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Abstract. To formally reason about the temporal quality of systems
discounting was introduced to CTL and LTL. However, these logic are
discrete and they cannot express duration properties. In this work we
introduce discounting for a variant of Duration Calculus. We prove decid-
ability of model checking for a useful fragment of discounted Duration
Calculus formulas on timed automata under mild assumptions. Further,
we provide an extensive example to show the usefulness of the fragment.
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1 Introduction

In economics discounting represents that money earned soon can be reinvested
earlier and hence yields more revenue than money earned later. Discounting
has been introduced into temporal logics to represent that something happening
earlier is more important than similar events happening later [14]. A typical
example is a rail-road crossing. Consider the property “eventually the gates
are open”. While a controller leaving the gates closed an hour after the train
has passed might be safe and alive, it is not useful. We can use discounting to
express that the controller should not wait unnecessarily long before opening the
gates. The discount here is a scalar defining the decrease rate of an exponential
function assigning weights to events based on their (relative) time of occurrence.
In [1,13,14] such weighted evaluation of temporal properties has been described
as quantifying the temporal quality of a system.

Duration Calculus (DC) [12] was introduced to reason about duration prop-
erties of real time systems. In the prominent gas burner case study [24] the
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following duration property was proven: “in any time interval of length ≥60 gas
is leaking for at most 5 % of the time”. The great expressiveness of DC however,
makes automated reasoning in most cases undecidable [10,11,15].

So far discounting in logics only has been studied for discrete-time temporal
logics (LTL, CTL*, μ-calculus) [1,13,14,20,21]. Here, we study discounting in
the dense-time logic DC. Our interest in DC arises from its expressiveness, being
able to express properties of accumulated durations instead of just temporal
distances, and the consequential undecidability of most fragments over dense
time. A primary objective of the work reported herein thus is to investigate the
impact of discounting on effective approximability of model checking for DC
formulas.

To this end we define discounted Duration Calculus (DDC), where the truth
value is real-valued in the interval [0, 1], instead of Boolean. A truth value closer
to 1 means higher temporal quality. We point out that we use exponential dis-
counting because this is the most common from of discounting. However, other
discounting mechanisms are possible. With DDC we can express properties such
as ♦ dφ (meaning “soon with discount d the system satisfies φ”), where φ is a
DDC formula and ♦ is the right neighbourhood modality from [9]. To evaluate
the truth value of ♦ dφ on the interval [t0, t1] we search for a neighbouring inter-
val [t1, t2] such that the discounting factor dt2−t1 multiplied with the truth value
of φ on [t1, t2] is maximal.

Our main result is that for the fragment DDC<1, which consists of all DDC
formulas where all discounts are <1, model checking is approximable. This stems
from the fact that the effect of the system behaviour on the satisfaction value
becomes negligible as time advances. Hence, for approximation it suffices to
only consider bounded prefixes of runs, which in turn enables us to use bounded
model checking. Our model-checking method is extended to cope with modalities
of the form GSφ (meaning “whenever S happens φ holds thereon”). We provide
an extensive example illustrating the usefulness of our approach.

Related Work. Discounting in temporal logics was first studied in [14] and
later in [1,13,20,21]. However, in all of these works the logics are discrete and
they cannot express duration properties. In [7] the authors introduce a method to
perform model checking on weighted (or priced) timed automata with weighted
versions of CTL and LTL. A cost in their work essentially corresponds to the
duration of a state variable in our work. However, they do not consider discount-
ing and in their case model checking becomes undecidable for automata with at
least three clocks. For a fragment without duration properties called test formu-
las, which are used to express undesired behaviours, model checking has been
shown decidable [22]. In [17] the authors define a model checking procedure for
a fragment that allows duration properties, but disallows negation of the chop
operator. In [16] the authors give a real-valued interpretation to DC and they
provide an approximative procedure to check satisfiability. However, the authors
do not consider model checking. Further, in none of the works on DC discounting
is considered.
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2 Discounted Duration Calculus (DDC)

We use an adapted version of Duration Calculus (DC), where the chop operator
is replaced by a right neighbourhood modality. As atomic formulas, we allow
comparison of linear combinations of durations with constants.

Definition 1 (Syntax of DDC). Let d, k0, . . . , kn, c ∈ Q, where d ∈ [0, 1],
�∈ {≥, >} and let P ∈ AP denote arbitrary atomic propositions (or state vari-
ables or just variables). Then the formulas φ of Discounted Duration Calculus
(abbreviated DDC) and state expressions S are defined by the grammar

φ ::= ♦ dφ | ¬φ | φ ∨ φ | Σn
i=0ki

∫
Si � c ,

S ::= P | ¬S | S ∨ S .

We denote the fragment of DDC where all discounts are < 1 as DDC<1.

Let AP be a finite set of atomic propositions. The semantics of DC is defined
in terms of timed words. A timed word is a (possibly infinite) sequence

τ = (σ0, t0)(σ1, t1) · · · (σi, ti) · · ·

where σi ∈ 2AP and t0 = 0 and ti ∈ R≥0. The sequence of time stamps t0, t1, . . .
occurring in τ must be weakly monotonically increasing, that is ti ≤ ti+1. Fur-
thermore, we require progress in infinite timed words τ , that is, for every t ∈ R≥0

there is an i > 0 such that ti > t.
If τ is an infinite sequence, then we say that the time span (or just span)

of τ comprises the non-negative reals and we write span(τ) = R≥0. If τ is a
finite sequence having (σn, tn) as its last element, the span of τ is the bounded
(right-open) interval [0, tn) and we write span(τ) = [0, tn). We shall from now
on restrict our attention to timed words having a non-empty time span.

For a timed word τ = (σ0, t0)(σ1, t1) · · · (σi, ti) · · · and δ ∈ span(τ), where
δ > 0, we define the time-bounded prefix τδ of τ as the timed word:

τδ = (σ0, t0)(σ1, t1) · · · (σi, ti)(σi, δ)

where i is given by ti ≤ δ < ti+1. Note that there is exactly one such i since
δ ∈ span(τ).

A timed word τ = (σ0, t0)(σ1, t1) · · · (σi, ti) · · · induces a function

τ(P ) : span(τ) → {0, 1}

for every atomic proposition P , as follows:

τ(P )(t) =
{

1 if P ∈ σi, for some i where ti ≤ t < ti+1,
0 otherwise .

The function τ(P ) is also called a trajectory for P . Trajectories are lifted to state
expressions by a point-wise extension in a straightforward manner, for example,
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τ(S0 ∨S1)(t) = τ(S0)(t)∨ τ(S1)(t). We use the abbreviation Sτ for τ(S). Notice
that the progress requirement for infinite timed words guarantees that for every
variable P , every finite part of Pτ has a finite number of discontinuity points,
i.e. Pτ is of finite variability.

The semantics of a DDC formula φ on the basis of a timed word τ =
(σ0, t0)(σ1, t1) · · · (σi, ti) · · · is a function:

τ(φ) : Intv → [0, 1]

where Intv = {[t, t′] ⊆ span(τ) | t ≤ t′} denotes the set of bounded and closed
real intervals contained in span(τ). The function assigns to τ(φ) [a, b] a satisfac-
tion value in the real interval [0, 1], where closer to 1 means better.

Discounts d occur only in connection with the right neighbourhood modality
♦ dφ, which expresses that an adjacent interval to the right of the current interval
satisfies φ. The discount d is used to decrease the satisfaction value as the length
of the adjacent interval necessary to find a satisfaction of φ increases. The modal
formula ♦ dφ can be understood as “soon φ holds”.

Definition 2 (Semantics of DDC). The semantics of a formula, given a timed
word τ and an interval [t0, t1], is defined as

τ(♦ dφ) [t0, t1] = sup{dt2−t1 · τ(φ) [t1, t2] | t2 ≥ t1 ∧ t2 ∈ span(τ)}

τ(Σn
i=0ki

∫
Si � c) [t0, t1] =

{
1 if Σn

i=0ki

∫ t1
t=t0

τ(Si)(t) dt � c

0 otherwise

τ(¬φ) [t0, t1] = 1 − τ(φ) [t0, t1]
τ(φ0 ∨ φ1) [t0, t1] = max{τ(φ0) [t0, t1], τ(φ1) [t0, t1]}

where �∈ {>,≥}.
If we want to use the standard neighbourhood modalities without discounting
then we use a discount of 1. In this case we do not explicitly write the discount.

We define as abbreviation a modality

� dφ = ¬♦ d¬φ ,

which can be understood as “φ holds for a long time”. For some interval [t0, t1]
the semantics is

τ(� dφ) [t0, t1] = 1 − sup{dt2−t1 · (1 − τ(φ) [t1, t2] | t2 ≥ t1 ∧ t2 ∈ span(τ))} .

We point out that the supremum searches for a small t2 ≥ t1 that makes the
truth value of τ(φ) on [t1, t2] small. Further, the greater the interval [t1, t2] is
chosen, the greater the truth value of � dφ becomes. Note that the truth value
of � dφ increases with the decrease of d, while the truth value of ♦ dφ decreases
with the decrease of d.
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To express that a state expression S holds throughout an interval, we use
the abbreviation:

	S
 =
∫ ¬S = 0 ∧ � > 0

where � is an abbreviation of
∫

(S′ ∨ ¬S′) for an arbitrary state expression S′.
With ♦♦φ we express that on some right interval, which may or may not

be adjacent to the current interval, φ holds. We shall use the abbreviation FSφ
to denote that there is some future point interval, say [t, t], where S “happens”
and φ holds, that is, φ holds on [t, t] and S changes from 0 to 1 at t and keeps
the value 1 for some nonzero time:

FSφ = ♦♦
(

	¬S
 ∧
(

♦ 	S

∧ ♦ (� = 0 ∧ φ)

))

Let GSφ = ¬FS¬φ. The formula GSφ thus means that for all future time points
t, if S happens at t, then φ holds on [t, t].

Example 1. As an example we consider the three formulas:

φ0 = ♦ 0.8(
∫

P ≥ 3)

φ1 = ♦ 0.9 � 0.8(
∫

P − ∫ ¬P ≤ 3)

φ2 = GQ♦ 0.8(
∫

P ≥ 2)

and the two timed words:

– τ0 = ({P}, 0) ({}, 2) ({P}, 3) ({}, 5) ({P}, 6)
({}, 8) ({P}, 9) ({}, 11) ({P}, 12)({}, 14),

– τ1 = ({}, 0) ({Q}, 1) ({P}, 2) ({Q}, 4) ({P,Q}, 5)
({}, 6) ({P}, 7) ({}, 8) ({Q}, 9) ({}, 10)

({P}, 11) ({}, 12) ({P}, 13) ({}, 14),

which induce the trajectories depicted in Fig. 1.
These above formulas can be explained as follows:

– φ0 reads “soon P has held for at least 3 time units”,
– φ1 reads “soon P should hold no more than 3 time units more than ¬P , for a

long time”, and
– φ2 reads “every time Q changes its value from 0 to 1, then soon P has held

for 2 time units”.

τ0 P
1

0
0 2 3 5 6 8 9 11 12 14

τ1

P
1

0
2 4 5 6 7 8 11 12 13 140 1 9 10

Q
1

0

Fig. 1. Graphical representation of two timed words. The word τ1 contains two atomic
propositions P and Q. We assume that all values remain 0 after time point 14.
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Evaluate φ0 on τ0: The earliest point when
∫

P ≥ 3 is satisfied is at t = 4. We
calculate:

τ0(♦ 0.8(
∫

P ≥ 3)) [0, 0]
= sup{0.8t · τ0(

∫
P ≥ 3) [0, t] | t ∈ span(τ0)}

= 0.84 � 0.41

Evaluate φ1 on τ0: In φ1 the inner modality is given t0 and chooses the smallest
t1 such that

∫
P − ∫ ¬P ≤ 3 is violated. The outer modality chooses t0 such that

the product of its discount 0.9t0 multiplied with the truth value archived by the
inner modality becomes maximal. We calculate (assuming that t0, t1 ∈ span(τ0)):

τ0(♦ 0.9 � 0.8(
∫

P − ∫ ¬P ≤ 3)) [0, 0]
= supt0≥0{0.9t0 · (1 − supt1≥t0{0.8t1−t0 · (1 − τ0(

∫
P − ∫ ¬P ≤ 3) [t0, t1])})}

= 0.92 · (1 − 0.812−2 · (1 − τ0(
∫

P − ∫ ¬P ≤ 3) [t0, t1])
= 0.92 · (1 − 0.812−2 · (1 − 0)) � 0.72

Evaluate φ2 on τ1: We evaluate ψ = ♦ 0.8(
∫

P ≥ 2) on all point intervals [t, t],
where Q changes its value from 0 to 1. For τ1 these points are 1, 4 and 9.
The truth value is min{τ1(ψ) [1, 1], τ1(ψ) [4, 4], τ1(ψ) [9, 9]}, which evaluates to
min{0.84−1, 0.88−4, 0.814−9} � 0.33.

3 Model Checking

In this section we prove that model checking for a relevent fragment of DDC is
approximable, where the model is given as a timed automaton [2]. To this end
we first show that for approximation it is sufficient to consider only bounded
prefixes of runs. Then we give a reduction to quantified linear real arithmetic.

3.1 The Model

As model we use timed automata that have atomic propositions that hold
in states (denoted by Λ) instead of events on edges. Additionally, our timed
automata have a set of allowed initial clock valuations, where the initial value of
a clock may be different from 0. Further, we assume that our timed automata are
strongly non-Zeno [3]. This is the case, iff there is a non-zero constant c ∈ R>0

such that in every control cycle at least c units of time passes. Formally, for
every path l0

e0−→ . . .
en−1−−−→ ln with l0 = ln there is an edge that resets some

clock x and an edge or a location with a constraint x ≥ c. For ease of exposition
we assume this constant to be a natural number greater than 0.

Definition 3 (Timed Automata). Let X be a finite set of non-negative real-
valued variables, called clocks and let V be the set of all clock valuations. Then
B(X ) is the set of all conjunctions of constraints of the form x − y 
� c or x 
� c
with x, y ∈ X , c ∈ Q, 
�∈ {<,>,≥,≤}. Further, let AP be a finite set of atomic
propositions. A timed automaton is a tuple A = (L,E, I, Inv , Λ,X ), where L is
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the set of locations, E ⊆ L × B(X ) × 2X × L is the set of edges, I ⊆ L × V

is the set of initial states, Inv : L → B(X ) are the invariants per location and
Λ : L → B(AP) assigns a set of atomic propositions which hold in a location.

Note that commonly I is defined as L′ × {0}, where L′ ⊆ L and 0 ∈ V is the
clock valuation where all clocks have value 0.

Let ν be a clock valuation, R a set of clocks and g a guard. We define ν + t
is the clock valuation where the values of all clocks are increased by t. With
ν[R �→ 0] we denote the clock valuation resulting from ν by setting all clock
values in R to 0. And with ν ∈ g we denote that ν satisfies the constraints in g.

Definition 4 (Runs of Timed Automata). Given a timed automaton A =
(L,E, I, Inv , Λ,X ) and a possibly infinite timed word τ = (σ0, t0) . . . (σi, ti) . . .
let Δi = ti+1 − ti and let N be the set of integers such that i ∈ N iff there is an
element (σi, ti) in τ . This means that N = N if τ is infinite. A run of A on τ is
a sequence

π = (l0, ν0) . . . (li, νi) . . .

with (l0, ν0) ∈ I, for every j ∈ N we have σj =⇒ Λ(lj) and for every j, j+1 ∈ N
there exists an edge (lj , gj , Rj , lj+1) ∈ E such that ∀t ∈ R.0 ≤ t ≤ Δj =⇒
νj + t ∈ Inv(lj), νj + Δj ∈ g, νj+1 ∈ Inv(lj+1) and νj+1 = (νj + Δj)[Rj �→ 0].

With L(A) we denote the set of all timed words for which there exists a run
on A.

As we work with real-valued truth values, here model checking gives a value
in the interval [0, 1].

Definition 5 (Model Checking Timed Automata). Let A be a timed
automaton and φ be a DDC formula. We define model checking as computing

min
τ∈L(A)

{τ(φ) [0, 0]} .

When the timed automaton has upper bounds for the values of all clocks in
all locations the set of reachable states is computable with a finite representa-
tion. The goal of this constraint is to avoid over approximation introduced by
the normalisation step of reachability algorithms [5]. We use this to reduce com-
puting the satisfaction value of GSφ by A to computing the satisfaction value of
φ by a transformed automaton A′.

Lemma 1. Let φ be a DDC<1 formula, A = (L,E, I, Inv , Λ,X ) a timed automa-
ton with ∀l ∈ L, x ∈ X .∃c ∈ Q.x � c ∈ Inv(l),�∈ {<,≤}, and S a state
expression. Then

min
τ∈L(A)

{τ(GSφ) [0, 0]} = min
τ ′∈L(A′)

{τ ′(φ) [0, 0]}

where A′ = (L,E, I ′, Inv , Λ,X ) is the timed automaton obtained from A, by
letting the initial states I ′ be those where the state expression S just has become
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true. Let Reach be the set of reachable states in A, let LS be the set of locations
where S holds and define

I ′ = {(l, ν) | l ∈ LS ∧ (l′, g, R, l) ∈ E ∧ (l′, ν′) ∈ Reach
∧ ν′ ∈ g ∧ ν ∈ Inv(l) ∧ ν′[R �→ 0] = ν ∧ l′ ∈ L \ LS} .

Furthermore, I ′ is computable and has a finite representation using linear arith-
metic [5].

We give our definition of approximate model checking.

Definition 6 (Approximate Model Checking). Let A be a timed automa-
ton, φ be a DDC<1 formula and let ε ∈ (0, 1] be the desired precision. Then
approximate model checking is to compute a truth value v ∈ R with 0 ≤ v ≤ 1
such that

v ∈ min
τ∈L(A)

{τ(φ) [0, 0]} ± ε .

For this we compute the point in time δ = logd ε such that the value of v
is almost not affected by any suffix of the timed word starting at time δ. This
is possible because all modalities in DDC<1 are discounted by less than 1 and
hence the effect of a timed word on the truth value becomes less and less as
time advances. Note that for other discounting functions, e.g. 1

1+d·(t−t′) other
computations are necessary. However, for any computable strictly monotonic
discounting function with limit 0 such a point, after which the effect on the
truth value is ≤ ε, is computable.

Lemma 2. Given a DDC<1 formula φ and an allowed error ε, let dm be the
largest discount constant occurring in φ such that for all other discounts d in φ
we have d ≤ dm and let δ = logdm

ε. Then for any timed word τ we have

|τ(φ) [0, 0] − τδ(φ) [0, 0]| ≤ ε .

We transform the approximate model checking problem for DDC<1 to quan-
tified linear real arithmetic, which we now define.

Definition 7 (Quantified Linear Real Arithmetic (QLRA)). We define
the syntax of quantified linear real arithmetic (QLRA) as

φ ::= ¬φ | φ ∨ φ | term � term | ∃x.φ ,

term ::= a | term + term | a · term | x ,

a ::∈ Q

where �∈ {<,≤} and x is a variable over R.
With linear arithmetic we denote the fragment of QLRA where all quantifiers

are located under an even number of negations.

To check to what extent a timed automaton satisfies a formula we use
bounded reachability checking via linear arithmetic. The following lemma spec-
ifies which variables we use in the bounded reachability checking encoding. The
construction can be found, e.g., in [4,25].
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Lemma 3 (Bounded Reachability, e.g. [4,25]). Given a timed automaton
A, an initial zone and a step bound l, we can encode the existence of a run of
length ≤l, starting at any state in the initial zone, in linear arithmetic. We shall
assume that this run is described using variables ti, Pi, for 0 ≤ i ≤ l, describing
whether in the interval [ti, ti+1) the propositional variable P holds or not.

3.2 Encoding of the Semantics for Formulas

We encode the semantics of DDC in QLRA. As the semantics of DDC uses expo-
nentials we cannot encode the exact semantics. However, we can approximate
the truth value with finite but arbitrary high precision. We use this encoding to
prove that approximative model checking for strongly non-Zeno timed automata
is computable.

Suppose that F (ȳ) is a formula of QLRA having ȳ as free variables (and
possibly others) and suppose that e(ȳ) is a linear term, then we can express

x = lub{e(ȳ) ∈ R | F (ȳ)}
in QLRA, using the abbreviations:

UB(x, e(ȳ), F (ȳ)) = ∀ȳ.F (ȳ) =⇒ x ≥ e(ȳ)
LUB(x, e(ȳ), F (ȳ)) = UB(x, e(ȳ), F (ȳ)) ∧ ∀z.UB(z, e(ȳ), F (ȳ)) =⇒ z ≥ x

Furthermore, we shall use the following QLRA abbreviation to express that
x = max(e1, e2):

MAX(x, e1, e2) = (e1 < e2 =⇒ x = e2) ∧ (e1 ≥ e2 =⇒ x = e1)

When v, t, d range over a bounded domain we can approximate an exponential
function v ·dt with an arbitrary precision using linear approximations. Below we
will use the abbreviation x isApproxOf v d t to denote that x is an approximation
of v · dt.

The encoding of a formula φ in an interval [t0, t1] is based on a symbolic
first-order formula representation of a bounded model guaranteed by Lemma 3.
We shall now show how the semantics of formulas on bounded runs are encoded
in QLRA, by defining a QLRA formula x isSemOf l φ t0 t1 denoting that x is
(an approximation of) the semantics of φ in the interval [t0, t1]. This formula is
defined by recursion over the structure of φ.

Encoding for τ (Σn
j=0kj

∫
Sj � c) [t0, t1]

We show the encoding of k
∫

S � c. The generalisation to linear combinations of
durations is easily done in QLRA.

For every interval from ti to ti+1 we introduce a variable xi denoting the dura-
tion of S on this interval. To this end we introduce the following abbreviations:

z isOverlapi t0 t1 denotes that z is the length of [t0, t1] ∩ [ti, ti+1] and
y isDuri S t0 t1 denotes that y is the duration of S on [t0, t1] ∩ [ti, ti+1].

where the definitions are provided below.
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For the formula x isSemOf l k
∫

S � c t0 t1 we define that if the inequality
(k

∫
S � c) holds x = 1, and otherwise x = 0:

(
(∃y0, . . . , yl−1.k · Σl−1

i=0yi � c ∧
l−1∧

i=0

(yi isDuri S t0 t1)) =⇒ x = 1
) ∧

(¬(∃y0, . . . , yl−1.k · Σl−1
i=0yi � c ∧

l−1∧

i=0

(yi isDuri S t0 t1)) =⇒ x = 0
)

It is easy to generalize this to cover linear sums of accumulated durations.
The abbreviation z isOverlapi t0 t1 is as follows:

(t0 ≥ ti+1 ∨ t1 ≤ ti =⇒ z = 0)
∧(t0 ≤ ti ∧ ti+1 ≤ t1 =⇒ z = ti+1 − ti)
∧(ti ≤ t0 ∧ ti+1 ≤ t1 =⇒ z = ti+1 − t0)
∧(t0 ≤ ti ∧ t1 ≤ ti+1 =⇒ z = t1 − ti)
∧(ti ≤ t0 ∧ t1 ≤ ti+1 =⇒ z = t1 − t0)

and the abbreviation y isDuri S t0 t1 is:

(S =⇒ y isOverlapi t0 t1)
∧ (¬S =⇒ y = 0)

where S is the formula obtained from S by replacing every occurrence of a state
variable P with Pi.

Encoding of τ (φ0 ∨ φ1) [t0, t1]

The formula x isSemOf l (φ0 ∨ φ1) t0 t1 is defined by:

∃y0, y1.(y0 isSemOf l φ0 t0 t1) ∧ (y1 isSemOf l φ1 t0 t1) ∧ MAX(x, y0, y1)

Encoding of τ (¬φ) [t0, t1]

The formula x isSemOf l (¬φ) t0 t1 is defined by ∃y. (y isSemOf l φ t0 t1)∧x = 1−y

Encoding of τ (♦ dφ) [t0, t1]

The formula x isSemOf l (♦ dφ) t0 t1 is defined by ∃t2, r.LUB(x, e(y), F (t2, y, r)),
where

e(y) = y

F (t2, y, r) = (r isSemOf lφ t1 t2) ∧ (y isApproxOf r d (t2 − t1))
∧ t2 ≥ t1 ∧ t2 ≤ tl

We use our approximation of the semantics in QLRA and the bounded model
checking approach to prove that approximate model checking is computable.
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Theorem 1 (Approximate Model Checking). Given a strongly non-Zeno
timed automaton A and a DDC<1 formula φ and a desired precision ε ∈ R>0,
the approximate model-checking problem is effectively computable: There is a
procedure computing v ∈ [0, 1] such that

v ∈ min
τ∈L(A)

{τ(φ) [0, 0]} ± ε .

Proof. Let ε1, ε2 > 0 be such that ε1 + ε2 = ε. According to Lemma 2, we can
bound the time horizon of interest to δ = logdm

ε1 with dm again being the
largest discount constant occurring in φ, thereby obtaining

|τ(φ) [0, 0] − τδ(φ) [0, 0]| ≤ ε1 . (1)

As A is strongly non-Zeno, the number of transitions occurring in A within δ
time units is bounded by a constant l ∈ N, which can be computed as 	Mδ

with M being the length of the longest cycle in the transition graph of A.

Given this bound l on the length of the runs to be considered, we can easily
obtain (Q)LRA encodings of both the runs of A of the appropriate length ≤l
and of the l-bounded DDC semantics: Let

Rj = F j
A(t, P ) ,

where F j
A(t, P ) is the LRA-encoding of the runs of A of length j according to

Lemma 3, and let
Semj(y) = (y isSemOfj φ 0 0) ,

where y isSemOfj φ 0 0 is the above encoding of the DDC semantics, with the
look-up tables for approximating exponentials being developed to accuracy ε2
over the argument range [0, δ].

We furthermore introduce an abbreviation GLB(x, y, F (y)) for a formula
defining x = glb {y | F (y)} just as we did for the least upper bound. Then the
satisfying valuation of GLB(x, y,

∨l
j=1(Rj ∧Semj(y))), which can be determined

effectively by QLRA solving, satisfies

|x − min
τ∈L(A)

{τδ(φ) [0, 0]}| ≤ ε2

due to the accuracy of approximating the exponentials, which together with
Eq. (1) in turn implies

|x − min
τ∈L(A)

{τ(φ) [0, 0]}| ≤ ε2 + ε1 = ε

⇐⇒ x ∈ min
τ∈L(A)

{τδ(φ) [0, 0]} ± ε .

��

4 Example

To support our claims that we can reason about interesting problems with DDC
we provide an example in this section.
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4.1 Production Cell

We consider two drilling machines that generate heat while drilling. These
machines independently of each other process work pieces of different sizes, and
the drilling time needed to finish a work piece depends on the size of the piece.
If a machine drills for a long time without interruption the machine becomes too
hot. If the machine is too hot, it will gradually take damage. It is undesirable to
always avoid that the machine becomes too hot, because then production will
be too low. The desired property is that the machine soon cools down, after it
became too hot.

Let i ∈ {0, 1}. We represent that machine i is too hot by a propositional
variable Hi, that the machine is drilling by Di and the durability of the machine
by the discount (here 0.9, where closer to 1 means more durable). Further, there
are coefficients (here 1, 2) representing how quickly the temperature changes over
time in the respective locations and here 5 is the desired cooldown to achieve
after the machine has become too hot. We formalise the desired property as

GH0(♦ 0.9(
∫ ¬D0 − 2

∫
D0 ≥ 5)) ∧ GH1(♦ 0.9(

∫ ¬D1 − 2
∫

D1 ≥ 5)) .

The controllers A0 and A1 of the machines are depicted on the left hand
side of Fig. 2. On the right hand side of Fig. 2 we depict the automaton B that
determines how quickly the working pieces may appear and that assigns the
working pieces nondeterministically to the machines.

freei
xi ≤ 100

dsi
xi ≤ 3
Di

dbi

xi ≤ 8
Di

hoti
xi ≤ 8
Di ∧ Hi

loadSmall i?
xi := 0

loadBig i?
xi := 0

xi ≥ 6

xi ≥ 7

xi ≥ 2

xi := 0

init
xs ≤ 100 ∧
xb ≤ 100

xs ≥ 20/
loadSmall1!
xs := 0

xs ≥ 20/
loadSmall0!
xs := 0

xb ≥ 30/
loadBig0!
xb := 0

xb ≥ 30/
loadBig1!
xb := 0

Fig. 2. On the left hand side we see the controller Ai with i ∈ {0, 1} of a drilling
machine. The upper bounds of 100, serve to make Lemma 1 applicable, the other upper
bounds restrict the maximal drilling time needed for small and big working pieces. The
self loop in freei serves to make the parallel composition A0 ‖ A1 ‖ B deadlock free.
On the right hand side we see B, which controls how quickly work pieces may appear.
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4.2 Computing the Satisfaction Value

Here we focus on the satisfaction value of the subformula GH0(♦ 0.9(
∫ ¬D0 −

2
∫

D0 ≥ 5)). However, the satisfaction value for the other subformula is equal.
Let C = (A0 ‖ A1 ‖ B) = (L,E, I, Inv , Λ,X ) be the parallel composition

of A0, A1 and B. To approximate the satisfaction value of GH0(♦ 0.9(
∫ ¬D0 −

2
∫

D0 ≥ 5)) by C we apply Lemma 1 for the first subformula and create C ′ =
(L,E, I ′, Inv , Λ,X ) that has all states as initial states in which the edge from
db0 to hot0 was just taken. The set I ′ is defined as1

I ′ ={((db0, free1, init), ν) | ν ∈ (
7 ≤ x0 ≤ 8 ∧ x0 = xb ∧ xs ≤ 100 ∧

((x1 − xs ≤ −2 ∧ x1 ≤ xb) ∨ (xb − xs ≤ −2 ∧ x1 ≤ 100))
)} ∪

{((db0,ds1, init), ν) | ν ∈ (7 ≤ x0 ≤ 8 ∧ x0 = xb ∧ xs ≤ 3 ∧ x1 = xs)} .

Let the desired precision be ε = 0.1. According to Lemma 2 we have δ =
log0.9 ε, which is less than 22. Let δ = 22 and note that by choosing a larger δ
than necessary we increase the precision of the computation. The approximation
of the satisfaction value is

min
τ∈L(C′)

{sup{0.9t · τ22(
∫ ¬D0 − 2

∫
D0 ≥ 5) [0, t] | 0 ≤ t ≤ 22}} ± ε .

Hence, we are looking for a run π in C ′, such that in the timed word induced by
π the smallest t for which τ22(

∫ ¬D0 − 2
∫

D0 ≥ 5) [0, t] holds, is large.
A run that maximises the time t needed to satisfy

∫ ¬D0 − 2
∫

D0 ≥ 5 is
depicted below. The intuition of the run is that directly after the machine
finished a big working piece, it has to work on a small working piece. The
location of B always is init. Hence, the states in the run have the form
(l0, l1, ν(x0), ν(x1), ν(xs), ν(xb)) where li is a location from Ai with i ∈ {0, 1}
and ν(y) is the value of the clock y under the clock valuation ν:

π =(hot0, free1, 7, 0, 19, 7)(hot0, free1, 8, 1, 20, 8)(free0, free1, 8, 1, 20, 8)
(ds0, free1, 0, 1, 0, 8)(ds0, free1, 3, 4, 3, 11)
(free0, free1, 3, 4, 3, 11)(free0, free1, 16, 17, 16, 24)

The run spends 4 time units in locations where D0 holds (hot0, ds0), and 13 time
units in locations where ¬D0 holds (free0). Hence, it satisfies

∫ ¬D0 − 2
∫

D0 ≥ 5
after t = 17 time units and we have

min
τ∈L(C′)

{τ(♦ 0.9(
∫ ¬D0 − 2

∫
D0 ≥ 5))} ∈ 0.917 ± 0.1 � 0.17 ± 0.1 .

In general, by considering only bounded prefixes of all runs we introduce an error
of at most ε. However, in our example the result 0.917 is exact, because in C ′ all
runs starting from I ′ satisfy

∫ ¬D0 − 2
∫

D0 ≥ 5 in less than δ = 22 time units.

1 We computed the initial states with Uppaal Tiga [8] by computing a winning strategy
for the property control : A[] true with the options -c -w 2 -n 2.
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We see that the controllers of the drilling machines satisfy our cooldown
property poorly. To fix this we could introduce a scheduler in between the con-
trollers A0, A1 and the spawner of the working pieces B. This scheduler would
then assign the working pieces to machines in a way that avoids assigning two
successive working pieces to the same machine. As the model then would be
quite big, we would need automation to compute the satisfaction value for the
larger example. Fortunately, for strongly non-Zeno timed automata and proper-
ties of the form ♦ dΣn−1

i=0 ki

∫
Si ∼ c and � dΣn−1

i=0 ki

∫
Si ∼ c we can compute the

satisfaction value via optimisation modulo theories [6,23].

5 Conclusion

Discounting has been introduced to temporal logics to formalise reasoning about
temporal quality of systems [1,13], where temporal quality quantifies how soon
events of interest happen, rather than just answering the qualitative question
whether they happen at all. We introduced discounting to Duration Calculus to
be able to analyse the quality of real-time systems w.r.t. duration properties. Our
main result is that, with the fragment DDC<1 consisting of all formulas where
the discounts are <1, we identified a fragment of DDC where model checking for
timed automata is approximable under mild assumptions. While this only allows
us to reason about bounded prefixes of runs, our reduction of approximating
the satisfaction value for formulas GSφ (read: “whenever S happens φ holds
thereon”) to model checking DDC<1 enables us to also reason about infinite
runs. At last, we provided an extensive example to demonstrate the usefulness of
discounting in temporal logics in general and of discounting duration properties
in particular.

For future work it is interesting to see how large the fragment of DDC is, for
which model checking is approximable.

In Sect. 4 we mentioned that for properties of the form ♦ dΣn−1
i=0 ki

∫
Si ∼ c

and � dΣn−1
i=0 ki

∫
Si ∼ c with d < 1 the satisfaction value can be approximated

efficiently via a reduction to optimisation modulo theories [6,23]. Naturally, it
is desirable to find efficient algorithms for larger fragments of DDC.

Further, in [1,13] operators, such as taking the average of two formulas, that
are not available in qualitative logics, were studied. To find or define such oper-
ators and evaluate their usefulness and their effect on computability is another
interesting challenge. One such operator may be φ → ψ = min{1, 1−u+v} from
�Lukasiewicz logics [18], where u, v are the truth values of φ, ψ. This definition of
implication allows for a closer connection between the truth values of φ and ψ
than the definitions we used.

Durations in our setting correspond to costs in the setting of multi-priced
timed automata (MPTA) [19]. In our work we discovered that often we are
interested in the costs of handling a temporal event (as indicated by our use of
GSφ). This could be modelled in MPTA by resetting the cost variable. As this
reset action would not depend on the costs, but only on observable behaviour
these enhanced MPTA might have interesting decidable problems.
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