
Rule-Based Incremental Verification Tools
Applied to Railway Designs and Regulations

Bjørnar Luteberget1(B), Christian Johansen2, Claus Feyling1,
and Martin Steffen2

1 RailComplete AS, Sandvika, Norway
{bjlut,clfey}@railcomplete.no

2 Department of Informatics, University of Oslo, Oslo, Norway
{cristi,msteffen}@ifi.uio.no

Abstract. When designing railway infrastructure (tracks, signalling
systems, etc.), railway engineers need to keep in mind numerous reg-
ulations for ensuring safety. Many of these regulations are simple, but
demonstrably conforming with them often involves tedious manual work.
We have worked on automating the verification of regulations against
CAD designs, and integrated a verification tool and methodology into
the tool chain of railway engineers. Automatically generating a model
from the railway designs and running the verification tool on it is a valu-
able step forward, compared to manually reviewing the design for com-
pliance and consistency. To seamlessly integrate the consistency checking
into the CAD work-flow of the design engineers, however, requires a fast,
on-the-fly mechanism, similar to real-time compilation done in standard
programming tools.

In consequence, in this paper we turn to incremental verification
and investigate existing rule-based tools, looking at various aspects rele-
vant for engineering railway designs. We discuss existing state-of-the-art
methods for incremental verification in the setting of rule-based mod-
elling. We survey and compare relevant tools (ca. 30) and discuss if/how
they could be integrated in a railway design environment, such as CAD
software. We examine and compare four promising tools: XSB Prolog, a
standard tool in the Datalog community, RDFox from the semantic web
community, Dyna from the AI community, and LogicBlox, a proprietary
solution.

1 Introduction

Verification of railway systems using formal methods often focuses on interlock-
ing and dynamic safety of the implementation. Often overlooked, however, is
the early-stage planning process for railway systems where the design decisions
are made. The design process is concerned with producing a specification of the

Part of this research has been supported by the Norwegian Research Council project
RailCons (Automated Methods and Tools for Ensuring Consistency of Railway
Designs).

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 772–778, 2016.
DOI: 10.1007/978-3-319-48989-6 49

http://www.mn.uio.no/ifi/english/research/projects/railcons


Rule-Based Incremental Verification Tools Applied to Railway Designs 773

200m

Fig. 1. Home signal layout rule example (Property 1).

railway infrastructure, which we call the design, with documented safety and
performance requirements. During that phase, it is important to efficiently han-
dle changes in track layouts, component capabilities, performance requirements,
etc. Tool support for this process is practically unavailable. Such tools would
be concerned with verification of the railway infrastructure w.r.t. technical reg-
ulations, typically expressing static properties concerned with object properties,
topology, geometry, and interlocking specifications.

As an example of a regulation to be verified, we consider the home signal
rule (Property 1 below, see also Fig. 1). Ensuring that a design is compliant with
a large set such regulations could give significant productivity and quality gains,
especially if the compliance information could be immediately available after
making changes to the design.

Property 1 (Home Signal Layout Rule). A home main signal shall be placed
at least 200m in front of the first controlled, facing switch in the entry train path.

Section 2 shortly describes the current state of our tool for checking con-
sistency of industrial railway designs, introducing the practical problem of on-
the-fly verification. Sect. 3 then describes the existing techniques for incremental
verification for rule-based modelling. We then survey in Sect. 4 existing tools
related to Datalog and focus on those supporting incremental verification. We
are particularly interested in industry-ready tools. We end in Sect. 5 by compar-
ing efficiency gains due to incremental evaluation when applied to the industrial
case study of the Arna station reconstruction, and suggesting how existing tools
could be improved to help make our incremental verification production-ready.

2 Integrating Verification Tools into Railway
Engineering Tools

In [8], we presented and demonstrated a verification tool for static infrastructure
properties based on evaluation of Datalog rules. The tool is integrated into the
RailCOMPLETE� software, a professional railway CAD program for producing
and editing railML representations of railway infrastructure. The railML for-
mat [11] is an international standard for describing railway infrastructure, time
tables, and rolling stock information. The railML description is transformed into
a logical model for verification.

The modelling and verification has the following characteristics: it (1) uses
Datalog (many properties depend on graph reachability encoded as transitive



774 B. Luteberget et al.

Fig. 2. Structured comments attached to a rule expressing violation of a regulation.

Fig. 3. Counter-example presentation within the RailCOMPLETE� CAD tool.

closures), and uses (2) negation with negation-as-failure semantics (stratified
negation). Finally, and going beyond pure Datalog, it uses (3) arithmetic, to
model aspects such as distances.

Our prototype implementation uses XSB Prolog which does conventional
top-down Prolog search, combined with tabling of recursive predicates, ensuring
the Datalog properties of termination and polynomial running time. Figure 2
shows an example rule input corresponding to a railway property, whereas Fig. 3
shows the graphical representation indicating to the engineer which regulation
is violated. The tight integration into the CAD program and, as such, into the
engineer’s design process, creates the demand for fast re-evaluation of all con-
clusions upon small changes to the railway designs. The performance studies of
[8] show that the current implementation is well acceptable for “one-shot” vali-
dation even for realistic designs with running times in the range of seconds (the
tool is applied to a real train station currently under construction). However, it
is not fast enough to smoothly and transparently be integrated such that it can
automatically rerun the complete verification for each small change.

3 Incremental Verification for On-the-Fly Performance

An alternative approach that promises to be more efficient is incremental verifi-
cation: instead of solving logic programs from scratch for each verification run,
it tries to materialize all consequences of the base facts and then maintains this
view under fact updates. The existing literature on incremental materialization
of Datalog programs gives various strategies for doing this efficiently. We briefly



Rule-Based Incremental Verification Tools Applied to Railway Designs 775

survey methods for incremental evaluation of Datalog programs, also known
in the deductive database literature as the view maintenance problem [5] [1,
Chap. 22]. We also survey relevant tools and compare their features (e.g., avail-
ability, industry-quality, performance) in the context of our verification tool. A
more thorough evaluation appears in a long version of this work [9].

Datalog systems use rules to derive a set of consequences (intensional facts),
from a given set of base facts (extensional facts). Typically, Datalog systems
use a bottom-up (or forward-chaining) evaluation strategy, where all possible
consequences are materialized [15, Chap. 3] [1, Chap. 13]. This simplifies query
answering to simply looking up values in the materialization tables. Any change
to the base facts, however, will invalidate the materialization. Several approaches
have been suggested to reduce the work required to find a new materialization
after changing the base facts.

First, if considering only addition of facts to positive Datalog programs,
i.e. without negation, then the standard semi-naive algorithm [15, Chap. 3] [1,
Chap. 13] is already an efficient approach. The real challenge are non-monotonic
changes, i.e., removing facts appearing positively in rules or adding facts appear-
ing negatively in rules. Non-monotonicity is essential in our railway infrastruc-
ture verification rules. Graph reachability is prominent in many of the regula-
tions for railway signalling, so efficiently maintaining rules involving transitivity
is also essential. Some algorithms, such as truth maintenance systems [3], work
by storing more information (in addition to the logical consequences) about the
supporting facts for derived facts, so that removal of supporting facts may or may
not remove a derived fact. This allows efficient removal of facts, at the cost of
requiring more time and memory for normal derivations. Another class of algo-
rithms, working without additional “bookkeeping”, can be more efficient if the
re-evaluation of sets of facts is relatively easy compared to re-materializing all
facts. The Propagation-Filtering algorithm [7] works on each removed fact sep-
arately, propagating it through to all rules which depend on it. In contrast, the
Delete-Rederive (DRed) algorithm [6] is rule-oriented and works on sets of facts,
first over-approximating all possible deletions that may result from a change
in base facts, then re-deriving any still-supported facts from the over-deleted
state before finally continuing semi-naive materialization on newly added facts.
Recently, the Forward/Backward/Forward (FBF) algorithm [10] used in RDFox
improved the DRed algorithm in most cases by searching for alternative support
(and caching the results) for each potentially deleted fact before proceeding to
the next fact. Notably, this method performs better on rules involving transitiv-
ity, as deletions do not propagate further than necessary.

4 Datalog Tools for Incremental Verification

Our procedure uses rule-based modelling and verification techniques in the style
of Datalog. In consequence, we perform a survey of Datalog-based and related
tools. The logic programs for our verification make use of recursive predicates,
stratified negation, and arithmetic. Therefore, we pay particular attention to
tools that at least satisfy these needs. In addition, we are looking for high per-
formance on relatively small (in-memory) data sets, so light-weight library-style



776 B. Luteberget et al.

logic engines are preferred. High-performance distributed “big data” type of tools
have less value in this context.

XSB Prolog continuously developed since 1990, has constantly been pushing
the state of the art in high-performance Prolog. XSB is especially known for
its tabling support [14], which allows fast Datalog-like evaluation of logic pro-
grams without restricting ISO Prolog. The tabling support was extended to
allow incremental evaluation [12], and these features have been under con-
tinued development and seem to have reached a mature state [13]. For some
applications, however, the additional memory usage for incremental tabling
can lead to a significant increase in the total memory needed.

RDFox is a multicore-scalable in-memory RDF triple store with Datalog rea-
soning. It reads semantic web formats (RDF/OWL) and stores RDF triples,
but also includes a Datalog-like input language which can describe SWRL
rules. This rule language has been extended to include stratified negation
and arithmetic. The RDFox system also implements a new algorithm called
FBF for incremental evaluation [10].
RDFox stores internally only triples as in RDF, which, in Datalog, corre-
sponds to only using unary and binary predicates. A method of reifying the
rules for higher-arity Datalog predicates into binary predicates allows RDFox
to calculate any-arity Datalog programs. However, this requires separate rules
for each component of the predicate, and when doing incremental evaluation,
the FBF algorithm’s backward chaining step then examines all combinations
of components potentially involved. Because of this problem, using RDFox
incrementally did not improve running times in our case study.

LogicBlox is a programming platform [2] for combining transactions with ana-
lytics in enterprise application areas including web-based retail planning and
insurance. It uses a typed, Datalog-based custom language LogiQL and has a
comprehensive development framework. It claims support for incremental ver-
ification, but we could not evaluate it on our railway example due to absence
of freely downloadable distributions.

Dyna is a promising new Datalog-like language for modern statistical AI sys-
tems [4]. It has currently not matured sufficiently for our application, but its
techniques are promising, and we hope to see it more fully developed in the
future.

Many other Datalog tools are available (around 30), few of them supporting
incremental evaluation. An overview and our brief evaluation of them can be
found in the technical report [9]. We hope to include these findings also in the
Wikipedia page for Datalog.1

5 Efficiency Gains, Shortcomings, and Possible
Ways Forward

Table 1 compares the running time and memory usage for the verification on
Arna station used as a reference station in RailCOMPLETE. The railway
1 https://en.wikipedia.org/wiki/Datalog#Systems implementing Datalog.

https://en.wikipedia.org/wiki/Datalog#Systems_implementing_Datalog


Rule-Based Incremental Verification Tools Applied to Railway Designs 777

Table 1. Case study size and running times on a standard laptop.

Testing Arna Arna
station phase A phase B

Relevant components 15 152 231

Interlocking routes 2 23 42

Datalog input facts 85 8283 9159

XSB:

Non-incrementalverif.: Running time (s) 0.015 2.31 4.59

Memory (MB) 20 104 190

Incremental verif. baseline: Running time (s) 0.016 5.87 12.25

Memory (MB) 21 1110 2195

Incr. single object update: Running time (s) 0.014 0.54 0.61

Memory (MB) 22 1165 2267

signalling design project for this station is currently in progress by Norconsult
AS. The extra bookkeeping required in XSB to prepare for incremental evalu-
ation requires more time and memory than non-incremental evaluation, so we
include both non-incremental and from-scratch incremental evaluation in the
table for comparison. We show how updates can be calculated faster than from-
scratch evaluation by moving a single object (an axle counter) in and out of
a disallowed area near another object (regulations require at least 21.0 m sep-
aration between train detectors). Without using abstraction methods, the case
study verification uses over 2 GB of memory. So, for any hope of handling larger
stations on a standard laptop or workstation, this must be reduced. We were not
able to reduce memory usage in this case study using the abstraction methods
in XSB (version 3.6.0).

While currently none of the tools seem to satisfy all conditions we hoped for
in our integration, notably efficiency, but also maturity and stability, it should
also be noted that the need for incremental evaluation has been identified by the
community not only as theoretically interesting, but also as of practical impor-
tance. The RDFox developers aim to support incremental updates of higher-arity
predicates in a later version. The XSB project has made efforts to improve its
abstraction mechanisms, so future versions might become feasible for our use. If
reducing the memory usage would require adapting a Datalog algorithm (such
as DRed), then XSB’s unrestricted Prolog might be a challenge. A different app-
roach would be to extend another efficient Datalog tool, such as Soufflé, to do
incremental evaluation, which could require a significant effort.



778 B. Luteberget et al.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases, 1st edn.
Addison-Wesley Longman Publishing Co., Boston (1995)

2. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E.,
Veldhuizen, T.L., Washburn, G.: Design and implementation of the LogicBlox sys-
tem. In: SIGMOD International Conference on Management of Data, pp. 1371–
1382. ACM (2015)

3. Doyle, J.: A truth maintenance system. Artif. Intell. 12(3), 231–272 (1979)
4. Eisner, J., Filardo, N.W.: Dyna: extending datalog for modern AI. In: Moor, O.,

Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp.
181–220. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24206-9 11

5. Gupta, A., Mumick, I.S., et al.: Maintenance of materialized views: problems, tech-
niques, and applications. IEEE Data Eng. Bull. 18(2), 3–18 (1995)

6. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
In: SIGMOD International Conference on Management of Data, pp. 157–166. ACM
(1993)

7. Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive
database: an update propagation approach. In: Workshop on Deductive Databases,
pp. 56–65 (1992)

8. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking
of railway infrastructure designs. In: Ábrahám, E., Huisman, M. (eds.) IFM
2016. LNCS, vol. 9681, pp. 491–507. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-33693-0 31

9. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of rail-
way infrastructure designs (long version). Technical report 450, University of Oslo
(IFI) (2016)

10. Motik, B., Nenov, Y., Piro, R.E.F., Horrocks, I.: Incremental update of datalog
materialisation: the backward/forward algorithm. In: Proceedings of AAAI 2015.
AAAI Press (2015)

11. Nash, A., Huerlimann, D., Schütte, J., Krauss, V.P.: RailML – a standard data
interface for railroad applications, pp. 233–240. WIT Press (2004)

12. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled logic programs.
In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 392–406. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-24599-5 27

13. Swift, T.: Incremental tabling in support of knowledge representation and reason-
ing. Theory Pract. Log. Program. 14(4–5), 553–567 (2014)

14. Swift, T., Warren, D.S.: XSB: extending Prolog with tabled logic programming.
Theory Pract. Log. Program. 12(1–2), 157–187 (2012)

15. Ullman, J.D.: Principles of Database and Knowledge-base systems, vol. I & II.
Computer Society Press (1988)

http://dx.doi.org/10.1007/978-3-642-24206-9_11
http://dx.doi.org/10.1007/978-3-319-33693-0_31
http://dx.doi.org/10.1007/978-3-319-33693-0_31
http://dx.doi.org/10.1007/978-3-540-24599-5_27

	Rule-Based Incremental Verification Tools Applied to Railway Designs and Regulations
	1 Introduction
	2 Integrating Verification Tools into Railway Engineering Tools
	3 Incremental Verification for On-the-Fly Performance
	4 Datalog Tools for Incremental Verification
	5 Efficiency Gains, Shortcomings, and Possible Ways Forward
	References


