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Abstract. Hybrid Communicating Sequential Processes (HCSP) is a
powerful formal modeling language for hybrid systems, which is an exten-
sion of CSP by introducing differential equations for modeling continu-
ous evolution and interrupts for modeling interaction between continu-
ous and discrete dynamics. In this paper, we investigate the semantic
foundation for HCSP from an operational point of view by proposing
the notion of approximate bisimulation, which provides an appropriate
criterion to characterize the equivalence between HCSP processes with
continuous and discrete behaviour. We give an algorithm to determine
whether two HCSP processes are approximately bisimilar. In addition,
based on which, we propose an approach on how to discretize HCSP,
i.e., given an HCSP process A, we construct another HCSP process B
which does not contain any continuous dynamics such that A and B are
approximately bisimilar with given precisions. This provides a rigorous
way to transform a verified control model to a correct program model,
which fills the gap in the design of embedded systems.

Keywords: HCSP · Approximately bisimilar · Hybrid systems · Dis-
cretization

1 Introduction

Embedded Systems (ESs) make use of computer units to control physical
processes so that the behavior of the controlled processes meets expected
requirements. They have become ubiquitous in our daily life, e.g., automotive,
aerospace, consumer electronics, communications, medical, manufacturing and
so on. ESs are used to carry out highly complex and often critical functions such
as to monitor and control industrial plants, complex transportation equipments,
communication infrastructure, etc. The development process of ESs is widely
recognized as a highly complex and challenging task. Model-Based Engineering
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(MBE) is considered as an effective way of developing correct complex ESs, and
has been successfully applied in industry [16,21]. In the framework of MBE, a
model of the system to be developed is defined at the beginning; then extensive
analysis and verification are conducted based on the model so that errors can be
detected and corrected at early stages of design of the system. Afterwards, model
transformation techniques are applied to transform abstract formal models into
more concrete models, even into source code.

To improve the efficiency and reliability of MBE, it is absolutely necessary
to automate the system design process as much as possible. This requires that
all models at different abstraction levels have a precise mathematical semantics.
Transformation between models at different abstraction levels should preserve
semantics, which can be done automatically with tool support.

Thus, the first challenge in model-based formal design of ESs is to have a
powerful modelling language which can model all kinds of features of ESs such as
communication, synchronization, concurrency, continuous and discrete dynamics
and their interaction, real-time, and so on, in an easy way. To address this issue,
Hybrid Communicating Sequential Processes (HCSP) was proposed in [14,36],
which is an extension of CSP by introducing differential equations for model-
ing continuous evolutions and interrupts for modeling interaction between con-
tinuous and discrete dynamics. Comparing with other formalisms, e.g., hybrid
automata [17], hybrid programs [24], etc., HCSP is more expressive and much
easier to be used, as it provides a rich set of constructors. Through which a com-
plicated ES with different behaviours can be easily modeled in a compositional
way. The semantic foundation of HCSP has been investigated in the literature,
e.g., in He’s original work on HCSP [14], an algebraic semantics of HCSP was
given by defining a set of algebraic laws for the constructors of HCSP. Sub-
sequently, a DC-based semantics for HCSP was presented in [36] due to Zhou
et al. These two original formal semantics of HCSP are very restrictive and
incomplete, for example, it is unclear whether the set of algebraic rules defined
in [14] is complete, and super-dense computation and recursion are not well han-
dled in [36]. In [8,13,22,33,35], the axiomatic, operational, and the DC-based
and UTP-based denotational semantics for HCSP are proposed, and the rela-
tions among them are discussed. However, regarding operational semantics, just
a set of transition rules was proposed in [35]. It is unclear in what sense two
HCSP processes are equivalent from an operational point of view, which is the
cornerstone of operational semantics, also the basis of refinement theory for a
process algebra. So, it absolutely deserves to investigate the semantic foundation
of HCSP from an operational point of view.

Another challenge in the model-based formal design of ESs is how to trans-
form higher level abstract models (control models) to lower level program models
(algorithm models), even to C code, seamlessly in a rigorous way. Although huge
volume of model-based development approaches targeting embedded systems
has been proposed and used in industry and academia, e.g., Simulink/Stateflow
[1,2], SCADE [9], Modelica [31], SysML [3], MARTE [28], Ptolemy [10], hybrid
automata [17], CHARON [5], HCSP [14,36], Differential Dynamic Logic [24],
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and Hybrid Hoare Logic [22], the gap between higher-level control models and
lower-level algorithm models still remains.

Approximate bisimulation [12] is a popular method for analyzing and ver-
ifying complex hybrid systems. Instead of requiring observational behaviors of
two systems to be exactly identical, it allows errors but requires the “distance”
between two systems remain bounded by some precisions. In [11], with the use
of simulation functions, a characterization of approximate simulation relations
between hybrid systems is developed. A new approximate bisimulation relation
with two parameters as precisions, which is very similar to the notion defined
in this paper, is introduced in [18]. For control systems with inputs, the method
for constructing a symbolic model which is approximately bisimilar with the
original continuous system is studied in [26]. Moreover, [23] discusses the prob-
lem for building an approximately bisimilar symbolic model of a digital control
system. Also, there are some works on building symbolic models for networks of
control systems [27]. But for all the above works, either discrete dynamics is not
considered, or it is assumed to be atomic actions independent of the continuous
variables. In [15,20,32], the abstraction of hybrid automata is considered, but
it is only guaranteed that the abstract system is an approximate simulation of
the original system. In [25], a discretization of hybrid programs is presented for
a proof-theoretical purpose, i.e., it aims to have a sound and complete axiomati-
zation relative to properties of discrete programs. Differently from all the above
works, we aim to have a discretization of HCSP, for which discrete and continu-
ous dynamics, communications, and so on, are entangled with each other tightly,
to guarantee that the discretized process has the approximate equivalence with
the original process.

The main contributions of this paper include:

– First of all, we propose the notion of approximate bisimulation, which provides
a criterion to characterize in what sense two HCSP processes with differential
kinds of behaviours are equivalent from an operational point of view. Based
on which, a refinement theory for HCSP could be developed.

– Then, we show that whether two HCSP processes are approximately bisimilar
or not is decidable if all ordinary differential equations (ODEs) occurring in
them satisfy globally asymptotical stability (GAS) condition (the definition
will be given later). This is achieved by proposing an algorithm to compute
an approximate bisimulation relation for the two HCSP processes.

– Most importantly, we present how to discretize an HCSP process (a control
model) by a discrete HCSP process (an algorithm model), and prove they
are approximately bisimilar, if the original HCSP process satisfies the GAS
condition and is robustly safe with respect to some given precisions.

The rest of this paper is organized as follows: In Sect. 2, we introduce some
preliminary notions on dynamical systems. Sect. 3 defines transition systems and
the approximate bisimulation relation between transition systems. The syntax
and the transition semantics of HCSP, and the approximately bisimilar of HCSP
processes are presented in Sect. 4. The discretization of HCSP is presented in
Sect. 5. Throughout the paper, and in Sect. 6, a case study on the water tank
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system [4] is shown to illustrate our method. At the end, Sect. 7 concludes the
paper and discusses the future work. For space limitation, the proofs for all the
lemmas and theorems are omitted, but can be found in [34].

2 Preliminary

In this section, we briefly review some notions in dynamical systems, that can be
found at [19,29]. In what follows, N, R, R+, R+

0 denote the natural, real, positive
and nonnegative real numbers, respectively. Given a vector x ∈ R

n, ‖x‖ denotes
the infinity norm of x ∈ R

n, i.e., ‖x‖ = max{|x1|, |x2|, ..., |xn|}. A continuous
function γ : R+

0 → R
+
0 , is said in class K if it is strictly increasing and γ(0) = 0;

γ is said in class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function
β : R+

0 × R
+
0 → R

+
0 is said in class KL if for each fixed s, the map β(r, s) ∈ K∞

with respect to r and, for each fixed r, β(r, s) is decreasing with respect to s and
β(r, s) → 0 as s → ∞.

A dynamical system is of the following form

ẋ = f(x), x(t0) = x0 (1)

where x ∈ R
n is the state and x(t0) = x0 is the initial condition.

Suppose a < t0 < b. A function X(.) : (a, b) → R
n is said to be a trajectory

(solution) of (1) on (a, b), if X(t0) = x0 and Ẋ(t) = f(X(t)) for all t ≥ t0.
In order to ensure the existence and uniqueness of trajectories, we assume f
satisfying the local Lipschitz condition, i.e., for every compact set S ⊂ R

n, there
exists a constant L > 0 s.t. ‖f(x)− f(y)‖ ≤ L‖x−y‖, for all x,y ∈ S. Then, we
write X(t,x0) to denote the point reached at time t ∈ (a, b) from initial condition
x0, which should be uniquely determined. In addition, we assume (1) is forward
complete [7], i.e., it is solvable on an open interval (a,+∞). An equilibrium point
of (1) is a point x̄ ∈ R

n s.t. f(x̄) = 0.

Definition 1. A dynamical system of form (1) is said to be globally asymptoti-
cally stable (GAS) if there exists a point x0 and a function β of class KL s.t.

∀x ∈ R
n ∀t ≥ 0.‖X(t,x) − x0‖ ≤ β(‖x − x0‖, t).

It is easy to see that the point x0 is actually the unique equilibrium point of the
system. When this point is previously known or can be easily computed, one can
prove the system to be GAS by constructing a corresponding Lyapunov function.
However, x0 cannot be found sometimes, for example, when the dynamics f of
the system depends on external inputs and thus is not completely known. The
concept of δ-GAS would be useful in this case.

Definition 2. A dynamical system of (1) is said to be incrementally globally
asymptotically stable (δ-GAS) if it is forward complete and there is a KL function
β s.t.

∀x ∈ R
n ∀y ∈ R

n ∀t ≥ 0.‖X(t,x) − X(t,y)‖ ≤ β(‖x − y‖, t).
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In [6], the relationship between GAS and δ-GAS was established, restated by
the following proposition.

Proposition 1. – If (1) is δ-GAS, then it is GAS.
– If there exist two strictly positive reals M and ε, and a differentiable function

V (x,y) with α1(‖x − y‖) ≤ V (x,y) ≤ α2(‖x − y‖) for some α1, α2 and ρ of
class K∞, s.t.

∀x,y ∈ R
n.

( ‖x − y‖ ≤ ε ∧ ‖x‖ ≥ M ∧ ‖y‖ ≥ M
⇒ ∂V

∂x f(x) + ∂V
∂y f(y) ≤ −ρ(‖x − y‖)

)
,

then the system (1) is δ-GAS.

A function V (x,y) satisfying the condition in Proposition 1 is called a δ-
GAS Lyapunov function of (1). Proposition 1 tells us that (1) is δ-GAS if and
only if it admits a δ-GAS Lyapunov function. In general, checking the inequality
in Definition 2 is difficult, one may construct δ-GAS Lyapunov functions as an
alternative.

3 Transition Systems and Approximate Bisimulation

In the following, the set of actions, denoted by Act, is assumed to consist of a
set of discrete actions which take no time (written as E), R+

0 the set of delay
actions which just take time delay, and a special internal action τ . Actions are
ranged over l1, . . . , ln, . . ..

Definition 3 (Transition system). A labeled transition system with observa-
tions is a tuple T = 〈Q,L,→, Q0, Y,H〉, where Q is a set of states, L ⊆ Act is a
set of labels, Q0 ⊆ Q is a set of initial states, Y is a set of observations, and H
is an observation function H : Q → Y , →⊆ Q × L × Q is a transition relation,
satisfying

1, identity: q
0−→ q always holds;

2, delay determinism: if q
d−→ q′ and q

d−→ q′′, then q′ = q′′; and
3, delay additivity: if q

d1−→ q′ and q′ d2−→ q′′ then q
d1+d2−→ q′′, where d, d1,

d2 ∈ R
+
0 .

A transition system T is said to be symbolic if Q and L ∩ E are finite, and
L ∩ R

+
0 is bounded, and metric if the output set Y is equipped with a metric

d : Y × Y → R
+
0 . In this paper, we regard Y as being equipped with the metric

d(y1,y2) = ‖y1 − y2‖.
A state trajectory of a transition system T is a (possibly infinite) sequence of

transitions q0 l0−→ q1 l1−→ · · · li−1

−−→ qi li−→ · · · , denoted by {qi li−→ qi+1}i∈N, s.t.

q0 ∈ Q0 and for any i, qi li−→ qi+1. An observation trajectory is a (possibly infinite)

sequence y0 l0−→ y1 l1−→ · · · li−1

−−→ yi li−→ · · · , denoted by {yi li−→ yi+1}i∈N, and it
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is accepted by T if there exists a corresponding state trajectory of T s.t. yi =
H(qi) for any i ∈ N. The set of observation trajectories accepted by T is called
the language of T , and is denoted by L(T ). The reachable set of T is a subset of
Y defined by

Reach(T ) = {y ∈ Y |∃{yi li−→ yi+1}i∈N ∈ L(T ),∃j ∈ N,yj = y}.

We can verify the safety property of T by computing Reach(T ) ∩ YU , in which
YU ⊆ Y is the set of unsafe observations. If it is empty, then T is safe, otherwise,
unsafe.

For a maximum sequence of τ actions qi τ−→ qi+1 τ−→ · · · τ−→ qi+k, we remove the
intermediate states and define the τ -compressed transition qi

τ� qi+k instead. For

unification, for a non-τ transition qi li−→ qi+1 where li �= τ , we define qi
li� qi+1.

In what follows, we will denote 〈Q,L,�, Q0, Y,H〉 the resulting labeled transi-
tion system from 〈Q,L,→, Q0, Y,H〉 by replacing each label transition with its τ -
compressed version. As a common convention in process algebra, we use p l==⇒ p′

to denote the closure of τ transitions, i.e., p(
τ�){0,1} l� (

τ�){0,1}p′, for any l ∈ L
in the sequel.

Given l1, l2 ∈ L ∪ {τ}, we define the distance dis(l1, l2) between them as
follows:

dis(l1, l2)
def
=

⎧
⎨

⎩

0 if both l1 and l2 are in E or are τ
|d − d′| if l1 = d and l2 = d′ are both delay actions, i.e., d, d′ ∈ R

+
0

∞ Otherwise

Definition 4 (Approximate bisimulation). Let Ti = 〈Qi, Li,�i, Q
0
i ,

Yi,Hi〉, (i = 1, 2) be two metric transition systems with the same output set
Y and metric d. Let h and ε be the time and value precision respectively. A rela-
tion Bh,ε ⊆ Q1 × Q2 is called a (h, ε)-approximate bisimulation relation between
T1 and T2, if for all (q1,q2) ∈ Bh,ε,

1. d(H1(q1),H2(q2)) ≤ ε,

2. ∀q1
l�1 q′

1, ∃q2
l′==⇒2 q′

2 s.t. dis(l, l′) ≤ h and (q′
1,q

′
2) ∈ Bh,ε, for l ∈ L1 and

l′ ∈ L2

3. ∀q2
l�2 q′

2, ∃q1
l′==⇒1 q′

1 s.t. dis(l, l′) ≤ h and (q′
1,q

′
2) ∈ Bh,ε, for l ∈ L2 and

l′ ∈ L1.

Definition 5. T1 and T2 are approximately bisimilar with the precision h and
ε (denoted T1

∼=h,ε T2), if there exists a (h, ε)-approximate bisimulation relation
Bh,ε between T1 and T2 s.t. for all q1 ∈ Q0

1, there exists q2 ∈ Q0
2 s.t. (q1,q2) ∈

Bh,ε, and vice versa.
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The following result ensures that the set of (h, ε)-approximate bisimulation
relations has a maximal element.

Lemma 1. Let{Bi
h,ε}i∈I be a family of (h, ε)-approximate bisimulation relations

between T1 and T2. Then,
⋃

i∈I Bi
h,ε is a (h, ε)-approximate bisimulation relation

between T1 and T2.

By Lemma 1, given the precision parameters h and ε, let {Bi
h,ε}i∈I be the set

of all (h, ε)-approximate bisimulation relations between T1 and T2, then the
maximal (h, ε)-approximate bisimulation relation between T1 and T2 is defined
by Bmax

h,ε =
⋃
i∈I

Bi
h,ε. For two transition systems that are approximately bisimilar,

the reachable sets have the following relationship:

Theorem 1. If T1
∼=h,ε T2, then Reach(T1) ⊆ N(Reach(T2), ε), where N(Y, ε)

denotes the ε neighborhood of Y , i.e. {x | ∃y.y ∈ Y ∧ ‖x − y‖ < ε}.
Thus, if the distance between Reach(T2) and the unsafe set YU is greater than
ε, then the intersection of Reach(T1) and YU is empty and hence T1 is safe,
whenever T1

∼=h,ε T2.

4 Hybrid CSP (HCSP)

In this section, we present a brief introduction to HCSP and define the transition
system of HCSP from an operational point of view. An example is given for
better understanding. Finally, we investigate the approximate bisimilarity for
HCSP processes.

4.1 HCSP

Hybrid Communicating Sequential Process (HCSP) is a formal language for
describing hybrid systems, which extends CSP by introducing differential equa-
tions for modelling continuous evolutions and interrupts for modeling the arbi-
trary interaction between continuous evolutions and discrete jumps. The syntax
of HCSP can be described as follows:

P ::=skip | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P � Q | P ∗

| �i∈I ioi → Pi | 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)
S ::=P | S‖S

where x, s for variables and vectors of variables, respectively, B and e are boolean
and arithmetic expressions, d is a non-negative real constant, ch is the channel
name, ioi stands for a communication event, i.e., either chi?x or chi!e, P,Q,Qi

are sequential process terms, and S stands for an HCSP process term. Given
an HCSP process S, we define Var(S) for the set of variables in S, and Σ(S)
the set of channels occurring in S, respectively. The informal meanings of the
individual constructors are as follows:
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– skip, x := e, wait d, ch?x, ch!e, P ;Q, P � Q, and �i∈I ioi → Pi are defined as
usual. B → P behaves as P if B is true, otherwise terminates.

– For repetition P ∗, P executes for an arbitrary finite number of times. We
assume an oracle num, s.t. for a given P ∗ in the context process S, num(P ∗, S)
returns the upper bound of the number of times that P is repeated in the
context.

– 〈F (ṡ, s) = 0&B〉 is the continuous evolution statement. It forces the vector s of
real variables to obey the differential equations F as long as B, which defines
the domain of s, holds, and terminates when B turns false. Without loss of
generality, we assume that the set of B is open, thus the escaping point will
be at the boundary of B. The communication interrupt 〈F (ṡ, s) = 0&B〉 �
�i∈I(ioi → Qi) behaves like 〈F (ṡ, s) = 0&B〉, except that the continuous
evolution is preempted as soon as one of the communications ioi takes place,
which is followed by the respective Qi. These two statements are the main
extension of HCSP for describing continuous behavior.

– S1‖S2 behaves as if S1 and S2 run independently except that all communica-
tions along the common channels connecting S1 and S2 are to be synchronized.
S1 and S2 in parallel can neither share variables, nor input or output channels.

For better understanding of the HCSP syntax, we model the water tank
system [4], for which two components Watertank and Controller, are composed
in parallel. The HCSP model of the system is given by WTS as follows:

WTS def= Watertank‖Controller
Watertank def= v := v0; d := d0;

(v = 1 → 〈ḋ = Qmax − πr2
√

2gd〉 � (wl!d → cv?v);
v = 0 → 〈ḋ = −πr2

√
2gd〉 � (wl!d → cv?v))∗

Controller def= y := v0;x := d0; (wait p;wl?x;x ≥ ub → y := 0;
x ≤ lb → y := 1; cv!y)∗

where Qmax, π, r and g are system parameters, v is the control variable which
takes 1 or 0, depending on whether the valve is open or not, d is the water level
of the Watertank and its dynamics depends on the value of v. v0 and d0 are the
initial values of controller variable and water level, respectively. Two channels,
wl and cv, are used to transfer the water level (d in Watertank) and control
variable (y in Controller) between Watertank and Controller, respectively. The
control value is computed by the Controller with a period of p. When the water
level is less than or equal to lb, the control value is assigned to 1, and when
the water level is greater than or equal to ub, the control value is assigned to
0, otherwise, it keeps unchanged. Basically, based on the current value of v,
Watertank and Controller run independently for p time, then Watertank sends
the current water level to Controller, according to which a new value of the
control variable is generated and sent back to Watertank, after that, a new
period repeats.
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4.2 Transition System of HCSP

Given an HCSP process S, we can derive a transition system T (S) = 〈Q,L,→,
Q0, Y,H〉 from S by the following procedure:

– the set of states Q = (subp(S) ∪ {ε}) × V (S), where subp(S) is the set
of sub-processes of S, e.g., subp(S) = {S,wait d,B → P} ∪ subp(P ) for
S::=wait d;B → P , ε is introduced to represent the terminal process, meaning
that the process has terminated, and V (S) = {v|v ∈ Var(S) → Val} is the set
of evaluations of the variables in S, with Val representing the value space of
variables. Without confusion in the context, we often call an evaluation v a
(process) state. Given a state q ∈ Q, we will use fst(q) and snd(q) to return
the first and second component of q, respectively.

– The label set L corresponds to the actions of HCSP, defined as L = R
+
0 ∪

Σ(S) � {?, !} �R∪ {τ}, where d ∈ R
+
0 stands for the time progress, ch?c, ch!c ∈

Σ(S) � {?, !} � R means that an input along channel ch with value c being
received, an output along ch with value c being sent, respectively. Besides, the
silent action τ represents a discrete non-communication action of HCSP, such
as assignment, evaluation of boolean expressions, and so on.

– Q0 = {(S, v)|v ∈ V (S)}, representing that S has not started to execute, and
v is the initial process state of S.

– Y = Val, represents the set of value vectors corresponding to Var(S).
– Given q ∈ Q, H(q) = vec(snd(q)), where function vec returns the value vector

corresponding to the process state of q.
– → is the transition relation of S, which is given next.

Sequential Processes. A transition relation of a sequential HCSP process
takes the form (P, v) l−→ (P ′, v′), indicating that starting from state v, P executes
to P ′ by performing action l, with the resulting state v′. Here we present the
transition rules for continuous evolution as an illustration. Readers are referred
to [35] for the full details of the transition semantics, for both sequential and
parallel HCSP processes.

∀d > 0.∃S(.) : [0, d] → R
n.(S(0) = v(s) ∧ (∀p ∈ [0, d).(F (Ṡ(p), S(p)) = 0

∧v[s �→ S(p)](B) = true)))

(〈F (ṡ, s) = 0&B〉, v) d−→ (〈F (ṡ, s) = 0&B〉, v[s �→ S(d)])
v(B) = false

(〈F (ṡ, s) = 0&B〉, v) τ−→ (ε, v)

For 〈F (ṡ, s) = 0&B〉, for any d ≥ 0, it evolves for d time units according to
F if B evaluates to true within this period (the right end exclusive). In the rule,
S(·) : [0, d] → R

n defines the trajectory of the ODE F with initial value v(s).
Otherwise, by performing a τ action, the continuous evolution terminates if B
evaluates to false.
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Parallel Composition. Given two sequential processes P1, P2 and their tran-
sition systems T (P1) = 〈Q1, L1,→1, Q

0
1, Y1,H1〉 and T (P2) = 〈Q2, L2,→2,

Q0
2, Y2,H2〉, we can define the transition system of P1‖P2 as T (P1‖P2) =

〈Q,L,→, Q, Y,H〉, where:

– Q = ((subp(P1) ∪ {ε})‖(subp(P2) ∪ {ε})) × {v1 � v2|v1 ∈ V (P1), v2 ∈ V (P2)},
where given two sets of processes PS1 and PS2, PS1‖PS2 is defined as
{α‖β|α ∈ PS1 ∧β ∈ PS2}; v1 �v2 represents the disjoint union, i.e. v1 �v2(x)
is v1(x) if x ∈ Var(P1), otherwise v2(x).

– L = L1 ∪ L2.
– Q0 = {(P1‖P2, v

0
1 � v0

2)|(Pi, v
0
i ) ∈ Q0

i for i = 1, 2}.
– Y = Y1 × Y2, the observation space of the parallel composition is obviously

the Cartesian product of Y1 and Y2.
– H(q) = H1(q) × H2(q), the observation function is the Cartesian product of

the two component observation functions correspondingly.
– → is defined based on the parallel composition of transitions of L1 and L2.

Suppose two transitions (P1, u) α−→ (P ′
1, u

′) and (P2, v)
β−→ (P ′

2, v
′) occur for

P1 and P2, respectively. The rule for synchronization is given below:

α = chi?c ∧ β = chi!e ∧ c = e

(P1‖P2, u � v) τ−→ (P ′
1‖P ′

2, u
′ � v′)

4.3 Approximate Bisimulation Between HCSP Processes

Let P1 and P2 be two HCSP processes, and h, ε the time and value precisions.
Let v0 be an arbitrary initial state. P1 and P2 are (h, ε)-approximately bisimilar,
denoted by P1

∼=h,ε P2, if T (P1) ∼=h,ε T (P2), in which T (P1) and T (P2) are the
τ -compressed transition systems of P1 and P2 with the same initial state v0,
respectively.

In Algorithm 1, we consider the (h, ε)-approximate bisimilation between P1

and P2 for which all the ODEs occurring in P1 and P2 are GAS. Suppose the set
of ODEs occurring in Pi is {F i

1, · · · , F i
ki}, and the equilibrium points for them are

xi
1, · · · , xi

ki for i = 1, 2 respectively. As a result, for each ODE, there must exist
a sufficiently large time, called equilibrium time, s.t. after the time, the distance
between the trajectory and the equilibrium point is less than ε. We denote the
equilibrium time for each F i

j for j = 1, · · · , ki by T i
j , respectively. Furthermore,

in order to record the execution time of ODEs, for each ODE F i
j , we introduce

an auxiliary time variable tij and add tij := 0; ṫij = 1 to F i
j correspondingly.

Algorithm 1 decides whether P1 and P2 are (h, ε)-approximately bisimilar.
When P1

∼=h,ε P2, it returns true, otherwise, it returns false. Let d be the
discretized time step. The algorithm is then taken in two steps. The first step
(lines 1–6) constructs the transition systems for P1 and P2 with time step d.
For m = 1, 2, T (Pm).Q and T (Pm).T represent the reachable set of states and
transitions of Pm, respectively, which are initialized as empty sets and then
constructed iteratively. At each step i, a new transition can be a d time progress,
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Algorithm 1. Deciding approximately bisimilar between two HCSP processes
Input: Processes P1, P2, the initial state v0, the time step d, and precisions h and ε;
Initialization:

T (Pm).Q0 = {(Pm, v0)}, T (Pm).T 0 = ∅ for m = 1, 2; i = 0;
1: repeat

2: T (Pm).T i+1 = T (Pm).T i ∪ {q
l� q′|∀q ∈ T (Pm).Qi, if (∃l ∈ {d, τ} ∪

Σ(Pm) � {?, !} � R.q
l� q′) or (∃l = d′.l < d ∧ q

l� q′ ∧ not (q
d′′
�

) for any d′′ in (d′, d]) and snd(q′)(tm
j ) < T m

j };
3: T (Pm).Qi+1 = T (Pm).Qi ∪ postState(T (Pm).T i+1);
4: i ← i + 1;
5: until T (Pm).T i = T (Pm).T i−1

6: T (Pm).Q = T (Pm).Qi; T (Pm).T = T (Pm).T i;
7: B0

h,ε = {(q1, q2) ∈ T (P1).Q × T (P2).Q|d(H1(q1), H2(q2)) ≤ ε}; i = 0;
8: repeat

9: Bi+1
h,ε ← {(q1, q2) ∈ Bi

h,ε|∀q1
l�1 q′

1 ∈ T (P1).T , ∃q2
l′

==⇒2 q′
2 ∈ T (P2).T s.t.

(q′
1, q

′
2) ∈ Bi

h,ε and dis(l, l′) ≤ h, and ∀q2
l�2 q′

2 ∈ T (P2).T , ∃q1
l′

==⇒1 q′
1 ∈

T (P1).T s.t. (q′
1, q

′
2) ∈ Bi

h,ε and dis(l, l′) ≤ h};
10: i ← i + 1;
11: until Bi

h,ε = Bi−1
h,ε

12: Bh,ε = Bi
h,ε;

13: if ((P1, v0), (P2, v0)) ∈ Bh,ε then
14: return true;
15: else
16: return false;
17: end if

a τ event, or a communication event. Besides, a transition can be a time progress
less than d, which might be caused by the occurrence of a boundary interrupt
or a communication interrupt during a continuous evolution. The new transition
will be added only when the running time for each ODE Fm

j , denoted by tmj ,
is less than the corresponding equilibrium time. Therefore, for either process
Pm, whenever some ODE runs beyond its equilibrium time, the set of reachable
transitions reaches a fixpoint by allowing precision ε and will not be extended
any more. The set of reachable states can be obtained by collecting the post
states of reachable transitions. Based on Definition 4, the second step (lines 7–
17) decides whether the transition systems for P1 and P2 are approximately
bisimilar with the given precisions.

The first part (lines 1–6) of the algorithm computes the transitions of
processes. For each process Pm, its complexity is O(|T (Pm).T |), which is
O(�Tm

d � + Nm), where Tm represents the execution time of Pm till termination
or reaching the equilibrium time of some ODE, and Nm the number of atomic
statements of Pm. The second part (lines 7–17) checks for P1 and P2 each pair
of the states whose distance is within ε by traversing the outgoing transitions,
to see if they are truly approximate bisimilar, till the fixpoint Bh,ε is reached.
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We can compute the time complexity to be O(Q2
1Q

2
2T1T2), where Qm and Tm

represent O(|T (Pm).Q|) and O(|T (Pm).T |) for m = 1, 2 respectively.

Theorem 2 (Correctness). Algorithm1 terminates, and for any v0, P1
∼=h,ε

P2 iff ((P1, v0), (P2, v0)) ∈ Bh,ε.

5 Discretization of HCSP

In this section, we consider the discretization of HCSP processes, by which the
continuous dynamics is represented by discrete approximation. Let P be an
HCSP process and (h, ε) be the precisions, our goal is to construct a discrete
process D from P , s.t. P is (h, ε)-bisimilar with D, i.e., P ∼=h,ε D holds.

5.1 Discretization of Continuous Dynamics

Since most differential equations do not have explicit solutions, the discretization
of the dynamics is normally given by discrete approximation. Consider the ODE
ẋ = f(x) with the initial value x̃0 ∈ R

n, and assume X(t, x̃0) is the trajectory
of the initial value problem along the time interval [t0,∞). In the following
discretization, assume h and ξ represent the time step size and the precision of
the discretization, respectively. Our strategy is as follows:

– First, from the fact that ẋ = f(x) is GAS, there must exist a sufficiently large
T s.t. ‖X(t, x̃0) − x̄‖ < ξ holds when t > T , where x̄ is an equilibrium point.
As a result, after time T , the value of x can be approximated by the equilib-
rium point x̄ and the distance between the actual value of x and x̄ is always
within ξ.

– Then, for the bounded time interval [t0, T ], we apply Euler method to dis-
cretize the continuous dynamics.

There are a range of different discretization methods for ODEs [30] and the
Euler method is an effective one among them. According to the Euler method,
the ODE ẋ = f(x) is discretized as

(x := x + hf(x); wait h)N

A sequence of approximate solutions {xi} at time stamps {hi} for i = 1, 2, · · · , N
with N = �T−t0

h � are obtained, satisfying (define x0 = x̃0):

hi = t0 + i ∗ h xi = xi−1 + hf(xi−1).

‖X(hi, x̃0) − xi‖ represents the discretization error at time hi. To estimate the
global error of the approximation, by Theorem 3 in [25], we can prove the fol-
lowing theorem:
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Theorem 3 (Global error with an initial error). Let X(t, x̃0) be a solution
on [t0, T ] of the initial value problem ẋ = f(x),x(t0) = x̃0, and L the Lipschitz
constant s.t. for any compact set S of Rn, ‖f(y1) − f(y2)‖ ≤ L‖y1 − y2‖ for all
y1,y2 ∈ S. Let x0 ∈ R

n satisfy ‖x0 − x̃0‖ ≤ ξ1. Then there exists an h0 > 0,
s.t. for all h satisfying 0 < h ≤ h0, and for all n satisfying nh ≤ (T − t0), the
sequence xn = xn−1 + hf(xn−1) satisfies:

‖X(nh, x̃0) − xn‖ ≤ e(T−t0)Lξ1 +
h

2
max

ζ∈[t0,T ]
‖X ′′(ζ, x̃0)‖eL(T−t0) − 1

L

By Theorem 3 and the property of GAS, we can prove the following main
theorem.

Theorem 4 (Approximation of an ODE). Let X(t, x̃0) be a solution on
[t0,∞] of the initial value problem ẋ = f(x),x(t0) = x̃0, and L the Lipschitz
constant. Assume ẋ = f(x) is GAS with the equilibrium point x̄. Then for any
precision ξ > 0, there exist h > 0, T > 0 and ξ1 > 0 s.t. ẋ = f(x),x(t0) = x̃0

and x := x0; (x := x+hf(x);wait h)N ;x := x̄; stop with N = �T−t0
h � are (h, ξ)-

approximately bisimilar, in which ‖x0 − x̃0‖ < ξ1 holds, i.e., there is an error
between the initial values.

5.2 Discretization of HCSP

We continue to consider the discretization of HCSP processes, among which
any arbitrary number of ODEs, the discrete dynamics, and communications are
involved. Below, given an HCSP process P , we use Dh,ε(P ) to represent the
discretized process of P , with parameters h and ε to denote the step size and
the precision (i.e. the maximal “distance” between states in P and Dh,ε(P )),
respectively.

Before giving the discretization of HCSP processes, we need to introduce the
notion of readiness variables. In order to express the readiness information of
communication events, for each channel ch, we introduce two boolean variables
ch? and ch!, to represent whether the input and output events along ch are
ready to occur. We will see that in the discretization, the readiness information
of partner events is necessary to specify the behavior of communication interrupt.

Table 1 lists the definition of Dh,ε(P ). For each rule, the original process
is listed above the line, while the discretized process is defined below the line.
For skip, x := e and wait d, they are kept unchanged in the discretization. For
input ch?x, it is discretized as itself, and furthermore, before ch?x occurs, ch? is
assigned to 1 to represent that ch?x becomes ready, and in contrary, after ch?x
occurs, ch? is reset to 0. The output ch!e is handled similarly. The compound
constructs, P ;Q, P � Q, P ∗ and P‖Q are discretized inductively according to
their structure. For B → P , B is still approximated to B and P is discretized
inductively. For external choice �i∈I ioi → Pi, the readiness variables ioi for all
i ∈ I are set to 1 at first, and after the choice is taken, all of them are reset to 0
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Table 1. The rules for discretization of HCSP

and the corresponding process is discretized. Notice that because I is finite, the
∀ operator is defined as an abbreviation of the conjunction over I.

Given a boolean expression B and a precision ε, we define N(B, ε) to be a
boolean expression which holds in the ε-neighbourhood of B. For instance, if B
is x > 2, then N(B, ε) is x > 2 − ε. For a continuous evolution 〈ẋ = f(x)&B〉,
under the premise that ẋ = f(x) is GAS, there must exists time T such that
when the time is larger than T , the distance between the actual state of x and
the equilibrium point, denoted by x̄, is less than ε. Then according to Theorem 3,
〈ẋ = f(x)&B〉 is discretized as follows: First, it is a repetition of the assignment
to x according to the Euler method for at most �T

h � number of times, and then
followed by the assignment of x to the equilibrium point and stop forever. Both
of them are guarded by the condition N(B, ε). For a communication interrupt
〈ẋ = f(x)&B〉��i∈I(ioi → Qi), suppose T is sufficiently large s.t. when the time
is larger than T , the distance between the actual state of x and the equilibrium
point, denoted by x̄, is less than ε, and furthermore, if the interruption occurs,
it must occur before T , and let ch∗ be the dual of ch∗, e.g., if ch∗ = ch?, then
ch∗ = ch! and vice versa. After all the readiness variables corresponding to {ioi}I

are set to 1 at the beginning, the discretization is taken by the following steps:
first, if N(B, ε) holds and no communication among {ioi}i∈I is ready, it executes
following the discretization of continuous evolution, for at most �T

h � number of
steps; then if N(B, ε) turns false without any communication occurring, the
whole process terminates and meanwhile the readiness variables are reset to 0;
otherwise if some communications get ready, an external choice between these
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ready communications is taken, and then, the readiness variables are reset to
0 and the corresponding Qi is followed; finally, if the communications never
occur and the continuous evolution never terminates, the continuous variable
is assigned to the equilibrium point and the time progresses forever. It should
be noticed that, the readiness variables of the partner processes will be used
to decide whether a communication is able to occur. They are shared between
parallel processes, but will always be written by one side.

Consider the water tank system introduced in Sect. 4, by using the rules in
Table 1, a discretized system WTSh,ε is obtained as follows:

WTSh,ε
def= Watertankh,ε‖Controllerh,ε

Watertankh,ε
def= v := v0; d := d0; (v = 1 → (wl! := 1;

(wl! ∧ ¬wl? → (d = d + h(Qmax − πr2
√

2gd);wait h; ))� T1
h �;

wl! ∧ wl? → (wl!d;wl! := 0; cv? := 1; cv?v; cv? := 0);
wl! ∧ ¬wl? → (d = Q2

max/2gπ2r4; stop));
v = 0 → (wl! := 1;
(wl! ∧ ¬wl? → (d = d + h(−πr2

√
2gd);wait h; ))� T2

h �;
wl! ∧ wl? → (wl!d;wl! := 0; cv? := 1; cv?v; cv? := 0);
wl! ∧ ¬wl? → (d = 0; stop)))∗

Controllerh,ε
def= y := v0;x := d0; (wait p;wl? := 1;wl?x;wl? := 0;

x ≥ ub → y := 0;x ≤ lb → y := 1; cv! := 1; cv!y; cv! := 0)∗

5.3 Properties

Before giving the main theorem, we introduce some notations. In order to keep
the consistency between the behavior of an HCSP process and its discretized
process, we introduce the notion of (δ, ε)-robustly safe. First, let φ denote a
formula and ε a precision, define N(φ,−ε) as the set {x|x ∈ φ∧∀y ∈ ¬φ.‖x−y‖ >
ε}. Intuitively, when x ∈ N(φ,−ε), then x is inside φ and moreover the distance
between it and the boundary of φ is greater than ε.

Definition 6 ((δ, ε)-robustly safe). An HCSP process P is (δ, ε)-robustly safe,
for a given initial state v0, a time precision δ > 0 and a value precision ε > 0,
if the following two conditions hold:

– for every continuous evolution 〈ẋ = f(x)&B〉 occurring in P , when P executes
up to 〈ẋ = f(x)&B〉 at time t with state v, if v(B) = false, then there exists
t̂ > t with t̂ − t < δ s.t. for any σ satisfying d(σ, v[x �→ X(t̂, x̃0)]) < ε,
σ ∈ N(¬B,−ε), where X(t, x̃0)]) is the solution of ẋ = f(x) with initial value
x̃0 = v0(x);

– for every alternative process B → P occurring in S, if B depends on con-
tinuous variables of P , then when P executes up to B → P at state v,
v ∈ N(B,−ε) or v ∈ N(¬B,−ε).
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As a result, when P is discretized with a time error less than δ and a value error
less than ε, then P and its discretized process have the same control flow. The
main theorem is given below.

Theorem 5. Let P be an HCSP process and v0 is the initial state. Assume P
is (δ, ε)-robustly safe with respect to v0. Let 0 < ε < ε be a precision. If for any
ODE ẋ = f(x) occurring in P , f is Lipschitz continuous and ẋ = f(x) is GAS
with f(x̄) = 0 for some x̄, then there exist h > 0 and the equilibrium time for
each ODE F in P , TF > 0, s.t. P ∼=h,ε Dh,ε(P ).

We can compute that, the relation Lδ + Mh ≤ ε holds for some constants
L and M . Especially, L is the maximum value of the first derivative of x with
respect to t. More details can be found in [34].

6 Case Study

In this section, we illustrate our method through the safety verification of the
water tank system, WTS, that is introduced in Sect. 4. The safety property is to
maintain the value of d within [low, high], which needs to compute the reachable
set of WTS. However, it is usually difficult because of the complexity of the
system. Fortunately, the reachable set of the discretized WTSh,ε in Sect. 5 could
be easily obtained. Therefore, we can verify the original system WTS through
the discretized one, WTSh,ε, as follows.

Table 2. The reachable set for different precisions

ε h Reach(WTSh,ε) Reach(WTS)

0.2 0.2 [3.41, 6.5] [3.21, 6.7]

0.1 0.05 [3.42, 6.47] [3.32, 6.57]

0.05 0.01 [3.43, 6.46] [3.38, 6.51]

In order to analyze the system, first of all, we set the values of parameters
to Qmax = 2.0, π = 3.14, r = 0.18, g = 9.8, p = 1, lb = 4.1, ub = 5.9,
low = 3.3, high = 6.6, v0 = 1, and d0 = 4.5 (units are omitted here). Then,
by simulation, we compute the values of δ and ε as 0.5 and 0.24, s.t. WTS is
(δ, ε)-robustly safe. By Theorem 5, for a given ε with 0 < ε < ε, since ḋ and d are
monotonic for both ODEs, we can compute a h > 0 s.t. WTS ∼=h,ε WTSh,ε. For
different values of ε and h, Reach(WTSh,ε) could be computed, and then based
on Theorem 1, we can obtain Reach(WTS). Table 2 shows the results for different
choices of ε and h. As seen from the results, when the values of precisions become
smaller, Reach(WTSh,ε) and Reach(WTS) get closer and tighter. For the smaller
precisions, i.e., (ε = 0.1, h = 0.05) and (ε = 0.05, h = 0.01), the safety property
of the system is proved to be true. However, for (ε = 0.2, h = 0.2), the safety
property of the system can not be promised.
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7 Conclusion

Approximate bisimulation is a useful notion for analyzing complex dynamic sys-
tems via simpler abstract systems. In this paper, we define the approximate
bisimulation of hybrid systems modelled by HCSP, and present an algorithm
for deciding whether two HCSP processes are approximately bisimilar. We have
proved that if all the ODEs are GAS, then the algorithm terminates in a finite
number of steps. Furthermore, we define the discretization of HCSP processes, by
representing the continuous dynamics by Euler approximation. We have proved
for an HCSP process that, if the process is robustly safe, and if each ODE
occurring in the process is Lipschitz continuous and GAS, then there must exist
a discretization of the original HCSP process such that they are approximate
bisimilar with the given precisions. Thus, the results of analysis performed on the
discrete system can be carried over into the original dynamic system, and vice
versa. At the end, we illustrate our method by presenting the discretization of a
water tank example. Note that GAS and robust safety are very restrictive from
a theoretical point of view, but most of real applications satisfy these conditions
in practice.

Regarding future work, we will focus on the implementation, in particular,
the transformation from HCSP to ANSI-C. Moreover, it could be interesting to
investigate approximate bisimularity with time bounds so that the assumptions
of GAS and robust safety can be dropped. In addition, it deserves to investi-
gate richer refinement theories for HCSP based on the notion of approximately
bisimulation, although itself can be seen as a refinement relation as discussed in
process algebra.
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