can be reasoned upon a sequence of
system states along the time. In the literature, linear temporal logic (LTL) [17]
has been often used as underlying formalism for specifying temporal architectural
properties and verifying them through model checking. LTL extends classical
Boolean logic with temporal operators that allow reasoning on the temporal
dimension of the execution of the system. In this perspective, LTL can be used
to encode formulas about the future of execution paths (sequences of states),
e.g., a condition that will be eventually true, a condition that will be true until
another fact becomes true, etc.

Besides using standard propositional logic operators, LTL defines four tem-
poral operators, namely: (i) next, which means that a formula ϕ will be true in
the next step; (ii) finally or eventually, which indicates that a formula ϕ will be
true at least once in the time interval; (iii) globally or always, which means that
a formula ϕ will be true at all times in the time interval; and (iv) until, which
indicates that either a formula ϕ is initially true or another previous formula
ψ is true until ϕ become true at the current or a future time. SMC techniques
verify bounded properties, i.e., where temporal operators are parameterized by a
time bound. While LTL-based formulas aim at specifying the infinite behavior
of the system, a time-bounded form of LTL called BLTL considers properties
that can be decided on finite sequences of execution states.

Temporal logics such as LTL and BLTL are expressed over atomic predi-
cates that evaluate properties to a Boolean value at every point of execution.
However, a key characteristic of dynamic software systems is the impossibility
of foreseeing the exact set of architectural elements deployed at a given point
of execution. Such traditional formalisms do not allow reasoning about elements
that may appear, disappear, be connected or be disconnected during the execu-
tion of the system for two main reasons. First, specifying a predicate for each
property of each element is not possible as the set of architectural elements may
be unknown a priori. Second, there is no canonical way of assigning a truth value
to a property about an element that does not exist at the considered point of
execution. In addition, existing approaches to tackle such issues typically focus
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on behavioral properties, but they do not address architectural properties [7].
On the other hand, some approaches assume that the architectures are static
[3]. These limitations have led us to propose DynBLTL, an extension of BLTL
to formally express properties in dynamic software architectures [18].

DynBLTL was designed to handle the absence of an architectural element in
a given formula expressing a property. In practice, this means that a Boolean
expression can take three values, namely true, false or undefined. The undefined
value refers to the fact that an expression may not be evaluated depending on
the current runtime configuration of the system. This is necessary for situations
in which it is not possible to evaluate an expression in the considered point of
execution, e.g., a statement about an architectural element that does not exist
at that moment. Some operators interpret the undefined value as true or false,
depending on the context. Furthermore, DynBLTL allows expressing properties
using (i) arithmetic, logical, and comparison operations on values, (ii) existential
and universal quantifications, traditionally used in predicate logic, and (iii) some
predefined functions that can be used to explore the architectural configuration.
Four temporal operators are available, namely in, eventually before, always dur-
ing, and until, which are similar to the ones defined in both LTL and BLTL.
Some examples of DynBLTL properties are presented in Sect. 6.2.

5 A Toolchain to Simulate and Verify Dynamic Software
Architectures

SMC techniques rely on the simulation of an executable model of the system
under verification against a set of formulas expressing bounded properties to be
verified (see Sect. 2). These elements are provided as inputs to a statistical model
checker, which consists of (i) a simulator to run the executable model of the
system, (ii) a model checker to verify properties, and (iii) a statistical analyzer
responsible for calculating probabilities and performing statistical tests.

Among the SMC tools available in the literature, PLASMA [2] is a compact,
flexible platform that enables users to create custom SMC plug-ins atop it. For
instance, users who have developed their own model description language can
use it with PLASMA by providing a simulator plug-in. Similarly, users can add
custom languages for specifying properties and use the available SMC algorithms
through a checker plug-in. Besides its efficiency and good performance results
[4,11,14], such a flexibility was one of the main reasons motivating the choice of
PLASMA to serve as basis to develop the toolchain for specifying and verifying
properties of dynamic software architectures.

Figure 3 provides an overview of our toolchain. The inputs for the process
are (i) an architecture description in π-ADL and (ii) a set of properties speci-
fied in DynBLTL. By following the process proposed in our previous work [5,6],
the architecture description in π-ADL is translated towards generating source
code in Go. As π-ADL architectural models do not have a stochastic execution,
they are linked to a stochastic scheduler parameterized by a probability distri-
bution for drawing the next action, as described in Sect. 3. Furthermore, we use
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existing probability distribution Go libraries to model inputs of system models
as user functions. The program resulting from the compilation of the generated
Go source code emits messages referring to transitions from a given state to
another in case of addition, attachment, detachment, and value exchanges of
architectural elements.

Fig. 3. Overview of the toolchain to verify properties of dynamic software architectures.

We have developed two plug-ins atop the PLASMA platform, namely (i) a
simulator plug-in that interprets execution traces produced by the generated Go
program and (ii) a checker plug-in that implements DynBLTL. With this tool-
chain, a software architect is able to evaluate the probability of a π-ADL archi-
tectural model to satisfy a given property specified in DynBLTL. The developed
tools are publicly available at http://plasma4pi-adl.gforge.inria.fr.

6 Case Study

In this section, we apply our approach to a real-world flood monitoring system
used as a case study. Section 6.1 presents an overview of the system and Sect. 6.2
describes some relevant properties to be verified in the context of this system.
At last, Sect. 6.3 reports some computational experiments performed to assess
the efficiency of our approach with the developed toolchain.

6.1 Description

A flood monitoring system can support monitoring urban rivers and create alert
messages to notify authorities and citizens about the risks of an imminent flood,
thereby fostering effective predictions and improving warning times. This system
is typically based on a wireless sensor network composed of sensors that measure
the water level in flood-prone areas near the river. In addition, a gateway station
analyzes data measured by motes, makes such data available, and can trigger

http://plasma4pi-adl.gforge.inria.fr
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alerts when a flood condition is detected. The communication among these ele-
ments takes place by using wireless network connections, such as WiFi, ZigBee,
GPRS, Bluetooth, etc.

Figure 4 shows the main architecture of the system. Sensor components com-
municate with each other through ZigBee connectors and a gateway component
receives all measurements to evaluate the current risk. Each measure from a sen-
sor is propagated its neighbors via ZigBee connectors until reaching the gateway.
The environment is modeled through the Env component and the SensorEnv and
Budget connectors. Env is responsible for synchronizing the model by defining
cycles corresponding to the frequency at which measures are taken by sensors.
A cycle consists of: (i) signaling Budget that a new cycle has started; (ii) updating
the river status; (iii) registering deployed sensors; (iv) signaling each SensorEnv
connector to deliver a new measure; and (v) waiting for each SensorEnv connec-
tor to confirm that a new measure has been delivered. The Sensor, SensorEnv,
and ZigBee elements can added and removed during the execution of the system
through reconfigurations triggered by the gateway component.

Fig. 4. Overview of the main architecture for the flood monitoring system.

Figure 5 shows an excerpt of the π-ADL description for the sensor component.
The behavior of this components comprises choosing between two alternatives,
either obtaining a new measure (i) from the environment via the sense input
connection or (ii) from a neighbor sensor via the pass input connection. After
receiving the gathered value, it is transmitted through the measure output con-
nection. Reading a negative value indicates a failure of the sensor, so that it
becomes a FailingSensor, which simply ignores all incoming messages.

We have modeled two reconfigurations, namely adding and removing a sensor,
as depicted in Fig. 6. The gateway component decides to add a sensor if the
coverage of the river is not optimal and the budget is sufficient to deploy a
new sensor. This operation is triggered by sending a message to Reconf via the
newS connection, with the desired location for the new sensor. The new sensor is
connected to other sensors in range via a ZigBee connector, as shown in Fig. 6(a).
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Fig. 5. Partial π-ADL description of the sensor component.

During this operation, Reconf decomposes the main architecture to include the
new elements and unifications before recomposing it. The reconfiguration uses
the position of each sensor to determine which links have to be created. After
triggering the reconfiguration, the gateway indicates to the Budget connector
that it has spent the price of a sensor.

Fig. 6. Reconfigurations in the flood monitoring system: adding sensor s3, which
requires connecting it to existing sensors s1 and s2 through new ZigBee connectors
(left), and removal of sensor s5 (right).

The gateway removes a sensor when it receives a message indicating that
it is in failure. This operation is triggered by sending a message to Reconf via
the removeS connection, with the name of the sensor to remove. Removing a
sensor may isolate other sensors that are further away from the gateway as it in
shown in Fig. 6(b). In this case, sensors that were sending their measures via the
removed sensor (such as s4) are instead connected to a sink connector, which
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loses all messages. This new connection prevents deadlocks that occur when the
last element of the isolated chain cannot propagate its message. When a sensor
is removed, the connected ZigBee and SensorEnv are composed in a separated
architecture. This architecture connects the killZb connection of the sensor to
the die connections of the ZigBee connectors, which allows an other branch of
the behavior to properly terminate these components.

6.2 Requirements

As previously mentioned, a DynBLTL formula requires bounds on temporal
operators to ensure that it can be decided in a finite number of steps. We have
two possibilities to express bounds, namely using steps or using time units.
Usually, the number of steps executed during a time unit depends on the number
of components in the system. In the case of our flood monitoring system, the
number of steps executed during a cycle mainly depends on the number of sensors
deployed since each sensor reads one value at each cycle. Therefore, a time unit
correspond to a cycle, thus allowing us to specify bounds independently from
the number of components in the system.

First, we want to evaluate the correctness of our model with respect to its
main goal, i.e., warning about imminent flooding. In this context, a false negative
occurs when the system fails to predict a flood.
e v e n t u a l l y b e f o r e X t ime u n i t s { // Fa l s eNega t i v e (X,Y)

(gw . a l e r t = ” low” )
and ( e v e n t u a l l y b e f o r e Y t ime u n i t s env . f l o o d )

}

This property characterizes a false negative: the gateway predicts a low risk and
a flood occurs in the next Y time units. The parameters of this formula are X,
the time during which the system is monitored, and Y , the time during which
the prediction of the gateway should hold.

Similarly, a false positive occurs when the system predicts a flood that does
not actually occur:
e v e n t u a l l y b e f o r e X t ime u n i t s { // F a l s e P o s i t i v e (X,Y)

gw . a l e r t = ” f l o o d de t e c t e d ”
and a lways du r i ng Y t ime u n i t s not env . f l o o d

}

The system is correct if there is no false negatives nor false positives for the
expected prediction anticipation (parameter Y ).

These two formulas are actually BLTL formulas as they involve simple pred-
icates on the state. However, DynBLTL allows expressing properties about the
dynamic architecture of the system. For example, suppose that one wants to
check that if a sensor sends a message indicating that it is failing, then it must
be removed from the system in a reasonable amount of time. This disconnection
is needed because the sensor in failure will not pass incoming messages. We char-
acterize the removal of a sensor by a link on the end connection, corresponding
to the initiation of the sensor termination (not detailed here).
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In our dynamic system, sensors may appear and disappear during execution.
Therefore, the temporal pattern needs to be dynamically instantiated at each
step for each existing sensor:
a lways du r i n g X t ime u n i t s { // RemoveSensor (X,Y)

f o r a l l s : a l lO fType ( Senso r ) {
( i sT r u e s . measure < 0) im p l i e s {

e v e n t u a l l y b e f o r e Y t ime u n i t s {
e x i s t s s t : a l lO fType ( S ta r tTe rm ina t e )

a r eL i nk ed ( s t . s t a r t , s . end )
}

}
}

}

This property cannot be stated in BLTL since it does not have a construct such
as forall for instantiating a variable number of temporal sub-formulas depending
on the current state.

Another property of interest consists in checking if a sensor is available, i.e.,
at least one sensor is connected to the gateway. More precisely, there must be
a ZigBee connector between the gateway and a sensor. If not, we require that
such a sensor appear in less than Y time units:
a lways du r i n g X t ime u n i t s { // S e n s o rA v a i l a b l e (X,Y)

( not ( e x i s t s zb : a l lO fType ( ZigBee ) a r eL i nk ed ( zb . output , gw . pas s )
and ( e x i s t s s : a l lO fType ( Senso r ) a r eL i n k ed ( s . measure , zb . i n pu t ) ) ) )

i m p l i e s ( e v e n t u a l l y b e f o r e Y t ime u n i t s {
e x i s t s zb : a l lO fType ( ZigBee ) a r eL i nk ed ( zb . output , gw . pas s )
and ( e x i s t s s : a l lO fType ( Senso r ) a r eL i n k ed ( s . measure , zb . i n pu t ) )

}
}

6.3 Experimental Results

In this section, we report some experiments aiming to quantitatively evaluate
the efficiency of our approach. Considering that the literature already reports
that PLASMA and its SMC algorithms outperform other existing approaches
(c.f. [4,11,14]), we are hereby interested in assessing how efficient is our app-
roach and toolchain to verify properties in dynamic software architectures. In
the experiments, we have chosen computational effort in terms of execution time
and RAM consumption as metrics, which were used to observe the performance
of our toolchain when varying the precision of the verification. As PLASMA is
executed upon a Java Virtual Machine, 20 runs were performed for each preci-
sion value in order to ensure a proper statistical significance for the results. The
experiments were conducted under GNU/Linux on a computer with a quad-core
3 GHz processor and 16 GB of RAM. Time and RAM consumption measures
were obtained by using the time utility from Linux.

The toolchain was evaluated with the FalsePositive, SensorAvailable, and
RemoveSensor properties described in Sect. 6.2. These properties were evaluated
using the Chernoff algorithm [9] from PLASMA, which requires a precision and
a confidence degree as parameters and returns an approximation of the proba-
bility with an error below the precision parameter, with the given confidence.
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A confidence of 95 % was chosen and the precision has ranged on 0.02, 0.03, 0.04,
0.05, and 0.1, respectively requiring 4612, 2050, 1153, 738, and 185 simulations.

Figure 7(a) how the average analysis time (in seconds) increases when the
precision increases, i.e., the error decreases. As highlighted in Sect. 2, a higher
accuracy of the answer provided by the statistical model checker requires gener-
ating more execution traces through simulations, thereby increasing the analysis
time. The property regarding the sensor availability evaluated over a window of
50 time units requires less time than the other properties evaluated over a win-
dow of 100 time units because the analysis of each trace is faster. In Fig. 7(b),
it is possible to observe that the increase of the average amount of RAM (in
megabytes) required to perform the analyses is nearly constant, thus meaning
that the precision has no strong influence on the RAM consumption. This can be
explained by the fact that SMC only analyzes one trace at a time. Therefore, we
can conclude that our SMC approach and toolchain can be regarded as efficient
with respect to both execution time and RAM consumption.

Fig. 7. Effects of the variation in the precision in the analysis of three properties upon
analysis time (a) and RAM consumption (b).

We rely on the Chernoff bound to compute the number of required simu-
lations, which increases quadratically with respect to the precision. In case of
rare events, i.e., properties that have a very low probability to happen, a better
convergence can be obtained by using dedicated methods [11]. Regarding size,
our current model contains about 30 processes in total.

7 Conclusion

In this paper, we have presented our approach on the use of statistical model
checking (SMC) to verify properties in dynamic software architectures. Our main
contribution is an SMC-based toolchain for specifying and verifying such proper-
ties atop the PLASMA platform. The inputs for this process are a probabilistic
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version of an architecture description in the π-ADL language and a set of proper-
ties expressed in DynBLTL. We have used a real-world flood monitoring system
to show how to specify properties in a dynamic software architectures, as well
as it was used in some computational experiments aimed to demonstrate that
our approach and toolchain are efficient and hence feasible to be applied on the
verification task. To the best of our knowledge, this is the first work on the
application of SMC to verify properties in dynamic software architectures.

As future work, we need to assess the expressiveness and usability of Dyn-
BLTL for expressing properties in dynamic software architectures. We also intend
to integrate our approach into a framework aimed to support software architects
in activities such as architectural representation and formal verification of archi-
tectural properties.
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Abstract. During the development of a software system, architects deal
with a large number of stakeholders, each with differing concerns. This
inevitably leads to inconsistency: goals, concerns, design decisions, and
models are interrelated and overlapping. Existing approaches to support
inconsistency management are limited in their applicability and useful-
ness in day to day practice due to the presence of incomplete, informal
and heterogeneous models in software architecture. This paper presents
a novel process in the form of a lightweight generic method, the Concern-
Driven Inconsistency Management (CDIM) method, that is designed to
address limitations of different related approaches. It aims to aid archi-
tects with management of intangible inconsistency in software architec-
ture.

1 Introduction

Inconsistency is prevalent in software development and software architecture
(SA) [7]. Although inconsistency in software architecture is not necessarily a
bad thing [18], undiscovered inconsistency leads to all kinds of problems [17,20].
Inconsistency is present if two or more statements made about a system or its
architecture are not jointly satisfiable [9], mutually incompatible, or conflicting
[3]. Examples of inconsistency are: failure of a syntactic equivalence test, non-
conformance to a standard or constraint [9], or two developers implementing a
non-relational and a relational database technology for the same database, to
name a few.

In SA, inconsistency has a wide range of dimensions, such as inconsistency
in code, inconsistent requirements, or model inconsistency. We refer to these
types of inconsistency as ‘tangible’ inconsistency. On the contrary, an ‘intangi-
ble’ inconsistency is often denominated as a conflict, still being undocumented or
unspecified: inconsistent design decisions or concerns. In architecture, a conflict
between concerns occurs if their associated design decisions are mutually incom-
patible, or negatively affect each other. That is, a conflict (intangible inconsis-
tency) can potentially manifest itself as a tangible inconsistency. Thus, if design
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 201–209, 2016.
DOI: 10.1007/978-3-319-48992-6 15
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decisions are conflicting (intangible inconsistency), they are mutually incom-
patible [3], and can lead to tangible inconsistency. This corresponds with the
view to see architectural design decisions as first-class entities [14]. Adopting
the definition that a software system’s architecture is the set of principal design
decisions about the system [3], we see that inconsistency in SA – even though it
may be intangible (undocumented) at early stages – already emerges if design
decisions are inconsistent or contradictory. At early stages in the architecting
process, architects deal with coarse-grained models and high-level design deci-
sions, which are usually recorded and documented using more informal notations
[3]. As a result, related formal and model-checking approaches for inconsistency
management (IM) are less applicable.

Traditional approaches are based on logic or model-checking. The former
uses formal inference techniques to detect model inconsistency, which makes
them difficult to scale. The latter disposes model-verification algorithms that are
sufficiently suited to detect specific inconsistencies, but do not fit well to other
kinds of inconsistency [2]. Currently, no appropriate infrastructure is available
that is capable of managing a broad class of inconsistency [9].

To address the limitations of related approaches and to support the architect
in the difficult process of IM, this paper proposes a simple, lightweight method,
enabling the architect to systematically manage inconsistency: the Concern-
Driven Inconsistency Management (CDIM) method. CDIM identifies important
concerns of different stakeholders, as these are a source of inconsistency [19],
and utilizes a matrix to discuss overlapping concerns to find and manage diverse
types of inconsistency. CDIM consists of a 7-step cyclic process, based on the
Plan Do Check Act (PDCA) cycle [11], work of Nuseibeh [20], Spanoudakis [24],
and related architecture evaluation methods. The reader is referred to [23] for a
detailed overview of the construction of the CDIM and its design decisions.

The remainder of this paper is structured as follows: Sect. 2 provides a short
overview of inconsistency management in practice. The CDIM method is briefly
demonstrated in Sect. 3, followed by a conclusion and directions for future work
in Sect. 4.

2 Inconsistency Management in SA

An important task of the software architect is inconsistency management (IM):
identifying inconsistency, preserving it when acceptable, and deferring or solving
it when required [5,20]. Spanoudakis and Zisman [24] propose a framework for
IM, based upon [6] and [20], consisting of six activities: (1) detection of overlaps,
(2) detection of inconsistencies, (3) diagnosis of inconsistencies, (4) handling of
inconsistencies, (5) tracking of findings, and (6) specification of an IM policy. A
critical component in IM is identifying overlap, as it is a precondition for incon-
sistency [6]. Concerns have overlap when associated design decisions influence
each other. Overlap emerges due to different views, assumptions, and concerns all
being interrelated because they are related to the same system [17]. The presence
of such interrelations introduces the potential for inconsistency [24]. Techniques
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that focus on detection of overlaps do this based on for example representation
conventions, shared ontologies, or similarity analysis [24]. Techniques for detec-
tion of inconsistencies are logic-based approaches, model-checking approaches,
specialized model analyses, and human-centered collaborative approaches [24].
Inconsistency diagnosis is concerned with the identification of the source, cause
and impact of an inconsistency [24]. Handling inconsistency is concerned with
the identification and execution of the possible actions for dealing with an incon-
sistency. Tracking refers to recording important information of the inconsistency
in a certain knowledge base [24].

Applicable approaches in the context of informal models are stakeholder-
centric methods for inconsistency management. These involve human inspection
of overlap, and human-based collaborative exploration [24] (e.g. Synoptic [4]
or DealScribe [21]). These techniques assume that detection of inconsistency
is the result of a collaborative inspection of several models by stakeholders
[24]. Approaches like Synoptic [4] and DealScribe [21] solely focus on model
inconsistency, and therefore, cannot be used for other types of inconsistency,
such as inconsistent design decisions. Synoptic requires stakeholders to specify
conflicts in so-called ‘conflict forms’ to describe conflicts that exist in models.
In DealScribe, stakeholders look for ‘root-requirements’ in their models. Root
requirements are identified for concepts present in the models, and pairwise
analysis of possible interactions between root requirements results in a list of
conflicting requirements. A limitation of this approach is that pairwise sequen-
tial comparison is time-consuming and labour-intensive.

Inconsistency arises inevitably due to the fact that SA is concerned with
heterogeneous, multi-actor, multi-view and multi-model activities [19]. Conse-
quently, this heterogeneity and the diverse context of software architecture causes
IM to be inherently difficult [20]. In addition, a lot of architectural knowledge is
contained in the heads of involved architects and developers [13]. Though IM is
needed, the possibilities for managing inconsistency in software architecture are
limited [17], and architects thus benefit from methods that aid in management
of inconsistency.

3 Concern-Driven Inconsistency Management

As a means to address several limitations of related approaches this paper
presents the CDIM method, to systematically identify and keep track of intangi-
ble inconsistency, based on concerns and perspectives. CDIM is developed using
the Method Association Approach (MAA) [16] together with input from experts
through semi-structured interviews. MAA takes existing methods into account to
methodically assemble a new method for use in new situations [16]. IM is a part
of the process of verification and validation [9]. Verification and validation of an
architecture is done with the use of architectural evaluation methods (AE) meth-
ods, which is why several AE methods are used as a basis for CDIM. Many different
AE methods have been developed over the past decade, and many of them have
proved to be mature [1]. Due to space limitations, we refer the reader to e.g. [1] for
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Fig. 1. This figure describes the 4 phases of the CDIM, with the 7 corresponding
activities. The activities are performed in cyclic manner. Each of the activities consists
of different sub steps.

a discussion on and comparison of various AE methods, and to [23] for a technical
report documenting the design and development of the CDIM method.

The method is based on the inconsistency management process as intro-
duced by Spanoudakis [24] and Nuseibeh [20], combining several AE methods
and IM techniques with the traditional iterative phases Plan, Do, Check, and
Act (PCDA) cycle [11]. Figure 1 depicts these 4 phases. They are divided in
7 activities: each of the activities contains multiple steps. Concerns form the
drivers of the CDIM. The following section motivates the use of concerns as
central elements, and the subsequent section briefly describes the four phases of
the CDIM.

3.1 Concerns and Concern-Cards

It is cost-effective to discover inconsistency early in the process [9]. One of the first
elements that an architect needs to consider, are concerns [10]. Furthermore, con-
cerns are the driving force of building an architecture and designing the system
[14]. Concerns express the aspects that should be relevant to a software system in
the eyes of a software architect [14]. According to [22] a concern about an archi-
tecture is a requirement, an objective, an intention, or an aspiration a stakeholder
has for that architecture”. Software architects benefit from inconsistency discovery
and management at an early stage, as principal decisions are often hard to reverse.
Conflicts in these decisions can lead to tangible inconsistency, which emphasizes
the value of focusing on concerns and design decisions.

The use of templates to capture information makes methods more consistent
across evaluators [12]. To ease IM, we propose the use of concern-cards, a tem-
plate that enables reasoning about a concern. Such a template makes methods
more consistent across evaluators [12]. Additionally, the use of cards in software
development is not unusual (such as planning poker [8] used by many SCRUM
teams [15]). Concern-cards are collected and kept in a concern-card desk. A
concern card consists of:
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1. a unique identifier,
2. a short, concise name,
3. a comprehensive definition and explanation of the concern,
4. the concern’s priority,
5. related stakeholders that have an interest in the concern,
6. the perspective or category to which the concern belongs, and
7. possible associated architectural requirements, which can be used during

discussion.

During the execution of the CDIM, concern-cards are used to assist the architect
in collecting and understanding the different concerns, by making these explicit.

3.2 Plan Phase

The Plan phase consists of two activities initiate and construct. During ini-
tiate the architect develops an action plan containing the goal of the CDIM
cycle, the scope of the architecture under analysis, the organization’s situational
factors, and which stakeholders are needed during the CDIM cycle. During con-
struct, the architect selects perspectives and collects concerns from stakeholders.
A perspective enables the architect to categorize the concerns gathered and to
analyze the architecture from a certain angle. For each perspective, the architect
collects important and relevant concerns, and documents these as concern cards.
The Plan phase results in an action plan, a concern-card desk, and a prioritized
matrix of concerns.

3.3 Do Phase

The Do phase consists of two activities: identify and discover. In identify the
architect tries to identify possible conflicts through a workshop with the relevant
stakeholders. Input of the workshop is the previously constructed matrix. The
principal idea behind the cells of the matrix is that these provide the hotspots:
areas in the architecture where concerns could possibly overlap or conflict. Mul-
tiple overlaps or conflicts may be contained in each cell, as visualized in Fig. 2.
The “hotspots” are discussed by the architect and stakeholders. Their role is
to aid the evaluator with deciding on how conflicts affect the architecture or
possibly could affect the architecture, and which conflicts could be problematic.
The outcome is a completed matrix, presenting the architect the important areas
where inconsistencies may arise.

In discover, the architects go through the existing architecture to discover
whether these are actual inconsistencies, possibly together with relevant stake-
holders. The architect uses a combination of his expertise and knowledge of the
system, to systematically search for important inconsistencies, using the conflicts
identified in the matrix. Given the deliberate simplicity of CDIM, and the com-
plexity of a software architecture context, the steps in this phase are inevitably
one of judgment rather than quantifiable assessment. The drawback is that this
approach is less explicit and more based on subjective factors as intuition and
experience. The advantage is that this is easier and more flexible. The main
outcome of this activity is a list of important inconsistencies in the architecture.
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Fig. 2. A tool can be beneficial to the extent that the architect can use an overview
of the amount of inconsistencies that are still open (red), that are carefully ignored
(bright yellow), tolerated (cream yellow), or that have been solved (green) to indicate
what needs to be done. (Color figure online)

3.4 Check Phase

Once the matrix is completed, and possible inconsistencies in the architecture
have been discovered, the architect determines the type and cause of the incon-
sistency, and subsequently classifies the inconsistency. Classification is done on
the basis of four aspects: impact, business value, engineering effort, and the indi-
vidual characteristics of the inconsistency (such as the type and cause). Impact
refers to an inconsistency’s consequences, business value to whether the incon-
sistency is perceived as critical by the business, engineering effort addresses the
effort of solving an inconsistency and the availability of design alternatives, and
characteristics addresses factors related to the inconsistency itself such as the
type or cause of the inconsistency. These factors are context-specific but should
be considered as well [20]. The output is a classification in terms of these fac-
tors. Despite being still conceptual, results from the matrix could be visualized
as presented in Fig. 2.

3.5 Act Phase

In the final phase of CDIM, the architect creates and executes handling actions
for each inconsistency if needed (execute), and determines how to proceed (fol-
low up). In execute, the architect handles discovered inconsistency based on
five actions for settling inconsistencies: ‘resolve’, ‘ignore’, ‘postpone’, ‘bypass’,
and ‘improve’. It is important to note that handling an inconsistency is always
context-specific and requires human insight. ‘Resolving’ the inconsistency is rec-
ommended if the impact is high, the business value is high, regardless of the
engineering effort. Solving an inconsistency could be relatively simple (adding
or deleting information from a description or view). However, in some cases
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resolving the inconsistency relies on making important design decisions (e.g.
the introduction of a complete new database management technology) [6,20].
‘Ignoring’ the inconsistency is recommended if the potential impact is low, the
business value is low, and the engineering effort is high. ‘Postponing’ the deci-
sion is recommended when both impact and business value are relatively low,
and engineering effort is relatively high. Postponing provides the architect with
more time to elicit further information [20]. ‘Bypassing’ is a strategy in which the
inconsistency is circumvented by adapting the architecture in such a way that
the inconsistency itself still exists, but not touched upon. It is recommended
when the current impact is low and the business value and engineering effort
are relatively high, in which case continuity is important. ‘Improving’ on an
inconsistency might be cost-effective in other situations, in which time pressure
is high, and the risk is low. To improve on an inconsistency, inconsistent models
can be annotated with explanations, in order to alleviate possible negative con-
sequences of the inconsistent specification. The main outcome are the actions
referring to how and when to settle the inconsistency, possibly with requests for
change on the architecture, code or any other specifications that are important.

In follow up, the architect assesses the impact of the chosen actions, and
adds gained knowledge to a knowledge base and determines how to proceed. The
architect checks (a) whether a handling action intervenes with other actions; (b)
whether a handling action affects existing concerns; and (c) whether a handling
action results in new concerns. The architect decides whether a new cycle is
needed, or iteration to previous steps is needed.

4 Conclusions and Future Work

Managing inconsistencies in software architecture consistently and systemati-
cally is a difficult task. This paper presents CDIM, an inconsistency management
method that aims to support software architects in managing and detecting
intangible inconsistencies and conflicts in software architecture. Through con-
cern cards, the architect can discover and document relevant concerns. Using the
CDIM matrix, overlapping and conflicting concerns, and thus (undocumented)
inconsistent design decisions can be detected as well as it helps architects to
search for inconsistency in informal models. The method still needs careful and
thorough evaluation. Initial results show that the method is simple to use, and
offers the desired flexibility in combination with fast, practical results. As the
method yields design solutions and concrete suggestions for architectural design,
we envision the use of CDIM as a tool for communication and documenting
design rationale as well. As the proof of the pudding is in the eating, we plan
to build tool support to aid the architect, and evaluate the method in large case
studies.
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2 IRISA - Université Bretagne-Sud, Vannes, France
flavio.oquendo@irisa.fr

3 CRIStAL - Ecole Centrale de Lille, Villeneuve-d’Ascq, France
armand.toguyeni@ec-lille.fr
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Abstract. Socio-technical systems are increasingly becoming software-
intensive. The challenge now is to design the architecture of such
software-intensive systems for guaranteeing not only its correctness, but
also the correctness of its implementation. In social-technical systems,
the architecture (including software and physical elements) is described
in terms of Piping and Instrumentation Diagrams (P&ID). The design of
these P&ID is still considered an art for which no rigorous design support
exists. In order to detect and eliminate architectural design flaws, this
paper proposes a formal-based automated approach for the verification
of the essential architecture “total correctness” properties, i.e. compati-
bility, completeness, consistency, and correctness. This approach is based
on the definition of an architectural style for P&ID design in Alloy. We
use MDE to automatically generate Alloy models from a P&ID and check
their compatibility with the style and its completeness, consistency, and
correctness properties. Our approach is presented through an industrial
case study: the system of storage and production of freshwater for a ship.

Keywords: System architectures · Software-intensive systems ·
Architectural style · Formal verification · Alloy · P&ID

1 Introduction

Socio-technical systems are complex software-intensive systems. The design of
these systems involves designers from different technical fields. This diversity
may lead to misinterpretation of the specifications by the designers, which lead
to errors in the system architecture. A previous exploratory study showed that
different designs of socio-technical systems are based on an abstract technical
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diagram describing the architecture of the system porting the system in its entire
cycle of development [3]. Piping and Instrumentation Diagrams (P&IDs) are
technical diagrams widely used in the process industry.

P&ID is a detailed graphic description of the architecture in terms of process
flows showing all the pipes, the devices, and the instrumentation associated
with a given system [16]. The P&ID is the standard diagram that maps all
the components and connections of an industrial process. Each component is
represented by a symbol defined in ANSI/ISA 5.1 [9]. These components are
connected by physical connectors such as pipes and cables, or software links
[3]. The exchanged data (instrumentation) between the physical system and the
control programs are also represented in this diagram.

Currently, designers of socio-technical systems describe manually and infor-
mally the system architectures, which leads to several errors that are detected in
the testing phases. Verification steps must be integrated into the design process
in order to prevent errors and minimize costs. Despite the standardization efforts
of P&ID by ANSI/ISA-5.1 [9], there is currently no formal definition of these
diagrams enabling analysis. By verifying the P&ID already in the architectural
phase, can significantly reduce costs and errors [17]. We propose in this paper
a three-step formal approach to verify the “total correctness” in terms of com-
pleteness, consistency, compatibility, and correctness of P&ID. In the first step,
we propose to formalize the P&ID as an architectural style with Alloy. This
architectural style provides a common representation vocabulary and rules for
architectures described in terms of P&ID [22]. In the second step, in order to ver-
ify the architectural models in P&ID, we generate from these diagrams (by using
MDE) a formal model in Alloy. In the third step, we verify the compatibility of
the generated models with the style defined in the first step, its completeness,
consistency, and correctness using the Alloy Analyzer.

The remaining of this paper is organized as follows: in Sect. 2, we present
the state of the art on the formal verification of P&ID, including modeling
and analysis techniques applied to software architectures, and introduce the
Alloy language. In Sect. 3, we present our approach for the formal verification of
P&ID. We present our formalization of the P&ID architectural style with Alloy
in Sect. 4. The automated generation of Alloy models from the P&ID is shown in
Sect. 5. In Sect. 6, we illustrate our approach through an industrial case study. In
the final section, we present our conclusion and perspectives for future research.

2 State of the Art

Few studies have focused on the formal verification of the P&ID. Yang [25]
proposes a semi-automatic approach to build SMV models from plants CDEP
and P&ID. These models are used to verify safety properties written in CTL by
model checking (SMV). Krause et al. [15] propose a method to extract, from the
P&ID, the data related to the safety and reliability of systems. These data are
extracted in two graphs: Netgraph and a reliability graph. NetGraph represents
all the information related to devices and connections (structure). The reliability
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graph includes information about the reliability of these components. These
graphs are then used to analyze the reliability of the systems.

The studies cited above assume that the architectural structure is correct,
before initiating the reliability and safety formal verification. Our work is placed
upstream of these studies. We treat the formal verification of P&ID at a struc-
tural level, drawing on the literature regarding the formal modeling and verifi-
cation of software architectures in the field of software engineering.

2.1 Software Architecture

A software architecture is generally specified as a configuration (topology) of a
set of components and connectors. Components represent the computational
or data storage units in the system. Connectors represent each element (e.g.,
function calls, communication protocol) allowing the interaction between com-
ponents. Both components and connectors are characterized by a type, a set of
interfaces for their communication, a semantics (behavior), a set of constraints,
and non-functional properties [17]. The architecture can be described from sev-
eral viewpoints: structural, behavioral, physical, etc. [20]. From the structural
point of view, the architecture is described by the structural arrangement of
the various components and connectors constituting the system in terms of a
topology. From the behavioral point of view, the architecture is described by
the behavior of connectors and components expressing how they interact, the
actions that the system performs, and the relations between these actions [20].
The physical point of view captures the physical components and their interac-
tions through the physical connectors.

Several formal or semi-formal languages, called ADLs (Architecture Descrip-
tion Languages), have been proposed to describe software architectures. Wright
[2] for example, is an ADL based on the CSP process algebra. π-ADL [20] is
based on the π-calculus and involves the description of mobile architectures.
ACME [7] is core ADL supporting exchange of architecture descriptions. These
languages are domain-independent. In complement of these ADLs, some oth-
ers target specific domains, such as, EAST-ADL [5] for embedded automotive
systems.

In this sense, ANSI/ISA-5.1 [9] for describing P&IDs is a domain specific
ADL for socio-technical systems in the process industry. However, P&ID with
ANSI/ISA lacks a formal definition, as EAST-ADL. For enabling the formal
verification of the P&ID, we chose to use the Alloy language [10].

2.2 Alloy

Alloy is a formal declarative language based on relations and first-order logic
[10]. The idea behind Alloy is to enable system modeling with an abstract model
representing the important functionalities of the system (micro model).

Alloy logic is based on the concepts of atoms and relations. The atom
represents all the basic elementary entities characterized by a type. The relation
is a set of tuples linking atoms. These relations are combined with operators to
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form expressions. There are three types of Alloy operators: set operators such
as union (+), difference (−), intersection (&), inclusion (in) and equality (=);
relational operators such as product (->), joint (.), transposed (∼), transitive
closure (∧) and reflexive transitive closure (∗); logical operators such as negation
(!), conjunction (&&), disjunction (||), implication (→) and bi-implication (↔).
Quantified constraints have the form: Qx : e |F , with F a constraint on the set
x, e an expression on the elements of the type x and Q a quantifier that can
take one of the values: all (each element in x), some (at least one element), no
(no element), lone (at most one element) and one (exactly one element). For
example, all x : e |F is true if all elements in x satisfy F . Declarations, in Alloy,
are in the form: relation: expression, with expression a constraint bounding the
relation elements. For example, r : An → mB with n,m ∈ {set (set of elements),
one, lone, some} and A,B a sets of atoms. The relation r defines that each
element of the set A is mapped to m elements of the set B, and that each element
in the set B is mapped to n elements of the set A.

An Alloy model , organized in modules, consists of a set of signatures, con-
straints and command. A signature, declared by sig, introduces a set of atoms
and defines the basic types, through a set of attributes and relations with other
signatures. It matches the notion of class in object-oriented modeling in that
it can be abstract and inherits other signatures [11]. Constraints, organized in
facts (fact), predicates (pred), functions (fun), and assertions (assert) [11],
restrict the space of model instances. The fact is a Boolean expression that each
instance of the model must satisfy. A pred is a reusable constraint that returns
Boolean values (true, false) when it is invoked. A fun is a reusable expression
that can be invoked in the model. It may have parameters and returns Boolean
or relational values. An assert is a theorem that has no arguments and that
requires verification. Commands describe the purpose of the verification. The
Alloy Analyzer [1] can be used as a simulator, with the run command, to obtain
a solution (instance) that satisfies all the constraints, or as a checker, with the
check command, for searching a counterexample that violates an assertion [11].
The model is transformed by the parser into Boolean expressions that can be
verified by different SAT (kodkod, SAT4J . . . ). A scope is necessary to limit
(bound) the search space.

The Alloy language has been used to specify architectural styles [14,24] and
to model and verify model architectures [4,13]. The atoms and relations are used
to model the design vocabulary (components and connectors). The constraints
(fact, pred, fun, assert) are used to manage style invariants (rules) that describe
the allowable configurations from its design vocabulary. In the next sections, we
present our formal approach to verify the P&ID.

3 Proposed Approach

In our previous study, we defined a standard library for performing a P&ID for a
fluid management system [3]. We used Microsoft Visio tool to capture the struc-
ture of different P&ID components and connectors. Figure 1 shows an extract of
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Fig. 1. An extract of P&ID metamodel [3]

the P&ID metamodel. The P&ID is an assembly of shapes and bonds. Each shape
represents a component of the standard ANSI/ISA-5.1 [9]. It is characterized by
a name and id that correspond respectively to the component type and compo-
nent identifier. The shape contains a set of ports that represent its interaction
points. The bonds types can be: process (Process, in the enumeration TypeCon),
electrical (ElectricalSignal), instrument (InstrumentSupply), and software links
(InternalSystemLink). The Bonds ensure the interaction between components
and comprises at least two extremities and each extremity is connected to one
port.

As the P&ID is an architectural diagram, it must be complete, consistent,
compatible with an architectural style, and correct with the system requirements
[22]. To this end, we propose a three-step approach to formally verify the P&ID.
In the first step, we defined an architectural style in Alloy, based on ANSI/ISA-
5.1 [9] standard, to describe the different constraints that the P&ID must satisfy.
In the second step, we used the concepts of MDE to generate a configuration in
Alloy from the P&ID. The Alloy analyzer was used, in the third step, to verify
the completeness, consistency, compatibility of the P&ID to the style and its
correctness with system requirements.

Two modules were used for checking the P&ID. The first module, called
library, represents the architectural style and its invariants. The second module,
automatically generated from a P&ID, describes a configuration of a fluid man-
agement system. We show bellow the P&ID architectural style formalization and
the automatic transformation of P&ID into Alloy.

4 P&ID Architectural Style

To formally model the P&ID architectural style, we especially based on the
work of Kim and Garlan [14] who used the Alloy language for modeling and
analyzing the basic architectural styles. We adapted their basic formalization
of component, connector, role, port, and configuration to our needs. Then, we
extended the task by formalizing the specific components and connectors of the
P&ID and its style invariants.
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4.1 Component

We model the components by the Component and Port signatures (Listing 1).
The component is an abstract signature (abstract sig) that contains a set of
ports, described by the relation ports: set Port, and a set of actions. Actions,
modeled by the relation actions: Port set -> set Port, represent the com-
ponent’s actions on the fluid through its ports, i.e. the routing of the fluid, in
the component, from port A to port B. The constraint actions.Port in ports
means that the join between the sets of actions and Port is included in the set of
component ports. In other words, the component actions concern just its ports.
The Port signature describes a port related to one and only one component,
modeled by the relation component: one Component.

Listing 1

abstract sig Component {
por t s : set Port ,
a c t i on s : Port set −> set Port
}{ this = port s . component
a c t i on s . Port in por t s

a c t i on s [ Port ] in por t s }

abstract sig Port {
component : one Component
}{ this in component . por t s }

abstract sig Process extends
Component{}

abstract sig Instrument
extends Component{}

abstract sig PP extends Port {}
abstract sig IP extends Port {}
abstract sig EP extends Port {}
abstract sig SP extends Port {}

abstract sig V3VM extends Process {
p1 : lone PP, p2 : lone PP,
p3 : lone PP, p4 : lone EP

}{p1 + p2 + p3 + p4 = port s

a c t i on s = (p1−>p2 ) + (p2−>p1 ) +

(p1−>p3 ) + (p3−>p1 )
lone por t s & p1
lone por t s & p2

lone por t s & p3
lone por t s & p4}

There are two types of components in ANSI/ISA-5.1 [9]: Process (abstract
sig Process) and Instrument (abstract sig Instrument) that inherit the
component signature (extends Component, Listing 1). Process components rep-
resent components that have a behavior involving a change of energy, state, or
other properties in the system [9]. In the system of fluid management, these com-
ponents (e.g., pumps, valve) have an action on the routing of fluid. On the other
hand, instrument components (e.g., indicators, transmitters) are used directly or
indirectly to measure and/or control a variable [9]. Each component has several
types of ports describing the kind of its interactions. We model these types by
the signatures: PP (Process Port), IP (Instrument Port), EP (Electrical Port) and
SP (Software Port), which extend the port signature (Listing 1). For example, a
component with a PP can interact with other Process components through this
port.

The motorized three-way valve (V3VM) is a process component (extends
Process) with 3 PP (p1, p2, p3) and an EP (p4) (Listing 1). The valve is
used to route the fluid from p1 to p2 (p1->p2) and vice-versa (p2->p1). It also
allows routing of the fluid from p1 to p3 and vice-versa. However, it does not
route the fluid between p2 and p3. The constraint (lone ports & p1) means
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that the valve contains at most one port of the type p1. In the same way, we
modeled 30 other components.

4.2 Connector

The connectors are described by two abstract signatures: Connector and Role
(Listing 2). A connector (abstract sig Connector) is a set of roles. Each role
(abstract sig Role) is related to a single connector. The relation connected:
one Port describes the fact that each role is connected to a single port. The
different connectors in the P&ID are: process link (PL, in Listing 2), instrument
link (IL), electrical link (EL), or software link (SL).

Listing 2

abstract sig Connector {
r o l e s : set Role

}{ this = r o l e s . connector }

abstract sig PL extends Connector {}

abstract sig Role{
connector : one Connector ,

connected : one Port

}{ this in connector . r o l e s }

4.3 Configuration

The configuration (Listing 3) is composed of a set of components (components:
set Component) and a set of connectors (connectors: set Connector). Hence,
it is an instance of all signatures that respect the style invariants described in
the next subsection.

Listing 3

abstract sig Configuration{

components: set Component ,

connectors: set Connector

}{ connectors.roles.connected in components.ports

components.ports .~ connected in connectors.roles}

4.4 Style Invariants

To model the style invariants, derived from the ANSI/ISA-5.1 [9] standard, we
use the expressions presented in Listing 4. The pred isTyped returns true if
an element e1 is e2 typed, else, it returns false. The pred Attached returns
true if a role r is attached to port p by the relation connected. Finally, the
pred isCompatible determines if a connector c is compatible with the attached
port p.

Different style invariants are modeled as a fact (each element of the Alloy
model must satisfy it) named StyleInvariants (Listing 4); these invariants
concern:
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1. Compatibility Connector/Port: each connector extremities are attached to
a port and are compatible with the attached ports. For example, a port of
type EP should be attached with an EL (Electrical Link). This invariant is
modeled in Listing 4, with the number (1).

2. Connected relation: it is Irreflexive, namely, the extremities of each connector
should not be attached to ports of the same component (the component is
not connected to itself), see Listing 4, number (2).

3. Component: each component must be connected. This invariant is codded in
Alloy at Listing 4, number (3).

4. Double connection: it does not exist, namely, there are no two connectors
between the same ports (Listing 4, number (4)).

Listing 4

pred isTyped[e1:univ ,e2:univ]{e1 in e2}

pred Attached[r:Role ,p:Port]{r->p in connected}

pred isCompatible[c:Connector , p:Port]{ isTyped[c,PL]

=> isTyped[p,PP] else (isTyped[c,IL] => isTyped[p,IP]

else (isTyped[c,EL] => isTyped[p,EP] else (isTyped[c,SL]

=> isTyped[p,SP])))}

fact StyleInvariants{

(1) all r:Role|some p:Port|Attached[r,p] &&

isCompatible[r.connector ,p]

(2) all disj r1 , r2:Role | (r1.connector= r2.connector )

=> (r1.connected.component != r2.connected.component)

(3) all c:Component |!(c.ports .~ connected = none)

(4) all disj c1 ,c2:Connector|

no (c1.roles.connected & c2.roles.connected )}

pred show {#St >=1 #V2VM >=1 #Interface >=1}

run show for 8

4.5 Style Consistency

The style is said to be consistent if and only if there is no contradiction between
the style invariants [2]. This means that there is one configuration that meets the
style structure and its invariants [14]. To check the consistency of our architec-
tural style, we simulate it with the Alloy Analyzer: if an instance (configuration)
is found, the style is consistent. When we execute the command run show for 8
(Listing 4), we obtain an instance shown in Fig. 2(a). The corresponding P&ID is
illustrated in Fig. 2(b). This configuration satisfies all the style invariants, which
means that the style is consistent.



218 S. Mesli-Kesraoui et al.

Fig. 2. Style consistency checking: (a) alloy instance; (b) corresponding diagram

5 Translation of P&ID into Alloy

Transformation models have been developed in ATL language of the Eclipse
Modeling Project [12], to transform P&ID into an Alloy module. For this, we
used the Alloy metamodel described in [6] and the P&ID metamodel of Fig. 1.
The Alloy metamodel (module) is composed of one header, a set of imports,
and a set of paragraphs. Paragraphs consist of signature, fact, pred, fun, assert,
check, and run. In our case, the generated module (configuration) imports the
library module where the style is modeled. The rest of the module consists of a
set of sig, fact, run, and check paragraphs, representing the configuration. The
set of rules used to transform P&ID into Alloy are described below.

SynopticToModule. The root of the diagram (the Synoptic node) is trans-
formed into a module in Alloy. This module is composed of one signature named
Eds (Listing 5), corresponding to the subsystem in the synoptic metamodel.
This signature inherits from the Configuration signature (Listing 3). The field
components, in the configuration, corresponds to the union of all the shapes
transformed into signatures (Listing 5). The connectors field involves on the
union of all connectors, derived from synoptic bonds.

ShapeToSignature. Each shape corresponds to a component which inherits
from the signature defined in the style. The name in the shape defines the
type of the component. The id attribute is used for naming the signature. The
predefined ports in each component (example p1, p2, p3, p4 in V3VM) are
assigned to the signature generated automatically from each port. In Listing 5,
we show an instance of the V3VM component. This instance named V3VM1 inherits
from V3VM and the V3VM1 P1, generated from a port, corresponds to the port p1.

PortToSignature. Each port, in the synoptic model, is transformed into a
signature that inherits from the corresponding port type. In Listing 5, we can
see that the V3VM1 P1 inherits from the signature PP because it is a process. The
disconnected ports (such as p4 in V3VM1) are not generated.

BondToSignature. Each bond is transformed into a signature that inherits
from the corresponding connector types. For example, the Process bond in Fig. 1
is transformed into the signature inheriting from the signature PL (Listing 2).
The roles field in the signature corresponds to the union of its extremities,
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transformed into the Role. For example, in Listing 5, the process link connector
PL 3 is composed of the roles: PL 3 1 and PL 3 2.

ExtremityToSignature. Each extremity is transformed into a role (exten-ds
Role). It is composed of two fields: connector and connected (Listing 5). The
connector field defines the containing connector. The connected field deter-
mines the port to which the role is connected. In Listing 5, for example, the role
PL 3 1 is connected to the port p1 of the component V3VM1.

Listing 5

one sig EdS extends Conf igurat ion {}
{components = V3VM1 + . . .

connector s = PL 3 + . . . }

one sig PL 3 extends PL{}{
PL 3 1 + PL 3 2 = r o l e s }

one sig V3VM1 P1 extends PP{}{
component = V3VM1}

one sig V3VM1 extends V3VM{}
{p1 = V3VM1 P1

p2 = V3VM1 P2

p3 = V3VM1 P3}

one sig PL 3 1 extends Role {}
{ connector = PL 3
connected = V3VM1. p1}

6 Case Study

Our work is in the maritime field. Specifically, we examine the system of produc-
tion, storage, and distribution of fresh water called EdS (standing for Eau douce
Sanitaire in French, or sanitary freshwater in English). An extract of the P&ID
of this system is illustrated in Fig. 3. This diagram must meet the architectural
style defined above and several requirements that come from the specifications,
standards, business rules, etc. We followed the protocol described by Wohlin
et al. [23] for performing an exploratory study of the case study to extract the
requirements that this system must meet.

6.1 Requirements Elicitation

In order to retrieve and categorize the different requirements, we combined sev-
eral data extraction methods (independents and directs). First, we recovered the
project technical documentation (e.g., specifications, guidelines, patterns). After
analyzing the documentation, we realized that the system must also meet the
standards defined in the specifications. We recovered these standards to extract
and expand the set of requirements. Then we noticed that the designers applied
business rules in the design of the P&ID. To capture the designers’ knowledge, we
developed semi-structured interviews (direct methods) with five experts (engi-
neers) who all had a significant experience (on average ten years) in the design
of the P&ID.

The interviews questions were written and then validated by a specialist. The
interviews, lasting between 1h30 and 1h45, were recorded in audio form and then
transcribed for data extraction. A Ph.D. student performed the data extraction,
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Fig. 3. An extract of P&ID of EdS system

and each step was validated by three professors and two industry experts. We
used an Excel document to identify and categorize requirements.

The information collected by the methods listed above is qualitative. The
different requirements are categorized and classified in the following sections.

6.2 Requirements Definition

According to INCOSE [8], the system requirements are: functional, non-
functional, architectural constraints, and performance. Functional requirements
are the constraints related to the functions of the system. They represent what
the system should do. The non-functional requirements, called “ilities”, consist of
constraints describing the operational quality that the system must address [8].
Architectural constraints are all constraints related to the architecture or design.
Performance requirement is a quantitative measure characterizing the system
functionality. In this study, we consider just the functional, non-functional, and
architectural constraints requirements.

Architectural Constraints. They include the related standards, physical
requirements, constraints of cost, programming language, and time. For example,
in our case, these requirements involve the compatibility of the P&ID with the
architectural style, and the presence of some instruments on specific components
according to different standards.

Functional Requirements. The EdS system must ensure seven functions:
transfer, treatment, embedded distribution, distribution from quay, production,
loading, and unloading.

The transfer function, for example, must ensure the transfer of a volume V of
water from a tank A to another tank B, necessary passing by through one of the
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pumps (H1, H2, H3). This functional requirement is shown in the P&ID (Fig. 3)
by a path (in bold) between the tank St1 and the tank St2 through the pump
H2. To achieve this, the designer sequenced the following components: the tank
St1, the pump H2, the chlorination unit TR1 used to treat water by chlorine, and
finally the tank St2. These components are isolated by motorized two-way valves
(V2VM02, V2VM05) and a motorized three-way valve (V3VM02) to facilitate
routing and maintenance. Check valves return (Cl6, Cl8) are also used to prevent
the fluid to circulate in opposite way of the flow.

To check that this diagram ensures the different functions, we used the
funs and preds in Listing 6. The function ComponentConnected returns the
tuples of components that communicate through the same connector. The pred
ExistPath returns true if a component destination dest can be reached from a
source sc component, passing by pas components. The pred isTransfer deter-
mines if a path exists from a tank (St) source to a tank destination, passing by
the pump (HP).

Listing 6

fun ComponentConnected : Component−>Component{
{ s1 , s2 : Component | ( dis j [ s1 , s2 ] && not ( ( s1 . por t s ) . ( s1 . a c t i on s ) .

˜( connected ) . RoleConnected . ( connected ) . ( s2 . a c t i on s ) = none)}}

fun RoleConnected : Role−>Role{
{dis j r1 , r2 : Role | connector [ r1 ] = connector [ r2 ]}}

pred ExistPath [ sc : Component , pas : set Component , des t : Component ]{
( pas in sc . ˆ ( ComponentConnected ) ) &&
( dest in pas . ˆ ( ComponentConnected ) )}

pred i sT r an s f e r [ sc : Component , pas : set Component , des t : Component ]{
ExistPath [ sc , pas , des t ] && ( sc in St ) &&

( dest in St ) && ( pas in HP)}

Non-functional Requirements. We present below examples of these require-
ments as applied to the EdS system. They represent the qualities of the offered
functions such as:

– Overall efficiency: for example, the flow in the pipe should not exceed 6 bars
or the production of 30m3 of freshwater.

– Dependability: these requirements determine the necessary material redun-
dancies (3 pumps) and the operating time of components.

– Maintainability: each component must be preceded and followed by an isolat-
ing element (a valve) to facilitate maintenance.

– Safety: these requirements include the presence of the check valves to prevent
the traffic flow in opposite directions (leading to a collision of flows). It must
never be a check valve upstream of a pump.



222 S. Mesli-Kesraoui et al.

– Usability: as the presence of instruments to manage alarms in the machine
rooms of industrial monitoring interfaces.

– Scalability: ease of expansion by other components.

In Listing 7, we modeled the invariants of maintainability (pred Isolated-
Component). Each of the type TR or St or HP (TR + St + HP) must be preceded
(IsolatedComponentDown) and followed (IsolatedComponentUp) by a valve
(V2VM + V3VM).

Listing 7

pred IsolatedComponent {
let va lve s = V2VM+V3VM | a l l s :TR+St+HP |
some ( IsolatedComponentUp [ s ] & va lve s ) &&
some ( IsolatedComponentDown [ s ] & va lve s )}

fun IsolatedComponentDown [ s : Component ] : Component{
{c : V2VM+V3VM| some c l : Cl | c in s . ComponentConnected | |
( ( c l in s . ComponentConnected ) && ( c in c l . ComponentConnected ))}}

fun IsolatedComponentUp [ s : Component ] : Component{
{c : V2VM+V3VM | some c l : Cl | s in c . ComponentConnected | |
( ( s in c l . ComponentConnected ) && ( c l in c . ComponentConnected ))}}

6.3 Completeness, Consistency, Compatibility, Correctness

There are four goals to an architectural analysis, namely completeness, con-
sistency, compatibility, and correctness [22]. Completeness means that there is
sufficient information to pretend to an analysis [2], i.e. that the system always
knows what to do. Consistency ensures that there are no contradictions between
model elements. Compatibility ensures that the architecture model conforms to
the architectural style and its invariants. Finally, correctness ensures that the
architecture model meets the system specifications.

Completeness. Completeness in the EdS system entails naming of the differ-
ent elements, i.e. components and connectors must be named. This property is
verified automatically by the Alloy Editor. When the name of the generated sig-
nature is null, the Alloy Editor detects it as a syntactic error. Another external
completeness property in the P&ID is the instrumentation. The absence of this
information does not affect the architecture model. However, this information
is required during refinement (e.g. the automatic generation of the supervision
interface from the P&ID). This requirement is not verified in this study.

Consistency. Consistency dimensions include names, interface, behavior, inter-
action, and refinement [22]. In this paper, we deal with just the name and inter-
face consistency. The name consistency means that the names of components and
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connectors must be unique to avoid confusion. This property is verified automat-
ically by the Alloy Editor as a syntactic error. The interface consistency involves
the Connector/Port consistency, which means that the connector type must be
consistent with the port type to which it is connected. This property is among
the invariants of style (invariant 1, Listing 4). If the diagram is compatible with
the style, then it meets this property.

Compatibility. The EdS P&ID (Fig. 3) must be compatible with the style
defined in Sect. 4. To check the P&ID compatibility, we used the Alloy Analyzer
as simulator. If the simulator finds a solution for the generated model including
the library module (style formalization), this means there is diagram compati-
bility.

Correctness. The EdS system (Fig. 3) must meet its functional and non-
functional properties. We modeled these requirements as assertion (Listing 8)
and we checked the existence of a counterexample by the command check
Correctness Analysis for 1. The assertion (Correctness Analysis) checks
that each component is isolated (IsolatedComponent) by the valves and that
the diagram ensures a transfer function (isTransfer[St2,HP,St1]) between
tanks St1 and St2.

Listing 8

assert Correctness_Analysis {

IsolatedComponent && isTransfer[St1 ,HP,St2]}

check Correctness_Analysis for 1

6.4 Formal Verification Analysis

The verification was performed on 2.7 GHz i5 CPU and 8 GB of memory. We
executed the analysis using Alloy Analyzer version 4.2 20150222 with SAT4J as
SAT Solver. The library module is composed of 46 signatures, 7 preds, 6 functions
and 1 fact. The EdS module, corresponding to the case study of Fig. 3 and
representing the half of a complex and large size auxiliary system in a ship [3],
is composed of 176 signatures, 1 assertion and 1 check command. This number
is due to the industrial nature of our case study (238 paragraphs in total). The
results show that the P&ID of Fig. 3 is complete, consistent and compatible with
the style. When we checked the correctness of the model, we executed Listing 8.
The verification took 1.13 min and did not return a counterexample. This result
means that the model meets its requirements.

6.5 Threats to Validity

To discuss threats to validity, we used the classification scheme proposed in [21].
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Construct validity reflects the fact that the completed study must address
the problems identified. In this study, this threat may concern the interpretation
of the questions by subjects and researchers. To reduce this threat, we worked
with the technical terminology experts who had participated in the interviews.

Internal validity concerns the examination of causal relations in studies [21].
This study is explorative, hence less susceptible to this type of threat. Another
potential threat involves the small number of experts (five). To counter this
threat, we used semi-structured interviews to extract the maximum of data and
complemented them by archival data consisting of project documentation and
standards.

External validity refers to the generalization of the study findings to other
cases. We proposed an architectural style based on the ANSI/ISA-5.1 [9] stan-
dard. Hence, it can be used for all P&ID based on this standard. Another poten-
tial threat is that the interviews and the extraction data were performed by
the same researchers. To reduce the risk of bias, the interview questions were
reviewed and corrected by an independent expert. The data transcription and
extraction were also reviewed by this independent expert.

Reliability addresses the possibility that other researchers can replicate the
study. To facilitate this replication, we transcribed the interviews and placed the
complete project documentation on the company network.

7 Conclusion

In this paper, we proposed three contributions for the formal verification of
the physical architecture of an industrial process. This architecture is modeled
by P&ID, which captures the physical components and connectors constitut-
ing the system. First, we proposed the formalization, with Alloy language, of
an architectural style for the ANSI/ISA-5.1 [9] standard. Second, to facilitate
the use of formal methods in industry, we presented the MDE-based approach
to generate formal models, in Alloy, from the P&ID. The third contribution of
this paper includes the formal verification of the generated models. We verified
the compatibility of these models with the defined architectural style. We also
checked their completeness, consistency, and correctness with regard to the sys-
tem requirements. These contributions are illustrated through an industrial case
study: a system of production, storage, and distribution of freshwater on a ship.
For this case study, we carried out a survey with five experts to determine the
requirements to check. Then, we analyzed the P&ID of the EdS system.

In the near future, we intend to display the counterexample, returned by
the Alloy Analyzer, on the P&ID to facilitate the interpretation of errors by
the engineers. In complement of the presented work, we formalized the behavior
of the architectural elements [18,19] and we are now studying compositional
frameworks for verifying system behavioral properties driven by the formalized
architecture.
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Abstract. Context: Even though Scrum (the most popular agile software
development approach) does not consider architecting an explicit activity,
research and professional literature provide insights into how to approach
architecting in agile development projects. However, challenges faced by
architects in Scrum when performing tasks relevant to the architects’ role are
still unexplored. Objective: We aim at identifying challenges that architects face
in Scrum and how they tackle them. Method: We conducted a case study
involving interviews with architects from six Dutch companies. Results: Chal-
lenges faced by architects are mostly related to the autonomy of development
teams and expected competences of Product Owners. Conclusions: The results
presented in this paper help architects understand potential pitfalls that might
occur in Scrum and what they can do to mitigate or to avoid them.

Keywords: Software architect � Architecture � Agile development � Scrum

1 Introduction

Agile software development has gained substantial popularity in recent years [1]. Even
though software architecture is considered crucial for software project success [2],
architecting activities and the role of software architects are not explicitly considered in
agile development methods [3]. Numerous publications have discussed the role of the
architecture in agile projects, and how software architecting could be approached in
agile projects [4]. However, there is currently little attention on the role of architects.
Few publications discuss the types of architects (e.g., generic types such as solution and
implementation architects [5], enterprise/domain and application architects [6]), and
their responsibilities and tasks in agile projects (e.g., [5, 7]).

In a development context where software architecting is not explicit, architects may
face particular challenges. However, few publications discuss such challenges. Faber
describes on a high level experiences from architecting and the role of architects in
agile projects at a specific company [7]: Architects should actively guide (but not
dominate) developers and be open to suggestions from the developers to deviate from
originally proposed design solutions. Woods reports that “difficulties frequently arise
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when agile development teams and software architects work together” and proposes
general architecture practices (e.g., work in teams) that encourage collaborative
architecture work in agile development [8], but does not describe challenges faced by
architects. Martini et al. note that architecting in large agile projects is challenging and
propose a number of architectural roles to improve architecting practices [9].

In this paper, we identify challenges that architects face in Scrum when they
perform their tasks and how they address these challenges. Our study provides insights
for architects on how to improve their work in agile projects (e.g., by focusing their
attention on particular pitfalls) and will better prepare less experienced (or novice)
architects for challenges in agile projects. We focus on Scrum projects as Scrum is the
most often used agile development framework [1].

2 Background

The main roles in Scrum are the Scrum Master (SM), the team (including testers and
developers) and the Product Owner (PO). In Scrum, there is no explicit architect role
[10] and an architecture may emerge during a project rather than being designed
upfront. However, in many organizations that follow Scrum, architects create archi-
tecture designs and communicate their decisions to development teams [10]. The setup
in which architects are involved in agile projects (and Scrum) can differ [11]:

• In a “Team architect” setup, the architect is part of the development team [12]. If
there is no dedicated architecture expert, the role of the architect can be taken by the
whole team [13].

• In an “External architect” setup, the architect is not part of the agile team. He/she
might work with multiple agile teams and partner with other architects (for example,
as a project architecting team or as a member of an architecture board) [7].

• In a “Two architects” setup, there is an external and an internal architect. Abrahamsson
et al. define the types of architects as: architects who focus on big decision, facing
requirements and acting as external coordinators, and architects who focus on internal
team communications, mentoring, troubleshooting and code [3].

3 Research Method

As we want to study architecture-related challenges in Scrum in practice which cannot
be studied in isolation from its context, we follow an “in the wild” approach and apply
case study research [14]. Also, we have little control over all variables (e.g., people,
organizational structures). The research process followed the guidelines described by
Runeson and Hoest [14] and is outlined in the following.

Case Study Design: To empirically investigate challenges that architects face in
Scrum projects, we defined the following research questions: RQ1: What are chal-
lenges that architects face in Scrum projects? RQ2: How do architects handle the
challenges related to their role in Scrum projects? Our study is a multiple-case study
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with six cases. Our research is exploratory as we are looking into an unexplored
phenomenon [15]. Our unit of analysis is the architecting process in Scrum projects.
Our sampling method is quota sampling (because we included two cases for each of the
three setups described in Sect. 2) augmented with convenience sampling (because we
selected cases based on their accessibility) [16]. We selected representative projects
from six organizations from the Netherlands with established software development
practices.

Preparation for Data Collection: Data for each case was collected via
semi-structured interviews on-site and follow-up phone calls and e-mails. To avoid
terminology conflicts, we have selected interviewees based on their involvement in
architecting activities instead of solely focusing on the job title of individuals. We
asked questions about tasks which architects perform using tasks-descriptions in [17,
18] and questions based on the potential challenges that may occur in the setups as
described in Sect. 2. For each task, we asked if it was performed, if
challenges/problems were observed when performing it, and what was done to address
the challenge. The interview guideline can be found online1.

Analysis of Collected Data: The transcripts and the recordings were analysed and
information was clustered using open coding [19]. After initial coding, we looked at
groups of code phrases and merged them into concepts and related them to the research
questions. Codes and concepts emerged during the analysis. Since our data is context
sensitive, we performed iterative content analysis to make inferences from collected
data in its context [20]. Data were analysed by all authors.

4 Study Results

In Table 1, we provide an overview of the six cases. Next, we introduce the cases and
present the main challenges that we identified and their resolutions.

Table 1. Overview of the cases studied

Case Domain Company Size Architect setup Interviewees

Case 1 E-commerce solutions Medium Team architect Lead developer
Case 2 Software solutions Small Team architect Lead developer
Case 3 Navigation systems Large Two architects Senior software architect,

Software architect
Case 4 Appliances Large Two architects Design Owner
Case 5 Finance Large External architect Enterprise architect,
Case 6 Software consultancy Large External architect Senior security architect

1 https://sites.google.com/site/samuilangelov/InterviewQuestions.docx.
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4.1 Cases

• Case 1: In the organization of case 1, there is no explicit architect role in the
company and discussions and decisions about the architecture involve the whole
Scrum team. The lead developer is the most senior technical person in the team and
has the final say in an architectural decision.

• Case 2: In the organization of case 2, a project is usually done by one team. Each
team has a lead developer who is responsible for the architecting activities but the
whole team works on the architecture.

• Case 3: In the organization of case 3, a senior software architect and a software
architect are involved in Scrum projects as external and internal to the Scrum team,
respectively. Scrum teams can be distributed geographically.

• Case 4: In this case, an architecture team maintains a reference architecture which
Scrum teams apply. The architecture team provides to the Scrum team the reference
architecture and a prototype implementation at a start of a project. A system
architect residing outside the team maintains a requirements specification docu-
mentation focusing on legal and regulatory aspects of the software. A team has a
“design owner” who streamlines the architecting activities in the team.

• Case 5: In the organization of case 5, an enterprise architect residing outside the
Scrum team elaborates a high-level architecture, explains it to the team leader (who
fulfils the role of the SM and also is the most experienced software designer), and
provides support during the project. The PO is also a product manager.

• Case 6: Case 6 is a consultancy company offering specialized architects to clients.
Architects reside outside the Scrum teams.

4.2 Challenges Between Architect(S) and PO(S)

Challenge 1: PO lacks architecting/technology competence (reported in cases 1, 2, 4,
5, 6): POs are business-oriented with little technical/architectural knowledge. They do
not realize the importance of architecting and do not consider it in their activities. They
cannot provide architectural information and engage in architecting discussions.

Resolution in case 1: Architectural decisions and activities are presented by the team to
the PO in a simplified form. For gathering and providing architecting information, the
team communicates directly with external stakeholders. The PO accepts this “loss of
control” over communication and accepts architecting activities and decisions without
understanding them.
Resolution in cases 2, 4, 5, 6: The PO is not involved in the architectural discussions.
The architect (team) talks to other project stakeholders on architectural issues.

Challenge 2: PO lacks Scrum skills (reported in case 2): Insufficient competence of
POs on their responsibilities leads to incomplete information from stakeholders and the
PO then provides incomplete information to the team.
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Resolution in case 2: Some external stakeholders approach the team directly, cir-
cumventing the PO. The team architect also approaches external stakeholders (in-
cluding end users) and discusses functional and non-functional requirements with
them. Some POs are against architects to approach end users and the architect has to
justify talking directly to end users.

Challenge 3: Unavailability of PO (reported in cases 2, 3, 4, 5): The PO is sometimes
unavailable and the architect cannot obtain and provide information from/to the PO.

Resolution in case 2, 4: The team discusses the problem of not being available with the
PO. If this does not help, the problem is escalated to higher management.
Resolution in case 3: The external architect is empowered to remove user stories from
the sprint backlog which the PO did not elaborate on in sufficient detail.
Resolution in case 5: To compensate for the POs unavailability, the architect com-
municates with other stakeholders for providing and getting relevant information.

4.3 Challenges Between External Architect(s) and External Stakeholders

Challenge 1: External architect(s) get/provide insufficient input from/to external
stakeholders (reported in cases 3, 4): There is no (or only one-directional) communi-
cation between external architects and external stakeholders as external stakeholders
are architecturally unsavvy.

Resolution in case 3: Realising drawbacks of not talking to external stakeholders, the
external architect communicates with them on issues and in a way that external
stakeholders can understand.
Resolution in case 4: Not resolved.

Challenge 2: External stakeholders do not understand the value of architecting (re-
ported in cases 3 and 5).

Resolution in case 3: The external architect communicates with external stakeholders
on issues and in a way that external stakeholders can understand.
Resolution in case 5: The external architect is trying to educate the external stake-
holders who are not architecturally knowledgeable.

4.4 Challenges Between External Architect(s) and Team

Challenge 1: External architect(s) and team cannot agree (reported in cases 3, 5, and
6): Architects face challenges in conveying their ideas to the team. Sometimes, the
team and architect disagree.

Resolution in case 3: The external and team architects discuss and agree on the
architectural decisions. Then, the external architect explains the reasoning behind
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architectural decisions to the team at the beginning of each sprint. During demos he
reviews whether architectural directions are followed.
Resolution in case 5: The architect offers an architecture to the team leader. The
architect and team leader together introduce the architecture to the team. If the architect
and team disagree, the dispute is escalated to external managers.
Resolution in case 6: The architect tries to explain his choices to the team in a cour-
teous way. The architect would try to use the already convinced team members to
influence the rest of the team. In cases where still parts of the team would disagree, the
architect has to escalate the problem to external managers. On one occasion the
architect disagreed with the manager’s decision and left the project.

Challenge 2: External architect(s) cannot easily reach team members (reported in
case 3): Reaching all team members is difficult for the external architect, as the team
members are spread across multiple locations around the world.

Resolution in case 3: The external architect still tries to meet them physically 1–2 times
a year. This results in additional effort (e.g., travelling) and time required.

Challenge 3: External architect(s) provide insufficient input to the team (reported in
cases 4 and 5): The team has to align its decisions with the external architect(s) but does
not receive enough input or guidance during the project.

Resolution in case 4: A developer from the architectural team joins the Scrum team
during the first months of a project.
Resolution in case 5: The external architect talks to the team leader as a first point of
communication about architectural issues. He is “trying to make the team leader a sort
of architect in the team”.

Challenge 4: Teams struggle to provide documentation to external architect(s) (re-
ported in case 4): The architect expects from the team documentation. This often
conflicts with the team’s perception of agile practices.

Resolution in case 4: A separate task-board is created to make documentation more
efficient while still being conformant to regulatory requirements.

4.5 Challenges Between Architect(s) in Team and External Stakeholders

Challenge 1: Higher-level management interferes with team (reported in cases 1, 4):
Managers outside the team tend to pressure the team (e.g., to make certain architectural
choices, to deliver faster, to prioritize architecting activities low).

Resolution in case 1: The team tries to resist external influences.
Resolution in case 4: Since this results in architectural debt, dedicated architectural
projects are started, which are not hindered by too strong business deadlines.
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Challenge 2: Team architect(s) cannot easily reach external stakeholders (reported in
case 2): Reaching external stakeholders requires travelling.

Resolution case 2: The architect uses telephone or VoIP applications or visits a
stakeholder (preferred, especially in the case of new stakeholders).

Challenge 3: Team architects do not communicate with each other (reported in case
3): Team architects do not communicate with each other and do not align their deci-
sions, making suboptimal choices within their teams.

Resolution in case 3: The team architects are encouraged to communicate between each
other on architectural decisions that span across teams and impact multiple teams.

4.6 Discussion

In all cases, the POs were reported to lack certain competences. In cases 1, 2, 4, 5, 6
they lack technical and architecting knowledge. POs performed their core activities
insufficiently in four of the cases: insufficient communication with external stake-
holders in case 2 and insufficient time for the team in cases 2, 3, 4, 5. Resolving these
challenges causes overhead (time, effort) for architects in reaching external stake-
holders and excluding the PO from architectural decisions in cases 2, 4, 5, 6.

In cases 1, 3, 4, 5, and 6, architects face conflicting situations with respect to
architectural decisions. Cases 3, 5, and 6 report disagreements between external
architects and teams. In cases 1 and 4 disagreements between management and teams
occurred. Resolutions to disagreements between external and team architects are about
getting buy-in from teams and team leaders or escalating to managers. To mitigate
problems caused by interfering management in case 4, an isolated (from management)
architecture prototyping project is started prior to the actual project. Challenges related
to architectural decisions were not reported only in case 2. This could be because the
organization of case 2 follows strictly Scrum practices (advocating team autonomy and
team architecting).

External architects fail to provide sufficient information to external stakeholders
about architectural decisions made (cases 3, 4) and to teams (cases 4, 5). This is
unexpected as this is one of the reasons for establishing an external architect. A pos-
sible explanation can be their high and diverse workloads (reported in case 5), geo-
graphical distance between a team and external architect (reported in case 3), or lack of
understanding for the value of architecting at external stakeholders (cases 3 and 5).

4.7 Threats to Validity

With regards to construct validity, our study is limited since we gathered data only
from a limited number of sources. However, we obtained insights from different
organizations and projects. We included control questions and checked the accuracy of
data with the organizations. With regards to external validity (extent to which findings
are of interest outside the investigated cases), we acknowledge that we focus on an
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analytical generalization (i.e., our results are generalizable to other organizations that
have similar characteristics as the cases in our case study and use Scrum). The list of
challenges is based on six cases is insufficient for drawing major conclusions. How-
ever, the presented study is a first of its kind. With regards to reliability, we recorded
interviews and interview data, and reviewed data collection and analysis procedures
before conducting the study. Our study does not make any claims about causal rela-
tionships and therefore internal validity is not a concern.

5 Conclusions

We studied six cases involving companies that apply Scrum practices to identify
challenges that architects face in Scrum projects and what architects do about these
challenges. The cases were chosen to cover different setups of how architects can be
involved in Scrum. Main challenges found in the cases are (a) busy and incompetent
POs, (b) conflicts between architects and teams, and architects and management,
(c) failure of architects outside the Scrum teams to provide sufficient information to
stakeholders. The challenges reported in this paper increase architects’ awareness and
can be used to proactively address potential problems. As further research, we plan to
extend the number of cases and provide more general conclusions.
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Abstract. Architecture decision making is considered one of the most chal-
lenging cognitive tasks in software development. The objective of this study is
to explore the state of the practice of architecture decision making in software
teams, including the role of the architect and the associated challenges. An
exploratory case study was conducted in a large software company in Europe
and fifteen software architects were interviewed as the primary method of data
collection. The results reveal that the majority of software teams make archi-
tecture decisions collaboratively. Especially, the consultative decision-making
style is preferred as it helps to make decisions efficiently while taking the
opinions of the team members into consideration. It is observed that most of the
software architects maintain a close relationship with the software teams. Sev-
eral organisational, process and human related challenges and their impact on
architecture decision-making are also identified.

Keywords: Software architecture � Group decision making � Software teams

1 Introduction

Software architecture serves as the intellectual centrepiece that not only governs
software development and evolution but also determines the overall characteristics of
the resulting software system [1]. It provides support for various aspects of software
system development by facilitating functions such as enabling the main quality attri-
butes of the system, managing changes, enhancing communication among the system
stakeholders and improving cost and schedule estimates [2]. Architecture decisions
stand out from the rest because they dictate all downstream design choices; thus, they
have far-reaching consequences and are hard to change [3]. Making the right archi-
tecture decisions, understanding their rationale and interpreting them correctly during
software system development are essential to building a system that satisfies stake-
holder expectations. As the system evolves, making new architecture decisions and
removing obsolete ones to satisfy changing requirements while maintaining harmony
with the existing decisions are crucial to keeping the system on course [4].
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A new perspective on software architecture and making architecture decisions has
emerged with the popularity of lean and agile development practices [5]. The discus-
sion regarding the big upfront design and continuous design, challenges to find the
right balance of initial architecture design and its evolution during the software system
life cycle [6]. At the same time, the emphasis on collaboration and agility causes
architects to rethink making decisions from their ivory towers [7]. In most cases,
architects are now part of the software team, and the important architecture decisions
are made by the team rather than an individual architect [8]. With this change of
perspective, software architecture decision making is now mostly considered a group
decision-making (GDM) activity [9, 10].

2 Background

Although the importance of architecture decisions has long been recognised, they only
began to gain prominence in software architecture about a decade ago [4]. Since then,
architecture decisions and the rationale behind them have been considered first-class
entities. Reasons such as dependencies between decisions, considerable business impact,
possible negative consequences and a large amount of effort required for analysing
alternatives are also recognised as factors contributing to the difficulty of architectural
decisions [8]. Due to the importance and complexity of architecture decision making, the
research community has given considerable attention to the topic, and a number of
techniques, tools and processes have been proposed to assist in different phases of the
architecture decision-making process [2]. Even though some attempts have been made to
develop GDM solutions for architecture decision making, most of the solutions,
including the most widely used ones, are not developed from a GDM perspective [11].

The groups can choose different decision-making methods such as consensus
decision making, majority rule, decisions by an internal expert and decisions by an
external expert, to reach a decision [12]. Based on the interaction between the team
leader and the team, the decision styles in teams can also be classified into many
different categories [13–15]. GDM has advantages such as increased acceptance, a
large amount of collective knowledge, multiple approaches provided by the different
perspectives and better comprehension of the problem and the solution [16]. At the
same time, there are also some weaknesses that undermine the use of GDM in cer-
tain situations. Liabilities such as being time-consuming and resource heavy, vulner-
ability to social pressure, possible individual domination and the pursuit of conflicting
secondary goals can result in low-quality compromised solutions [16]. One of the
major weaknesses of GDM is groupthink [17], where the group makes faulty decisions
without exploring the solutions objectively because of the social pressure to reach a
consensus and maintain the group solidarity.

3 Case Study

In this research, the case study approach was selected for two main reasons. First, the
case study is recommended for the investigation of a phenomenon when the current
perspectives seem inadequate because they have little empirical evidence [18].
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Although generic GDM is a well-researched area, few empirical studies have been
made about GDM in software architecture. Second, in the case of decision making, the
context in which the decision is made is essential to understanding the decision fully
[19]. Since the case study allows us to study a phenomenon in its natural setting, the
case study makes it possible to gather insights about the phenomenon itself as well as
its interactions with its surroundings.

3.1 Case Study Design

This exploratory case study was designed to seek new insights into architecture
decision making in software teams. A European software company was selected as the
case company and the software teams in the company were used as the unit of analysis
of the study. The case company specialises in providing software products and services
to the consumer market, enterprise customers and third-party service providers. It has
around a thousand employees and has a strong global customer base as well as offices
and partners around the world. The company’s product development activities are
carried out in development centres located in multiple countries. At the time of the
study, the company had three parallel business units: independent profit centres (BU1,
BU2 and BU3) that focused on different product and service offerings, and market
segments. In addition, there was a horizontal unit (BU4) that provided common
solutions such as backend services for the other thee business lines. Finally, there was a
centralised technical decision-making body, the tech committee (TC), which made
company-wide technical policy decisions.

Two research questions (RQs) were derived based on the objectives of the study.
While the questions are correlated to each other, each question is designed to find
answers to a different aspect of the problem.

RQ1. How do software teams make architecture decisions? The aim of this question is
to understand the state of the practice of architecture decision making in the case
company, including the processes, tools and techniques, together with the contextual
information. Answers to this question will help in understanding the overall architec-
ture decision-making approach of the company as well as the architecture
decision-making approaches of individual software teams.

RQ2. What are the challenges in architecture decision making in software teams?
Identifying various challenges faced by the software teams during architecture decision
making is the main goal of this research question. Answers to this question will also
reveal the underlying sources of those challenges and their impact on architecture
decision making.

3.2 Data Collection

Fifteen software architects from the different teams of the case company were selected
to represents their respective teams (ST1–ST15). As shown in Table 1, they represent
all the business and technical units of the company. Despite the variation in the job
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titles, all of them perform duties as software architects in their respective teams. The
software architects are located in three different sites: the headquarters (HQ) and two
development centres (DC1 and DC2).

A set of questions divided into different themes was used to guide the interviews.
The interview begins with questions related to the context and then gradually focuses
on software architecture and architecture decision making. The interview questions
later discuss the challenges that are faced and the possible solutions to these challenges.
The interviews were conducted by two researchers. Most of the interviews were carried
out face to face on site. Skype was used for three interviews due to travelling and
scheduling issues. Each interview lasted about 1.5 h. All interviews were recorded with
the consent of the interviewees.

3.3 Data Analysis

A set of decision-making styles derived from the research literature [13–15] was
adapted to the software architecture decision-making context to analyse the decision
making in the software teams in the case company. Each of these decision-making
styles has different characteristics in terms of the decision maker, the origin of the
solution and participation in the decision-making process, as shown in Table 2.

Based on the degree of involvement of each party, these decision styles can be
placed on a continuum and grouped into three categories: architect driven (authorita-
tive, persuasive), team driven (delegative) and collaborative (consultative, consensus).
In addition to using the above classification to capture the decision-making styles, the
identified challenges are categorized into three different groups as organizational,
process and human, based on the origin of the challenge.

Table 1. Interviewee information

Unit Team ID Site Interviewee title Team size

BU1 ST1 DC1 Domain architect 5
ST2 HQ Lead software engineer 7
ST3 HQ Lead software engineer 4

BU2 ST4 DC1 Domain architect 4–6
ST5 DC1 Software architect 5
ST6 HQ Lead architect 8
ST7 HQ Program lead 5–7
ST8 HQ Senior software engineer 6

BU3 ST9 HQ Senior software engineer 8
ST10 DC2 Domain architect 4–7
ST11 HQ Software engineer 4
ST12 DC2 Senior software engineer 5

BU4 ST13 HQ Senior software engineer 7
ST14 HQ Senior software engineer 8

TC ST15 HQ Chief architect N/A
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4 Architecture Decision Making in the Case Company

It is clear that most of the software teams in the company follow GDM to make
architecture decisions. The decision-making process appears to be informal. However,
each team have some form of structured decision-making practice as all the intervie-
wees were able to describe it during the interviews. The software architecture
decision-making process in the case company is mainly a two-fold process composed
of team level and organisational level decision making. In addition to that, there is also
individual level decision-making, as each decision-maker makes individual decisions
while participating team level or organizational level decision-making sessions. Even
though software teams have freedom to make architecture decisions regarding their
own software components, architecture steering groups and the TC are involved in
making high-impact decisions that can affect the other teams or the company’s business
performances.

Architecture decision-making styles in each software team are based on the pref-
erences of the software architect and the team members. However, all the interviewees
made it clear that they selected the decision-making style based on the context, since
there is no “one size fits all” kind of solution. Meanwhile, the decisions related to tasks
that have an impact beyond the scope of the team are escalated to the architecture
steering groups or the TC. Figure 1 shows the most commonly used architecture
decision-making style of each team. According to that, consultative decision-making is
the most commonly used decision-making style; 8 teams (53 %) claimed to use that as
their primary decision-making style. One notable fact that is brought up during the
interviews was the majority of the consultative decision-making style followers are
willing to reach consensus during the consultation process if possible. However, they
keep consultative decision-making as the primary decision-making approach as it
allows them to avoid deadlocks and make timely decisions as the projects demand.

The interviewees provided arguments for choosing and not choosing each
decision-making style. The arguments in favour of collaborative decision-making styles
are that they increase team motivation, promote continuous knowledge sharing and
identify team members who have expertise in the problem domain. The main arguments
against these styles are that they are time-consuming and that it is difficult for team
members to come to an agreement. Clarity of responsibility and saving time and money
were given as reasons for using architect-driven decision-making styles. Others claimed
that architecture decision making is too complex to be handled by one person. It can

Table 2. Software architecture decision-making styles

Decision style Decision maker Solution origin Participation
SW team Architect

Authoritative Architect Architect Passive Active
Persuasive Architect Architect Active Active
Consultative Architect Shared Active Active
Consensus Shared Shared Active Active
Delegative SW team SW team Active Passive
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limit the creativity of the solutions and introduce bias into the decisions since all the
interviewees use personal characteristics such as experience and intuition for individual
level decision-making. The only reason given for opting for delegative decision-making
style is that the architect’s unwillingness to take the responsibility of the design process.

The consultative decision-making style, which is preferred by the majority, brings
the right balance into the decision-making process as it allows the software teams to
makes decisions promptly while taking the opinion of the team members into con-
sideration. This style makes it easier to attribute a certain decision to the
decision-maker, hence maintaining the design rationale to some extent. The consul-
tation process also helps to share information and spread the knowledge within the
team. Since the majority of those who use consultative decision-making are open to
reach consensus during the consultation, there is a possibility of making collective
decisions when there are no demanding constrains. Eleven out of fifteen software teams
use either consultative or consensus decision-making styles, thus it is possible to claim
that collaborative way of decision-making has a strong presence in the case company.

Despite the availability of various architecture decision-making techniques, none of
the teams use any standard technique to make architecture decisions. Although a few
teams use software tools to create diagrams that can be used for decision making and
communication, the whiteboard is the standard tool for architecture decision making in
the case company. Despite being an external entity, the majority of interviewees view
architecture steering groups as useful bodies that support them in decision making. One
of the main reasons given for this view is that these groups support the teams by
reducing the complexity of the decision problem. Most of the time, software teams or
their representatives take the initiative to consult the steering group. That can also have
an impact on the teams’ view on steering groups, as consulting the steering group is
voluntary rather than forced upon the team.

5 Identified Architecture Decision-Making Challenges

The interviewees mentioned several challenges associated with architecture decision
making. Multiple interviewees provided evidence of the presence of groupthink, which
leads groups to make inadequate decisions because it prevents them from taking actions

SW Team Driven

Authoritative
(7%)

Consultative
(53%)

Consensus
(20%)

Delegative
(7%)

Persuasive
(13%)

CollaborativeArchitect Driven

Fig. 1. Primary decision making style in software teams
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required for informed decision making, including considering all possible alternatives,
evaluating risks, examining decision objectives and seeking information related to the
decision problem [17]. Based on the origin, the challenges are classified into three
different groups: organisational, process and human. Table 3 shows identified chal-
lenges and their impact on architecture decision-making.

Revisiting the design rationale appears to be a significant problem due to improper
documentation and organisational changes. Most of the interviewees admitted that they
experience several issues related to the design documents, particularly regarding their
quality and maintenance. The majority opinion is that the documentation practices in
the company are minimal or, in some cases, non-existent. Multiple interviewees stated
that differing opinions and personality traits are among the major challenges faced
during architecture decision making. Several reasons such as non-flexibility, personal
ego and loyalty towards a preferred technology prevent the team from reaching an
agreement. Some team members constantly try to force their way of doing things on
others rather than objectively participating in the discussion. On the other hand, some
of the members prefer to just attend decision meetings but never express their opinions.

6 Conclusion

The study revealed that the majority of software teams in the company use a consul-
tative decision-making approach to make architecture decisions. We were able to
identify the challenges related from three different aspects: organisational, process and
human, and their impact on architecture decision making. While discussing the overall
results, we also uncovered the existence groupthink that is known to influence group
decision making activities. The next logical step is to identify the relationship between
the type of architecture decisions and the decision-making style followed. Identifying
decision-making patterns that should be applied in different contexts will help software
architects and teams select the best possible course of action to make their decisions.

Table 3. Identified challenges and their impact on decision making

Category Challenge Impact on architecture decision making

Organisational Inter team dependencies Increased complexity
Change of personnel Loss of architecture knowledge
Imposed technical constraints Limit potential solutions
Globally distributed teams Lack of involvement
Lack of a common tool chain Difficult to collaborate

Process Inadequate preparation time Low quality decisions
Dynamic requirements Short term decisions
Requirement ambiguity Unclear decision goals
Improper documentation Missing design rationale

Human Clash of personalities Lengthy decision sessions/deadlocks
Passive participation Limited view points
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We are currently planning to cross analyse our previous case study findings [20] with
the findings of this study to assess the generalisability.
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Sandra Schröder(B), Matthias Riebisch, and Mohamed Soliman

Department of Informatics, University of Hamburg,
Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany

{schroeder,riebisch,soliman}@informatik.uni-hamburg.de

Abstract. Software architecture provides the high-level design of soft-
ware systems with the most critical decisions. The source code of a system
has to conform to the architectural decisions to guarantee the systems’
success in terms of quality properties. Therefore, architects have to con-
tinuously ensure that architecture decisions are implemented correctly
to prevent architecture erosion. This is the main goal of Architecture
Enforcement. For an effective enforcement, architects have to be aware of
the most important enforcement concerns and activities. Unfortunately,
current state of the art does not provide a concrete structure on how
the process of architecture enforcement is actually applied in industry.
Therefore, we conducted an empirical study in order to gain insight in
the industrial practice of architecture enforcement. For this, we inter-
viewed 12 experienced software architects from different companies. As a
result, we identified the most important concerns that software architects
care about during architecture enforcement. Additionally, we investigated
which activities architects usually apply in order to enforce those concerns.

Keywords: Software architecture · Architecture enforcement · Software
architecture in industry · Empirical study

1 Introduction

Software architecture [1] builds the basis for the high-level design for a software
system and provides the basis for its implementation. It defines the fundamental
rules and guidelines that developers have to follow to ensure achieving quality
attributes such as performance or security.

In software engineering literature and community, the role of the architect is
widely discussed, especially in the context of agile development processes. For
example, McBride [14] defined the role of the architect as being “responsible
for the design and technological decisions in the software development process”.
However, the software architect role [7,12] is not only limited to making architec-
ture design decisions [10]. Additionally, the software architect is also responsible
for “sharing the results of the decision making with the stakeholders and the
project team, and getting them accepted” [23]. This task is called Architecture
Enforcement.
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During implementation or maintenance activities, developers could intention-
ally or accidentally deviate from the prescribed architecture. This may result in
the degradation of architectural quality. Consequently, the architect needs to pro-
actively care about the adherence of the implementation to the chosen architec-
ture decisions as a necessary part of the architecture enforcement task. For this,
he needs to detect implementation decisions made by developers that indicate
architectural violations, i.e. low-level decisions that do not follow the prescribed
architectural constraints. The accumulation of architectural violations results in
a phenomenon called architecture erosion [17,20].

Architecture enforcement faces several challenges such as the high effort
required to assess the adherence of the implementation to architecture decisions,
as well as the social and technical complexities in dealing with the development
team. Facing these challenges requires methods and tools to support the archi-
tect during the architecture enforcement activities. To the best of our knowledge
there is no detailed study about what are the necessary responsibilities and con-
cerns related with architecture enforcement and about how architects actually
monitor an implementation of architecture decisions.

As a starting point to achieve this goal, we conducted an empirical study with
the purpose of understanding the process of architecture enforcement in indus-
try. We interviewed 12 experienced architects from various companies. Based on
their answers, we elaborated the most important concerns that are targeted by
software architects during architecture enforcement, together with the related
architects’ activities and Best Practices. By defining the most important con-
cerns, we provide the basis for focusing architecture enforcement on the essential
aspects.

The following two research questions guided the empirical study:

– RQ1: What are the concerns which architects consider during the
enforcement process? With this question we investigate which categories
of concerns software architects usually consider important. This will give us
further directions for our research activities in terms of detection and pri-
oritization of architectural violations concerning decisions that are especially
important for software practitioners.

– RQ2: What are the activities performed by the architects in order
to enforce and validate those concerns? The answer to this question
gives us a basis for developing appropriate approaches that best integrate
with methods that are currently used in practice in order to gain acceptance
by practitioners for new approaches.

2 Background and Related Work

In this section we present topics that are related with our study. We first present
related work concerning architecture decision enforcement. After that we present
related studies that investigate the concerns and activities of software architects
and discuss to which degree those studies consider architecture enforcement.
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2.1 Architecture Decision Enforcement

Zimmermann et al. propose a model-driven approach called decision injection in
order to enforce the correct implementation of decisions in the source code [23].
Jansen et al. implemented a tool that allows the management of architectural
decisions [11]. Among other things Jansen et al. emphasize that the tool should
provide appropriate support for checking the implementation against architec-
tural decisions. The tool implemented by the authors warns the architect or the
developer if the team ignores a specific decision or introduces a violation against
a decision. However, it is not clear what type of decision violations are detected
with this tool. In order to control erosion of architecture decisions, traceability
approaches as proposed by Mirakhorli and Cleland-Huang [15] can be applied.
Their approach allows tracing architectural tactics to architecture-relevant pieces
of code and warns the developer if he/she changes code of this significant part.

Software architecture conformance checking is another enforcement method.
It allows the enforcement of the modular structure and dependencies of the soft-
ware system. Well-known approaches encompass reflexion modeling [16], depen-
dency structure matrices [18], design tests [2], or domain specific languages [3,21]
- to name a few. However, static conformance checking methods are restricted
to the modular structure and are not able to enforce arbitrary types of deci-
sions, e.g. for checking constraints of architectural styles or the adherence to the
separation of concerns principle.

2.2 Architects’ Concerns and Activities During Enforcement

In [5] the authors conducted an empirical study about the architects’ concerns.
They present some interesting findings. For example they found that “People
quality is as important as structure quality”. This is also confirmed by our study,
but we investigate in a more detailed fashion which are the actual dimensions
of “people quality”. Additionally, the authors’ understanding about “architects’
concerns” is a bit more general than ours. While they actually regard all the
phases (i.e. architecture analysis, evaluation, architecture design, realization etc.)
during the software engineering process as architects’ concerns, we especially
focus on the concerns that architects have corresponding to the architecture
enforcement process.

The study of Caracciolo et al. [4] is similar to ours. They investigated how
quality attributes are specified and validated by software architects and there-
fore also investigated what are important concerns for architects in terms of
quality attributes. They also conducted expert interviews as part of their study.
They identified several quality attributes that are important to software archi-
tects. Nevertheless, they solely concentrate on quality attributes and they do
not especially focus on architectural enforcement and by which activities it is
achieved.
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3 Study Design

In our study we followed a qualitative research approach by applying a process
with two main phases: Practitioners Interviews, and Literature Categories’ Inte-
gration. The main purpose of the first phase is to explore the important aspects
in the current state of the practice regarding architecture enforcement, while
the second phase complements and relates the interviews’ findings with existing
concepts from the current state of the art. The two phases will be explained in
the following sub-sections.

3.1 Phase 1: Practitioners Interviews

In order to collect data, we used expert interviews with open questions. Those
interviews are an integral part of this type of research and are commonly used
in order to generate new knowledge about a specific topic. An interview guide
helped us to focus on the research questions, but also let the participants speak
freely about their experiences. In this way, we could get as many examples as pos-
sible about architects’ concerns and architectural rules and the methods archi-
tects use in the context of architecture enforcement. We followed the interviews
with an inductive content analysis for the interview transcripts, from which we
were able to derive our concepts.

Selection of Interview Participants. As participants of the study, we tar-
geted experienced software architects from industry. Those architects come from
different companies from Germany and Switzerland. All study participants had
at least a master’s degree or a similar qualification in computer science or related
fields, e.g. electrical engineering or physics. In total, we interviewed 12 architects
from 11 different companies. The interview participants are listed in Table 1. The

Table 1. List of study participants, their domain and their years of experience.

# Domain Role(s) Exp. (years)

A Enterprise (application, integration) Software architect >15

B Enterprise Software architect consulting 10–15

C Enterprise Software architect >20

D Logistic/enterprise Software architect agile test engineer 10

E Accounting/enterprise (migration) Software architect section manager 10–15

F Enterprise Software architect lead developer 10–15

G Enterprise/embedded Software architect coach 10–15

H Insurance/enterprise Software architect project manager 5–10

I Medical Software architect software developer 5–10

J Government/enterprise (application) Software architect consulting 10

K Logistic/enterprise Software architect 5–10

L Banking, control systems, enterprise Software architect project manager >20
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professional experience of the participants ranged from 5 to over 20 years, with
an average of 13 years. They worked in teams of size varying between 2 and
200 developers (team size not shown in the table). All of them work as a soft-
ware architect or made significant practical experience in architectural design.
Other participants are also responsible for project management tasks. The main
criteria of choosing participants for this study was that architects should be
closely involved with the implementation of the software architecture, for exam-
ple in code reviews, and that they consider the maintenance of architectures
with a long-term perspective. That means that architects should not solely par-
ticipate in the modeling phase, but also in the implementation and maintenance
phase. We did not focus on any specific domains, since we believe that architec-
ture enforcement problem is a relevant and well-known problem in almost every
domain.

Interview Guide Design and Conduction of the Interviews. The inter-
view guide was designed for a semi-structured interview containing open ques-
tions that were chosen according to the research questions. The method helps
to gain a possibly comprehensive overview of the state of the practice [9]. As we
wanted to collect as much new knowledge as possible, we let the participants
talk freely about their experiences concerning architectural enforcement.

The interview guide contains three parts. In the first part, we wanted to clas-
sify the experiences and background of the participants such as the domain in
which they are working, years of experience, the team size and the development
process (agile, waterfall etc.). The second part is related to the first research
question. In this interview part we let the experts talk freely about their expe-
riences concerning violations against decisions and important concerns. In the
third part, we wanted to discover methods that are used by the architects in
order to enforce architecture. The detailed interview guide is given in the sup-
plementary and can be accessed via the paper’s website1. When presenting our
study results in the next sections, we are going to present some of the questions
from the guide and the corresponding responses of the participants.

The interviews were conducted personally or via Skype by the same person
and were recorded on agreements using a Dictaphone on the interviewers laptop
or a call recorder for Skype conversations. The twelve interviews took between 40
and 90 min and 56 min on average. The interview guide directed the interviews,
so that no important questions were missed concerning the research goals.

Data Analysis Phase. For further analyses, all interviews were transcribed
word-by-word. After transcribing the interviews and checking them for cor-
rectness and completeness, we followed an inductive method for data analysis.
Instead of defining codes before analyzing the interviews, we let the categories
directly emerge from the data. For this, we first adapted Open Coding [19]. In
this step phenomena in the data are identified and labeled using a code that

1 http://swk-www.informatik.uni-hamburg.de/∼schroeder/ECSA2016/.

http://swk-www.informatik.uni-hamburg.de/~schroeder/ECSA2016/
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summarizes the meaning of the data. During this process, emerging codes are
compared with earlier ones in order to find similarities and maybe to merge
similar codes. Then we compared codes with each other and aggregated them
where possible to a higher level category. We used AtlasTi2 in order to support
the codification process.

3.2 Phase 2: Literature Categories’ Integration

In this phase, we integrate our findings from Phase 1 with existing categories in
the current state of the art. We analyzed existing related work (see Sect. 2), and
identified categories related to architecture enforcement. The analysis has been
done independently of the concepts derived from the interviews. We combined
deductively the results of inductive content analysis (Phase 1) with the identified
categories from existing literature. We used Mind Mapping in order to visualize
the categories. By comparing the categories derived from both phases, we found
that some of the categories derived by the literature review act as high level
categories for inductively derived categories. On the other hand, some of the
inductive categories could not be related to existing categories from the literature
review. Section 4 presents our identified categories.

4 Results

Because of space limitations we discuss only the most interesting aspects in more
detail. The complete discussion with the data used is provided as supplementary
material and can be accessed through the paper’s website (see footnote 1).

4.1 Enforcement Concerns

As Enforcement Concerns (Fig. 1) we summarized all aspects that have to be
assessed by architects to ensure the correct implementation of decisions. Figure 1
gives an overview over the identified concerns from the interviews.

Macro and Micro Architecture Decisions. When talking about software
architecture, it was interesting that experts differentiate basically between deci-
sions in two different views, namely macro architecture and micro architecture
[22]. Other terms like strategic or global (i.e. macro) and tactical or local (i.e.
micro) views were used. The architect can decide which decisions are located in
the macro architecture, and which decisions are left open for the development
team. In this way the architect can decide how much freedom he gives teams in
designing the micro architecture. The macro architecture represents the general
idea (or “philosophy”, the “spirit”, the “big picture” or metaphor) of the system
and its fundamental and most critical architectural decisions, e.g. on structures,
components, data stores, communication style or architectural styles: “. . . it is
2 http://atlasti.com/.

http://atlasti.com/
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important how you regard it. For me there do exist basically two views about
how software is built. First you have the global view [. . . ] There I decide how
I design my software, for example using Domain Oriented Design or SOA.”
(code: two different views of architecture, Participant D) and another partici-
pant reported: “. . . then we have the micro architecture, this is the architecture
within each team. A team can decide for its own component for which it is respon-
sible which libraries it wants to use.” (code: two different views of architecture,
macro architecture, micro architecture; Participant K). Those two views define
what architects basically consider as important for architecture enforcement in
different ways. The architects report to be concerned with macro architecture
issues and consider the micro architecture as developers’ responsibility, except
the coding style because of its relevance for maintainability: “. . . architecture is
also present in a single code statement. Code styles belong to it. Or simple things
like how do I define an interface. . . ” (code: micro architecture, Participant J).

Fig. 1. Overview of the identified categories of Enforcement Concerns from the inter-
views and the corresponding participant. Concerns marked with an asterisk are not
explained in detail in this paper but are available in the supplementary on the paper’s
website (see footnote 1).

Appropriate Use of Technology. Technology was also mentioned as an
important concern. The architect may not check technologies used within a single
component, but may for example enforce the technology for the communication
style between several components. Since technologies like frameworks or libraries
offer a lot of complex functionality, software architects also monitor the way how
those technologies are used by developers. One architect stated that developers
can easily violate important architecture rules due to this complexity. Some
architects reported that developers often tend to use a lot of tools and technolo-
gies that are not necessary: “. . . aim for technologies is the biggest problem. And
if you like to use those frameworks because they are providing gross things, but
those gross things cannot be controlled. . . ” (code: aim for technologies, Partici-
pant J). They stated that software architecture is likely to erode where too much
technology is used, because this part of code is hard too understand (see also
“Support for Evolution and Maintenance”). This is why some experts empha-
sized it is important to control what kind of technologies are used.
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Patterns. The architect may want to ensure that patterns are implemented
accordingly. Patterns related with the macro architecture view have to be
enforced and validated, patterns on the micro level are mostly considered as
a developers’ concern. But sometimes, pattern implementations are also checked
by architects on the micro architecture level, e.g. in order to discover what types
of design and architecture patterns are implemented and if they fit in the spe-
cific context: “which patterns are used and in which context. Are they only used
just because I have seen it in a book or because I wanted to try it or is it really
reasonable at this place. . . ” (code: pattern suitability, Participant C).

Visibility of Domain Concepts in Code. Some experts emphasize a clear
representation of domain concepts in the architecture, e.g. by expressing a map-
ping between them. For this, some architect strive to use a domain oriented ter-
minology, that means using terms and names adapted from the business domain:
“. . . I like to be guided by the domain instead of using technical terms [. . . ] both
can work, but from my experience using domain oriented terms is easier to under-
stand. . . ” (code: domain oriented terminology, Participant J). This additionally
helps to talk with domain experts about the software design and to easier locate
where changes have to be made in case of new or adapted requirements.

Visibility of Architecture in Code. Some architects consider it as important
to make the architecture visible in the code, e.g. by using appropriate naming
conventions and package structure: “. . . therefore it is important that the archi-
tecture is recognizable in the source code. This is absolutely essential for the
structure of the project.” (code: making architecture visible in the code, Partic-
ipant J). This is helpful for tools like Sonargraph3 that for example use naming
conventions in order to highlight layers. It was also mentioned to be useful during
code inspections in order to easily locate architecture decisions in code. This con-
cern is similar to the idea using an architecturally-evident coding style suggested
by Fairbanks [6].

Support for Evolution and Maintenance. A challenge in constructing long-
lived system is to make decisions that support the software system’s ability to
easily be adapted to future changes, that is, we need support for evolution and
maintenance during the entire software lifecycle.

– Code Comprehensibility was explicitly mentioned as a concern, on the
basis that comprehensibility helps preventing architectural violations: “if you
strictly follow this approach then you have very readable code and normally
readable Code - from my experience - tends to be stable that is conform con-
cerning architecture and does not have any [architecture] violations. . . ” (code:
code comprehensibility, code comprehensibility supports architecture confor-
mance; Participant J).

3 https://www.hello2morrow.com/products/sonargraph.

https://www.hello2morrow.com/products/sonargraph
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– Design for Testability. Another interesting aspect that might be surprising
was that architects are strongly concerned with tests. Systems that cannot be
properly tested, cannot be changed successfully since software modifications
during maintenance and implementation activities may lead to errors. That is
why testability is an important concern especially in the context of evolution
and maintenance. Participants aim a high test coverage in order to avoid
architectural violations: “. . . in case there exist only a few tests, then it is
likely people do not build it correctly. This leads to incomprehensible code and
consequently to architectural violations.” (test coverage supports architecture
conformance, Participant J). Tests are therefore an important concern for
enforcement.

4.2 Architects’ Activities for Enforcement

During the interview we asked all participants the question: “How do you ensure
that your architecture and your concerns are implemented as intended? Do you
follow any strategies?”. The result of this question is a categorization of activities
that architects apply in order to enforce and validate their architecture decisions.
Figure 2 shows the identified categories. In the following we describe the two cat-
egories Coaching and Supporting, and Assessing the Decisions’ Implementation
in more detail. Moreover we discovered several dimensions that are important for
those activities. The complete mindmap with a mapping of codes and interview
statements is provided in the supplementary (see footnote 1).

Fig. 2. Identified categories of enforcement activities.

We discovered the need for a distinction between situations with more or
less equal architectural skills among the development team, as typical for agile
processes, and situations with a leading role of the architect, frequently referred
to as “architecture-first” approach. The latter is for example driven by limited
skills of developers, or by stronger constraints and higher risks of the project. The
first situation was mentioned by participant B, and the second one by participant
H. In both situations, enforcement is necessary with different priorities, affecting
the balance between the different dimensions of coaching and supporting (see
below) on the one side, and assessment on the other side.

(1) Coaching and Supporting. It is important that architects provide guid-
ance during the implementation phase in order to support developers in their
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programming activities. Coaching was mentioned to be highly important, both
for explanation and motivation. Both is crucial to provide a clear picture and a
shared understanding for architecture solutions, the corresponding design deci-
sions, together with its goals, motivation and benefits: “I have to explain [the
developers] the term “architecture” and they have to internalize and understand
what are the goals of architectural design and what has to be supported by the
architecture. . . ” (code: architect as a coach, Participant B) or “. . . as an archi-
tect you are committed to teach the developers and explain them what it [the
architecture] is about. . . ” (code: architect as a coach, Participant G). A com-
bination of coaching and supporting can be done in several ways. For example,
the architect can provide architectural templates and prototypes in order
to guide how a specific decision has to be implemented or a specific technol-
ogy has to be used, and he provides support by pre-fabricated building blocks.
Architectural prototyping is another effective technique that combines support
for developers with early identification and solution of high-risk aspects dur-
ing early stages of the development process. Those templates can also be used
to provide a reference during the implementation for the developers, that is
for coaching and guiding purposes: “. . . you build something as an example and
present it to the developers. . . ” (code: architectural templates, Participant A).
It was emphasized by participant A, that those templates should be built pre-
cisely and carefully according to architectural decisions and state-of-the-art best
practices. Otherwise developers could violate the underlying decisions without
knowing it because the architect did not show it correctly.

Dimensions for Feedback and Coaching. During the enforcement activities
it is important to consider the different dimensions for feedback and coaching
in an integrated way. Both dimensions emphasize that personal quality is an
important factor in architecture enforcement. If those dimensions are not appro-
priately addressed during enforcement activities, it is likely that concerns as
presented in the previous sections cannot be satisfied. We found the following
dimensions during the analysis:

– Skills, Experiences, Programming Habits. Every developer has a dif-
ferent set of skills and experiences, e.g. from previous projects and from his
education. Those qualities and together with personal programming habits
influence greatly how developers make low-level decisions and how they imple-
ment architectural decisions. The low-level decisions could violate important
architecture decisions: “. . . and if I leave it to the developers then it does not
work since every developer has a different background and experiences. When I
tell them that they should start with programming, then this leads to chaos. . . ”
(code: programming habits and experience of developers).

– Architecture acceptance. We define architecture acceptance as the degree
to which a programmer is willing to implement the prescribed architec-
ture. The architect should always be “. . . anxious for getting the architecture
accepted by the developers and that they [the developers] want to implement it
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this way.” (codes: encourage acceptance of developers for architecture, willing-
ness; Participant B). The architects have to encourage developers to achieve
the architecture’s acceptance, otherwise it is likely that architecture rules are
not followed and consequently violated.

– Architecture awareness. Describes the consciousness of developers regard-
ing the prescribed architecture, its rationale and its goals that have to be
achieved with it: “skilled people do automatically know how they ensure archi-
tecture, because they know, why it should be like that. Then - without help -
developers have the architecture in their mind and recognize if architectural
goals are ensured or not.” (codes: architecture awareness, personal quality;
Participant B). If developers are not aware of architecture goals it might
happen that they unintentionally violate the architecture. The architect is
responsible for achieving and encouraging architecture awareness appropri-
ately; coaching and supporting are activities to address this dimension.

– Shared understanding. There must be a coherence of concepts between the
members of a team about how an architecture looks like. Mostly, an architec-
ture is constructed in the mind of the developers and the architects – either
supported by models, diagrams or by speech – and it is important that all of
them have the same imagination about the architecture in their mind: “a com-
mon picture - keyword modeling - is very important here, to have a starting
point and to have it started in the same direction” (code: common under-
standing of architecture, using models for comprehension, Participant B). If a
shared understanding about the architecture is achieved it is more likely that
architectural rules are ensured and followed by the developers.

(2) Assessing the Decisions’ Implementation. During the interviews we
asked all participants the following question: “What are the specific steps when
you inspect the source code in order to assess the implementation of the archi-
tecture decisions?” We developed the following categories of activities that are
strongly interwoven.

– Code Review. We found that code review is a consent activity for assessing
the decisions’ implementation. One architect stated that this activity “is sim-
ilar to the comprehension process of a developer who is new in the team and
tries to understand how the software systems works. But developers and archi-
tects have each different goals during this process. The developer mainly wants
to implement new features, while the architect wants to check architecture con-
formance” (participant C). Architects form a mental model of a software
system and its relation to implementation based on architectural decisions.
By doing this they have specific imagination about what they expect in the
code: “. . . a picture about if the components are appropriate, if the modules are
implemented according to how it was intended. . . ” (Code: expectation about
intended design, Participant C). In this process, software architects often ask
questions about the observed software systems that entail exploration and
navigation, such as who implemented this component and where is a spe-
cific feature, architectural pattern, design pattern, technology implemented or
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used. It is then evaluated informally if an implementation roughly represents
this mental model. During this process, code analysis tools can be used as a
source of information: “. . . what you can do is, you run a code analysis tool
and then you are looking at the spots that are interesting. . . ” (code: finding
hot spots, results from code analysis tools as first impression, Participant K).

– Repository Mining. One expert uses review systems in order to review the
implementation concerning architecture issues. In this way it is possible to
investigate what type of changes were applied on a set of classes and espe-
cially who did the change. Moreover they can trace back how an architecture
violation was introduced. They reproduce the steps of implementation and
try to understand rationale and code-level decisions behind past changes. If
an architect knows about the individual skills in a team, he can focus source
code inspections on changes by developers with less skills, inexperienced, or
new to a project. In this way he can raise his overall productivity as well
as reducing the risks: “. . . you know basically who works on which parts, this
means if I know from experience that I have to have a closer look on what he or
she has created then it is possible that I have to inspect each class [. . . ] because
he or she can create an unusual solution on the most unobtrusive parts” (code:
focused inspection based on individual skills of developer, Participant C).

– Model-Code-Comparison. We asked the participants how and if the archi-
tecture documentation and models are used in assessments. Some experts (B,
I, J, L) use documented diagrams and models for conformance validation
between implemented software system and architecture. For this, they use
UML class diagrams, sequence diagrams or component diagrams and compare
them with models extracted from the underlying implementation. The com-
parison is performed manually. For example they check if a message exchange
between components complies to the prescribed behavior by comparing UML
sequence diagrams extracted from source code with prescribed sequence dia-
grams.

– Automatic Validation of Architectural Constraints. We also asked
architects to which degree they formalize architectural aspects in order to
allow a formal validation of a software architecture. We found that architects
seem not to formalize to a great extent. Some experts formalize and evaluate
the adherence to the layer pattern or general module dependency rules auto-
matically by using tools such as Sonargraph. Additionally software architects
define rules concerning such as naming conventions, thresholds for complex-
ity metrics or other low-level rules that can be performed automatically by
tools like Sonarqube or Checkstyle. Other aspects of software architectures,
for example other architectural patterns, are not formalized.

5 Discussion

In this section we discuss the results of the study and additionally impor-
tant implications of these results for future approaches concerning architecture
enforcement.



Architecture Enforcement Concerns and Activities - An Expert Study 259

Social Dimensions of Architecture Enforcement. Based on our findings
we can summarize that experienced practitioners understand enforcement as
a supportive process for developers, instead of an authoritative, dictating or
leadership-like process. They actively want to involve developers, and gather
feedback on the architectural solutions. They strive a shared understanding
about the software architecture. While motivating, encouraging and supporting
developers in implementing the architecture, architects are open for revisions
of their architecture solutions to minimize the risks of malfunction, misunder-
standings or failures. Moreover, architects need to be anxious for encouraging
acceptance and architecture awareness of the developers to decrease the proba-
bility of intentional and unintentional architecture violations. We propose that
future approaches and tools should also respect the social dimension.

Developers’ Flexibility and Responsibility. As stated in the introduction,
an architecture violation can result from a piece of code that contradicts the
rules defined by the software architecture. Nevertheless, software architecture
is described on a higher level of abstraction, whereas developers are working
on a lower level. Consequently, violations may occur that cannot be avoided
due to this abstraction gap. That is why architects need to define the degree
of flexibility and when developers are allowed to violate certain aspects of the
architecture. It needs to be further investigated which criteria are needed to
define this flexibility, e.g. based on the qualification of the developers.

Appropriate Formalization Support. Formalization in context of software
engineering and especially software architecture is still not widely accepted, due
to the expected extra effort as well as the lack of usability and appropriate
tool support [13]. This can be also implied from the findings of our study. For
example, we found that static dependencies are often used as a main crite-
ria to define architectural constraints. Constraints concerning layer dependen-
cies are validated regularly, whereas other types of architectural solutions, e.g.
Model-View-Controller-Pattern, architectural tactics or communication styles,
are not validated. One reason for this could be that there is a manifold and well-
established tool support for static conformance checking, e.g. by Sonargraph or
Structure1014. Therefore we can conclude that the availability of easy-to-use tool
support strongly influences the acceptance of formalization approaches. A conse-
quence might be that research should provide easy-to-use verification including
tool support for other architectural aspects as well.

Guidance for Software Architects in Violation Detection and Prioriti-
zation. Based on the statements we can conclude that architects evaluate the
severity of architectural violations rather intuitively. As we can imply from the
results of our survey, architects often use metrics for example on static pack-
age dependencies in order to find hot spots that could give hints for crucial
4 http://structure101.com/.

http://structure101.com/
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architectural violations. We suggest that a better guidance is needed for soft-
ware architects in order to evaluate architecture violations and their severity. For
this, a catalog could be developed that lists common and well-known architecture
violations, similar to a pattern catalog. The catalog maps decisions to possible
violations. Furthermore, corresponding detection and repair strategies can be
recorded in the catalog. Architects can use the catalog during code reviews to
focus on the implementation of the most important decisions. Moreover, appro-
priate guidance in metrics analysis and interpretation is still missing. We think
that research does not necessarily needs to invent new metrics, but needs to
investigate how those metrics can be appropriately used during the analysis of
implemented architectures.

5.1 Limitations

Gasson et al. proposed the criteria confirmability, dependability, internal con-
sistency, and transferability [8] in order to evaluate qualitative studies. As we
described and captured the background of all the study participants we address
transferability. Confirmability is addressed by repeatedly discussing and restruc-
turing the categories in an iterative process. In order to address dependability
we followed a research process (Sect. 3) and described all the steps that were con-
ducted. In terms of internal consistency the statements and the corresponding
codes were cross-checked by another researcher. As similar to other qualitative
studies we have a limited number of participants. However since we wanted to
generate new knowledge and not to evaluate or confirm existing knowledge we
find that this limited number is acceptable.

Another limitation might be that we did not consider specific dimensions that
could influence the experts’ view on enforcement concerns. For example, skills
and tasks of a software architect could influence his view about what are impor-
tant concerns and activities in context of architecture enforcement. The domain
a software application is developed for could also influence the importance of
specific concern or even add further concerns to the list presented in this study.
As we tried to get a general overview about architecture enforcement concerns,
this was not the focus of our study and creating the correlation between specific
dimensions and enforcement concerns is left for future work.

6 Conclusion and Future Work

An expert study with the goal of understanding architecture enforcement process
in practice has been presented. To reach this goal, we gathered data by inter-
viewing experienced software architects from several companies. Our contribu-
tion in this paper is the determination of the most important concerns, which
are considered by architects, as well as the activities performed by them during
the architecture enforcement process. In addition, our results show the impor-
tant role of architects during system implementation, and the importance of the
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relationship between software architect and development team, in order to prop-
erly implement software architecture decisions. The findings of this paper con-
tribute towards methods for systematic and goal-oriented architecture enforce-
ment. Thus, we are willing to extend our study to additionally explore some of
the architecture enforcement concerns and activities in detail, and to determine
which methods and tool support is required for each. Furthermore, we intend to
merge our findings on essential enforcement concerns with architecture modeling
approaches for agile development processes.
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262 S. Schröder et al.

15. Mirakhorli, M., Cleland-Huang, J.: Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Trans. Softw. Eng. 42(3), 205–220 (2016)

16. Murphy, G.C., Notkin, D., Sullivan, K.: Software reflexion models: bridging the gap
between source and high-level models. In: Proceedings of the 3rd ACM SIGSOFT
Symposium on Foundations of Software Engineering, SIGSOFT 1995, pp. 18–28.
ACM, New York (1995)

17. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

18. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 167–176. ACM, New York (2005)

19. Strauss, A., Corbin, J., et al.: Basics of Qualitative Research, vol. 15. Sage,
Newbury Park (1990)

20. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing, Chichester (2009)

21. Terra, R., Valente, M.T.: A dependency constraint language to manage object-
oriented software architectures. Softw. Pract. Exper. 39(12), 1073–1094 (2009)

22. Vogel, O., Arnold, I., Chughtai, A., Kehrer, T.: Software Architecture: A Compre-
hensive Framework and Guide for Practitioners. Springer, Heidelberg (2011)
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Abstract. In recent years, we have been observing a paradigm shift
in design and documentation practices for web and mobile applications.
There is a trend towards fewer up-front design specification and more
code and configuration-centric documentation. In this paper we present
the results of a survey, conducted with professional software engineers
who build web and mobile applications. Our focus was on understand-
ing the role of software architecture in these applications, i.e. what is
designed up-front and how; which parts of the architecture are reused
from previous projects and what is the average lifetime of such appli-
cations. Among other things, the results indicate that free-text design
specification is favored over the use of modeling languages like UML;
architectural knowledge is primarily preserved through verbal commu-
nication between team members, and the average lifetime of web and
mobile applications is between one and five years.

1 Introduction

In recent years, we have been observing a paradigm shift in the software engineer-
ing community. Professional software development projects traditionally relied
on upfront planning and design, distinct software phases and often a clear sepa-
ration of roles and responsibilities within project teams. Ever growing time-to-
market constraints, however, leads to high innovation pressure, which brought
forth methods and techniques like agile project management, continuous deliv-
ery, and DevOps, which break with the traditional way of approaching software
projects. Apart from this, primarily for web and mobile application development,
developers now need to deal with an increasingly heterogeneous tool and lan-
guage stack. In that domain in particular, software is often designed ad-hoc, or at
best by drawing informal sketches on a white board while discussing with peers.
The reasons for this are multifold: where applications must be developed and
rolled out quickly, designers do not seem to see the value of spending much time
on modeling and documenting solutions. A second reason is that software engi-
neering has no guidelines for efficient modeling of heterogeneous multi-paradigm
applications. This is partly due to the fact that software engineering curricula
at universities are still heavily focused on traditional object-oriented analysis
and design using UML, which is not a good fit for applications that are not
c© Springer International Publishing AG 2016
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purely object-oriented. In this paper, we describe a questionnaire-based survey,
conducted to understand current design and documentation practices that com-
panies use for developing web and mobile applications. Our investigation leads
to the conclusion that in the design phase, “experimentation” with proof of con-
cepts has the highest score, and “free-text documentation” is more used than
technical documentation (UML, ERD). The continuity of knowledge is primarily
achieved using free-text documentation and verbal communication.

The study is part of a larger research project, in which we develop an archi-
tecture framework that is streamlined for modern web and mobile applications.
In the framework, we plan to provide just-enough architecture and design spec-
ification for supporting agile web and mobile application development, while
preserving core decisions and design for re-use in subsequent projects.

The rest of this paper is organized as follows. Section 2 describes the research
questions and presents and motivates the study design. Section 3 presents the
results of the questionnaire and our interpretations with respect to the research
questions. The next section presents potential threats to validity. Finally, we
conclude and present directions for future work.

2 Study Design

In this section, we present our research questions and the study design.

2.1 Research Questions

As described in the introduction, the goal of our research project is to develop
an architecture framework that optimally supports software engineers in build-
ing and maintaining web and mobile applications. The study presented was
conducted to settle the baseline process and to get a better understanding of
current design and documentation processes, as well as developers’ concerns in
the industry. In particular, we address the following research questions:

RQ1. How are web and mobile applications designed and how is design knowl-
edge preserved in the industry?

RQ2. Which parts of the software architecture are re-used across web and mobile
applications within a development team?

RQ3. What is the average life expectancy of web and mobile applications?

The first question aims at finding out how web and mobile applications are
designed, i.e. which modeling languages, or more generically: which approaches,
are used to support the design process. By design, we refer to activities con-
ducted prior to technical implementation. The second objective of RQ11 is to
find out how architectural knowledge about these applications is maintained.
This includes decisions made during the architecting process, as well as infor-
mation about the problem and solution space.
1 Because of space limitations, in this paper, we bundled two of our original research

questions into one.
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RQ2 originates from the conjecture that development teams partially reuse
architectural design from previous projects. Architectural reuse improves devel-
opment efficiency, which contributes to fast time-to-market of features. Further-
more, reuse is a means for risk mitigation [1]. Here, we want to find out which
parts of an architecture are typically re-used.

The third question concerns the timespan, developers expect their applica-
tions to reside on the market before they are discarded or subject to a major
re-engineering. This is relevant because the cost-effectiveness of documentation
effort is proportional to the expected lifetime of an application.

2.2 Methodology

A survey was conducted to collect data for our research questions. We chose to
use a web-based questionnaire over individual interviews, because we wanted to
reach a sufficiently large subject population. Questionnaire-based surveys addi-
tionally exhibit a higher degree of external validity than interviews [2]. When
used with closed-ended questions and fixed response options, data gathered with
questionnaires can easily be processed automatically. This is in contrast to inter-
views, which have high costs in terms of time per interview, traveling and process-
ing the results. On the other hand, interviews provide greater flexibility and
allow for more in-depth exploration of the respondents’ answers. As described
in Sect. 5, we plan to conduct interviews with a small number of the subjects at
a later stage to get more in-depth insight in the phenomena we observe through
the questionnaire.

We conducted a pilot study with three members from the target population
to improve the wording, order and answering options of the questions.

2.3 Participants and Sampling

The target population of this study is professional software engineers who
develop web and/or mobile applications. We used snowball sampling, i.e. the
questionnaire was sent out to members from our professional network using e-
mail. We asked the receivers to forward the questionnaire to colleagues and peers
from their own network, which is a means to achieve a more randomized sample
[3]. The questionnaire was spread in form of an online form.

3 Data Analysis and Interpretation

This section presents the data analysis and interpretation. We primarily use
descriptive statistics to analyze the collected data. The section is divided accord-
ing to the three research questions. Table 1 maps the research questions to the
questions from the questionnaire.

A total of 73 subjects responded to the questionnaire. From these respon-
dents, 39.7 % completed the questionnaire and answered all questions. For rea-
sons of space limitations, we only report on the most interesting findings of our
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Table 1. Mapping of questions and research questions

No Question RQ1 RQ2 RQ3

A1 What is the number of employees working in your
organization?

�

A2 How many employees are working on software development
in your organization?

�

A3 How many employees are working on your currently running
project?

�

A4 Which of the following activities do you perform within your
organization?

�

B1 What is the average number of users per day as anticipated
at design time?

�

B2 What is the peak number of concurrent users during opera-
tions?

�

B3 Which of the following components are used in your web
application?

�

B4 Which of these aforementioned components are obtained
from a cloud service?

� � �

B5 Suppose you start a new project or a major re-engineering
of an existing application, which of these aforementioned
components will you use again for Web applications that
have been rebuild or evolved?

�

B6 What is the average lifetime of your application in number
of years?

�

B7 Within your organization how many applications share the
same overall architectural design?

�

B8 How often do you release new features? �
C1 Which of the following activities are typical for software

projects you have worked on?
� �

C2 Which of the following process methods are used in your
projects?

�

C3 What types of tools do you use during your design process? � �
C5 How do you ensure that knowledge about features, imple-

mentations, design decisions etc. is maintained?
�

D1 What are your three top priorities in software development? � � �
D2 What are your three top priorities in software development

when you need to successfully maintain software in the long
term?

� � �

study. Our study database, which contains the questionnaire and all responses,
can be found on http://2question.com/q1q3/.

http://2question.com/q1q3/


The Disappearance of Technical Specifications 269

The questionnaire has four sections. The first section (A) includes questions
about the organization, role of the respondent and previous experience. The
second section (B) concerns the applications developed. The third section (C)
addresses the design, development and maintenance. The last section (D) con-
cerns priorities regarding software development and software maintenance.

In the remainder of this section, we present the results and most relevant
answers for every research question. Additionally we discuss results of supporting
questions and control questions. This section ends with an interpretation of the
results, discussion and expected and remarkable outcomes.

3.1 Analysis RQ1: How are Web and Mobile Applications Designed
and How is Design Knowledge About These Applications
Preserved in the Industry?

The questions most relevant to RQ1 are “What types of tools do you use dur-
ing your design process?” (C3) and “How do you ensure that knowledge about
features, implementations, design decisions etc. is maintained?” (C5).

In question C3, we asked participants to specify the tools2 used for design, the
time they spend on each of these tools (as a percentage of the total time spent on
design activities), and the quantity of results (number of occurrences or number
of produced deliverables). The design approaches, where participants spend most
time on are “Experimenting, building proofs of concept” (26 %), “Documented
concepts in written language like Word documents” (22 %) and “Sketches like
annotated block/line diagrams” (19 %). With 11 % of total design time, technical
documentation (e.g. UML, SysML, ERD, Database models) received the lowest
score. In terms of quantity, the top three answers were “Verbal communication”
(14), “Sketches like annotated block/line diagrams” (6) and “Experimenting,
building proofs of concept” (3).

For knowledge preservation (question C5), the top three methods used in
terms of spent time (percentage of overall time spent on knowledge preservation)
are “Documented concepts in written language like Word documents” (26 %),
“Documented code (with tools like JavaDoc, JSDoc or no tools)” (26 %) and
“Verbal communication” (17 %).

Additionally, we asked participants about their top three priorities dur-
ing software development (question D1) and software maintenance (D2). Dur-
ing development time, the top three priorities are “Quality” (7,2 %), “(Func-
tional) requirements” and “time-to-market” (both 6,6 %), and “Maintainabil-
ity” (4,8 %). During maintenance, the top three priorities are “Documentation”
(18 %), “Code quality” (17 %) and both “Architecture” and “Maintainability”
(6,8 %).

2 The term tool is used in a wide sense here, covering among others UML, free-text,
but also conversations and informal whiteboard sketches.
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3.2 Questions Related to RQ2: Which Parts of the Software
Architecture are Re-used Across Modern Web Applications?

The most relevant question that relates to this research question is B5: “Sup-
pose you start a new project or a major re-engineering of an existing application,
which of these aforementioned components will you use again for Web applica-
tions that have been rebuilt or evolved?”

The top three reuslts from C5 are “Webservice API (eg. RESTful, SOAP)”
(86 %), “SQL Database(s)” (83 %) and “Server side web frameworks” (79 %)

A supporting question is B7: “Within your organization how many applica-
tions share the same overall architectural design?” 76 % of the applications share
between 21 % and 80 % of the overall architectural design. This is equally dis-
tributed over the three categories. 21 % are from applications that share almost
all components. The rest (1 %) does not share any component. Another support-
ing question is B3 where participants where asked about the types of software
components they typically use in applications. The components mentioned most
prominently (53 %) are: Build Tools, Test tools, Server Side Frameworks, and
Web Services.

3.3 Questions Related to RQ3: What is the Average Life
Expectancy of Modern Web Applications?

The most relevant question related to this research question is B6: “What is the
average lifetime of your application in number of years?”.

62 % of the applications have a lifetime between 1 and 5 years. 14 % of the
applications have a lifetime of more than 10 years. The lifetime of an applica-
tion determines the selection of components. For start-up companies, the initial
application architecture will be sufficient for the first period. When growing in
number of customers, transactions, and processes, we expect that the initial
application has to be replaced with a scaleable architecture and infrastructure.

3.4 Interpretation RQ1-RQ3

In this section, we discuss the results regarding all three research questions.
In many software engineering curricula, students are taught to use (semi-)

formal modeling languages like UML for designing software before coding. In
contrast to this, we found that technical documents are not intensively used
for design purposes in the software engineering industry. Instead, at least for
mobile and web applications, the design process is primarily driven by verbal
communication and informal sketches. This is in line with Sonnenburg, who
describes software design as a collaborative creative activity [4], which benefits
from approaches that are not constrained by fixed notations and formalisms.

On the other hand, we found that projects create more output in the shape
of technical documentation than in other forms. This may be surprising at first,
as less time is spent on technical documentation. On the other hand, there may
be a causal relationship between those two aspects, i.e. software engineers spend
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less time on technical documentation, because they are reluctant to spend time
on non-engineering activities, i.e. activities that are no integral part of the built
process.

In question C5, we assume a typical division between development and main-
tenance, in which developers in a project are not responsible for deployment
and maintenance of applications. In this scenario, documentation is crucial for
deployment and maintenance, as well as for managing responsibilities [5]. How-
ever, most participants chose “Verbal communication” as the primary method
for handing over the code to other team members. In discussions with software
engineers in the pilot group and remarks from participants, we found that engi-
neers rather rely on proven practices in their teams, rather than formal methods,
to design, develop and maintain applications. One of these proven practices is
the use of verbal communication in weekly team meetings to discuss code and
design. These discussions aim at improving the quality of the code by reviewing
the contributions for that week and sharing the concepts and implementations.

In line with [6–8], we did not expect that webservice API’s (SOAP, RESTful)
would be the most re-used architectural assets (question B5). We had rather
expected that data would have a higher value both for business and for software
engineers and thus would be more often re-used that services.

With B6, we expected that the average life time of an application will be
within 3 to 5 years (as in [9]). This is related to IT expenditures that are typ-
ically budgeted from capital expenditures. Capital expenditures have a typical
amortization of 5 years. Nowadays, companies do not have to invest in costly
server infrastructure anymore (capital expenditure). Instead, web and mobile
applications are typically deployed in cloud environments, in which infrastruc-
ture is payed for as-a-service and is thus operational expenditure [10]. Further-
more, software engineers typically change their employer or job-role between 2
years [11] and 4.6 years [12]. Finally, software engineers typically favor build-
ing from scratch over brown-field applications that have been patched over the
years. In the latter cases, the technical debt exceeds the cost of re-building from
scratch.

4 Threats to Validity

In this section, we discuss possible threats to the internal and external validity
of our findings. A common threat to internal validity in questionnaire-based
surveys stems from poorly understood questions and a low coverage of constructs
under study. The former threat was mitigated to a large extent by piloting the
questionnaire with three participants form the target population. We asked these
participants to fill in the questionnaire. Afterwards, they were asked to describe
their interpretations of the questions and their answers. We used this input in
multiple iterations to revise the questions and answering options. We addressed
construct validity by explicitly mapping the questions of our questionnaire to the
research questions (see Table 1) and by making sure that each research question
is covered by multiple questions in the questionnaire.
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External validity is concerned with the degree, to which the study results can
be generalized for a larger subject population [13]. We used statistical methods
to analyze whether our results are significant. Mason et al. postulate that, as a
rule of thumb, questionnaires require between 30 and 150 responses in order to
yield valid responses [14].

We had a total of 73 respondents; 39.7 % of whom answered all questions.
Thus, we suppose that the number of respondents is sufficient.

Two remarkable outcomes from the questionnaire (questions C3 and C5) are
(1) that technical documentation is less popular than plain text documentation
and (2) that continuity of knowledge is achieved primarily through verbal com-
munication. We calculated the variance and standard deviation of our responses.
For C3 the variance is 0.2 and thus very low; for C5 the calculated mean is 423,
the standard deviation is 193 and the weighted value for verbal communication
is 425. The actual weighted value deviates by 2 points only. Thus, the results
with respect to our most surprising outcomes are statistically significant.

5 Conclusions and Future Work

In this paper, we investigated how web and mobile applications are designed and
documented. We found that verbal communication and informal sketches are
clearly preferred over modeling languages. To preserve and transfer application-
specific knowledge, companies deem code documentation equally important as
technical documentation. Furthermore, for many companies, verbal communi-
cation is the primary approach for transferring knowledge within teams. This
may be surprising at first as it bears the risk that knowledge gets lost, because
of key employees leaving the company or a lack of communication in teams.
However, web and mobile applications are primarily developed in small teams
using agile development processes. Such development approaches rely heavily on
verbal communication, and practices like daily stand ups in Scrum achieve that
knowledge is widely spread within the development team.

Another remarkable outcome is the very high degree of architectural re-use
across projects. In particular, we found that web-service APIs, SQL databases
and server-side frameworks are re-used across projects in more than 80 % of the
cases. This is certainly impacted by the focus of our research on web and mobile
applications. Teams build up knowledge and expertise in certain technologies
and exploit this knowledge to a large degree for reasons of efficiency.

Regarding the average expected life-time of web and mobile applications,
we found that most applications (∼ 60 %) are built for being rather short-lived
(1–5 years). Further investigation is required to understand the reasons for this
phenomenon.

As explained in the introduction, we will use these results for creating an
architecture framework streamlined for web and mobile applications. The frame-
work will anticipate the reluctance to produce (semi-)formal documentation and
the high degree of technological re-use. We will conduct further research to under-
stand the impact of the short life-times of such applications on the effort found
reasonable for producing written documentation.
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We started this research with a questionnaire to obtain quantitative data. The
next phase in our research plan is to conduct interviews to collect qualitative
and more in-depth data.
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Abstract. Software architecture modeling is important for analyzing
system quality attributes, particularly security. However, such analyses
often assume that the architecture is completely known in advance. In
many modern domains, especially those that use plugin-based frame-
works, it is not possible to have such a complete model because the soft-
ware system continuously changes. The Android mobile operating system
is one such framework, where users can install and uninstall apps at run
time. We need ways to model and analyze such architectures that strike
a balance between supporting the dynamism of the underlying platforms
and enabling analysis, particularly throughout a system’s lifetime. In this
paper, we describe a formal architecture style that captures the modifi-
able architectures of Android systems, and that supports security analy-
sis as a system evolves. We illustrate the use of the style with two security
analyses: a predicate-based approach defined over architectural structure
that can detect some common security vulnerabilities, and inter-app per-
mission leakage determined by model checking. We also show how the
evolving architecture of an Android device can be obtained by analysis
of the apps on a device, and provide some performance evaluation that
indicates that the architecture can be amenable for use throughout the
system’s lifetime.

1 Introduction

Software architecture modeling is an important tool for early analysis of qual-
ity attributes [22]. Architecture analysis of run-time quality attributes such as
performance, availability, and reliability can increase confidence at design time
that quality goals will be met during implementation. Component-and-connector
view architectures are especially important to reason about the desired run-time
qualities of the system. Static analysis at the architectural level can support
identification of possible issues and focus dynamic analysis efforts. When eval-
uating security, the combined use of static and dynamic analysis provides a
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comprehensive evaluation approach, where static analysis identifies possible vul-
nerabilities (e.g. static code and information flow paths) and dynamic analysis
detects and mitigates active exploitation. A combined approach that includes
static and dynamic analysis leads to more efficient, effective, and comprehensive
security evaluation.

Architecture analysis of security involves understanding the information flow
through an architecture to uncover security related issues such as information
leakage, privilege escalation, and spoofing [1]. Many of these analyses assume
the existence of complete architectures of the system being analyzed, and in the
case of security analysis, knowledge of the entire information flow of the system.

However, in many modern systems, architectures can evolve and change at
run time, and so new paths of communication, and thus new vulnerabilities, can
be introduced into these systems. A critical example of this is software frame-
works, which are used in many software projects in many domains. Frameworks
offer a means for achieving composition and reuse at scale — frameworks can be
extended with plugins during use. Examples of such frameworks include mobile
device software, web browser extensions, and programming environments. The
mobile device arena, in particular the Android framework, is an interesting case.
The Android framework provides flexible communication between apps (plug-
ins that use the framework) that allows other apps to provide alternative core
functionality (such as browsing, SMS, or email) or to tailor other parts of the
user experience. However, this flexibility can also be exploited by malicious apps
for nefarious purposes [10]. We need ways to analyze the architectures of these
systems, in particular for security properties.

Like many of these frameworks, the architectures of the software of Android
devices exhibit a number of challenges when it comes to modeling and analysis of
security properties: (1) the system architectures evolve as new apps are installed,
activated, and used together; (2) the architectures of each app, while conform-
ing to a structural style, are constructed by independent parties, with differing
motivations and tradeoffs, (3) there are no common goals for a particular device.

This means that security needs to be reanalyzed as the system changes [6]. In
particular, we need to be able to do analysis over a good model that is abstract
enough for analysis to be computationally feasible, yet detailed enough for analy-
sis to produce meaningful and accurate results. And so there is a question of how
to specify the new evolved architecture, and at what level of abstraction. More-
over, to support the way that these systems evolve over time, the architecture
model of the system needs to be derived from the system itself, so that all com-
munication pathways throughout deployment can be analyzed as the system
changes.

In this paper, we describe an architecture style for Android that supports
analysis of security. We show how instances of this style can be derived from
Android apps to specify an up-to-date architecture of the entire software on an
Android device as apps are installed and removed. We also give examples of two
kinds of security analysis that is supported for this style — constraint-based
analysis that detects the presence of a category of threats commonly known
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as STRIDE [23], and a model-checking approach that determines potentially
vulnerable communication pathways among apps that may result in leakage of
information and permissions.

This paper is organized as follows: In Sect. 2 we introduce Android, and dis-
cuss work on architecture modeling of Android and architecture-based security
analysis. Building on this, we define the requirements for an architecture style
for Android security analysis in Sect. 3 and then describe the Acme architecture
style in Sect. 4. We describe a tool to automatically derive instances of this style
from Android apps in Sect. 5. Section 6 describes two security analyses using this
architectural abstraction. In Sect. 7, we show how long it takes to discover the
architecture of a number of differently sized apps available in the play store. We
conclude with discussion and future work in Sect. 8.

2 Background and Related Work

In this section, we first provide an overview of Android to help the reader follow
the discussions that ensue. We then provide an overview of the prior work in
architectural modeling and analysis, particularly with respect to the security of
Android.

2.1 Introduction to Android

Android is a popular operating system for mobile devices, like phones, tablets,
etc. It is deployed on a diverse set of hardware, and can be customized by compa-
nies to provide additional features. Android is designed to allow programs, known
as apps, to be installed on the device by end users. From an operating systems
perspective, Android provides apps with communication mechanisms and access
to underlying device hardware and services, such as telephony features.1 Further-
more, it allows end-user extension in the form of installing additional apps that
are provided by third parties. The provision of explicit communication channels
between apps allows for rich app ecosystems to emerge. Apps can use standard
apps for activities such as web browsing, mapping, telephony, messaging, etc.,
or they can be flexible and allow third party apps to handle these activities.
Because security is a concern in Android, apps are sandboxed from each other
(using the Unix account access control where every app has its own account),
and can only communicate through mechanisms provided by Android.

An app in Android specifies in a manifest file what activities and other com-
ponents comprise it. In this manifest, activities further specify the patterns of
messages that they can process. Apps specify the permissions that they require
that need to be granted by users when they install the apps.2 Activities in an app
communicate by sending and receiving messages, called intents. These intents
1 https://developer.android.com/.
2 The most recent version of Android, Marshmallow, has a more dynamic form of

permission granting, which allows permissions to be granted as they are needed
dynamically by the app. This paper discusses the Lollipop version of Android.

https://developer.android.com/
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can be sent either to other activities within the app, or to activities that belong
to other apps. There are two forms of intent: explicit and implicit. Senders of
explicit intents specify the intended recipients, which can be in the same or
another app. For implicit intents, a recipient is not specified. Instead, Android
conducts intent resolution that matches the intent with intent patterns speci-
fied by activities. So, for example, an activity can request that a web page be
displayed, but can allow that web page to be displayed by third party browsing
apps that may be unknown at the time the requesting app is developed.

While intents provide a great deal of flexibility, they are also the source of a
number of security vulnerabilities such as intent spoofing, privilege escalation,
and unauthorized intent receipt [10]. To some degree, these vulnerabilities can
be uncovered by analyzing apps and performing static analysis to see how intents
are used, what checks are made on senders and receivers of intents, and so on [21].
However, Android is an extendable platform that allows users to dynamically
download, update, and delete apps that makes a full static analysis impossible.

2.2 Security Architecture Modeling and Analysis

As mentioned, many security vulnerabilities in Android result from unexpected
interactions between components. Many of the communication pathways of inter-
est are specified at the component level within the manifest definition of the
app, or can be extracted by analyzing calls in its bytecode (described in Sect. 5).
Therefore, analysis for security can be focused at the architecture level - analyz-
ing at the level of components and interactions.

Specialized ADLs geared towards security analysis exist. These tend to focus
on specific security properties, such as access control [12,20]. In [2] UML OCL-
type constraints are used to specify constraints that uncover threats defined
by the Common Attack Pattern Enumeration and Classification (CAPEC)3 and
tool support is described for security risk analysis during the system design phase
using system architecture and design models.

The key point of these architectural security analyses is that the communi-
cation pathways need to be represented at the architecture level, along with the
security relevant properties needed for analysis. However, all of this work relates
to security design, and so there is an assumption that a complete architecture is
available for analysis. Furthermore, the approaches discussed rely on developers
to implement the systems according to the architecture. To enable these kinds
of analysis on Android requires being able to extract the properties relevant to
security from Android apps.

In [3], the authors study the extent to which Android apps employ architec-
tural concepts in practice. This study provides a characterization of architectural
principles found in the Android ecosystem, supported with mining the reverse-
engineered architecture of hundreds of Android apps in several app reposito-
ries. We build on this work to provide automated architectural extraction from
Android devices.

3 http://capec.mitre.org.

http://capec.mitre.org
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Separ [7] provides an automatic scheme for formal synthesis of Android inter-
component security policies, allowing end-users to safeguard the apps installed
on their device from inter-component vulnerabilities. It relies on a constraint
solver to synthesize possible security exploits, from which fine-grained security
policies are derived. Such fine-grained, yet system-specific, policies can then be
enforced at run time to protect a given device.

Bagheri et al. conduct a bounded verification of the Android permission
protocol modeled in terms of architectural-level operations [4,5]. The results
of this study reveal a number of flaws in the permission protocol that cause
serious security defects, in some cases allowing the attacker to entirely bypass
the Android permission checks.

Secoria [1] provides security analysis for architectures and conformance
for systems with an underlying object-oriented implementation. Through static
analysis, a data flow architecture of a system is constructed as an instance of
a data flow architecture style defined in Acme [18]. Components are assigned
a trust level and data read and write permissions are specified on data stores.
Security constraints particular to a software systems (such as that “Access to the
key vault [. . . ] should be granted to only security officers and the cryptographic
engine”) are captured as Acme rules. In [16], this dataflow style is extended with
constraints for analyzing a subset of the STRIDE vulnerabilities. We show in
Sect. 6.2 how this latter approach can be applied to analyze vulnerabilities in
Android.

3 Modeling Requirements for Android

To evaluate the security of Android apps, the core Android architectural struc-
tures need to be represented in an architecture style that is expressive enough
to capture security properties. Android app component types, such as activi-
ties, services, and content providers form the building blocks of all apps. Each
Android component type possesses properties that are critical for security assess-
ment. For example, activities can be designated as “exported” if they can be
referenced outside of the app to which they belong. Exported activities are a
common source of security vulnerabilities, thus a security-focused architectural
model must include information about whether an activity is exported. Android
apps are distinct, yet they share many commonalities necessary for app creation
and interaction. A major consequence of this design is that boundaries between
apps are loosely defined and enforced. To identify and evaluate potential secu-
rity issues that emerge from app interaction on a device, all apps and their
connections deployed on the device must be made explicit in the architecture.
Furthermore, because apps can be updated, installed, and removed during the
lifetime of the device, the architecture model must be flexible and easy to modify.

Since a significant number of Android security issues arise from unexpected
interactions between apps, modeling communication pathways between apps on
a device is perhaps the most critical requirement for security analysis. At the
device level, each individual app is essentially a subsystem that operates in the
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context of a larger, device-wide ensemble. Apps are often designed to rely on
other apps, many of which may not be known at design time. For instance, if
an app needs a mapping service, it does not necessarily know which specific
mapping service will be available at run time. An app can be reasonably secure
in isolation, but when evaluated in the presence of other apps, it may contribute
to critical security vulnerabilities.

Android’s intent passing system provides a common communication mecha-
nism to simplify inter-app communication. Android supports many intent pass-
ing modes, such as asynchronous and synchronous delivery. However, Android’s
intent passing system includes additional semantics that can have different secu-
rity implications; for example, whether an intent is delivered to one specific
component or broadcast to all components. Differences in intent passing seman-
tics need to be made explicit in an Android architecture style to enable analysis
of common security issues that rely on certain types of communication, such as
intent or activity spoofing. Android app components and connectors are orga-
nized in apps by configuring them via a “manifest” file. The boundaries set in the
manifest creates an important trust boundary and must be explicit to evaluate
data flowing in to, or out of, an app. To be complete, the architecture style must
support component-to-component interaction and inter-app communication.

Android permissions are another core mechanism used to prevent security-
related issues. Given the pervasive intent-based communication system, it is
left to permissions to control access and information flow between components.
Android supports a wide array of core permissions and provides ways to add new
permissions. Due in part to the nature of Android permission management, many
security issues result from components with insufficient privileges gaining access
to privileged components and system resources. The architecture modeling lan-
guage must support Android privileges. Identifying security vulnerabilities often
involves determining whether permissions can be subverted. Thus, permissions
must be attached to various resources in a way that allows them to be analyzed.

4 An Android Architecture Style

Based on the requirements above, we define a formal architectural model of the
Android framework in order to have a basis for modeling the structures and
constraints in Android, and to permit analysis of security vulnerabilities and
exploits. To do this, we have developed an architecture style in Acme [18], that
represents intent interactions and permissions in Android. We chose Acme as
the modeling language because of its flexibility in defining architecture styles,
and its ability to specify formal first-order predicate logic rules to evaluate the
correctness of instances of these styles.

All components types specify a property that indicates the class that imple-
ments them and the permissions needed to access them, as well as whether they
are exported (or public) to other applications. The types of components are:

AcvtivityT: This component type specifies an activity within an app.
Activities represent components in an app that have a user interface.
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Communicating with that activity involves instantiating this user interface.
Specified with the activity are the intent patterns that it understands and
can process, the kinds of intent that it sends, in addition to the services and
resources that it accesses. These latter communications are all represented by
distinct port types, as described below.

ServiceT: This component type specifies a service within an app. According to
the standard Android description, “a Service is an application component that
can perform long-running operations in the background and does not provide
a user interface. Another application component can start a service and it
will continue to run in the background even if the user switches to another
application. Additionally, a component can bind to a service to interact with
it and even perform interprocess communication (IPC). For example, a service
might handle network transactions, play music, perform file I/O, or interact
with a content provider, all from the background.”4 Services have ports that
specify the interfaces they provide and the services they use.

ContentProviderT: Content providers encapsulate and manage data. They
provide mechanisms, such as read and write permissions, to manage secu-
rity. Architecturally, we distinguish read and write permissions on the data
provided by these components.

BroadcastReceiverT: Broadcast receivers are components that receive system
level events, like phone boot completed or battery low. We model
broadcast receivers as distinct from activities because they can only receive
a subset of intent types called standard broadcast actions.

Figure 1 gives an example of an instance of the style showing two apps:
K9-Email (at the top) and PhotoStream. Each of the component types described
above is represented by a rectangle or hockey puck shape with a solid line. We
describe the connectors and how we represent apps below.

Component type definitions for the style are relatively straightforward to
derive, and are consistent with other work on modeling Android. However, port
and connector modeling, in addition to modeling apps themselves, presents some
challenges.

4.1 Modeling Apps as Groups

So far we have discussed how we have modeled elements of an app, but not
the app itself. Because most vulnerabilities involve inter-app communication,
and apps themselves specify additional information (e.g., which activities are
exported), we need a way to explicitly represent them. One way to do this
would be via hierarchy: make each app a separate component with a subsystem
that is composed of the activities, services, etc. This would mean that we could
represent a device as a collection of App components, where the structure is
hidden in the hierarchy. However, this complicates security checking, because it
involves analyzing communication that is directly between activities and services

4 http://developer.android.com/guide/components/services.html.

http://developer.android.com/guide/components/services.html
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Fig. 1. An architecture instance in Android that captures two apps on a device.

(and not apps); in such cases, any analysis would inevitably need to traverse the
hierarchy, complicating rules and pathways that are directly between constituent
components.

Alternatively, Acme has a notion of groups, which are architectural elements
that contain components and connectors as members. Like other architectural
elements, groups can be typed and can define properties and rules. So, we use
groups to model apps. The AppGroupT group type defines the permissions
that an Android app has as a property. It then specifies its members as instances
of the component types described above. Rules check that member elements
do not require permissions that are not required by the app itself, providing
some consistency checking about permission usage in the app. Groups naturally
capture Android apps as collections of activities, services, content providers,
etc., as well as the case where communication easily crosses app boundaries by
referring directly to activities that may be external to the app. Groups are shown
in Fig. 1 as dashed lines around the set of components that are provided by the
app. Furthermore, for security analysis, groups form natural trust boundaries –
communication within the app can be trusted because permissions are specified
at the app level; communication outside the app should be analyzed because
information flows to apps that may have different permissions. Therefore we also
capture the permissions that are specified by apps as properties of the group.
An application (group) specifies the set of permissions that an app is granted;
activities specify the permissions that are required for them to be used.
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4.2 Modeling Implicit and Explicit Intent Communication

One of the key requirements for enabling security analysis with formal models
is being able to explicitly capture inter-app communication. All intents use the
same underlying mechanism, but the semantics of implicit and explicit intents
are markedly different. Explicit intents require the caller to specify the target of
the intent, and hence are more like peer-to-peer communication. Implicit intents
require apps that can process the intent to specify their interest via subscription.
Senders of the intent do not name a receiver, and instead Android (or the user)
selects which of the interested apps should process it through a process called
intent resolution. This communication is like publish subscribe. Because these
different semantics are susceptible to different vulnerabilities, they need to be
distinguished in the style.

Explicit intents are modeled as point-to-point connectors (pairwise rectangu-
lar connectors in Fig. 1), where there is one source of the intent and one target.
On the other hand, we model implicit intent communication via publish sub-
scribe. We model one implicit intent bus per device. Implicit intents sent from
components in all apps are connected to this bus; publishers specify the kind of
intent that is being published (i.e., the intent’s action), whereas subscribers spec-
ify the intent filter being matched against. In Fig. 1 we can see one device-wide
implicit intent bus as the filled-in long rectangle in the middle of the figure. Ele-
ments from all apps connect to this bus (the intent type and intent subscriptions
are specified as properties on the ports of connected components).

Different connector types for each intent-messaging type allows for more
nuanced and in-depth reasoning about security properties than if they were
modeled using the same type. For example, identifying unintended recipients of
implicit intents is easier if implicit intents are first-order connectors.

Android also has a notion of broadcasts (intents sent to broadcast receivers
in apps). We did not define a separate connector for broadcasts because, for
the purposes of security analysis, broadcast communication is done by sending
intents (though via different APIs). Subscribing to broadcasts is also done by
registering an intent filter, making both the sending and receiving for broadcasts
the same as for intents.

5 Architecture Discovery

For security analysis to be work for an extendable system such as Android,
we need to be able to derive the architecture from the system. Being able to
do this means that a tool can be provided to construct Android architectures
incrementally, and is needed because the architecture is unique for each device.
Figure 2 depicts an overview of our approach for recovering the architecture of
an Android system. Given a set of Android application packages (also known as
APKs), our architecture discovery method is able to recover the architecture of
an entire phone system. For this purpose, we leverage three components: Model
Extractor, Template Engine, and Acme Studio.
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Fig. 2. Overview of Android system architecture discovery

The model extractor relies on the Soot [24] static analysis framework to
capture an abstract model of each individual app. The captured model encodes
the high-level, static structure of each app, as well as possible intra- or inter-
app communications. To obtain an app model, the model extractor first extracts
information from the manifest, including an app’s components and their types,
permissions that the app requires, and permissions enforced by each component
to interact with other components. It also extracts public interfaces exposed
by each app, which are entry points defined in the manifest file through Intent
Filters of components. Furthermore, the model extractor obtains complementary
information latent in the application bytecode using static code analysis [6]. This
additional information, such as intent creation and transmission, or database
queries, are necessary for further security analysis.

Once the generic model of an app (App Model in Fig. 2) is obtained, the
template engine translates it to an Acme architecture. In fact, the input and
output of this phase are models extracted from apps APK files in an XML
format and their corresponding architecture descriptions in the Acme language,
respectively. Our template engine, which is based on the FreeMarker framework,5

needs a template (i.e., Acme Template in Fig. 2) that specifies the mapping
between an app’s extracted entities and the elements of the Acme’s architectural
style for Android (c.f. Sect. 4).

The model transformation process consists of multiple iterations over three
elements of apps (i.e., components, intents, and database queries) extracted by
the model extractor. It first iterates over the components of an app, and generates
a component element whose type corresponds to one of the four component types
of Android. The properties of the generated components are further set based on
the extracted information from the manifest (e.g., component name, permissions,
etc.). If the type of a component is ContentProvider, a provider port is added
to the component. Moreover, if a component has defined any public interface
through IntentFilters, a receiver port is added and connected to the Implicit
Intent Bus. Afterwards, it iterates over intents of the given app model. For
explicit intents, two ports are added to the sender and receiver components of
the intent, and a Explicit Intent connector is generated to connect those ports.
For implicit intents, however, only one port is added to the component sending

5 http://freemarker.org/.

http://freemarker.org/
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the message; this port is then attached to the Implicit Intent bus. Moreover, to
capture data sharing communications, the tool iterates over database queries,
and adds a port to the components calling a ContentProvider. This port is then
connected to the other port, previously defined for the called ContentProvider,
which is resolved based on the specified authority in the database query.

Finally, after translating the app models of all APK files, generated archi-
tectures are combined together and with the architecture style we developed for
the Android framework (Android Family), which are then fed as a whole into
AcmeStudio as the architecture of the entire system. This recovered architec-
ture is further analyzed to identify flaws and vulnerabilities that could lead to
security breaches in the system.

6 Architecture Analysis of Android

We now describe how the Android-specific architecture models specified in Acme
can be analyzed using both inherent analysis capabilities of Acme, as well as
external analysis capabilities that require an architecture model of the system
as input. To that end, we first describe two types of analyses supported directly
by Acme: the ability to evaluate the conformance of architecture models to
constraints imposed by the Android framework, and the ability to evaluate the
architecture models against a predefined set of security threats. We then describe
an integration of Acme with an external toolset, called COVERT [6], that given
an architectural representation of software is able to employ model-checking
techniques to detect security vulnerabilities.

6.1 Conformance Analysis Using Acme

In Sect. 4 we described the characteristics of the style, which are derived from the
constraints imposed by the Android framework on the structure and behavior
of apps. Given the properties associated with permissions, exports, and intent
filters, it is possible to describe well-formed architectures in this style using first-
order predicate logic rules. For example,

– Permission use within apps is consistent, meaning that any component of
an app that has a permission must be declared also at the app level. This
constraint is defined for each application group.

invariant forall m :! AppElement in self.MEMBERS |
(hasValue(m.permission) −> contains (m.permission, usesPermissions));

– Explicit intent connectors should reference valid targets.
heuristic forall p in /self/components/ports:!ExplicitIntentCallPortT |
exists c:!AppElement in self.components |
c.class == p.componentReference;

– All implicit intents are attached to the global implicit intent bus.
invariant forall c1 :! IntentFilteringApplicationElementT in self.components |
size (c1.intentFilters) > 0 −> connected (ImplicitIntentBus, c1);
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– Activities and services that are not exported by an app are not connected to
other apps.

invariant forall g1 :! AndroidApplicationGroupT in self.groups |
forall g2 :! AndroidApplicationGroupT in self.groups |
forall a1 :! IntentFilteringApplicationElementT in g1.members |
forall a2 :! AppElement in g2.members |
((a1 != a2 and connected(a1, a2) and !a1.exported) −> g1 == g2);

Using these rules, Acme is able to check the architecture of individual apps, as
well as a set of apps deployed together on an Android device. In Acme, invariants
are used to specify rules that must be satsified, whereas heuristics represent
rules-of-thumb that should be followed. When used in a forward engineering
setting, where a model of an app is constructed prior to its implementation, the
analysis can find flaws early in the development cycle. When used in a reverse
engineering setting, where a model of an app is recovered using the techniques
described in Sect. 2, the rules can be applied to identify flaws latent in the
implemented software or introduced as the system evolves.

6.2 Acme Security Analysis

A certain class of threats facing a system can be classified using STRIDE [23],
which captures five different kinds of threat categories: Spoofing, Tamper-
ing, Repudiation, Denial of Service, and Elevation of Privilege. According to
STRIDE, a system faces security threats when it has information or computing
elements that may be of value to a stakeholder. Such components or information
are termed the assets of the system. Furthermore, most threats occur when there
is a mismatch of trust between entities producing and those consuming the data.
This approach conforms to the security level approach mismatch idea proposed
in [13,14] and used by others since then (e.g., [8,15]).

STRIDE is often applied in the context of a larger threat modeling activ-
ity where the system is represented as a dataflow diagram. This representation
is particularly useful for evaluating Android security issues that emerge from
unintended intent passing. Viewing apps and the data they access as assets in
terms of data flow exposes situations when possibly sensitive data passes between
apps in an insecure way. For each data path between apps on a device, careful
analysis can be performed to identify vulnerabilities, such as spoofing and ele-
vation of privilege issues. Intent spoofing is a known classes of threat common
in Android systems that occurs when a malicious activity is able to forge an
intent to achieve an otherwise unexpected behavior. In one scenario the tar-
geted app contains exported activities capable of receiving the spoofed intent.
Once processed by the victim app it can be leveraged to elevate the privileges
of the malicious app by possibly providing access to protected resources.

Acme provides a framework for reasoning about app security. The properties
needed to reason about these threats are present in terms of Android structures
and data flow concerns. For example, Acme handles inter-app communication
and exposes security properties about apps, such as whether they are exported
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and what permissions they possess. With this information in the model, auto-
matically detecting app arrangements that may allow intent spoofing, informa-
tion disclosure, and elevation of privilege can be written as first order predicate
rules over the style. Consider Listing 1 which shows how information disclosure
vulnerabilities are detected. Each application group is assigned a trust level,
based on the category of the app - for example, banking and finance apps would
be more trusted than game apps; apps from certain providers like Google would
have higher trust. The rule specifies that if a source application sends an implicit
intent to a target application then the source applications trust level must be
lower than or equal to the recipient. These rules for STRIDE are consistent with
the approach taken in [16] for general data-flow architectures.

rule noInfoDisclosure = heuristic
forall a1 :! ApplicationGroupT in self.GROUPS |
forall a2 :! ApplicationGroupT in self.GROUPS |
((a1 != a2) −>
(forall src :! ImplicitIntentBroadcastAnnouncerPortT in

/a1/members:!ApplicationElementT/ports:!ImplicitIntentBroadcastAnnouncerPortT |
forall activity :! ApplicationElementT in a2.members |
forall tgt :! ImplicitIntentBroadcastReceiverPortT in activity.ports |
(connected (src, tgt) and contains(src.action, tgt.intentFilters)) −>

a1.trustLevel <= a2.trustLevel));

Listing 1. Acme Rule for Information Disclosure

This rule (and others that are being checked) highlight potential pathways of
concern and may generate false positives. This is one reason why in the style we
specify the rule as a heuristic, rather than as an invariant. These pathways would
need to be more closely monitored at run time than other pathways that do not
fail the heuristic, to determine whether the information should be transmitted.

6.3 Integrating with COVERT Security Analysis

In this section, we demonstrate how we can leverage the architectural models
developed in Acme, together with external analysis toolsets that require such a
model, to evaluate the security posture of an Android system. One such external
toolset employed in our research is COVERT [6], which provides the ability to
automatically check inter-app vulnerabilities, i.e., whether it is safe for a combi-
nation of applications – holding certain permissions and potentially interacting
with each other – to be installed simultaneously.

COVERT assumes that system architectural specifications are realized in a
first-order relational logic [19]. Such specifications are amenable to fully auto-
mated yet bounded analysis. Specifically, the set of architectural models recov-
ered by parsing individual apps installed on the device (c.f. Sect. 4) are first
automatically transformed into Alloy [19], a specification language based on
relational logic, with an analysis engine that performs bounded verification of
models.

In addition to extracted app specifications, the COVERT analyzer relies on
two other kinds of specifications: a formal architectural model of the Android
framework and the axiomatized inter-app vulnerability signatures. Recall from
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Sect. 4, the architectural style for the Android framework represents the foun-
dation upon which Android apps are constructed. Our formalization of these
concepts includes a set of rules to lay this foundation (e.g., application, compo-
nent, messages, etc.), how they behave, and how they interact with each other.
We regard vulnerability signatures as a set of assertions used to reify security
vulnerabilities in Android, such as privilege escalation. All the specifications are
uniformly captured in the Alloy language. As a concrete example, we illustrate
the semantics of one of these vulnerabilities in the following. The others are
evaluated similarly.

assert privilegeEscalation{
no disj src, dst: Component, i:Intent|
(src in i.sender) &&
(dst in src.ˆtransitiveIPC) &&
(some p: dst.app.usesPermissions |
not (p in src.app.usesPermissions) &&
not ((p in dst.permissions) ||(p in dst.app.appPermissions)))

}

Listing 2. Specification of the privilegeEscalation assertion in Alloy, adopted from [6].

Listing 2 presents an excerpt from an Alloy assertion that specifies the ele-
ments involved in and the semantics of the privilege escalation vulnerability. In
essence, the assertion states that the victim component (dst) has access to a per-
mission (usesPermission) that is missing in the src component (malicious), and
that permission is not being enforced in the source code of the victim component,
nor by the application embodying the victim component. As a consequence, an
application with less permissions (a non-privileged caller) is not restricted to
access components of a more privileged application (a privileged callee) [11].

The analysis is conducted by exhaustive enumeration over a bounded scope
of model instances. Here, the exact scope of each element, such as Application
and Component, required to instantiate each vulnerability type is automati-
cally derived from the system architectural model. If an assertion does not hold,
the analyzer reports it as a counterexample, along with the information help-
ful in locating the root cause of the violation. A counterexample is a certain
model instance that makes the assertion false, and encompasses an exact sce-
nario (states of all elements, such as components and intents) leading to the
violation.

7 Performance Analysis

To evaluate the performance of our approach, we randomly selected and down-
loaded 15 popular Android apps of different categories from the Google Play
repository, and ran the experiments on a computer with 2.2 GHz Intel Core
i7 processor and 16 GB DDR3 RAM. We repeated our experiments 33 times,
the minimum number of repetitions needed to accurately measure the average
execution time overhead at 95 % confidence level. Table 1 summarizes the perfor-
mance measurements for the architecture discovery process described in Sect. 5,
divided into the time of model extraction and architecture generation.
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Table 1. Performance of architecture extraction

Kilo # of # of total # of Average Extraction

Apps # of Components Explicit Components Time (Sec)

Instructions Activity Service Receiver Provider Connectors Connectors & Model ADL

Amwell 1516 64 2 1 0 51 118 59.16 0.69

Audible’s audiobooks 2016 48 8 13 1 24 94 77.78 0.71

Baby tracker 2163 79 30 46 4 90 249 84.76 0.73

BetterBatteryStats 388 9 3 6 0 23 41 18.43 0.66

Book catalogue 119 21 0 0 1 21 43 31.93 0.65

K-9 Mail 835 28 7 5 3 38 81 33.48 0.63

LINE 2575 217 13 6 2 21 259 103.52 0.89

Mileage 128 50 2 2 1 18 73 9.54 0.62

MS Office mobile 601 29 4 2 1 11 47 29.72 0.65

OctoDroid 447 53 0 0 0 31 84 21.88 0.64

Photo grid 1771 54 5 3 1 32 95 73.42 0.74

SwiftKey 1159 35 13 19 0 16 83 49.28 0.68

Tango 1859 73 10 10 1 6 100 67.6 0.82

TextNow 1957 42 9 11 2 14 78 99.94 0.72

TouchPal 1538 88 6 16 0 81 191 66.19 0.78

The first column shows the number of instructions in the Smali assembly
code6 of the apps under analysis, representing their size in lieu of their corre-
sponding line of code due to unavailability of their source code. Moreover, as an
architectural metric, the number of components, categorized by their types (i.e.,
Activity, Service, Broadcast Receiver, Content Provider), and explicit connec-
tors, are provided in the table.

As shown in Table 1, there is a relationship between size (number of instruc-
tions) of the apps and model extraction time – apps with more instructions
require more time to capture their model. On the other hand, the performance
of the second part of the process, i.e., translating the extracted model to an
Acme architecture, depends on the total number of components and connector,
as the translator iterates over each of them.

8 Discussion and Future Work

In this paper, we have described an architecture style for Android that can
be used to do various kinds of analysis to uncover, in particular, vulnerabili-
ties related to inter-app intent communication. One of the challenges of doing
such analysis in this domain is the evolving nature of Android, and the need
to understand all the related information flows. This paper describes an app-
roach in which the architecture (and information flows) of the system can be
derived from analysis of the code and can then be used to analyze potential
vulnerabilities on a per-device basis.

The static analysis described in this paper identifies possible places where
vulnerabilities may exist, but not actual exploits that may happen at run time.
This requires a combination of static analysis and run-time analysis to capture
and prevent actual exploits. Hence, static analysis can inform the run-time analy-
sis of parts of the system that need monitoring and deeper analysis, for example
to examine the contents of intents, in order to determine if an exploit exists.
6 http://baksmali.com.

http://baksmali.com
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Our approach can be used to facilitate this combination of static and dynamic
analysis. We are in the process of connecting our tool-suite to the Rainbow self-
adaptive framework [9,17], where the vulnerabilities found statically can be used
to choose adaptation strategies to change communication behavior in Android.
We are in the process of addressing some of the challenges in integrating these
two approaches, including disconnected operation and prevention of behaviors
rather than reaction to behaviors.

For the modeling aspect, we have concentrated on understanding the archi-
tecture of the applications on the device, and the communication pathways. How-
ever, many apps are part of a large ecosystem with diverse back ends that are not
on the device. Many of these apps may have information flows that affect secu-
rity. How we model this, and how much, is an area of future work. Furthermore,
security aspects are context-sensitive in the domain of mobile devices, where the
degree of analysis required might change depending on whether devices are, for
example, being used in a public coffee bar, or at home. We focused on analyzing
Android and extensions to it. In future work we plan to apply this type of rea-
soning to other plugin frameworks, and assess how we might inform the design
of new frameworks for which security is a concern.
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Abstract. Enterprises have increasingly adopted the Software-as-a-
service (SaaS) model to facilitate on-demand delivery of software appli-
cations. A SaaS customer - tenant - may operate in diverse environments
and may demand a different level of qualities from the application. A ten-
ant may also operate in a dynamic environment where expectations from
the application may change at run-time. To be able to operate in such
environments, SaaS application requires support at both the architecture
and implementation levels. This paper highlights the issues in building
a SaaS that can accommodate such diverse and dynamic environments.
We propose a methodological framework called Chameleonic-SaaS that
abstracts out the responsibilities involved and provides guidelines to real-
ize it. Our framework introduces variability in the architecture to manip-
ulate the architecture-level decisions, especially tactics. Feasibility of the
framework is demonstrated by an example of a MOOC application.

Keywords: Software as a service · Variability · Adaptive SaaS ·
Dynamic quality attributes

1 Introduction

Software-as-a-Service (SaaS) - a delivery model for software applications -
attracts customers by presenting features such as no up-front cost, on-demand
provisioning at an application-level of granularity and free from maintenance
[3,12]. In SaaS model, the service provider is responsible for managing all ser-
vice components (software and hardware) and ensuring application-level quality
attributes desired by a customer. These SaaS customers - “tenants” - may oper-
ate in diverse environments and may demand different levels of qualities (e.g.,
low or high availability) from the application [4,15]. For example, considering
an ERP SaaS, a small organization may need low availability (95 %) and an
enterprise may demand high availability (99.99 %). Similarly, a tenant may also
operate in a dynamic environment where expectations from the application may
change at run-time to accommodate changes in the environment. In our sce-
nario, the small organization may desire to have high availability for a time
c© Springer International Publishing AG 2016
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period such as peak load and business events. The motivation behind the need
for such dynamic quality requirements is the fact that some quality attributes
have an impact on the operational cost of the application, and the application
may not require high values of these quality attributes all the time. For example,
if an application achieves high availability by replicating to a redundant server,
this additional server will increase the operational cost. Figure 1 depicts a case
of quality expectations of tenants of a SaaS.

Fig. 1. An example showing diverse and dynamic quality expectations from a SaaS

To make the offering attractive to the tenants, a SaaS should have the abil-
ity to address diverse and dynamic quality requirements. From an architectural
perspective, two most common patterns [4,14] for building a SaaS are; (1) Multi-
tenant where all tenants share a common instance along with the code com-
ponents, and (2) Multi-instance where every tenant has a dedicated instance
allocated to it.

For building a SaaS operating in diverse and dynamic environments, Multi-
tenancy would be beneficial in terms of operational cost and maintenance. How-
ever, this pattern requires designing tenant-aware components that can increase
development cost and time to market. Although the development cost would
be high, it might be compensated by lower operational cost [6]. Contrary to
this, benefits of Multi-instance are; less time to market, lower design cost, and
flexibility for customization. However, Multi-instance pattern may have high
operational cost and high maintenance if there are a large number of tenants.
A service provider can select a pattern by analyzing these parameters in the
context of its business goals and policies. One can also use a combination of
these patterns where a group of tenants shares a common instance.

One thing to note here is that addressing diversity issues of the tenants in
Multi-tenancy may create a very complex architecture and design that can create
issues for maintaining the service. In some scenarios, it may be easy to maintain
multiple simple instances than a single complex instance. In this paper, we focus
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on using the Multi-instance pattern for implementing a SaaS as it provides more
flexibility to handle diverse and dynamic environments.

One way to accommodate diversity and dynamism is to identify the set of
possible quality requirements and build different versions of the application sep-
arately for every member of such a set. However, in this case, development
and maintenance cost would be very high. As the quality requirements are also
dynamic in nature, migrating between members of the set might not be possible.
Another approach could be to provide maximum values of quality attributes to
all tenants at all time. However, this may not be cost-effective from the provider’s
perspective. Diversity and dynamism can also be handled by customizing the
size of an instance (e.g., CPU, RAM, etc.) according to a tenant’s requirements.
However, only a few quality attributes (e.g., performance, capacity, etc.) can be
changed using this approach. Also, variations in quality values will be limited.

Our idea for solving these issues is to model quality attributes as scriptable
resources. That means that the application exposes a programmable interface
to the tenants for requesting quality attributes. To handle diversity, a tenant
can specify its quality requirements at the time of requesting a new instance i.e.
provisioning-time. To accommodate dynamic environments, a tenant can change
the quality attributes of its instance dynamically at run-time on demand basis.
To handle such requests from a tenant, application modifies the architecture-
level decisions of its instance such as tactics. To facilitate such features and to
manage all running instances, the application should be designed with the ability
to dynamically modify its architecture.

To realize our approach, we identify the suitable tactics and introduce vari-
ability in the architecture by modeling these tactics as variation points. To be
able to change the quality attributes dynamically, we model the service as an
adaptive system using the concepts of MAPE-K loop architecture [10]. Find-
ings of our investigation are formulated as a methodological framework called
Chameleonic-SaaS. Main contributions of this paper are:

– An idea to model quality attributes as scriptable resources.
– A methodological framework called Chameleonic-SaaS for building SaaS oper-

ating in diverse and dynamic environments. The framework abstracts out the
responsibilities involved and provides guidelines for the same.

The rest of the paper is organized as follows. Section 2 describes the problem
statement and our approach. Section 3 explains the Chameleonic-SaaS frame-
work in detail. Section 4 presents an example by building a MOOC applica-
tion. Section 5 provides a brief summary of existing work related to this paper.
Section 6 discusses benefits and limitations of our approach. Section 7 concludes
the paper with scope of future work.

2 Problem Statement and Approach

This section defines the problem statement and describes our approach.
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2.1 Problem Statement

This work aims to investigate the issues in building a SaaS operating in diverse
and dynamic environments. Requirements from such a SaaS are:

– Service should have the ability to address diverse quality requirements of dif-
ferent tenants at provisioning-time.

– Service should have the ability to change quality attributes for a particular
tenant dynamically at run-time.

– It should be easy to maintain the service.

2.2 Approach

Our idea is to expose quality attributes as scriptable resources to the tenants
of a SaaS. Using such resources, a tenant can customize the set of quality
attribute values provided by an application instance. Such customization can
occur either at provisioning-time or dynamically at run-time on demand basis.
Here, customizations in the quality attribute values are achieved by modifying
architecture-level decisions of the application.

This leads to the question of what architectural decisions need to be changed
in the architecture. Such architectural decisions should only impact quality
attributes of the application. We use the architectural tactics as the architectural
decisions that can be modified at run-time. A tactic is an architectural tool that
can be used to improve a particular quality attribute of an application [2]. For
example, Ping & Echo [2] is a tactic to improve the availability of an application
by detecting failures such as network failure. Thus, to modify quality attributes
of a tenant’s instance, SaaS can add or remove tactics in its architecture. The
approach mentioned above leads to a natural question:

– RQ1: How to externally add a tactic to an application instance deployed on
a virtual machine?

In architecture, realization of a tactic can be seen as a set of operations
(add, remove or modify) on architectural elements – components, connectors,
and links. We categorize the architectural elements into three groups; (1) pure
application elements incorporating application logic, (2) pure tactic elements
which are tactic elements that are independent of application logic, and (3)
application-specific tactic elements which are tactic elements that requires knowl-
edge of application logic. For example, Ping & Echo tactic can be implemented
using three pure tactic components; PingSender sends ping requests periodi-
cally, PingReceiver sends an echo for a received ping, and Monitor notifies the
occurrence of a failure.

One of the ways to achieve Ping & Echo tactic at a virtual machine level is
as follows. Deploy PingReceiver on the virtual machine that host the application
and deploy rest of the tactic components on a separate virtual machine. As there
are no links between the tactic components and the application components, we
can add this tactic without any modification to the application components.
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Some tactics may include application-specific components. For example,
implementation of the Passive Redundancy tactic requires a StateManager com-
ponent to fetch and update the application state. The StateManager being an
application-specific component, has to be a part of the application architecture.
If the application exposes an interface for the StateManager with dynamic bind-
ing then the Passive Redundancy tactic can be added to the application.

To be able to add a tactic, application architecture should provide support
by exposing application-specific tactic elements. This decision to implement such
elements in the application is based on the trade-off between customization
enabled by the tactic and its impact on the development cost. By examining such
support, we can decide whether it is feasible to use a tactic in the present con-
text. An application-specific tactic component may also enable multiple tactics.
For example, StateManager may enable both Passive Redundancy and Rollback.
These components have a higher impact on the ability to customize in compar-
ison with the development cost.

Not all tactics can be added using this approach. For example, tactics related
to quality attributes not discernible at run-time cannot be used here. Similarly,
if the application architecture does not provide support by exposing application-
specific tactic components and the ability to run-time binding, it may not be
possible to add such tactics. The capability of our approach to change qual-
ity attributes depends on the number of tactics supported by the application
architecture for dynamic addition.

These tactic-specific components may have an adverse effect on other qual-
ity attributes. In the case of a large number of such components, they should
be incorporated in only the instances whose tenants demand variations in the
respective qualities. Some tactic components may also have an exclusive rela-
tionship with other tactic components. Thus, to maintain the system easily and
dynamically select the tactics components, we introduce variability in the appli-
cation architecture where tactic components are modeled as variation points.

3 Chameleonic-SaaS Framework

Findings of our investigation on building SaaS applications for diverse and
dynamic environments are formulated as a methodological framework called
Chameleonic-SaaS. Applications built using this framework can provision
instances with different quality attributes to address diverse quality requirements
of SaaS-users. Quality attributes of such instances can also be changed dynami-
cally at run-time, to accommodate dynamic operating environments. This frame-
work abstracts out the responsibilities involved and provides architectural guide-
lines for building such SaaS applications. Steps of the framework (depicted in
Fig. 2) are explained in the following sections.

3.1 Identify QA Scenarios

The first step is to identify the quality requirements of the application that can
vary either at provisioning time or run-time. This task has to be done manually
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Fig. 2. Steps of the Chameleonic-SaaS framework

by analyzing the application requirements (using requirement specification or
user stories) and separate out such quality concerns. By this analysis, we identify
a list of quality attributes that can differ in multiple instances of the application
or can vary at run-time in a particular instance. For example, in a SaaS appli-
cation, availability requirements may vary with tenants from highly available to
moderate available. Similarly, a tenant having moderate availability initially, may
require high availability on an environmental change (e.g., peak load, business
event, etc.). The output of this step is a QA-Catalog that includes; (1) Quality
attributes identified by the analysis along with desired range of their values,
and (2) Scenarios for run-time variation in the quality attributes documented as
Quality Attribute Scenarios (QASs) [2].

3.2 Identify Suitable Tactics

In this step, we identify the architectural tactics that can be used to achieve the
desired quality requirements specified in the QA-Catalog. This task is done by
analyzing the tactics repositories [2,16] along with the application architecture
using the methodology specified in Sect. 2.2. Tactics may also have dependen-
cies with each other. For example, Active Redundancy and Passive Redundancy
tactics have an exclusive relationship with each other and cannot be applied
together in a system. Similarly, a tactic for one quality attribute may also have
an impact on other quality attributes. For example, Active Redundancy tactic
of availability can have an adverse impact on performance. This step aims to
identify a set of feasible tactics for every QAS specified in the QA-Catalog by
analyzing the architectural tactics, their relationships with each other and their
impact on the quality attributes. The output of this step is an artifact called
Tactics-Catalog that consists a list of mappings between a quality value and a
set of tactics that can be used to achieve that quality.

3.3 Design Application Architecture

In the previous step, we identified a set of tactics that can be incorporated into
the architecture to handle the desired QASs. These tactics need to be incorpo-
rated in the architecture design in a way such that their existence can vary with
tenants as well as with time for a particular tenant. Instead of designing multiple
architectures of the application, our approach is to introduce variability in the
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architecture for quality concerns. To model variability, we follow the Orthogonal
Variability Modeling (OVM) [13] approach and model the quality concerns sep-
arately from the application base architecture. Following the OVM approach,
we use the Common Variability Language (CVL) [8] to describe the variability.
CVL is a domain independent language for specifying variability models and has
an execution engine to generate the resolved models i.e. instance architectures.
In this step, we prepare the following models as depicted in Fig. 3. Examples of
these models in our context are presented in the Sect. 4.

Fig. 3. Models in the CVL approach

1. Application Model: This model captures the architectural elements that
are common to all tenants. Our approach is to capture quality related con-
cerns in a separate model and this model only includes the support required
to handle those concerns. This approach gives us the ability to re-use such
quality related concerns and manage them independently from the application
components. Thus, the Application Model includes pure application elements
and application-specific tactics elements (defined in Sect. 2.2). The model can
be described using any domain specific language such as UML.

2. Tactics Model: This model includes pure tactic elements that are agnostic
to the application logic.

3. Service Base Model: In order to describe variability, this model is prepared
by combining the Application Model and the Tactics Model. Apart from the
elements of these two models, this model also includes elements that establish
links between them. This model is considered as a base model to describe
variability.

4. Variability Specification (VSpecs): This model specifies the variability
at an abstract level i.e. irrespective of its mapping to the Service Base Model.
We incorporate the quality attributes and the tactics as first-class concepts
in this model. This approach provides us the ability to choose variations at
the granularity of tactics. Thus, the QA-Catalog and the Tactics-Catalog are
used to describe tactics and relationships between tactics. Such relationships
can be modeled as choice multiplicity or constraints. For example, a tactic
for fault recovery requires a tactic from fault detection. These variations are
captured as a tree structure of choices.
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5. Variation Points: This model includes variation points referencing to the
Service Base Model. Variation points are the modifications applied to the
Service Base Model to generate an instance architecture. For example, a vari-
ation point specifies the existence of a tactic component called PingSender.
To re-use the variation points related to pure tactics elements, they can be
combined and represented as Configurable Units. Every variation point has a
binding to exactly one VSpec.

6. Resolution Models: This model resolves VSpecs. For example, a choice
resolution may resolve a choice VSpec. In our case, every QAS is mapped to
a resolution model representing the tactics to be selected for that QAS. Thus,
QA-Catalog is used to generate different resolution models corresponding to
each QAS. These models are used to generate architectures of the instances
i.e. Resolved models.

3.4 Implement Components

In our scenario, tactic components are dynamically added to an existing instance
at run-time. Such operation requires modification in the connections between
application and tactics components. Thus, they should be implemented in such
a way so that their binding can be configured at run-time. Some techniques that
can be used for such implementation are:

– Encapsulate: Components should provide an explicit interface such as an API.
– Defer Binding : Components should defer their binding so that it can be

decided or changed at run-time.

3.5 Build Adaptation Manager

This component is responsible for managing the SaaS application (and its
instances) for adaptation at provisioning time and at run-time. It exposes an
interface to the tenants for two kinds of operations; (1) Provisioning of an
instance for a given set of quality requirements, and (2) Provisioning of a qual-
ity attribute value to an existing instance. Design of the Adaptation Manager is
based on the MAPE-K loop [10] of adaptive systems. Figure 4 depicts run-time
view of a SaaS application that includes the following components:

– Event Monitor: This component is responsible for capturing the events that
demands provisioning of instances or quality attributes. Sensors running on
an instance to monitor its environment can trigger the Event Monitor.

– Architecture Analyzer: On an adaptation request from the Event Monitor,
this component identifies the QAS from QA-Catalog and analyzes the cur-
rent architecture of the concerned instance (stored in Architectural Knowledge
Repository) to check the feasibility of the requested operation.

– Adaptation Planner: On the occurrence of a QAS, Planner component
identifies the desired tactics from the Tactic-Catalog and generate instance
architecture using a Resolution Model. Using the current architecture of the
concerned instance, it plans for changes to be applied to the instance.
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Fig. 4. A run-time scenario of a SaaS application

– Instance Deployer: This component executes the changes proposed by the
Planner component. To deploy the tactics related component, it uses the
programmable interfaces of underlying cloud resources.

– Architectural Knowledge Repository: This repository contains the archi-
tectural knowledge that is used by other components of the Adaptation Man-
ager such as Application Model, Tactic Model, Variability Model, QA-Catalog,
Tactics-Catalog and current architecture of all instances (Resolution Models).

4 Example

This section presents an example SaaS called MOOC Management System
(MMS) built using the methodology specified by the Chameleonic-SaaS frame-
work. This service facilitates provisioning of application instances to customers
(organizations or individuals) to deliver and manage online courses. Quality
attributes desired by a MMS instance such as capacity, availability and perfor-
mance may vary with the organizations depending on the factors such as the
number of students and credit vs. non-credit courses. For a particular organiza-
tion, quality expectations may also change during run-time on the occurrence of
events such as quizzes/exams and real-time hangout sessions. This study aims to
check the applicability of our approach by identifying QASs and tactics, design-
ing application architecture and deploying the service.
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In this study, we focus on the availability quality attribute of the MMS.
Availability is considered as an expensive quality attribute as its realization
through redundant resources increases operational cost. To make the offering
attractive to the customers, MMS facilitates customization of availability values
at provisioning time as well as at run-time. We categorize the range of avail-
ability values offered by the service into four types; (1) Default availability (no
additional support) (2) Low availability, (3) Moderate availability, and (4) High
availability. During provisioning of a new instance, service creates an appropriate
instance architecture according to the desired requirements of the tenant. MMS
also exposes a programmable interface to change availability of a provisioned
instance. Projecting availability as scriptable resources enables the tenant to
become cost-efficient by dynamically varying between the different availability
offerings.

Availability can be provisioned to an instance either on a direct request from
the customer or on the occurrence of an event in the application environment.
We identified four QASs that may demand variations in the availability values of
a running instance. The basic idea of these QASs is that in normal operations,
the application works with low availability values and additional availability is
provisioned only when these is a demand for the same. These QASs are:

– QAS-1: “During a quiz period, the application has high availability”. As
quizzes/exams have time duration associated with them, the application is
expected to have high availability to avoid or at least reduce any downtime.

– QAS-2: “If new course material is released, the application has moderate
availability”. It has been observed that release of course material (stimu-
lus) results in a large number of students accessing the application. Down-
time during such periods should be avoided. However, it is not as critical as
quizzes/exams.

– QAS-3: “In normal operations, the application has low availability”. In the
absence of any critical events, the application is expected to have low avail-
ability.

– QAS-4: “If the course is migrated to read-only (self-paced) mode, the appli-
cation has default availability”. The self-paced mode is a low priority scenario,
and the application does not need any additional support for availability (low
availability) to have minimum operational cost.

In our example, these requirements are handled by realization of three tactics;
Ping & Echo, Cold Spare and Passive Redundancy [2]. Figure 5 depicts mapping
of these tactics to their respective quality requirements along with the tactics
components used to realize them in the application. Realization of Cold Spare
and Passive Redundancy requires application to expose an application-specific
tactic component called State Manager to be able to get and set application
state.

Figure 6 depicts the Service Base Model along with variation points bound to
the VSpecs. The Service Base Model is prepared by integrating the Application
Model and the Tactic Model. In the VSpecs, availability is modeled as an optional
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Fig. 5. Availability requirements and the corresponding tactics

Fig. 6. Service base model with variation points bound to the VSpecs

choice that further has two child choices; FaultDetection and FaultRecovery.
There is also a constraint specifying that FaultRecovery requires FaultDetection
to be present in the instance. FaultDetection has PingEcho as a child choice that
is linked to various Variation Points relating to the existence of components
(PingSender, PingReceiver, etc.) and links. Figure 7 depicts resolution model for
QAS-1 where PassiveRedundancy choice is True but ColdSpare is False. Figure 8
depicts architectures of the various instances generated by the service depending
upon the resolution models.

For variation triggered by the events in the application environment, a sensor
to monitor events - course material release, quiz period and self-pace mode - is
implemented in the application that triggers the Event Monitor component of
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Fig. 7. Resolution model for QAS-1 (PingEcho and PassiveRedundancy)

Fig. 8. Architectures generated by the Adaptation Manager depending on the QAS

the Adaptation Manager. These events are analyzed to check occurrence of any
QAS.Adaptation Manager also exposes an API through which a customer can
directly request for an availability value (default, low, moderate, or high) to
an existing instance. Depending upon the current architecture of the instance
and the desired QAS, Adaptation Manager modifies the instance architecture by
adding or removing components.

Figure 9 presents experiments results conducted by dynamically provisioning
the availability values to a MMS instance. In our setup, service is offered by cre-
ating MMS instance over Linux containers (LXC). LXC containers were setup on
a virtual machine (1CPU Core, 2 GB RAM) running Ubuntu operating system.
For deployment of tactics components, we used the Puppet tool [18]. The results
show that adding quality to an existing instance is fast due to quick creation
of containers. Also, Passive Redundancy has less fault recovery time compared
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to Cold Spare tactic as the later requires creating a new container to recover.
These timings directly depend on our execution environment and should not be
used as benchmarks.

Fig. 9. Experiment results for availability scenarios in MMS (a) Provisioning time in
adding or removing the QASs, and (b) Availability benefits in terms of time consumed
in fault detection and fault recovery

5 Related Work

The demand for tenant-specific customization of a service has been highlighted
by several researchers [1,12,17]. Here, customization is desired in features, work-
flow, user-interface, etc., and facilitated using the virtualization techniques [4].
In context of SaaS applications, researchers have identified some architectural
patterns such as Multi-tenancy and Multi-instance and discussed their impact on
the quality attributes [4,6,14]. Koziolek [11] discussed various quality require-
ments from a SaaS such as resource sharing, scalability, maintainability, cus-
tomizability, and usability. The work also includes an architectural style called
SPOSAD based on multi-tier style. Software engineering issues with developing
SaaS applications have also been discussed [5].

Variability has been presented as a quality attribute of architecture [2] and
has been extensively used in Product Line Engineering (PLE). However, vari-
ability in quality attributes (performance variability, availability variability, etc.)
has not been much used and requires more explorations [7].

Several researchers have proposed techniques to design a SaaS as a Product
Line Architecture by introducing variability in the architecture [1,15,17]. Matar
et al. [1] discussed different kinds of variability for a SaaS such as application vari-
ability, business process variability and provisioning variability. However, most
of these works are focused only on the variations in the feature models. These
approaches are also not able to handle the environmental changes demanding
variations only in quality attributes. Horcas et al. [9] presented a technique to
inject functional quality attributes (that results in functional components) in an
application. In our work, our focus is on varying only the quality attributes of a
SaaS instance, by changing architectural decisions at a tactic level granularity.
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6 Discussion

Quality attributes exposed as scriptable resources enable variation in their values
for a running instance. As run-time quality attributes have an impact on the
operational cost of the instance, a tenant can exploit such resources to achieve
cost-efficiency by dynamically migrating between different offerings of quality
attributes on demand basis.

Modeling quality related concerns separately from the functional concerns
provides reusability of the quality concerns across multiple applications, and
modifiability of these concerns. For example, Tactics Model can be shared
between multiple applications. Similarly, in our MMS application, we can add
a new tactic such as Rollback without modifying the Application Model as the
support required by this new tactic (StateManager) is already exposed by the
Application Model. In our approach, all instances of the SaaS are generated
using a single architecture which makes the maintenance easier compared to the
approach where every instance is designed and build separately.

In our framework, tactics are modeled as first-class concepts in the Variability
Model. As tactics are standard validated tools to improve quality attributes, such
modeling helps in evaluating the variations in an instance architecture in terms
of their impact on the quality attributes.

The framework only considers variations in the architectural decisions of an
instance, and does not cover other decisions such as deployment-level decisions
(e.g., sizing of hardware resources, etc.), implementation-level details (e.g., code,
logging, etc.), or application functionality. We do not aim to replace the other
techniques but to augment their capability to reach more diverse levels of quality
attributes. In a holistic approach, variability at different levels (architecture,
deployment, implementation, features) can be combined.

Another limitation of our work is that we presented a methodological frame-
work where several steps of the framework like Identify Tactics, merging the
Application Model with the Tactic Model, etc. are not automated. In this paper,
we explored adding tactics at the top level of application architecture. How-
ever, variations may be desired at a lower level architecture element such as a
microservice. Our framework can be further extended to handle such scenarios.

Not all quality attributes can be modeled as scriptable resources. For exam-
ple, quality attributes not discernible at run-time such as modifiability cannot
be changed using our approach. The capability of our approach to change qual-
ity attributes depends on the number of tactics supported by the application
architecture for dynamic addition (in terms of application-specific tactic compo-
nents exposed by the application). Our approach has an impact on design and
development cost of the application. Re-using the tactics related concerns can
help in reducing such overhead.

7 Conclusion and Future Work

In this paper, we presented an approach to offer quality attributes of a SaaS
application as scriptable resources. To build such an application, we need to
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identify the suitable tactic-level architectural decisions, introduce variability in
the architecture and incorporate the ability to change an instance architecture
dynamically at run-time. In our methodological framework, tactics are modeled
as first-class concepts in the application architecture. This enables to articulate
the impact of architectural variations on the quality attributes. Our example
MOOC application facilitates a tenant to vary its availability values between
default, low, moderate, and high. The current version of the Chameleonic-SaaS
framework is applicable only for a multi-instance SaaS. To build a multi-tenant
SaaS with the ability to dynamically change quality attributes of tenants can be
further explored. To transform an existing application to a SaaS would also be
an interesting problem especially in the scenarios when the application does not
provide any direct support for adding the tactics externally.
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Abstract. In the literature of software engineering, many approaches
have been proposed for the recovery of software architectures. These
approaches propose to group classes into highly-cohesive and loosely-
coupled clusters considered as architectural components. The recovered
architecture plays mainly a documentation role, as high-level design
views that enhance software understandability. In addition, architec-
ture recovery can be considered as an intermediate step for migration
to component-based platforms. This migration allows to fully benefit
from all advantages brought by software component concept. For that,
the recovered clusters should not be considered as simple packaging and
deployment units. They should be treated as real components: true struc-
tural and behavior units that are instantiable from component descrip-
tors and connected together to materialize the architecture of the soft-
ware. In this paper, we propose an approach for revealing component
descriptors, component instances and component-based architecture to
materialize the recovered architecture of an object-oriented software
in component-based languages. We applied our solution onto two well
known component-based languages, OSGi and SOFA.

1 Introduction

Component Based Software Development (CBSD) has been recognized as a com-
petitive principle methodology for developing modular software systems [4]. It
enforces the dependencies between components to be explicit through provided
and required interfaces. Moreover, it provides coarse grained high-level archi-
tecture views for component-based (CB) applications. These views facilitate the
communication between software architects and programmers during develop-
ment, maintenance and evolution phases [11].

Otherwise, object-oriented (OO) have fine-grained entities with complex and
numerous implicit dependencies [7]. Usually, they do not have explicit archi-
tectures or even have “drifted” ones. These adversely affect the software com-
prehension and makes these software systems hard to maintain and reuse [6].
Thus migrating OO software to CB one should contribute to gain the benefits
of CBSD [9].
c© Springer International Publishing AG 2016
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The process of migrating OO applications to CB ones involves two major
steps: architecture recovery and code transformation [13]. The first step consists
of identifying reusable components from legacy OO systems. A component is
represented by a cluster of classes where its provided and required interfaces are
represented by a set of provided and required methods respectively. The main
challenge of this step is to find the best clusters compared to the component
definitions which reflect the right software architecture. The second step aims
at creating programming level components by transforming and generating a
component code based on the OO one. The main problem of this step is to
obtain a code which conforms to component principles: encapsulation, interface-
based interaction, component instantiation, etc. [25].

Architecture recovery has been largely treated in the literature. Many
approaches have been proposed to recover software architectures from legacy
OO source code [3,5,16–18]. In contrast, only few approaches have been pro-
posed for really transforming OO code into CB one [7,14,24]. In addition, these
approaches have only partially address the code transformation step (c.f. Sect. 6).

In this paper, we propose an approach for transforming OO code to CB
one guided by the recovered architecture of the corresponding OO software.
This approach allows to reveal component descriptors, component instances and
component-based architecture to materialize the recovered architecture. To val-
idate this approach, we applied it to transform Java code to two well known
component-based languages; OSGi [23] and SOFA [19].

The remainder of this paper is organized as follows. Section 2 discusses the
problem statement. Section 3 presents the transformation of OO code to CB one.
Section 4 presents how the proposed solution is mapped onto OSGi and SOFA.
Section 5 presents the discussion about our solution. Section 6 discusses related
work. Finally, Sect. 7 contains some concluding remarks and gives directions to
future work.

2 Problem Statement

To better illustrate our approach aiming to transform OO code to CB one, first,
we introduce in this section an example of a simple Java application. Second,
we present the expected architecture recovered by analyzing this application.
Finally, we illustrate the problem of OO code transformation guided by this
architecture.

2.1 Running Example

Figure 1 shows an example of a simple Java application that simulates the behav-
ior of an information screen (e.g. a software system which displays on a bus’s
screen information about stations, time, etc.). ContentProvider class implements
methods which send text messages (instances of Message), and time informa-
tion obtained through Clock instances based on the data returned by TimeZone
instances. The DisplayManager is responsible for viewing the provided informa-
tion through a Screen.
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Fig. 1. Information-screen class diagram

2.2 Component-Based Architecture Recovery

Architecture recovery approaches consider a component as a cluster of classes [3,
5,16–18]. In our previous work [16,18], we have proposed an approach which aims
to recover component-based architectures from OO source code. Figure 2 shows
the object-component mapping model used in this approach. In this model a
cluster is composed of two types of classes: internal classes and boundary classes.
The internal classes are those that do not have dependencies with other classes
placed into other clusters. In contrast, the boundary classes are those that have
dependencies with classes placed into other clusters.

Fig. 2. Object-to-component mapping model
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Fig. 3. Information-screen architecture recovery

Figure 3 shows the result of architecture recovery step applied on our exam-
ple. The recovery step identifies four clusters (components), where each cluster
may contain one or several classes. We consider a component-based architecture
as a set of components connected via interfaces, where interfaces are identified
from boundary classes. For example, the component DisplayedInformation con-
nected to ContentProvider component through two interfaces. The first interface
declares getCurrentTime method which is placed in class Clock and getContent
method from class Clock. The second one declares getContent method from class
Message.

2.3 Code Transformation: Component Source Code Generation
Based on Object-Oriented Source Code

Clusters of classes identified from architecture recovery represent the primary
implementation code of components. This code should be transformed to match
targeted CB languages. These languages can be classified into two main cate-
gories. The first category distinguish the language used for describing compo-
nents and architectures (architecture description language) from the language
used to implement components (programing language) like SOFA [19]. The sec-
ond category use the same language for describing architecture descriptions and
component implementations like COMPO [12]. In our work we focus on trans-
forming OO code to one written using CB language of the first category. This
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Table 1. Object-based component model specifications [8]

Component models Language of implementation Interfacs type Component

descriptor

Component instance

EJB [2] Java Operation-based Yes Single Object

Fractal citefractal Java, C#, .Net Operation-based Yes Single Object

JavaBeans [21] Java Operation-based Yes Single Object

COM [1] OO languages Operation-based Yes Single Object

OpenCOM [10] OO languages Operation-based Yes Single Object

OSGi [23] Java Operation-based No Many Objects

SOFA 2.0 [19] Java Operation-based Yes Single Object

CCM [22] Language independent with

OO implementation

Operation-based

& Port-based

Yes Single Object

COMPO [12] COMPO Operation-based

& Port-based

Yes Single Object

Palladio [15] Java Operation-based Yes Single Object

PECOS [26] OO languages Port-based Yes Single Object

transformation allows to reuse classes of recovered clusters as the implementa-
tion of the target components. Table 1 summarizes the main structural elements
of languages of this category. These consist of:

1. Structural elements that define component descriptions:
(a) Component interfaces: the component descriptor need to define provided

and required interfaces. All interactions between components must be
done through these interfaces.

(b) Implementation reference: the component descriptor need to define refer-
ences of its component implementation source code.

(c) Component instantiation: the component descriptor need to define how
its component can be instantiated.

2. Architecture description: it describes the structure of component-based sys-
tems in terms of component instances and component assembly. It ignores
components implementation details and interactions.

Our approach aims at generating structural elements composing component
descriptors and architecture description starting from source code of recovered
clusters. In our previous work [20], we have proposed an approach that trans-
forms dependencies between clusters to be interface-based ones. This approach
presented component interfaces structural elements. In this paper we complete
the transformation by addressing the remaining structural elements of compo-
nent descriptors; implementation references and component instantiation. This
leads to revival of the CB architecture.

3 Transforming Object-Oriented Code
to Component-Based One

3.1 Generating Component Descriptor and Reference
of its Implementation

Our approach uses the concept of class used in OO to express component descrip-
tors. Hence, a class will represent the component descriptor. For example, the
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descriptor of DisplayedInformation component translated by creating a new class
DisplayedInformation. Where the component descriptor has describe their inter-
faces, the same concept of interface in OO languages is used to describe compo-
nent interfaces. Then each provided interface has an OO interface that explicit its
services (method signatures). The component descriptor must have the reference
of its implementation of all provided interface services. For example, Listing 1.1
shows how the provided interfaces for component DisplayedInformation are cre-
ated. But, what if two interfaces have the same method signature? the descriptor
can not implement two services in the same descriptor (this is the case in Java,
but in C++ and C# we can implement the same services that have the same sig-
nature by referencing the interface name before the implemented methods). For
example, component DisplayedInformation provides two interfaces and the two
interfaces have a method with the same signature(getContent()). Consequently,
we should provide each interface by a component port.

Listing 1.1. Provided interfaces for DisplayedInformation component

public interface ITime {
public String getContent();
public long getCurrentTime(ITimeZone timeZone);

}
public interface IMessage {
public String getContent();

}

The explicit services provided by a component interface are associated with
a port. In our approach, we use the inner-class concept used in OO to represent
component ports. Thus, each port is described by an inner-class associated with
its interface. For example, in Listing 1.2, the PortTime inner-class is created
to implement ITime interface provided by component DisplayedInformation, as
same as PortMessage inner-class. Moreover, the references of each inner-class
(port) are provided by its component (e.g. portTime and portMessage class-
variables) for binding components.

Listing 1.2. Descriptor and ports for DisplayedInformation component

public class DisplayedInformation{
public static ITime portTime;
public static IMessage portMessage;
private class PortTime implements ITime{

@Override
public String getContent() {//TODO: add behaviore implementation }
@Override

public long getCurrentTime(ITimeZone timeZone) {//TODO: add behaviore implementation }
}
private class PortMessage implements IMessage{

@Override
public String getContent() {//TODO: add behaviore implementation }

}
}



Materializing Architecture Recovered from Object-Oriented Source Code 315

3.2 Component Instantiation

Mapping Object Instances to Component Instances. In OO, an instance
consists of state and behavior, the state is stored in variables and exposes its
behavior through methods. Object hides its internal state where methods operate
in an object internal state to provide services through object-to-object commu-
nication (encapsulation). However, the recovered component is viewed as a set of
one or more cooperating classes. Thus, we infer component instances from a set
of class instances belonging to the same component, where the component state
is the aggregated state of these instances, and the component behavior is pub-
lished through the component interfaces. For example, in Fig. 4, we have three
object call graphs for a component consisting of five classes (A, B, C, D, E ).
We can observe that:

(1) The component instance has three different releases (Fig. 4(a), (b) and (c)).
(2) The component instance could have many class instances of the same type.

For example, Fig. 4-(c) have two class instances from type E (e1 and e2).
(3) The client needs to have references to the class instances that provide ser-

vices/methods for them. For example, the classes that implement the pro-
vided component services are A and B. Then, the client needs to reference
instances of type A and B to get their required services. After that, instances
of type A and B are responsible to communicate with other instances to
complete its services. And therefore, the classes that have the component
provided services are considered as the only entrance to component instance.

Based on our interpretation of the component instance, the set of class
instances that constitute a component instance should behave as a single unit.
Then, we need to update component descriptor to manage the links between
class instances that form a component instance. We propose to delegate pro-
vided interface methods in the component descriptors to real ones. For example,

Fig. 4. Different release of the same component instance
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Listing 1.3 describes the update of the descriptor of DisplayedInformation com-
ponent. The descriptor has references of the classes types that are responsible
to provide component services Clock and Message. After that, the delegations
of provided services is done through component ports by using the real class
instances that have these services. It is worth noting that we used the lazy
instantiation of these class instances (delaying the instantiation of class instance
until the first time it is needed) for performance reasons.

Listing 1.3. Component descriptor with its behaviors

public class DisplayedInformation{
protected static ITime portTime;
protected static IMessage portMessage;
//Boundary Classes
Clock clock = null;
Message message = null;
public DisplayedInformation() {
//initializing component ports
portTime = new PortTime();
portMessage = new PortMessage();

}
private class PortTime implements ITime{
@Override
public String getContent() {
if(clock == null){ //lazy instantiation
clock = new Clock();}

return clock.getContent();
}
@Override
public long getCurrentTime(ITimeZone timeZone) {
if(clock == null){ //lazy instantiation
clock = new Clock();}

return clock.getCurrentTime(timeZone);
}

}
private class PortMessage implements IMessage{
@Override
public String getContent() { //lazy instantiation
if(message == null){
message = new Message();}

return message.getContent();
}

}
}

Creating Component Instances. The services of a component can not be
used directly, the component descriptor must first be instantiated. Like in OO
programs, we need a constructor to create a component instance and initialize
its state. The constructor of the component should be placed into the compo-
nent descriptor. In addition, the descriptor implements the component services
through component interfaces using associated ports. Thus, we create a default
constructor (constructor without parameters) that initializes component ports.
Listing 1.4 describes the default constructor of component DisplayedInformation
and how it creates its ports (PortTime and PortMessage).

Initializing component state depends on the constructors placed into classes
that have provided methods to other components (e.g. Clock and Message into
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DisplayedInformation component). For example, class Clock has two construc-
tors, the first one without parameters (default constructor) and the second one
with a single parameter of type ITimeZone. So there are two possible ways
to create an instance of type Clock. Therefore, the component descriptor should
provide all possible ways to initialize its instances. Consequently, initialize meth-
ods are created with different parameters to apply component configurations. For
example, DisplayedInformation component have two classes that can be accessed
from outside components (Clock and Message), and each of them has default con-
structor while Clock class has one more with ITimeZone parameter. Therefore,
initialize methods are created and has ITimeZone parameter (see Listing 1.4).

Listing 1.4. Component constructors and initializers

public class DisplayedInformation{
...
public DisplayedInformation() {
//initializing component ports
portTime = new PortTime();
portMessage = new PortMessage();

}
public initialize(ITimeZone timeZone) {
clock.setTimeZone(timeZone);

}
}

Now, we can simply create an instance of the component using its constructor
using OO instantiation and then initialize the instance using appropriate initial-
izer. For example, an instance of DisplayedInformation component is created
by its constructor using new keyword. Listing 1.5 differentiates the refactoring
resulted from our approach (ComponentClient) and the original source code
(ClassClient).

Listing 1.5. Component instantiation

public class ClassClient{
Clock clock = new Clock(timeZone);
clock.getCurrentTime();

}
public class ComponentClient{
DisplayedInformation info = new DisplayedInformation();
info.initialize(timeZone);
info.portTime.getCurrentTime();

}

3.3 Reveal Component-Based Architecture

An architecture description describes the structure of component-based systems
in terms of component instances and binding. Therefore, to reveal a CB architec-
ture, we need to identify its component instances and the binding between these
instances. We can identify the component instances by analyzing the instanti-
ation statements of its implementation. We can identify the binding between
these instances based on the invocation of its services.
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Identify Component Instances. We first statically analyze the source code
to check whether to create a new component instance or to use an existing
one. The analysis is based on statement scope (i.e. in the same code block) and
obliterates state (i.e. the second instantiation statement obliterates the state of
the instance resulted from first one). The previous component instance can be
replaced by a set of its class instances if these set at the same scope and no one
obliterates the state of another one. For example, in Listing 1.6, the IF-BLOCK
into class ClassClient instantiates an object of type Clock and another of type
Message. However, the proposed approach replaces the two instances with a
component instance of type DisplayedInformation (info1 ) because they are in
the same scope and each one does not obliterate the state of another. An example
of the scope condition is obviously shown by defining info1 and info2, where
each of them belongs into different scopes. Defining info2 and info3 provides
an example of obliteration state condition, where message2 will obliterate the
state of message1 if it translated to one component instance. Listing 1.7 shows
the component instances that have been identified from Listing 1.6.

Listing 1.6. Refactoring instantiation from OO code into CB one

public class ClassClient{
if(condition)
{
Clock clock = new Clock(timeZone);
Message message = new Message();

}else{
Message message1 = new Message();
...
Message message2 = new Message();

}
}
public class ComponentClient{
if(condition)
{
DisplayedInformation info1 = new DisplayedInformation();

}else{
DisplayedInformation info2 = new DisplayedInformation();
...
DisplayedInformation info3 = new DisplayedInformation();

}
}

Listing 1.7. Identified CB instances for architecture discriptor

//Darwin ADL
inst
info1 : new DisplayedInformation();
info2 : new DisplayedInformation();
info3 : new DisplayedInformation();

Identify Component Binding. Binding between component instances is used
to establish interactions between these instances. An instance of component
binds to another one to provide or required services through their interfaces.
Therefore, we can identify the bindings between components based on service
invocations between them where components must firstly bind to provide or
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Fig. 5. Information-screen architecture recovery and Darwin ADL for DisplayedInfor-
mation and ContentProvider

required services. For example, in Listing 1.8, ContentProvider invokes a service
getCurrentTime from DisplayedInformation, so the binding between these two
component must be established before. Therefore, we can statically analyze these
invocations between components to identify bindings (see Listing 1.9). Figure 5
shows the architecture recovery (c.f. Sect. 2.2) and a snapshot of architecture
description for our running example. The architecture description describes com-
ponent instances and its binding between DisplayedInformation and Content-
Provider component instances.

Listing 1.8. Refactoring instantiation from OO code into CB one

public class ContentProvider{
public void push(DisplayedInformation info1){
String time = info1.portTime.getCurrentTime();
}

}

Listing 1.9. Refactoring instantiation from OO code into CB one

//Darwin ADL
inst
content : new ContentProvider();
information : new DisplayedInformation();
bind
content.I1 -- information.ITime
}
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4 Mapping the Proposed Solution onto Component
Models

In this section we describe how our proposed solution is easily mapped onto
existing component models. We have chosen two well known component models,
OSGi and SOFA, to explain the ease of the mapping.

4.1 Mapping from Java to OSGi

OSGi is a set of specifications that define a component model for a set of Java
classes [23]. It enables component encapsulation by hiding their implementations
from other components by using services. The services are defined by standard
Java classes and interfaces that are registered into a service registry. A compo-
nent (bundle) can register and use services through the service registry.

Listing 1.10. DisplayedInformation component describtor and its interface

public class DisplayedInformation implements IDisplayedInformation{ /* Contents... */ }
public interface IDisplayedInformation {
public InterTime portTime = DisplayedInformation.portTime;
public IMessage portMessage = DisplayedInformation.portMessage;

}

To map our transformed code onto OSGi framework, we firstly create an
interface (Java interface) to represent the contract of provided component
instance. For example, Listing 1.10 shows how we created an interface for
DisplayedInformation component. Hence we suggest that a component binds
through its port associated with a provided interface, then both ports Inter-
Time and IMessage must be accessed by other components. After that, a meta-
data for both provided component DisplayedInformation and required compo-
nent ContentProvider must be specified. The metadata specified through XML
files using the declarative services model. For example, Listing 1.11 describes how
DisplayedInformation component provides its instances as object interfaces with
type IDisplayedInformation. And Listing 1.12 describes how ContentProvider
component uses the provided instances. When both components are activated
at runtime, the binding is established between them. Listing 1.13 describes how
ContentProvider gets an instance of DisplayedInformation and call its method
getContent() through port portMessage.

Listing 1.11. DisplayedInformation.xml file to provide the instances of DisplayedIn-
formation

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="DisplayedInformation">

<implementation class="DisplayedInformation"/>
<service>

<provide interface="IDisplayedInformation"/>
</service>

</scr:component>
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Listing 1.12. ContentProvider.xml to bind the instances of DisplayedInformation

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="ContentProvider">

<implementation class="ContentProvider"/>
<reference bind="setDisplayedInformation" cardinality="1..n"

interface="IDisplayedInformation" name="DisplayedInformation" policy="static"
unbind="setDisplayedInformation"/>

</scr:component>

Listing 1.13. Binding between DisplayedInformation and ContentProvider

public class ContentProvider implements Inter_ContentProvider{
public synchronized void setDisplayedInformation(IDisplayedInformation information) {
information.portMessage.getContent();
}

}

4.2 Mapping from Java to SOFA 2.0

SOFA is a platform for software components that uses a component model with
hierarchically nested components (composite components). It describes a com-
ponent by its frame (component descriptor) and component architecture. The
frame is a black-box view of the component that defines its provided and required
interfaces. It provides a metadata (XML files) to describe provided and required
services (see Listing 1.14 and Listing 1.15). Components are interconnected via
bindings among interfaces using connectors (see Listing 1.16).

Listing 1.14. DisplayedInformation.xml to provide the instances of DisplayedInfor-
mation

<?xml version="1.0"?>
<frame name="DisplayedInformation">
<provides name="DisplayedInformation" itf-type="sofatype://IDisplayedInformation"/>

</frame>

Listing 1.15. ContentProvider.xml to bind the instances of DisplayedInformation

<?xml version="1.0"?>
<frame name="ContentProvider">
<requires name="DisplayedInformation" itf-type="sofatype://IDisplayedInformation"/>

</frame>

Listing 1.16. Binding between DisplayedInformation and ContentProvider

public class ContentProvider implements SOFALifecycle, Runnable, SOFAClient {
IDisplayedInformation info = null;
// Called during initialization of the component.
public void setRequired(String name, Object iface) {
if (name.equals("DisplayedInformation")) {
if (iface instanceof IDisplayedInformation) {
//get DisplayedInformation instance
info = (IDisplayedInformation) iface;
info.portMessage.getContent();

}}}
}
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5 Discussion

We can deploy recovered cluster of classes directly onto existing component
models without using our approach. Indeed, we can transform each class into a
component and then assemble these components that belong to the same cluster
using component composition property as a composite component. However, to
compare our approach with the composite component approach, we need first
to study the component composition types and component models that support
these types. Table 2 shows the selected object-based component models and com-
position supported composition types. Two types of component compositions;
the first one is horizontal composition, and the second type is vertical composi-
tion. The horizontal composition means that components can be binded through
their interfaces to construct component applications. The second type, vertical
composition, describes the mechanism of constructing a new component from
two or more other components. The new component is then called composite
because they are themselves made of more elementary components called inter-
nal components. Internal components could be accessible or visible from clients
(delegation) or not (aggregation).

We can observe from Table 2 that there are five component models that did
not support vertical composition at all (EJB, JavaBeans, OSGi, CCM and Pal-
ladio). Four of them provide vertical aggregation composition and six models
support vertical delegation composition. However, vertical delegation composi-
tion is not appropriate because clients can access or view the internal components
(violates component encapsulation). Consequently, the vertical aggregation com-
position could be replaced by our approach, but there are just two component
models that support it.

Table 2. Composition type in object-based component models

Component models EJB Fractal JavaBeans COM OpenCOM OSGi SOFA 2.0 CCM COMPO Palladio PECOS

Vertical composition No Yes No Yes Yes No Yes No Yes No Yes

Aggregation � � � �
Delegation � � � � � �

6 Related Work

Transforming OO applications to CB ones has two types of related works. The
first relates to CB architecture recovery, and the second relates to code trans-
formation from OO applications to Component-oriented ones. Many works have
proposed for recovering CB architectures from OO legacy code. A survey on
these works is presented in [5,17]. However, only few works have beenproposed
a transformation from OO code to CB one.

The approach proposed by [14] applies in transforming Java applications to
OSGi. The approach uses OO concepts and patterns to wrap cluster of class to
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components. However, they did not deal with component instantiation, where
they still used instances in terms of OO. Another approach for transforming Java
applications into the JavaBeans framework is proposed in [7]. They developed
an approach that can generate components from OO programs using a class
relations graph. This method did not deal with a component as a set of classes,
the authors assume that each class is transformed to a component. Therefore, it
can not treat the cluster of classes recovered from architecture recovery methods.

One of the closest works to our approach is proposed by [24]. They used
dynamic analysis to define component interfaces and component instances. The
idea of their work consists of four steps. The first one is an extraction of object
call graphs. The second step is transforming the object call graph into a com-
ponent call graph. The third step identifies component interfaces based on the
connections between component instances. The last step deals with component
constructors and its parameters. In contrast to our work, they use dynamic
analysis and execution trace, where they supposed the use cases of the recov-
ered applications exist and fully cover all execution cases. Moreover, they sup-
pose that two component instances may have intersected states, where a class
instance can be shared between two components which violate the principle of
component encapsulation.

7 Conclusion

In this paper, we proposed an approach to transform recovered components from
object-oriented applications to be easily mapped to component-based models.
We refactored clusters of classes (recovered component) to behave as a single
unit of behavior to enable component instantiation. Our approach guarantees
component-based principles by resolving component encapsulation and compo-
nent composition using component instances. The encapsulation of components
is guaranteed by transforming the OO dependencies between recovered compo-
nents which was proposed in our previous work [20]. Moreover, both principles
applied by refactoring a recovered component source code to be instantiable,
where the provided services are consumed by the component instance through
its interfaces (component binding). We have shown that the source code resulted
from our approach can be easily projected onto object-based component mod-
els. We illustrated the mapping onto two well known component models, OSGi
and SOFA. The illustration results show that our approach facilitates the trans-
formation process from OO applications into CB ones. Moreover, it effectively
reduces the gap between recovered component architectures and its implemen-
tation source code.
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Abstract. Software architecture reconstruction techniques aim at
recovering software architecture documentation regarding a software sys-
tem. These techniques mainly analyze coupling/dependencies among
the software modules to group them and reason about the high-level
structure of the system. Hereby, inter-dependencies among the software
modules are mainly represented with design structure matrices or reg-
ular directed/undirected graphs. In this paper, we introduce a software
architecture reconstruction approach that utilizes hypergraphs for repre-
senting inter-module dependencies. We focus on PL/SQL programs that
are developed as data access tiers of business software. These programs
are mainly composed of procedures that are coupled due to commonly
accessed database elements. Hypergraphs are more appropriate for cap-
turing this type of coupling, where an element can relate to more than
one procedure. We illustrate the application of the approach with an
industrial PL/SQL program from the telecommunications domain. We
analyze and represent dependencies among the modules of this program
in the form of a hypergraph. Then, we perform modularity clustering
on this model and propose a packaging structure to the designer accord-
ingly. We observed promising results in comparison with previous work.
The accuracy of the results were also approved by domain experts.

Keywords: Software architecture reconstruction · Reverse engineering ·
Hypergraph partitioning · Modularity clustering · Industrial case study

1 Introduction

Modularity is one of the key properties for software design [16]. Especially large
scale software systems need to have a modular structure. Otherwise, the main-
tainability and evolvability of the system suffer. A modular structure can be
attained by decomposing the system into cohesive units that are loosely cou-
pled. Software architecture design [3,22] defines the gross-level decomposition of
c© Springer International Publishing AG 2016
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a software system. Hence, its documentation is an important asset for coping
with evolution [15].

Software architecture documentation might be incorrect/incomplete for old
legacy systems due to architectural drift [14,17]. Software architecture recon-
struction (SAR) techniques [8] have been introduced to recover such documen-
tation. These techniques mainly analyze coupling/dependencies among the soft-
ware modules to group them and reason about the high-level structure of the
system. Hereby, inter-dependencies among the software modules are mainly rep-
resented with design structure matrices (DSM) [2] or regular directed/undirected
graphs [8]. These models capture direct dependencies between a pair of modules
like call relations [13].

In this paper, we focus on PL/SQL programs that are developed as data
access tiers of business software. These programs are mainly composed of proce-
dures that are coupled due to commonly accessed database elements [2]. Existing
SAR techniques do not consider indirect coupling/dependencies among the soft-
ware modules based on such persistent data. Several procedures can be coupled
due to a commonly accessed element. This type of coupling cannot be directly
captured by existing models. Therefore, we introduce a SAR approach that
uses a hypergraph model for representing such coupling/dependencies among
modules. This model is partitioned to find clusters that maximize modularity.
A packaging structure that is aligned with the obtained clusters is proposed to
the designer. We illustrate the application of the approach with an industrial
PL/SQL program from the telecommunications domain. We observed promis-
ing results with this case study in comparison with our previous work [2]. The
accuracy of the results were also approved by domain experts.

The paper is organized as follows. In the following section, we provide back-
ground information on PL/SQL programs, hypergraphs and modularity cluster-
ing. We summarize the related studies in Sect. 3. We present the overall approach
in Sect. 4. The approach is evaluated in Sect. 5, in the context of the industrial
case study. Finally, in Sect. 6, we conclude the paper.

2 Background

2.1 PL/SQL Programs

PL/SQL (Procedural Language/Structured Query Language) combines proce-
dural language features with the Structural Query Language (SQL) [1]. PL/SQL
programs work on Oracle1 database management system and they constitute sig-
nificant part of enterprise applications today.

A PL/SQL program includes procedures that can be grouped into packages
or remain as standalone procedures [2]. A sample PL/SQL procedure is shown
in Listing 1.1. The first part of the procedure (Lines 1–4) declares variables and
constants used in the application logic. The second part (Lines 5–19) contains

1 www.oracle.com.

www.oracle.com
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the application logic. This part optionally includes a specification of exception
conditions and their handling (Lines 13–18).

Listing 1.1 illustrates the interleaving of imperative code with SQL state-
ments. Procedures are highly coupled with database elements and they are
dependent on each other due to commonly accessed elements. In this work, we
employ hypergraphs for representing these inter-dependencies. In the following,
we shortly introduce the hypergraph formalism and our modeling approach.

Listing 1.1. A sample PL/SQL procedure [2].

1 PROCEDURE P(id IN NUMBER) IS
2 sales NUMBER;
3 total NUMBER;
4 ratio NUMBER;
5 BEGIN
6 SELECT x,y INTO sales ,total
7 FROM result WHERE result_id = id;
8 ratio := sales/total;
9 IF ratio > 10 THEN

10 INSERT INTO comp VALUES (id,ratio);
11 END IF;
12 COMMIT;
13 EXCEPTION
14 WHEN ZERO_DIVIDE THEN
15 INSERT INTO comp VALUES (id ,0);
16 COMMIT;
17 WHEN OTHERS THEN
18 ROLLBACK;
19 END;

2.2 Hypergraphs

A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets
(hyperedges) N among those vertices. A net n ∈ N is a subset of vertices and
the vertices in n are called its pins. The number of pins of a net is called the
size of it, and the degree of a vertex is equal to the number of nets it belongs to.
We use pins[n] and nets[v] to represent the pin set of a net n, and the set of nets
containing a vertex v, respectively. In this work, we assume unit weights for all
nets and vertices.

A K-way partition of a hypergraph H is a partition of its vertex set, which
is denoted as Π ={V1,V2, . . . ,VK}, where

– parts are pairwise disjoint, i.e., Vk ∩ V� = ∅ for all 1 ≤ k < � ≤ K,
– each Vk is a nonempty subset of V, i.e., Vk ⊆ V and Vk �= ∅ for 1 ≤ k ≤ K,
– the union of K parts is equal to V, i.e.,

⋃K
k=1 Vk =V.

In our modeling approach, we represent each PL/SQL procedure as a vertex
and each database table as a net. A net has several vertices as its pins if the
corresponding procedures access the database table represented by the net. We
convert this model to a weighted graph model and apply modularity clustering
as explained in the following subsection.
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2.3 Modularity Clustering

Given a (weighted) graph G, a good clustering of the vertices in G should contain
G’s edges within the clusters. However, since the number of clusters is not fixed,
this objective can be trivially realized by a clustering that consists of a single
cluster. Hence, alone, this objective is not a suitable clustering index. By adding
a penalty term for larger clusters, we obtain the modularity of a clustering C [6]:

Q(C) =

∑

Ci∈C
ω(Ci)

ω(E)
−

∑

Ci∈C
(2 × ω(Ci) + cut(Ci))2

α × ω(E)2
(1)

where ω(E) is the total edge weight in the graph, Ci is the ith cluster, ω(Ci)
is the total weight of internal edges in Ci, and cut(Ci) is the total weight of
the edges from the vertices in Ci to the vertices not in Ci. Like other clustering
indices, modularity captures the inherent trade-off between increasing the num-
ber of clusters and keeping the size of the cuts between clusters small. Almost
all clustering indices require algorithms to face such a trade-off. Hereby, α is a
trade-off parameter, which determines the relative importance of the two trade-
off dimensions. The value 4 is commonly assigned for α to establish equal/bal-
anced importance. For this study, we have experimented with a range of α values
and obtained the best results when α is equal to 2.8. We observed that the result-
ing number of clusters is aligned with the number of conceptual entities in the
database. Hence, α can be adjusted based on a preprocessing of these entities.
However, we left the automated adjustment of α parameter as future work.

3 Related Work

There exist many techniques [8] for SAR. Several of them use DSM for reasoning
about architectural dependencies [2,18–20]. Some focus on analyzing the runtime
behavior for reconstructing execution scenarios [4] and behavioral views [12].
There are also tools that construct both structural and behavioral views [10,21]
which are mainly developed for reverse engineering C/C++ or Java programs.
Some tools are language independent; they take abstract inputs like module
dependency graphs [13] or execution traces [4]. However, hypergraphs have not
been utilized for SAR to the best of our knowledge.

There exist only a few studies [7,11] that focus on reverse engineering
PL/SQL programs. They mainly aim at deriving business rules [7] and data
flow graphs [11]. Recently, we proposed an approach for clustering PL/SQL pro-
cedures [2]. The actual coupling among these procedures can only be revealed
based on their dependencies on database elements. In our previous work, we
employed DSM [9] for representing these dependencies. In this work, we employ
hypergraphs, which can more naturally model such dependencies and lead to
more accurate results.
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4 Software Reconstruction with Hypergraphs

The overall approach involves 4 steps as shown in Fig. 1. First, the program
source code and the database structure (meta-data) is provided to our Depen-
dency analyzer tool as input (1). This tool creates a hypergraph model that
represents dependencies among the procedures based on database tables that
are commonly accessed. Second, the generated model is converted to a weighted
graph (2). Then, this graph is recursively bi-partitioned by a clustering tool (3).
Finally, the identified partitions are processed by our tool Partition analyzer to
propose a package structure for the analyzed source code (4).

Fig. 1. The overall approach.

Dependency analyzer creates a hypergraph, where the number of vertices
is equal to the number of procedures. Then, for each table in the database, it
identifies the set of procedures that accesses the table. This set forms the set of
pins for the net that represents the table.

To apply the modularity-based clustering, we transform the hypergraph into
a weighted graph G as follows: each vertex in the hypergraph is also vertex of
G and vice versa. Furthermore, there is an edge between two vertices u and v
in the graph if they are connected via at least one net in the hypergraph. The
weight of this (u, v) edge is assigned as |nets[u] ∩ nets[v]|. After generating the
weighted graph, we used the clustering tool by Çatalyürek et al. [5] to maximize
the modularity. Starting with a single cluster G, the tool recursively partitions
the clusters into two if the partitioning increases the modularity. We employ
PaToH2 as the inner partitioner in the clustering tool. In the following section,
we illustrate the application of the approach in the context of an industrial case
study from the telecommunications domain.

5 Industrial Case Study

We have performed a case study for automatically clustering modules of a
legacy application implemented with the PL/SQL language. The application is a
2 http://bmi.osu.edu/umit/software.html.

http://bmi.osu.edu/umit/software.html


Using Hypergraph Clustering for Software Architecture Reconstruction 331

Table 1. A sample list of nets and the set of vertices they interconnect (pins) in the
generated hypergraph for the CRM case study.

Net Vertices

T1 P119, P101, P1, P47, P15, P48

T2 P119, P57, P47, P26, P1

... ...

T11 P27, P26, P7, P1, P117, P119, P115, P111, P110, P109, ...

... ...

T67 P8

Customer Relation Management (CRM) system, which is maintained by Turk-
cell3. Its code comprises around 2 MLOC and the system is operational since
1993, serving more than 10000 users. In this section, we illustrate our approach
for this system and discuss the results. We can not share real procedure/table
names due to confidentiality; we present abstracted artifacts and results instead.

In our case study, we focused on one of the main schemas of the CRM sys-
tem, which consists of 157 stored procedures and 690 tables. The same subject
system4 was used for evaluating our previous SAR approach [2]. We filtered out
stored procedures that do not use any table. This preprocessing resulted with the
final dataset that consists of 67 tables and 120 procedures. Hence, the created
hypergraph has 120 vertices and 67 nets. Some of the nets are listed in Table 1
as an example. This hypergraph is processed as explained in Sect. 4 to derive a
package structure for the procedures.

Results and Discussion: In total 9 partitions were obtained as listed in Table 2.
Hereby, the number of items represent the number of procedures that are placed
in the same partition. For instance, Partition 3 includes 30 procedures. These
procedures were not belonging to any package in the original application. They
were defined as standalone procedures although they were working on the same
database tables. We have validated this result with 4 different domain experts,
all of whom agreed that these procedures perform related tasks and they should
have been placed in the same package. We also observed that each partition
can be mapped to a particular entity such as Customer, Address, Product etc.
in the conceptual entity relationship model of the CRM database. The results
regarding the partitions 5, 6, 7 and 8 were also validated likewise. The valid-
ity of the other partitions 0, 1, 2 and 4 were not confirmed by all the experts
and they are also subject to some conflicts with respect to the conceptual
entity relationship model. Finally, we compared these results with the results
that we obtained using our previous approach [2] based on DSM clustering5.
3 http://www.turkcell.com.tr.
4 The number of procedures and tables are slightly different compared to the previous

study [2] due to the evolution of the system.
5 The approach is reevaluated for the new version of the subject system.
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Table 2. The set of partitions obtained as a result of clustering.

Partition # of items Partition # of items Partition # of items

Partition 0 15 Partition 3 30 Partition 6 9

Partition 1 18 Partition 4 4 Partition 7 17

Partition 2 8 Partition 5 10 Partition 8 9

In total 9 partitions and 120 items

Hypergraph partitioning based approach turned out to be 20 % better in terms
of the percentage of procedures that are confirmed to be clustered correctly in
a package.

There are several validity threats to our evaluation. First, the evaluation is
based on subjective expert opinion rather than quantitative measurements. We
tried to mitigate this threat by consulting 4 different experts and comparing the
results with respect to their consistency with the conceptual entity relationship
model. A second threat is regarding the use of a single subject system for the case
study. Therefore, we plan to perform more case studies in the future. Although
we focused on PL/SQL programs, our approach is relevant and applicable for
any type of program that is highly coupled with a database management system.

6 Conclusion and Future Work

We introduced a software architecture reconstruction approach that employs
hypergraph partitioning. We showed that hypergraphs can naturally represent
dependencies that involve several modules. As a case study, we applied our app-
roach on an industrial PL/SQL program. Procedures of this program are indi-
rectly dependent on each other due to commonly accessed database elements.
These dependencies are captured in the form of a hypergraph model. Clustering
of this model revealed a packaging structure for the procedures. The accuracy
of this structure was evaluated by domain experts. The accuracy was siginifi-
cantly higher with respect to the results obtained by clustering design structure
matrices that are derived for the same subject system.

Acknowledgements. We thank the software developers and managers at Turkcell
for sharing their code base with us and supporting our analysis.
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Abstract. We present the open reference architecture of the SeaClouds
solution. It aims at enabling a seamless adaptive multi-cloud manage-
ment of complex applications by supporting the distribution, monitoring
and reconfiguration of app modules over heterogeneous cloud providers.

1 Motivation and Objectives of SeaClouds

Cloud computing is a model for enabling convenient and on-demand network
access to a shared pool of configurable computing resources that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. Many private and public clouds have emerged during the last years,
offering a range of different services at SaaS, PaaS levels aimed at matching
different user requirements. Current cloud technologies suffer from a lack of
standardization, with different providers offering similar resources in a different
manner, which results in the vendor lock-in problem. This problem affects all
stages of the cloud applications’ lifecycle, ranging from their design to their oper-
ation. Application developers must know the features of the services to be used,
and have a deep knowledge of the providers’ API. To reduce the need of using
deep knowledge, we can find solutions based on the use of standards, such as
OASIS CAMP or OASIS TOSCA, DMTF CIMI, unified APIs, such as jClouds1,
or solutions like Docker2. These solutions are indeed very different, for example,
whereas jClouds provides a cloud agnostic API library to provision and configure

This work has been partly supported by the EU-FP7-ICT-610531 SeaClouds project.
1 https://jclouds.apache.org.
2 https://www.docker.com.
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secure communications with cloud virtual machines, container-based solutions
like Docker allow describing and deploying applications and their dependencies
through containers on machines with the corresponding engine. Furthermore, dif-
ferent vendors (e.g., Dell, BMC, Abiquo) are currently commercialising tools for
the provisioning, management and automation of cloud applications. A promis-
ing perspective, opened by the availability of different cloud providers is the
possibility of distributing cloud applications over multiple heterogeneous clouds.

To mitigate this heterogeneity and get a vendor-agnostic solution, indepen-
dent tools and frameworks have emerged as the result of integrating, under a
single interface, the services of multiple public and private providers [3–6]. These
solutions offer a portable and interoperable environment where developers can
describe their systems and select the resources that better fit their requirements.
However, in all these attempts, platforms allow operating simultaneously with
a single level of service to deploy applications, i.e., all the components of an
application are deployed either at the IaaS level or all at the PaaS level (see,
e.g., [1,2,7]). From this, with the goal of unifying cloud services, we propose a
software architecture supporting the integration of IaaS and PaaS levels under
a single interface. Then, this will allow developers to deploy their applications
combining services offered by providers at any of these levels. In such a way,
our proposal goes a step further in the software architecture and development of
common APIs by unifying IaaS and PaaS services of different providers under
the same interface, and using the TOSCA standard for the agnostic specification
of applications’ components and interdependencies. With such a proposal, we do
not only reduce the need of vendor-specific knowledge to develop our applica-
tions for designing, deploying and operating them. In fact, such a homogenized
API greatly improves portability and interoperability as well. This solution has
been developed in the scope of the SeaClouds EU-funded research project3. This
project aims to develop a new open source framework which performs Seamless
Adaptive Multi-Cloud management of service-based applications.

2 The SeaClouds Platform: A Reference Architecture

SeaClouds is a software platform based on an open reference architecture to make
more efficient the design, development, planning and management of complex
business apps distributed on multi-cloud environments. It orchestrates services,
platforms and infrastructures to ensure they meet the needs of cloud apps.

2.1 SeaClouds Functionalities and Open Reference Architecture

SeaClouds is a multi-cloud app management system based on standards and
following the DevOps approach. The basic capabilities delivered to the developer
via an innovative GUI are listed in the following.

3 http://www.seaclouds-project.eu.
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– Discovery and Matchmaking. It allows querying available cloud offerings
(IaaS/PaaS) determining suitable ones based on app requirements.

– Cloud Service Optimizer. It optimizes the deployment topology of an appli-
cation across multiple clouds to address non-functional requirements.

– Application Management. It supports efficient deployment and multi-cloud
governance of a complex application on various cloud offerings (IaaS and PaaS)
leveraging cloud harmonized APIs and platform-specific adapters.

– Monitoring and SLA enforcement. It provides monitoring and indepen-
dent metrics to allow operators to monitor the health and performance of
applications, hosted across multiple clouds.

– Repairing. It scales horizontally and vertically cloud resources to maximize
the performance of each module of an application.

– Application migration. It provides a seamless migration of the app modules
between dissimilar (but compatible) clouds, allowing application portability.

Figure 1 presents the reference architecture and the design of the SeaClouds
platform. The platform features a GUI used by two main stakeholders: Design-
ers and Deployment Managers, and it considers Cloud Providers offering
cloud resources. From SeaClouds platform functionalities standpoint, we can
identify five major components in the architecture, plus a RESTful harmonized
and unified SeaClouds API layer used for the deployment, management and
monitoring of simple cloud-based applications through different and heteroge-
neous cloud providers, and exploiting a Dashboard.

– SeaClouds Discoverer. It is in charge of discovering available capabilities
and add-ons offered by available cloud providers.

– SeaClouds Planner. It is in charge of generating an orchestration plan con-
sidering the application topology and requirements.

– SeaClouds Deployer. It is in charge of executing deployment plans gener-
ated by the Planner, and supports the integration of both IaaS and PaaS.

– SeaClouds Monitor. It is in charge of monitoring that the Quality of Ser-
vices (QoS) properties of the application are not violated by the clouds in
which they were deployed; and of determining together with the Deployer, the
reconfiguration strategies to trigger the repairing or migration actions.

– SeaClouds SLA Service. It is in charge of mapping the low level information
gathered from the Monitor into business level information, Quality of Business
(QoB), about the fulfillment of the SLA defined.

A distinguishing aspect of the SeaClouds architecture is that it builds on
top of two OASIS standards initiatives: TOSCA (at design time) to specify the
topologies and generate the plans, and TOSCA and also CAMP is supported
(at runtime) to manage the building, running, administration, monitoring and
patching of applications in the cloud. Also, an important advance of SeaClouds
as regards other software architecture solutions is the fact of unifying IaaS and
PaaS of multiple vendors. Specifically, we propose to use a provider-agnostic
TOSCA-based model of the topology of applications and their required resources,
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Fig. 1. Architecture of the SeaClouds Platform.

indistinctly using IaaS and PaaS services, which can be used for their deployment
using (an extended version of) Apache Brooklyn.4

2.2 SeaClouds Implementation and Evaluation

The SeaClouds project has provided a solution which can be downloaded from
the github repository5. The consortium identified Apache Brooklyn as the tool to
deploy SeaClouds. To ensure a good level of quality assurance, a free Continuos
Integration (CI) and Continuos Distribution was set up, travis-ci.org. SeaClouds
platform is built using Java language, distributing the artefacts generated from
the source code, like jar file, war file etc., to a well-know public managed maven
repository hosted by Sonatype (free for opensource projects).

The SeaClouds solution has been evaluated in several examples, with the
main focus on two real use cases: i) Atos Software application and ii) Nuro
Gaming application6, both consisting of several components (servers, database)
and distributed in heterogeneous cloud providers (IaaS and PaaS).

3 Conclusions and Future Issues

We have presented the SeaClouds platform, which provides an open source frame-
work to address the problem of deploying, managing and reconfiguring complex
applications over multiple clouds. The SeaClouds solution has addressed the
main functionalities presented in previous section. As future work, the consor-
tium has agreed to create the SeaClouds Alliance in order to continue working on
some aspects, such as the improvement of the unification of providers supported

4 Apache Brooklyn: https://brooklyn.apache.org/.
5 https://github.com/SeaCloudsEU/SeaCloudsPlatform.
6 Deliverables 6.3.3 and D6.4.3 http://www.seaclouds-project.eu/deliverables.
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by the deployment, and the reconfiguration covering replanning actions and data
synchronization in database. Also, SeaClouds is an open source project, so it is
open to receive more contributions and extensions from the community.
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