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Abstract. Dynamic scheduling of distributed real-time systems with
multiparty interactions is acknowledged to be a very hard task. For such
systems, multiple schedulers are used to coordinate the parallel activities
of remotely running components. In order to ensure global consistency
and timing constraints satisfaction, these schedulers must cope with sig-
nificant communication delays while moreover, use only point-to-point
message passing as communication primitive on the platform.

In this paper, we investigate a formal model for such systems as
compositions of timed automata subject to multiparty interactions, and
we propose a distributed implementation method aiming to overcome
the communication delays problem through planning ahead interactions.
Moreover, we identify static conditions allowing to make the planning
decisions local to different schedulers, and thus to decrease the overall
coordination overhead. The method has been implemented and we report
preliminary results on benchmarks.

Keywords: Distributed real-time systems · Timed automata ·
Knowledge

1 Introduction

Over the past few decades, real-time systems have undergone a shift from the
use of single processor based hardware platforms, to large sets of interconnected
and distributed computing nodes. Such evolution stems from an increase in com-
plexity of real-time software embedded on such platforms (e.g. electronic control
in avionics and automotive domains [1]), and the need to integrate formerly iso-
lated systems [2] so that they can cooperate as well as share resources, improving
functionality and reducing costs.

The design and the implementation of distributed systems is acknowledged to
be a very difficult task. A central question is how to efficiently coordinate parallel
activities in a distributed system by means of primary communication primitives
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offered by the platform, such as point-to-point messages or broadcast. Consid-
ering real-time constraints brings additional complexity since any scheduling or
control decision may not only impact system performance, but may also affect the
satisfaction of timing constraints. To deal with such complexity, the community
of safety critical systems often restricts its scope to predictable systems, which
are represented with domain specific models (e.g. periodic tasks, synchronous
systems, time-deterministic systems) for which the range of possible executions
is small enough to be easily analyzed, allowing the precomputation of optimal
control strategies. For non-critical systems, the standard practice is not to rely
on models for precomputing scenarios but rather to design systems dynamically
adapting at runtime to the actual context of execution. Such approaches do not
offer any formal guarantee of timeliness. The lack of a priori knowledge on system
behavior leaves also little room for static optimization.

In our framework, systems consist of components represented as timed
automata that may synchronize on particular actions to coordinate their activ-
ities. Timed automata are strictly more expressive [3] than time-deterministic
systems considered in time-triggered approaches [4–7]. Our framework also dif-
fers from the one proposed in [8,9] by considering not only binary, but also
multiparty (n-ary) synchronizations, a.k.a. interactions, expressing the fact that
a subset of components may jointly (and atomically) switch their states if given
preconditions are fulfilled. Such high level coordination means are rarely part
of the built-in primitives offered by distributed platforms, and thus need to be
implemented using simpler ones, e.g. exchange of messages. This has been exten-
sively studied in the untimed context [10–17] but to the best of our knowledge, it
has been solved for timed systems only under the assumption of non-decreasing
deadlines in [18,19].

We contribute to this research field by proposing methods for scheduling
interactions with bounded horizons, which aims to reduce the impact of com-
munication delays on systems execution. In particular, (i) we define a semantics
for planning interactions with bounded horizons, (ii) we provide sufficient condi-
tions for this semantics to be correct, and (iii) we present an operational method
to check those conditions using system knowledge.

The rest of the paper is organized as follows. In Sect. 2, we provide a formal def-
inition of composition of timed automata with respect to multiparty interactions.
We also present a semantics for planning interactions with bounded horizons. In
Sect. 3, we study sufficient conditions for a safe planning of interactions. There-
after, we use global knowledge of the system to refine the latest conditions for more
precise results and in order to avoid unnecessary verification (Sect. 4). Finally, the
application of previous results on various examples is presented in Sect. 5. Note
that all the proofs can be found in the technical report [20].

2 Timed Systems and Properties

2.1 Global State Semantics

In the framework of the present paper, components are timed automata and sys-
tems are compositions of timed automata with respect to multiparty interactions.



Local Planning of Multiparty Interactions with Bounded Horizons 201

The timed automata we use are essentially the ones from [21], however, slightly
adapted to embrace a uniform notation throughout the paper.

Definition 1 (Component). A component is a tuple (L, �0, A, T,X , tpc) where
L is a finite set of locations, �0 ∈ L is an initial location, A a finite set of actions,
X is a finite set of clocks, T ⊆ L × (A × C × 2X ) × L is a set of transitions
labeled with an action, a guard, and a set of clocks to be reset, and tpc : L → C
assigns a time progress condition, tpc�, to each location, where C is the set of clock
constraints defined by the following grammar:

C := true | x ∼ ct | x − y ∼ ct | C ∧ C | false,
with x, y ∈ X , ∼ ∈ {<,≤,=,≥, >} and ct ∈ R≥0. Time progress conditions are
restricted to conjunctions of constraints of the form x ≤ ct.

Throughout the paper, we consider that components are deterministic timed
automata, that is, at a given location � and for a given action a, there is
at most one outgoing transition from � labeled by a. Given a timed automa-
ton (L, �0, A, T,X , tpc), we write �

a,g,r−−−→ �′ if there exists a transition τ =(
�, (a, g, r), �′) ∈ T . We also write:

guard(a, �) =

{
g, if ∃τ =

(
�, (a, g, r), �′) ∈ T

false, otherwise

Let V be the set of all clock valuation functions v : X → R≥0. For a clock
constraint C, C(v) is a boolean value corresponding to the evaluation of C on v.
For a valuation v ∈ V, v + δ is the valuation satisfying (v + δ)(x) = v(x) + δ,
while for a subset of clocks r, v[r] is the valuation obtained from v by resetting
clocks of r, i.e. v[r](x) = 0 for x ∈ r, v[r](x) = v(x) otherwise. We also denote
by C + δ the clock constraint C shifted by δ, i.e. such that C(v + δ) iff C(v).

Definition 2 (Semantics). A component B = (L, �0, A, T,X , tpc) defines the
labeled transition system (LTS) (Q, A ∪ R>0,→) where Q ⊆ L × V(X ) denotes
the states of B and →⊆ Q×(A∪R>0)×Q denotes the set of transitions between
states according to the rules:

– (�, v) a−→ (�′, v[r]) if �
a,g,r−−−→ �′, and g(v) is true (action step).

– (�, v) δ−→ (�, v + δ) if tpc�(v + δ) (time progress).

We define the predicate urg(tpc�) characterizing the urgency of a time progress

condition tpc� =
m∧

i=1

xi ≤ cti at a state (�, v) as follows:

urg(tpc�) =
m∨

i=1

(xi = cti),

An execution sequence of B from a state (�, v) is a path in the LTS starting at
(�, v) and that alternates action steps and time steps (time progress), that is:

(�1, v1)
σ1−→ . . .

σi−→ (�n, vn), n ∈ Z≥0, σ ∈ A ∪ R>0
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In this paper, we always assume components with well formed guards meaning
that transitions �

a,g,r−−−→ �′ satisfy g(v) ⇒ tpc�(v) ∧ tpc�′(v[r]) for any v ∈ V. We
say that a state (�, v) is reachable if there is an execution sequence from the initial
configuration (�0, v0) leading to (�, v), where v0 assigns 0 to all clocks. Notice
that the set of reachable states is in general infinite, but it can be partitioned
into a finite number of symbolic states [22–24]. A symbolic state is defined by a
pair (�, ζ) where, � is a location of B, and ζ is a zone, i.e. a set of clock valuations
defined by a clock constraint (as defined in Definition 1). Efficient algorithms for
computing symbolic states and operations on zones are fully described in [23].
Given symbolic states {(�j , ζj)}j∈J of B, the predicate Reach(B) characterizing
the reachable states can be formulated as:

Reach(B) =
∨

j∈J

at(�j) ∧ ζj ,

where at(�j) is true on states whose location is �j , and clock constraint ζj is
straightforwardly applied to clock valuation functions of states.

We also define the predicate Enabled(a) characterizing states (�, v) at which
an action a is enabled, i.e. such that (�, v) a−→ (�′, v′). It can be written:

Enabled(a) =
∨

(�,a,g,r,�′)∈T

at(�) ∧ guard(a, �)

Definition 3 (Deadlock). We say that a state (�, v) of a component B dead-
locks, if neither action steps nor time steps can be done from this state. The
following equation characterizes those states:

∀a ∈ A. ¬Enabled(a) ∧ urg(tpc�)

In our framework, components communicate by means of multiparty interac-
tions. A multiparty interaction is a rendez-vous synchronization between actions
of a fixed subset of components. It takes place only if all the participants agree
to execute the corresponding actions. Given n components Bi, i = 1, . . . , n, with
disjoint sets of actions Ai, an interaction is a subset of actions α ⊆ ∪1≤i≤nAi

containing at most one action per component, i.e. α ∩ Ai is either empty or a
singleton {ai}. That is, an interaction α can be put in the form {ai}i∈I with
I ⊆ {1, . . . , n} and ai ∈ Ai for all i ∈ I.

Definition 4 (Composition). For n components Bi = (Li, �
i
0, Ai, Ti,Xi, tpci),

with Lj ∩ Lj = ∅, Ai ∩ Aj = ∅, and Xi ∩ Xj = ∅ for any i �= j, the composition
γ(B1, . . . , Bn) w.r.t. a set of interactions γ is defined by a timed automaton S =
(L, �0, γ, Tγ ,X , tpc) where �0 = (�10, . . . , �

n
0 ), X = X1∪ . . .∪Xn, L = L1× . . .×Ln,

tpc = tpc1 ∧ . . . ∧ tpcn for � = (�1, . . . , �n), and Tγ is such that �
α,g,r−−−→ �′ for

α = {ai}i∈I , � = (�1, . . . , �n), and �′ = (�′
1, . . . , �

′
n), if for i �∈ I we have �′

i = �i,
and for i ∈ I we have �i

ai,gi,ri−−−−−→ �′
i, and gα =

∧
i∈I gi and r =

⋃
i∈I ri.
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In practice we do not explicitly build compositions of components as pre-
sented in Definition 4. We rather interpret their semantics at runtime by evalu-
ating enabled interactions based on current states of components. In a compo-
sition of n components Bi∈{1,··· ,n}, denoted by γ(B1, . . . , Bn), an action ai can
execute only as part of an interaction α such that ai ∈ α, that is, along with the
execution of all other actions aj ∈ α, which corresponds to the usual notion of
multiparty interaction.

Property 1 (Semantics of a Composition). Given a set of components {B1, · · · ,
Bn} and an interaction set γ. The semantics of the composite component S =
(L, �0, γ, Tγ ,X , tpc) w.r.t the set of interaction γ, is the LTS (Qg, γ ∪ R>0,→γ)
where:

– Qg = L × V(X ) is the set of global states, where L = L1 × · · · × Ln and
X =

⋃n
i=1 Xi. We write a state q = (�, v) where � = (�1, · · · , �n) ∈ L is a

global location and v = (v1, · · · , vn) ∈ V(X ) is a global clocks valuations.
– γ is the set of interactions
– →γ is the set of labeled transitions defined by the rules:

• Action steps:

α = {ai}i∈I ∈ γ, ∀i ∈ I.(�i, vi)
ai−→ (�′

i, v
′
i), ∀i /∈ I.(�i, vi) = (�′

i, v
′
i)

(�, v) α−→γ (�′, v′)

• Time steps:

δ ∈ R>0 ∀i ∈ {1, · · · , n} tpci(vi + δ)

(�, v) δ−→γ (�, v + δ)

In what follows, we consider only deadlock-free systems w.r.t the presented
semantics. By abuse of notation, predicates at(�i) of individual components Bi

are interpreted on states of S, being true for (�, v) iff Bi is at location �i in �,
i.e. iff � ∈ L1 × . . . × Li−1 × {�i} × Li+1 × . . . × Ln. Similarly, clock constraints
of components Bi are applied to clock valuation functions v of the composition
S = (L, �0, γ, Tγ ,X , tpc) by restricting v to clocks Xi of Bi. Given an interaction
α ∈ γ, these notations allow us to write Enabled(α) as:

Enabled(α) =
∨

�=(�1,··· ,�n)∈Lα

at(�) ∧ guard(α, �),

=
∨

(�1,··· ,�n)∈Lα

at(�) ∧
∧

ai∈α

guard(ai, �i),

=
∨

(�1,··· ,�n)∈Lα

n∧

i=1

at(�i) ∧
∧

ai∈α

guard(ai, �i),

=
∧

ai∈α

Enabled(ai),

where Lα = {� ∈ L|� α,g,r−−−→ �′}.
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�10

�11

C

end0

init0
z > 4

end0

run
z := 0

�20 �21

�22 x ≤ 3

T1

�23

init1

start1
x := 0

process1
1 ≤ x ≤ 3

end1

�31�30

�32 y ≤ 3

T2

�33

init2

start2
y := 0

process2
1 ≤ y ≤ 3

end2

�40

R

�41

take

free

init2 start2

end2
process2

init1start1

end1
process1

take

free

init0 run

end0

α5α6

α1α2

α3α4

α7α8

Fig. 1. Task Manager

Example 1 (Running Example). Let us consider as a running example the com-
position of four components C, T1, T2, and R of Fig. 1. Component C repre-
sents a controller that initializes, releases, and ends tasks T1 and T2. Tasks use
the shared resource R during their execution. To implement such behavior, we
consider the following interactions between C, R, and T1: α1 = {init0, init1},
α3 = {run, start1}, α5 = {take, process1}, α7 = {end0, free, end1}, and simi-
lar interactions α2, α4, α6, α8 for task T2, as shown by connections on Fig. 1.
The controller is responsible for firing the execution of each task. First, it non-
deterministically initializes one of the two tasks, i.e. executes α1 or α2, and then
releases it through interaction α3 or α4. Tasks perform their processing indepen-
dently of the controller, after being granted an access to the shared resource (α5

or α6). When ended by the controller, a task releases the resource (interactions
α7 or α8) and go back to its initial location. An example of execution sequence
of the system of Fig. 1 is given below, in which valuations v of clocks x, y, and
z are represented as a tuples (v(x), v(y), v(z)):

((�10, �
2
0, �

3
0, �

4
0), (0, 0, 0))

5−→γ ((�10, �
2
0, �

3
0, �

4
0), (5, 5, 5))

α1−−→γ ((�11, �
2
1, �

3
0, �

4
0), (5, 5, 5))

α3−−→γ ((�10, �
2
2, �

3
0, �

4
0), (0, 5, 0))

2−→γ ((�10, �
2
2, �

3
0, �

4
0), (2, 7, 2))

α5−−→γ ((�10, �
2
3, �

3
0, �

4
1), (2, 7, 2))

3−→γ ((�10, �
2
3, �

3
0, �

4
1), (5, 10, 5))

α2−−→γ ((�11, �
2
3, �

3
1, �

4
1), (5, 10, 5))
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2.2 Weak Planning Semantics

The presented semantics is based on a global state operational semantics, that
is, the operational semantics rules and the computation of possible interactions
between timed components is achieved through global states. Considering a dis-
tributed context, components are intrinsically concurrent and their execution
is asynchronous. This means that even if states of components participating in
an interaction α are known, α cannot be executed in the global state semantics
until the states of all components are known, which breaks the principle of dis-
tribution. Usually, components are mapped at different areas on the distributed
platform in a way that better suits their interactions. In other terms, compo-
nents that synchronize their actions are more likely to be next to each others.
However, there are cases where several components participate in the same inter-
action but are mapped far from each other, which adds on communication delays
to the interaction corresponding to the exchange of messages.

In order to reach an efficient scheduling, able of taking decisions ahead and
using only partial (local) information, we define a different semantics based on a
local planning of interactions. It aims to alleviate the problem of communication
delays through an early decision making mechanism while preserving deadlock
freedom property of the system. This is achieved by planning each interaction
ahead, which means to choose an execution time within a certain horizon for each
interaction, based only on the states of components involved in that interaction.
Consequently, components are notified ahead through communication primitive,
and will wait until the chosen execution time to perform their corresponding
actions. Our approach is to define for each interaction its earliest planning date,
which correspond to the maximum horizon value that ensure a safe planning of
the considered interaction.

Preliminaries. We define the predicate Enabled↗δ

(α) characterizing all states
from which α is enabled if time progresses by δ units of time, that is:

Enabled↗δ

(α) =
∨

�∈Lα

(
at(�) ∧

∧

ai∈α

(guard(ai, �i) + δ)
)
, (1)

Property 2. Let (�, v) be a state of the composition S. For any interaction

β ∈ γ such that, part(α) ∩ part(β) = ∅ and (�, v)
β−→γ (�′, v′), where part(α)

(resp. part(β)) represents components participating in interaction α (resp. β), if
Enabled↗δ

(α) holds at state (�, v) then it still holds at state (�′, v′).

This property derives from the fact that executing interactions with disjoint set
of components than α does not change the states of components participating
in α, that is, for ai ∈ α we have �i = �′

i and vi = v′
i.

Property 3. Let (�, v) and (�, v + δ′), with δ′ ∈ R>0 be two states of the compo-
sition S. If Enabled↗δ

(α) is true at state (�, v) then Enabled↗δ−δ′
(α) is true at

state (�, v + δ′) for δ′ ≤ δ.

This property can be found directly by writing Eq. 1 on state (�, v + δ′).
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Let δmax be a partial function δmax : γ → R≥0 that defines for each
interaction a maximum horizon to be planned with. We define the predicate
Enabled↗[0,δmax(α)]

(α) characterizing all states from which α can be planned with
a δmax(α)-horizon as follows:

Enabled↗[0,δmax(α)]
(α) =

∨

�∈Lα

(at(�)∧ ↙δmax(α) (
∧

ai∈α

guard(ai, �i))),

with ↙δmax(α) represents an adaptation of the backward operators [22] that
satisfies:

↙δmax(α) g(x) ⇔ ∃δ ≤ δmax(α).g(x + δ),

Property 4. If the predicate Enabled↗δ

(α) is true at a state (�, v), then the
predicate Enabled↗[0,δmax(α)]

(α) is also true for δ ≤ δmax(α).

Definition 5 (Plan). We say that two interactions α and β, α �= β, conflicts
if part(α) ∩ part(β) �= ∅, and we write α#β. A plan π is a partial function
π : γ → R≥0 defining relative times for executing a subset of non conflicting
interactions, i.e.:

α �= α′, π(α) �=⊥, π(α′) �=⊥ =⇒ ¬(α#α′).

We also denote by conf (π) the set of interactions conflicting with the plan π, i.e.
conf (π) = {α | ∃β#α . π(β) �= ⊥}, and part(π) the set of components involved
in interactions planned by π, i.e. part(π) = {Bi | ∃α . π(α) �= ⊥∧Bi ∈ part(α)}.
We denote by min π the closest relative execution time of interactions in the plan
π, i.e. min π = min {π(α) | α ∈ γ ∧ π(α) �= ⊥} ∪ {+∞}. Notice that since π
stores relative times, whenever time progresses by δ the value π(α) assigned by
π to an interaction α should be decreased by δ, until it reaches 0 which means
that α have to execute. We write π − δ describing the progress of time over the
plan, that is, (π − δ)(α) = π(α) − δ for interactions α such that π(α) �= ⊥.
We also write π − α to denote the removal of interaction α from the plan π,
i.e. (π − α)(β) = π(β) for any interaction β �= α, (π − α)(α) = ⊥. Similarly,
π ∪ {α �→ δ} assigns relative time δ to α, α /∈ conf(π), into existing plan π, i.e.
(π ∪ {α �→ δ})(β) = δ for β = α, (π ∪ {α �→ δ})(β) = π(α) otherwise. Finally,
the plan π such that π(α) = ⊥ for all interactions α ∈ γ is denoted by ∅.

We define below the semantics for planning each interaction α ∈ γ with
δmax(α)-horizon.

Definition 6 (Weak Planning Semantics). Given a set of components
{B1, · · · , Bn} and an interaction set γ, we define the weak planning semantics
of the composite component S = (L, �0, γ, Tγ ,X , tpc), as the labeled transition
system Sp = (Qπ, γ ∪ R>0 ∪ {plan}, ∼∼∼>) where:

– Qπ = L × V(X ) × Π, where L is the set of global location, V(X ) is the set of
global clocks valuations, and Π is the set of plans.
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– plan defines the action of planning interactions
– ∼∼∼> is the set of labeled transitions defined by the rules:

• Plan:

δ ≤ δmax(α), α ∈ γ,part(α) ∩ part(π) = ∅ Enabled↗δ

(α)

(�, v, π) ∼∼∼∼>
plan(α,δ)

(�, v, π ∪ {α �→ δ}).• Exec:

π(α) = 0

(�, v, π) ∼∼∼>
α (�′, v′, π − α)}

• Time Progress: δ ∈ R>0

δ ≤ min π ∧ tpci(vi + δ)i∈{1,··· ,n}

(�, v, π) ∼∼∼>
δ (�, v + δ, π − δ)

Example 2. Let us consider the following execution sequence for the example of
Fig. 1 under the weak planning semantics rules and for a value δmax = 5 for all
interactions except α5 and α6 that will be assigned a δmax = 3:

((�10, �
2
0, �

3
0, �

4
0), (0, 0, 0), ∅) ∼∼∼∼∼∼>

plan(α1,5)
((�10, �

2
0, �

3
0, �

4
0), (0, 0, 0), {α1 �→ 5})∼∼∼>

5

((�10, �
2
0, �

3
0, �

4
0), (5, 5, 5), {α1 �→ 0}) ∼∼∼>

α1
((�11, �

2
1, �

3
0, �

4
0), (5, 5, 5), ∅) ∼∼∼∼∼∼>

plan(α3,2)

((�11, �
2
1, �

3
0, �

4
0), (5, 5, 5), {α3 �→ 2}) ∼∼∼>

2
((�11, �

2
1, �

3
0, �

4
0), (7, 7, 7), {α3 �→ 0})∼∼∼>

α3

((�10, �
2
2, �

3
0, �

4
0), (0, 7, 0), ∅) ∼∼∼∼∼∼>

plan(α5,2)
((�10, �

2
2, �

3
0, �

4
0), (0, 7, 0), {α5 �→ 2})∼∼∼>

2

((�10, �
2
2, �

3
0, �

4
0), (2, 9, 2), {α5 �→ 0}) ∼∼∼>

α5
((�10, �

2
3, �

3
0, �

4
1), (2, 9, 2), ∅) ∼∼∼∼∼∼>

plan(α2,3)

((�10, �
2
3, �

3
0, �

4
1), (2, 9, 2), {α2 �→ 3}) ∼∼∼>

3
((�10, �

2
3, �

3
0, �

4
1), (5, 12, 5), {α2 �→ 0})∼∼∼>

α2

((�11, �
2
3, �

3
1, �

4
1), (5, 12, 5), ∅) ∼∼∼∼∼∼>

plan(α4,0)
((�11, �

2
3, �

3
1, �

4
1), (5, 12, 5){α4 �→ 0})∼∼∼>

α4

((�10, �
2
3, �

3
2, �

4
1), (5, 0, 0), ∅) ∼∼∼∼∼∼>

plan(α7,4)
((�10, �

2
3, �

3
2, �

4
1), (5, 0, 0), {α7 �→ 4})∼∼∼>

3

((�10, �
2
3, �

3
2, �

4
1), (8, 3, 3), {α7 �→ 1})

This execution sequence represents a path that alternates plan actions, time steps
and execution of some interactions. We can see that for interaction α7 which is
planned 4 units of time ahead, the system cannot reach the state from which it
can be executed since there is a time progress expiration in component T2 after
3 time units from planning this interaction. This means that local planning of
interactions doesn’t always allow the progress of time and may thus, introduce
deadlocks even if the system under the global semantics rules is deadlock-free.
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2.3 Relation Between Global and Weak Planning Semantics

We use weak simulation to compare the model under the global semantics rules
and the one under the weak planning semantics rules by considering plan-
transitions unobservable. As explained in Example 2, the weak planning seman-
tics does not preserve the deadlock property of our system. Nevertheless, the
following proves weak simulation relations between the two semantics.

Theorem 1. For all the reachable states (�, v, π) of the weak planning seman-
tics, and ∀α ∈ π, the predicate Enabled↗π(α)

(α) is true.

Let Sg = (Qg, γ ∪ R>0,−→γ) (resp. Sp = (Qp, γ ∪ R>0 ∪ {plan}, ∼∼∼>))
the labeled transition system characterizing the global (resp. weak planning)
semantics.

Proposition 1

Relation 1 ∀δ ∈ R>0.(�, v, π) ∼∼∼>
δ (�′, v′, π′) ⇒ (�, v) δ−→γ (�′, v′)

Relation 2 ∀α ∈ γ.(�, v, π) ∼∼∼>
α (�′, v′, π′) ⇒ (�, v) α−→γ (�′, v′)

It is straightforward that Relation 1 is a consequence of the definition of time
progress in the weak planning semantics. For Relation 2, using Definition 6, we
can deduce that:

(�, v, π) ∼∼∼>
α (�′, v′, π′) ⇒ π(α) = 0

By Theorem 1, this implies that Enabled↗0
(α) is true at state (�, v, π), meaning

that Enabled(α) is also true, which allows to infer Relation 2.

Corollary 1. If a state (�, v, π) ∈ Reach(Sp), then (�, v) ∈ Reach(Sg).

Definition 7 (Weak Simulation). A weak simulation over A = (QA,
∑

∪{β},→A) and B = (QB ,
∑ ∪{β},→B) is a relation R ⊆ QA × QB such that

we have: ∀(q, r) ∈ R, a ∈ ∑
.q

a−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r
β∗aβ∗
−−−−→B

r′ and ∀(q, r) ∈ R : q
β−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗
−→ r′. B simulates A,

denoted by A �R B, means that B can do everything A does.

The definition of weak simulation is based on the unobservability of
β−transitions. In our case, β−transitions corresponds to plan−transitions.

Corollary 2. Sp �R1 Sg with R1 = {(q, π); q) ∈ Qp × Qg}.
Corollary 2 corresponds to a notion of correctness of the weak planning

semantics: any execution in weak planning semantics corresponds to an exe-
cution in the global state semantics.

Theorem 2. Sg �R2 Sp with R2 = {(q; (q, π)) ∈ Qg × Qp|π = ∅}.
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Theorem 2 states that the weak planning semantics preserves all execution
sequences of the global state semantics. They are obtained using immediate
planning, i.e. plans π such that π(α) = 0 or π(α) = ⊥. The weak planning
semantics aims to reduces the impact of communication delays in the system
through planning interactions execution ahead, and by considering only the state
of components involved in the planned interaction, which is more suitable for
distributed real-time systems than the global state semantics. It does not restrict
the behavior of the global state semantics (see Theorem 2), and it executes only
sequences allowed by the global state semantics (see Corollary 2). However, it
may introduce deadlocks as shown by the scenario presented in Example 2. In
the following, we present sufficient conditions for deadlock-free planning of inter-
actions.

3 Deadlock-Free Planning

As explained in Example 2, local planning of interactions can introduce dead-
locks in the system since it does not consider time progress conditions of compo-
nents not participating in the planned interactions. Effectively, the weak plan-
ning semantics ensures that time can progress until the chosen execution date
only w.r.t timing constraints of participating components, but such progress may
be disallowed by the rest of the system leading to deadlock states. In this section,
we provide sufficient conditions for having deadlock-free planning.

Planning an interaction α implies not only blocking components participating
in α until α executes, but also preventing the system from planning interactions
involving these components, that is, interactions of conf (α). Consequently, the
subset of interactions γ′ ⊆ γ that can be planned at a given state (�, v, π) depends
on the content of the plan π. It satisfies γ′ = {γ \ π ∪ conf (π)}.

By Corollary 1, a (reachable) deadlock state (�, v, π) of the weak planning
semantics Sp is such that (�, v) is a reachable state of the global state semantics
Sg. Since we assume that Sg is deadlock-free, (�, v) is not a deadlock in Sg. A
deadlock state (�, v, π) of Sp is caused by the plan π which is restricting the
execution in Sp w.r.t. Sg: interactions α of π cannot execute before π(α) time
units, and interactions α ∈ conf (π) are blocked for (at least) max {π(β) | β#α}.
Notice that due to well-formed guards, in a deadlock state (�, v, π) we have
necessarily at(�i) ∧ urg(tpc�i

) for a location �i of a component Bi /∈ part(π).

Theorem 3. If a state (�, v, π) ∈ Reach(Sp) deadlocks, the following equation
is satisfied:

∧

α∈π

Enabled↗π(α)
(α)

︸ ︷︷ ︸
A

∧
∨

Bi∈S\part(π)

∨

�i∈Li

�i ∧ urg(tpc�i
)

︸ ︷︷ ︸
B

∧
∧

α∈π

π(α) �= 0 ∧ ( ∨

α∈π

(Enabled(α) ∨
∨

α∈conf (π)

Enabled(α)
)

︸ ︷︷ ︸
C

(2)
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From Theorem 1, Term A of Eq. 2 represents an invariant of the system. On the
other hand, terms B and C characterize the deadlock: Term B expresses the
urgency of time progress condition in components not involved in the planned
interactions, whereas, term C specifies the origin of the deadlock: it character-
izes states (�, v, π) of Sp for which π restricts the execution of an interaction α
whereas it can be executed at (�, v) in Sg. As explained above, such an interaction
satisfies π(α) > 0 or α ∈ conf (π).

It is clear that Eq. 2 depends on the reachable states of the planning semantics
since it explicitly depends on plans π. The following gives weaker conditions for
deadlocks which are independent of the plan.

Theorem 4. Let Φ(α) be the following predicate:

�
Enabled↗[0,δmax(α)]

(α) ∧
∨

Bi∈S\part(α)

∨

�i∈Li

at(�i) ∧ urg(tpc�i
) ∧

∨

β∈α∪conf (α)

Enabled(β)

(3)

where

Enabled↗[0,δmax(α)]

(α) is the result of transforming all the timing con-
straints of the form x ≤ ct by x < ct in ↙δmax(α) (

∧
ai∈α guard(ai, �i)) of

Enabled↗[0,δmax(α)]
(α).

If a reachable state of the system (�, v, π) deadlocks then the following is
satisfied:

∃α ∈ γ, Φ(α) ∧ δmax(α) �= 0 (4)

Let schedule(α, δmax(α)) be the following predicate:

schedule(α, δmax(α)) = ¬Φ(α) ∨ (δmax(α) = 0)

Using Theorem 4 and Corollary 1, we can conclude that for all interac-
tions α ∈ γ and for all reachable states of the global state semantics Sg, if
the predicate schedule(α, δmax(α)) is satisfied, then the weak planning seman-
tics is deadlock-free. Notice that given an interaction α ∈ γ the satisfac-
tion of schedule(α, δmax(α)) on Reach(Sg) depends only on δmax(α). More-
over, it is monotonic, that is, if it holds for δmax(α) then it holds for any
δmax(α)′ < δmax(α). This provides means for building implementations that
plan interactions as soon as possible by taking for δmax(α) the maximal value of
δ such that schedule(α, δ) holds on Reach(Sg).

4 Using Knowledge to Enhance Deadlock-Free Planning

In Sect. 3, we presented sufficient conditions that ensure a deadlock-free planning
of interactions. Effectively, we use an SMT solver to check the satisfiability of
those conditions on the reachable states of the planning semantics. As explained
in Sect. 3 to prove deadlock-freedom of weak planning semantics it is sufficient
to prove that for all interactions α ∈ γ the following formula:

Reach(Sg) ∧ ¬schedule(α, δmax(α))
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is unsatisfiable. In practice, we do not calculate Reach(Sg) to avoid the combi-
natorial explosion problem inherent to composition of timed automata. Instead,
we use over-approximations of the latter which enable us to build stronger con-
ditions of deadlock freedom. As explained in more detail below, these over-
approximations take the form of invariants I (i.e. such that Reach(Sg) ⇒ I)
that are used to establish deadlock freedom by checking the unsatisfiability of:

I ∧ ¬schedule(α, δmax(α))

Timed Invariants. Our approach consists in leveraging global knowledge of
the system in the form of invariants that will be used to approximate Reach(Sg).
Locations reachable in a composition S = γ(B1, . . . , Bn) are necessary combi-
nations of reachable locations of individual components Bi, i.e., Reach(Sg) ⇒∧n

i=1 Reach(Bi). However, in general not all combinations are reachable since
components are not fully independent as they synchronize through interaction
set γ. Moreover, individual reachable states of components do not express the
fact that time progresses the same way in all components.

For example, a global location may be not reachable because component
locations having disjoint time progress conditions, or an interaction may be not
enabled from a state because of an empty timing constraint. Such properties
require additional relationships relating clocks of different components that are
not available in Reach(Bi) as it is is restricted to clocks of a single component.

We follow the approach of [25–27] for reinforcing individual reachable states
of components with global invariants on clocks. They are induced by simultane-
ity of transitions execution when executing an interaction and the synchrony
of time progress. To compute such invariants, additional history clocks are first
introduced in components. History clocks are associated to actions of compo-
nents and to interactions, and reset upon their execution. They do not modify
the behavior since they are not involved in timing constraints. They only reveal
local timing of components, relevant to the interaction layer, which allows to
infer further properties referred as history clocks inequalities in [25], expressing
the fact that the history clock of an interaction is necessary equal to history
clocks of its actions after its execution and until the execution of another inter-
action involving these actions. By combining history clocks inequalities E(S) and
symbolic states of components, we have:

Reach(Sg) ⇒
n∧

i=1

Reach(Bi) ∧ E(Sg) (5)

Notice that for such systems with multiparty interactions, other types of
invariants could be used, like those of [28] that corresponds to the notion of
S-invariants in the Petri net community [29]. Even if they are time abstracted,
it is proved that they are appropriate for verifying non coverage of subsets of
individual locations.

Example 3. We illustrate the application of (5) for a safe planning of interac-
tions by considering again example of Fig. 1. It can be shown that locations
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configuration including location �32 (resp. �22) does not satisfy the predicate
schedule(α, δmax(α)) for interaction α5 (resp. α6). In the following, we prove
how such configurations can be excluded using history clocks inequalities.
Since action run of C is synchronized with either start1 of T1 or start2 of T2,
and since history clocks ha of an action a is reset whenever a is executed, by [25]
the history clock inequalities for run are:

(hrun = hstart1 < hstart2 − 4) ∨ (hrun = hstart2 < hstart1 − 4). (6)

Equation (6) states that hrun is equal to the history clock corresponding to the
last synchronization, i.e. either hstart1 or hstart2 , and is lower than history clocks
of previous synchronizations. Value 4 in (6) is obtained considering separation
constraints computed from symbolic states of components [25]: two occurrences
of run are separated by at least 4 time units because of timing constraints of
C, and so do occurrences of start1 or start2 which can only execute jointly
with run. To relate history clocks with components clocks, we simply include
history clocks when computing symbolic states of components (i.e. Reach(Bi) for
components), which is used to establish here that x = hstart1 and y = hstart2 .
That is, combined with (6) we obtain x < y − 4 or y < x − 4.

By definition of Enabled we have Enabled(α6) = at(�22) ∧ (1 ≤ x ≤ 3).
Similarly, Enabled(α6) = at(�32) ∧ (1 ≤ y ≤ 3). This proves that components T1

and T2 can never be at locations �32 and �22 at the same time. Thus, while checking
for interaction α5 (resp. α6) that

∧n
i=1 Reach(Bi)∧E(Sg)∧¬schedule(α, δmax(α))

is unsatisfiable, this case will be excluded using history clock inequalities.

5 Implementation and Experiments

The presented method has been implemented as a middleend filter of the BIP
compiler. BIP [30] is a highly expressive, component-based framework with rigor-
ous semantics that allows the construction of complex, hierarchically structured
models from single components characterized by their behavior. The method
input consists of real-time BIP model and a file containing an approximation
of the reachable states of components combined with history clock inequalities
as explained in Sect. 4. The latter is generated using the RTD-Finder tool, a
verification tool for real-time component based systems modeled in the RT-BIP
language. Our filter generates for each interaction of the input model a Yices [31]
file containing system invariants together with the condition for planning the con-
sidered interaction, that is, ¬schedule(α, δmax(α)). Thereafter, Yices checks the
satisfiability of

∧n
i=1 Reach(Bi) ∧ E(Sg) ∧ ¬schedule(α, δmax(α)). We also define

δmax(α) as free variable. If this condition is unsatisfiable, then planning interac-
tions α is safe and unbounded that is, δmax = +∞. Otherwise, Yices generates
a counter-example. Due to the monotony of the condition, this counter-example
can be used to find the maximal value of δmax(α) satisfying the above condi-
tion using a binary search algorithm. Together, the determined values of the
bounds δmax for each interaction will affect the dynamic of the hole system: for
an interaction α the greater δmax(α) is, the more flexible the scheduling of α
will be.
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Table 1. Detailed results of the Task Manager experiments

Interaction Conflicting interactions tpc δmax(α)

α1 α2, α4, α8 �32 ∞
α3 α2, α4, α8 �32 ∞
α5 α6, α8 �32 ∞
α7 α2, α4 �32 0

Table 2. Results of experiments

Model Number of interactions

δmax = 0 δmax = ∞ total

Task Manager 2 6 8

Pacemaker 0 6 6

Gear 0 17 17

Fischer 0 10 10

We ran our experiments on three other models besides of the model presented
in Fig. 1: Pacemaker [32], Fischer [33], and Gear controller [34]. We developed an
implementation of these models in RT-BIP. The following tables show the result
of our experiments. Table 1 gives a detailed result of the experiments ran on the
Task Manager model Fig. 1. It summarizes, for each interaction, its conflicting
interactions and the potential locations for which a time progress condition may
expire while planning it (column tpc). The last column, δmax(α), details the
maximum horizon for planning interaction α. Notice that the symmetry of the
model allows to perform the verification on interactions α1, α3, α5, and α7 and
deduce the results for the other interactions. Table 2 depicts the results of our
experiments on different models. For each model, it summarizes the number of
interactions that can be safely planned with an unbounded horizon (δmax = ∞).
It also gives the number of interactions that cannot be planned in advance, and
thus, need to be executed immediately after being planned (δmax = 0).

6 Conclusion and Future Work

We presented a method for scheduling real-time systems in a distributed context
considering models including multiparty interactions. The proposed approach
defines sufficient conditions ensuring a deadlock-free local planning of interac-
tions with certain horizons. Moreover, it is proved that those conditions are
interaction dependent, in other terms, this means that changing the planning
horizon of an interaction does not affect the planning of other interactions. A
key innovative idea is the use of global knowledge in addition to local compo-
nents informations to enhance the local scheduling of interactions. The computed
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knowledge captures not only the way components synchronize through interac-
tions, but it also consider the history clock inequalities between those interactions
and express explicitly the synchrony of time progress.

There are many open problems to be investigated such as: (i) when planning
an interaction, identifying conditions based on the state of components involved
in this interaction, and (ii) defining a lower bound for planning interaction. The
latter represents an important point meaning that, if planning interactions can
be ensured for a lower bound, that effectively represents the communication
delays of the target platform, then all the problems induced by those delays,
such as global consistency and performance dropping will be solved.
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