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Preface

Over nearly three decades since its foundation in 1987, the “FM” Symposium has
become a central part of the intellectual and social life of the Formal Methods com-
munity. We are therefore delighted to present the proceedings of FM 2016, the 21*
symposium in the series, held in Limassol, Cyprus, during November 9-11, 2016.
Throughout these years, Springer has supported the symposium through its Lecture
Notes in Computer Science (LNCS) series. It is therefore with particular pleasure that
we present this year’s proceedings as the first volume in the new LNCS subline on
Formal Methods. The creation of this subline reflects the maturity and growing sig-
nificance of the discipline.

The 2016 symposium received 162 submissions to the main track — the largest
number of contributions to a regular symposium in the FM series to date. Review of
each submission by at least three Program Committee members followed by a dis-
cussion phase led to the selection of 43 papers — an acceptance rate of 0.265. These
proceedings also contain six papers selected by the Program Committee of the Industry
Track chaired by Georgia Kapitsaki (University of Cyprus), Tiziana Margaria
(University of Limerick and Lero, Ireland), and Marcel Verhoef (European Space
Agency, The Netherlands).

We were honored that three of the most creative and respected members of our
community — Manfred Broy (Technical University of Munich), Peter O’Hearn
(University College London, and Facebook), and Jan Peleska (University of Bremen
and Verified Software International) — accepted our invitation to give keynote presen-
tations at the symposium. Also scheduled during FM 2016 were four workshops
selected by the Workshop Chairs, Nearchos Paspallis (University of Central Lancashire
in Cyprus) and Martin Steffen (University of Oslo), eight tutorials selected by the
Tutorial Chairs, Dimitrios Kouzapas (Glasgow University) and Oleg Sokolsky
(University of Pennsylvania), and eight papers to be presented at a Doctoral Symposium
organized by Andrew Butterfield (Trinity College Dublin) and Matteo Rossi (Politec-
nico di Milano). The resulting FM 2016 program reflects the breadth and vibrancy of
both research and practice in formal methods today.

As in previous years, FM 2016 attracted submissions from all over the world: 299
authors from 22 European countries, 126 authors from eight Asian countries, 64
authors from North America, 24 authors from five countries in South America, 16
authors from Australia and New Zealand, and five authors from two African countries,
Algeria and Tunisia. The largest number of authors from a single country were from
China (58), the second largest number of authors came from France (56), the third
largest number of authors were from the UK (53), and the fourth largest number of
authors were from the USA (45).

Last year, the FM community mourned the passing of Prof. Peter Lucas, a former
chair of the FME Association and a founding figure of the formal methods discipline.



VI Preface

This year, as a symposium highlight, we celebrated Peter’s achievements by presenting
the first Lucas Award for a highly influential paper in formal methods.

We are grateful to all involved in FM 2016, particularly the Program Committee
members, subreviewers, and other committee chairs. The excellent local organization
and publicity groups, chaired by Yannis Dimopoulos, Chryssis Georgiou, and George
Papadopoulos (University of Cyprus), deserve special thanks.

Much of the symposium’s activity would be impossible without the support of our
sponsors. We gratefully acknowledge the support of: Springer, the Cyprus Tourism
Organization, the University of Cyprus, and DiffBlue.

September 2016 John S. Fitzgerald
Stefania Gnesi

Constance Heitmeyer

Program Co-chairs

Anna Philippou
General Chair
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A Logical Approach to Systems Engineering
Artifacts: Semantic Relationships
and Dependencies beyond Traceability - From
Requirements to Functional
and Architectural Views

Manfred Broy

Institut fir Informatik, Technische Universitidt Miinchen, 80290 Munich,
Germany

Abstract. Not only system assurance drives a need for semantically richer
relationships across various artifacts, work products, and items of information
than are implied in the terms “trace and traceability” as used in current standards
and textbooks. This paper deals with the task of working out artifacts in software
and system development, their representation, and the analysis and documen-
tation of the relationships between their logical contents - herein referred to as
tracing and traceability; this is a richer meaning of traceability than in standards
like IEEE STD 830. Among others, key tasks in system development are as
follows: capturing, analyzing, and documenting system level requirements, the
step to functional system specifications, the step to architectures given by the
decomposition of systems into subsystems with their connections and behavioral
interactions. Each of these steps produces artifacts for documenting the devel-
opment, as a basis for a specification and a design rationale, for documentation,
for verification, and impact analysis of change requests. Crucial questions are
how to represent and formalize the content of these artifacts and how to relate
their content to support, in particular, system assurance. When designing multi-
functional systems, key artifacts are system level requirements, functional
specifications, and architectures in terms of their subsystem specifications. Links
and traces between these artifacts are introduced to relate their contents.
Traceability has the goal to relate artifacts. It is required for instance in standards
for functional system safety such as the ISO 26262. An approach to specity
semantic relationships is shown, such that the activity of creating and using
(navigating through) these relationships can be supported with automation.



Moving Fast with Program Verification
Technology

Peter W. O’Hearn

Facebook

Abstract. Catching bugs early in the development process improves software
quality and saves developer time. At Facebook, we are building Infer
(fbinfer.com), an open-source static analyzer for Android, i0S, and C++ code
which has its roots in program verification research. In this talk, I will discuss
the challenges we have faced in developing techniques that can cope with
Facebook’s scale and velocity, the challenges of different modes of deployment,
and some lessons we have learned that might be relevant to formal methods
research. Most importantly, adapting to Facebook’s fast-paced engineering
culture — illustrated by the “Move Fast and Break Things” and similar posters
adorning its office walls — has taught us that if verification technology can move
fast, in tune with programmers’ workow, then it will fix more things.



Industrial-Strength Model-Based Testing
of Safety-Critical Systems

1,2(5<)

Jan Peleska and Wen-ling Huang?

! Verified Systems International GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science,
University of Bremen, Bremen, Germany
{jp, huang}@cs.uni-bremen. de

Abstract. In this article we present an industrial-strength approach to automated
model-based testing. This approach is applied by Verified Systems International
GmbH in safety-critical verification and validation projects in the avionic, rail-
way, and automotive domains. The SysML modelling formalism is used for
creating test models. Associating SysML with a formal behavioural semantics
allows for full automation of the whole work flow, as soon as the model including
SysML requirements tracing information has been elaborated. The presentation
highlights how certain aspects of formal methods are key enablers for achieving
the degree of automation that is needed for effectively testing today’s safety
critical systems with acceptable effort and the degree of comprehensiveness
required by the applicable standards. It is also explained which requirements
from the industry and from certification authorities have to be considered when
designing test automation tools fit for integration into the verification and vali-
dation work flow set up for complex system developments. From the collection
of scientific challenges the following questions are addressed. (1) What is the
formal equivalent to traceable requirements and associated test cases? (2) How
can requirements based, property-based, and model-based testing be effectively
automated? (3) Which test strategies provide guaranteed test strength, indepen-
dent on the syntactic representation of the model?
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Abstract. In this article we present an industrial-strength approach
to automated model-based testing. This approach is applied by Verified
Systems International GmbH in safety-critical verification and validation
projects in the avionic, railway, and automotive domains. The SysML
modelling formalism is used for creating test models. Associating SysML
with a formal behavioural semantics allows for full automation of the
whole work flow, as soon as the model including SysML requirements
tracing information has been elaborated. The presentation highlights
how certain aspects of formal methods are key enablers for achieving the
degree of automation that is needed for effectively testing today’s safety
critical systems with acceptable effort and the degree of comprehensive-
ness required by the applicable standards. It is also explained which
requirements from the industry and from certification authorities have
to be considered when designing test automation tools fit for integration
into the verification and validation work flow set up for complex system
developments. From the collection of scientific challenges the following
questions are addressed. (1) What is the formal equivalent to traceable
requirements and associated test cases? (2) How can requirements based,
property-based, and model-based testing be effectively automated? (3)
Which test strategies provide guaranteed test strength, independent on
the syntactic representation of the model?

Keywords: Model-based testing - Equivalence class partition testing -
Complete testing theories

1 Introduction

Model-Based Testing. Model-based testing (MBT) can be implemented using
different approaches; this is also expressed in the current definition of MBT
presented in Wikipedia'.

Model-based testing is an application of model-based design for designing
and optionally also executing artifacts to perform software testing or sys-
tem testing. Models can be used to represent the desired behaviour of a

! https://en.wikipedia.org/wiki/Model-based _testing, 2016-07-11.
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System Under Test (SUT), or to represent testing strategies and a test
environment.

In this paper, we follow the variant where formal models represent the desired
behaviour of the SUT, because this promises the maximal return of investment
for the effort to be spent on test model development.

— Test cases can be automatically identified in the model.

— If the model contains links to the original requirements (this is systematically
supported, for example, by the SysML modelling language [19]), test cases can
be automatically traced back to the requirements they help to verify.

— Since the model is associated with a formal semantics, test cases can be repre-
sented by means of logical formulas representing reachability goals, and con-
crete test data can be calculated by means of constraint solvers.

— Using model-to-text transformations, executable test procedures, including
test oracles, can be generated in an automated way.

— Comprehensive traceability data linking test results, procedures, test cases,
and requirements can be automatically compiled.

Objectives. This paper is about model-based functional testing of safety-
critical embedded systems. The test approach discussed here is black box, as
typically performed during HW/SW integration testing or system testing. The
main message of this contribution is twofold.

— Effective automated model-based testing is possible and ready for application
in an industrial context, when specialising on particular domains like safety-
critical embedded systems. Here “effective” means both “high test strength”
and “can be realised with acceptable effort”.

— The considerable test strength that can be achieved using MBT-based testing
strategies can only be exploited when full automation is available. The under-
lying algorithms are too complex and the number of test cases is too high to
be handled in a manual way.

The methods described in this paper have been implemented in the
model-based testing component of Verified Systems’ test automation tool RT-
Tester [21]. They are applied in testing campaigns for customers from the avionic,
railway, and automotive domains. As of today, the applicable standards [5, 14, 36]
do not yet elaborate on how MBT should be integrated into the workflow of
development, validation, and verification campaigns for safety-critical systems.
The description in this paper, however, is consistent with the general test-related
requirements that can be found in these standards.

Overview. In Sect.2, the workflow of typical testing campaigns in industry
is compared to the extended workflow required for using MBT in practise. In
Sect. 3, the development of test models with SysML is described, and a sim-
ple example is presented. In Sect. 4, we outline the underlying formal concepts
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enabling the automated test case identification and compilation of traceability
data linking test cases to requirements. The question of test strength is discussed
in Sect.5, and the underlying theory that has been implemented in RT-Tester
is described. In Sect. 6, three different perspectives for approaching MBT are
described. Conclusions are presented in Sect. 7.

References to related work are given throughout the text. Notable overview
material on MBT can be found in [1,29,34].

2 Conventional Testing Workflow vs. MBT Workflow

The workflow of conventional industrial test campaigns is shown in Fig. 1.
All standards related to safety-critical systems verification emphasise that
requirements-based testing should be the main focus of each campaign. Require-
ments are typically specified in natural language, but preferably as “atomic”
statements that do not need to be decomposed into further sub-requirements. All
of our customers use requirements managements systems, where dependencies
among requirements can be recorded. Optionally, links to further development
and V&V artefacts, such as design documents, source code, and test cases and
results can be established. Due to the informal nature of requirements, there is
no possibility to generate test cases directly from requirements.

As a first step of the test campaign, test cases are developed, so that each
requirement is verified by at least one test case. Test cases and requirements are
in n : m-relationship: one test case can help to test several requirements, and
one requirement may need more than one test case to check it thoroughly. The
relationship between requirements and test cases is documented in a traceability
matrix.

Test cases are usually specified first in an abstract way, that is, the logi-
cal conditions to be fulfilled for each test step are described, but the concrete
sequence of input vectors and the associated output sequences to be expected
from the SUT are not yet identified. Therefore a further step is required to
compute the concrete test data to be used or checked against when executing a
concrete test case in a test procedure.

Next, test procedures are programmed, each procedure executing one or more
concrete test cases. The procedures are executed against the SUT, and the results
are documented and evaluated. Finally, the traceability matrix is extended to
record the relationships between test cases and implementing procedures and
the results obtained in the procedure executions.

According to the current state of practise, test execution, documentation,
and compilation of traceability data are typically automated steps, but the initial
steps from test case identification to test procedure programming (and frequently
debugging ...) need to be performed manually.

A coverage analysis checks the code portions that have been covered by the
requirements-based test cases so far. If uncovered code still exists, either the code
has to be removed because it does not contribute to the functionality of the SUT,
or requirements have to be added, specifying the SUT behaviour implemented
by the code uncovered so far. This leads to additional test cases to be executed.
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Fig. 1. Conventional testing workflow.

The MBT workflow is shown in Fig.2. In comparison to conventional test
campaigns, two new activities are introduced: during (1) test model development,
a formal model specifying the expected behaviour of the SUT, as visible at the
test interfaces, is created. In step (2) requirements tracing, the model elements
are linked to the requirements they help to “implement”. Again, these links need
a formal interpretation. As a result of these steps, a formal behavioural model of
the SUT is available, and each requirement can be traced to the model portions
reflecting the requirement in a formal way.

As a “return of investment” to be gained from these two additional steps, the
whole activity chain from test case identification to the completion of traceability
data can be fully automated. In the sections to follow, we explain the steps
involved and describe how automation support is enabled by various approaches
from the field of formal methods.

3 SysML Test Models

The test model describes the interface between SUT and testing environment
and specifies the SUT behaviour as far as visible on this interface. An essential
feature of the functional model — regardless of the concrete modelling formal-
ism used — is the possibility to perform top-down decompositions and express
the overall SUT functionality by a set of concurrent sub-components with inter-
nal communication. Since the “real” internal SUT components and their internal
communication are not monitored during black-box testing, the concurrent com-
position in the test model is purely functional and need not reflect the internal
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Fig. 2. MBT workflow.

SUT design. The functional composition, however, is helpful to facilitate the
understanding of the observable SUT behaviour and the association between
requirements and model elements.

To associate the test model with a formal behavioural semantics, the model
state space is expressed by a vector of state components representing time, inter-
face states, model variables, and control modes. Rather than labelled transition
systems, we use Kripke structures as the underlying behavioural model, and
follow the typical encoding recipes that are used in property checking [7] and
bounded model checking [3]. This decision is based on the observation that many
interfaces occurring in the embedded systems world follow the shared variable
paradigm (e.g. dual ported RAM, reflective memories, memory mapped 1/0,
and data sampling interfaces), so that the concepts of atomic events and syn-
chronous communication are considered as optional higher-level abstractions.
The model semantics is then represented by the model computations, that is,
the set of state sequences starting from an initial model state, such that each
pair of consecutive states is a member of the transition relation. To support
timed formalisms, delay transitions are distinguished from discrete transitions.
The former allow for time to pass and admit input updates only, while the latter
are performed in zero time and only change the valuations of internal state and
outputs. The possible transitions between states are specified by means of a tran-
sition relation in propositional form, relating each model state to its post-states.
The propositional representation guarantees that also infinite state systems can
be represented without having first to abstract the model. A detailed description
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bdd [package] [SYSTEM Components]J

SYSTEM

parts
SystemUnderTest : SystemUnderTest
9 TestEnvironment : TestEnvironment é
Stimulations : Stimulations
Indications : Indications

<<block>> <<block>>
<<TE>> <<SUT>>
TestEnvironment SystemUnderTest
<<block>>
<<block>> <<interface>>
<<interface>> <<SUT2TE>>
<<TE2SUT>> Indications
Stimulations values
values l:int=0
tl:int=0 r:int=0

Fig. 3. SysML model of the test configuration.

explaining how to calculated the transition relation from SysML models can be
found in [12, Chap. 11].

In the subsequent sections we will refer to a simple test model of a vehicle
turn indication controller. In Fig. 3, the basic configuration of a SysML test
model (called SYSTEM) for this controller is shown. The configuration consists
of the TestEnvironment and the SystemUnderTest. Interface Stimulations specifies
the input variables to the SUT which can be set by the test environment. In this
example, variable tl specifies the position of the turn indication lever which is 0
for the neutral position, 1 for position ‘left’ and 2 for position ‘right’. Interface
Indications specifies the SUT outputs as far as they are observable by the testing
environment. In the example, output variable | has value 1 if indication lights on
the left-hand side are switched on, otherwise | is 0. Output variable r has value
1 if indication lights on the right-hand side are switched on.

The SUT sub-model is further decomposed as shown in Fig. 4. It consists of a
single block representing the sequential turn indication controller. Its behaviour
is modelled by a hierarchic state machine depicted in Fig. 5 and Fig.6. When in
simple state IDLE, the outputs are set to 0, so the indication lamps are switched
off. As soon as the turn indication lever is switched to the left or right position
(tl > 0), the state machines changes to hierarchic state FLASHING. When enter-
ing this state, the left-hand side lights are switched on if the turn indication lever
is in position ‘left’ (assignment 1 = (t1 == 1)), and the right-hand side lamps
are switched on if the lever is in position right. While in state FLASHING, the
controller’s behaviour is as specified by the sub-machine shown in Fig.6. The
activated indication lights stay on until 340 ms have passed. Then a transition
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into state OFF is performed, and the lights are switched off (1 = 0; r = 0;).
After 320 ms, the lights are switched back on according to the position of the
turn indication lever memorised in auxiliary variable tl0.

Apart from “ordinary” flashing on the left-hand or right-hand side, the con-
troller also realises the tip flashing functionality: when the turn indication lever
is set back into neutral position (tl = 0), before 3 on-off flashing periods have
been performed, the minimum number of 3 periods will be executed before the
lights are switched off again. This requirement is reflected in the model by means
of the auxiliary variables tl0 and c and the associated assignments.

Two requirements of the turn indication controller already introduced above
will be discussed in more detail below; they are depicted in a SysML requirements
diagram shown in Fig.7. Requirement REQ-001 states that flashing shall be
performed with 340 ms on and 320 ms off periods. Requirement REQ-002 states
the tip flashing functionality.

bdd [block] SystemUnderTest [SUTConfig])

SystemUnderTest

TurnindicationControl

values
tlo:int=0
c:int=0

P

<<block>>
<<witness>>
TipFlashingWitness
constraints
{Finally (tl ==0and tl0 > 0 andc < 3 and (tl == 0 Untilc >=3)) }

Fig. 4. System under test decomposition and witness specification.

The example introduced here is quite simple and only serves for illustration
purposes of the concepts discussed below. A real-world model of such a controller
has been made publicly available under www.mbt-benchmarls.org and described
in [22].
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stm TurnlndicationControIJ

?

| IDLE )
entry /tl0 =0;1=0;r=0;

when (tl == 0 &&fc >=3) when (tl > 0)

FLASHING
include / FLASHING
‘entry Jc=0;tl0=tl I =(tl==1); r=(tl==_2); y

when (tl >0 && tl!'=1tl0)

Fig. 5. Top-level state machine of the turn indication controller.

stm FLASHING
G
<<requirement>>
REQ-001 Flashing period is 340ms on and 320ms off m
*® —
A
*, <<satisfy>>
after (320) /™,
I'=(tlo ==1); after (340)
r=(tl0 == 2);
( OFF )
lentry/c=c+1; | =0; r=0;J

Fig. 6. Lower-level state machine of the turn indication controller.
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req [package] Requirements [Requirements Dlagram]J

<<requirement>>
TurnindicationRequirements

. .. further requirements, >
not shown here . . .

<<requirement>> <<requirement>>
REQ-001 Flashing period is 340ms on and 320ms off REQ-002 Tip flashing
Id = REQ-001 Id = REQ-002
text = Each flashing period consists of an ON phase of text = The tip flashing function requires that at least 3
340ms duration, and an OFF phase of 320ms duration. flash cycles are performed before flashing is turned off.
<<salisfy>>
<<block>>
<<witness>>
Tip A z

constraints
{ Finally (tl == 0and tl0 > 0 and c <3 and (tl == 0 Until c >=3)) }

Fig. 7. Requirements model and usage of witness block.

4 Requirements Tracing

Requirements as Model Properties. Requirements are reflected by model
properties. Properties are (typically infinite) sets of computations. For the Kripke
structure semantics we have associated with SysML models as described in the
previous section, computations are infinite paths 7 = sg.s1.52 ... of model states
s, such that each pair s;.s;41 is related by the transition relation of the under-
lying Kripke structure. In the context of testing, we are only interested in safety
properties, because these are characterised by the fact that every property vio-
lation can already be detected on a finite prefix of some computation, that is, it
can be detected by a terminating test run.

Temporal logic — we use LTL for this purpose — can be used to characterise
property sets by finite expressions. The LTL formulas expressing safety proper-
ties can be inductively generated [31, Theorem 3.1]: (1) every atomic proposition
is a safety formula, and (2) if ¢, are safety formulas, then the same holds for
dNY, oV, Xop, pW1), and Ge¢. Here X denotes the next operator: X holds
on a computation path 7 = sg.51.52 ... if and only if ¥ holds on 7' = s1.55....,
the path starting with 7’s second element. W denotes the weak until operator:
¢W1 holds on 7 if and only if either (1) ¢ holds globally, that is, in every state
of 7, or (2) 1 holds finally on some segment 7 starting with the (i + 1) ele-
ment of 7, and until then, that is, on segments 7 = 7°, 7', ... 70~ formula ¢
holds. If case (2) applies and ¢ already holds on 7 = 7%, then ¢ does not need
to become true anywhere on the computation path. Other temporal operators
can be defined as syntactic abbreviations, using X and W. So G¢ is short for
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¢oWtalse (“¢ holds globally on 7”), F¢ is short for ~G—¢ (“finally ¢ holds on
"), and ¢U% is short for pW1p A Fip (this is the “normal” until operator which
guarantees that finally ¢ will hold).

Summarising, every testable requirement corresponds to a safety property of
the model, and it can be formally specified by means of a Safety LTL formula.

Black-Box Requirements Specification vs. Model-Based Requirements
Specification. There is a fundamental distinction between application of tem-
poral logic as black-box specifications on the one hand, and for specification of
model properties on the other hand. In the former case, there does not exist a
behavioural model, but just a black-box with a declaration of input and out-
put variables. Requirements REQ are then typically specified by LTL formulas
structured like
YrEQ = G(¥1 = ¢2)

with the informal meaning that “in every sequence of interface observations,
an observation state fulfilling the pre-condition 1 shall also fulfil the required
reaction 1o”. The computations where the effect of ¥rrq can be observed are
the ones fulfilling Fi;. In the latter case, the existence of a model allows for
referring to both interfaces and internal state variables. Moreover, the required
reactions are already encoded in the model. As a consequence, the model prop-
erty containing all computations witnessing ¥rrq can be specified much simpler
by
w{{EQ =Fy;

with the implicit assumption, that only model computations are considered. Here
¥} is an equivalent to 11, so that the restriction of model computations satisfying
Y} to interface observations results in observation sequences satisfying 7.2 If
requirement REQ has been modelled correctly, every computation satisfying
F1)], when restricted to interface observations, will also satisfy (Fyq)A (G (¢, =

P2)).

Model Coverage. The intuitive meaning of computations covering certain por-
tions of a model can be formalised; this is achieved in the most effective way by
defining coverage for the different syntactic elements occurring in the concrete
modelling formalism.

(1) A control mode, such as the simple state OFF in the SysML state machine
shown in Fig. 6, is covered by every computation containing a model state whose
valuation indicates that this simple state is active. If, for example, a Boolean
encoding of simple states is used, s;(OFF) = true indicates that simple state OFF
is active in model state s;. (2) A state machine transition, such as OFF — ON
in Fig. 6, is covered by computations containing a state s; covering the source
state, and where the transition’s guard condition evaluates to true, such that
the action associated with the transition contributes to the effect of the model

2 If 4y is stuttering invariant, we have ] = ;.
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state transition s; — s;41. In the example from Fig.6 the condition for the
transition to fire in state s; is®

5;(OFF) A (t — t > 320).

Here the SysML time event after(320) (“after having stayed in OFF for 320 ms”)
is internally encoded by the actual model execution time ¢ and the auxiliary
variable ¢ storing the execution time when state OFF had been entered. (3) An
action is covered by computations containing model state transitions s; — s;41
where the action contributes to the state changes involved when transiting from
s; to s;4+1. The state machine transition considered in (2), for example, covers
action 1 = (10 == 1); r = (£10 == 2);. When the associated transition is
triggered in state s;, the action’s effect is visible in s;41 as

Si+1(ON) AN 87;+1(1) = (Sl(tl()) = 1) AN 8i+1(1‘) = (Sz(tIO) = 2)

(4) An interface is covered by computations containing model state transitions
changing the valuation of the interface variables involved. (5) A structural com-
ponent — such as a block in SysML — is covered by computations stimulating its
associated behaviours (state machines, operations, activities, ...).

These examples show that model coverage goals can also be regarded as model
properties: the property contains all computations covering a given element or
a set of elements. In the example above, the property “transition OFF — ON is
covered” can be specified using LTL by

F(OFF A XON).

Formalisation of SysML Requirements Tracing. The considerations above
result in a mechanisable formalisation of the SysML requirements tracing con-
cept. As indicated in Fig. 6, for example, behavioural model elements like control
modes and transitions can be linked in SysML to requirements by using the «sat-
isfy» relationship. The intuitive meaning of this example is that the transition
OFF — ON contributes to the realisation of requirement REQ-001.

The graphical notation using the «satisfy» relationship is adequate for
requirements whose witnesses can be specified by formulas

(Fpn) VooV (Fibn),

meaning “all computations associated with the requirement finally fulfil at least
one of sub-properties V1, ...,%,". Investigations performed in cooperation with
a customer from the automotive domain showed that in typical test models
80 % of the requirements can be identified by simple sub-property disjunctions
of this kind. For 20 % more complex requirements, more complex LTL formulas
are required, and these are not representable by simple «satisfy» annotations

3 Note that this simple condition only applies for deterministic state machines; the
encoding is more complex for the nondeterministic case.
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linking elements to requirements. These situations not only arise when model
elements have to be covered in a specific sequence, but also when requirements
are reflected by certain model variable valuations instead of graphical elements
like state machine transitions or simple states.

Consider, for example, the requirement REQ-002 about the tip flashing func-
tionality explained in Sect. 3. The computations witnessing this requirement need
to visit a model state where flashing is active (this can be specified by tl0 > 0),
the turn indication lever is back in neutral position (tl = 0), but less than three
flash cycles have been performed (¢ < 3). Moreover, we need to continue observ-
ing this computation until ¢ = 3, so that it can be checked that the indication is
switched off after the last mandatory cycle. Summarising this in an LTL formula,
the computations witnessing REQ-002 are specified by

Ftl=0Atl0>0Ac<3A(tI=0U c>3)).

For defining such a witness specification in a SysML model, the RT-Tester
profile introduces blocks stereotyped as «witness». These blocks are introduced
in the SUT decomposition (see Fig. 4), so that interface variables and local SUT
variables are in the scope of the formula to be specified. The LTL formula is
inserted into the block’s constraint compartment. Then the witness specification
is linked to the associated requirement using again the «satisfy» relation (see
requirements diagram in Fig. 7). Requirements without witness blocks are linked
directly to other model elements as shown above for REQ-001.

It should be noted that we cannot use the existing UML/SysML concepts
of constraints and constraint blocks to specify witnesses for requirements: con-
straints and constraint blocks are used to restrict the admissible behaviour spec-
ified in other model portions. In contrast to this, we only wish to identify the
subset of computations contributing to a given requirement; all other executions
implied by the model are legal as well. Note further that we expect to change the
syntax for specifying witnesses with LTL in the future, as soon as LTL has been
integrated into the Object Constraint Language OCL which seems to become
the accepted standard for specifying constraints in UML and SysML [18,32].

Automated Requirements-Based Test Case Identification. In
requirements-driven testing, test cases are witnesses for the model properties
1) representing requirements as discussed above, such that a property violation
can be detected within a maximal number of k£ steps. This can be specified by
propositions of the type

te = path(sg, k) A G(so, - - -, Sk) (1)
with
k
path(so, k) = Z(s0) A [\ ®(si-1.s:) (2)
=1

Proposition Z(sg) specifies admissible initial model states, ¢ is the model’s tran-
sition relation in propositional form. Proposition path(sg, k) states that state
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sequence Sg, ..., Sk is a prefix of a model computation: each pair of states is con-
tained in the transition relation. The proper test case tc specifies that we are look-
ing for a model computation prefix fulfilling additional property G(so, ..., Sk).
Obviously G is the propositional logic equivalent to the LTL property v reflecting
the requirement in the model, or for a more specific variant ¢ satisfying ¢ = .
In any case, only witnesses are considered that make G become true within k
steps. We use the finite encoding of LTL formulas described in [3] to transform
¢ into propositional form G. The finite encoding of ¢ = F(OFF A —t > 320),
for example, is

k
(I;E \/ si(OFF) A s;(f) — s;(t) > 320)

Automated Test Data Generation. Test case representations of the kind
described above are still abstract (or symbolic), since they do not show the
concrete test data that should be taken during a test execution. We use an
SMT solver to solve constraints of the type t¢ = path(sg, k) A G(so,- .., Sk)-
The solver SONOLAR handles integer, bit vector, and floating point arithmetic
and supports a theory for handling arrays [25]. The solution of tc¢ contains a
sequence of input vectors to the SUT plus associated time stamps indicating
how much time should pass between two consecutive inputs, so that specific
timing conditions derived from the model are met.

In [21] it is shown how test oracles are generated automatically from test
models.

5 MBT Strategies with Guaranteed Test Strength

5.1 Problem Statement

Just switching from conventional testing to model-based testing will make the test-
ing process more efficient, but it will not necessarily increase the strength — that
is, the error detection capabilities — of the test suites produced by following the
MBT paradigm. In particular, the test strength of well-known model coverage cri-
teria like transition coverage or MC/DC coverage for state machines depends on
the syntactic representation of the model. This means that semantically equivalent
models will lead to test suites of different strength when applying these strategies,
just because their syntactic representation differs. This is because these strategies
generate test cases just by traversing the abstract syntax tree, without investigat-
ing the model semantics [23].

Even if a test case generation strategy is independent on the syntactic model
representation, this does not automatically imply that it is clear which types of
errors will be uncovered by the test suites generated according to this strategy.

5.2 Failure Models and Complete Testing Strategies

The second problem described above has been effectively tackled by introduc-
ing failure models. When slightly abstracting the original notions introduced in
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[4,17,27] in the context of testing against finite state machine (FSM) models,
a failure model F = (S, <, D) consists of a reference model S, a conformance
relation < between models, and a failure domain specifying a set of models &’
that may or may not conform to S.*

A test strategy is complete if, given a failure model F, it produces complete
test suites. The latter are complete if every SUT whose true behaviour is captured
by a model & in the failure domain D, passes every test case in the suite,
if and only if 8’ < S holds. For behaviours corresponding to models outside
the failure domain, no guarantees are made. This cannot be avoided in the
context black box testing, because the internal SUT state cannot be monitored
during tests. Therefore hidden “time bombs” — for example, counters that trigger
non-conforming behaviour after a certain value has been reached — cannot be
detected.

The conformance relations of interest in the context of this paper are I/0-
equivalence (reference model and SUT can perform exactly the same input out-
put traces) and reduction (the observable I/O-behaviour of the SUT is a subset
of the behaviours that can be performed by the reference model).

The first complete test strategies have been elaborated for determinis-
tic FSMs, see, for example, [6,35]. This has been extended to nondetermin-
istic FSMs [9,16,26,28|, extended finite state machines, and process alge-
bras [8,20,33]. The failure domain for FSM testing contains FSMs M’ with the
same input/output alphabets as the reference FSM M, such that the observable
minimal state machine (the so-called prime machine) associated with M has n
states, and the prime machine associated with M’ has at most n + m states for
some m > 0.

Due to their completeness properties, the number of test cases produced by
these strategies is only manageable for input alphabets, state domains, and m-
values of moderate size. To handle at least control systems with infinite input
domains (but still finite internal domains for internal states and outputs), we
have developed a complete input equivalence class testing strategy in the context
of deterministic Kripke structures with input, output, and internal state vari-
ables [11] (in [10] it has been shown that the strategy can be extended to non-
deterministic models). The essential observation for this strategy is that Kripke
structures of this kind can be abstracted to deterministic FSMs, such that the
input equivalence classes represent the input alphabets of these FSMs. Then it
can be shown that complete test suites on FSM level can be translated to test
suites on Kripke structure level, and this translation preserves the completeness
property.

The failure domain now contains Kripke structures S’ whose abstraction
to observable minimal FSMs does not contain more than m additional states
when compared to the prime machine abstracted from the reference model S.
Moreover, the input equivalence class partition Z derived from the reference
model also has to be a suitable partition for the SUT model S’. Since the SUT

* In [30], a finer distinction between fault models, failure models, and defect models
is made. Our approach described in this paper is focused on failure models.
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model is unknown in the context of black box testing, these assumptions cannot
be verified in general. However, by increasing m and by refining 7, the size
of the failure domain is increased. The size of the test suite, however, grows
exponentially with the size of m and the number of refinements performed on Z.

To avoid this exponential growth it has been shown experimentally, that
the strength of this equivalence class strategy is very high for SUT behaviours
outside the fault domain, if random and boundary value selections are performed
each time a representative of an input class is needed. This has been shown by
means of case studies from different domains [13,24].

5.3 Transformation-Independent Equivalence Classes

To overcome the first problem stated above, an algorithm has been designed that
starts with any syntactic representation of the reference model and calculates a
preliminary input equivalence partition Z and its associated FSM M which is
first made observable and minimised. This FSM is then analysed with respect to
different inputs X;, X; leading to the same post states ¢’ and produce the same

X, /b X;/b .
outputs b(q) for all pairs of transitions g /%) q, q 1/50) ¢’ emanating

from the same state ¢. Since the FSM inputs represent input equivalence classes,
these pairs X;, X; can be aggregated to a single input equivalence class X; U X;.
It can be shown that the resulting classes are invariant under syntactic model
transformations, as long as they do not change the behavioural semantics.

More details about this algorithm and the underlying model-independent
testing theory have been presented in [23].

5.4 Output Equivalence Class Testing

In practical testing, it is often suggested to combine input equivalence classes
with output equivalence classes [15]: the output domains of the SUT are par-
titioned such that the SUT can be assumed to compute members of the same
output class in the same way. Then input partitions are constructed such that
members of the same input class will produce SUT outputs from the same output
class.

It is noteworthy to point out that implicitly, the notion of output equivalence
classes has already been covered by the theory above, at least for the systems
with infinite inputs and finite internal states and outputs we are dealing with
in this paper. In practise, simple model transformations allow for output equiv-
alence class testing with the same methods — and therefore also with the same
failure detection guarantees — as input equivalence class testing.

To see this, consider an SUT model with inputs @ from an infinite domain,
and internal state variables m and outputs y from finite domains, as shown in
Fig.8. Assume that (k + 1) output equivalence classes have been specified by
means of propositions ¥;(y),i =0, ..., k: the predicate ¥;(y) evaluates to true
for a given output tuple y, if and only if y is a member of class ¢. Now transform
the model in the following (mechanisable) way.
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SUT Model

()

Fig. 8. Initial SUT model.

SUT Model

e=0 < \I/U(y)

e=k & Yuy)

Fig. 9. Transformed SUT model with output equivalence class abstraction.

1. Re-declare the tuple of output variables y as internal model variables, extend-
ing the internal model state m to (m,y).

2. Introduce a new output variable e ranging over the output equivalence class
identifications 0, ..., k.

3. Introduce a new block into the model which inputs y and sets output e to
i €40,...,k}, if and only if ¥;(y) evaluates to true.

The resulting model is depicted in Fig. 9.

6 Requirements-Driven, Model-Driven, and
Property-Driven Testing

Model-based testing can be approached from three different perspectives. In
requirements-driven testing, the objective is to cover all requirements defined
as quickly and comprehensively as possible. As described Sect. 4, requirements
can be automatically associated with test cases, and these can be automatically
associated with concrete test data and executed in procedures.
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In model-driven testing, the main objective is to check the SUT’s confor-
mance to the behaviour of the reference model. It has been shown in the pre-
vious section how this can be achieved, even with guaranteed failure detection
capabilities. If I/O-equivalence is used as conformance relation, the model-driven
approach automatically checks that also the requirements linked to the model
have been correctly implemented. It is verified by the associated complete test
suites whether the SUT shows only I/O-behaviour that is accepted by the refer-
ence model; as a consequence, I/O-traces performed by the SUT and violating
a requirement would be detected by some test cases. Moreover, I/O-equivalence
guarantees that the witness traces for each requirement — as far as observable at
the SUT interface — can also be performed by the SUT, so no requirement has
been forgotten in the implementation (note that this would not be guaranteed
when testing for language inclusion).

In property-driven testing, a desired system property ¢ is specified — this
corresponds to verifying a single requirement while “not caring” about the others
that should also be fulfilled by the SUT. Of course, ¢ can be specified using LTL.
In theory, the property-driven test perspective differs considerably from the other
two, because it could be handled as follows.

— Generate the most nondeterministic model S, satisfying just ¢ (and of course
all of its implications). This model can be created automatically from ¢, since
LTL formulas can be represented by Biichi automata [2].

— Calculate the input equivalence partitioning 7 for S,, as described in the
previous section — this is necessary as soon as @ refers to variables with infinite
domains.

— Make an estimate for a refined input partitioning 7 that is adequate for the
SUT.

— Make an estimate m how many additional states the prime machine associ-
ated with the true SUT behaviour has, when compared to the prime machine
associated with S,.

— Create a test suite which is complete for failure model F = (S, <, D), where
the failure domain D contains all models S’ for which 7 is a valid input
equivalence class partitioning and whose associated prime machines have at
most m more states, when compared to the prime machine of S,.

The property-driven test approach appears very attractive, since the ref-
erence model can be generated automatically from the property specification.
There are, however, still several open research-related questions preventing the
direct practical application. The most critical problem is that test suites derived
from S, will frequently have to deal with quite large values of m, and the size
of the test suite increases exponentially with this value. From our perspec-
tive it seems promising to refine S, with asserted knowledge about the SUT
(e.g. further properties that have already been proven or with an additional
model restricting the possible behaviours of the SUT), in order to reduce the
size of the test suite.
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7 Conclusion

We have described an approach to model-based testing that is currently prac-
tically applied by Verified Systems International for safety-related tests in the
avionic, railway, and automotive domains. The methods described here have
been implemented in the MBT component of Verified’s test automation tool
RT-Tester. Licences need to be obtained for this tool’s commercial application,
but it is freely available for research purposes. While considerable expertise is
required to develop effective test models, skilled testing teams usually obtain a
significant return of investment even in new testing campaigns where the test
model has to be created from scratch: from projects performed at Verified Sys-
tems we estimate that MBT campaigns performed with MBT experts require
at least 30 % less effort in comparison to conventional testing campaigns, just
because test case identification, test data calculation and test procedure pro-
gramming is automated. The efficiency is increased further in regression testing
campaigns, where only small changes of the test model are required.
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Abstract. This paper presents a novel counter-example guided abstrac-
tion refinement algorithm for the automatic verification of concurrent
programs. Our algorithm proceeds in different steps. It first constructs
an abstraction of the original program by slicing away a given subset of
variables. Then, it uses an external model checker as a backend tool to
analyze the correctness of the abstract program. If the model checker
returns that the abstract program is safe then we conclude that the orig-
inal one is also safe. If the abstract program is unsafe, we extract an
“abstract” counter-example. In order to check if the abstract counter-
example can lead to a real counter-example of the original program,
we add back to the abstract counter-example all the omitted variables
(that have been sliced away) to obtain a new program. Then, we call
recursively our algorithm on the new obtained program. If the recursive
call of our algorithm returns that the new program is unsafe, then we
can conclude that the original program is also unsafe and our algorithm
terminates. Otherwise, we refine the abstract program by removing the
abstract counter-example from its set of possible runs. Finally, we repeat
the procedure with the refined abstract program. We have implemented
our algorithm, and run it successfully on the concurrency benchmarks in
SV-COMP15. Our experimental results show that our algorithm signifi-
cantly improves the performance of the backend tool.

1 Introduction

Leveraging concurrency effectively has become key to enhancing the performance
of software, to the degree that concurrent programs have become crucial parts of
many applications. At the same time, concurrency gives rise to enormously com-
plicated behaviors, making the task of producing correct concurrent programs
more and more difficult. The main reason for this is the large number of pos-
sible computations caused by many possible thread (or process) interleavings.
Unexpected interference among threads often results in Heisenbugs that are dif-
ficult to reproduce and eliminate. Extensive efforts have been devoted to address
this problem by the development of testing and verification techniques. Model
checking addresses the problem by systematically exploring the state space of a
given program and verifying that each reachable state satisfies a given property.
Applying model checking to realistic programs is problematic, due to the state
explosion problem. The reason is that we need (1) to exhaustively explore the
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entire reachable state space in all possible interleavings, and (2) to capture and
store a large number of global states.

Counter-Example Guided Abstraction Refinement (CEGAR) (e.g., [4,5,11,
15,17]) approach is one of the successful techniques for verifying programs. This
approach consists in four basic steps:

— Abstraction step: Construct a finite-state program as an abstraction of the
original program using predicate abstraction (with a set of predicates) and go
to the Verification step.

— Verification step: Use a model checker to check if the constructed finite state
program satisfies the desired property. If it is the case, then the original pro-
gram satisfies also the property and the verification algorithm terminates;
otherwise extract a counter-example and go to the Analysis step.

— Analysis Step: Check if the retuned counter example is spurious or not. If it
is not, then we have a real bug in the original program and the verification
algorithm terminates; otherwise go to the Refinement step.

— Refinement Step: If the counter-example is spurious, refine the set of used
predicates in the Abstraction step to eliminate the counter example. Return
to the Abstraction step with this new refined set of predicates.

The CEGAR approach has been successfully implemented in tools, such as
SLAM [4], BLAST [5], MAGIC [8] and CPACHECKER [6]. However, CEGAR
may also suffer from the state-space exploring problem in the case of concurrent
programs due to the large number of possible interleavings.

In this paper we present a variant of the CEGAR algorithm (called Counter-
Example Guided Program Verification (CEGPV)) that addresses the state-space
explosion problem encountered in the verification of concurrent programs. The
work-flow of our CEGPYV algorithm is given in Fig.1. The algorithm consists
of four main modules, the abstraction, the counter-ezample mapping, the recon-
struction and the refinement. It also uses an external model checker tool.

The abstraction module takes as input a concurrent program P and a subset
Vy of its shared variables. It then constructs an over-approximation of the pro-
gram P, called P’, as follows. First, it keeps variables in the set V¢ and slices
away all other variables of the program P. Occurrences of the sliced variables are
replaced by non-deterministic values. Second, some instructions, where the sliced
variables occur, in the program P can be removed. Then, the model checker takes
as input P’, and checks whether it is safe or not. If the model checker returns
that P’ is safe, then P is also safe, and our algorithm terminates. If P’ is unsafe,
then the model checker returns a 