
John Fitzgerald
Constance Heitmeyer
Stefania Gnesi
Anna Philippou (Eds.)

21st International Symposium
Limassol, Cyprus, November 9–11, 2016
Proceedings

FM 2016:
Formal MethodsLN

CS
 9

99
5

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 9995

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

John Fitzgerald • Constance Heitmeyer
Stefania Gnesi • Anna Philippou (Eds.)

FM 2016:
Formal Methods
21st International Symposium
Limassol, Cyprus, November 9–11, 2016
Proceedings

123

Editors
John Fitzgerald
Newcastle University
Newcastle upon Tyne
UK

Constance Heitmeyer
US Naval Research Laboratory
Washington, DC
USA

Stefania Gnesi
ISTI-CNR
Pisa
Italy

Anna Philippou
University of Cyprus
Nicosia
Cyprus

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-48988-9 ISBN 978-3-319-48989-6 (eBook)
DOI 10.1007/978-3-319-48989-6

Library of Congress Control Number: 2016956000

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Over nearly three decades since its foundation in 1987, the “FM” Symposium has
become a central part of the intellectual and social life of the Formal Methods com-
munity. We are therefore delighted to present the proceedings of FM 2016, the 21st

symposium in the series, held in Limassol, Cyprus, during November 9–11, 2016.
Throughout these years, Springer has supported the symposium through its Lecture
Notes in Computer Science (LNCS) series. It is therefore with particular pleasure that
we present this year’s proceedings as the first volume in the new LNCS subline on
Formal Methods. The creation of this subline reflects the maturity and growing sig-
nificance of the discipline.

The 2016 symposium received 162 submissions to the main track – the largest
number of contributions to a regular symposium in the FM series to date. Review of
each submission by at least three Program Committee members followed by a dis-
cussion phase led to the selection of 43 papers – an acceptance rate of 0.265. These
proceedings also contain six papers selected by the Program Committee of the Industry
Track chaired by Georgia Kapitsaki (University of Cyprus), Tiziana Margaria
(University of Limerick and Lero, Ireland), and Marcel Verhoef (European Space
Agency, The Netherlands).

We were honored that three of the most creative and respected members of our
community – Manfred Broy (Technical University of Munich), Peter O’Hearn
(University College London, and Facebook), and Jan Peleska (University of Bremen
and Verified Software International) – accepted our invitation to give keynote presen-
tations at the symposium. Also scheduled during FM 2016 were four workshops
selected by the Workshop Chairs, Nearchos Paspallis (University of Central Lancashire
in Cyprus) and Martin Steffen (University of Oslo), eight tutorials selected by the
Tutorial Chairs, Dimitrios Kouzapas (Glasgow University) and Oleg Sokolsky
(University of Pennsylvania), and eight papers to be presented at a Doctoral Symposium
organized by Andrew Butterfield (Trinity College Dublin) and Matteo Rossi (Politec-
nico di Milano). The resulting FM 2016 program reflects the breadth and vibrancy of
both research and practice in formal methods today.

As in previous years, FM 2016 attracted submissions from all over the world: 299
authors from 22 European countries, 126 authors from eight Asian countries, 64
authors from North America, 24 authors from five countries in South America, 16
authors from Australia and New Zealand, and five authors from two African countries,
Algeria and Tunisia. The largest number of authors from a single country were from
China (58), the second largest number of authors came from France (56), the third
largest number of authors were from the UK (53), and the fourth largest number of
authors were from the USA (45).

Last year, the FM community mourned the passing of Prof. Peter Lucas, a former
chair of the FME Association and a founding figure of the formal methods discipline.

This year, as a symposium highlight, we celebrated Peter’s achievements by presenting
the first Lucas Award for a highly influential paper in formal methods.

We are grateful to all involved in FM 2016, particularly the Program Committee
members, subreviewers, and other committee chairs. The excellent local organization
and publicity groups, chaired by Yannis Dimopoulos, Chryssis Georgiou, and George
Papadopoulos (University of Cyprus), deserve special thanks.

Much of the symposium’s activity would be impossible without the support of our
sponsors. We gratefully acknowledge the support of: Springer, the Cyprus Tourism
Organization, the University of Cyprus, and DiffBlue.

September 2016 John S. Fitzgerald
Stefania Gnesi

Constance Heitmeyer
Program Co-chairs

Anna Philippou
General Chair

VI Preface

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Bernhard K. Aichernig TU Graz, Austria
Myla Archer Naval Research Laboratory, USA
Gilles Barthe IMDEA Software Institute, Spain
Nikolaj Bjorner Microsoft Research, USA
Michael Butler University of Southampton, UK
Andrew Butterfield Trinity College, University of Dublin, Ireland
Ana Cavalcanti University of York, UK
David Clark UCL, UK
Frank De Boer CWI, The Netherlands
Ewen Denney SGT/NASA Ames, USA
Jin Song Dong National University of Singapore, Singapore
Javier Esparza Technical University of Munich, Germany
John Fitzgerald Newcastle University, UK
Vijay Ganesh University of Waterloo, Canada
Diego Garbervetsky Universidad de Buenos Aires, Argentina
Dimitra Giannakopoulou NASA Ames, USA
Stefania Gnesi ISTI-CNR, Italy
Wolfgang Grieskamp Google, USA
Arie Gurfinkel University of Waterloo, Canada
Anne E. Haxthausen Technical University of Denmark, Denmark
Ian Hayes University of Queensland, Australia
Constance Heitmeyer Naval Research Laboratory, USA
Thai-Son Hoang University of Southampton, UK
Jozef Hooman TNO-ESI and Radboud University Nijmegen,

The Netherlands
Laura Humphrey Air Force Research Laboratory, USA
Ralf Huuck UNSW/SYNOPSYS, Australia
Fuyuki Ishikawa National Institute of Informatics, Japan
Einar Broch Johnsen University of Oslo, Norway
Cliff Jones Newcastle University, UK
Georgia Kapitsaki University of Cyprus, Cyprus
Joost-Pieter Katoen RWTH Aachen University, Germany
Gerwin Klein NICTA and UNSW, Australia
Laura Kovacs Vienna University of Technology, Austria
Thomas Kropf Bosch, Germany
Peter Gorm Larsen Aarhus University, Denmark

Thierry Lecomte ClearSy, France
Yves Ledru Université Grenoble Alpes, France
Rustan Leino Microsoft Research, USA
Elizabeth Leonard Naval Research Laboratory, USA
Martin Leucker University of Lübeck, Germany
Michael Leuschel University of Düsseldorf, Germany
Zhiming Liu Southwest University, China
Tiziana Margaria University of Limerick and Lero, Ireland
Mieke Massink CNR-ISTI, Italy
Annabelle McIver Macquarie University, Australia
Dominique Mery Université de Lorraine, LORIA, France
Peter Müller ETH Zürich, Switzerland
Tobias Nipkow TU München, Germany
Jose Oliveira Universidade do Minho, Portugal
Olaf Owe University of Oslo, Norway
Sam Owre SRI International, USA
Anna Philippou University of Cyprus, Cyprus
Nico Plat Thanos and West IT Solutions, The Netherlands
Elvinia Riccobene University of Milan, Italy
Judi Romijn Movares, The Netherlands
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Andreas Roth SAP Research, Germany
Augusto Sampaio Federal University of Pernambuco, Brazil
Gerardo Schneider Chalmers University of Gothenburg, Sweden
Natasha Sharygina University of Lugano, Switzerland
Marjan Sirjani Reykjavik University, Iceland
Ana Sokolova University of Salzburg, Austria
Jun Sun Singapore University of Technology and Design,

Singapore
Kenji Taguchi AIST, Japan
Stefano Tonetta FBK-irst, Italy
Marcel Verhoef European Space Agency, The Netherlands
Aneta Vulgarakis Ericsson, Sweden
Alan Wassyng McMaster University, Canada
Heike Wehrheim University of Paderborn, Germany
Michael Whalen University of Minnesota, USA
Jim Woodcock University of York, UK
Fatiha Zaidi University of Paris-Sud, France
Gianluigi Zavattaro University of Bologna, Italy
Jian Zhang Chinese Academy of Sciences, China
Lijun Zhang Chinese Academy of Sciences, China

VIII Organization

Additional Reviewers

Aestasuain, Fernando
Aguirre, Nazareno
Ait Ameur, Yamine
Almeida, José Bacelar
Alt, Leonardo
Ambrona, Miguel
Andronick, June
Antignac, Thibaud
Arcaini, Paolo
Arming, Sebastian
Asadi, Sepideh
Azadbakht, Keyvan
Bagheri, Maryam
Bai, Guangdong
Bak, Stanley
Bandur, Victor
Bartocci, Ezio
Basile, Davide
Bertrand, Nathalie
Berzish, Murphy
Bonacina, Maria Paola
Bornat, Richard
Bourke, Timothy
Braghin, Chiara
Bravetti, Mario
Bright, Curtis
Bubel, Richard
Calinescu, Radu
Carvalho, Gustavo
Cassez, Franck
Castaño, Rodrigo
Chawdhary, Aziem
Chen, Xiaohong
Chen, Xin
Ciancia, Vincenzo
Ciriani, Valentina
Colom, José Manuel
Colvin, Robert
Cremers, Cas
Dalvandi, Mohammadsadegh
Dang, Thao
Decker, Normann
Dehnert, Christian

Delzanno, Giorgio
Demasi, Ramiro
Dghaym, Dana
Dimovski, Aleksandar S.
Dobrikov, Ivaylo
Dodds, Mike
Donat-Bouillud, Pierre
Dong, Naipeng
Dutertre, Bruno
Díaz, Gregorio
Engelmann, Björn
Fantechi, Alessandro
Fedyukovich, Grigory
Fokkink, Wan
Foster, Simon
Fox, Anthony
Freitas, Leo
Ghassabani, Elaheh
Habli, Ibrahim
Herbelin, Hugo
Heunen, Chris
Holzer, Andreas
Huisman, Marieke
Hyvärinen, Antti
Höfner, Peter
Immler, Fabian
Inoue, Jun
Jacob, Jeremy
Jafari, Ali
Jakobs, Marie-Christine
Jansen, Nils
Jegoure, Cyrille
Johansen, Christian
Junges, Sebastian
Katis, Andreas
Khamespanah, Ehsan
Kotelnikov, Evgenii
Kremer, Gereon
Kretinsky, Jan
Krämer, Julia Désirée
Kumar, Ramana
Laarman, Alfons
Lallali, Mounir

Organization IX

Lanese, Ivan
Laporte, Vincent
Li, Qin
Li, Xiaoshan
Li, Ximeng
Lienhardt, Michael
Lochau, Malte
Luttenberger, Michael
Ma, Feifei
Macedo, Hugo Daniel
Macedo, Nuno
Mallouli, Wissam
Marescotti, Matteo
Markin, Grigory
Martinelli, Fernan
Matheja, Christoph
Matichuk, Daniel
Mattarei, Cristian
Melgratti, Hernan
Melquiond, Guillaume
Menéndez, Héctor
Mohaqeqi, Morteza
Mori, Akira
Mota, Alexandre
Mu, Chunyan
Mu, Kedian
Nakata, Akio
Nejati, Saeed
Nguyen, Huu Nghia
Nogueira, Sidney C.
Núñez, Manuel
Olmedo, Federico
Park, Daejun
Pavese, Esteban
Perez, Gervasio
Petke, Justyna
Plat, Nico
Popescu, Andrei
Prabhakar, Pavithra
Proenca, Jose
Rabehaja, Tahiry
Radoi, Cosmin
Rakamaric, Zvonimir
Ratschan, Stefan
Ray, Sayak
Rezazadeh, Abdolbaghi

Ritter, Eike
Rizkallah, Christine
Robillard, Simon
Sangnier, Arnaud
Savicks, Vitaly
Scheffel, Torben
Schoepe, Daniel
Schumi, Richard
Schupp, Stefan
Serbanuta, Traian Florin
Sharifi, Zeinab
Shaver, Chris
Shi, Ling
Silva, Alexandra
Singh, Neeraj
Smetsers, Rick
Smith, Graeme
Snook, Colin
Spagnolo, Giorgio Oronzo
Spoletini, Paola
Stefanescu, Andrei
Steffen, Martin
Steinhorst, Sebastian
Strub, Pierre-Yves
Subramanyan, Pramod
Suda, Martin
Summers, Alexander J.
Sun, Meng
T. Vasconcelos, Vasco
Tan, Tian Huat
Tappler, Martin
Teixeira, Leopoldo
Ter Beek, Maurice H.
Thoma, Daniel
Thüm, Thomas
Timm, Nils
Tiwari, Ashish
Toews, Manuel
Travkin, Oleg
Urban, Caterina
Vafeiadis, Viktor
Van Eijck, Jan
Varshosaz, Mahsa
Velykis, Andrius
Voelzer, Hagen
Voisin, Frederic

X Organization

Volk, Matthias
Wilkinson, Toby
Wimmer, Ralf
Winter, Kirsten
Wolff, Burkhart
Wong, Peter
Wu, Xi
Wu, Zhilin
Yadav, Maneesh

Yamagata, Yoriyuki
Yatapanage, Nisansala
Yovine, Sergio
Yu, Ingrid Chieh
Zeyda, Frank
Zhao, Hengjun
Zhao, Liang
Zoppi, Edgardo
Zulkoski, Ed

Organization XI

Abstracts of Invited Talks

A Logical Approach to Systems Engineering
Artifacts: Semantic Relationships

and Dependencies beyond Traceability - From
Requirements to Functional
and Architectural Views

Manfred Broy

Institut für Informatik, Technische Universität München, 80290 Munich,
Germany

Abstract. Not only system assurance drives a need for semantically richer
relationships across various artifacts, work products, and items of information
than are implied in the terms “trace and traceability” as used in current standards
and textbooks. This paper deals with the task of working out artifacts in software
and system development, their representation, and the analysis and documen-
tation of the relationships between their logical contents - herein referred to as
tracing and traceability; this is a richer meaning of traceability than in standards
like IEEE STD 830. Among others, key tasks in system development are as
follows: capturing, analyzing, and documenting system level requirements, the
step to functional system specifications, the step to architectures given by the
decomposition of systems into subsystems with their connections and behavioral
interactions. Each of these steps produces artifacts for documenting the devel-
opment, as a basis for a specification and a design rationale, for documentation,
for verification, and impact analysis of change requests. Crucial questions are
how to represent and formalize the content of these artifacts and how to relate
their content to support, in particular, system assurance. When designing multi-
functional systems, key artifacts are system level requirements, functional
specifications, and architectures in terms of their subsystem specifications. Links
and traces between these artifacts are introduced to relate their contents.
Traceability has the goal to relate artifacts. It is required for instance in standards
for functional system safety such as the ISO 26262. An approach to specify
semantic relationships is shown, such that the activity of creating and using
(navigating through) these relationships can be supported with automation.

Moving Fast with Program Verification
Technology

Peter W. O’Hearn

Facebook

Abstract. Catching bugs early in the development process improves software
quality and saves developer time. At Facebook, we are building Infer
(fbinfer.com), an open-source static analyzer for Android, iOS, and C++ code
which has its roots in program verification research. In this talk, I will discuss
the challenges we have faced in developing techniques that can cope with
Facebook’s scale and velocity, the challenges of different modes of deployment,
and some lessons we have learned that might be relevant to formal methods
research. Most importantly, adapting to Facebook’s fast-paced engineering
culture – illustrated by the “Move Fast and Break Things” and similar posters
adorning its office walls – has taught us that if verification technology can move
fast, in tune with programmers’ workow, then it will fix more things.

Industrial-Strength Model-Based Testing
of Safety-Critical Systems

Jan Peleska1,2(&) and Wen-ling Huang2

1 Verified Systems International GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science,

University of Bremen, Bremen, Germany
{jp,huang}@cs.uni-bremen.de

Abstract. In this article we present an industrial-strength approach to automated
model-based testing. This approach is applied by Verified Systems International
GmbH in safety-critical verification and validation projects in the avionic, rail-
way, and automotive domains. The SysML modelling formalism is used for
creating test models. Associating SysML with a formal behavioural semantics
allows for full automation of the whole work flow, as soon as the model including
SysML requirements tracing information has been elaborated. The presentation
highlights how certain aspects of formal methods are key enablers for achieving
the degree of automation that is needed for effectively testing today’s safety
critical systems with acceptable effort and the degree of comprehensiveness
required by the applicable standards. It is also explained which requirements
from the industry and from certification authorities have to be considered when
designing test automation tools fit for integration into the verification and vali-
dation work flow set up for complex system developments. From the collection
of scientific challenges the following questions are addressed. (1) What is the
formal equivalent to traceable requirements and associated test cases? (2) How
can requirements based, property-based, and model-based testing be effectively
automated? (3) Which test strategies provide guaranteed test strength, indepen-
dent on the syntactic representation of the model?

Contents

Invited Presentations

Industrial-Strength Model-Based Testing of Safety-Critical Systems. 3
Jan Peleska and Wen-ling Huang

Research Track

Counter-Example Guided Program Verification. 25
Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Bui Phi Diep

Tighter Reachability Criteria for Deadlock-Freedom Analysis 43
Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe

Compositional Parameter Synthesis . 60
Lacramioara Aştefănoaei, Saddek Bensalem, Marius Bozga,
Chih-Hong Cheng, and Harald Ruess

Combining Mechanized Proofs and Model-Based Testing in the Formal
Analysis of a Hypervisor . 69

Hanno Becker, Juan Manuel Crespo, Jacek Galowicz, Ulrich Hensel,
Yoichi Hirai, César Kunz, Keiko Nakata, Jorge Luis Sacchini,
Hendrik Tews, and Thomas Tuerk

A Model Checking Approach to Discrete Bifurcation Analysis 85
Nikola Beneš, Luboš Brim, Martin Demko, Samuel Pastva,
and David Šafránek

State-Space Reduction of Non-deterministically Synchronizing Systems
Applicable to Deadlock Detection in MPI . 102

Stanislav Böhm, Ondřej Meca, and Petr Jančar

Formal Verification of Multi-Paxos for Distributed Consensus 119
Saksham Chand, Yanhong A. Liu, and Scott D. Stoller

Validated Simulation-Based Verification of Delayed Differential Dynamics. . . . 137
Mingshuai Chen, Martin Fränzle, Yangjia Li, Peter N. Mosaad,
and Naijun Zhan

Towards Learning and Verifying Invariants of Cyber-Physical Systems
by Code Mutation . 155

Yuqi Chen, Christopher M. Poskitt, and Jun Sun

http://dx.doi.org/10.1007/978-3-319-48989-6_1
http://dx.doi.org/10.1007/978-3-319-48989-6_2
http://dx.doi.org/10.1007/978-3-319-48989-6_3
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/978-3-319-48989-6_5
http://dx.doi.org/10.1007/978-3-319-48989-6_5
http://dx.doi.org/10.1007/978-3-319-48989-6_6
http://dx.doi.org/10.1007/978-3-319-48989-6_7
http://dx.doi.org/10.1007/978-3-319-48989-6_7
http://dx.doi.org/10.1007/978-3-319-48989-6_8
http://dx.doi.org/10.1007/978-3-319-48989-6_9
http://dx.doi.org/10.1007/978-3-319-48989-6_10
http://dx.doi.org/10.1007/978-3-319-48989-6_10

From Electrical Switched Networks to Hybrid Automata 164
Alessandro Cimatti, Sergio Mover, and Mirko Sessa

Danger Invariants . 182
Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis

Local Planning of Multiparty Interactions with Bounded Horizons 199
Mahieddine Dellabani, Jacques Combaz, Marius Bozga,
and Saddek Bensalem

Finding Suitable Variability Abstractions for Family-Based Analysis 217
Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski

Recovering High-Level Conditions from Binary Programs 235
Adel Djoudi, Sébastien Bardin, and Éric Goubault

Upper and Lower Amortized Cost Bounds of Programs Expressed as Cost
Relations . 254

Antonio Flores-Montoya

Exploring Model Quality for ACAS X. 274
Dimitra Giannakopoulou, Dennis Guck, and Johann Schumann

Learning Moore Machines from Input-Output Traces 291
Georgios Giantamidis and Stavros Tripakis

Modal Kleene Algebra Applied to Program Correctness 310
Victor B.F. Gomes and Georg Struth

Mechanised Verification Patterns for Dafny . 326
Gudmund Grov, Yuhui Lin, and Vytautas Tumas

Formalising and Validating the Interface Description in the FMI Standard . . . 344
Miran Hasanagić, Peter W.V. Tran-Jørgensen, Kenneth Lausdahl,
and Peter Gorm Larsen

An Algebra of Synchronous Atomic Steps . 352
Ian J. Hayes, Robert J. Colvin, Larissa A. Meinicke, Kirsten Winter,
and Andrius Velykis

Error Invariants for Concurrent Traces . 370
Andreas Holzer, Daniel Schwartz-Narbonne, Mitra Tabaei Befrouei,
Georg Weissenbacher, and Thomas Wies

An Executable Formalisation of the SPARCv8 Instruction Set Architecture:
A Case Study for the LEON3 Processor. 388

Zhe Hou, David Sanan, Alwen Tiu, Yang Liu, and Koh Chuen Hoa

XX Contents

http://dx.doi.org/10.1007/978-3-319-48989-6_11
http://dx.doi.org/10.1007/978-3-319-48989-6_12
http://dx.doi.org/10.1007/978-3-319-48989-6_13
http://dx.doi.org/10.1007/978-3-319-48989-6_14
http://dx.doi.org/10.1007/978-3-319-48989-6_15
http://dx.doi.org/10.1007/978-3-319-48989-6_16
http://dx.doi.org/10.1007/978-3-319-48989-6_16
http://dx.doi.org/10.1007/978-3-319-48989-6_17
http://dx.doi.org/10.1007/978-3-319-48989-6_18
http://dx.doi.org/10.1007/978-3-319-48989-6_19
http://dx.doi.org/10.1007/978-3-319-48989-6_20
http://dx.doi.org/10.1007/978-3-319-48989-6_21
http://dx.doi.org/10.1007/978-3-319-48989-6_22
http://dx.doi.org/10.1007/978-3-319-48989-6_23
http://dx.doi.org/10.1007/978-3-319-48989-6_24
http://dx.doi.org/10.1007/978-3-319-48989-6_24

Hybrid Statistical Estimation of Mutual Information for Quantifying
Information Flow . 406

Yusuke Kawamoto, Fabrizio Biondi, and Axel Legay

A Generic Logic for Proving Linearizability . 426
Artem Khyzha, Alexey Gotsman, and Matthew Parkinson

Refactoring Refinement Structure of Event-B Machines 444
Tsutomu Kobayashi, Fuyuki Ishikawa, and Shinichi Honiden

Towards Concolic Testing for Hybrid Systems . 460
Pingfan Kong, Yi Li, Xiaohong Chen, Jun Sun, Meng Sun,
and Jingyi Wang

Explaining Relaxed Memory Models with Program Transformations 479
Ori Lahav and Viktor Vafeiadis

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement . . . 496
Thomas Letan, Pierre Chifflier, Guillaume Hiet, Pierre Néron,
and Benjamin Morin

Automated Verification of Timed Security Protocols with Clock Drift 513
Li Li, Jun Sun, and Jin Song Dong

Dealing with Incompleteness in Automata-Based Model Checking 531
Claudio Menghi, Paola Spoletini, and Carlo Ghezzi

Equivalence Checking of a Floating-Point Unit Against a High-Level C
Model . 551

Rajdeep Mukherjee, Saurabh Joshi, Andreas Griesmayer,
Daniel Kroening, and Tom Melham

Battery-Aware Scheduling in Low Orbit: The GOMX–3 Case 559
Morten Bisgaard, David Gerhardt, Holger Hermanns, Jan Krčál,
Gilles Nies, and Marvin Stenger

Discounted Duration Calculus. 577
Heinrich Ody, Martin Fränzle, and Michael R. Hansen

Sound and Complete Mutation-Based Program Repair 593
Bat-Chen Rothenberg and Orna Grumberg

An Implementation of Deflate in Coq . 612
Christoph-Simon Senjak and Martin Hofmann

Contents XXI

http://dx.doi.org/10.1007/978-3-319-48989-6_25
http://dx.doi.org/10.1007/978-3-319-48989-6_25
http://dx.doi.org/10.1007/978-3-319-48989-6_26
http://dx.doi.org/10.1007/978-3-319-48989-6_27
http://dx.doi.org/10.1007/978-3-319-48989-6_28
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_30
http://dx.doi.org/10.1007/978-3-319-48989-6_31
http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-319-48989-6_33
http://dx.doi.org/10.1007/978-3-319-48989-6_33
http://dx.doi.org/10.1007/978-3-319-48989-6_34
http://dx.doi.org/10.1007/978-3-319-48989-6_35
http://dx.doi.org/10.1007/978-3-319-48989-6_36
http://dx.doi.org/10.1007/978-3-319-48989-6_37

Decoupling Abstractions of Non-linear Ordinary Differential Equations 628
Andrew Sogokon, Khalil Ghorbal, and Taylor T. Johnson

Regression Verification for Unbalanced Recursive Functions 645
Ofer Strichman and Maor Veitsman

Automated Mutual Explicit Induction Proof in Separation Logic 659
Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin

Finite Model Finding Using the Logic of Equality with Uninterpreted
Functions . 677

Amirhossein Vakili and Nancy A. Day

GPUexplore 2.0: Unleashing GPU Explicit-State Model Checking 694
Anton Wijs, Thomas Neele, and Dragan Bošnački

Approximate Bisimulation and Discretization of Hybrid CSP 702
Gaogao Yan, Li Jiao, Yangjia Li, Shuling Wang, and Naijun Zhan

A Linear Programming Relaxation Based Approach for Generating Barrier
Certificates of Hybrid Systems . 721

Zhengfeng Yang, Chao Huang, Xin Chen, Wang Lin, and Zhiming Liu

Industry Track

Model-Based Design of an Energy-System Embedded Controller Using
TASTE . 741

Roberto Cavada, Alessandro Cimatti, Luigi Crema, Mattia Roccabruna,
and Stefano Tonetta

Simulink to UPPAAL Statistical Model Checker: Analyzing Automotive
Industrial Systems . 748

Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu,
Cristina Seceleanu, Oscar Ljungkrantz, and Henrik Lönn

Safety-Assured Formal Model-Driven Design of the Multifunction Vehicle
Bus Controller . 757

Yu Jiang, Han Liu, Houbing Song, Hui Kong, Ming Gu, Jiaguang Sun,
and Lui Sha

Taming Interrupts for Verifying Industrial Multifunction Vehicle Bus
Controllers . 764

Han Liu, Yu Jiang, Huafeng Zhang, Ming Gu, and Jiaguang Sun

XXII Contents

http://dx.doi.org/10.1007/978-3-319-48989-6_38
http://dx.doi.org/10.1007/978-3-319-48989-6_39
http://dx.doi.org/10.1007/978-3-319-48989-6_40
http://dx.doi.org/10.1007/978-3-319-48989-6_41
http://dx.doi.org/10.1007/978-3-319-48989-6_41
http://dx.doi.org/10.1007/978-3-319-48989-6_42
http://dx.doi.org/10.1007/978-3-319-48989-6_43
http://dx.doi.org/10.1007/978-3-319-48989-6_44
http://dx.doi.org/10.1007/978-3-319-48989-6_44
http://dx.doi.org/10.1007/978-3-319-48989-6_45
http://dx.doi.org/10.1007/978-3-319-48989-6_45
http://dx.doi.org/10.1007/978-3-319-48989-6_46
http://dx.doi.org/10.1007/978-3-319-48989-6_46
http://dx.doi.org/10.1007/978-3-319-48989-6_47
http://dx.doi.org/10.1007/978-3-319-48989-6_47
http://dx.doi.org/10.1007/978-3-319-48989-6_48
http://dx.doi.org/10.1007/978-3-319-48989-6_48

Rule-Based Incremental Verification Tools Applied to Railway Designs
and Regulations . 772

Bjørnar Luteberget, Christian Johansen, Claus Feyling,
and Martin Steffen

RIVER: A Binary Analysis Framework Using Symbolic Execution
and Reversible x86 Instructions . 779

Teodor Stoenescu, Alin Stefanescu, Sorina Predut, and Florentin Ipate

Erratum to: Simulink to UPPAAL Statistical Model Checker:
Analyzing Automotive Industrial Systems . E1

Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu,
Cristina Seceleanu, Oscar Ljungkrantz, and Henrik Lönn

Author Index . 787

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-48989-6_49
http://dx.doi.org/10.1007/978-3-319-48989-6_49
http://dx.doi.org/10.1007/978-3-319-48989-6_50
http://dx.doi.org/10.1007/978-3-319-48989-6_50

Invited Presentations

Industrial-Strength Model-Based Testing
of Safety-Critical Systems

Jan Peleska1,2(B) and Wen-ling Huang2

1 Verified Systems International GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science,

University of Bremen, Bremen, Germany
{jp,huang}@cs.uni-bremen.de

Abstract. In this article we present an industrial-strength approach
to automated model-based testing. This approach is applied by Verified
Systems International GmbH in safety-critical verification and validation
projects in the avionic, railway, and automotive domains. The SysML
modelling formalism is used for creating test models. Associating SysML
with a formal behavioural semantics allows for full automation of the
whole work flow, as soon as the model including SysML requirements
tracing information has been elaborated. The presentation highlights
how certain aspects of formal methods are key enablers for achieving the
degree of automation that is needed for effectively testing today’s safety
critical systems with acceptable effort and the degree of comprehensive-
ness required by the applicable standards. It is also explained which
requirements from the industry and from certification authorities have
to be considered when designing test automation tools fit for integration
into the verification and validation work flow set up for complex system
developments. From the collection of scientific challenges the following
questions are addressed. (1) What is the formal equivalent to traceable
requirements and associated test cases? (2) How can requirements based,
property-based, and model-based testing be effectively automated? (3)
Which test strategies provide guaranteed test strength, independent on
the syntactic representation of the model?

Keywords: Model-based testing · Equivalence class partition testing ·
Complete testing theories

1 Introduction

Model-Based Testing. Model-based testing (MBT) can be implemented using
different approaches; this is also expressed in the current definition of MBT
presented in Wikipedia1.

Model-based testing is an application of model-based design for designing
and optionally also executing artifacts to perform software testing or sys-
tem testing. Models can be used to represent the desired behaviour of a

1 https://en.wikipedia.org/wiki/Model-based_testing, 2016-07-11.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 3–22, 2016.
DOI: 10.1007/978-3-319-48989-6_1

https://en.wikipedia.org/wiki/Model-based_testing

4 J. Peleska and W. Huang

System Under Test (SUT), or to represent testing strategies and a test
environment.

In this paper, we follow the variant where formal models represent the desired
behaviour of the SUT, because this promises the maximal return of investment
for the effort to be spent on test model development.

– Test cases can be automatically identified in the model.
– If the model contains links to the original requirements (this is systematically

supported, for example, by the SysML modelling language [19]), test cases can
be automatically traced back to the requirements they help to verify.

– Since the model is associated with a formal semantics, test cases can be repre-
sented by means of logical formulas representing reachability goals, and con-
crete test data can be calculated by means of constraint solvers.

– Using model-to-text transformations, executable test procedures, including
test oracles, can be generated in an automated way.

– Comprehensive traceability data linking test results, procedures, test cases,
and requirements can be automatically compiled.

Objectives. This paper is about model-based functional testing of safety-
critical embedded systems. The test approach discussed here is black box, as
typically performed during HW/SW integration testing or system testing. The
main message of this contribution is twofold.

– Effective automated model-based testing is possible and ready for application
in an industrial context, when specialising on particular domains like safety-
critical embedded systems. Here “effective” means both “high test strength”
and “can be realised with acceptable effort”.

– The considerable test strength that can be achieved using MBT-based testing
strategies can only be exploited when full automation is available. The under-
lying algorithms are too complex and the number of test cases is too high to
be handled in a manual way.

The methods described in this paper have been implemented in the
model-based testing component of Verified Systems’ test automation tool RT-
Tester [21]. They are applied in testing campaigns for customers from the avionic,
railway, and automotive domains. As of today, the applicable standards [5,14,36]
do not yet elaborate on how MBT should be integrated into the workflow of
development, validation, and verification campaigns for safety-critical systems.
The description in this paper, however, is consistent with the general test-related
requirements that can be found in these standards.

Overview. In Sect. 2, the workflow of typical testing campaigns in industry
is compared to the extended workflow required for using MBT in practise. In
Sect. 3, the development of test models with SysML is described, and a sim-
ple example is presented. In Sect. 4, we outline the underlying formal concepts

Industrial-Strength Model-Based Testing 5

enabling the automated test case identification and compilation of traceability
data linking test cases to requirements. The question of test strength is discussed
in Sect. 5, and the underlying theory that has been implemented in RT-Tester
is described. In Sect. 6, three different perspectives for approaching MBT are
described. Conclusions are presented in Sect. 7.

References to related work are given throughout the text. Notable overview
material on MBT can be found in [1,29,34].

2 Conventional Testing Workflow vs. MBT Workflow

The workflow of conventional industrial test campaigns is shown in Fig. 1.
All standards related to safety-critical systems verification emphasise that
requirements-based testing should be the main focus of each campaign. Require-
ments are typically specified in natural language, but preferably as “atomic”
statements that do not need to be decomposed into further sub-requirements. All
of our customers use requirements managements systems, where dependencies
among requirements can be recorded. Optionally, links to further development
and V&V artefacts, such as design documents, source code, and test cases and
results can be established. Due to the informal nature of requirements, there is
no possibility to generate test cases directly from requirements.

As a first step of the test campaign, test cases are developed, so that each
requirement is verified by at least one test case. Test cases and requirements are
in n : m-relationship: one test case can help to test several requirements, and
one requirement may need more than one test case to check it thoroughly. The
relationship between requirements and test cases is documented in a traceability
matrix.

Test cases are usually specified first in an abstract way, that is, the logi-
cal conditions to be fulfilled for each test step are described, but the concrete
sequence of input vectors and the associated output sequences to be expected
from the SUT are not yet identified. Therefore a further step is required to
compute the concrete test data to be used or checked against when executing a
concrete test case in a test procedure.

Next, test procedures are programmed, each procedure executing one or more
concrete test cases. The procedures are executed against the SUT, and the results
are documented and evaluated. Finally, the traceability matrix is extended to
record the relationships between test cases and implementing procedures and
the results obtained in the procedure executions.

According to the current state of practise, test execution, documentation,
and compilation of traceability data are typically automated steps, but the initial
steps from test case identification to test procedure programming (and frequently
debugging . . .) need to be performed manually.

A coverage analysis checks the code portions that have been covered by the
requirements-based test cases so far. If uncovered code still exists, either the code
has to be removed because it does not contribute to the functionality of the SUT,
or requirements have to be added, specifying the SUT behaviour implemented
by the code uncovered so far. This leads to additional test cases to be executed.

6 J. Peleska and W. Huang

Fig. 1. Conventional testing workflow.

The MBT workflow is shown in Fig. 2. In comparison to conventional test
campaigns, two new activities are introduced: during (1) test model development,
a formal model specifying the expected behaviour of the SUT, as visible at the
test interfaces, is created. In step (2) requirements tracing, the model elements
are linked to the requirements they help to “implement”. Again, these links need
a formal interpretation. As a result of these steps, a formal behavioural model of
the SUT is available, and each requirement can be traced to the model portions
reflecting the requirement in a formal way.

As a “return of investment” to be gained from these two additional steps, the
whole activity chain from test case identification to the completion of traceability
data can be fully automated. In the sections to follow, we explain the steps
involved and describe how automation support is enabled by various approaches
from the field of formal methods.

3 SysML Test Models

The test model describes the interface between SUT and testing environment
and specifies the SUT behaviour as far as visible on this interface. An essential
feature of the functional model – regardless of the concrete modelling formal-
ism used – is the possibility to perform top-down decompositions and express
the overall SUT functionality by a set of concurrent sub-components with inter-
nal communication. Since the “real” internal SUT components and their internal
communication are not monitored during black-box testing, the concurrent com-
position in the test model is purely functional and need not reflect the internal

Industrial-Strength Model-Based Testing 7

Fig. 2. MBT workflow.

SUT design. The functional composition, however, is helpful to facilitate the
understanding of the observable SUT behaviour and the association between
requirements and model elements.

To associate the test model with a formal behavioural semantics, the model
state space is expressed by a vector of state components representing time, inter-
face states, model variables, and control modes. Rather than labelled transition
systems, we use Kripke structures as the underlying behavioural model, and
follow the typical encoding recipes that are used in property checking [7] and
bounded model checking [3]. This decision is based on the observation that many
interfaces occurring in the embedded systems world follow the shared variable
paradigm (e.g. dual ported RAM, reflective memories, memory mapped I/O,
and data sampling interfaces), so that the concepts of atomic events and syn-
chronous communication are considered as optional higher-level abstractions.
The model semantics is then represented by the model computations, that is,
the set of state sequences starting from an initial model state, such that each
pair of consecutive states is a member of the transition relation. To support
timed formalisms, delay transitions are distinguished from discrete transitions.
The former allow for time to pass and admit input updates only, while the latter
are performed in zero time and only change the valuations of internal state and
outputs. The possible transitions between states are specified by means of a tran-
sition relation in propositional form, relating each model state to its post-states.
The propositional representation guarantees that also infinite state systems can
be represented without having first to abstract the model. A detailed description

8 J. Peleska and W. Huang

Fig. 3. SysML model of the test configuration.

explaining how to calculated the transition relation from SysML models can be
found in [12, Chap. 11].

In the subsequent sections we will refer to a simple test model of a vehicle
turn indication controller. In Fig. 3, the basic configuration of a SysML test
model (called SYSTEM) for this controller is shown. The configuration consists
of the TestEnvironment and the SystemUnderTest. Interface Stimulations specifies
the input variables to the SUT which can be set by the test environment. In this
example, variable tl specifies the position of the turn indication lever which is 0
for the neutral position, 1 for position ‘left’ and 2 for position ‘right’. Interface
Indications specifies the SUT outputs as far as they are observable by the testing
environment. In the example, output variable l has value 1 if indication lights on
the left-hand side are switched on, otherwise l is 0. Output variable r has value
1 if indication lights on the right-hand side are switched on.

The SUT sub-model is further decomposed as shown in Fig. 4. It consists of a
single block representing the sequential turn indication controller. Its behaviour
is modelled by a hierarchic state machine depicted in Fig. 5 and Fig. 6. When in
simple state IDLE, the outputs are set to 0, so the indication lamps are switched
off. As soon as the turn indication lever is switched to the left or right position
(tl > 0), the state machines changes to hierarchic state FLASHING. When enter-
ing this state, the left-hand side lights are switched on if the turn indication lever
is in position ‘left’ (assignment l = (tl == 1)), and the right-hand side lamps
are switched on if the lever is in position right. While in state FLASHING, the
controller’s behaviour is as specified by the sub-machine shown in Fig. 6. The
activated indication lights stay on until 340ms have passed. Then a transition

Industrial-Strength Model-Based Testing 9

into state OFF is performed, and the lights are switched off (l = 0; r = 0;).
After 320ms, the lights are switched back on according to the position of the
turn indication lever memorised in auxiliary variable tl0.

Apart from “ordinary” flashing on the left-hand or right-hand side, the con-
troller also realises the tip flashing functionality: when the turn indication lever
is set back into neutral position (tl = 0), before 3 on-off flashing periods have
been performed, the minimum number of 3 periods will be executed before the
lights are switched off again. This requirement is reflected in the model by means
of the auxiliary variables tl0 and c and the associated assignments.

Two requirements of the turn indication controller already introduced above
will be discussed in more detail below; they are depicted in a SysML requirements
diagram shown in Fig. 7. Requirement REQ-001 states that flashing shall be
performed with 340ms on and 320ms off periods. Requirement REQ-002 states
the tip flashing functionality.

Fig. 4. System under test decomposition and witness specification.

The example introduced here is quite simple and only serves for illustration
purposes of the concepts discussed below. A real-world model of such a controller
has been made publicly available under www.mbt-benchmarls.org and described
in [22].

http://www.mbt-benchmarls.org

10 J. Peleska and W. Huang

Fig. 5. Top-level state machine of the turn indication controller.

Fig. 6. Lower-level state machine of the turn indication controller.

Industrial-Strength Model-Based Testing 11

Fig. 7. Requirements model and usage of witness block.

4 Requirements Tracing

Requirements as Model Properties. Requirements are reflected by model
properties. Properties are (typically infinite) sets of computations. For the Kripke
structure semantics we have associated with SysML models as described in the
previous section, computations are infinite paths π = s0.s1.s2 . . . of model states
si, such that each pair si.si+1 is related by the transition relation of the under-
lying Kripke structure. In the context of testing, we are only interested in safety
properties, because these are characterised by the fact that every property vio-
lation can already be detected on a finite prefix of some computation, that is, it
can be detected by a terminating test run.

Temporal logic – we use LTL for this purpose – can be used to characterise
property sets by finite expressions. The LTL formulas expressing safety proper-
ties can be inductively generated [31, Theorem 3.1]: (1) every atomic proposition
is a safety formula, and (2) if φ, ψ are safety formulas, then the same holds for
φ ∧ ψ, φ ∨ ψ, Xφ, φWψ, and Gφ. Here X denotes the next operator: Xψ holds
on a computation path π = s0.s1.s2 . . . if and only if ψ holds on π1 = s1.s2. . . . ,
the path starting with π′s second element. W denotes the weak until operator:
φWψ holds on π if and only if either (1) φ holds globally, that is, in every state
of π, or (2) ψ holds finally on some segment πi starting with the (i + 1)th ele-
ment of π, and until then, that is, on segments π = π0, π1, . . . , π(i−1), formula φ
holds. If case (2) applies and ψ already holds on π = π0, then φ does not need
to become true anywhere on the computation path. Other temporal operators
can be defined as syntactic abbreviations, using X and W. So Gφ is short for

12 J. Peleska and W. Huang

φWfalse (“φ holds globally on π”), Fφ is short for ¬G¬φ (“finally φ holds on
π”), and φUψ is short for φWψ ∧Fψ (this is the “normal” until operator which
guarantees that finally ψ will hold).

Summarising, every testable requirement corresponds to a safety property of
the model, and it can be formally specified by means of a Safety LTL formula.

Black-Box Requirements Specification vs. Model-Based Requirements
Specification. There is a fundamental distinction between application of tem-
poral logic as black-box specifications on the one hand, and for specification of
model properties on the other hand. In the former case, there does not exist a
behavioural model, but just a black-box with a declaration of input and out-
put variables. Requirements REQ are then typically specified by LTL formulas
structured like

ψREQ ≡ G(ψ1 ⇒ ψ2)

with the informal meaning that “in every sequence of interface observations,
an observation state fulfilling the pre-condition ψ1 shall also fulfil the required
reaction ψ2”. The computations where the effect of ψREQ can be observed are
the ones fulfilling Fψ1. In the latter case, the existence of a model allows for
referring to both interfaces and internal state variables. Moreover, the required
reactions are already encoded in the model. As a consequence, the model prop-
erty containing all computations witnessing ψREQ can be specified much simpler
by

ψ′
REQ ≡ Fψ′

1

with the implicit assumption, that only model computations are considered. Here
ψ′
1 is an equivalent to ψ1, so that the restriction of model computations satisfying

ψ′
1 to interface observations results in observation sequences satisfying ψ1.2 If

requirement REQ has been modelled correctly, every computation satisfying
Fψ′

1, when restricted to interface observations, will also satisfy (Fψ1)∧(G(ψ1 ⇒
ψ2)).

Model Coverage. The intuitive meaning of computations covering certain por-
tions of a model can be formalised; this is achieved in the most effective way by
defining coverage for the different syntactic elements occurring in the concrete
modelling formalism.

(1) A control mode, such as the simple state OFF in the SysML state machine
shown in Fig. 6, is covered by every computation containing a model state whose
valuation indicates that this simple state is active. If, for example, a Boolean
encoding of simple states is used, si(OFF) = true indicates that simple state OFF
is active in model state si. (2) A state machine transition, such as OFF −→ ON
in Fig. 6, is covered by computations containing a state si covering the source
state, and where the transition’s guard condition evaluates to true, such that
the action associated with the transition contributes to the effect of the model

2 If ψ1 is stuttering invariant, we have ψ′
1 = ψ1.

Industrial-Strength Model-Based Testing 13

state transition si −→ si+1. In the example from Fig. 6 the condition for the
transition to fire in state si is3

si(OFF) ∧ (t̂ − t ≥ 320).

Here the SysML time event after(320) (“after having stayed in OFF for 320ms”)
is internally encoded by the actual model execution time t̂ and the auxiliary
variable t storing the execution time when state OFF had been entered. (3) An
action is covered by computations containing model state transitions si −→ si+1

where the action contributes to the state changes involved when transiting from
si to si+1. The state machine transition considered in (2), for example, covers
action l = (tl0 == 1); r = (tl0 == 2);. When the associated transition is
triggered in state si, the action’s effect is visible in si+1 as

si+1(ON) ∧ si+1(l) = (si(tl0) = 1) ∧ si+1(r) = (si(tl0) = 2)

(4) An interface is covered by computations containing model state transitions
changing the valuation of the interface variables involved. (5) A structural com-
ponent – such as a block in SysML – is covered by computations stimulating its
associated behaviours (state machines, operations, activities, . . .).

These examples show that model coverage goals can also be regarded as model
properties: the property contains all computations covering a given element or
a set of elements. In the example above, the property “transition OFF −→ ON is
covered” can be specified using LTL by

F(OFF ∧ XON).

Formalisation of SysML Requirements Tracing. The considerations above
result in a mechanisable formalisation of the SysML requirements tracing con-
cept. As indicated in Fig. 6, for example, behavioural model elements like control
modes and transitions can be linked in SysML to requirements by using the «sat-
isfy» relationship. The intuitive meaning of this example is that the transition
OFF → ON contributes to the realisation of requirement REQ-001.

The graphical notation using the «satisfy» relationship is adequate for
requirements whose witnesses can be specified by formulas

(Fψ1) ∨ · · · ∨ (Fψn),

meaning “all computations associated with the requirement finally fulfil at least
one of sub-properties ψ1, . . . , ψn”. Investigations performed in cooperation with
a customer from the automotive domain showed that in typical test models
80% of the requirements can be identified by simple sub-property disjunctions
of this kind. For 20% more complex requirements, more complex LTL formulas
are required, and these are not representable by simple «satisfy» annotations

3 Note that this simple condition only applies for deterministic state machines; the
encoding is more complex for the nondeterministic case.

14 J. Peleska and W. Huang

linking elements to requirements. These situations not only arise when model
elements have to be covered in a specific sequence, but also when requirements
are reflected by certain model variable valuations instead of graphical elements
like state machine transitions or simple states.

Consider, for example, the requirement REQ-002 about the tip flashing func-
tionality explained in Sect. 3. The computations witnessing this requirement need
to visit a model state where flashing is active (this can be specified by tl0 > 0),
the turn indication lever is back in neutral position (tl = 0), but less than three
flash cycles have been performed (c < 3). Moreover, we need to continue observ-
ing this computation until c = 3, so that it can be checked that the indication is
switched off after the last mandatory cycle. Summarising this in an LTL formula,
the computations witnessing REQ-002 are specified by

F(tl = 0 ∧ tl0 > 0 ∧ c < 3 ∧ (tl = 0 U c ≥ 3)).

For defining such a witness specification in a SysML model, the RT-Tester
profile introduces blocks stereotyped as «witness». These blocks are introduced
in the SUT decomposition (see Fig. 4), so that interface variables and local SUT
variables are in the scope of the formula to be specified. The LTL formula is
inserted into the block’s constraint compartment. Then the witness specification
is linked to the associated requirement using again the «satisfy» relation (see
requirements diagram in Fig. 7). Requirements without witness blocks are linked
directly to other model elements as shown above for REQ-001.

It should be noted that we cannot use the existing UML/SysML concepts
of constraints and constraint blocks to specify witnesses for requirements: con-
straints and constraint blocks are used to restrict the admissible behaviour spec-
ified in other model portions. In contrast to this, we only wish to identify the
subset of computations contributing to a given requirement; all other executions
implied by the model are legal as well. Note further that we expect to change the
syntax for specifying witnesses with LTL in the future, as soon as LTL has been
integrated into the Object Constraint Language OCL which seems to become
the accepted standard for specifying constraints in UML and SysML [18,32].

Automated Requirements-Based Test Case Identification. In
requirements-driven testing, test cases are witnesses for the model properties
ψ representing requirements as discussed above, such that a property violation
can be detected within a maximal number of k steps. This can be specified by
propositions of the type

tc ≡ path(s0, k) ∧ G(s0, . . . , sk) (1)

with

path(s0, k) ≡ I(s0) ∧
k∧

i=1

Φ(si−1, si) (2)

Proposition I(s0) specifies admissible initial model states, Φ is the model’s tran-
sition relation in propositional form. Proposition path(s0, k) states that state

Industrial-Strength Model-Based Testing 15

sequence s0, . . . , sk is a prefix of a model computation: each pair of states is con-
tained in the transition relation. The proper test case tc specifies that we are look-
ing for a model computation prefix fulfilling additional property G(s0, . . . , sk).
Obviously G is the propositional logic equivalent to the LTL property ψ reflecting
the requirement in the model, or for a more specific variant φ satisfying φ ⇒ ψ.
In any case, only witnesses are considered that make G become true within k
steps. We use the finite encoding of LTL formulas described in [3] to transform
φ into propositional form G. The finite encoding of φ ≡ F(OFF ∧ t̂ − t ≥ 320),
for example, is

Gk
φ ≡

k∨

i=0

(
si(OFF) ∧ si(t̂) − si(t) ≥ 320

)

Automated Test Data Generation. Test case representations of the kind
described above are still abstract (or symbolic), since they do not show the
concrete test data that should be taken during a test execution. We use an
SMT solver to solve constraints of the type tc ≡ path(s0, k) ∧ G(s0, . . . , sk).
The solver SONOLAR handles integer, bit vector, and floating point arithmetic
and supports a theory for handling arrays [25]. The solution of tc contains a
sequence of input vectors to the SUT plus associated time stamps indicating
how much time should pass between two consecutive inputs, so that specific
timing conditions derived from the model are met.

In [21] it is shown how test oracles are generated automatically from test
models.

5 MBT Strategies with Guaranteed Test Strength

5.1 Problem Statement

Just switching from conventional testing to model-based testing will make the test-
ing process more efficient, but it will not necessarily increase the strength – that
is, the error detection capabilities – of the test suites produced by following the
MBT paradigm. In particular, the test strength of well-known model coverage cri-
teria like transition coverage or MC/DC coverage for state machines depends on
the syntactic representation of the model. This means that semantically equivalent
models will lead to test suites of different strength when applying these strategies,
just because their syntactic representation differs. This is because these strategies
generate test cases just by traversing the abstract syntax tree, without investigat-
ing the model semantics [23].

Even if a test case generation strategy is independent on the syntactic model
representation, this does not automatically imply that it is clear which types of
errors will be uncovered by the test suites generated according to this strategy.

5.2 Failure Models and Complete Testing Strategies

The second problem described above has been effectively tackled by introduc-
ing failure models. When slightly abstracting the original notions introduced in

16 J. Peleska and W. Huang

[4,17,27] in the context of testing against finite state machine (FSM) models,
a failure model F = (S,≤,D) consists of a reference model S, a conformance
relation ≤ between models, and a failure domain specifying a set of models S ′

that may or may not conform to S.4
A test strategy is complete if, given a failure model F , it produces complete

test suites. The latter are complete if every SUT whose true behaviour is captured
by a model S ′ in the failure domain D, passes every test case in the suite,
if and only if S ′ ≤ S holds. For behaviours corresponding to models outside
the failure domain, no guarantees are made. This cannot be avoided in the
context black box testing, because the internal SUT state cannot be monitored
during tests. Therefore hidden “time bombs” – for example, counters that trigger
non-conforming behaviour after a certain value has been reached – cannot be
detected.

The conformance relations of interest in the context of this paper are I/O-
equivalence (reference model and SUT can perform exactly the same input out-
put traces) and reduction (the observable I/O-behaviour of the SUT is a subset
of the behaviours that can be performed by the reference model).

The first complete test strategies have been elaborated for determinis-
tic FSMs, see, for example, [6,35]. This has been extended to nondetermin-
istic FSMs [9,16,26,28], extended finite state machines, and process alge-
bras [8,20,33]. The failure domain for FSM testing contains FSMs M ′ with the
same input/output alphabets as the reference FSM M , such that the observable
minimal state machine (the so-called prime machine) associated with M has n
states, and the prime machine associated with M ′ has at most n + m states for
some m ≥ 0.

Due to their completeness properties, the number of test cases produced by
these strategies is only manageable for input alphabets, state domains, and m-
values of moderate size. To handle at least control systems with infinite input
domains (but still finite internal domains for internal states and outputs), we
have developed a complete input equivalence class testing strategy in the context
of deterministic Kripke structures with input, output, and internal state vari-
ables [11] (in [10] it has been shown that the strategy can be extended to non-
deterministic models). The essential observation for this strategy is that Kripke
structures of this kind can be abstracted to deterministic FSMs, such that the
input equivalence classes represent the input alphabets of these FSMs. Then it
can be shown that complete test suites on FSM level can be translated to test
suites on Kripke structure level, and this translation preserves the completeness
property.

The failure domain now contains Kripke structures S ′ whose abstraction
to observable minimal FSMs does not contain more than m additional states
when compared to the prime machine abstracted from the reference model S.
Moreover, the input equivalence class partition I derived from the reference
model also has to be a suitable partition for the SUT model S ′. Since the SUT

4 In [30], a finer distinction between fault models, failure models, and defect models
is made. Our approach described in this paper is focused on failure models.

Industrial-Strength Model-Based Testing 17

model is unknown in the context of black box testing, these assumptions cannot
be verified in general. However, by increasing m and by refining I, the size
of the failure domain is increased. The size of the test suite, however, grows
exponentially with the size of m and the number of refinements performed on I.

To avoid this exponential growth it has been shown experimentally, that
the strength of this equivalence class strategy is very high for SUT behaviours
outside the fault domain, if random and boundary value selections are performed
each time a representative of an input class is needed. This has been shown by
means of case studies from different domains [13,24].

5.3 Transformation-Independent Equivalence Classes

To overcome the first problem stated above, an algorithm has been designed that
starts with any syntactic representation of the reference model and calculates a
preliminary input equivalence partition I and its associated FSM M which is
first made observable and minimised. This FSM is then analysed with respect to
different inputs Xi,Xj leading to the same post states q′ and produce the same

outputs b(q) for all pairs of transitions q
Xi/b(q)−−−−−→ q′, q

Xj/b(q)−−−−−→ q′ emanating
from the same state q. Since the FSM inputs represent input equivalence classes,
these pairs Xi,Xj can be aggregated to a single input equivalence class Xi ∪Xj .
It can be shown that the resulting classes are invariant under syntactic model
transformations, as long as they do not change the behavioural semantics.

More details about this algorithm and the underlying model-independent
testing theory have been presented in [23].

5.4 Output Equivalence Class Testing

In practical testing, it is often suggested to combine input equivalence classes
with output equivalence classes [15]: the output domains of the SUT are par-
titioned such that the SUT can be assumed to compute members of the same
output class in the same way. Then input partitions are constructed such that
members of the same input class will produce SUT outputs from the same output
class.

It is noteworthy to point out that implicitly, the notion of output equivalence
classes has already been covered by the theory above, at least for the systems
with infinite inputs and finite internal states and outputs we are dealing with
in this paper. In practise, simple model transformations allow for output equiv-
alence class testing with the same methods – and therefore also with the same
failure detection guarantees – as input equivalence class testing.

To see this, consider an SUT model with inputs x from an infinite domain,
and internal state variables m and outputs y from finite domains, as shown in
Fig. 8. Assume that (k + 1) output equivalence classes have been specified by
means of propositions Ψi(y), i = 0, . . . , k: the predicate Ψi(y) evaluates to true
for a given output tuple y, if and only if y is a member of class i. Now transform
the model in the following (mechanisable) way.

18 J. Peleska and W. Huang

Fig. 8. Initial SUT model.

Fig. 9. Transformed SUT model with output equivalence class abstraction.

1. Re-declare the tuple of output variables y as internal model variables, extend-
ing the internal model state m to (m,y).

2. Introduce a new output variable e ranging over the output equivalence class
identifications 0, . . . , k.

3. Introduce a new block into the model which inputs y and sets output e to
i ∈ {0, . . . , k}, if and only if Ψi(y) evaluates to true.

The resulting model is depicted in Fig. 9.

6 Requirements-Driven, Model-Driven, and
Property-Driven Testing

Model-based testing can be approached from three different perspectives. In
requirements-driven testing, the objective is to cover all requirements defined
as quickly and comprehensively as possible. As described Sect. 4, requirements
can be automatically associated with test cases, and these can be automatically
associated with concrete test data and executed in procedures.

Industrial-Strength Model-Based Testing 19

In model-driven testing, the main objective is to check the SUT’s confor-
mance to the behaviour of the reference model. It has been shown in the pre-
vious section how this can be achieved, even with guaranteed failure detection
capabilities. If I/O-equivalence is used as conformance relation, the model-driven
approach automatically checks that also the requirements linked to the model
have been correctly implemented. It is verified by the associated complete test
suites whether the SUT shows only I/O-behaviour that is accepted by the refer-
ence model; as a consequence, I/O-traces performed by the SUT and violating
a requirement would be detected by some test cases. Moreover, I/O-equivalence
guarantees that the witness traces for each requirement – as far as observable at
the SUT interface – can also be performed by the SUT, so no requirement has
been forgotten in the implementation (note that this would not be guaranteed
when testing for language inclusion).

In property-driven testing, a desired system property ϕ is specified – this
corresponds to verifying a single requirement while “not caring” about the others
that should also be fulfilled by the SUT. Of course, ϕ can be specified using LTL.
In theory, the property-driven test perspective differs considerably from the other
two, because it could be handled as follows.

– Generate the most nondeterministic model Sϕ satisfying just ϕ (and of course
all of its implications). This model can be created automatically from ϕ, since
LTL formulas can be represented by Büchi automata [2].

– Calculate the input equivalence partitioning I for Sϕ, as described in the
previous section – this is necessary as soon as ϕ refers to variables with infinite
domains.

– Make an estimate for a refined input partitioning I that is adequate for the
SUT.

– Make an estimate m how many additional states the prime machine associ-
ated with the true SUT behaviour has, when compared to the prime machine
associated with Sϕ.

– Create a test suite which is complete for failure model F = (Sϕ,�,D), where
the failure domain D contains all models S ′ for which I is a valid input
equivalence class partitioning and whose associated prime machines have at
most m more states, when compared to the prime machine of Sϕ.

The property-driven test approach appears very attractive, since the ref-
erence model can be generated automatically from the property specification.
There are, however, still several open research-related questions preventing the
direct practical application. The most critical problem is that test suites derived
from Sϕ will frequently have to deal with quite large values of m, and the size
of the test suite increases exponentially with this value. From our perspec-
tive it seems promising to refine Sϕ with asserted knowledge about the SUT
(e.g. further properties that have already been proven or with an additional
model restricting the possible behaviours of the SUT), in order to reduce the
size of the test suite.

20 J. Peleska and W. Huang

7 Conclusion

We have described an approach to model-based testing that is currently prac-
tically applied by Verified Systems International for safety-related tests in the
avionic, railway, and automotive domains. The methods described here have
been implemented in the MBT component of Verified’s test automation tool
RT-Tester. Licences need to be obtained for this tool’s commercial application,
but it is freely available for research purposes. While considerable expertise is
required to develop effective test models, skilled testing teams usually obtain a
significant return of investment even in new testing campaigns where the test
model has to be created from scratch: from projects performed at Verified Sys-
tems we estimate that MBT campaigns performed with MBT experts require
at least 30% less effort in comparison to conventional testing campaigns, just
because test case identification, test data calculation and test procedure pro-
gramming is automated. The efficiency is increased further in regression testing
campaigns, where only small changes of the test model are required.

Acknowledgements. The authors would like to thank the members of the FM 2016
program committee for the invitation to present this paper.

We are also very grateful to our collaborators at the University of Bremen and Ver-
ified Systems International who contributed to the development of RT-Tester’s MBT
component; in particular we would like to thank Felix Hübner, Uwe Schulze, and Jörg
Brauer.

The work presented in this paper has been elaborated within project ITTCPS –
Implementable Testing Theory for Cyber-physical Systems (see http://www.informatik.
uni-bremen.de/agbs/projects/ittcps/index.html) which has been granted by the
University of Bremen in the context of the German Universities Excellence Initiative
(see http://en.wikipedia.org/wiki/German_Universities_Excellence_Initiative).

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodolo-
gies for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001
(2013)

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings

of bounded LTL model checking. Logical Methods Comput. Sci. 2(5), 1–64 (2006).
arXiv:cs/0611029

4. von Bochmann, G., Das, A., Dssouli, R., Dubuc, M., Ghedamsi, A., Luo, G.: Fault
models in testing. In: Kroon, J., Heijink, R.J., Brinksma, E. (eds.) Proceedings
of the IFIP TC6/WG6.1 Fourth International Workshop on Protocol Test Sys-
tems IV, 15–17 October 1991, Leidschendam, The Netherlands, pp. 17–30. North-
Holland (1991). IFIP Transactions, vol. C-3

5. CENELEC: EN 50128: 2011 Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (2011)

6. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. SE 4(3), 178–186 (1978)

http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html
http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html
http://en.wikipedia.org/wiki/German_Universities_Excellence_Initiative
http://arxiv.org/abs/cs/0611029

Industrial-Strength Model-Based Testing 21

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

8. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
9. Hierons, R.M.: Testing from a nondeterministic finite state machine using

adaptive state counting. IEEE Trans. Comput. 53(10), 1330–1342 (2004).
http://doi.ieeecomputersociety.org/10.1109/TC.2004.85

10. Huang, W., Peleska, J.: Complete model-based equivalence class testing for non-
deterministic systems. Formal Aspects of Computing Under review

11. Huang, W., Peleska, J.: Complete model-based equivalence class testing. STTT
18(3), 265–283 (2016). http://dx.doi.org/10.1007/s10009-014-0356-8

12. Huang, W.l., Peleska, J., Schulze, U.: Test automation support. Technical report
D34.1, COMPASS Comprehensive Modelling for Advanced Systems of Systems
(2013). http://www.compass-research.eu/deliverables.html

13. Hübner, F., Huang, W., Peleska, J.: Experimental evaluation of a novel equivalence
class partition testing strategy. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP
2015. LNCS, vol. 9154, pp. 155–172. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21215-9_10

14. ISO, DIS 26262–4: Road vehicles - functional safety - part 4: Product develop-
ment: system level. Technical report, International Organization for Standardiza-
tion (2009)

15. ISO, IEC, IEEE DIS 29119–4.2: Software and systems engineering - software testing
- part: 4 test techniques, February 2014

16. Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on
communicating nondeterministic finite-state machines using a gener-
alized WP-method. IEEE Trans. Softw. Eng. 20(2), 149–162 (1994).
http://doi.ieeecomputersociety.org/10.1109/32.265636

17. Morell, L.J.: A theory of fault-based testing. IEEE Trans. Softw. Eng. 16(8), 844–
857 (1990). http://dx.doi.org/10.1109/32.57623

18. Object Management Group: Object Constraint Language, Version 2.4. Technical
report, Object Management Group (2014). http://www.omg.org/spec/OCL/2.4/

19. Object Management Group: OMG Systems Modeling Language (OMG SysML),
Version 1.4. Technical report, Object Management Group (2015). http://www.
omg.org/spec/SysML/1.4

20. Peleska, J.: Formal methods and the development of dependable systems. No. 9612,
Christian-Albrechts-Universität Kiel, Institut fr Informatik und Praktische Math-
ematik , Habilitationsschrift, December 1996

21. Peleska, J.: Industrial-strength model-based testing-state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings Eighth Workshop
on Model-Based Testing. Electronic Proceedings in Theoretical Computer Science,
17th March 2013, Rome, Italy, vol. 111, pp. 3–28. Open Publishing Association
(2013)

22. Peleska, J., Honisch, A., Lapschies, F., Löding, H., Schmid, H., Smuda, P.,
Vorobev, E., Zahlten, C.: A real-world benchmark model for testing concurrent
real-time systems in the automotive domain. In: Wolff, B., Zaïdi, F. (eds.) ICTSS
2011. LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24580-0_11

23. Peleska, J., Huang, W.: Model-based testing strategies and their (in)dependence
on syntactic model representations. In: Beek, M.H., Gnesi, S., Knapp, A. (eds.)
FMICS/AVoCS -2016. LNCS, vol. 9933, pp. 3–21. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-45943-1_1

http://doi.ieeecomputersociety.org/10.1109/TC.2004.85
http://dx.doi.org/10.1007/s10009-014-0356-8
http://www.compass-research.eu/deliverables.html
http://dx.doi.org/10.1007/978-3-319-21215-9_10
http://dx.doi.org/10.1007/978-3-319-21215-9_10
http://doi.ieeecomputersociety.org/10.1109/32.265636
http://dx.doi.org/10.1109/32.57623
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/SysML/1.4
http://www.omg.org/spec/SysML/1.4
http://dx.doi.org/10.1007/978-3-642-24580-0_11
http://dx.doi.org/10.1007/978-3-642-24580-0_11
http://dx.doi.org/10.1007/978-3-319-45943-1_1

22 J. Peleska and W. Huang

24. Peleska, J., Huang, W., Hübner, F.: A novel approach to HW/SW integration
testing of route-based interlocking system controllers. In: Lecomte, T., Pinger,
R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 32–49. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-33951-1_3

25. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20398-5_22

26. Petrenko, A., Yevtushenko, N.: Adaptive testing of deterministic implementa-
tions specified by nondeterministic FSMs. In: Wolff, B., Zaïdi, F. (eds.) ICTSS
2011. LNCS, vol. 7019, pp. 162–178. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24580-0_12

27. Petrenko, A., Yevtushenko, N., Bochmann, G.v.: Fault models for testing in con-
text. In: Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX -
Theory, Application and Tools, pp. 163–177. Chapman & Hall (1996)

28. Petrenko, A., Yevtushenko, N., Bochmann, G.V.: Testing deterministic implemen-
tations from nondeterministic FSM specifications. In: IFIP TC6 9th International
Workshop on Testing of Communicating Systems, pp. 125–141. Chapman and Hall
(1996)

29. Petrenko, A., Simao, A., Maldonado, J.C.: Model-based testing of software and
systems: recent advances and challenges. Int. J. Softw. Tools Technol. Transf. 14(4),
383–386 (2012). http://dx.doi.org/10.1007/s10009-012-0240-3

30. Pretschner, A.: Defect-based testing. In: Irlbeck, M., Peled, D.A., Pretschner, A.
(eds.) Dependable Software Systems Engineering, NATO Science for Peace and
Security Series, D: Information and Communication Security, vol. 40, pp. 224–245.
IOS Press (2015). http://dx.doi.org/10.3233/978-1-61499-495-4-224

31. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Asp. Comput.
6(5), 495–512 (1994). http://dx.doi.org/10.1007/BF01211865

32. Soden, M., Eichler, H.: Temporal extensions of OCL revisited. In: Paige, R.F.,
Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 190–205.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02674-4_14

33. Tretmans, J.: Conformance testing with labelled transition systems: implementa-
tion relations and test generation. Comput. Netw. ISDN Syst. 29(1), 49–79 (1996)

34. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based
testing approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012).
http://dx.doi.org/10.1002/stvr.456

35. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

36. WG-71, R.S.E.: Software Considerations in Airborne Systems and Equipment
Certification. Technical report RTCA/DO-178C, RTCA Inc., 1140 Connecticut
Avenue, N.W., Suite 1020, Washington, D.C. 20036, December 2011

http://dx.doi.org/10.1007/978-3-319-33951-1_3
http://dx.doi.org/10.1007/978-3-642-20398-5_22
http://dx.doi.org/10.1007/978-3-642-24580-0_12
http://dx.doi.org/10.1007/978-3-642-24580-0_12
http://dx.doi.org/10.1007/s10009-012-0240-3
http://dx.doi.org/10.3233/978-1-61499-495-4-224
http://dx.doi.org/10.1007/BF01211865
http://dx.doi.org/10.1007/978-3-642-02674-4_14
http://dx.doi.org/10.1002/stvr.456

Research Track

Counter-Example Guided Program Verification

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Bui Phi Diep(B)

Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig,bui.phi-diep}@it.uu.se

Abstract. This paper presents a novel counter-example guided abstrac-
tion refinement algorithm for the automatic verification of concurrent
programs. Our algorithm proceeds in different steps. It first constructs
an abstraction of the original program by slicing away a given subset of
variables. Then, it uses an external model checker as a backend tool to
analyze the correctness of the abstract program. If the model checker
returns that the abstract program is safe then we conclude that the orig-
inal one is also safe. If the abstract program is unsafe, we extract an
“abstract” counter-example. In order to check if the abstract counter-
example can lead to a real counter-example of the original program,
we add back to the abstract counter-example all the omitted variables
(that have been sliced away) to obtain a new program. Then, we call
recursively our algorithm on the new obtained program. If the recursive
call of our algorithm returns that the new program is unsafe, then we
can conclude that the original program is also unsafe and our algorithm
terminates. Otherwise, we refine the abstract program by removing the
abstract counter-example from its set of possible runs. Finally, we repeat
the procedure with the refined abstract program. We have implemented
our algorithm, and run it successfully on the concurrency benchmarks in
SV-COMP15. Our experimental results show that our algorithm signifi-
cantly improves the performance of the backend tool.

1 Introduction

Leveraging concurrency effectively has become key to enhancing the performance
of software, to the degree that concurrent programs have become crucial parts of
many applications. At the same time, concurrency gives rise to enormously com-
plicated behaviors, making the task of producing correct concurrent programs
more and more difficult. The main reason for this is the large number of pos-
sible computations caused by many possible thread (or process) interleavings.
Unexpected interference among threads often results in Heisenbugs that are dif-
ficult to reproduce and eliminate. Extensive efforts have been devoted to address
this problem by the development of testing and verification techniques. Model
checking addresses the problem by systematically exploring the state space of a
given program and verifying that each reachable state satisfies a given property.
Applying model checking to realistic programs is problematic, due to the state
explosion problem. The reason is that we need (1) to exhaustively explore the

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 25–42, 2016.
DOI: 10.1007/978-3-319-48989-6 2

26 P.A. Abdulla et al.

entire reachable state space in all possible interleavings, and (2) to capture and
store a large number of global states.

Counter-Example Guided Abstraction Refinement (CEGAR) (e.g., [4,5,11,
15,17]) approach is one of the successful techniques for verifying programs. This
approach consists in four basic steps:

– Abstraction step: Construct a finite-state program as an abstraction of the
original program using predicate abstraction (with a set of predicates) and go
to the Verification step.

– Verification step: Use a model checker to check if the constructed finite state
program satisfies the desired property. If it is the case, then the original pro-
gram satisfies also the property and the verification algorithm terminates;
otherwise extract a counter-example and go to the Analysis step.

– Analysis Step: Check if the retuned counter example is spurious or not. If it
is not, then we have a real bug in the original program and the verification
algorithm terminates; otherwise go to the Refinement step.

– Refinement Step: If the counter-example is spurious, refine the set of used
predicates in the Abstraction step to eliminate the counter example. Return
to the Abstraction step with this new refined set of predicates.

The CEGAR approach has been successfully implemented in tools, such as
SLAM [4], BLAST [5], MAGIC [8] and CPAchecker [6]. However, CEGAR
may also suffer from the state-space exploring problem in the case of concurrent
programs due to the large number of possible interleavings.

In this paper we present a variant of the CEGAR algorithm (called Counter-
Example Guided Program Verification (CEGPV)) that addresses the state-space
explosion problem encountered in the verification of concurrent programs. The
work-flow of our CEGPV algorithm is given in Fig. 1. The algorithm consists
of four main modules, the abstraction, the counter-example mapping, the recon-
struction and the refinement. It also uses an external model checker tool.

The abstraction module takes as input a concurrent program P and a subset
V0 of its shared variables. It then constructs an over-approximation of the pro-
gram P, called P ′, as follows. First, it keeps variables in the set V0 and slices
away all other variables of the program P. Occurrences of the sliced variables are
replaced by non-deterministic values. Second, some instructions, where the sliced
variables occur, in the program P can be removed. Then, the model checker takes
as input P ′, and checks whether it is safe or not. If the model checker returns
that P ′ is safe, then P is also safe, and our algorithm terminates. If P ′ is unsafe,
then the model checker returns a counter-example π′.

The counter-example mapping module takes the counter-example π′ as its
input. It transforms the run π′ to a run π of the program resulting of the abstrac-
tion module (using V0 as its set of shared variables).

The reconstruction module takes as input the counter-example π of P ′. It
checks whether π can lead to a real counter-example of P. In particular, if P ′ is
identical to P, then the algorithm concludes that P is unsafe, and terminates.
Otherwise, the reconstruction adds back all omitted variables and lines of codes

Counter-Example Guided Program Verification 27

CEGPV Algorithm

Abstraction

Model Checker Refinement

Counter-example
Mapping

Reconstruction CEGPV Algorithm

V0 : V0 ⊆ VP

P

P

“Unsafe” π

π

π“Safe”

(V0 VP)

P1,V1 :
V1 ⊆ VP1

“Safe”

(V0 = VP)“Unsafe” “Unsafe”

Fig. 1. An overview of the CEGPV algorithm.

to create a program P1 while respecting the flow of the instructions in π and the
valuation of the variables in V0. Hence, P1 has as its set of variables only the
omitted ones. Then, CEGPV algorithm then recursively calls itself to check P1

in its next iteration. If the iteration returns that P1 is unsafe, then the run π
leads to a counter-example of the program P. The algorithm concludes that P is
unsafe and terminates. Otherwise, the run π cannot lead to a counter-example
of P. Then the algorithm needs to discard the run π from P ′.

The refinement adds π to the set of spurious counter-examples of P ′. It then
refines P ′ by removing all these spurious counter-examples from the set of runs
of P ′. The new resulting program is then given back to the model checker tool.

Our CEGPV algorithm has two advantages. First, it reduces the number of
variables in the model-checked programs to prevent the state-space explosion
problem. Second, all modules are implemented using code-to-code translations.

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPV, for the verification
of C/pthreads programs. We used CBMC version 5.1 as the backend tool [10].
We then evaluated CEGPV on the benchmark set from the Concurrency cate-
gory of the TACAS Software Verification Competition (SV-COMP15) [2]. Our
experimental results show that CEGPV significantly improve the performance
of CBMC, showing the potential of our approach.

Related Work. CEGAR is one of the successful techniques used in program
verification. Our CEGPV algorithm can be seen as a new instance of the CEGAR
algorithm that can be implemented on the top of any verification tool. In contrast
with the classical CEGAR algorithms (e.g., [5,9,11,12,18]) where the programs
are abstracted using a set of predicates, our CEGPV algorithm uses variable
slicing techniques to obtain the abstract program.

28 P.A. Abdulla et al.

Variable slicing is also one of the verification guided approaches to address
the state-space exposing problem. In [18], an analysis tool for detecting memory
leaks is presented based on slicing some of the program variables. Each generated
abstract program is then checked by a backend tool. RankChecker [7] is a testing
tool based on an assumption that most concurrency bugs have a small number of
variables involved. To reduce the search space, it forces processes in a concurrent
program to interleave at certain points that access a subset of variables. Corral
[15] abstracts the input program by only keeping track of a subset of variables. If
the counter-example of the abstract program is spurious, Corral then refines the
abstraction by decreasing the set of omitted variables. The algorithm terminates
once the counter-example corresponds to a run of the original program. Our
CEGPV algorithm also abstract programs by slicing away some variables (as
it is also done by the localization reduction techniques [13,14]). However, our
CEGPV algorithm has the feature to recursively call itself in order to check if
the counter-example can lead to a real one while trying to keep the number of
variables of the model-checked programs as small as possible.

2 Motivating Example

In this section, we informally illustrate the main concepts of our algorithm.
Figure 2a is a simplified version of a program in the concurrent C benchmark

in SVCOMP [2]. The program P has two processes, called P and Q, running in
parallel. Processes communicate through five shared variables which are x, y, z,
t1 and t2, ranging over the set of integers. All variables are initialized to 0. The
behavior of a process is defined by a list of C-like instructions. Each instruction
is composed of a unique label and a statement. For example, in process P, the
instruction p1: x = y ? z ? 0 : 1 : 1 has p1 as a label, and x = y ? z ? 0 : 1 :
1 as a statement. That statement is a ternary assignment in which it assigns 0
to x if both y and z are equal to 1, and assigns 1 to x otherwise. The assertion
labeled by p5 holds if the expression t1 + t2 is different from 1, and in that case
the program is declared to be safe. Otherwise, the program is unsafe.

x = y = z = t1 = t2 = 0

process P:

p1: x = y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(a) A simple program P

x = y = z = 0

process P:

p1: x = *;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = *;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(b) Abstract program P1

Fig. 2. A toy example and its abstraction

Counter-Example Guided Program Verification 29

x

t1 t2

y z

Fig. 3. Dependency
graph of P.

In order to apply our algorithm, we first need to deter-
mine a subset of program variables that will be sliced away.
To that aim, we construct a dependency graph between
variables. The dependency graph consists of a number of
vertices and directed edges. Each vertex corresponds to a
variable of the program. The edges describe the flow depen-
dency between these variables. The dependency graph of
the program P is given in Fig. 3. For instance, x depends on
both y and z due to the two assignments labeled by p1 and
q1. Similarly, the assignment labeled by p2 creates a depen-
dency between the variables y and z. We use the dependency
graph to decide the first set of variables to be sliced away.
In general, we keep variables that influence the safety of the program. In the set-
tings of the example, the variables t1 and t2 are used in the assertion at p5 and
therefore we keep track of the variables t1 and t2. Furthermore, we keep also track
of x since t1 and t2 are dependent on x.

ρ:

p1 (x = 0)

p4 (t1 = 0)

q1 (x = 1)

q4 (t2 = 1)

p5 (assert false)

ϕ:

q1 (x = 1)

q4 (t2 = 1)

p1 (x = 0)

p4 (t1 = 0)

p5 (assert false)

Fig. 4. Counter-examples of P1

Once we have the subset of variables
{t1, t2, x} to be preserved, we need to slice
away the variables {y, z}. To do that, we
abstract the program by replacing occur-
rences of the variables y and z by a non-
deterministic value *. Assignments labeled
by p1 and q1 are transformed to x = * ? * :
0 ? 1 ? 1 and x = * ? 0 : * ? 0 ? 1, respectively.
We make a further optimization to trans-
form these assignments to x = *. Since we
are not anymore keeping track of the vari-
ables y and z, instructions which are assign-
ments to these variables can be removed. In
this case, we remove the instructions labeled
by p2, p3, q2 and q3 from the abstract pro-
gram. All the other instructions remain the
same. Resulting abstract program, called
P1, is given in Fig. 2b. P1 has only three
variables t1, t2 and x, and five instructions.

The next step of our algorithm is to feed the abstract program to a model
checker. The model checker checks whether the program is safe or not. If the
program is unsafe, the model checker returns a counter-example. In our case,
since P1 is unsafe, we assume the model checker returns a counter-example, called
ρ, given in Fig. 4. In the obtained counter-example ρ, the process P executes the
instruction labeled by p1. At that instruction, the non-deterministic symbol *
returns the value 0, and therefore x is assigned to 0. Then the process P executes
the instruction labeled by p4 and sets the value of t1 to 0. The control then
switches to the process Q which executes the instructions labeled by q1 and q4.
They evaluate both x and t1 to 1. Then, the assertion in the instruction labeled

30 P.A. Abdulla et al.

by p5 is checked. The expression in the assertion, t1 + t2 != 1, is evaluated to
false, so the program is unsafe.

Although ρ is the counter-example of P1, ρ is not identified to be a counter-
example of P since P1 is an abstraction of P. In order to check whether ρ
can lead to a counter-example of P, we need to add back some of the omitted
variables and lines of codes. Adding back this information to ρ will result in a
new program, called Sρ. In this case, we add y and z to ρ.

y = z = 0

process P:

p1: assume 0 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 0 == 0

process Q:

q1: assume 1 == y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: assume 1 == 1;p5: assert false;

Fig. 5. The program Sρ

The program Sρ is
given in Fig. 5. When
adding back variables,
several instructions are
restored such as the
instructions labeled by
p2, p3, q2 and q3.
Variables, which appear
in the counter-example,
can be discarded since
their values are known.
For example, x at p1 in
ρ is 0. We replace the
occurrence of x in q1
by 1. We also transform the assignment in the instruction labeled by p1 to
an assumption to check whether the value of x is equal to the value of right
hand side of assignment, i.e. assume 0 == y ? z ? 0 : 1 : 1. The assumption
blocks the execution until the expression in the assumption is evaluated to true.
Similarly, the instruction labeled by p4 is transformed to assume 0 == 0. Then,
we remove assumptions that are trivially true such as assume 0 == 0. Since Sρ

needs to respect the order of instructions in ρ, the instruction labeled by p1 is
only executed after the instruction labeled by q3.

x = t1 = t2 = 0

process P:

p1: x = *;

p4: t1 = x;

p5: assert (t1+t2 != 1);

observer :

if x == 0 then

if t1 == 0 then

if x == 1 then

if t2 == 1 then

assume false;

process Q:

q1: x = *;

q4: t2 = x;

Fig. 6. The refined program P2

The model checker
checks Sρ and returns
that Sρ is safe. This
means ρ can not lead to
a counter-example of P.
We then need to refine
P1 to exclude ρ from its
set of runs. Therefore,
we create a refinement of
P1, called P2 and given
in Fig. 6, as follows. We
use an observer to check
whether the actual run
is identical to the run ρ.
Two runs are identical if (1) their orders of executed instructions are the same,
and (2) valuations of variables after each instruction are the same in both runs.

Counter-Example Guided Program Verification 31

If the actual run is identical to the run ρ, then that run is safe. For the sake of
simplicity, we model the observer as a sequence of conditional statements. After
each instruction in the run ρ, except the assertion at the end of ρ, we create a
conditional statement to re-evaluate values of variables. For instance, if x ==
0 follows the assignment x = * at p1, where 0 is the value of x at instruction
labeled by p1 in ρ. If if x == 0 is passed, then the execution can check if t1 ==
0 after running assignment t1 = x at p4. Otherwise, the execution is no longer
followed by the observer. If an execution passes all conditional statements of the
observer, then the actual run is identical to ρ. The assumption assume false at
the end of observer is to prevent the execution of the assertion at p5. Hence, P2

excludes ρ from its runs.

y = z = 0

process P:

p1: assume 1 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 1 == 1;

process Q:

q1: assume 0 == y?0:z?0:1;

q2: y = ! z;

q3: z = 1;

q4: assume 1 == 1;

p5: assert false;

Fig. 7. The program Sϕ

The model checker
checks P2. It returns a
counter-example, called
ϕ, as given in Fig. 4.
In ϕ, the instructions
of the process Q, which
are labeled by q1 and
q4, are issued first. After
that, the instructions of
P, which are labeled by
p1, p4 and p5, are per-
formed. Similar to the
way we verify ρ, we add y and z back to ϕ and construct a new program to
simulate ϕ, called Sϕ. Sϕ is presented in Fig. 7. In the counter-example Sϕ, the
variables x, t1 and t2 are replaced by their values in ϕ. Then, instructions labeled
by p4 and q4 are removed due to the optimization. We also force Sϕ to respect
the flow of the counter-example ϕ. For instance, the instruction labeled by p1
only runs after the instruction labeled by q3.

π:

q1(assume true)

q2(y = 1)

q3(z = 1)

p1 (assume true)

p2 (y = 1)

p3 (z = 0)

p5 (assert false)

Fig. 8. Counter-example of Sϕ

The model checker checks Sϕ. It then
concludes that Sϕ is unsafe with a proof
by a counter-example, called π, given in
Fig. 8. We need to verify whether π can
lead to a counter-example of P by adding
more variables and lines of codes, and
then constructing a new program that
respects the flow of instructions in π.
However, all variables of the program P
are used, so π is a counter-example of P.
Thus, P is unsafe and the algorithm stops.

3 Concurrent Programs

In this section, we describe the syntax and semantics of programs we consider
but before that we will introduce some notations and definitions.

32 P.A. Abdulla et al.

For A a finite set, we use |A| to denote its size. Let A and B be two sets, we
use f : A �→ B to denote that f is a function that maps any element of A to an
element of B. For b ∈ B, we use b ∈ f to denote that there is an a ∈ A such
that f(a) = b. For a ∈ A and b ∈ B, we use f [a ←↩ b] to denote the function f ′

where f ′(a) = b and f ′(a′) = f(a′) for all a′ �= a.

Syntax. Figure 9 gives the grammar for a C-like programming language that we
use for defining concurrent programs. A concurrent program P starts by defining
a set of shared variables. Each shared variable is defined by the command var
followed by a unique identifier. We assume that the variable ranges over some
(potentially infinite) domain D. Then the program P defines a set of processes
(or threads). Each process has a unique identifier p and its code is a sequence
consists of instructions (which is placed between begin and end). An instruction
ins is of the form “loc:stmt”, where loc is a label (or control location), and stmt
is a statement. We use label(ins) to denote the label loc of the instruction ins
and stmt(loc) to denote the statement stmt. We use VP to denote the set of
variables, ProcP to denote the set of processes of the program P. For a process
P ∈ ProcP , let IP be the set of instructions in the code of P and QP be the set
of labels appearing in its code. We assume w.l.o.g. that each instruction has a
unique label. Let IP := ∪P∈ProcP IP , and QP := ∪P∈ProcPQP . We assume that
we dispose of a function init : Proc �→ QP that returns the label of the first
instruction to be executed by each process.

c-prog ::= var + process +

var ::= var x ;
process ::= process p begin inst ∗ end

inst ::= loc: stmt ;
stmt ::= skip

| x := expr
| goto loc1, . . . locn
| assume expr
| assert expr
| if expr
then inst else inst fi

expr ::= expr *

Fig. 9. Syntax of concurrent programs

A skip statement corresponds to
the empty statement that leaves
the program state unchanged. A
goto statement of the form “goto
loc1,. . . locn” jumps nondeterministi-
cally to an instruction labeled by loct

for some t ∈ {1, . . . , n}. An assign-
ment statement (asg for short) of the
form “x := expr” assigns to the vari-
able x the current value of the expres-
sion expr. An assumption statement
(asp) of the form “assume expr” checks
whether the expression expr evaluates
to true and if not, the process execu-
tion is blocked till that the value of
expr is true. An assertion statement
(asr) of the form “assert expr” checks whether the expression expr evalu-
ates to true, and if not the execution of the program is aborted. A conditional
statement (cnd) of the form “if 〈expr〉 then inst1 else inst2 fi” executes the
instruction inst1, if the expression expr evaluates to true. Otherwise, it exe-
cutes the instruction inst2. We assume w.l.o.g. that the label of inst1 is different
from the label of inst2. We assume a language of expressions expr interpreted
over D. Furthermore, in order to allow nondeterminism, expr can receive the

Counter-Example Guided Program Verification 33

non-deterministic value *. We use Expr to denote the set of all expressions in
P. Let Varexpr : Expr �→ 2VP be a function that returns the set of variables
appearing in a given expression (e.g., Varexpr(y + z + 1) = {y, z}).

Semantics. We describe the semantics informally and progressively. Let us
first consider the case of a (sequential) program Ps that has only one process
P (i.e., ProcPs

={P}). A sequential configuration c is then defined by a pair
(loc, state) where loc ∈ QP is the label of the next instruction to be executed
by the process P , and state : VP �→ D is a function that defines the valuation
of each shared variable. The initial sequential configuration cinit(Ps) is defined
by (init(P), stateinit) where stateinit(x) = 0 for all x ∈ VPs

. In other words,
at the beginning of the program, all variables have value 0 and the process P
will execute the first instruction in its code. The transition relation −→Ps

on
sequential configurations is defined as usual: For two sequential configurations
c, c′, we write c−→Ps

c′ to denote that the program Ps can move from c to c′.
Now, we consider the case of the concurrent program P that has at least

two processes (i.e., |ProcP | ≥ 2). For every P ∈ ProcP , let PP be the sequen-
tial program constructed from P by deleting the code of any process P ′ �= P
(i.e., PP contains only the instructions of the process P). We define a function
label definition q̄ : ProcP �→ QP that associates for each process P ∈ ProcP ,
the label q̄(P) ∈ QP of the next instruction to be executed by P . A concur-
rent configuration (or simply configuration) c is a pair (q̄, state) where q̄ is a
label definition, and state is a memory state. We use LabelOf(c), StateOf(c) to
denote q̄ and state respectively. The initial configuration cinit(P) is defined by
(q̄init, stateinit) where q̄init(P) = init(P) for all P ∈ ProcP , and stateinit(x) = 0
for all x ∈ VP . In other words, at the beginning, each process starts at the
initial label, and all variables have value 0. We use C(P) to denote the set of
all configurations of the program P. Then, the transition relation between con-
figurations is defined as follows: For two given configurations c = (q̄, state) and
c′ = (q̄′, state′) and a label loc ∈ QP of some process P , we write c loc−−→P c′

to denote that program P can move from the configuration c to the configura-
tion c′ by executing the instruction labeled by loc of the process P . Formally,
we have c loc−−→P c′ iff (q̄(P), state)−→PP

(q̄′(P), state′), q̄(P) = loc, and for every
P ′ ∈ (ProcP \ {P}), we have q̄(P ′) = q̄′(P ′).

A run π of P is a finite sequence of the form c0 · loc1 · c1 · loc2 · · · locm ·
cm, for some m ≥ 0 such that: (1) c0 = cinit(P) and (2) ci

loci+1−−−−→P ci+1 for
all i ∈ {0, . . . , m − 1}. In this case, we say that π is labeled by the sequence
loc1loc2 . . . locm and that the configuration cm is reachable by P. We use Trace(π)
and Target(π) to denote the sequence loc1·loc2 . . . locm in π and the configuration
cm, respectively. We use ΠP to denote the set of all runs of the program P.
The program P is said to be safe if there is no run π reaching a configuration
c = (q̄, state) (i.e., Target(π) = c) such that q̄(P), for some process P ∈ ProcP ,
is the label of an assertion statement of the form “assert expr” where the
expression expr can be evaluated to false at the configuration c.

34 P.A. Abdulla et al.

4 Counter-Example Guided Program Verification

In this section, we present our Counter-Example Guided Program Verification
(CEGPV) algorithm. The CEGPV algorithm takes a program P as its input
and returns whether P is safe or not. The work-flow of the algorithm is given
in Fig. 1. The algorithm consists of four modules, the abstraction, the counter-
example mapping, the reconstruction and the refinement. It also uses an external
model checker as a back-end tool. Recall that VP denotes the set of variables of
the program P. The algorithm starts by selecting a subset of variables V0 ⊆ VP
using a dependency graph (not shown in Fig. 1 for sake of simplicity).

The abstraction takes P and V0 as its input. It then constructs an over-
approximation of P, called P ′, as follows. First, it keeps variables in V0 and slices
away all other variables of P. Occurrences of the sliced variables are replaced by
a non-deterministic value. Second, some instructions, where the sliced variables
occur, in P can be discarded. After that, P ′ is given to a model checker. Observe
that P ′ has V0 as its set of shared variables.

Then, the model checker takes as input P ′, generated by the abstraction
module or the refinement module, and checks whether it is safe or not. If the
model checker returns that the program is safe, then P is also safe, and our
algorithm terminates. If the program is unsafe, then the model checker returns
a counter-example π′ of the form c0 · loc1 · c1 · loc2 · · · locm · cm.

The counter-example mapping takes the counter-example π′ as its input. It
transforms the run π′ to a run of the program resulting of the abstraction module.

The reconstruction takes always as input a counter-example π of P ′ (which
results from the application of the abstraction module to the program P). It
then checks whether π can lead to a real counter-example of P. In particular,
if V0 = VP , i.e. no variable was sliced away from P, then P ′ is identical to P.
Therefore, π is also a counter-example of P. The algorithm concludes that P is
unsafe, and then terminates. Otherwise, the reconstruction adds back all omitted
variables (i.e., VP \ V0) and lines of codes to create a program P1. The program
P1 also needs to respect the flow of the instructions in π. In other words, the
instruction labeled by loci, for some i ∈ {1, . . . , m}, in P1 can only be executed
after executing all the instructions labeled by locj for all j ∈ {1, . . . , i − 1}.
For each run of the program P1, let c′

i be the configuration after executing the
instruction labeled by loci. The configuration c′

i needs to satisfy StateOf(c′
i)(x) =

StateOf(ci)(x) for all x ∈ V0, i.e. each value of variable in the set V0 at the
configuration c′

i is equal to its value in the configuration ci.
Then CEGPV recursively calls itself to check P1 in its next iteration. Inputs

of the next iteration are P1, and a subset of variables V1 ⊆ VP1 = (VP \ V0),
which is selected using the dependency graph. If the iteration returns that P1 is
unsafe, then the run π leads to a counter-example of P. The algorithm concludes
that P is unsafe and terminates. Otherwise, π cannot lead to a counter-example
of P. Then the algorithm needs to discard π from the set of runs of P ′.

The refinement adds π to the set of spurious counter-examples of P ′ (result-
ing from the application of the abstraction module to P). It then refines P ′ by

Counter-Example Guided Program Verification 35

removing all these spurious counter-examples from the set of runs of P ′. The
new resulting program is then given back to the model checker.

In the following, we explain in more details each module of our CEGPV
algorithm. The counter-example mapping module is described at the end of the
subsection dedicated to the explanation of the refinement module (Sect. 4.3).

4.1 The Abstraction

The abstraction transforms P into a new program P ′ by slicing away all variables
in VP \V0 and some lines of codes. In particular, we define a map function [[.]]ab

that rewrites P into P ′. The formal definition of the map [[.]]ab is given in Fig. 10.
In the following, we informally explain [[.]]ab.

The map [[.]]ab keeps only the variables in V0 and removes all other variables
of P. The map [[.]]ab also keeps the same number of processes as in P, and
transforms the code of each process of P to a corresponding process in P ′.

[[c-prog]]ab
def= [[var x]]+ab[[process]]+ab

[[var x]]ab
def=

var x; if x ∈ V0

var x; otherwise
[[process]]ab

def= process p begin [[inst]]∗ab end

[[inst]]ab
def= loc: [[stmt]]ab;

[[skip]]ab
def= skip

[[goto loc1, . . . , locn]]ab
def= goto loc1, . . . , locn

[[x := expr]]ab
def= skip if x /∈ V0

x := [[expr]]ab otherwise
[[assume expr]]ab

def= assume [[expr]]ab
[[assert expr]]ab

def= assert [[expr]]ab
[[if expr then inst1
else inst2 fi]]ab

def=
if [[expr]]ab then [[inst1]]ab
else [[inst2]]ab fi

[[expr]]ab
def=

∗ if Varexpr(expr) ∩ (VP0 \ V0) = ∅

expr otherwise

Fig. 10. Translation map [[.]]ab

For each instruction in a
process, the map [[.]]ab keeps
the label and transforms the
statement in that instruc-
tion. The map [[.]]ab replaces
occurrences of sliced vari-
ables in the statement by the
non-deterministic value *.
First, the skip and goto
statements remain the same
since they do not make use
of any variable. Second, for
an assignment statement of
the form “x := expr”, if
the variable x is not in V0,
then that statement is trans-
formed to the skip state-
ment. If at least one discarded variable occurs in the expression expr, then the
assignment is transformed to “x := ∗”. Otherwise, the assignment remains the
same. Third, for both an assumption statement of the form “assume expr” and
an assertion of the form “assert expr”, the map [[.]]ab replaces the expression
expr by the nondeterministic value *, if at least one discarded variable occurs
in expr. Otherwise, the assumption and assertion remain the same. For a condi-
tional statement, the map [[.]]ab transforms its guard to be non-deterministic if
it makes use of one of the discarded variables. The consequent instruction and
alternative instruction are also transformed in a similar manner by the map [[.]]ab.
Finally, we remove any instruction that trivially does not affect the behaviors of
[[P]]ab.

Lemma 1. If [[P]]ab is safe, then P is safe.

36 P.A. Abdulla et al.

4.2 The Reconstruction

Let π be a counter-example of the program [[P]]ab of the form c0 · loc1 · c1 ·
loc2 · · · locm · cm. The reconstruction transforms P to a new program P1 by
forcing P to respect the sequence of configurations and labels in π. In particular,
we define a map function [[.]]co to rewrite the program P into the program P1.
The formal definition of the map [[.]]co is given in Fig. 11. For a label loc, let
IndexOf(loc) = {i ∈ {1, . . . , m} | loci = loc} be the set of positions where the
label loc occurs in the run π. Let newloc be a function that returns a fresh label
that has not used so far. The map [[.]]co starts by adding a new variable cnt. The
variable cnt is used to keep track of the execution order of the instructions in π.
All variables in V0 are removed by the map [[.]]co since their values is determined
by π. The map [[.]]co also keeps the same number of processes as in the program
P, and transforms the code of each process.

[[c-prog]]co
def
= var cnt;[[var x]]+co[[process]]+co

[[var x]]co
def
=

var x; if x /∈ V0

var x; otherwise

[[process]]co
def
= process p begin [[inst]]co end

[[inst]]co
def
=

[[loc : stmt]]co,ab if loc ∈ I[[P]]
ab

[[loc : stmt]]co,oth; otherwise

[[loc : stmt]]co,oth
def
=

⎧
⎪⎪⎨

⎪⎪⎩

loc: if (cnt == 0) then [[stmt]]0co,oth; else

. . .
if (cnt == m) then [[stmt]]mco,oth;

else skip; fi; . . . fi;

[[loc : stmt]]co,ab
def
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

loc: if (cnt + 1 ∈ IndexOf(loc) ∧ cnt == 0) then

[[stmt]]0co,ab; else

. . .
if (cnt + 1 ∈ IndexOf(loc) ∧ cnt == m − 1) then

[[stmt]]m−1
co,ab; else assume false; fi; . . . fi;

newloc : cnt := cnt + 1;

[[skip]]ico,−
def
= skip where − ∈ {ab, oth}

[[goto loc1, . . . , locn]]ico,−
def
= goto loc1, . . . , locn where − ∈ {ab, oth}

[[assume expr]]ico,−
def
= assume [[expr]]cco where − ∈ {ab, oth}

[[assert expr]]ico,−
def
= assert [[expr]]cco where − ∈ {ab, oth}

[[x := expr]]ico,ab
def
= assume StateOf(ci+1)(x) == [[expr]]ico

[[x := expr]]ico,oth
def
= x := [[expr]]ico

[[if expr then inst1
else inst2 fi]]ico,ab

def
=

assume [[expr]]ico == true; [[inst1]]co if label(inst1) ∈ LabelOf(ci+1)

assume [[expr]]ico == false; [[inst2]]co otherwise
[[if expr then inst1
else inst2 fi]]ico,oth

def
=

if [[expr]]ico then [[inst1]]co
else [[inst2]]co fi

[[expr]]ico
def
= expr [∀x ∈ V0 : x ← StateOf(ci)(x)]

Fig. 11. Translation map [[.]]co

The map [[.]]co transforms instructions in each process as follows. Instructions
that occur in [[P]]ab, are transformed by the map [[.]]co,ab, while other instructions
are transformed by the map [[.]]co,oth. For an instruction of the form “loc: stmt”,
the map [[.]]co,oth keeps the label loc and creates m + 1 copies of the statement
stmt. The i-th copy of stmt, with i ∈ {0, . . . , m}, is executed after reaching the

Counter-Example Guided Program Verification 37

configuration ci in the run π. Therefore, the i-th copy only can be only executed
under the condition “cnt == i”. Then, the statement stmt is transformed based
on the configuration ci in the run π, denoted by [[.]]ico,oth. Similarly, the map
[[.]]co,ab keeps the label loc and creates m copies of the statement stmt (which
corresponds to number of instructions in the run π). The i-th copy of stmt,
with i ∈ {1, . . . , m}, is executed if the label loc appears at position i in the
run π. Therefore, the i-th copy can be executed under the condition “cnt +
1 ∈ IndexOf(loc)” (i.e., the label loc appears at the position cnt + 1) and that
cnt = i − 1 (i.e., after reaching the configuration ci−1). Then, the map [[.]]co,ab

transforms the statement stmt based on the configurations ccnt−1 and ccnt (i.e.,
the configurations before and after executing the instruction labeled by loc) in
the run π, denoted by [[.]]cnt

co,ab. The variable cnt is then increased by one to denote
that one more instruction in the run π has been executed.

In general, the map [[.]]ico,ab, for some i ∈ {0, . . . , m − 1} rewrites all expres-
sions in statements. The skip and goto statement remain the same. For both an
assertion of the form “assert expr” and assumption “assume expr”, [[.]]cco,ab

transforms their expressions expr. For an assignment of the form “x := expr”,
it rewrites that assignment by an assumption checking that, the value of x in
the configuration ci+1 is equal to the value of expr at the configuration ci. For a
conditional statement of the form if 〈expr〉 then inst1 else inst2 fi”, [[.]]cco,ab,
we first check which branch has been taken in the run π. To do that, we check
the labels appearing in the configuration ci+1. After that, we add an assumption
to check whether the branch has been correctly selected in the counter-example.
if expr is evaluated to true at the configuration ci and the label of inst1 appears
at the configuration ci+1, then it executes the instruction [[inst1]]

i
co,ab. Otherwise,

it executes the instruction [[inst2]]
i
co,ab. Finally, all occurrences of variables in V0

in any expressions expr are replaced by their values in the configuration ci.
The map [[.]]ico,oth, for some i ∈ {0, . . . , m}, transforms statements as follows.

The skip and goto statement remain the same. For assignment, assumption, and
assertion, [[.]]ico,oth rewrites expressions in these statements. For a conditional
statement, it also rewrites the guards, the consequent instruction and the alter-
native instruction. The expression is transformed by replacing occurrences of
variables in V0 in that expression by their values in the configuration ci.

Lemma 2. If [[P]]co is unsafe, then P is unsafe.

4.3 The Refinement

Given a set of runs R of [[P]]ab, the refinement module constructs a program P ′

from [[P]]ab by discarding the set of runs in R from the set of runs of [[P]]ab. Before
giving the details of this module, we introduce some notations and definitions.

For a run π of the form c0 · loc1 · c1 . . . locm · cm, let Loc(π) = {loc1, . . . , locm}
be the set of all labels occurring in π, and Con(π) = {c0, c1, . . . , cm} be the set
of all configurations in π. Let Rloc =

⋃
π∈R Loc(π) and Rcon =

⋃
π∈R Con(π). Let

Prefix(π) = {c0 · loc1 · c1 . . . loci · ci|i ∈ {0, . . . , m − 1}} be the set of prefixes of
π and Rprefix =

⋃
π∈R Prefix(π) be the set of all prefixes of all runs in R.

38 P.A. Abdulla et al.

Then, we construct a graph (or a tree) GR to represent in concise manner
the set of runs in R. The graph GR = (V,E) consists of a number of vertices
V and directed edges E where V = Rprefix and E = {(v, v′)|∃loc ∈ Rloc, c ∈
Rcon and v′ = v · loc · c}. In other words, each vertex corresponds to a prefix in
Rprefix , and each edge describes the transition from one prefix to another one.

Let v ∈ V , P ∈ Proc[[P]]
ab

, and loc ∈ QP . Let Next(v, loc) = {c|c ∈ Rcon :

v · loc · c ∈ (V ∪ R)} be the function that returns the set of configurations
which can be reached from v through executing the instruction labeled by loc.
Let Reach(v, P) = {loc|loc ∈ QP ,∃c ∈ C([[P]]ab) and ∃v′ ∈ Π([[P]]ab) : (v′ =
v · LabelOf(Target(v))(P) · c) ∧ (v′ /∈ (V ∪ R)) ∧ (loc = LabelOf(c)(P))} be
the function that returns the set of all possible labels loc of the process P that
can be reached by a run v′ /∈ R ∪ V which is an extension of the prefix v by
executing an instruction of the process P . In order to force the execution of
[[P]]ab to perform a different run than the ones in R, we make sure that [[P]]ab

follows the prefix v ∈ Rprefix , and then performs the instruction of the process P
that leads to a new prefix p′ which was not part of Rprefix or R. Then, we create
the output program P ′ of the refinement module from [[P]]ab by adding (1) an
observer process to simulate the execution of the prefix v′, and (2) a controller
per process to continue execution of each process from the reached location
after executing the prefix v′. We add a new variable, called label, used by the
observer to communicate to each controller where the execution will resume for
each process after leaving the observer.

start: goto v1, v2, . . . , vn;
. . .
vi: for all x ∈ V0: x := StateOf(Target(vi))(x);

goto (vi, P1), . . . , (vi, Pm);
. . .
(vi, Pj): if Reach(vi, Pj) = ∅ then

loc := LabelOf(Target(vi))(Pj);
if stmt(loc) of the form “x := *” then

x := *;
assume x /∈ {StateOf(c)(x)|c ∈ Next(vi, loc)};

else assume false ; fi;
label := ∗;
assume label ∈ Reach(vi, Pj);
flag := 1;
for all P ∈ Proc[[P]]

ab

\ {Pj}
label := LabelOf(Target(vi)) (P);

fi;
assume false ;
. . .

. . .

Fig. 12. Pseudocode of observer with V =
{v1, . . . , vn} and Proc[[P]]

ab

= {P1, . . . , Pm}

We construct an observer as
given in Fig. 12. The observer
is executed before any processes
in [[P]]ab. It starts by non-
deterministically jumping to a
node vi (representing a prefix of
a run in R), where vi represents
a vertex of GR. At the node vi,
values of variables are updated
to the valuation at Target(vi).
Then, the observer decides, in
non-deterministic manner, to exe-
cute an instruction of a process
Pj ∈ [[P]]ab. If the execution of
an instruction of Pj , from the pre-
fix vi, does not lead a new prefix
which is not in R ∪ Rprefix (i.e.,
Reach(v, Pj) is empty), then the
execution of the observer termi-
nates (and so of the program P ′).
If Reach(v, Pj) is not empty, we
first distinguish the case where the next instruction to be executed by Pj is
a non-deterministic assignment to some variable x. Then, the observer ensures

Counter-Example Guided Program Verification 39

that the new value assigned to x is different from its value in any configuration
which can be reached from vi through executing this non-deterministic assign-
ment by Pj . After that, the observer communicates the new label of Pj by setting
the variable label to it. Finally, it sets the variable flag to one to enable the exe-
cution of other processes and communicates to them their starting instruction
by setting the variable label.

assume flag == 1;
if label ∈ QP then goto label;
else assume false ;
. . .

Fig. 13. Pseudocode of con-
troller of the process P

Each process P in [[P]]ab is controlled by
a controller, given in Fig. 13. The controller is
placed at the top of the code of P . The con-
troller then checks if the label stored in the vari-
able label is in indeed belongs to P , if it is the
case, it jumps to that label. Otherwise, P needs
to wait until one of its label is written.

Finally, we can easily define a mapping map that maps any run of P ′ to a run
of [[P]]ab. This mapping map is used in the Counter-example mapping module.
We can also extend the definition of the mapping map to sets of runs in the
straightforward manner.

Lemma 3. map(Π(P ′)) = Π([[P]]ab) \ R.

5 Optimizations

In this section, we present two optimizations of our CEGPV algorithm. The
first optimization concerns the reduction of the number of iterations of our
GEGPV algorithm by considering several counter-examples instead of one at
each iteration. The second optimization concerns an efficient implementation of
the reconstruction and refinement modules when considering SMT/SAT based
model-checkers such as CBMC [10].

Combining Counter-Examples. Our reconstruction module takes as input a
counter-example π of the form c0 · loc1 ·c1 · loc2 · · · locm ·cm of the program [[P]]ab,
and construct the program P1 which needs to respect the flow of the instruc-
tions in π and also the evaluation of the set of shared variables in V0. To do so
efficiently, we drop the constraint that the program P1 should follow the valua-
tions of the shared variables in V0 in our code-code translation [[.]]co. This means
that the constructed program P1 should only make sure to execute the instruc-
tion labeled by loci, for some i ∈ {1, . . . ,m}, after executing all the instructions
labeled by locj for all j ∈ {1, . . . , i−1}. We also modify the refinement module to
discard all the runs π′ in the set of runs of [[P]]ab such that Trace(π′) = Trace(π)
in case that the program P1 is declared safe by model-checker.

We can furthermore optimize our CEGPV algorithm by not imposing any
order on the execution of two instructions labeled by loci and locj if they can be
declared to be independent (as done in stateless model-checking techniques [3]).

40 P.A. Abdulla et al.

SMT Based Optimization. The CEGPV algorithm can be integrated into
SMT/SAT based model-checkers such as CBMC [10]. Recall that in Sect. 4.2,
we force a program running in a specific order of instructions, and in Sect. 4.3,
we forbid that order of instructions in a program. These operations can be eas-
ily done performed using clock variables [16]. Indeed, for each label loc in the
program, we associate to a clock variable clockloc ranging over the naturals. The
clock variable clockloc is assigned 0 if the instruction labeled by loc is not exe-
cuted. Given labels loc1 and loc2, in order to force the execution of the instruction
labeled by loc1 before the execution of the instruction labeled by loc2, we need
only to make sure that 0 < clockloc1 and clockloc1 < clockloc2 . In the similar way,
we can write a formula to force the SMT/SAT based model checker to return a
counter-example different from the already encountered ones.

Table 1. Performance of CEGPV in comparison to CBMC on benchmarks of the SV-
COMP15 Concurrency category [2]. Each row corresponds to a sub-category of the SV-
COMP15 benchmarks, where we report the number of checked programs. The column
pass gives the number of correct answers retuned by each tool. An answer is considered
to be correct for a (un)safe program if the tool return “(un)safe”. The columns fail
report the number of unsuccessful analyses performed by each tool. An unsuccessful
analysis includes crashes, timeouts. The columns time gives the total running time in
seconds for the verification of each benchmark. Observe that we do not count, in the
total time, the time spent by a tool when the verification fails.

CBMC 5.1 CEGPV

sub-catergory #programs pass fail time pass fail time

pthread-wmm-mix-unsafe 466 466 0 40301 466 0 1076

pthread-wmm-podwr-unsafe 16 16 0 286 16 0 21

pthread-wmm-rfi-unsafe 76 76 0 958 76 0 141

pthread-wmm-safe-unsafe 200 200 0 12578 200 0 917

pthread-wmm-thin-unsafe 12 12 0 252 12 0 15

pthread-unsafe 17 12 5 441 17 0 302

pthead-atomic-unsafe 2 2 0 2 2 0 2

pthread-ext-unsafe 8 4 4 7 8 0 7

pthread-lit-unsafe 3 2 1 3 2 1 2

pthread-wmm-rfi-safe 12 12 0 3154 12 0 138

pthread-wmm-safe-safe 104 102 2 352 104 0 114

pthread-wmm-thin-safe 12 12 0 28 12 0 12

pthread-safe 14 7 7 124 13 1 63

pthead-atomic-safe 8 7 1 76 8 0 10

pthread-ext-safe 45 19 26 938 31 14 569

pthread-lit-safe 8 3 5 8 3 5 5

Counter-Example Guided Program Verification 41

6 Experiment Results

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPV [1], for the verification
of C/pthreads programs. We used CBMC version 5.1 as a backend tool [10]. We
then evaluated CEGPV on the benchmark set from the Concurrency category of
the TACAS Software Verification Competition (SV-COMP15) [2]. The set con-
sists of 1003 C programs. We have performed all experiments on an Intel Core
i7 3.5 Ghz machine with 16 GB of RAM. We have used a 10 GB as memory limit
and a 800 s as timeout parameter for the verification of each program.

In the following, we present two sets of results. The first part concerns the
unsafe programs and the second part concerns safe ones. In both parts, we com-
pare CEGPV results to the ones obtained using CBMC 5.1 tool [10]. To ensure
a faire comparison between the two tools, we use the same loop-unwinding and
thread duplication bounds for each program. Table 1 shows that CEGPV is
highly competitive. We observe that, for unsafe programs, CEGPV significantly
outperforms CBMC. CEGPV is more than 10 times faster (on average) than
CBMC, except for few small programs. CEGPV also manages to verify almost
all the unsafe benchmarks (except one) while CBMC fails in the verification of
10 programs due to timeout. For safe benchmarks, CEGPV still outperforms
CBMC in the running time. In many programs, CEGPV succeeds to prove the
safety of several programs (except 20 programs), while CBMC fails to prove the
safety of 41 programs. Finally, we observe that, for the benchmark pthread− lit,
the results of both tools are almost the same. The reason is that the programs in
that benchmark only use few variables. Therefore, CEGPV does not slice away
variables in these programs.

References

1. CEGPV. https://github.com/diepbp/SlicingCBMC
2. SV-COMP home page. http://sv-comp.sosy-lab.org/2015/
3. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial

order reduction. In: POPL, pp. 373–384. ACM (2014)
4. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static

analysis. In: POPL, pp. 1–3. ACM (2002)
5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker

blast. STTT 9(5–6), 505–525 (2007)
6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-

cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 16

7. Bindal, S., Bansal, S., Lal, A.: Variable and thread bounding for systematic testing
of multithreaded programs. In: ISSTA, pp. 145–155. ACM (2013)

8. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Softw. Eng. 30(6), 388–402 (2004)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

https://github.com/diepbp/SlicingCBMC
http://sv-comp.sosy-lab.org/2015/
http://dx.doi.org/10.1007/978-3-642-22110-1_16

42 P.A. Abdulla et al.

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70. ACM (2002)

12. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 59

13. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton (1994)

14. Kurshan, R.P.: Program verification. Not. AMS 47(5), 534–545 (2000)
15. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:

Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 32

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

17. Säıdi, H.: Model checking guided abstraction and analysis. In: Palsberg, J. (ed.)
SAS 2000. LNCS, vol. 1824, pp. 377–396. Springer, Heidelberg (2000). doi:10.1007/
978-3-540-45099-3 20

18. Valdiviezo, M., Cifuentes, C., Krishnan, P.: A method for scalable and precise bug
finding using program analysis and model checking. In: Garrigue, J. (ed.) APLAS
2014. LNCS, vol. 8858, pp. 196–215. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12736-1 11

http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-31424-7_32
http://dx.doi.org/10.1007/978-3-540-45099-3_20
http://dx.doi.org/10.1007/978-3-540-45099-3_20
http://dx.doi.org/10.1007/978-3-319-12736-1_11
http://dx.doi.org/10.1007/978-3-319-12736-1_11

Tighter Reachability Criteria
for Deadlock-Freedom Analysis

Pedro Antonino(B), Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford, Oxford, UK
{pedro.antonino,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. We combine a prior incomplete deadlock-freedom-checking
approach with two new reachability techniques to create a more pre-
cise deadlock-freedom-checking framework for concurrent systems. The
reachability techniques that we propose are based on the analysis of indi-
vidual components of the system; we use static analysis to summarise
the behaviour that might lead components to this system state, and we
analyse this summary to assess whether components can cooperate to
reach a given system state. We implement this new framework on a tool
called DeadlOx. This implementation encodes the proposed deadlock-
freedom analysis as a satisfiability problem that is later checker by a
SAT solver. We demonstrate by a series of practical experiments that
this tool is more accurate than (and as efficient as) similar incomplete
techniques for deadlock-freedom analysis.

1 Introduction

Deadlock-checking techniques seek to establish whether a finite-state concurrent
system can reach a blocked state. Complete approaches construct and search a
system’s state space for blocked states, and thus, they either show that a system
is deadlock free or they find a deadlock, namely, a snapshot of the system that
is both reachable and blocked. A snapshot is a tuple containing a component
state per component of the concurrent system, i.e. a possible state of the system.
These techniques, however, tend not to be scalable: deadlock-freedom checking
quickly becomes intractable as systems grow in size.

To cope with this lack of scalability, a number of incomplete deadlock-
freedom-checking techniques have been proposed [2,3,5,6,12,13,16]. These tech-
niques imprecisely characterise a deadlock using local analysis, that is, they
analyse only small parts of the system (for instance, individual components or
pairs of them) to establish, conservatively, whether a system can deadlock. This
imprecise characterisation makes these techniques scalable at the expense of
making them incomplete, namely, they either guarantee deadlock freedom or are
inconclusive. In the latter case, the system might deadlock or not.

In [2], we presented an incomplete deadlock-checking technique that signifi-
cantly improves on previous frameworks that use local analysis. It attempts to
use purely local analysis to show that no blocked snapshot is reachable. While
this works well for many classes of systems, it does not work in cases where the
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 43–59, 2016.
DOI: 10.1007/978-3-319-48989-6 3

44 P. Antonino et al.

interactions of the system maintain some global invariant that prevents deadlocks
too subtle to identify with our original methods. This inability is a consequence
of characterising snapshots reachability using pure local analysis.

In this paper, we propose two complementary reachability criteria, based on
two common sorts of global invariant, that are combined with the pure-local-
analysis technique in [2] to create a more precise deadlock-freedom technique.
This new deadlock-freedom technique is implemented in the DeadlOx tool, which
makes use of SAT checkers and FDR3’s capabilities [9]. As in [2], using the
capabilities of SAT checkers means we can be ambitious in the properties of
snapshots that we seek to establish.
Outline. Sect. 2 briefly introduces CSP’s operational semantics, which is the for-
malism upon which our strategy is based. However, this paper can be under-
stood purely in terms of communicating systems of LTSs, and knowledge of
CSP is not a prerequisite. Section 3 presents some related incomplete deadlock-
freedom-checking techniques. In Sect. 4, we introduce our reachability criteria.
Section 5 presents our new framework for imprecise deadlock-freedom checking.
Section 6 presents an experiment conducted to assess the accuracy and efficiency
of our DeadlOx tool. Finally, in Sect. 7, we present our concluding remarks.

2 Background

Communicating Sequential Processes (CSP) [11,19] is a notation used to model
concurrent systems where processes interact, exchanging messages. Here we
describe some structures used by the refinement checker FDR3 [9] in imple-
menting CSP’s operational semantics. As this paper does not depend on the
details of CSP, we do not describe the details of the language or its semantics.
These can be found in [19].

CSP’s operational semantics interpret language terms as a labelled transition
system (LTS).

Definition 1. A labelled transition system is a 4-tuple (S,Σ,Δ, ŝ) where S is
a set of states, Σ is the alphabet, Δ ⊆ S × Σ × S is a transition relation, and
ŝ ∈ S is the starting state.

FDR3 represents concurrent systems as supercombinator machines. A super-
combinator machine consists of a set of component LTSs along with a set of
rules that describe how components transitions should be combined. We restrict
FDR3’s usual definition to systems with pairwise communication, as per [2,13].

Definition 2. A supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (i, e, a) where:

• i ∈ N is a unique identifier for the rule;
• e ∈ (Σ ∪ {−})n specifies the event that each component must perform,

where − indicates that the component performs no event; e must also be
triple-disjoint, that is, at most two components must be involved in a rule.

Tighter Reachability Criteria for Deadlock-Freedom Analysis 45

∗ triple disjoint(e) =̂ ∀ i, j, k ∈ {1 . . . n} | i 	= j ∧ j 	= k ∧ i 	= k •
ei = − ∨ ej = − ∨ ek = −

• a ∈ Σ is the event the machine performs.

The participants of a rule are the components required to perform an event.
Given a supercombinator machine, a corresponding LTS can be constructed.

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi). The LTS induced by S is the tuple (S,Σ,Δ, ŝ) such that:

– S = S1 × . . . × Sn;
– Σ = {i | ∃(i, e, a) ∈ R};
– Δ = {((s1, . . . , sn), j, (s′

1, . . . , s
′
n)) | ∃(j, (e1, . . . , en), a) ∈ R • ∀ i ∈ {1 . . . n} •

(ei = − ∧ si = s′
i) ∨ (ei 	= − ∧ (si, ei, s

′
i) ∈ Δi)};

– ŝ = (ŝ1, . . . , ŝn).

We slightly change the common definition of an induced LTS to focus on rule
occurrences instead of system-event performances. Usually, a rule application is
seen as an synchronisation between components that results in a system event.
However, for our analyses, we are interested in the identifier of the rule used
rather than the system event it produces.

We write s
r−→ s′ if (s, r, s′) ∈ Δ. There is a path from s to s′ with the

sequence of rule identifiers 〈r1, . . . , rn〉 ∈ Σ∗, represented by s
〈r1,...,rn〉−−−−−−→ s′, if

there exist s0, . . . , sn such that s0
r1−→ s1 . . . sn−1

rn−→ sn, s0 = s and sn = s′. A
trace is a path starting from the initial state. For our analyses, we will be mainly
interested in the rule-identifier traces of induced LTSs.

Definition 4. A LTS (S,Σ,Δ, ŝ) deadlocks in a snapshot s if and only if the
predicate deadlocked(s) holds, where:

– deadlocked(s) =̂ reachable(s) ∧ blocked(s)
– reachable(s) =̂ ∃ tr ∈ Σ∗ • ŝ

tr−→ s

– blocked(s) =̂ ¬∃ s′ ∈ S ; r ∈ Σ • s
r−→ s′

3 Related Work

The SDD (State Dependency Digraph), developed by Martin in [13], is the basis
of an incomplete technique that attempts to prove deadlock-freedom for triple-
disjoint systems. It uses local analysis to construct the dependency digraph of a
system. This framework relies on the fact that every deadlock produces a cycle
in the system’s dependency digraph. So, a cycle-free dependency digraph shows
that a system is deadlock free. This characterisation can be efficiently checked by
algorithms that detect cycles in a digraph. However, this cycle-of-dependencies
characterisation for a deadlock can be rather imprecise.

In [2], we proposed Pair, an improved incomplete technique that checks
deadlock-freedom for triple-disjoint systems. As per [13], it characterises a dead-
lock by analysing how pairs of components interact.

46 P. Antonino et al.

Definition 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
pairwise projection Si,j of the machine S on components i and j is given by:

Si,j = (〈Li, Lj〉, {(k, (ei, ej), a) | ∃(k, (e1, . . . , en), a) ∈ R • (ei 	= − ∨ ej 	= −)})

Instead of looking for cycles of dependencies, Pair characterises a deadlock
as a snapshot of the system that is fully consistent with local reachability and
blocking information. We call it a Pair candidate. As we use local analysis to its
full extent, we end up with a framework that is strictly better than the SDD.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,Δ, ŝ) its induced LTS. A state s = (s1, . . . , sn) ∈ S is a Pair candidate iff
pair candidate(s) holds, where:

– pair candidate(s) =̂ pairwise reachable(s) ∧ blocked(s)
– pairwise reachable(s) =̂ ∀ i, j ∈ {1 . . . n} | i 	= j • reachablei,j((si, sj))

reachablei,j is the reachable predicate for the pairwise projection Si,j.

The analysis of pairs of components can be used to exactly characterise
whether a snapshot is blocked; Pair does that. The reachability of a snapshot,
however, cannot be exactly captured by this sort of local analysis. Thus, despite
using pairwise-analysis to its full extent, Pair can only conservatively approx-
imates reachability with the predicate pairwise reachable(s). This limitation
makes such techniques unable to, in particular, show that a snapshot is unreach-
able if that is due to some global property of the system’s behaviour. For exam-
ple:

Running Example 1 (From [19]). Let S = (〈L0, L1, L2〉,R) be the supercom-
binator machine with L0, L1 and L2 defined in Fig. 1 and R the set of rules
that require components to synchronise on shared events; for instance, for event
ring1, we have rule (n, (ring1, ring1,−), ring1) where n can be any unique iden-
tifier. For the sake of presentation, we use the name of an event to refer to the
rule that requires its synchronisation. As τ is not synchronised, there are three
rules τ0, τ1, τ2, such that τi allows component i to perform a τ . Components
can receive messages either from another component, via event ringi, or from
its user, via event ini. If it holds a message, it can pass the message along, via
event ringi⊕1, or output the message to its user, via outi. The τ transitions
represent an internal (non-deterministic) decision of the component. The Pair
candidate (s6, s6, s6) is not a deadlock; this snapshot is unreachable and yet
pairwise reachable. ��

Running Example 2. Let S = (〈L0, L1, L2〉,R) be the supercombinator machine
with L0, L1 and L2 defined in Fig. 2 and R the set of rules that require compo-
nents to synchronise on shared events. For the sake of presentation, we use the
name of an event to identify the rule requiring its synchronisation. This system
implements a token ring where process L0 has the token initially and the events
tki represents the passage of a token from Li�1 to Li, where � is subtraction
modulo 3. The Pair candidate (s1, s2, s2) is not a deadlock; this snapshot is
pairwise reachable but it is not reachable. ��

Tighter Reachability Criteria for Deadlock-Freedom Analysis 47

s0 s1

s2

s3

s4

s5

s6

ini

ringi

τ

τ

ringi

outi

ringi

ringi⊕1

τ

outi

τ

ringi⊕1

Fig. 1. LTS of component Li where ⊕ represents addition modulo 3.

s0 s1 s2

tk0

work0 tk1
s0 s1 s2

tk1 work1

tk2

s0 s1 s2
tk2 work2

tk0

Fig. 2. LTSs of components L0, L1, and L2, respectively.

To cope with this pure-local-analysis inadequacy, Martin proposed two exten-
sions of the SDD: the CSDD (Coloured State Dependency Digraph) and FSDD
(Flashing State Dependency Digraph) [13]. These extend the SDD by adding
extra reachability information to a dependency, which in turn, leads to more
precise cycle-of-dependencies characterisations for a deadlock. They can, in par-
ticular, prove that the previous two examples are deadlock free. As for the SDD,
the characterisations proposed by these frameworks discard some local-analysis
information, which could be used to increase precision, so they obtain efficiency.

4 Imprecise Reachability Using Local Static Analysis

In this section, we propose two techniques to decide whether a snapshot is reach-
able. The techniques make use of two global invariants of our concurrent systems:
to reach a snapshot, components have to agree on the order in which they syn-
chronise on rules, and they must agree on the number of times they perform
shared rules. Informally, our techniques try to show that, for a given snapshot,
components cannot satisfy these invariants, so the snapshot must be unreach-
able. If, however, components can meet these invariants, they might be able
to cooperate to reach the snapshot, and so, we conservatively assume that the
snapshot is reachable. The use of these global invariants make these techniques
able to prove unreachability for snapshots that are beyond the capabilities of
techniques using only pure local analysis.

To check whether these global invariants are met, both techniques analyse
a component projection that depicts the component’s behaviour in terms of the
system rules in which it participates rather than its own local events.

48 P. Antonino et al.

Definition 7. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, where
Li = (Si, Σi,Δi, ŝi), and (S,Σ,Δ, ŝ) its induced LTS. The projection of S over
component i is given by following supercombinator machine:

Si = (〈Li〉, {(j, (ei), a) | ∃(j, (e1, . . . , en), a) ∈ R • ei 	= −})

4.1 Ordering of Rules Occurrences Consistency

In the first technique, we try to show that a snapshot is unreachable by showing
that components cannot agree on the order in which they cooperate to reach
this snapshot. We present our technique with the help of Running Example 1.

First of all, we analyse the traces that lead each component projection to its
corresponding state in the snapshot. Note that there might be infinitely many
traces leading such a projection to one of its states; this happens, for instance,
if there exists a trace reaching the target state that passes by a loop in the
component projection’s induced LTS. We summarise this set of traces with a
suffix that is common to all such traces. We adapt the general framework for
static analysis presented in [15] to systematically calculate SFi,j : the longest
common suffix for the traces leading component i’s projection to state sj . We
call SFi,j an invariant suffix of state sj of component i.

Definition 8. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,Δ, ŝ) its induced LTS, Si the projection of S over component i, and
Li = ({s0, . . . , sm}, Σi,Δi, s0) its induced LTS. When applied to Li, the fol-
lowing static analysis framework computes a collection SFi with m+1 elements,
where SFi,j ∈ (Σ∗ ∪ {⊥}) (SFi’s j-th element) is a sequence of rule identifiers
that we call an invariant suffix of state sj of component i.

– Init = 〈〉
– D = ({⊥} ∪ Σm,�), where a � b holds if b is a suffix of a and ⊥ is the least

element.
– Fr(⊥) =̂ ⊥ and Fr(d) =̂ d̂ 〈r〉.

Given these three elements and �, the join operator induced by the lattice D,
the collection SFi is the least fixed point for the following set of equations:

– SFi,0 = Init � SFi,0

– SFi,j′ = Fr(SFi,j) � SFi,j′ , for each (sj , r, sj′) ∈ Δi

To see how these component suffixes translate to the participation of compo-
nents on the system’s behaviour, we can derive an occurrence suffix from them.
An occurrence suffix translates a sequence of rule identifiers to a sequence of
global (or system-wide) rule occurrences; i.e. they represent synchronisations a
component must engage on to reach the associated state.

Definition 9. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,Δ, ŝ) its induced LTS. An occurrence variable Oi

r denotes the i-th most
recent occurrence of rule r, and Rct(⊥) = ⊥ or Rct(SF), where SF ∈ Σ∗, gives
the sequence of occurrence variables that is obtained by replacing the i-th most
recent occurrence of rule r in SF by Oi

r. We use SFOi,j to denote Rct(SFi,j).

Tighter Reachability Criteria for Deadlock-Freedom Analysis 49

Running Example 1. For the component states in the pair candidate analysed,
we have the following invariant suffixes and occurrence suffixes: SF0,6 = 〈τ0,
ring0, τ0〉, SF1,6 = 〈τ1, ring1, τ1〉, SF2,6 = 〈τ2, ring2, τ2〉, SFO0,6 = 〈O1

τ0 , O
0
ring0

,

O0
τ0〉, SFO1,6 = 〈O1

τ1 , O
0
ring1

, O0
τ1〉, and SFO2,6 = 〈O1

τ2 , O
0
ring2

, O0
τ2〉. ��

Next, we present a predicate that formalises our technique. Roughly speak-
ing, we use the clock variables clki

r, where clki
r marks the instant at which the

occurrence Oi
r happened, to find a system synchronisation ordering that respects

the occurrence suffixes of component states in the snapshot under analysis.

Definition 10. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,Δ, ŝ) its induced LTS, and clk(Oi

r) =̂ clki
r. For s = (sj(1), . . . , sj(n)) ∈ S

and occurs = {Oa
b , . . . , Oy

z}:

reachableS(s) =̂ ∃ clka
b , . . . , clky

z ∈ N •
∧

i∈{1...n}
HBC(i, j(i))

where:

– HBC(i, j(i)) =̂

⎧
⎪⎨

⎪⎩

False if SFOi,j(i) = ⊥
True if SFOi,j(i) = 〈〉
TC(i, j(i)) ∧ BC(i, j(i)) otherwise

– TC(i, j(i)) =̂
∧

(O,O′)∈adj(SFOi,j(i))
clk(O) < clk(O′)

• The trace constraint (TC) enforces that a system synchronisation respects the

order in which rule occurrences appear in SFOi,j(i).

– BC(i, j(i)) =̂
∧

O∈difi(SFOi,j(i))
clk(O) < clk(head(SFOi,j(i)))

• A rule occurrence that requires the participation of component i but is not in

SFOi,j(i) must have happened before the occurrences in SFOi,j(i); the before

constraint (BC) enforces that a system synchronisation respects this principle.

– occurs =̂
⋃{SET(SFOi,j(i)) | i ∈ {1 . . . n}}

• This represents the universal set of occurrences for the component states in the

snapshot under analysis.

– adj(SFO) =̂ {(O,O′) | 〈O,O′〉 is a subsequence of SFO}
• This set contains the pairs of adjacent elements in the sequence SFO, where

the elements in these pairs are ordered by their order in SFO.

– difi(SFO) =̂ {Ol
r | Ol

r ∈ occurs ∧ i ∈ pts(r) ∧ Ol
r /∈ SET(SFO)};

• This set contains the occurrences of rules that component i participates in but

are not present on SFO.

– pts(r) =̂ {i | i ∈ {1 . . . n} ∧ ∃(r, e, a) ∈ R • ei 	= −}, gives the participants of
rule r.

If this predicate holds, these HBCs (Happen-Before Constraints) are con-
sistent and components can agree on an ordering in which they participate on
these occurrences. Hence, the snapshot might be reachable. On the other hand,
if the predicate is false, these constraints are inconsistent: either a component
state is trivially unreachable within its own projection (for which SFi,j = ⊥), or
there is an inconsistency between components happens-before orderings. Either
way, components are unable to cooperate to reach the snapshot.

50 P. Antonino et al.

Running Example 1. For this example’s pair candidate, we get the following
happens-before constraints:

1. HBC(0, 6) = clk1
τ0 < clk0

ring0
∧ clk0

ring0
< clk0

τ0 ∧ clk0
ring1

< clk1
τ0 ;

2. HBC(1, 6) = clk1
τ1 < clk0

ring1
∧ clk0

ring1
< clk0

τ1 ∧ clk0
ring2

< clk1
τ1 ;

3. HBC(2, 6) = clk1
τ2 < clk0

ring2
∧ clk0

ring2
< clk0

τ2 ∧ clk0
ring0

< clk1
τ2 .

From 1, 2 and 3, we can deduce that clk0
ring0

< clk0
ring2

< clk0
ring1

< clk0
ring0

,
this contradiction shows that reachable((s6, s6, s6)) is false and that components
cannot agree on the order in which they participate on these rule occurrences.
Note that this predicate could show the pair candidate unreachable for any such
system with 3 or more components. ��

Given that components must synchronise on shared rules to reach snapshots,
for any reachable snapshot, components must be able to, in particular, agree on
the occurrences suffixes leading to this snapshot. So1:

Theorem 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine with
(S,Σ,Δ, ŝ) its induced LTS. For a snapshot s ∈ S, reachable(s) ⇒ reachableS(s).

Hence, this predicate over-approximates reachability, and as a consequence,
it can be soundly used for deadlock-freedom analysis.

4.2 Number of Rules Occurrences Consistency

In the second technique, we try to show that a snapshot is unreachable by
showing that components cannot agree on the number of times they need to
cooperate to reach the snapshot. We use Running Example 2 to introduce this
technique.

In this technique, we summarise the traces leading component i’s projection
to its state sj by an invariant relation ⊕k,l

i,j that relates the number of times that
rules k and l have been applied in any of these traces. We can systematically
calculate such a relation as follows.

Firstly, we use static analysis to compute DSk,l
i,j : a set of integers in which

the difference t ↓ k − t ↓ l lies for all traces t leading component i’s projection
to its state sj (t ↓ l counts the number of times rule l occurred in the trace t).

Definition 11. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,Δ, ŝ) its induced LTS, Si the projection of S over component i, and
Li = ({s0, . . . , sm}, Σi,Δi, s0) its induced LTS. When applied to Li and para-
metrised by rules k and l, the following static analysis framework computes a
collection DSk,l

i with m + 1 elements, where DSk,l
i,j ∈ ({∅,Z} ∪ {{a} | a ∈ Z})

(DSk,l
i ’s j-th element) is a set of integers called an invariant difference set for

rules k and l and state sj of component i.

1 Formal proofs for all theorems in this work can be found in [4].

Tighter Reachability Criteria for Deadlock-Freedom Analysis 51

– Init = {0};
– D = ({∅,Z} ∪ {{a} | a ∈ Z},⊆) the flat integer domain where ⊆ is the usual

order on sets;

– Fr({d}) =̂

⎧
⎪⎨

⎪⎩

{d + 1} if r = k

{d − 1} if r = l

{d} otherwise

, Fr(∅) =̂ ∅ and Fr(Z) =̂ Z.

Given these three elements and �, the join operator induced by the lattice D,
the collection DSk,l

i is the least fixed point for the following set of equations:

– DSk,l
i,0 = Init � DSk,l

i,0

– DSk,l
i,j′ = Fr(DSk,l

i,j) � DSk,l
i,j′ , for each (sj , r, sj′) ∈ Δi

From this difference set, we can obtain ⊕k,l
i,j as follows.

Definition 12. We define ⊕k,l
i,j = Rel(DSk,l

i,j), where Rel(DS) for DS ∈
({∅,Z} ∪ {{d} | d ∈ Z}) is:

– < if DS ⊆ {d | d < 0} ∧ DS 	= ∅,
– > if DS ⊆ {d | d > 0} ∧ DS 	= ∅,
– = if DS = {0},
– ⊥ if DS = ∅,
– � if DS = Z;

and ⊥ and � stand for the empty and the universal relation on N, respectively.

Running Example 2. For the sake of brevity, we only present the invariant differ-
ence sets and relations that are relevant to prove the pair candidate unreachable.
So, DStk0,tk1

0,1 = {0}, DStk1,tk2
1,2 = {1}, DStk2,tk0

2,2 = {1}, ⊕tk0,tk1
0,1 is =, ⊕tk1,tk2

1,2 is
>, and ⊕tk2,tk0

2,2 is >. ��
We formalise this technique as follows. Simply put, we find values Ni, where

Ni represents the value agreed by components as the number of times they
applied rule i, such that they respect the relations we calculate for components.

Definition 13. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,Δ, ŝ) its induced LTS. For s = (sj(1), . . . , sj(n)) ∈ S:

reachableN (s) =̂ ∃N1, . . . , N|Σ| ∈ N •
∧

i∈{1...n}
RC(i, j(i))

where:

– RC(i, j(i)) =̂
∧

k,l∈Σ∧
i∈pts(k)∩pts(l)

⎧
⎪⎨

⎪⎩

True if ⊕k,l
i,j(i) = �

False if ⊕k,l
i,j(i) = ⊥

Nk ⊕k,l
i,j(i) Nl otherwise

52 P. Antonino et al.

This predicate is false if either one the component states is trivially unreach-
able in its own component projection, for which ⊕k,l

i,j(i) = ⊥, or if all component
states are trivially reachable but there exists an inconsistency on the RCs (Rela-
tion Constraints) calculated that shows that components cannot agree on the
number of times they performed some rules. Either way, the snapshot must be
unreachable.

Running Example 2. Given the relations calculated, from RC(0, 1) we derive
that Ntk0 = Ntk1 , from RC(1, 2) that Ntk1 > Ntk2 , and from RC(2, 2) that
Ntk2 > Ntk0 . So, we can deduce that Ntk0 = Ntk1 and Ntk0 > Ntk1 , a contra-
diction that shows that components cannot agree on the number of times they
perform these rules and that reachableN ((s1, s2, s2)) does not hold. Note this
technique can show that the blocked state is unreachable for any such system
with M (M > 1) components of which m (M > m > 0) hold initially a token. ��

Given that components must synchronise on shared rules to reach snapshots,
for any reachable snapshot, components must be able to, in particular, agree on
the number of times they perform shared rules. So:

Theorem 2. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine with
(S,Σ,Δ, ŝ) its induced LTS. For s ∈ S, reachable(s) ⇒ reachableN (s).

Thus, this predicate conservatively over-approximates reachability, and as
such, it can be soundly used for deadlock-freedom analysis.

4.3 Abstraction

We can extend and improve these techniques by carrying out some abstractions.
Firstly, observe that single-participant rules are irrelevant in our reachability
analysis, as our techniques are based on the search of an inconsistency in the
way components collaborate to reach a snapshot.

Secondly, we can achieve a sort of data abstraction for our techniques as fol-
lows. Intuitively, the application of a rule can be seen as a communication taking
place between participants in this rule, whereas a set of rules involving the same
exact participants might be seen as a set of possible values that they can commu-
nicate. With this view in mind, if we identify rules with the same participants,
we are abstracting away these values and focusing on the fact a communication
occurred between these participants. Our concrete framework and this abstract
one can be seamlessly and uniformly integrated in our techniques by using the
following partitioning and slightly modified component projection.

Definition 14. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine and
(S,Σ,Δ, ŝ) its induced LTS. For a given rule identifier i ∈ Σ, we have the
following partitions:

– Concrete: [i]C =̂ i
– Abstract: [i]A =̂ min({j | j ∈ Σ ∧• pts(i) = pts(j)}) (where min returns the

smallest integer in a non-empty finite set)

Tighter Reachability Criteria for Deadlock-Freedom Analysis 53

We analyse slightly different component projections, depending on the level
of abstraction we want.

Definition 15. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, where
Li = (Si, Σi,Δi, ŝi), and (S,Σ,Δ, ŝ) its induced LTS, and x ∈ {A,C} a level of
abstraction. The projection of S over component i is given by the supercombina-
tor machine Si = (〈Li〉, {([j]x, (ei), a) | ∃(j, (e1, . . . , en), a) ∈ R • ei 	= −}).

So, we end up with two different predicates for each technique: reachableC
N (s)

and reachableC
S (s) represent our original predicates, while reachableA

N (s) and
reachableA

S (s) their abstract counterparts.

4.4 Discussion

Our frameworks are intended to automate some common methods for proving
that a snapshot is unreachable. Some methods use the recent behaviour of com-
ponents to show that they cannot cooperate to reach a system’s snapshot [12,13],
while other methods rely on relational invariants to characterise states and prove
snapshots unreachable [8,17]. As both of our running examples show, we provide
a fully systematic framework to carry out these specific sorts of reasoning.

Our reachability tests were inspired by Martins’s CSDD and FSDD, which
were in turn inspired by proof rules from [17]. We have, however, removed some
of FSDD and CSDD’s limitations. In particular, we propose reachability criteria
that are completely independent of the safety property that is being checked,
while both the CSDD and FSDD are centred on deadlock analysis.

5 Combining Reachability Tests with Local Analysis

In this section we combine the Pair characterisation, proposed in [2], with the
new reachability tests presented in Sect. 4. In this new framework, a potential
deadlock is a pair candidate that meets our new reachability tests.

Definition 16. Let S be a supercombinator machine and (S,Σ,Δ, ŝ) its induced
LTS. A snapshot s ∈ S is a deadlock candidate iff the following predicate holds:

deadlock candidate(s) =̂ pair candidate(s) ∧ reachableC
N (s) ∧ reachableC

S (s)
∧ reachableA

N (s) ∧ reachableA
S (s)

Given that our reachability tests over-approximate reachability and that
every deadlock is also a pair candidate [2], every deadlock must also be a dead-
lock candidate. So, a system free of deadlock candidates has to be deadlock
free.

Theorem 3. If a supercombinator machine is deadlock-candidate free, then it
must also be deadlock free.

54 P. Antonino et al.

p0 p1

a

b

q0 q1

b

c
r0

r1

r2 r3

a

c
c

a

c

Fig. 3. LTSs of components L1, L2 and L3, respectively.

Our new characterisation is clearly more precise than the Pair one, but it
remains imprecise: a blocked snapshot can be unreachable and yet meet all
the imprecise reachability tests proposed. Nevertheless, by conjoining these new
tests, we tighten the snapshot space analysed. Observe that it only takes one
failed reachability test, out of the four proposed, to consider a snapshot unreach-
able. The incompleteness of our method is illustrated by the following example.

Example 1. Let S = (〈L1, L2, L3〉,R) be the supercombinator machine such that
L1, L2 and L3 are described in Fig. 3 and R requires components to synchronise
on shared events. The snapshot (p0, q0, r3) is blocked and it meets all reachability
tests, but it is not reachable. Thus, it constitutes a deadlock candidate but
not a deadlock. Neither local analysis nor the underlying proof methods in our
reachability tests are strong enough to prove this snapshot unreachable. ��

5.1 Implementation

We built upon [2] to create an efficient implementation for our framework. So,
we encode the search for a deadlock candidate as a satisfiability problem to
be later checked by a SAT solver. For the remainder of this section, let S =
(〈L1, . . . , Ln〉,R) be a supercombinator machine, (S,Σ,Δ, ŝ) its induced LTS,
Si the projection of S on component i, and (Si, Σi,Δi, ŝi) its induced LTS.

In our propositional encoding, si,j is the boolean variable representing
the state sj of component i, and U represents the disjoint union of all Si

sets. The assignment si,j = true indicates this component state belongs to
a deadlock candidate, whereas si,j = false means it does not. Our formula
F =̂ PC ∧ ReachC

N ∧ ReachC
S ∧ ReachA

N ∧ ReachA
S is a conjunction of five sub-

formulas, each of them captures a predicate of our deadlock characterisation. The
combination of component states assigned to true in a satisfying assignment of
F forms a deadlock candidate.

The first sub-formula PC captures the pair-candidate characterisation; we
reuse the propositional formula that is presented in [2]. The component states
assigned to true in a satisfying assignment for PC form a pair-candidate snap-
shot.

Next, we present a way to encode our newly proposed reachability tests.
First, we present how to encode the predicates reachablex

N for x ∈ {A,C}.

Reachx
N =̂

∧

si,j∈ U
si,j ⇒ RC(i, j)

Tighter Reachability Criteria for Deadlock-Freedom Analysis 55

We encode the variables N1, . . . , N|Σ| as bit-vectors of size �log2 |Σ|�, as we
need |Σ| distinct values to find a model for such a constraint2. We encode <, =
and > as the corresponding operations on bit-vectors.

As follows, we present how to encode the predicates reachablex
S for x ∈

{A,C}. Let occurs = {P a
b , . . . , P y

z } with occurs =̂
⋃{SET(SFOi,j) | si,j ∈ U}.

Reachx
S =̂

∧

si,j∈ U
si,j ⇒ HBC(i, j)

We encode the variables clka
b , . . . , clky

z as bit-vectors of size �log2 |occurs|�,
again we only need |occurs| distinct values to satisfy this formula (see Footnote
2). We encode < as the corresponding operation on bit-vectors.

The rationale behind these two last sub-formulas is as follows. If the com-
ponent state is assigned to true in a satisfying assignment, we make sure, by
the implication, that the associated reachability constraint is also met. So, any
satisfying-assignment snapshot has to meet our reachability tests.

6 Practical Evaluation

We here evaluate our new framework. FDR3’s ability to analyse CSP and gen-
erate supercombinator machines is exploited in generating our SAT encoding,
which is then checked by the Glucose 4.0 solver [7]. We call this new tool Dead-
lOx. A prototype of our DeadlOx and the models used in this section are available
at [1]. For this experiment, we checked deadlock freedom for some CSP bench-
mark problems. The experiment was conducted on a dedicated machine with a
quad-core Intel Core i5-4300U CPU @ 1.90 GHz, and 8 GB of RAM. We com-
pare our prototype against: SDD, CSDD and FSDD (which are implemented
in Martin’s Deadlock Checker tool [14]); Pair technique [2]; FDR3’s built-in
deadlock freedom assertion [9], and its combination with partial order reduction
(FDRp) [10] or compression techniques (FDRc) [18].

We analyse 13 systems that are deadlock free and triple disjoint. Out of these
systems, 12 can be proved deadlock free by DeadlOx, 6 can be proved by CSDD,
and 5 can be proved by FSDD. The latter two frameworks combine to prove 7
of the 13 systems deadlock free. Pair proves 6 of them deadlock-free, and SDD
only 4 of them. The systems that we evaluated are: the alternating bit proto-
col (ABP), the butler solution to the dining philosophers (Butler), a distributed
database (DDB), a matrix multiplication system (Matmul), the asymmetric solu-
tion to the dining philosophers (Phils), a ring network (Ring), the mad postman
routing algorithm (Rout), the sliding window protocol (SWP), Milner’s sched-
uler (Scheduler), a telephone switch system (Tel), a token ring system with a
single token (Token Ring), a token ring system with N/2 tokens (Token Ring
HF) and a train track system. These problems are discussed in detail in [19].
Table 1 presents the results that we obtain for 12 of the 13 systems; the train
track system is not presented in this table as none of the incomplete techniques
2 The cases where |Σ| = 1 or |occurs| = 1 are trivially possibly-reachable.

56 P. Antonino et al.

Table 1. Benchmark efficiency comparison. N is a parameter that is used to alter the
size of the system. We measure in seconds the time taken to check deadlock freedom
for each system. * means that the method took longer than 300 sec. - means that the
method is unable to prove deadlock freedom. + means that no efficient compression
technique could be found.

Incomplete Complete

Example N DeadlOx SDD Pair CSDD FSDD FDR3c FDR3p FDR3

ABP 50 0.06 0.27 0.06 0.28 0.29 + 0.13 0.17

100 0.07 0.71 0.07 0.62 0.75 + 0.23 0.39

200 0.12 1.89 0.12 1.95 1.97 + 0.60 1.29

Butler 5 0.06 - 0.06 - - 0.10 0.07 0.07

10 0.36 - 0.37 - - 0.46 1.36 116.93

12 1.75 - 1.72 - - 1.30 12.78 *

15 19.57 - 22.10 - - 13.79 * *

DDB 5 0.15 - - - - 0.31 0.41 0.13

10 1.61 - - - - * * *

20 56.39 - - - - * * *

Matmul 5 0.20 - - 0.11 - 0.16 0.07 *

10 3.66 - - 0.16 - 15.27 0.32 *

20 48.08 - - 0.59 - * 22.18 *

30 * - - 1.97 - * * *

Phils 20 0.07 0.16 0.07 0.16 0.16 0.27 0.14 *

50 0.11 0.23 0.13 0.23 0.23 1.42 0.75 *

100 0.18 0.35 0.30 0.36 0.35 13.20 5.50 *

500 1.72 2.78 5.42 2.80 2.80 * * *

Ring 50 0.10 - - - 0.13 0.29 * *

100 0.15 - - - 0.16 0.60 * *

200 0.27 - - - 0.28 1.41 * *

500 0.81 - - - 0.83 5.87 * *

Rout 5 0.10 0.13 0.12 0.15 0.15 0.19 * *

10 0.28 0.30 0.99 0.32 0.31 0.68 * *

20 2.05 1.1 14.06 1.31 1.19 4.14 * *

50 24.45 21.5 * 23.05 22.30 115.36 * *

SWP 3 0.15 0.91 0.14 0.93 0.90 0.24 0.21 2.9

5 3.52 * 3.20 * * 4.58 41.9 41.81

7 107.69 * 105.69 * * 136.64 * *

Scheduler 100 0.13 - - 0.15 - 0.29 0.43 *

500 0.57 - - 0.40 - 2.32 106.26 *

1000 1.36 - - 0.86 - 8.14 * *

1500 2.43 - - 1.32 - 23.47 * *

Tel 3 0.06 - 0.06 - - 2.05 * *

5 0.32 - 0.32 - - * * *

8 2.88 - 31.69 - - * * *

10 38.73 - * - - * * *

Token Ring 15 2.42 - - - - + 5.62 0.34

20 11.95 - - - - + 38.45 1.07

25 48.94 - - - - + 171.52 2.97

Token Ring HF 15 2.14 - - - - + * *

20 11.63 - - - - + * *

25 45.16 - - - - + * *

Tighter Reachability Criteria for Deadlock-Freedom Analysis 57

evaluated here can prove it deadlock free. DeadlOx fails on this example because
neither of the additional reachability arguments are sufficient for this system; it
seems to require invariants based explicitly on the number of tokens (i.e. trains),
and the movement of the tokens is too unpredictable to capture using our rules.

For the benchmark problems analysed, DeadlOx is significantly more accu-
rate than the other incomplete techniques (i.e. SDD, Pair, CSDD, and FSDD)
while faring similarly in terms of analysis time. Comparing to the complete
approaches (i.e. FDR3, FDR3c, FDR3p), DeadlOx is consistently faster than the
best complete approach, which is the combination of FDR3’s deadlock assertion
with compression techniques, while being able to prove deadlock freedom for
all the benchmark problems except for the train track example. We point out,
however, that the effective use of compression techniques requires a careful and
skilful application of those, whereas our method is fully automatic.

7 Conclusion

We combine the Pair imprecise characterisation given in [2] with two newly
proposed reachability techniques to create a new framework for deadlock-freedom
analysis. These new reachability techniques combine information extracted from
static analysis of components with a global property of the system to show that
components cannot cooperate to reach the snapshot under analysis. Our new
framework is strictly more accurate than the Pair framework. Particularly, while
Pair is unable to show that a snapshot is unreachable if that depends on a global
aspect of the system, our new reachability tests can show that with respect to
two specific global invariants of the system, namely, components have to agree
on the order of cooperation and on the number of time they cooperate. Note,
we only restrict this work to pairwise-communicating systems so we can re-use
Pair’s efficient strategy to encode the blocked predicate; our reachability tests
and their encodings can be applied to systems with multiway communication.
Moreover, the ideas in this paper should transfer easily to any formalism where
systems are described by interacting LTSs.

We have implemented this new framework in the DeadlOx tool. This imple-
mentation shows that for the assessed benchmark systems, DeadlOx is substan-
tially more accurate than similar incomplete techniques, whilst taking a similar
amount of time to analyse systems. Also, as it seems to be consistently more
efficient than complete techniques, it could be used as a preliminary step in
deadlock-freedom checking. If it fails to prove deadlock freedom, then a complete
method should be used. Note DeadlOx uses FDR3 to obtain supercombinator
machines from systems described using CSP, but a tool analogous to DeadlOx
could be created for other notations by replacing its use of FDR3 to generate
such machines.

We plan to extend this work in two directions. Firstly, we would like to see
how we could reuse (a part of) this framework to check other safety proper-
ties. In particular, we plan to reuse it to check trace-refinement properties and
a notion of freedom from permanently blocked subsystems. Secondly, we plan

58 P. Antonino et al.

to create additional imprecise tests for reachability, so we can have an even
more accurate framework. Note, for instance, that our techniques are not strong
enough to prove deadlock-freedom for one of the benchmark systems evaluated.
We are particularly interested in the application of SAT solvers to infer system
invariants.

Acknowledgements. The first author is a CAPES Foundation scholarship holder
(Process no: 13201/13-1). The second and third authors are partially sponsored by
DARPA under agreement number FA8750-12-2-0247. We thank the anonymous review-
ers for their valuable comments.

References

1. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Experiment package (2016).
http://www.cs.ox.ac.uk/people/pedro.antonino/pkg.zip

2. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Efficient Deadlock-Freedom
Checking Using Local Analysis and SAT Solving. In: Ábrahám, E., Huisman, M.
(eds.) IFM 2016. LNCS, vol. 9681, pp. 345–360. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-33693-0 22

3. Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership election: an industrial SoS application of compositional deadlock
verification. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
31–45. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06200-6 3

4. Antonino, P., Roscoe, A.W., Gibson-Robinson, T.: Tighter reachability criteria for
deadlock-freedom analysis. Technical report, University of Oxford (2016). http://
www.cs.ox.ac.uk/people/pedro.antonino/reach techreport.pdf

5. Antonino, P., Sampaio, A., Woodcock, J.: A refinement based strategy for local
deadlock analysis of networks of CSP processes. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 62–77. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06410-9 5

6. Attie, P.C., Bensalem, S., Bozga, M., Jaber, M., Sifakis, J., Zaraket, F.A.: An
abstract framework for deadlock prevention in BIP. In: Beyer, D., Boreale, M.
(eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 161–177. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38592-6 12

7. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, San Francisco, CA, USA, pp. 399–404 (2009)

8. Dathi, N.: Deadlock and deadlock freedom. Ph.D. thesis, University of Oxford
(1989)

9. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a mod-
ern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

10. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial
order reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 188–203. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17524-9 14

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

http://www.cs.ox.ac.uk/people/pedro.antonino/pkg.zip
http://dx.doi.org/10.1007/978-3-319-33693-0_22
http://dx.doi.org/10.1007/978-3-319-33693-0_22
http://dx.doi.org/10.1007/978-3-319-06200-6_3
http://www.cs.ox.ac.uk/people/pedro.antonino/reach_techreport.pdf
http://www.cs.ox.ac.uk/people/pedro.antonino/reach_techreport.pdf
http://dx.doi.org/10.1007/978-3-319-06410-9_5
http://dx.doi.org/10.1007/978-3-642-38592-6_12
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-319-17524-9_14
http://dx.doi.org/10.1007/978-3-319-17524-9_14

Tighter Reachability Criteria for Deadlock-Freedom Analysis 59

12. Lambertz, C., Majster-Cederbaum, M.: Analyzing component-based systems on
the basis of architectural constraints. In: Arbab, F., Sirjani, M. (eds.) FSEN
2011. LNCS, vol. 7141, pp. 64–79. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29320-7 5

13. Martin, J.M.R.: The design and construction of deadlock-free concurrent systems.
Ph.D. thesis, University of Buckingham (1996)

14. Martin, J.M.R., Jassim, S.A.: An efficient technique for deadlock analysis of large
scale process networks. In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME
1997. LNCS, vol. 1313, pp. 418–441. Springer, Heidelberg (1997). doi:10.1007/
3-540-63533-5 22

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Secaucus (1999)

16. Oliveira, M.V.M., Antonino, P., Ramos, R., Sampaio, A., Mota, A., Roscoe, A.W.:
Rigorous development of component-based systems using component metadata and
patterns. Formal Aspects Comput. 28, 1–68 (2016)

17. Roscoe, A.W., Dathi, N.: The pursuit of deadlock freedom. Inf. Comput. 75(3),
289–327 (1987)

18. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995). doi:10.1007/3-540-60630-0 7

19. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-642-29320-7_5
http://dx.doi.org/10.1007/978-3-642-29320-7_5
http://dx.doi.org/10.1007/3-540-63533-5_22
http://dx.doi.org/10.1007/3-540-63533-5_22
http://dx.doi.org/10.1007/3-540-60630-0_7

Compositional Parameter Synthesis

Lacramioara Aştefănoaei1(B), Saddek Bensalem2, Marius Bozga2,
Chih-Hong Cheng1, and Harald Ruess1

1 fortiss - An-Institut Technische Universität München, Munich, Germany
astefanoaei@fortiss.org

2 Univ. Grenoble Alpes, VERIMAG, 38000 Grenoble, France

Abstract. We address the problem of parameter synthesis for paramet-
ric timed systems (PTS). The motivation comes from industrial configura-
tion problems for production lines.Ourmethod consists in compositionally
generating over-approximations for the individual components of the input
systems, which are translated, together with global properties, to ∃∀SMT
problems. Our translation forms the basis for optimised and robust para-
meter synthesis for slightly richer models than PTS.

1 Introduction

Synthesis for parametric timed automata (PTA) has drawn considerable atten-
tion [1–3,7,10,12–15,17–21,25,26]. These approaches explore the global state
space of all interacting components. In contrast, our method is compositional,
consequently, in this regard, it scales well to large systems.

Our motivation comes from parameter configuration problems for production
lines such as the ones from the food sector described in [8]. Seeing the consti-
tuting machines as interacting PTAs, configuration problems fit well the class
of systems we study. Concretely, our contribution is to show how, given (1) a
parametric timed system S with unknown parameters p, (2) constraints φp on p,
and (3) a safety property φsafe for S, we automatically generate, in a composi-
tional manner and by means of an ∃∀SMT solver, valuations for p such that the
desired safety property holds. In particular, we reduce the parameter synthesis
problem to solving formulae of the type:

∃p ∈ φp.∀v .
(
ψS(p, v) → φsafe

)
(1)

where v represents all other variables (clocks, locations) except p and ψS(p, v)
is an over-approximation of the behaviour of S. A PTS is composed of compo-
nents (PTAs) interacting by multi-party interactions. Given n components Ci

and interactions γ, ‖γCi denotes the corresponding PTS. To compute ψS for
S � ‖γCi we adapt and extend the methodology from [4] to the parametric
setup. We first equip each component Ci with history clocks. Let Ch

i be the
results. We then compute three types of invariants: (1) interaction invariant

Work supported by the European projects BEinCPPS, CPSE-labs and OpenMOS.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 60–68, 2016.
DOI: 10.1007/978-3-319-48989-6 4

Compositional Parameter Synthesis 61

from γ; (2) component invariants from the parametric zones of Ch
i ; and (3) rela-

tions between history clocks. In [4], history clocks were used to derive relations
between clocks in different components. In the parametric case, history clocks
are used to also derive relations on parameters. This helps synthesise parameters
which, for instance, do not introduce deadlock in the system.

2 Parametric Timed Systems and Properties

A valuation v is a function that assigns a real value v(x) to each variable x . A
linear inequality has the form

∑n
i=1αixi # β with xi being variables, αi ,β ∈ Z,

#∈ {<,≤, =,≥,>}. A convex linear constraint is a finite conjunction of linear
inequalities. The set of convex linear constraints over a set of variables V is
denoted by L(V).
Definition 1. A component is a PTA (L, l0,X ,P,A,T , tpc) where: l0 is an ini-
tial location; L,X ,P,A,T are finite sets of locations, clock variables, parameters
(variables whose values do not change over time), actions, and transitions. Tran-
sitions l

a,g ,μ−−−→ l ′ consist of a source l ∈ L and a target location l ′ ∈ L, an action
a ∈ A, a guard condition g in L(X ∪ P), and a jump relation μ ∈ L(X ∪ X ′)
with X ′ denoting the clocks at l ′. tpc : L → L(X ∪P) assigns convex linear clock
constraints to locations.

l00, x ≤ 7

l01, x ≤ 10

a
x ≥ q

c0
x := 0

c0 C0

l10, y ≤ 3

l11, y ≤ 3

b, y ≥ r
y := 0

c1
y := 0

c1 C1

Fig. 1. A PTS

For a parameter valuation v and a component C, the
concrete semantics of C under v, C(v), is that of a
timed automaton. Since this semantics yields an infi-
nite state space, we work with parametric zone graphs
as finite symbolic representations. The symbolic states
in a parametric zone graph are pairs (l , ζ) of a loca-
tion l and a convex linear constraint ζ over clocks and
parameters which can be represented by convex poly-
hedra [20]. For C � (L, l0,X ,P,A,T , tpc) the para-
metric zone graph is computed from T starting from
an initial symbolic state (l0, v0), with v0(x) = 0 for
all x ∈ X , and using the successor operator. For a
transition t, the successor operator of (l , ζ) is defined
as succ(t, (l , ζ)) � time succ(disc succ(t, (l , ζ))) where
disc succ. resp. time succ are the discrete, resp. the time
successor. We recall their definitions from [21]. The operation time succ for let-
ting time progress within a symbolic state is defined as time succ((l , ζ)) � (l , ζ↗)
where ↗ is the time-elapse operator. The successor with respect to a transition
t �

(
l , (, g ,μ), l ′

)
is defined as disc succ(t, (l , ζ)) � (l ′, ζ ′) where v′ ∈ ζ ′ iff ∃v ∈

ζ ∩ tpc(l) ∩ g .(v, v′) ∈ μ ∧ v′ ∈ tpc(l ′).
Given disjoint actions Ai , an interaction is a subset of actions α ⊆ ⋃

i Ai

containing at most one action per component. Given a set of interactions γ ⊆
2
⋃

i Ai , Act(γ) denotes the actions in γ, that is, Act(γ) �
⋃

α∈γ α. A PTS ‖γCi is
the composition of components Ci for the interaction set γ such that Act(γ) �

62 L. Aştefănoaei et al.

⋃
i Ai . For n components Ci � (Li , l

i
0,Xi ,Pi ,Ai ,Ti , tpci ,Di) with Li ∩ Lj = ∅,

Ai ∩ Aj = ∅, Xi ∩ Xj = ∅, for any i �= j , the composition ‖γCi with respect to
γ is defined by (L, l̄0,X ,P, γ,Tγ , tpc) where l̄0 is (l10 , ... , l

n
0), X ,P, L, tpc(̄l) are

respectively
⋃

i Xi ,
⋃

i Pi , ×iLi ,
⋂

i tpci (li), and Tγ is such that for α � {ai}i∈I ,
l̄

α,g ,μ−−−→ l̄ ′ where l̄ is (l1, ... , ln), g �
⋂

i∈I gi , μ �
⋂

i∈I μi , and l̄ ′(i) is li if (i �∈ I)

else l ′i for li
ai ,gi ,μi−−−−→ l ′i .

Figure 1 illustrates a system of 2 PTAs C0, C1 interacting on {c0, c1}. Initially,
both C0 and C1 execute locally a, resp. b in either way. This is followed by a
synchronisation on c0 and c1. We note that because y is reset on each transition,
y ≤ x is a global property of the system. We also note that if q = 7 the system
is deadlocked for any value of r : we have that r ≤ 3 by the invariant of l10,
and because C1 cannot stay in l11 for more than 3 units of time, it is impossible
for the action a to be executed. This is a simple illustration showing that local
parameter bounds might need to be tightened in the composed system in order
to not introduce deadlocks.

Definition 2 (Parameter Synthesis Problem). Given a system S, parame-
ter constraints1 φp, and a safety property φsafe , a parameter synthesis problem
is to find an assignment v for P such that v satisfies φp and S(v) satisfies φsafe ,
S(v) |= φsafe . A satisfying assignment v is called a solution.

3 Compositional Parameter Synthesis

We show how the method from [4] can be adapted to compute ψS in Formula (1).
There are three steps to generate: (1) interaction invariants from γ; (2) compo-
nent invariants from components with history clocks; (3) relations on history
clocks.
Interaction Invariants. Interaction invariants are over-approximations of
global locations. As their computation depends only on γ, it does not change
in the parametric setup. Consequently, we omit its definition (to be found in
[5,22]) and instead illustrate it by means of our running example. We recall that
γ �

{
a, b, {c0, c1}

}
. If a happens from l00 and l10, C0 reaches l01 while C1 remains

in l10. If {c0, c1} happens from l01 and l11, l00 and l10 are reached. Continuing
this reasoning for all combinations, we obtain as interaction invariant I(γ) the
formula (l00 ∧ l10) ∨ (l00 ∧ l11) ∨ (l01 ∧ l10) ∨ (l01 ∧ l11).
Component Invariants. Component invariants characterise the reachable
states of components when considered alone. Given a component C with loca-
tions L, we assume that the symbolic states resulting from the computation of its
parametric zone graph are {si}I with si being (lj , ζj). We consider the following
formula:

I(C) �
∧

i∈I

(
si → (lj ∧ ζj)

) ∧
∧

l∈L

(
l →

∨

l∈s

s
)
. (2)

1 Parameter constraints are conjunctions of inequalities on P and R such as q ∈ [0, 6].

Compositional Parameter Synthesis 63

By abuse of notation, lj is used to denote the predicate that holds whenever C
is at location lj and l ∈ s holds if s = (l , ζ).

l00, x ≤ 7
s0

l01, q ≤ x ≤ 10 ∧ q ≤ 7
s1

l00, x ≤ 7 ∧ q ≤ 7
s2

a

c0a

Fig. 2. The zone graph for C0

The parametric zone graph of C0 for our run-
ning example (Fig. 1), as computed with Imitator
[2], is in Fig. 2. By Eq. (2), I(C0) is as follows:

I(C0) =s0 → (l00 ∧ x ≤ 7) ∧
s1 → (l01 ∧ q ≤ x ≤ 10 ∧ q ≤ 7) ∧
s2 → (l00 ∧ x ≤ 7 ∧ q ≤ 7) ∧
l00 → (s0 ∨ s2) ∧ l01 → s1

The formula in Eq. (2) is more precise than
the one in [4]. There, the choice was to take the
disjunction of lj ∧ ζj as an invariant. In a parametric setup, such an encoding is
not enough: since s0 ∨ s2 reduces to l00 ∧ x ≤ 7, the relation q ≥ 7 is lost.

More importantly, the formula in Eq. (2) is not necessarily an invariant. For
instance, for the valuation v � {q = 8}, CI(C0)(v) reduces to false. I(C) is
an invariant only under the parameter valuations which satisfy the parameter
constraints in it. Let us denote by Kp(C) the parameter constraints in Eq. (2).
Kp(C) is obtained from I(C) by a similar approach as in [2], that is, by seeing
clocks as existential variables and doing quantifier elimination. For instance,
Kp(C0) is q ≤ 7.

Proposition 1. For a component C with parameter constraints Kp, I(C)(v) is
an invariant of C(v) for any v such that v |= Kp.

l00, x ≤ 7

l01, x ≤ 10

a
x ≥ q
ha := 0

c0
x := 0
hc0 := 0

c0 C h
0

l10, y ≤ 3

l11, y ≤ 3

b, y ≥ r
y := 0
hb := 0

c1
y := 0
hc1 := 0

c1 C h
1

hc0c1 := 0

Fig. 3. A PTS with history
clocks

History Clocks and Auxiliary Constraints. In
general, component and the interaction invariants
are not enough to prove global properties, espe-
cially when such properties involve relations between
clocks in different components. In the case of ∃∀
solving, a weak invariant leads to no solution: there
is not enough information to synthesise parameters
such that the global property holds. For instance,
in our toy example, we cannot find parameters such
that y ≤ x holds by only having at hand the invari-
ants for components and interactions: there are no
relations relating both x and y . By means of history
clocks we are able to derive new global constraints
from the simultaneity of interactions and the syn-
chrony of time progress. These new constraints make
it possible to successfully find parameter valuations
such that global properties hold.

Adding History Clocks. History clocks are associated with actions and inter-
actions. For a component C we use Ch to denote its extension with history clocks.
The extension of the system is obtained from the extensions of the components

64 L. Aştefănoaei et al.

alone together with the history clocks for interactions. As an illustration, Fig. 3
shows the extension of the system in Fig. 1.

The intuition behind history clocks is as follows. When interaction α takes
place, the history clocks hα and ha associated to α and to any action a ∈ α
are reset. Thus they measure the time passed from the last occurrence of α,
respectively of a. Since there is no timing constraint involving history clocks, the
behaviour of the components is not changed by the addition of history clocks.

l0, x ≤ 5 l1, x ≤ 3
a, y ≥ r

x := 0

x := 0
c

Fig. 4. A PTA with an infinite
zone graph

For timed automata, the zone graph is finite,
consequently so is the computation of I(C) and
I(Ch) as in Eq. (2). This is no longer the case
in the parametric setup. For instance, the para-
metric zone graph of the component C in Fig. 4
has two symbolic states l0 ∧ x ≤ 5 and l1 ∧ x ≤
3 ∧ r ≤ 5 while the one of Ch contains infinitely
many symbolic states such as l1 ∧ x ≤ 3 ∧ r ≤
5 ∧ y = hc ≥ ha ∧ y + 3k ≥ ha for k ∈ N. We
note that, though one could find particular solutions depending on the systems
in cause, since the reachability problem is undecidable for parametric timed
automata [1], one cannot hope for general solutions.
Generating Interaction Equalities from History Clocks. The basic under-
lying observation is that a history clock ha for an action a from a last executed
interaction α is necessarily less than any hβ with β another interaction contain-
ing a. This is because the clocks of the actions in α are the last ones being reset.
Consequently, given a common action a of α0,α2, ... ,αp, ha is the minimum of
hαi , ha � min

0≤i≤p
hαi . The invariant for a given interaction set γ is denoted as ε(γ)

and defined as follows:

ε(γ) �
∧

a∈Act(γ)

ha = min
α∈γ,a∈α

hα.

For our running example, ε({c0, c1}) is simply hc0 = hc1 .
Generating Inequalities from Conflicting Interactions. Without conflicts,
that is, when interactions do not share any action, ε(γ) is quite tight in the
sense that it is essentially a conjunction of equalities. However, ε(γ) is weaker
in the presence of conflicts because any action in conflict can be used in dif-
ferent interactions. The disjunctions (implicit in the definition of min) in ε(γ)
reflect precisely this uncertainty. History clocks on interactions are introduced
to capture the time lapses between conflicting interactions. The basic informa-
tion exploited in [4] is that when two conflicting interactions compete for the
same action a, no matter which one is first, the other one must wait until the
component which owns a is again able to execute a. This has been referred to
as a “separation constraint” for conflicting interactions and was defined as the
following invariant:

σ(γ) �
∧

a∈Act(γ)

∧

α�=β∈γ
a∈α∩β

|hα − hβ | ≥ ka

Compositional Parameter Synthesis 65

where |x | denotes the absolute value of x and ka represents the minimum elapsed
time between two consecutive executions of a. In the case of timed automata, the
computation of such minimum elapses follows the classical [11] which consists in
finding a shortest path in a weighted graph built from the zone graph associated
to a timed automaton. The extension to PTAs follows the same construction.

l0 l1 l2
a

x := 0

x = p, a

x := 0

a
x := 0

Fig. 5. An observer for computing ka

A more practical solution is to con-
struct an observer. To compute the delay
between two consecutive executions of a
in C, we can check if C‖aOa |= ψa

obs is not
true, where Oa is the automaton in Fig. 5
and ψa

obs is �¬l2.
In our running example, there are

no conflicting interactions. If there were
another component with action c2 interacting with C0 by means of interaction
{c0, c2} then {c0, c2} is in conflict with {c0, c1}. The separation between them
is given by the time elapse between two consecutive c0 which in this particular
case is simply q.

The formulae computed throughout this section are invariants. Together,
they form the over-approximation ψS in the ∃∀ Formula from (1).

Proposition 2. Given S � ‖γCi , let Kp(Ci) be the parameter constraints for Ci

and let ψS denote the formula
∧

i I(Ch
i)∧I(γ)∧ ε(γ)∧σ(γ) after the elimination

of history clocks. We have that for any v such that v |= ∧iKp(Ci), ψS(v) is an
invariant of S.
Finding Satisfying Instances for ∃∀ Formulae. We recall that we reduce
our synthesis problem to solving the ∃∀ formulae in (1). For illustration, we
show how the formula looks like for our running example. We have the following
formulae:

I(C h
0) =s0 → (l00 ∧ x ≤ 7 ∧ x = ha = hc0) ∧

s1 → (l01 ∧ q + ha ≤ x ≤ min(10, ha + 7) ∧ x = hc0) ∧
s2 → (l00 ∧ x ≤ 7 ∧ q + ha − 10 ≤ x ≤ min(7, ha) ∧ x = hc0) ∧
l00 → (s0 ∨ s2) ∧ l01 → s1

I(C h
1) =s ′

0 → (l10 ∧ y ≤ 3 ∧ y = hb = hc1) ∧
s ′
1 → (l11 ∧ r + y ≤ hc1 ≤ y + 3 ∧ y = hb) ∧
s ′
2 → (l10 ∧ y ≤ 3 ∧ y ≤ hb ≤ y + 3 ∧ y = hc1) ∧
l10 → (s ′

0 ∨ s ′
2) ∧ l11 → s ′

1

By inspecting I(C h
0) and I(C h

1), we can derive that Kp(C
h
0) is q ≤ 7 and that

Kp(C
h
1) is r ≤ 3. Assuming φsafe is y ≤ x , the ∃∀ Formula (1) is:

∃q, r .q ≤ 7 ∧ r ≤ 3.∀l ∈ L, s ∈ S , x , y .I(γ) ∧ qe
(I(C h

0) ∧ I(C h
1) ∧ hc0 = hc1

)→ y ≤ x

66 L. Aştefănoaei et al.

where L denotes {l00, l01, l10, l11}, S denotes {s0, s1, s2, s ′
0, s

′
1, s

′
2}, and qe denotes

the result of eliminating the history clocks. Since both x = hc0 and y ≤ hc1 are
invariants, together with hc0 = hc1 , it can be derived that y ≤ x . Consequently,
for any r ≤ 3 and q ≤ 7, the system satisfies y ≤ x .

We also note that for an interaction property expressing that a happens
before b to hold, q must be smaller or equal than 3, though the upper bound in
the local constraint is 7. This is because s1 must be reached while still at s ′

0 where
y = hc1 ≤ 3. Since q ≤ x and x = hc0 we have that q ≤ 3 by using hc0 = hc1 .
This shows that history clocks forbid parameter valuations which satisfy local
parameter constraints but which could introduce deadlocks in the system.

When the ∃∀SMT solver returns unsat, there are two interpretations: (1)
either φsafe does not hold or (2) ψS is too coarse. To check (1), one might apply
the method from [4] and feed ψS ∧φsafe to an SMT solver. If the result is unsat,
then φsafe is not a property of the system. For instance, if for our running example
we take x < y as φsafe , the ∃∀SMT solver returns unsat for Formula (1). Since
ψS ∧ x < y returns unsat as well, we know that x < y is not valid.

We conclude the section by stating the correctness of our approach which
follows from the fact that ψS(v) is an over-approximation (Proposition 2).

Proposition 3. Given S � ‖γCi let Kp(Ci) denote the parameter constraints
for Ci . If v is such that it satisfies Formula (1) together with

∧
iKp(Ci) then v is

a solution to the parameter synthesis problem, i.e., v ∈ φp and S(v) |= φsafe .

4 Experiments and Extensions

We have implemented a prototype2 to experiment with our approach. The pro-
totype takes as input components as PTAs in Imitator [2], a file describing
the interactions, the constraints over parameters and a safety property. It uses
EFSMT [9] and Z3 [23] to return either unsat or a parameter assignment under
which the safety property holds. We have also connected our prototype with the
one in [4] such that, in case the result is unsat, we check if the global property
given as input is not actually false. With respect to performance, our prototype
returns an answer within a second for variations on toy benchmarks such as the
train gate controller or the temperature controller with as many as 16 trains,
respectively rods. As final notes, we make two observations: (1) our experiments
with invariants without history clocks show that these invariants are clearly
weaker in the sense that the solver does not find any parameter valuations; (2)
on the negative side, even for minimal models of production lines with filling
and packaging machines, the computation of the set of reachable states does not
terminate.

Due to our encoding of the parameter synthesis problem as ∃∀SMT formulae,
we can readily solve the following extensions of parameter synthesis for PTS.
Beyond PTA. Using the expressiveness of decidable ∃∀-constraints, one can
encode guards such as t1 + 3 t4 ≥ 10 and also non-linear arithmetic constraints,
as obtained from some richer classes of hybrid automata.
2 The source code and examples can be found at github.com/astefano/efsmt coverts.

http://github.com/astefano/efsmt_coverts

Compositional Parameter Synthesis 67

Quantitative Synthesis. Our method does not generate optimised parameter
values, since this would require an additional quantifier alternation [9]. However,
EFSMT can be modified for optimisation by using a MaxSMT solver (e.g. νZ [6])
instead of an SMT solver for formulae of existential polarity (the so-called E-
solver).
Robustness Synthesis. The imprecision of systems may be modelled by means
of universally quantified, bounded variables. For example, one may model the
imprecision for a guard t1 > 2 by t1 > 2 + δ, for δ ∈ [−0.05, 0.05] by simply
adding ∀δ ∈ [−0.05, 0.05] in the ∃∀SMT formula.
Interaction Properties in LTL. Interaction properties such as “eventually
interaction a will happen before b”, can effectively be transformed into safety
properties based on the encodings of a corresponding Büchi automata along the
lines proposed for bounded synthesis [16] or for bounded model checking [24].

Acknowlegdement. We warmly thank Étienne André for suggesting us the construc-
tion of the observer to compute the separations in Sect. 3.

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM,
pp. 592–601 (1993)

2. André, É.: IMITATOR II: a tool for solving the good parameters problem in timed
automata. In: INFINITY (2010)

3. André, É., Soulat, R.: Synthesis of timing parameters satisfying safety properties.
In: Reachability Problems (2011)

4. Aştefănoaei, L., Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compositional
invariant generation for timed systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 18

5. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification for
component-based systems and application. In: Cha, S.S., Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88387-6 7

6. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

7. Bruttomesso, R., Carioni, A., Ghilardi, S., Ranise, S.: Automated analysis of para-
metric timing-based mutual exclusion algorithms. In: Goodloe, A.E., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226, pp. 279–294. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-28891-3 28

8. Cheng, C., Guelfirat, T., Messinger, C., Schmitt, J.O., Schnelte, M., Weber, P.:
Semantic degrees for industrie 4.0. CoRR, abs/1505.05625 (2015)

9. Cheng, C., Shankar, N., Ruess, H., Bensalem, S.: EFSMT: a logical framework for
cyber-physical systems. CoRR, abs/1306.3456 (2013)

10. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
FMCAD, pp. 165–168. IEEE (2013)

11. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Formal Methods Syst. Des. 1, 385 (1992)

http://dx.doi.org/10.1007/978-3-642-54862-8_18
http://dx.doi.org/10.1007/978-3-642-54862-8_18
http://dx.doi.org/10.1007/978-3-540-88387-6_7
http://dx.doi.org/10.1007/978-3-662-46681-0_14
http://dx.doi.org/10.1007/978-3-642-28891-3_28

68 L. Aştefănoaei et al.

12. Damm, W., Ihlemann, C., Sofronie-Stokkermans, V.: Ptime parametric verification
of safety properties for reasonable linear hybrid automata. Math. Comput. Sci.
5(4), 469 (2011)

13. Dang, T., Dreossi, T., Piazza, C.: Parameter synthesis through temporal logic
specifications. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp.
213–230. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19249-9 14

14. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17

15. Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic verifi-
cation of parametric specifications with complex topologies. In: Méry, D., Merz,
S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16265-7 12

16. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
17. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to para-

meter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.)
HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78929-1 14

18. Fribourg, L., Kühne, U.: Parametric verification and test coverage for hybrid
automata using the inverse method. Int. J. Found. Comput. Sci. 24, 233 (2013)

19. Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for
a steam boiler. In: FMIA (1995)

20. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Log. Algebr. Program. 52, 183 (2002)

21. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 401–415. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 28

22. Legay, A., Bensalem, S., Boyer, B., Bozga, M.: Incremental generation of linear
invariants for component-based systems. In: ACSD (2013)

23. Moura, L., Bjørner, N.: Efficient e-matching for SMT solvers. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73595-3 13

24. Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking
over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392,
pp. 438–455. Springer, Heidelberg (2002). doi:10.1007/3-540-45620-1 35

25. Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric
systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp.
171–187. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14203-1 15

26. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 295–307. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27813-9 23

http://dx.doi.org/10.1007/978-3-319-19249-9_14
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/978-3-642-16265-7_12
http://dx.doi.org/10.1007/978-3-540-78929-1_14
http://dx.doi.org/10.1007/978-3-540-78929-1_14
http://dx.doi.org/10.1007/978-3-642-36742-7_28
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1007/3-540-45620-1_35
http://dx.doi.org/10.1007/978-3-642-14203-1_15
http://dx.doi.org/10.1007/978-3-540-27813-9_23

Combining Mechanized Proofs and Model-Based
Testing in the Formal Analysis of a Hypervisor

Hanno Becker, Juan Manuel Crespo, Jacek Galowicz, Ulrich Hensel,
Yoichi Hirai, César Kunz, Keiko Nakata, Jorge Luis Sacchini,

Hendrik Tews(B), and Thomas Tuerk

Dresden, Germany
uv@lists.askra.de

Abstract. Virtualization engines play a critical role in many modern
software products. In an effort to gain definitive confidence on critical
components, our company has invested on the formal verification of the
NOVA micro hypervisor, following recent advances in similar academic
and industrial operating-system verification projects. There are inher-
ent difficulties in applying formal methods to low-level implementations,
and even more under specific constraints arising in commercial software
development. In order to deal with these, the chosen approach consists
in the splitting of the verification effort by combining the definition of an
abstract model of NOVA, the verification of fundamental security prop-
erties over this model, and testing the conformance of the model w.r.t.
the NOVA implementation. This article reports on our experiences in
applying formal methods to verify a hypervisor for commercial purposes.
It describes the verification approach, and the security properties under
consideration, and reports the results obtained.

1 Introduction

Virtualization is prominent in many recent software products. It is used commer-
cially inside cloud services as well as privately for sandboxing or running incom-
patible legacy applications. Virtualization provides the basis for high-security
products that separate applications in disjoint operating-system instances as
well as for certain cyber-security products.

The trustworthiness of all these virtualization applications relies fundamen-
tally on the correctness of the hypervisor that implements virtual machine
instances on top of the hardware. Encouraged by the success in formal veri-
fication applied to large-scale systems in academia [10,12] and, more recently,
also in industrial contexts [6,17], a number of companies are investing now into
formally-verified hypervisors. The authors of this paper worked in a large team
together with kernel developers to build a formally verified virtualization solu-
tion based on an improved version of the NOVA [23] micro-hypervisor targeting
one of the previously mentioned application domains.

Our company wants to remain anonymous.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 69–84, 2016.
DOI: 10.1007/978-3-319-48989-6 5

70 H. Becker et al.

A notable case study in formal verification applied to the domain of oper-
ating systems is the seL4 project [10]. One could argue that it even constitutes
a roadmap or methodology for the verification of low-level large-scale software
systems, such as the one we are tackling. However, while the seL4 project was car-
ried out in an academic context, we have to accommodate certain requirements
that stem from working in a commercial software development environment.

Challenges. There are some challenges that are specific to the commercial soft-
ware development context around our targetted hypervisor.

1. The further development of NOVA is driven by feature requests and per-
formance concerns. While the development team is very eager to hear the
opinion of the formal methods team, ease of formal verification is not the
highest priority when it comes to choice during the development.

2. Release dates are determined according to potential product value and the
Company’s go-to market strategy. Therefore, it is very likely that the first
release will take place before the source code is formally verified. We need to
adapt our workflow to these release dates and choose a verification process
that permits the release of intermediate results that already provide substan-
tial value to the customer and that can be extended in subsequent releases.

3. We are currently verifying a moving target. Because NOVA lies at the bottom
of a stack of components whose design is in constant evolution, the feature set
of our version of NOVA changes often and in significant ways. This requires
us to adapt the proofs and the correctness and security arguments promptly.

4. NOVA is developed in C++. While there has been work on formalizing aspects
of C++ semantics [18,19]—to the best of our knowledge—there are no mech-
anized semantics for C++11 as specified by ISO/IEC 14882:2011, which is the
flavor pervasively used in the source code.

In order to accommodate to these requirements and restrictions, we have
decoupled the high-level properties and their proofs from the low level C++

implementation details. Moreover, we focused on sequential execution NOVA,
running on a single core. To this end, we formally prove security properties on
an abstract model of the system (written in Coq), and check the correlation
between that model and the implementation by model-based testing (which we
call conformance testing).

Results. The main objective of our project is to increase the trustworthiness of
our virtualization engine using formal methods. In this respect, since the hyper-
visor is a main building block of the virtualization architecture, the obtained
security proofs of the model of the hypervisor are essential to obtain a high-level
security property of the whole trusted computing base (TCB).

The number of bugs found and their severeness is considered by the com-
pany’s management as an important impact indicator of our work. Using our
methodology we have discovered at least a couple of dozen of bugs in the hyper-
visor component, including a few security-critical bugs, and provided the devel-
opers with valuable feedback since the earliest stages of development.

Combining Mechanized Proofs and Model-Based Testing 71

Our methodology also impacts the C++ design quality through all its stages:
formal modeling (in cooperation with the C++ developers) drives high quality
code reviews in early stages, formal proofs yield the discovery of hard to find
corner cases, and the conformance testing provides effective regression testing
and excellent test coverage.

Contributions. The main contribution of the paper is to report our experience
in applying formal methods in a commercial software-development context. We
evaluate advantages and drawbacks of our approach as well as describe our
methodology, we discuss possible alternatives and current project status in more
technical depth.

Structure of the Paper. In Sect. 2 we describe in detail the verification method-
ology used. In Sect. 3 we provide some background on the NOVA hypervi-
sor. Section 4 describes our Coq formalization. Section 5 presents the high-level
security properties that we establish on the model. In Sect. 6 we present our
conformance-testing infrastructure. We review related work in Sect. 7 and we
present future work and conclusions in Sect. 8.

2 Overview of the Methodology

Developing an abstract model of some real-world system is a common formal
verification approach. In our setting, the real system is the hypervisor written
in C++ and executing in hardware, while the model is a formalization within the
logic of the Coq proof assistant intended to represent the real system. By their
different nature, regardless of the level of detail of the model in question, only
empirical evidence can be provided for the adequacy of the representation, and
the process of providing this evidence we call conformance testing.

There are three main strategies for building the real system and the model:

– Generating the model from the system’s source code.
– Generating the system’s source code from the model.
– Developing the model and the real system independently.

One benefit of generating the model from the source code, or vice versa, is
that one can rely on (or verify) the correctness of the generation mechanism.
However, these two strategies pose serious challenges in our setting.

Generating the model from the hypervisor source code is problematic since
there is no formalization of the various new features of C++ that are used, and
building one is out of scope. Indeed, formal verification is not one of the main
objectives of the engineering team developing the C++ implementation of the
hypervisor, therefore their design decisions might not always be optimal for
verification purposes. Building an ad hoc generator just for our purposes might
be possible, but certainly time consuming, and the output model would be very
detailed and thus hard to reason about.

72 H. Becker et al.

Generating source code from a model leads to similar challenges. One would
need to generate source code that executes on bare metal and is aware of special
hardware features of various architectures. Moreover this source code has to
satisfy also non-verification related objectives like efficiency. Generating such
source code from Coq can be too convoluted and, even if we successfully managed
to solve these challenges, it would be time consuming to leverage the expert
knowledge of the hypervisor developers. Moreover, this approach would also
result on a very detailed model.

The chosen approach, an independent development of the model and the real
system, provides more flexibility in the design, and the necessary freedom for the
C++ source code to address hardware specific issues as well as non verification
related objectives, while the model is abstract enough to be easily understandable
and easy to reason about. Moreover, this decoupling means that small, low level
changes in the C++ source code do not even need to be reflected in the model
and thereby grants the model and our proofs much greater stability. However,
there is a price to pay: due to the decoupling it is possible that the model and
the real system do not agree with each other. In order to overcome this issue,
we use model-based testing to provide evidence of the agreement between the
implementation and the model, hinting that the properties that we prove in the
latter, with a high level of certainty, also hold in the former.

Our starting point is a Coq model of our version of the NOVA hypervisor,
based on its design documents. The main components of the Coq model are the
hypervisor state and the hypervisor system calls (called hypercalls in the rest
of the article). The state is an abstraction of the concrete state of the imple-
mentation of the hypervisor and comprises all necessary information required to
faithfully simulate the behavior of a hypervisor execution. We establish a secu-
rity property that shows confinement of the resources accessed by a potentially
malicious component running on top of the hypervisor on any given execution.

We rely on the Coq extraction mechanism to obtain an executable OCaml
version of the model. Around this automatically generated software component,
we build a scaffold for running tests in order to empirically assess conformance
between the model and the implementation. Additionally, this also constitutes an
effective framework to perform fuzzing on the implementation, using our model
as an oracle for expected behavior.

3 A Primer on the NOVA Micro Hypervisor

This section provides a brief overview of our improved version of NOVA (referred
to simply as hypervisor below) and its high-level design. It also introduces some
concepts that are used in the reminder of the paper.

The NOVA micro hypervisor [23] runs directly on the hardware, and it is
constructed according to micro-kernel design principles [13] in the tradition of
the L4 family [7]. In traditional designs, the Virtual Machine Monitor (VMM)
is often integrated into the hypervisor for performance reasons. In contrast, in
a micro-kernel design, the hypervisor is the sole component running in the most

Combining Mechanized Proofs and Model-Based Testing 73

Fig. 1. Potential NOVA based application architecture

privileged mode of the hardware (host mode ring 0 on x86). The VMM runs as a
separate module in unprivileged mode (host mode ring 3 on x86). The hypervi-
sor contains exclusively the functionality that cannot be implemented in unpriv-
ileged mode because of performance requirements or hardware restrictions. This
design permits to potentially have isolated VMM instances for different guest
operating systems as well as to run most device drivers as user applications in
unprivileged mode, see Fig. 1 for illustration.

Resource separation is an important design objective that the TCB needs
to provide. For instance, guest OSs or applications therein must not be able to
arbitrarily modify the main memory of other components. Our virtualization
architecture relies on the TCB to correctly enforce resource separation, so that
potentially malicious guest OSs cannot escape their virtualized environment. The
verification of the hypervisor and the correct behavior of its hypercall interface
marks our first step towards ensuring the separation property of the whole TCB.

To provide access control, NOVA uses a capability model that is inspired by
the take-grant model [14] as well as the EROS capability model [22]. A capability
is a reference to a resource together with access permissions. NOVA uses three
classes of capabilities: memory capabilities (referencing physical memory tiles),
object capabilities (referencing kernel objects, see below) and I/O capabilities
(referencing hardware I/O ports). The access permissions depend on the capa-
bility class. For example, permissions in memory capabilities refer directly to the
hardware permission bits in the page table entries, while access permissions of
kernel objects enable certain hypercalls.

For memory and I/O port capabilities, the capability selectors have a special
meaning. For memory, the capability selector denotes the virtual page index at
which the referenced memory tile is available in virtual memory. For I/O ports,
the selector number is the I/O port number. Therefore, NOVA enforces that I/O
port capabilities can only be delegated to identical capability selectors.

Unprivileged programs can reference capabilities via process specific capa-
bility selectors but cannot directly modify capabilities. The access permissions

74 H. Becker et al.

govern the available operations. For instance, a semaphore capability only per-
mits the down operation on the referenced semaphore if the dn permission bit is
set. The system might contain several capabilities referencing the same object
with different permissions to provide fine-grained access control to different pro-
grams. Every capability owner can delegate a capability to a different process if
he possesses a capability of the target that permits delegation. Thereby, delega-
tion grants the target process access to the referenced kernel object. The access
permissions can be reduced during delegation.

In comparison to other L4 designs, there are a few interesting differences in
our version of NOVA. Firstly, delegation is decoupled from inter-process com-
munication. Secondly, there is no recursive capability revocation, one can only
delegate empty capabilities to overwrite the contents of certain capability selec-
tors inside a certain process.1

3.1 Kernel Objects

The hypervisor provides hypercalls for creation and manipulation of kernel
objects. There are five categories of kernel objects.

Processes: processes provide a mechanism for spatial isolation. A process is a
collection of capabilities to memory, kernel objects, and I/O ports.2

Threads: a thread is a piece of a program that can be independently scheduled.
A thread is permanently bound to a process at creation time. Threads can
run in host mode or guest mode. The latter is used to execute a guest OS.
Each thread possesses a user thread-control block (UTCB) that is used during
inter-process communication and which is allocated at thread creation time
from the kernel memory pool.

Portals: a portal is a communication endpoint bound to a service-providing
thread.

Scheduling objects: scheduling objects provide priorities and execution time.
The hypervisor provides a fixed-priority, round-robin scheduler that schedules
the threads that possess scheduling objects.

Semaphores: the hypervisor provides counting semaphore objects for thread
synchronization.

Kernel objects are allocated in kernel-space memory and are not accessible
from unprivilied (user-level) processes (they can only be indirectly referenced
through selectors). UTCBs are a special case: for efficiency reasons, they are
allocated in kernel memory, but a user-level thread has direct access to its UTCB
through a memory selector.

1 In order to enforce resource revocation from untrusted components in our NOVA
version, one needs a trusted component that performs all delegations and tracks
them similarly to the mapping database that is part of many L4 implementations.

2 The NOVA documentation uses protection domain instead of process and execution
context instead of thread but we stick to traditional terminology here.

Combining Mechanized Proofs and Model-Based Testing 75

3.2 Hypercalls

The hypercalls provide user processes with mechanisms that can be categorized
as follows:

Communication: start and terminate inter-process communication calls. Calls
always reference a portal and will establish a handshake with the thread that
the portal points to. A reply terminates a call and signals the availability of
the thread for the next call. For data exchange, the hypervisor appropriately
copies the contents of the UTCB from the caller to the callee and back.

Object creation: create kernel objects with a certain set of permissions, and
associate them with capability selectors.

Capability delegation: delegation of capabilities to the own or other
processes, restricting capability permissions, and deleting capabilities (by del-
egating empty capabilities).

Object modification: permit modification of relevant aspects of kernel objects
(e.g. change the value of a semaphore).

Device management: there is one hypercall to configure direct memory access
(DMA) devices and one for associating interrupts to semaphores. Internally
both configure the I/O MMU. These device management hypercalls are not
relevant for this paper.

There are some interesting aspects of how hardware events are handled in the
hypervisor. Firstly, device interrupts are mapped to semaphore-up operations.
A thread that wants to wait for an interrupt must perform a down operation
on the right semaphore. Secondly, CPU exceptions (e.g., page-fault or divide-by-
zero), virtual machine intercepts or exits (VM exits), are mapped to inter-process
communication. On behalf of the faulting thread, the hypervisor sets up a call
to a portal that depends on the exception or intercept, and fills the UTCB with
data describing the exception or intercept as well as the content of the CPU
registers of the faulting thread.

4 Coq Model

The Coq abstract model of the hypervisor is essentially defined as a transition
system. The states are abstract representations of the hypervisor internal state
while the transitions correspond to events performed by (a sequential execu-
tion of) the hypervisor. These events can be roughly divided between external
events (e.g. a thread issuing a hypercall), and internal events (e.g. the hypervisor
resumes a blocked thread).

Structurally, the abstract model is divided in the following components: basic
infrastructure, hypervisor state, and semantics. The basic infrastructure compo-
nent defines the core data structures and lemmas used in the entire development.
It contains the definition of the libraries used in the hypervisor semantics, and
a large collection of lemmas and tactics for proof automation.

We describe the hypervisor state and semantics in the rest of this section. In
Sect. 5 we describe the security properties we prove for this semantics.

76 H. Becker et al.

4.1 Hypervisor State

The hypervisor state type K represents the hypervisor internal state. It is defined
as a record containing:

– a collection of kernel objects, defined as a partial map from pointers (non-
negative numbers) to typed kernel objects;

– the addresses of UTCBs to track which parts of the kernel memory might be
accesses from unprivileged mode

– architecture-specific state: interrupt mapping, device status, etc.;

Kernel objects refer to each other using pointers (e.g. a thread contains a
pointer to the process it belongs to). Accessing an object through a pointer may
fail if the pointer is not in the partial map, or the mapped object has the wrong
type. Therefore, functions to access objects are defined in the error monad (see
Sect. 4.2).

Each type of kernel object is defined as a record. Processes are represented
as collections of capabilities of a specific type:

– memory capabilities are represented as a map from memory capability selec-
tors (virtual addresses) to physical addresses and permissions;

– object capabilities are represented by a map from object capability selectors
to kernel-object pointers;

– I/O capabilities are represented by the set of I/O ports that the process is
allowed to access.

Threads contain a stack pointer, a UTCB pointer, a pointer to the associated
process, and a status value. The status value is taken from an enumeration type
that indicates if the thread is running, available for execution, blocked in a
semaphore, etc. The status is not explicitly implemented in the hypervisor, but
it is a useful abstraction to have in the model.

Semaphores contain a counter value and a queue of pointers to blocked
threads.

Portals and scheduling objects are similarly represented with records, but
their contents are not relevant to this paper.

4.2 Semantics

The semantics of the hypervisor is specified as a transition system on the set of
kernel states whose transitions are steps that the hypervisor may perform. Steps
are divided in categories as follows.

Hypercalls: these are executed by a thread to require a hypervisor service.
Hypervisor events: these are internal to the hypervisor in the sense that they

change the state, but are not directly visible for user processes. For example,
a semaphore timeout may cause a blocked thread to become unblocked.

Exceptions: this class includes events such as interrupts, DMA access steps,
exceptions, etc. Depending on the type of event, they may cause a switch to
kernel mode.

Combining Mechanized Proofs and Model-Based Testing 77

Concretely, we define the transition system as a function

stepRun : K → S → M(R,K)

where S is the type representing the hypervisor steps, R is the result of executing
the step, and M is a non-determinism error monad. This function is extracted
to an executable program in OCaml, which we use for conformance testing (see
Sect. 6).

The error monad is used to model successful executions as well as failures.
Executing a step may fail for several reasons, most typically, when accessing a
non-existent object in memory (but we proved an invariant about the absence
of certain failures, see Sect. 5 below).

The stepRun function proceeds by first checking feasibility of the step to be
executed. Feasibility is defined as an over-approximation of the valid steps in a
given kernel state. For example, in the case of a hypercall step executed by a
thread pointer p, feasibility means that p points to a valid thread object whose
status allows execution (i.e. it is not blocked on a semaphore). This notion of
feasibility is naturally extended to traces.

If the step is not feasible, execution fails. Otherwise, the function stepRun
proceeds to execute the step. Let us illustrate the semantics with the imple-
mentation of the create thread hypercall. We simplify some details that are not
relevant for this level of detail. The create thread hypercall takes four parameters:

create thread(proc sel , th sel , utcb sel , data)

where proc sel is a capability selector referencing the process that shall con-
tain the new thread, th sel is the selector that shall contain the new capability
referencing the newly created thread, utcb sel is a memory capability selector
describing where the UTCB of the new thread shall be accessible in user vir-
tual memory, and data contains other parameters not relevant here (e.g. stack
pointer).

We model the create thread hypercall as a function

create thread : K → ptr → sel → sel → sel → data → M(R,K)

where the first argument is the kernel state where the hypercall is being executed
and the second argument is a pointer in the kernel state to the thread executing
the hypercall. In Coq, it is defined as follows:

create thread ks t proc sel th sel utcb sel data :=
p ← get process ks t ;
if has ct perm ks p proc sel
then
ks1 , utcb ← allocate utcb ks proc sel utcb sel ;
ks2 , th ← new thread ks1 utcb data;
ks3 ← map selector ks2 proc sel th sel th;
return (Success, ks3)

else
return (BadPermission, ks)

78 H. Becker et al.

Here we use Coq notations to write monadic-style code: v ← f ; body is a short-
hand for (λv . body)f , that is, evaluate body with v bound to the result of f . The
function proceeds as follows: first, get the process corresponding to the execut-
ing thread (t) in the current state (ks). This can fail if t does not point to a
valid thread. Then, check that the process referenced by proc sel has permission
to create threads. If not, return without modifying the kernel state. Otherwise,
allocate a new UTCB (using allocate utcb), create the new thread object (using
new thread), and finally map a reference to the newly-created thread (using
map selector) at the selector given by the user (th sel).

5 Security Properties

The main security properties we prove for our model are authority confinement
and memory confinement. Authority confinement states that a process cannot
gain access to a capability unless it was explicitly delegated to it. In other words,
a process cannot “trick” the hypervisor into gaining capabilities by executing a
sequence of steps. Memory confinement states that a thread cannot access kernel
memory except when it represents a UTCB.

In order to establish these properties on the model, we need to first show a
consistency invariant on the semantics. We divide this proof as a conjunction of
10 individual invariants. Most of these invariants refer to internal consistency of
our data structures and consistency of the kernel state. For example, memory
confinement is proved as an invariant of the state (see below).

Two important examples of invariants proved are no-dangling pointers and
semaphore consistency. No-dangling pointers state that all pointers in a kernel
object point to valid objects of the right type. For example, a thread has a
valid pointer to its corresponding process; a semaphore’s blocked-queue contains
pointers to valid threads.

Semaphore consistency refers to the internal consistency of the semaphore
structure in a kernel state. It is defined as the conjunction of the following three
properties:

– the blocked-queue in any semaphore contains no duplicates and any thread in
any semaphore’s blocked-queue has a status field indicating it is blocked by a
semaphore;

– if a thread status indicates it is blocked by a semaphore, then there exists a
semaphore that contains a pointer to the thread in its blocked-queue;

– for any pair of semaphores, their blocked-queues are disjoint.

5.1 Authority Confinement

Consider a partitioning of the processes into two sets that we call trusted and
untrusted. Consider further an initial state k, a kernel event trace s and a capa-
bility c. Our authority confinement property states that the untrusted processes
can never gain access to c as long as the following three conditions are fulfilled.

Combining Mechanized Proofs and Model-Based Testing 79

Firstly, c must not be present in any untrusted process in state k. Secondly, if
c is created in s, it must be created inside a trusted process. Finally, c is never
delegated from a trusted to an untrusted process.

This property shows that one can effectively prevent any (untrusted) set of
processes S from gaining access to a certain resource c: one only needs to restrict
delegation into S and the rights of S to create capabilities by creating new kernel
objects. Then, regardless of the actions that are performed inside S, no process
inside S will ever gain access to c.

Authority confinement is proved by a simple induction on the kernel event
trace s, showing that c can only appear inside the untrusted processes if it is
either delegated to one of the untrusted processes or created by one of them.

5.2 Memory Confinement

Consider a kernel state k. We say that k satisfies the memory confinement prop-
erty if for every process p and memory capability m, such that p holds m in k,
one of the following holds:

– m does not point in kernel memory, or
– m points to a UTCB.

Memory confinement is proved as an invariant of the semantics. It is an essential
security property of the hypervisor: if a process can access kernel memory, then
it could potentially access any resource.

6 Conformance Testing

We use conformance testing to provide evidence about the correct implementa-
tion of the NOVA hypervisor w.r.t. our abstract model. In turn, this indicates
that the properties that we proved for the abstract model hold for running
instances of our NOVA version.

For conformance testing we run a kernel event trace (consisting of hypercalls,
hypervisor events, and exceptions) both in the hypervisor and in the abstract
model, see Fig. 2. Running an input trace in the hypervisor or the abstract
model produces a final kernel state and an output trace of the kernel events that
were actually performed together with hypercall status results. We compare
the output traces and the final kernel states and check that the output traces
correspond to the input trace. Any mismatch in the comparison indicates a
difference in the executions of the abstract model and the hypervisor that needs
investigation.

Running a kernel event trace on the hypervisor requires booting the hyper-
visor together with our test interpreter process, which can execute an arbitrary
kernel event trace. The whole testing currently requires certain changes in the
hypervisor. They are needed for generating the output trace and the final kernel
state. We try to minimize the changes made to the hypervisor in order to ensure
that we do not affect the hypervisor semantics.

80 H. Becker et al.

Fig. 2. Scheme of the testing process.

For running the traces in the abstract model, we use the Coq code-extraction
facilities to generate OCaml code from the abstract model. We trust the correct-
ness of the Coq extraction mechanisms and assume that the generated code
allows evaluating a trace in OCaml according to the Coq model.

Efficiency of the extracted code is an important requirement. For our work-
load, we found that some data structures in the Coq standard library are not
efficient. Concretely, this applies to the standard set library. We proposed a
relaxed interface for this library and implemented instances that better fit our
workload (see [24]).

Our conformance testing framework provides additional features to ease
debugging of failing test cases and simplify our development process. For fail-
ing test cases, our framework automatically searches the first step in the input
event trace that exhibits a difference in the behavior of the abstract model and
the hypervisor. Test data and especially failing test cases can be conveniently
investigated via an web front-end.

Traces for running conformance testing come from three different sources:
randomly generated, handwritten, and previously-executed traces.

The most important source of traces is our random generator. Simple random
trace generation would produce a huge amount of unfeasible steps and almost
all hypercalls would fail because of invalid arguments. We therefore use the
abstract model to guide the random step generation. Starting from a kernel
state, we collect feasible events from the abstract model and randomly chose
one of them. For hypercalls we also extract correct arguments and chose with a
certain probability only from these arguments. Once a step has been generated,
it is run in the abstract model to continue the trace generation with the next
kernel state.

The second source of traces for conformance is a set of about 16,000 short
handwritten traces that we use for regression testing during the development
process. For defining this set, we only require basic coverage of the model and
the hypervisor.

Combining Mechanized Proofs and Model-Based Testing 81

Finally, the testing framework supports rerunning traces that were generated
in the past. We use this feature for validating whether bugs in the hypervisor or
in the model have been fixed.

At the time of writing we have about 12 million executed conformance tests
in our data base, of which slightly less than 5 % fail for various known bugs in
the abstract model or the hypervisor. All these bugs will be addressed in due
time before the product release.

7 Related Work

The most relevant to our work is arguably the seL4 project. Initially, Klein et al.
established functional correctness of the low-level implementation with respect
to a Haskell reference implementation [10]. This correctness proof was extended
in several directions, to ensure security properties: integrity [20] and information
flow [16]. These properties are proved directly at the implementation level. As
we discussed in Sect. 1, we have different challenges: seL4 was developed with
the main goal of being verified, whereas our targetted hypervisor is developed
as a bedrock for several products in an industrial environment.

The CertiKOS project carried out at Yale University [9] is focused on devel-
oping the necessary program logics and infrastructure for the verification of
low-level features such as self-modifying code [5] or hardware interrupts and
preemptive threads [8], to mention a few. In recent work, Shao [21] proposes
redesigning the underlying programming language in which OS kernels are pro-
grammed and how it interacts with theorem provers and program logics.

More recently, Liu et al. [15] perform a security analysis of the Goldfish
android kernel. In their work, they use the Goanna static analyzer to search
for potential vulnerabilities with security implications. They aim at ensuring
absence of common coding errors rather than functional correctness.

Our work has strong connections with theorem prover-based testing [4], an
instance of model-based testing in which the model is developed in a theorem
prover, enabling the proof of properties on top of the model.

Recently, Kosmatov et al. [11] have also combined proofs and testing in the
context of hypervisor verification. Concretely, they targeted the virtual memory
system of the Axagoros hypervisor. They applied Hoare-style reasoning directly
on source code using the Frama-C toolset. When automatic provers fail to dis-
charge proof obligations, they split and isolate the unproven parts and perform
all-path testing.

There has also been some work on establishing isolation properties in the
context of virtualization [1]. The properties are established in an idealized model
with no specific target and therefore, without connection with any particular
implementation.

Other work on the verification of large scale systems includes the CompCert
C compiler [12] and work carried out by Cousot et al. [2] in the application
of static analyses to synchronous control/command in the context of aerospace
software. Other recent work targeting this domain includes [3,25].

82 H. Becker et al.

Finally, it is worth mentioning that there has been increasing interest in
applying formal methods in the high-tech industry: Facebook has been applying
static analysis on their mobile applications [6] and Amazon has been using TLA+
to prove properties of concurrent systems at the design level [17].

8 Conclusions

In this paper we have described the challenges we faced when applying formal
methods in an industrial context—under a different set of constraints than in
most academic work—and the methodology we applied to accommodate to this
context. We believe that the lessons we have learned and shared in this paper
can be useful when undertaking large-scale verification projects under a similar
context.

The work presented in this paper required approximately 3 person-years,
which roughly break down into 25 % spent in model construction, 35 % spent
in developing Coq proofs, 15 % spent in developing the conformance testing
infrastructure (including trace generation), and 25 % spent in analyzing confor-
mance testing results.

Throughout the project, approximately a couple of dozen bugs were found
in the hypervisor source code. Half of them have been found via code review
during model construction and proof. The rest are found via investigation of
discrepancies between the model and hypervisor during conformance testing. For
most of these bugs, the test cases that trigger them do not crash the hypervisor
and do not break any immediate assertion. Therefore, comparing the internal
hypervisor state with an expected value (given by the model) is an effective way
to show the existence of a bug.

The model is essential during conformance testing as it acts as a executable
specification.

We should also point out that we found as many bugs in our model (including
the Coq model and conformance testing infrastructure), which showed up as false
positives during conformance testing.

Testing-related results appeared to be the most efficient way to communicate
to the developer teams: we are using metrics like model-based coverage, number
of tests and number of reported bugs to convey the impact on increased quality
through our work.

The abstract model and its proven security properties demonstrate that there
is no security vulnerability in the design of the hypervisor. Millions of confor-
mance tests and the associated coverage provide a convincing argument that
design and implementation correlate. Together, our results establish a very high
degree of customer confidence in the quality and security of hypervisor-based
products.

Future Work. There are essentially four dimensions to extend our work. First,
we are interested in exploring stronger security properties that can be built on
top of our current authority confinement property. Second, we would like to

Combining Mechanized Proofs and Model-Based Testing 83

provide stronger evidence of the connection between the model and the source
code. Work is already underway in applying program refinement to construct a
chain of increasingly precise models, all the way down to the source code. Third,
we aim at extending the verification target to components that run above the
hypervisor and that play a crucial role from a security standpoint. In particular,
some work has been started on establishing correctness properties at the source
level of library code which contains critical data-structures pervasively used in
a majority of modules of the system to track notions of ownership and access
permission. Finally, the abstract model, the proven properties and conformance
testing needs to be extended to parallel execution.

References

1. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In: Butler, M., Schulte, W. (eds.)
FM 2011. LNCS, vol. 6664, pp. 231–245. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21437-0 19

2. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
Found. Trends Program. Lang. 2(2–3), 71–190 (2015)

3. Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.:
Verifying the safety of a flight-critical system. In: Bjørner, N., de Boer, F. (eds.)
FM 2015. LNCS, vol. 9109, pp. 308–324. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19249-9 20

4. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Aspects Com-
put. 25(5), 683–721 (2013)

5. Cai, H., Shao, Z., Vaynberg, A.: Certified self-modifying code. In: Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10–13, 2007, pp. 66–77 (2007)

6. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-17524-9 1

7. Elphinstone, K., Heiser, G.: From L3 to seL4 - what have we learnt in 20 years
of L4 microkernels? In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP 2013, pp. 133–150. ACM, New York (2013)

8. Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with hardware
interrupts and preemptive threads. In: Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, June 7–13, 2008, pp. 170–182 (2008)

9. Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: Certikos: a certified kernel
for secure cloud computing. In: APSys 2011 Asia Pacific Workshop on Systems,
Shanghai, China, July 11-12, 2011, p. 3 (2011)

10. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: sel4: formal verification of an OS kernel. In: Proceedings of the 22nd
ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky,
Montana, USA, October 11–14, 2009, pp. 207–220 (2009)

http://dx.doi.org/10.1007/978-3-642-21437-0_19
http://dx.doi.org/10.1007/978-3-642-21437-0_19
http://dx.doi.org/10.1007/978-3-319-19249-9_20
http://dx.doi.org/10.1007/978-3-319-19249-9_20
http://dx.doi.org/10.1007/978-3-319-17524-9_1

84 H. Becker et al.

11. Kosmatov, N., Lemerre, M., Alec, C.: A case study on verification of a cloud
hypervisor by proof and structural testing. In: Seidl, M., Tillmann, N. (eds.) TAP
2014. LNCS, vol. 8570, pp. 158–164. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09099-3 12

12. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009)

13. Liedtke, J.: Toward real µ-kernels. Commun. ACM 39(9), 70–77 (1996)
14. Lipton, R.J., Snyder, L.: A linear time algorithm for deciding subject security. J.

ACM 24(3), 455–464 (1977)
15. Liu, T., Huuck, R.: Case study: static security analysis of the android goldfish

kernel. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 589–592.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-19249-9 39

16. Murray, T.C., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., Klein, G.: sel4: from general purpose to a proof of information
flow enforcement. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19–22, 2013, pp. 415–429 (2013)

17. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

18. Ramananandro, T., Reis, G.D., Leroy, X.: Formal verification of object layout for
c++ multiple inheritance. In: Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26–28, 2011, pp. 67–80 (2011)

19. Ramananandro, T., Reis, G.D., Leroy, X.: A mechanized semantics for C++
object construction and destruction, with applications to resource management.
In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22–28, 2012, pp. 521–532 (2012)

20. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL4
enforces integrity. In: Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 325–340. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22863-6 24

21. Shao, Z.: Clean-slate development of certified OS kernels. In: Proceedings of the
2015 Conference on Certified Programs and Proofs, Cp. 2015, Mumbai, India,
January 15–17, 2015, pp. 95–96 (2015)

22. Shapiro, J.S., Weber, S.: Verifying the eros confinement mechanism. In: Proceed-
ings of the 2000 IEEE Symposium on Security and Privacy, SP 2000, p. 166. IEEE
Computer Society, Washington, DC (2000)

23. Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization archi-
tecture. In: Proceedings of the 5th European Conference on Computer Systems,
EuroSys 2010, pp. 209–222. ACM, New York (2010)

24. FireEye Formal Methods Team. Efficiently executable sets used by FireEye. Pre-
sented at the 8th Coq Workshop (2016). https://github.com/fireeye/MSetsExtra

25. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of
a descent guidance control program of a lunar lander. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 733–748. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-06410-9 49

http://dx.doi.org/10.1007/978-3-319-09099-3_12
http://dx.doi.org/10.1007/978-3-319-09099-3_12
http://dx.doi.org/10.1007/978-3-319-19249-9_39
http://dx.doi.org/10.1007/978-3-642-22863-6_24
http://dx.doi.org/10.1007/978-3-642-22863-6_24
https://github.com/fireeye/MSetsExtra
http://dx.doi.org/10.1007/978-3-319-06410-9_49

A Model Checking Approach to Discrete
Bifurcation Analysis

Nikola Beneš(B), Luboš Brim, Martin Demko, Samuel Pastva,
and David Šafránek

Systems Biology Laboratory, Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

{xbenes3,brim,xdemko,xpastva,xsafran1}@fi.muni.cz

Abstract. Bifurcation analysis is a central task of the analysis of para-
meterised high-dimensional dynamical systems that undergo transitions
as parameters are changed. The classical numerical and analytical meth-
ods are typically limited to a small number of system parameters. In
this paper we propose a novel approach to bifurcation analysis that is
based on a suitable discrete abstraction of the system and employs model
checking for discovering critical parameter values, referred to as bifurca-
tion points, for which various kinds of behaviour (equilibrium, cycling)
appear or disappear. To describe such behaviour patterns, called phase
portraits, we use a hybrid version of a CTL logic augmented with direc-
tion formulae. We demonstrate the method on a case study taken from
systems biology.

1 Introduction

Continuous dynamical systems mostly contain certain kinds of parameters. It can
happen that a slight variation in a parameter has a significant impact on the
system flow dynamics. It is obvious that insight into the qualitative structure of
flow fields is of great importance and appears as the ultimate aim of flow research.
A prominent classical example is the sudden transition from laminar to turbulent
flow which takes place in a circular pipe (Poiseuille flow) when the speed in
the centre of the pipe exceeds a critical value. Central issues when studying
these flows are the characterisation of the range of parameters values over which
particular flows exist and the mechanisms of transition between different flow
patterns.

To tackle flow transition problems, numerical models are essential. Starting
from a certain initial condition and given model parameters, the model is inte-
grated forward in time and the long-time behaviour of quantities of interest is
studied. To determine transition behaviour and critical conditions, parameters
are subsequently changed and the transient and asymptotic behaviour of the
model solutions is studied. In this way, transitions between different types of
equilibrium behaviour (steady or time-dependent) are found.

This work has been supported by the Czech Science Foundation grant GA15-11089S.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 85–101, 2016.
DOI: 10.1007/978-3-319-48989-6 6

86 N. Beneš et al.

Since the primary interest is in the changes in asymptotic behaviour when
parameters change, another class of numerical methods can be used that focuses
directly on the computation of the asymptotic flow states in the models. These
may be steady states, periodic orbits, quasi-periodic orbits or more complicated
states, usually referred to as attractors of the model. The issue of finding critical
conditions for transitions is then rephrased in terms of dynamical systems theory
to that of finding the parameter values at which bifurcations exist. The meth-
ods for the numerical bifurcation analysis, in particular continuation techniques,
consist of efficient numerical schemes to determine attractors as a function of
parameters. A disadvantage of these methods is that they are more compli-
cated, especially in their need for sophisticated numerical linear algebra and, as
a result, their application in flow analysis is limited. It is important to note that
a comprehensive understanding of the mechanisms leading a system to exhibit
turbulent behaviour is one of the grand challenges of physical and mathematical
sciences.

The goal of bifurcation analysis is to produce parameter space maps or bifur-
cation diagrams that divide the parameter space into regions where parameters
do not qualitatively affect the behaviour patterns, called phase portraits. Bifur-
cations occur at points that do not lie in the interior of one of these regions.

When applying numerical methods to continuous dynamical systems we often
approximate the phase-space by a discrete state-transition system. This opens
the door for the application of formal methods as known from computer sci-
ence. In this paper we propose a novel approach to bifurcation analysis that
is based on model checking. Model checking is widely accepted as a universal
tool for exploration of complex dynamical systems under parameter uncertainty,
especially in the domain of systems biology [3,4,15,17,18].

We suppose the system under consideration is abstracted into a discrete
(often finite state) non-deterministic state-transition system in which transitions
are annotated by directions (of flow). In such a system a run follows an orbit
(trajectory) that changes directions in individual states. In such a way orbits in
the original continuous system are abstracted into discrete orbits (runs), hence
phase portraits are represented as their discrete counterparts. Discrete phase
portraits can be characterised logically by temporal logic formulae that take
into account changes in directions.

It is important to notice that the phase portraits do not show the time depen-
dence of the orbits, but several important properties of the system dynamics can
be obtained from them. Moreover, the phase portraits can be determined also
for non-linear systems, for which the analytic solution is not available.

To capture most of the interesting phase portraits we employ a hybrid exten-
sion of the UCTL logic [5]. The need for extending branching logics and the
related emphasis on global analysis have been already considered in [2,20] for
non-parameterised setting. Especially, in [2] the authors employ hybrid CTL
to express complex phenomena that are also relevant for bifurcation analysis.
To keep the efficiency of the model checking procedure we intentionally do not
consider a richer framework of spatio-temporal or topological logics.

A Model Checking Approach to Discrete Bifurcation Analysis 87

The main contribution of the paper is in adaptation and application of for-
mal methods, model-checking in particular, to an area that has been tradition-
ally governed by numerical methods. The model checking approach can handle
a richer set of bifurcations occurring in high-dimensional dynamical systems with
reasonable efficiency. We demonstrate the approach on a case study taken from
the highly interdisciplinary area of systems biology.

Related Work. Traditional bifurcation analysis techniques typically target conti-
nuous-time dynamical systems and employ numerical continuation based on
Newton’s method to detect bifurcation points [16]. Most of the techniques start
with computing equilibria as a function of parameters. The existing tools are
capable of detecting several kinds of equilibria bifurcation as well as bifurca-
tions of cycles and connecting orbits. However, the limitation is the number of
parameters – the so-called co-dimensionality. Numerical methods perform well
up to two parameters but for higher co-dimension there is no universal solu-
tion [7]. In general, numerical techniques are not fully automatised and require
fine-tuning of the methods settings. Regarding the systems dimensionality and
co-dimensionality, their performance is limited [14].

Techniques based on model checking provide an alternative way to bifurca-
tion analysis. The advantages include fully automated exhaustive exploration
of systems dynamics under parameter uncertainty, identification of attraction
basins by reachability analysis, and good scalability for higher co-dimension.
However, the expressiveness in terms of types of bifurcations that can be detected
relies on the precision of the systems phase-space discretisation. In [8] we have
addressed bifurcations of single-state phase portraits in piecewise affine sys-
tems with rectangular abstraction of the dynamics. The major drawback of the
method was the insufficient expressiveness of dCTL (CTL logic extended with
direction propositions), notably, the impossibility to express complex phase por-
traits of systems dynamics. In this paper, we employ hybrid temporal logics
that significantly strengthen the expressiveness. Moreover, we demonstrate the
applicability of the method to a broader class of dynamical systems as in the
case study we employ discretisation of piecewise multi-affine systems. This class
of systems sufficiently covers systems with positive and negative feedback [4,17].

2 Preliminaries

As a motivation we suppose an n-dimensional rectangular abstraction of a given
dynamical system, like the one defined in [22] and further adapted in [3,8,17]
(see [12] for overview). In such a kind of abstraction the states are arranged in an
n-dimensional space with neighbouring states being placed axis-parallel. Every
transition between two states has a direction. A 2D example is shown in Fig. 1.

We base our framework on an extension of Kripke structures that allows to
use labels on transitions. Such a framework is a special case of the so-called
doubly labelled transition systems [13]. Doubly labelled transition systems are
very similar to the so-called labelled Kripke structures [10] or Kripke transition
systems [21] defined as an extension of Kripke structures with transition labels.

88 N. Beneš et al.
y

x
y

x

WWW

WWW

W W W

E

E

E

S

S

E

E

E

S N N N N N

NNNNNS

Fig. 1. A vector field (left) and a discretisation of the emphasised region (middle).
Thresholds determining the rectangles were obtained by the algorithm in [17]. Arrows
in the rectangles show the directions of transitions abstracting the systems dynamics
in the particular rectangle. The states and transitions of the labelled transition system
corresponding to the discretisation (right). The system is two-dimensional, therefore
cardinal directions are employed to naturally label the transitions.

We do not suppose the above-mentioned rectangular structure on the state
space in this section as the suggested approach is general; however, the intended
meaning of transition labels in our framework is a direction in which the tran-
sition changes the state. We will consider a particular application in Sect. 5.
Furthermore, we consider families of such systems indexed by a set of parame-
ters. Let’s start with the non-parameterised case.

Definition 1. A direction transition system (DTS) is a tuple (S,Dir, T,AP, L),
where:

– S is a set of states;
– Dir is a finite non-empty set of directions;
– T ⊆ S × Dir × S is the transition relation satisfying the following conditions:

– T is total, i.e. for each s there are s′ and d such that (s, d, s′) ∈ T ,
– T is past-total, i.e. for each s there are s′ and d such that (s′, d, s) ∈ T ,
– for each s �= s′ there is at most one d such that (s, d, s′) ∈ T ,
– for each s either there is no d such that (s, d, s) ∈ T or for all d ∈ Dir:

(s, d, s) ∈ T ;
instead of (s, d, s′) ∈ T we also write s

d→ s′;
– AP is a set of atomic propositions;
– L : S → 2AP is a labelling function that associates a subset of AP to each

state.

Definition 2 (runs). Let (S,Dir, T,AP, L) be a DTS and let s0 ∈ S be
its state. A future run of s is an infinite sequence s0, d1, s1, d2, s2, . . ., where
(si, di+1, si+1) ∈ T for all i. A past run of s is an infinite sequence
s0, d1, s1, d2, s2, . . ., where (si+1, di+1, si) ∈ T for all i. For a (past or future)
run π = s0, d1, s1, d2, s2, . . ., we further define the ith state of π as π(i) = si and
the ith action of π as α(π, i) = di. We denote by fruns(s) the set of all future
runs of s and by pruns(s) the set of all past runs of s.

A Model Checking Approach to Discrete Bifurcation Analysis 89

Note that due to the requirement of the DTS to be past-total and due to
the lack of a single initial state, we assume that the past runs are neither finite
nor initialised. This is in contrast to other works that deal with past temporal
logics, such as [19]. Also note that the sets of future and past runs are always
nonempty for each state and every outgoing or incoming path of each state may
be always extended into a future or past run.

To formulate properties of runs over a DTS we use a hybrid extension [1] of
the temporal logic UCTL [5]. UCTL is a UML-oriented branching-time temporal
logic that is able to express state predicates over system states, event predicates
over single-step system evolutions, and combine these with temporal and Boolean
operators in the style of CTL. The hybrid extension allows the use of state
variables that can be fixed in certain parts of the formula as well as quantified.
We also include the possibility to express properties of past as well as future.
We call the resulting logic hybrid UCTL with past (HUCTLP for short).

Note that there are two possible ways of defining the semantics of CTL and
its extension. The models of the formulae can be either defined as (infinite) trees
or as graphs (Kripke structures). Although in the case of standard CTL the
two semantics coincide (every Kripke structure is equivalent to its unwinding,
which is an infinite tree), this makes difference with respect to the past operators
and the hybrid extension. In the past operator case, the semantics used here is
known as the branching past semantics [19]. As for the hybrid extension, the
state variables are going to be bound to the states of the Kripke structures, not
the tree nodes in its unwinding.

Also note that instead of past temporal operators, we use an equivalent def-
inition (w.r.t. the branching past) that uses past path quantifiers here.

Definition 3 (direction formulae). Let Dir be a set of directions. Then the
language of direction formulas on Dir is defined as follows:

χ ::= true | d | ¬χ | χ ∧ χ

where d ranges over Dir.

Definition 4 (semantics of direction formulae). The satisfaction relation
|= is defined for directions d̂ as follows:

d̂ |= true

d̂ |= d ⇐⇒ d̂ = d

d̂ |= ¬χ ⇐⇒ d̂ �|= χ

d̂ |= χ1 ∧ χ2 ⇐⇒ d̂ |= χ1 and d̂ |= χ2

In the following, we sometimes use the notion of a χ-transition to denote
a transition (s, d, s′) such that d |= χ. We then also call s′ a χ-successor of s.

Definition 5 (HUCTLP formulae). Let AP be a set of atomic propositions,
let Dir be a set of directions, and let Var be a set of state variables. The language
of CTL formulae is defined as follows:

90 N. Beneš et al.

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ | Êψ | Âψ | x | ↓x.ϕ | @x.ϕ | ∃x.ϕ

ψ ::= Xχϕ | ϕ χUϕ | ϕ χUχ ϕ | ϕ χWϕ | ϕ χWχ ϕ

where p ranges over AP, χ are direction formulae over Dir, and x ranges over
Var. We call the formulae defined by ϕ above state formulae and the formulae
defined by ψ above path formulae.

To define the semantics of HUCTLP, we need to extend the model with
a valuation of the state variables h : V ar → S. In the following, we shall use
h[x �→ s] to denote a valuation that maps the variable x to state s and is
otherwise defined as the valuation h. Formally, h[x �→ s](x) = s, h[x �→ s](y) =
h(y) for all y �= x.

Definition 6. Let M be a DTS and h : Var → S be a valuation of state vari-
ables. The satisfaction relation for states and runs of M w.r.t. HUCTLP formu-
lae is defined as follows:

(M,h, s) |= true
(M,h, s) |= p ⇐⇒ p ∈ L(s)
(M,h, s) |= ¬ϕ ⇐⇒ (M,h, s) �|= ϕ

(M,h, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (M,h, s) |= ϕ1 and (M,h, s) |= ϕ2

(M,h, s) |= Eψ ⇐⇒ ∃π ∈ fruns(s) : (M,h, π) |= ψ

(M,h, s) |= Aψ ⇐⇒ ∀π ∈ fruns(s) : (M,h, π) |= ψ

(M,h, s) |= Êψ ⇐⇒ ∃π ∈ pruns(s) : (M,h, π) |= ψ

(M,h, s) |= Âψ ⇐⇒ ∀π ∈ pruns(s) : (M,h, π) |= ψ

(M,h, s) |= x ⇐⇒ h(x) = s

(M,h, s) |= ↓ x.ϕ ⇐⇒ (M,h[x �→ s], s) |= ϕ

(M,h, s) |= @x.ϕ ⇐⇒ (M,h, h(x)) |= ϕ

(M,h, s) |= ∃x.ϕ ⇐⇒ ∃s′ ∈ S : (M,h[x �→ s′], s) |= ϕ

(M,h, π) |= Xχϕ ⇐⇒ α(π, 1) |= χ and π(1) |= ϕ

(M,h, π) |= ϕ1 χUϕ2 ⇐⇒ ∃i : π(i) |= ϕ2

and ∀j < i : π(j) |= ϕ1 and α(π, j + 1) |= χ

(M,h, π) |= ϕ1 χUξ ϕ2 ⇐⇒ ∃i > 0 : π(i) |= ϕ2, α(π, i) |= ξ, π(i − 1) |= ϕ1,

and ∀j < i − 1 : π(j) |= ϕ1 and α(π, j + 1) |= χ

(M,h, π) |= ϕ1 χWϕ2 ⇐⇒ (M,h, π) |= ϕ1 χUϕ2

or ∀i : α(π, i + 1) |= χ and π(i) |= ϕ1

(M,h, π) |= ϕ1 χWξ ϕ2 ⇐⇒ (M,h, π) |= ϕ1 χUξ ϕ2

or ∀i : α(π, i + 1) |= χ and π(i) |= ϕ1

We are usually interested in formulae without free variables. In such a case,
we write (M, s) |= ϕ instead of (M,h, s) |= ϕ as the choice of h is irrelevant.

A Model Checking Approach to Discrete Bifurcation Analysis 91

We allow universal quantification over state variables by defining the formula
∀x.ϕ to mean ¬∃x.¬ϕ. We also define several derived path operators as follows:

ϕ1 Uϕ2 ≡ ϕ1 trueUϕ2 ϕ1 Wϕ2 ≡ ϕ1 trueWϕ2

χFϕ ≡ true χUϕ χGϕ ≡ ϕ χW false
Fϕ ≡ trueFϕ Gϕ ≡ trueGϕ

X̃χ ϕ ≡ ¬Xχ¬ϕ χF̃ϕ ≡ ¬ χG¬ϕ

The operators U (until), W (weak until), F (future/eventually), and G (glob-
ally/always) are the standard CTL operators. The operators χF and χG are
UCTL extensions of F and G; the intuitive meaning of χFϕ is “eventually
a state satisfying ϕ is found after χ-transitions only” and the intuitive meaning
of χGϕ is “the run only consists of χ-transitions and all its states satisfy ϕ”.

Note that although in the standard CTL, the operators F and G are dual
(one can be defined in terms of the other using negations), the UCTL extensions
are not. Indeed, the intuitive semantics of ¬ χG¬ϕ is “if the run only consists
of χ-transitions, eventually a state satisfying ϕ is found”. Similarly, Xχ is not
self-dual, as the meaning of ¬Xχ¬ϕ is “if the first transition is a χ-transition,
the next state satisfies ϕ”. For this reason, we have included the two operators
X̃χ and χF̃ in our list of derived operators. The operators can be particularly
useful in combination with the A quantifier, as the formula AX̃χ ϕ (equivalent
to ¬EXχ ¬ϕ) means “all χ-successors of the current state satisfy ϕ” and the for-
mula AχF̃ϕ (equivalent to ¬EχG¬ϕ) means “on all future runs of the current
state consisting of χ-transitions only, ϕ holds eventually”.

Bifurcation analysis requires the systems to be parameterised. To this end we
consider parameterised DTSs. This notion encapsulates a family of DTSs with
the same state space but with different transitions. The existence of transitions
is governed by parameter valuations.

Definition 7. Let AP be a set of atomic propositions. A parameterised direction
transition system (PDTS for short) is a tuple K = (P, S,Dir, T̂ ,AP, L), where
P is a finite set of parameter valuations, T̂ = {Tp | p ∈ P, Tp ⊆ S × Dir × S},
and for each p ∈ P the tuple Kp = (S,Dir, Tp,AP, L) is a DTS.

Fixing a concrete parameter valuation p ∈ P thus reduces the parameterised
direction transition system K to a DTS. We use the notation P(s, t, d) = {p ∈ P |
s

d→p t} to denote the set of all parameter valuations that enable the transition
from s to t in direction d.

3 Parameter Synthesis Algorithm

The parameter synthesis problem is defined in the following way. Suppose we
are given a parameterised direction transition system K = (P, S,Dir, T̂ ,AP, L)
and a HUCTLP formula ϕ without free state variables. The parameter synthesis

92 N. Beneš et al.

problem for K and ϕ is to compute the function FK
ϕ : S → 2P such that FK

ϕ (s) =
{p ∈ P | (Kp, s) |= ϕ}.

To solve the parameter synthesis problem, we extend the coloured model
checking approach [9], originally devised for parameter synthesis with standard
(state-based) CTL. The general idea of the algorithm is similar to that of stan-
dard CTL model checking [11], in which the states are iteratively labelled (using
a bottom-up approach) by subformulae that are satisfied in them. Our algorithm
here needs to deal with three orthogonal extensions to the algorithm: the use of
directions (UCTL), the use of past quantifiers, and the hybrid extension (state
variables). We start by describing the way we deal with the UCTL part.

The approach of [6,9] uses three algorithms to deal with formulae using the
EX, EU, and AU operators. In the UCTL extension, we deal with the EXχ,
AXχ, EχU, AχU, and AχF̃ operators. The χW operators are dealt with using
the following equivalences:

A[ϕ1 χWϕ2] ≡ ¬E[¬ϕ2 U(¬ϕ2 ∧ (¬ϕ1 ∨ EX¬χ true))]

E[ϕ1 χWϕ2] ≡ E[ϕ1 χUϕ2] ∨ ¬AχF̃¬ϕ1

We omit the χUξ and χWξ operators here. They can be dealt with similarly.
The EXχϕ formula holds in all states s and under all parameter valuations

p such that there is a transition s
d→p s′ with d |= χ and s′ |= ϕ. Similarly, the

AXχϕ formula holds in states s under parameter valuations p such that all d,

s′ with s
d→p s′ satisfy d |= χ and s′ |= ϕ.

To deal with E[ϕ1 χUϕ2] we use the fact that this formula is the least fixpoint
of the equation Z = ϕ2 ∨ (ϕ1 ∧ EXχZ). We thus mark each state satisfying ϕ2

under given parameter valuation and then iteratively mark all states satisfying
ϕ1 and having an outgoing χ-transition to a marked state.

The formulae A[ϕ1 χUϕ2] and AχF̃ϕ are dealt with similarly, as they are
the least fixpoints of the equations: Z = ϕ2 ∨ (ϕ1 ∧AXχZ) and Z = ϕ∨AX̃χ Z,
respectively.

Extending the algorithms to past quantifiers is straightforward. As noted
in [19], we can simply use the algorithms for future quantifiers with the transi-
tions reversed.

We now describe the way we deal with the state variables and the various
operators used in the hybrid extension. We say that a variable x is bound in
a formula ϕ if each of its occurrences in ϕ is inside a subformula of the form
∃x.ϕ′ or ↓ x.ϕ′; otherwise we say that x is free in ϕ. Dealing with subformulae
with no free variables is not different from the above algorithm. However, when
a subformula does contain free variables, we need to expand the state space. For
a subformula with k free variables, the state space is going to be Sk+1 where S
is the original set of states. The extra information in the states represents the
possible values of the variables. We write (s, sx, sy, . . .) for the elements of Sk+1,
where sx represents the value of h(x) etc. The four kinds of subformulae we need
to deal with are x, @x.ϕ, ↓ x.ϕ, and ∃x.ϕ.

A Model Checking Approach to Discrete Bifurcation Analysis 93

– Considering the formula x, we mark all states (s, sx, sy, . . .) such that s = sx.
Clearly, the formula is satisfied in exactly those states.

– Considering the formula @x.ϕ, every state (s, sx, sy, . . .) gets the same satis-
faction information regardless of s: the satisfaction of the subformula ϕ in the
state (sx, sx, sy, . . .).

– Considering the satisfaction of the formula ↓ x.ϕ on the state (s, sy, . . .) (note
that there is no sx here, as this formula does not have free x), we mark the
state if (s, sx = s, sy, . . .) satisfies ϕ.

– Considering the formula ∃x.ϕ, we mark each state (s, sy, . . .) if there exists at
least one state s′ such that (s, sx = s′, sy, . . .) satisfies ϕ, otherwise we mark
no states at all.

4 Discrete Bifurcation Analysis

In this section we apply the framework to discrete bifurcation analysis of parame-
terised discrete non-deterministic transition systems with directions. Our app-
roach is based on a suitable discrete abstraction of the given, typically continu-
ous, dynamical system that allows to employ the parameter synthesis algorithm
for discovering critical parameter values, referred to as bifurcation points, for
which various kinds of systems behaviour (equilibria, cycling) appear or disap-
pear. A particular kind of such an abstraction will be mentioned in Sect. 5.

We suppose a DTS M . Runs of M have various properties. Here we are pri-
marily interested in “geometric” shapes of runs, but other properties are not
excluded. The simplest such property is a self loop (fixed point, equilibrium).
A state s ∈ M is called a fixed point if s

d→ s for some d ∈ D. A system in a
fixed point has the possibility of remaining there forever. Thus, fixed points rep-
resent the simplest mode of behaviour of the system. Another relatively simple
type of run is a cycle. A cycle is a periodic run, namely a non-fixed-point run

s0, d1, s1, d2, s2, . . . , sn where si
di+1→ si+1, si �= si+1 for all i : 0 ≤ i < n and

s0 = sn. The number n is called the period of the cycle. If a system starts its
evolution at a point s on the cycle, it has the possibility to return exactly to
this point after every n units of time. The system as such then exhibits periodic
oscillations.

We can roughly classify all possible runs in discrete dynamical systems into
fixed points, cycles, and “all others”.

A phase portrait of a dynamical system is a partitioning of the state space
according to properties of runs. The individual parts of the phase portrait are
called portrait elements or patterns. The phase portrait contains a lot of informa-
tion on the behaviour of a dynamical system. By looking at the phase portrait,
we can for example determine the number and types of asymptotic states like
fixed points or cycles. Of course, it is impossible to draw all runs in a figure.
In practice, only several key runs are depicted in the diagrams to present phase
portraits schematically.

It is important to note that we consider discrete-time systems here. In conti-
nuous-time dynamical systems a phase portrait captures both the position and

94 N. Beneš et al.

*

saddle

*

sink source flow

Fig. 2. Some single-state portrait patterns. The asterisk symbol denotes either situ-
ation: incoming only, outgoing only, both or none. Note that saddle and flow can be
rotated along a particular axis, which gives additional examples. We can also consider
“partial” patterns like a sink without any edges in some direction(s).

the momentum of a continuous-time system described by a system of ordinary
differential equations. These momentum variables set up the “field” that gives
structure to the phase portrait. In a discrete-time system, we generally do not
have the same kind of momentum. In our approach we therefore simplify the
velocity vectors that are put together to make a phase portrait of the continuous-
time system by “vectors” all having the same size. The interpretation of the
bifurcation analysis is thus relative to the way the original system has been
abstracted into a DTS in case the original system is not given directly as a DTS.

In the following we therefore consider discrete phase portraits only. To further
classify elements of a phase portrait, in particular, other possible asymptotic
states of the system covered by “all other” above, the following definition is
useful. An invariant set of a dynamical system is a nontrivial strongly connected
component (SCC). A system placed in an arbitrary state of an invariant set
either cannot escape from the set (strong invariancy, the SCC is final) or may
stay in the set forever (weak invariancy). A fixed point is thus a special case of
an invariant set.

Studying phase portraits, unlike individual runs, gives a more global view on
the system’s behaviour. As we have already seen above, the elements of phase
portraits can have many shapes (patterns). Some other typical patterns that can
appear in a 2-dimensional case (like the one shown at the beginning of Sect. 2)
are the single-state patterns in Fig. 2.

The patterns are characterised by properties of runs and the properties of
runs can be formalised as formulae of HUCTLP. We will distinguish several types
of formulae. The first group are formulae that define single-state patterns. Here
are some examples.

Single-state patterns

– sink (stable steady state): ↓ s.AXs
– self-loop existence (unstable steady state): ↓ s.EXs
– source (only self-loops, no other incoming): ↓ s. ÂX s
– 2d-saddle: AXN∨Strue ∧ EXN true ∧ EXStrue ∧ ÂXE∨W true ∧ ÊXE true ∧

ÊXW true (north-south outgoing, west-east incoming)
– membership in a cycle: ↓ s.EXEF s

A Model Checking Approach to Discrete Bifurcation Analysis 95

Another kind of general multi-state patterns are invariant sets like periodic
runs or limit cycles. Here are some examples.

Invariant sets (multi-state patterns)

– state in a nontrivial SCC: ↓ s.EXEF s
– state in a final SCC (generalised sink): ↓ s.AGEF s
– state in an initial SCC (generalised source): ↓ s. ÂG ÊF s
– non-north flow in the whole system: ∀s.@s.AX¬N true

Using HUCTLP formulae we can also describe relations among elements (pat-
terns) of phase portraits. Here are some examples.

Relations among patterns

– at least two sinks in the whole system: ∃s.∃t.(@s.¬t ∧ AXs) ∧ (@t.AXt)
– at least two final SCCs in the whole system: ∃s.∃t.(@s.AG¬t ∧ AGEF s) ∧

(@t.AGEF t) (similarly for initial SCCs)
– formula that is true in states that have two outgoing paths to two different

sinks: ∃s.∃t.(@s.¬t ∧ AXs) ∧ (@t.AXt) ∧ EF s ∧ EF t (intersection of basins
of attraction of two different sinks)

– formula that is true in states that satisfy ϕ1 and can reach a state satisfying
ϕ2 without ever going north: ϕ1 ∧ ∃s.(@s.ϕ2) ∧ E¬NF s

We now turn our attention to the bifurcation analysis workflow. In bifurcation
analysis we are interested in the question of how the phase portrait changes when
parameters change. We therefore suppose a parameterised n-dimensional DTS.
The parameters are taken from a finite set P. For the purpose of the discrete
bifurcation analysis we assume P to be a partially ordered set. For two points
x, y ∈ P we say that y covers x, if x < y and there is no z ∈ P with x < z < y.
For a subset X ⊆ P we define its boundary points to be all the points x ∈ X
with the property that either x covers or is covered by a point not in X.

Bifurcation analysis allows to characterise qualitative (structural) changes in
phase portraits only. To capture such changes in our approach, we will identify
a phase portrait with a finite set of HUCTLP formulae – the so-called phase
portrait specification. The set defines in an obvious way a division of the state
space into elements according to the validity of individual formulae (the structure
of the phase portrait) as exemplified in Fig. 3. Practically, the phase portrait
specification is supposed to describe various patterns appearing in the phase
portrait and their mutual relationship. As an example consider two formulae,
one expressing the reachability of a sink state (ϕ1

df=EF(↓ s.AXs)) and the other
one expressing the backward reachability of a source state (ϕ2

df= ÊF(↓ s. ÂX s)).
The state space is in general divided into four parts. The situation is shown in
Fig. 3 (left).

Any change in parameters may change the transition relation and thus may
result in a change of truth value of any particular formula in the portrait spec-
ification. If a change in parameters results in non-satisfiability of one of the

96 N. Beneš et al.

ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ϕ2

¬ϕ1 ∧ ϕ2

¬ϕ1 ∧ ¬ϕ2

ϕ2

¬ϕ2

Fig. 3. An example of a characterisation of a phase portrait by formulae.

formulae (or its negation) in the specification, we consider this as a structural
change in the phase portrait – a bifurcation. For the example above, if the para-
meter changes in such a way that the formula ϕ1 does not hold in any state, the
four part “structure” collapses into two parts, as shown in Fig. 3 (right). The set
of all parameters for which the structure of the phase portrait does not change
is called a stratum. A boundary point of a stratum is called a bifurcation point.
Taking all strata in the parameter space with respect to a given phase portrait
specification, we obtain the parametric portrait of the system. The parametric
portrait together with its characteristic phase portraits constitute a bifurcation
diagram. The set of phase portraits that are characteristic for a given parametric
portrait is called phase portrait pattern.

Let I(m) denote the set of indices {1, ...,m}. Formally, we define the phase
portrait specification Φ = {ϕ1, ..., ϕm} as a finite set of HUCTLP formulae.
The phase portrait pattern is then defined as the set of formulae ptr(Φ) generated
from Φ in the following way:

ptr(Φ) = {ΦJ | ΦJ =
∧

j∈J

ϕj ∧
∧

j∈I(m)\J

¬ϕj , J ⊆ I(m)}.

An example of a phase portrait pattern can be seen in Fig. 3 (left).
Let K = (P, S,Dir, T̂ ,AP, L) be a PDTS. For every ΦJ ∈ ptr(Φ), the set of

valid parameter values satisfying ΦJ , denoted by P(ΦJ), is defined as P(ΦJ) =⋃
s∈S FK

ϕ (s). We understand a stratum to be characterised by a particular subset
of formulae in the phase portrait pattern. More specifically, we define stratum as
a set of parameter values satisfying all formulae in X ⊆ ptr(Φ) where X is some
non-empty subset of formulae in the phase portrait pattern. Formally, the set of
all strata of the PDTS K with respect to the portrait specification Φ, denoted as
ΓK

Φ , is defined as follows:

ΓK
Φ = {γI | γI =

⋂

J∈I

P(ΦJ), I ⊆ 2I(m), I �= ∅, γI �= ∅}.

The set of bifurcation points is defined as
⋃

γ∈ΓK
Φ

bdp(γ) where bdp(γ) denotes
the set of all boundary points of γ.

The goal of the discrete bifurcation analysis is to compute the parametric
portrait for a given PDTS K and a given portrait specification Φ. The proce-

A Model Checking Approach to Discrete Bifurcation Analysis 97

dure is the following. The set ΓK
Φ is computed by post-processing of the results

obtained from applying the parameter synthesis algorithm presented in Sect. 3
to K and every formula in ptr(Φ).

Note that bifurcation analysis is typically done in several stages. At the
beginning we often do not have enough information about the structure of the
phase portrait. As the knowledge deepens we can add more or refine existing
formulae defining the current state of the phase portrait.

5 Application to Biological Case

To demonstrate our workflow, we conduct a bifurcation analysis of a dynamical
system modelling dynamics of a two-gene regulatory network presented in [23].
The model describes interaction of the tumour suppressor protein pRB and the
central transcription factor E2F1 (see Fig. 4 (left)). This system represents an
important mechanism of a biological switch governing the transition from G1 to S
phase in the mammalian cell cycle. In the G1-phase the cell makes an important
decision. In high concentration levels, E2F1 activates the phase transition. In
low concentration of E2F1, transition to S-phase is rejected provided that the
cell avoids division. We consider the model to be parameterised by the parame-
ter αpRB . The parameter space P is determined as an interval αpRB ∈ [0.001, 0.5]
representing the biologically-admissible range.

E2F1pRB

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB] − αpRB [pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − αE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, αE2F1 = 0.1
J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 4. G1/S transition regulatory network and the respective dynamical system taken
from [23]. Value of the parameter αpRB is considered in the range [0.001, 0.5].

In order to prepare the model for our discrete bifurcation analysis, we first
construct the piecewise multi-affine approximation (PMA) of the original non-
linear continuous model that is then further translated into a finite state Kripke
structure. To this end, we subsequently apply the approximation and abstraction
procedures introduced in [4,17]. In particular, we approximate each non-linear
function appearing in the right-hand side of the model equations with a sum of
piecewise affine ramp functions making an optimal sequence well-fitting the origi-
nal function. As a result, we obtain a finite PDTS that exactly over-approximates
the PMA. Details on abstracting this particular model into a parameterised
Kripke structure can be found in [3].

The main principle of the abstraction is shown in Fig. 1. The labelling of the
transitions is obtained naturally by using cardinal directions. To turn our model
into a PDTS, we consider transition increasing/decreasing the variable E2F1 as
north/south and for pRB we consider west/east directions.

98 N. Beneš et al.

An important property of the employed abstraction is the fact that it parti-
tions the system phase space into finitely many rectangles. The parameter space
is also adequately partitioned into finitely many regions. Every region represents
a class of (continuous) parameter values that give qualitatively equivalent vector
field in the boundaries (facets) of all rectangles. In consequence, all parameters
in the class have an isomorphic DTS.

We conduct the bifurcation analysis with respect to the parameter αpRB .
The biological switch is known to be bistable, i.e. two different stable states can
exist in the systems dynamics. In this particular case, bistability is known to be
sensitive to change in αpRB . To this end, we formulate the portrait specification
including the following formulae:

– ϕ1 := ∃s.∃t.(@s.AGEF s) ∧ (@t.¬EF s ∧ AGEF t) ∧ E¬NF s ∧ E¬SF t
There are at least two final SCCs (generalised stable states). The formula is
true in all states that have a non-north path (i.e. path using only south, east,
and west directions) to one of the final SCCs and a non-south path to the other
final SCC.

– ϕ2 := ¬ϕ1 ∧ ↓ s.AGEF s ∧ E2F1 < 4
There is exactly one final SCC and it is below E2F1 value 4. It is true in
states that are included in the final SCC.

– ϕ3 := ¬ϕ1 ∧ ↓ s.AGEF s ∧ E2F1 > 4
There is exactly one final SCC and it is above E2F1 value 4.

Due to relations among the three formulae and the previous knowledge
about the systems dynamics, we do not compute the entire parametric por-
trait. We rather focus directly on mutual bifurcations between the portraits
characterised by the individual formulae. The results obtained with our proto-
type implementation are the following: ϕ1 holds for αpRB ∈ [0.011, 0.0136], ϕ2

for αpRB ∈ [0.002, 0, 011] and ϕ3 for αpRB ∈ [0.0136, 0.5]. In consequence, val-
ues 0.011 and 0.0136 represent bifurcation points. For αpRB = 0.011 the portrait
changes between ϕ2 and ϕ1 and for αpRB = 0.0136 it changes between ϕ1 and ϕ3.
In Fig. 5, there are depicted vector fields and corresponding abstractions for three
sampled values of αpRB each one belonging to one of the computed intervals.
The states satisfying particular formulae are shown in emphasised rectangles.

Additionally, we have explored a variant of formula ϕ1 where we also claim
that the states satisfying the formula are not sources (and thus are actually
saddle states): ϕ′

1 := ϕ1 ∧ ¬(↓ s. ÂX s). We have obtained the results showing
that this formula also holds for αpRB ∈ [0.011, 0.0136].

Note that the obtained results are affected by precision of the approximation
and abstraction of the original continuous model. The computed intervals of
αpRB are compliant with the numerical bifurcation analysis presented in [23].

A Model Checking Approach to Discrete Bifurcation Analysis 99

E
2
F
1

ϕ2

E
2
F
1

t

ϕ1

s

pRB

E
2
F
1

pRB

ϕ3

Fig. 5. Vector fields (left) and corresponding abstractions (right) obtained for three
different values of αpRB : 0.0075 (top), 0.0115 (middle) and 0.014 (bottom). The states
satisfying the respective formula are emphasised in bold rectangles. The rectangles
marked s and t denote the states matching the corresponding variables in ϕ1.

100 N. Beneš et al.

6 Conclusion

Bifurcation analysis allows to classify in a very condensed way all possible modes
of behaviour of the system and transitions between them (bifurcations) under
parameter variations. In this paper we have proposed an alternative approach
to classical numerical methods as used in bifurcation analysis with the aim to
achieve a scalable efficiency. Our preliminary experiments show promising results
as demonstrated on the case study. The answers obtained by our method comply
with those given by numerical analysis.

In the future we would like to look in more detail on some specific bifurcations
and also apply the method to other kind of parameter-dependent systems like
Boolean networks.

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam (2007)

2. Arellano, G., Argil, J., Azpeitia, E., Beńıtez, M., Carrillo, M., Góngora, P.,
Rosenblueth, D.A., Alvarez-Buylla, E.R.: “Antelope”: a hybrid-logic model checker
for branching-time Boolean GRN analysis. BMC Bioinform. 12(1), 1–15 (2011).
http://dx.doi.org/10.1186/1471-2105-12-490

3. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek, T.:
On parameter synthesis by parallel model checking. IEEE/ACM Trans. Computat.
Biol. Bioinform. 9(3), 693–705 (2012)

4. Batt, G., Belta, C., Weiss, R.: Model checking liveness properties of genetic regula-
tory networks. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 323–338. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 25

5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76, 119–135 (2011)

6. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Parallel SMT-based
parameter synthesis with application to piecewise multi-affine systems. In: Artho,
C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 192–208. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-46520-3 13

7. Beyn, W.J.: The numerical computation of connecting orbits in dynamical systems.
IMA J. Num. Anal. 10(3), 379–405 (1990)

8. Brim, L., Demko, M., Pastva, S., Šafránek, D.: High-performance discrete bifur-
cation analysis for piecewise-affine dynamical systems. In: Abate, A., Šafránek, D.
(eds.) HSB 2015. LNCS, vol. 9271, pp. 58–74. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-26916-0 4

9. Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by
parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB
2015. LNCS, vol. 9308, pp. 251–263. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23401-4 21

10. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent software
verification with states, events, and deadlocks. Formal Aspects Comput. 17(4),
461–483 (2005). http://dx.doi.org/10.1007/s00165-005-0071-z

http://dx.doi.org/10.1186/1471-2105-12-490
http://dx.doi.org/10.1007/978-3-540-71209-1_25
http://dx.doi.org/10.1007/978-3-319-46520-3_13
http://dx.doi.org/10.1007/978-3-319-26916-0_4
http://dx.doi.org/10.1007/978-3-319-26916-0_4
http://dx.doi.org/10.1007/978-3-319-23401-4_21
http://dx.doi.org/10.1007/978-3-319-23401-4_21
http://dx.doi.org/10.1007/s00165-005-0071-z

A Model Checking Approach to Discrete Bifurcation Analysis 101

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001). http://books.google.de/books?id=Nmc4wEaLXFEC

12. Collins, P., Habets, L.C., van Schuppen, J.H., Černá, I., Fabriková, J., Šafránek,
D.: Abstraction of biochemical reaction systems on polytopes. In: IFAC World
Congress, pp. 14869–14875. IFAC (2011)

13. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). http://doi.acm.org/10.1145/201019.201032

14. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method
for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Meth-
ods Appl. Mech. Eng. 296, 18–38 (2015)

15. Gallet, E., Manceny, M., Le Gall, P., Ballarini, P.: Adapting LTL model checking
for inferring biological parameters. In: Proceedings of the Approches Formelles
dans l’Assistance au Développement de Logiciels (AFADL), pp. 46–60 (2014)

16. Govaerts, W.: Numerical bifurcation analysis for ODEs. J. Comput. Appl. Math.
125(12), 57–68 (2000). (numerical Analysis 2000. Vol. VI: Ordinary Differential
Equations and Integral Equations)

17. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Guernic, C., Smolka, S.A., Bartocci,
E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22110-1 31

18. Khalis, Z., Comet, J.P., Richard, A., Bernot, G.: The SMBioNet method for discov-
ering models of gene regulatory networks. Genes Genomes Genomics 3(1), 15–22
(2009)

19. Kupferman, O., Pnueli, A., Vardi, M.Y.: Once and for all. J. Comput. Syst. Sci.
78(3), 981–996 (2012). http://dx.doi.org/10.1016/j.jcss.2011.08.006

20. Mateescu, R., Monteiro, P.T., Dumas, E., Jong, H.: Computation tree regular
logic for genetic regulatory networks. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee,
I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 48–63. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88387-6 6

21. Müller-Olm, M., Schmidt, D., Steffen, B.: Model-checking: a tutorial introduction.
In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354. Springer,
Heidelberg (1999). doi:10.1007/3-540-48294-6 22

22. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for
robustness analysis with applications to synthetic gene networks. Bioinformatics
25(12), i169–i17 (2009)

23. Swat, M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatory modules of the
mammalian G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)

http://books.google.de/books?id=Nmc4wEaLXFEC
http://doi.acm.org/10.1145/201019.201032
http://dx.doi.org/10.1007/978-3-642-22110-1_31
http://dx.doi.org/10.1016/j.jcss.2011.08.006
http://dx.doi.org/10.1007/978-3-540-88387-6_6
http://dx.doi.org/10.1007/3-540-48294-6_22

State-Space Reduction of Non-deterministically
Synchronizing Systems Applicable to Deadlock

Detection in MPI

Stanislav Böhm1(B), Ondřej Meca1,2, and Petr Jančar2

1 IT4Innovations, VŠB Technical University of Ostrava, Ostrava, Czech Republic
stanislav.bohm@vsb.cz

2 Department of Computer Science, FEECS VŠB Technical University of Ostrava,

Ostrava, Czech Republic

Abstract. The paper is motivated by non-deterministic synchroniza-
tions in MPI (Message Passing Interface), where some send operations
and collective operations may or may not synchronize; a correctly writ-
ten MPI program should count with both options. Here we focus on the
deadlock detection in such systems and propose the following reduction
of the explored state space. The system is first analyzed without forc-
ing the respective synchronizations, by applying standard partial-order
reduction methods. Then a suggested algorithm is used that searches
for potentially missed deadlocks caused by synchronization. In practical
examples this approach leads to major reductions of the explored state-
space in comparison to encoding the synchronization options into the
state-space search directly. The algorithm is presented as a stand-alone
abstract framework that can be also applied to the future versions of
MPI as well as to other related problem domains.

Keywords: Verification · State-space reduction · Partial-order
methods · MPI · Deadlock

1 Introduction

MPI (Message Passing Interface) [1] is standardized message-passing system for
distributed memory computation in the area of High Performance Computing.
A usual MPI application is a computational non-interactive program that runs
with a fixed number of processes, on a given input.

We are motivated by verification (searching of bugs independently on their
probability of occurrence) of MPI programs. In our context we use dynamic
state-space analysis for fixed input and cover all non-deterministic behaviors of
an analysed program. In this paper we are focusing on one specific property
of MPI: nondeterministic synchronization (ndsync). MPI standard defines that
some send and collective operations may or may not synchronize; a correctly
written MPI program should count with both options.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 102–118, 2016.
DOI: 10.1007/978-3-319-48989-6 7

State-Space Reduction 103

MPI offers several variants of send operations with different conditions when
they are completed. A synchronous send is completed after matching with a
receiving operation in a different process. A buffered send is completed when the
message is copied into a local buffer and with no necessity of a matching opera-
tion. In the case of standard send, the implementation may nondeterministically
decide between “rendezvous” and “eager” mode, i.e. if it waits for a matching
request (as a synchronous send) or is completed independently on the remote
site (as a buffered send). This decision made by MPI implementation cannot
be tested by the user code. The reason for such a nondeterministic behavior
is to give a sufficient freedom for an MPI implementation to achieve the best
performance. Nevertheless, it transfers more responsibility to the programmer,
since it is easy to create an invalid program while the error is manifested in the
dependence on a particular behavior of the used MPI implementation.

A classic example is shown in Fig. 1(left) containing two standard sends.
If both sends synchronize (rendezvous mode) then the deadlock occurs. The
example in Fig. 1(right) disproves a simple idea that for observing all deadlocks
it is sufficient to consider only rendezvous mode of standard sends. When all
standard sends choose the rendezvous mode or all choose the eager mode, then
no deadlock occurs. However, when the first send in process 1 chooses the eager
mode and the rest of them the rendezvous mode, then the deadlock may occur.

Process 0

Send(to=1)

Recv(from=1)

Process 1

Send(to=0)

Recv(from=0)

Process 0

Send(to=2)

Recv(from=1)

Recv(from=2)

Process 1

Send(to=0)

Send(to=2)

Process 2

Recv(from=*)

Send(to=0)

Recv(from=*)

Fig. 1. (left) Simple deadlock situation of standard sends. (right) Deadlock may occur
only when all sends synchronize except the first one in the process 1.

A similar problem as with sends is related to collective operations – opera-
tions where more processes are involved (e.g. broadcast, reduce, scatter). All
processes in a particular communicator (a group of processes) have to call
the operation to finish it correctly; however, a collective operation (except
MPI Barrier) may or may not have a synchronization effect. In other words,
a collective call in a process may choose to wait until all other processes also
enter the operation. As in the previous case, it is not sufficient to examine only
the most synchronizing variant. The example is shown in Fig. 2, where a dead-
lock may occur only when the second broadcast behaves as a barrier and the
first one has a minimal synchronization effect (in the case of the broadcast, the
only dependency is that all non-root processes have to wait for the root process
that sends the data).

As already said, we are motivated by a dynamic verification of an appli-
cation by a systematical exploration of the application state-space. A naive
exploration is usually infeasible due to the state explosion. Various techniques

104 S. Böhm et al.

Process 0

Bsend(to=1)

Bcast(root=2)

Bcast(root=2)

Process 1

Recv(to=*)

Bcast(root=2)

Recv(from=2)

Bcast(root=2)

Recv(from=*)

Process 2

Bcast(root=2)

Bsend(to=1)

Bcast(root=2)

Bsend(to=1)

Fig. 2. Deadlock occurs when the second broadcast operation synchronizes, the first
one not, and the first receive in Process 1 matches with the first send operation from
Process 2. (Bsend is “buffered send”, i.e. non-synchronizing send)

have been introduced to deal with this problem. Binary decision diagrams [2]
or unfolding [6] represent the compression approach where symbolic representa-
tions for sets of states are used. The techniques based on partial-order reduction
(POR) [9,16,22] construct the state space directly; however, the full state space
is pruned in a way that preserves all “interesting” properties.

In this paper, we propose a new reduction method for a state space analysis
of systems (that are possibly reduced by POR), in the presence of the described
ndsync, i.e. the situation where some operation may decide to synchronize, but
the application cannot directly test this decision. We have the MPI environment
in mind, but we handle the problem on an abstract level as a formal framework.
This allows us to present the basic ideas without dealing with semantics of a
particular MPI operations. This also gives a flexibility to apply the ideas to the
future version of MPI standard, or to different systems with similar properties.

A straightforward approach to deal with the described problem is to explic-
itly encode both rendezvous and eager mode into the state-space and prune it
by POR. However, decisions between rendezvous/eager mode is irreducible by
standard POR methods, since this decision creates two dependent actions.

The basic idea of the reduction is based on the following observation. Since
the application cannot directly test if a ndsync operation synchronizes, such
decision cannot introduce “new” behaviors, it may only restrict some of them.
This leads us to considering the state space only for the eager system – the
system where we assume that ndsync operations have no synchronization effect;
i.e. the ndsync choices are removed from the system. This system preserves
all local process states. Hence, it suffices to construct such a system to detect
errors like invalid memory access or invalid arguments to MPI calls. However,
the eager system does not preserve deadlocks of the original system. To fix this,
we present an algorithm detecting deadlocks in the original system by taking
the eager system as the input while we allow that the provided system is already
reduced by a POR method. The correctness of the algorithm is the core of this
paper.

Idea Summarization. We propose the two step analysis for systems containing
ndsync: First, a system is explored considering only eager behavior (i.e. there
are not ndsync decisions). We allow that this phase may use an arbitrary POR

State-Space Reduction 105

method as far as it satisfies some standard properties. On this system a full
analysis of local state may be executed.

The second phase is a new post-processing algorithm on the output from the
first phase that detects deadlocks introduced by ndsync that may be missed in
the first phase.

This approach is more efficient than explicitly considering ndsync decisions
during analysis, because a system containing only eager behavior is usually sig-
nificantly smaller than system containing ndsync decisions. This property is also
demonstrated in Sect. 5 on MPI benchmarks.

Remark: We present the second phase as a post-processing in the whole paper
for the sake of simplicity of the ideas exposition; however, there is no obstacle
to apply it as an on-the-fly method.

Contribution. This paper introduces abstract framework for reducing system
with ndsync. When the ideas were implemented into a tool for MPI verification,
we obtain 3×−15× faster verification process on our testing programs based on
real applications.

Related Work. In the MPI world, there exist many tools for checking correct-
ness of the MPI applications. MUST [10], IMC [5], and MPI-CHECK [13] can
be named as tools focus on runtime detection of errors in MPI programs. These
tools do not guarantee revealing of all deadlocks.

MPI-Spin [19] and Kaira [14] are tools providing verification of MPI applica-
tion through models. Hence, they are not able to verify generic MPI applications.
The paper [12] shows verification of MPI protocols. In [15], a variant of POR was
proposed to determine which sends and receives can match in MPI programs,
that is useful for a state-less analysis. TASS [20] and MPISE [8] offer symbolic
verification, but support only synchronizing MPI operations. Tools ISP [21] and
DAMPI [23] provide dynamic state-less analysis for MPI programs.

In the context of this paper, we look closer to deadlock detection approaches.
The And-Or graph approach was proposed in [11] for detecting MPI deadlock
at runtime. This was later extended by [10] to support more MPI functions.
The overall idea is to build a graph describing waiting dependencies between
processes and the existence of a knot in the graph indicates a deadlock situation.
Since the approach was designed for the runtime approach, it is not evident if we
can apply the method in state space analysis on a reduced system and preserve
completeness w.r.t. all deadlocks.

In [18] Siegel proposes modelling of MPI applications as state machines and
argues that it suffices to explore the state space while considering all ndsync
operation as synchronized operations for wild-card free programs (programs that
exclude receive operations with MPI ANY SOURCE or MPI ANY TAG and
some other operations).

Later a generalized model including wild-card receives was introduced in [17].
This approach encodes decisions of ndsync operations directly into the state
space and proposes a particular reduction for it. The method is tightly connected

106 S. Böhm et al.

to semantics of MPI operations. We use it as a base point for comparison in
Sect. 5.

ISP is able to detect deadlocks, but ndsync is analyzed only in two corner
cases, when everything or nothing synchronize. Hence, it misses deadlocks like
the second example in Fig. 1. MOPPER [7] uses encoding traces of ISP to SAT
to provide more efficient deadlock detection. However, it is limited only to the
programs where no control flow affects process communication and it consid-
ers only two cases of ndsync as ISP. DAMPI detects deadlocks by timeout of
computation of an analyzed interleaving.

Organization of the Paper. Section 2 explains the main theoretical core
underpinning our verification algorithm; Sect. 3 adds some remarks on its effi-
cient implementation. Section 4 describes an actual usage of the algorithm in
MPI and Sect. 5 shows experiments with the algorithm on MPI programs.

2 Explanation of the Main Algorithm in
a Formal Context

We first recall some standard definitions, including a variant of independence
relations on the set of system actions that is naturally suitable for our application
domain. Then we describe the novel ideas how a (reduced) eager system (that
imposes no potential synchronization constraints) can be efficiently analysed
with the aim to discover implicit deadlocks that could be caused by applying
some of the potential synchronization constraints.

By N = {0, 1, 2, . . . } we denote the set of nonnegative integers. For i, j ∈ N,
by [i, j] we denote the set {i, i+1, . . . , j}. For a set A, by A∗ we denote the set
of words over A, i.e., the set of finite sequences of elements of A; we reserve ε
for denoting the empty word.

Labeled Transition Systems, Paths, Runs. We define a labeled transition
system (LTS) as a tuple T = (S,A, (a−→)a∈A, s0) where S is the set of states, A

is the set of actions, a−→⊆ S × S is the set of a-transitions, for each a ∈ A, and
s0 is the initial state. As usual, we write s

a−→ s′ instead of (s, s′) ∈ a−→, and we
extend the relations a−→ to u−→⊆ S ×S for all u ∈ A∗ inductively: s

ε−→ s; if s
a−→ s′

and s′ u−→ s′′, then s
au−→ s′′.

The set enact(s) consists of the actions enabled in s, i.e., enact(s) = {a ∈
A | s

a−→ s′ for some s′}; by writing s
u−→ we denote that s

u−→ s′ for some s′,
and by writing s � u−→ we denote that s

u−→ does not hold. A state s is terminal if
enact(s) = ∅; we often use the notation st for terminal states.

By a path from s to s′ we mean a sequence s
a1−→ s1

a2−→ s2 · · · a�−→ s� = s′, or
also just s (a zero-length path) if s = s′; a run from s is a path from s to some
terminal state st.

State-Space Reduction 107

For our aims it suffices to restrict the attention to the LTSs that are

– finite: both S and A are finite,
– deterministic: for any s ∈ S and a ∈ A there is at most one s′ such that

s
a−→ s′, and

– weakly terminating : from each state a terminal state is reachable, i.e., for each
s ∈ S there is u ∈ A∗ and st ∈ S where s

u−→ st and enact(st) = ∅.

We further refer to a fixed such LTS T = (S,A, (a−→)a∈A, s0) if not said otherwise.

Remark. The above mentioned properties of LTSs follow naturally from our
problem domain. As discussed in the introduction, we concentrate on the post-
processing algorithm, which assumes such an LTS as an input. Weak termina-
tion is a natural property of computational programs; the first processing phase
verifies also this property (before the post-processing algorithm starts).

Independence Relations, and Mazurkiewicz Traces. Now we define a stan-
dard variant of independence relations I on the set A of actions. We often write
aIb instead of (a, b) ∈ I (a, b are independent), and aD b (a, b are dependent)
instead of (a, b) �∈ I. A relation I ⊆ A × A is an independence relation for the
LTS T if the following conditions hold:

1. I is irreflexive (aD a for each a ∈ A) and symmetric (aIb implies bIa).
2. If s

a−→ s1 and s
b−→ s2 where aIb, then there is s′ such that s1

b−→ s′ and
s2

a−→ s′ (hence s
ab−→ s′ and s

ba−→ s′).
3. If s

a−→ s1 and s � b−→ where aIb, then s1 � b−→.

By I we further refer to an independence relation on the LTS T .
For u ∈ A∗ we put act(u) = {a ∈ A | a occurs in u, i.e. u = u1au2 for some

u1, u2 ∈ A∗}, and we note the following standard fact:

Proposition 1. If s
a−→ s1 and s

u−→ s2 where aIb for all b ∈ act(u), then there
is s′ such that s1

u−→ s′ and s2
a−→ s′ (hence s

au−→ s′ and s
ua−→ s′).

It is also standard to define the equivalence ≡I on A∗: it is the least con-
gruence w.r.t. word concatenation that satisfies ab ≡I ba for all aIb. (Hence
u ≡I v iff we can get v from u by a series of replacing ab with ba where aIb.)
By [u]I we denote the equivalence class {v | v ≡I u}; such a class is also called
a Mazurkiewicz trace, or an M-trace for short.

We note that each path π of the form s
a1−→ s1

a2−→ s2 . . .
a�−→ s� has the

associated M-trace MT(π) = [a1a2 . . . a�]I.

Reduced LTSs (Keeping Mazurkiewicz Traces of Runs). For the relations
a−→ in our fixed LTS T = (S,A, (a−→)a∈A, s0) we will also use the notation a−→T .
We will also refer to T as to the full LTS. A reduced LTS R will arise from T by
replacing each a−→T with a subset a−→R⊆ a−→T , i.e., R arises from T by (possibly)
removing some transitions s

a−→ s′. We now formalize when such a reduction is
consistent with a fixed independence relation I ⊆ A × A.

By a (T , I)-reduced system we mean any LTS R = (S,A, (a−→R)a∈A, s0) sat-
isfying the following conditions:

108 S. Böhm et al.

1. For each a ∈ A we have a−→R⊆ a−→T ; hence s
a−→R s′ entails s

a−→T s′.
2. If enactT (s) �= ∅, then enactR(s) �= ∅. (Reducing cannot turn a non-terminal

state into a terminal state.)
3. If s

a1a2...an−−−−−−→T and an is dependent on some b ∈ enactR(s) (hence s
b−→R and

an D b, i.e. (an, b) �∈ I), then s
ai−→R for some i ∈ [1, n].

The point 3 (starting in s, performing any sequence from X∗ in T , where X =
{a | aIb for all b ∈ enactR(s)}, cannot enable an action c ∈ A�(enactR(s)∪X)),
is crucial for guaranteeing that though the runs of a (T , I)-reduced R constitute
a subset of the set of runs of T , for any state s ∈ S we have that the set of
M-traces of runs from s in T is the same as the set of M-traces of runs from s
in R. This is also captured by the next standard proposition (see, e.g., [9]).

Proposition 2. Let R = (S,A, (a−→R)a∈A, s0) be a (T , I)-reduced system. Then
the following conditions are satisfied:

1. If s
u−→T s′ (in particular if s

u−→R s′) then ∀u′ ∈ [u]I : s
u′
−→T s′.

2. If s
u−→T st where st is a terminal state, then ∃u′ ∈ [u]I : s

u′
−→R st.

The next proposition can be easily derived by using Propositions 1 and 2.
(By R we always refer to a (T , I)-reduced LTS.)

Proposition 3. Let u = vaw ∈ A∗ and bIa for all b ∈ act(v). Let s
u−→T st,

where st is a terminal state, and s
a−→R s′. Then there is u′ ∈ A∗ such that

s′ u′
−→R st (hence s

au′
−−→R st) and [au′]I = [u]I.

Synchronization-Constraint Candidates, Synch-deadlock. We refer to a
fixed LTS T = (S,A, (a−→)a∈A, s0). By a set of synchronization-constraint can-
didates, or just of candidates for short, we mean a set Cand ⊆ A × 2A. If
the synchronization related to a candidate (a,D) is indeed forced, then this is
reflected in the LTS T so that any path s0

ua−→ where act(u) ∩ D = ∅ is invalid
(i.e., performing a must be preceded by performing an action from D).

Formally, for C ⊆ A × 2A a path π of the form s0
a1−→ s1

a2−→ s2 · · · a�−→ s� is
C-valid if for each i ∈ [1, �] and each (ai,D) ∈ C we have that act(a1a2 . . . ai−1)∩
D �= ∅. Such a C-valid path π is a C-valid run if there is no C-valid prolongation
of π, i.e.: either s� is terminal (in which case π is a run in T), or for each
a ∈ enact(s�) there is (a,D) ∈ C such that act(a1a2 . . . a�) ∩ D = ∅.

We say that T has a synch-deadlock w.r.t. Cand ⊆ A × 2A if there is C ⊆
Cand and a C-valid run that is no run in T . E.g., on the left in Fig. 3 s0 is a
(zero-length) C3-valid run that is no run in T ; on the other hand, each C1-valid
run (i.e. just s0

ba−→) is a run in T . On the right each C3-valid run (just s0
c−→)

is a run in T but s0
a−→ is a C2-valid run that is no run in T (which also entails

that T has a synch-deadlock w.r.t. Cand = C3, since C2 ⊆ C3).

Full-Witness (of Synch-deadlock). Consider the (full) LTS T and a set Cand

of candidates. We now define a witness of synch-deadlock in a way that will be
technically convenient for the later algorithm.

State-Space Reduction 109

Fig. 3. Examples of simple synchronization constraints

For A′ ⊆ A, by an A′-full-witness (of synch-deadlock w.r.t. Cand) we mean
a run s0

u−→ st where u can be written u = wav so that we have the following:

1. w ∈ (A � A′)∗ and a ∈ A′;
2. for each b ∈ A′ there is at least one (b,D) ∈ Cand such that act(w) ∩ D = ∅;
3. for s0

w−→ s we have enact(s) ⊆ A′ (and enact(s) �= ∅ since s0
wa−−→).

Proposition 4. LTS T has a synch-deadlock w.r.t. Cand iff there is an A′-
full-witness for some A′ ⊆ A.

Proof. If there is an A′-full-witness (as above), then s0
w−→ s is a C-valid run

where C consists of the candidates (b,D) where b ∈ A′ and act(w)∩D = ∅ (since
enact(s) ⊆ A′, there is no C-valid path s0

w−→ s
b−→). Since s0

w−→ s is no run in T
(s is not terminal), there is indeed a synch-deadlock in T .

On the other hand, if we have a C-valid run s0
w−→ s that is no run in T , we

make a prolongation s0
w−→ s

av−→ st to some terminal state st, and note that
this is an A′-full-witness for A′ = enact(s). �

Remark. Such a full-witness could be found by breadth-first (or depth-first)
search in the (full) LTS T ; the information sufficient from the prefix that has
been read is the set of actions that have already occurred; doing this, we can also
“release” candidates in Cand: we declare a candidate (a,D) as released when
we have read some action x ∈ D. But our problem will be to find a witness of
synch-deadlock in T by scanning the reduced LTS R only.

Dotting Procedure, and A′-witnesses in the Reduced LTS R. Informally
speaking, we look for an “image” of an A′-full-witness when scanning R, by a
depth-first search traversal, say. Given a run

s0
a1−→R s1

a2−→R s2 · · · a�−→R s� (1)

of R (where s� is terminal), we mark all “events” in the M-trace [a1a2 . . . a�]I
that are “causally dependent” on A′ as follows:

1. start with all positions i ∈ [1, �] as clean, i.e. with no dots;
2. make an initial distribution of a-dots for a ∈ A′: to each position i ∈ [1, �]

such that ai ∈ A′ add an ai-dot;
3. iterate the following step (until no dots can be added):

if i < j, ai has an a-dot, and ai D aj (i.e. (ai, aj) �∈ I), then the
position j gets an a-dot.

110 S. Böhm et al.

After this dotting is completed (some positions might have got a-dots for several
actions a ∈ A′), by the clean word we mean w = ai1ai2 . . . aik

where i1 < i2 < · · ·
< ik and {i1, i2, . . . , ik} is the set of all clean (i.e. non-dotted) positions in [1, �].
By the dotted word we mean aj1aj2 . . . ajk′ where j1 < j2 < · · · < jk′ and
{j1, j2, . . . , jk′} is the set of all dotted positions in [1, �].

We now inspect the offshoots (alternative transitions) of dotted positions, i.e.:
for each dotted j ∈ [1, �] (i.e., j ∈ {j1, j2, . . . , jk′}) we consider all alternatives
(in R) to the action aj , i.e., all a such that sj−1

a−→R (besides sj−1
aj−→R sj).

Such an offshoot sj−1
a−→R gets dotted if a ∈ A′ or there is i < j where i has a

dot (i.e., is not clean) and ai D a; otherwise the offshoot stays clean.
A run (1) is an A′-witness (which is a different term than A′-full-witness) if

the following conditions hold after the dotting procedure has been performed:

1. at least one a ∈ A′ occurs in a1a2 . . . a� (which entails that at least one
position i ∈ [1, �] has got dotted);

2. all offshoots (of dotted positions) have got dotted;
3. for each a ∈ A′ there is at least one (a,D) ∈ Cand such that act(w) ∩ D = ∅

where w is the clean word ai1ai2 . . . aik
.

Proposition 5. If a run s0
u−→R st (in R) is an A′-witness, w is the respective

clean word, and av is the (nonempty) dotted word, then the run s0
wav−−→ st is an

A′-full-witness in T (w.r.t. the fixed set Cand).

Proof. Suppose s0
u−→R st is an A′-witness, in the form (1), i.e., s0

a1−→R s1
a2−→R

s2 · · · a�−→R s�. Let w = ai1ai2 . . . aik
be the clean word and av = aj1aj2 . . . ajk′

be the dotted word; our dotting procedure guarantees that wav ∈ [u]I (all “clean
positions” can “bubble” to the left since they are independent with the preceding
“dotted positions”). By Proposition 2(1), s0

wav−−→T st (where st = s�) is a run
in T ; we suppose that it is no A′-full-witness, for the sake of contradiction.

We have s0
w−→T s

av−→T st for some s. Since a ∈ A′, act(w) ∩ A′ = ∅, and
for each x ∈ A′ there is (x,D) ∈ Cand such that act(w) ∩ D = ∅, we must have
enact(s) �⊆ A′ (otherwise s0

wav−−→T st would be an A′-full-witness); hence there

is f ∈ A � A′ for which s0
w−→T s

f−→T .
Let now j ∈ [1, �] be the maximum such that we have

1. s0
a1a2···aj−−−−−−→R sj

ai
j′ ai

j′+1
···aik

f

−−−−−−−−−−−→T ,
2. j′ is the least such that j < ij′ ; if none exists, aij′ aij′+1

· · · aik
is empty,

3. aiIf for each dotted position i in [1, j].

There must be such maximum j since j = 0 clearly satisfies the conditions.
Necessarily j < �, since we cannot have s�

f−→T (recall that s� = st is terminal).
We must have j+1 < ij′ (otherwise j was not maximum); hence j+1 is dot-

ted. We have aj+1Iaij′ , aj+1Iaij′+1
, . . . , aj+1Iaik

due to our dotting procedure;
but we must have aj+1 D f , since otherwise j was not maximum (recall Propo-
sition 1). By the condition 3 imposed on (T , I)-reduced systems we thus have

State-Space Reduction 111

that one of the actions aij′ , aij′+1
, . . . aik

, f is enabled in sj in the reduced sys-
tem R. But then this offshoot of the dotted position j+1 is not dotted, which
contradicts with the assumption that s0

u−→R st is an A′-witness. �

Algorithm Alg (Searching an A′-witness in R). We describe the crux of the
algorithm, ignoring some obvious optimizations that would technically compli-
cate the description. The next section describes how to implement the algorithm
without analyzing each path separately.

The algorithm Alg gets a reduced system R, a relation I and a set Cand

as the input. It performs depth-search of R from s0, considering also runs with
possible cycles (R is only guaranteed to be weakly terminating); nevertheless
the inclusion of cycles is carefully restricted (so that it just suffices for finding a
possible synch-deadlock). For each examined run s0

u−→R st Alg performs the
following procedure:

Put A′ := A
while A′ ∩ act(u) �= ∅ do
Perform the dotting procedure, and check the conditions 2 (dotted off-
shoots) and 3 (for each a ∈ A′ the clean word does not release at least one
candidate) put on A′-witnesses; if this succeeds, an A′-witness is found
(and a synch-deadlock in T is demonstrated), otherwise continue.
1. If the clean word releases all (a,D) for some a ∈ A′ (act(w) ∩ D �= ∅),

then put A′ := A′
� {a} and start the next execution of the while

loop. (This a cannot belong to A′′ ⊆ A′ for which the run s0
u−→R st is

an A′′-, since the set of clean positions gets only bigger when A′ gets
smaller.)

2. Otherwise there is a clean offshoot a′
i of a dotted ai; say that the

position i has an a-dot (among its dots); hence as long as a ∈ A′, the
offshoot-condition fails. So we can safely put A′ := A′

�{a} (and start
the next execution of the while loop).

The completeness of our algorithm is captured by the next proposition.

Proposition 6. If (the full LTS) T has a synch-deadlock w.r.t. Cand, then the
algorithm Alg finds an A′-witness for some A′ ⊆ A and some run from s0 in
(the reduced LTS) R.

Proof. Let us fix an A0-full-witness s0
w′
−→T s

av−→T st in T . (We use A0 since
we reserve A′ for denoting the Alg-variable A′, and w′ for not mixing with the
clean word w below.) Hence w′ ∈ (A � A0)∗, a ∈ A0, enact(s) ⊆ A0, and for
each b ∈ A0 there is at least one (b,D) ∈ Cand such that act(w′) ∩ D = ∅.

The set Lin = {u ∈ A∗ | u ∈ [w′av]I, s0
u−→R st} is nonempty, by Propo-

sition 2(2). Imagine that we perform the dotting procedure (with no offshoot
considering) for each u ∈ Lin, w.r.t. A0. In each case we get some clean word
w = ai1ai2 · · · aik

; it is easy to verify that w ∈ [w′]I. (Dotting w′av w.r.t. A0

leaves w′ clean, and the rest av gets dotted, since otherwise our conditions on

112 S. Böhm et al.

I would entail that some f ∈ A � A0 [clean in av] is enabled in s. We also
observe that switching two positions with independent actions b1, b2, together
with their dots in the dotting result on v1b1b2v2, corresponds to the dotting
result on v1b2b1v2.)

We now fix a run s0
u−→R st in R, where u ∈ Lin, such that the vector

(i1, i2, . . . , ik) corresponding to the clean word is lexicographically minimal. (We
have (i1, i2, . . . , ik) ≺ (i′1, i

′
2, . . . , i

′
k) if im < i′m for the least m for which im, i′m

differ). We show that Alg finds a witness when processing this run s0
u−→R st.

As long as A′ ⊇ A0, during the while-loop in Alg no a ∈ A0 can be removed
from A′ by the first (candidate releasing) condition: act(w′) does not release all
candidates for any a ∈ A0, and our above discussion entails that act(w) ⊆ act(w′)
where w is the clean word resulting from dotting u w.r.t. A′ ⊇ A0.

Suppose that A′ ⊇ A0, and some a ∈ A0 should be removed from A′ due to
the “clean-offshoot-condition”. Then also the dotting result for u w.r.t. A0 must
have a clean offshoot (of a dotted position) in s0

u−→R st. We now contradict this,
by which the proof will be finished (Alg finds an A′-witness for some A′ ⊇ A0).

We write the run s0
u−→R st in more detail as s0

a1−→R s1
a2−→R s2 · · · a�−→R s�,

and let j ∈ [1, �] be the least such that the position j+1 is dotted (in the

dotting result w.r.t. A0) and there is a clean offshoot sj
f−→R (of sj

aj+1−−−→R sj+1);
necessarily f �∈ A0. Let w = ai1ai2 · · · aik

be the clean word, and j′ the least
such that j+1 < ij′ if j+1 < ik. We perform the following case analysis.

1. f = aim
for some im > j+1 and f is independent on all aij′ , aij′+1

, . . . , aim−1 ;
f is thus independent on all an where n ∈ [j+1, im−1]. We apply Proposi-

tion 3: we have sj
aj+1...aim−1fv′
−−−−−−−−−−→R st and sj

f−→R; hence there is u′ such that

sj
fu′
−−→R st and [fu′]I = [aj+1 . . . aim−1fv′]I, and our u = a1a2 . . . a� thus

was not lexicographically minimal.
2. Suppose f in independent on all aim

where j+1 < im (there might be none).
Let u1 be the dotted (scattered) subword of a1a2 . . . aj (f must be indepen-
dent on all elements of u1 since it is a clean offshoot), and let u2 be the clean
subword of a1a2 . . . aj . Let v1 be the clean subword of aj+1aj+2 . . . a� (f is
independent on all elements of v1 by our assumption), and let v2 be the dot-
ted subword of aj+1aj+2 . . . a�. Since u2v1u1v2 (all clean first and all dotted

next) belongs to [u]I, we have s0
u2v1u1v2−−−−−−→T st and also s0

u2v1−−−→T s
f−→T (by

the fact u2v1 ∈ [w′]I and the conditions assumed for I) and s0
u2v1−−−→T s. The

fact that f ∈ enact(s) � A0 contradicts with the assumptions on our starting
A0-full-witness.

3. It remains to explore the case when there is the least m such that j+1 < im
and f D aim

where, moreover, f �= aim
(since f = aim

belongs to 1). The word
aij′ aij′+1

, . . . aim
is enabled in sj in T , and it contains a first action that is

dependent on some x ∈ enactR(sj) (since aim
D f); hence there must be the

least n ∈ [j′,m] such that sj
ain−−→R (by the condition 3 for (T , I)-reduced sys-

tems). The action ain
is independent on the previous aij′ aij′+1

, . . . ain−1 since
otherwise some of them would be again dependent on some x ∈ enactR(sj)

State-Space Reduction 113

(namely on ain
) and n was not the least. Here we again invoke Proposition 3,

and we find that our u was not lexicographically minimal. �

3 Optimization Ideas

The previous section shows an algorithm that checks every run in the reduced
system and, moreover, each run is evaluated repeatedly (if no witness is found).
Here we present a few observations regarding to an efficient implementation.

The first observation is that we do not need repeatedly compute what actions
are clean when A′ is shrinking. We can go through a path only once while
remembering:

– already processed non-clean actions and what candidates causes it
– dependencies between candidate (forcing that a candidate has to be removed

when an another candidate is removed). These dependencies are generated by
offshoots.

This information remembered when a path is traversed is named as NI
(ndsync information). When we see that a candidate has to be removed from A′,
we can just update NI without recomputing the whole path. After processing a
path, NI is sufficient for a decision if a path is witness or not.

Since we process the path from the beginning to the end (and current NI
depends on previous action and not on the rest of the path), we do not need to
inspect each path separately, but we can traverse reduced system by depth-first
or bread-first search while collecting NI.

Another observation concerns the confluence of paths in the reduced sys-
tem. During traversing the reduced system, we can arrive to a state from differ-
ent paths and having more different NIs. The following observations enables to
explore continuations for only some of NIs. Assume that we have arrived into
a state from two paths that generated two different NIs. We can continue with
search from this state considering only one of NIs if:

– they differ only by removed candidates and this difference contains only actions
that cannot occur in the rest of the path.

– or if there exists bijections f : Cand → Cand such that: ∀(a,D) ∈ Cand :
f((a,D)) = (a′,D′) =⇒ [D = D′ ∧ ∀a′′ ∈ A : (a, a′′) ∈ I ⇐⇒ (a′, a′′) ∈ I]
and if we rename candidates in the first NI we obtain the second one.

The idea is the following: there is a deadlock-witnessing continuation from
the state and one of NI iff the there is a deadlock continuation while using the
second NI. Both observations have this property and are actually useful in MPI
verification. In practice, it leads to exploration of only one NI for each state of
reduced system. It is demonstrated in Sect. 5.

4 Usage of the Reduction in MPI

To demonstrate a usage of the abstract framework in MPI, we describe its imple-
mentation in tool Aislinn. Aislinn1 is a dynamic verifying tool for MPI applica-
1 http://verif.cs.vsb.cz/aislinn.

http://verif.cs.vsb.cz/aislinn

114 S. Böhm et al.

tions that covers nondeterministic behavior introduced by parallel execution and
MPI (for a fixed input). Aislinn is mainly focused on detecting memory and MPI
related errors, and deadlocks. The tool has been created by one of the authors
and is released under an open source license.

Aislinn builds the partial-order reduced state of eager system while checking
correctness of memory accesses in each process and validity of MPI calls. The
example of the state space built by Aislinn is available online2. When a state
with no successors and without properly terminated processes is found, then a
deadlock (not involving ndsync) is found. When all processes are terminated
then the state is checked for resource leaks.

When no error is so far found, the state space graph is passed to the algorithm
presented in this paper to find ndsync deadlocks. An example of such a graph is
in Fig. 4. The graph contains MPI events on arcs and states contains only a list
of outgoing arcs without additional information. The full description of state is
dropped when all relevant successors are searched during the previous step of the
analysis; only hashes of states remain to detect already searched states. In the
example, ri represents an MPI request object connected to the operation (Ais-
linn internally creates requests even for blocking ones); ri denotes a completed
request. Action Matching represents a pairing between sending and receiving
operations and completes the latter one. Action continue represents resuming
a process from a blocking operation, its argument is a completed request that
causes process unblocking.

The independence relation (I) is not given explicitly, but it directly follows
from MPI semantics and can be derived by the following rules: Two operations
are dependent when they have the same process number, or there is a request
that occurs in both of them. In the example, [b] and [c] are dependent since they
are executed on the same process, and [c] and [d] since both involve request r4.
Moreover, Matching(ri, rj) and Matching(ri′ , rj′) are dependent if Matching(ri,
rj′) (resp. Matching(ri′ , rj)) is a valid matching and rj and rj′ (resp. ri and ri′)
where created by the same process; this assures non-overtaking property of the
messages. In other cases, two operations are independent.

The synchronization candidates (Cand) are also given implicitly. Assume
that a creates a request ri in a process p. If a is a standard send then we put (a,D)
into Cand where D are all matchings involving ri. If a is a collective operation
on communicator c, then we put (a, {a′}) into Cand for each corresponding
collective operation a′ in a process of communicator c other than p.

Aislinn implements 80 MPI functions, that covers the majority of the com-
monly used MPI functions. Almost all MPI-2 functions related to point-to-point
communication, collective communication, the group and communicator man-
agement, data types, user-defined operations, and keyvals; from MPI-3, non-
blocking collective operations are implemented.

2 http://verif.cs.vsb.cz/aislinn/doc/sspace.html.

http://verif.cs.vsb.cz/aislinn/doc/sspace.html

State-Space Reduction 115

Process 0

Send(to=2)

Process 1

Send(to=2)

Process 2

Recv(from=*)

Recv(from=*)

0: Send(to=2) → r1 [a]
1: Send(to=2) → r2
2: Recv(to=*) → r3

Matching(r1, r3) → r3
2: Continue(r3) [b]
2: Recv(from=*) → r4 [c]
Matching(r2, r4) → r4 [d]
2: Continue(r4)

Matching(r2, r3) → r3
2: Continue(r3)
2: Recv(from=*) → r4
Matching(r1, r4) → r4
2: Continue(r4)

Fig. 4. The example of a graph for an MPI that serves as an input for ndsync deadlock
analysis in Aislinn. (The first number in an action is the process id; the square brackets
are used only for the references in the text)

5 Experimental Evaluation

The experiments are performed in Aislinn on MPI programs containing standard
sends. Each program was analyzed under three analyses:

– E (“eager”) – all operations with nondeterministic synchronization are con-
sidered having a minimal synchronization effect.

– N (“encoding”) – synchronization choices of standard sends are directly
encoded into the state space.

– P (“eager + post-processing algorithm”) – it starts as E, but the presented
post-processing algorithm is performed at the end.

Let us note that N encodes nondeterministic synchronizations only for stan-
dard sends and not for collective operations, while P considers also both syn-
chronizations. It would be possible enrich N in this way; however, it would lead
to even bigger state spaces for N; P outperforms N already in this settings.
The results of benchmarks are in Table 1. The number of states is presented in
a compressed form – when there is sequence of actions, where POR allowed to
explore only one continuation, the intermediate states are not counted (as in
Fig. 4).

In all cases, POR is employed. The implemented algorithm is a particular
implementation of algorithm 10.5.2 for queues in [4], where pre and dep are
straightforwardly derived from MPI semantics. It can also be seen as general-
ization of “Lazy matching” in [8]. N also contains a reduction based on method
from [17] to reduce branching of synchronization by standard sends.

An arc between two states may contain more MPI events as is shown in the
example in the previous section; therefore, there are significantly more MPI calls
than states in the state space.

116 S. Böhm et al.

Table 1. Results of benchmarks

Name N Sz E Sz N Sz P Calls Sends E tm N tm P tm ISP tm

petsc/ksp/ex18 4 249 4181 249 32088 882 17s 53s 17s X

– 5 1744 68966 1744 120424 5464 57s 856s 60s X

petsc/ksp/ex23 4 250 4182 250 25908 906 13s 45s 14s X

– 5 1762 68984 1762 112456 5752 50s 772s 53s X

petsc/ts/ex2 3 862 1313 862 179476 6588 82s 85s 82s X

workers/8 jobs 4 1369 8682 1369 9114 3477 8s 52s 8s 2287s

– 5 6873 54274 6873 51652 18091 44s 401s 46s >7200s

monte (0.002) 3 2378 18596 2378 19550 5794 19s 115s 20s 4337s
N = The number of MPI processes in the analyzed application; Sz E = Size of the state space for
E; Sz N = Size of the state space for N; Sz P = The number of states visited in post-processing;
Calls = The number of MPI calls analyzed in E state space; Sends = The number of standard sends
in the E state space; E/N/P tm = The total running time of Aislinn in case of E/N/P; ISP tm =
Verification time in tool ISP (X = execution ends by an error; reported to authors, but not solved).

First three benchmarks are examples for PETSc [3] (Portable, Extensible
Toolkit for Scientific Computation). It is a complex framework for solving physics
engineering and scientific problems. PETSc examples are taken from “PETSc
Hands On Exercise”3. The tests themselves are relatively short (hundreds lines
of code), but they call a complex library using MPI underneath that is also a
part of the analysis. PETSc examples contain also collective communication.

Benchmark Monte computes π using Monte Carlo method and was obtained
from the web page of ISP. Benchmark Workers is an implementation of a simple
master-workers load-balancing algorithm; the used instance balances eight jobs.

Aislinn implements all optimizations mentioned in Sect. 3. In all cases “Sz
P” is equal to “Sz E”; this means that each state is explored exactly with one
NI in P.

All results are obtained by tool Aislinn except the last one. The last column
are execution times of tool ISP. Only the state space of E were explored, because
ISP does not support a precise analysis of ndsync; however, even for this case
it slower by an order of the magnitude. Despite our efforts, we were not able to
analyze these programs in other MPI verification tools.

Acknowledgements. We thank anonymous reviewers for helpful comments. This
work was supported by The Ministry of Education, Youth and Sports from the National
Programme of Sustainability (NPU II) project “IT4Innovations excellence in science
- LQ1602” and from the Large Infrastructures for Research, Experimental Develop-
ment and Innovations project “IT4Innovations National Supercomputing Center –
LM2015070”, and partially by Grant SGS No. SP2016/118, FEECS VŠB - TU of
Ostrava, Czech Republic.

3 http://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/
index.html.

http://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/index.html
http://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/index.html

State-Space Reduction 117

References

1. Message Passing Interface Forum. http://www.mpi-forum.org/
2. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27(6), 509–516

(1978)
3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K.,

Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp,
K., Smith, B.F., Zhang, H.: PETSc users manual. Technical report ANL-95/11 -
Revision 3.5, Argonne National Laboratory (2014). http://www.mcs.anl.gov/petsc

4. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

5. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, scalable debugging of MPI programs with Intel message checker.
In: Proceedings of the Second International Workshop on Software Engineering for
High Performance Computing System Applications, SE-HPCS 2005, pp. 78–82.
ACM, New York (2005)

6. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-
ing. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2008)

7. Forejt, V., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise predictive analy-
sis for discovering communication deadlocks in MPI programs. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 263–278. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-06410-9 19

8. Fu, X., Chen, Z., Zhang, Y., Huang, C., Wang, J.: MPISE: symbolic execution of
MPI programs (2014). http://arxiv.org/abs/1403.4813

9. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag New York Inc.,
Secaucus (1996)

10. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI runtime
error detection with MUST: advances in deadlock detection. In: Proceedings of
the International Conference on High Performance Computing, Networking, Stor-
age and Analysis, SC 2012, pp. 30:1–30:11. IEEE Computer Society Press, Los
Alamitos (2012). http://dl.acm.org/citation.cfm?id=2388996.2389037

11. Hilbrich, T., de Supinski, B.R., Schulz, M., Müller, M.S.: A graph based approach
for MPI deadlock detection. In: Proceedings of the 23rd International Conference
on Supercomputing, ICS 2009, pp. 296–305. ACM, New York (2009). http://doi.
acm.org/10.1145/1542275.1542319

12. López, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,
Yoshida, N.: Protocol-based verification of message-passing parallel programs. In:
OOPSLA 2015, pp. 280–298. ACM (2015)

13. Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: MPI-CHECK:
a tool for checking fortran 90 MPI programs. Concurrency Comput. Pract. Exper.
15(2), 93–100 (2003)

14. Meca, O., Böhm, S., Běhálek, M., Jančar, P.: An approach to verification of MPI
applications defined in a high-level model. In: 16th International Conference on
Application of Concurrency to System Design, pp. 55–64. IEEE Computer Society
(2016)

http://www.mpi-forum.org/
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1007/978-3-319-06410-9_19
http://arxiv.org/abs/1403.4813
http://dl.acm.org/citation.cfm?id=2388996.2389037
http://doi.acm.org/10.1145/1542275.1542319
http://doi.acm.org/10.1145/1542275.1542319

118 S. Böhm et al.

15. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics driven dynamic partial-
order reduction of MPI-based parallel programs. In: Proceedings of the 2007 ACM
Workshop on Parallel and Distributed Systems: Testing and Debugging, PADTAD
2007, pp. 43–53. ACM, New York (2007). http://doi.acm.org/10.1145/1273647.
1273657

16. Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993). doi:10.1007/3-540-56922-7 34

17. Siegel, S.F.: Efficient verification of halting properties for MPI programs with wild-
card receives. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 413–429.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-30579-8 27

18. Siegel, S.F., Avrunin, G.S.: Modeling wildcard-free MPI programs for verification.
In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP 2005, pp. 95–106. ACM, New York (2005).
http://doi.acm.org/10.1145/1065944.1065957

19. Siegel, S.F., Avrunin, G.S.: Verification of halting properties for MPI programs
using nonblocking operations. In: Cappello, F., Herault, T., Dongarra, J. (eds.)
EuroPVM/MPI 2007. LNCS, vol. 4757, pp. 326–334. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75416-9 44

20. Siegel, S., Zirkel, T.: TASS: the toolkit for accurate scientific software. Math. Com-
put. Sci. 5(4), 395–426 (2011)

21. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: a tool for
model checking MPI programs. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming, PPoPP 2008, pp. 285–
286. ACM, New York (2008). http://doi.acm.org/10.1145/1345206.1345258

22. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
doi:10.1007/3-540-53863-1 36

23. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., Supinski, B.R.d., Schulz, M.,
Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI pro-
grams. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–10.
IEEE Computer Society, Washington (2010). http://dx.doi.org/10.1109/SC.2010.7

http://doi.acm.org/10.1145/1273647.1273657
http://doi.acm.org/10.1145/1273647.1273657
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/978-3-540-30579-8_27
http://doi.acm.org/10.1145/1065944.1065957
http://dx.doi.org/10.1007/978-3-540-75416-9_44
http://doi.acm.org/10.1145/1345206.1345258
http://dx.doi.org/10.1007/3-540-53863-1_36
http://dx.doi.org/10.1109/SC.2010.7

Formal Verification of Multi-Paxos
for Distributed Consensus

Saksham Chand(B), Yanhong A. Liu, and Scott D. Stoller

Computer Science Department, Stony Brook University,
Stony Brook, NY 11794, USA

{schand,liu,stoller}@cs.stonybrook.edu

Abstract. This paper describes formal specification and verification of
Lamport’s Multi-Paxos algorithm for distributed consensus. The speci-
fication is written in TLA+, Lamport’s Temporal Logic of Actions. The
proof is written and checked using TLAPS, a proof system for TLA+.
Building on Lamport, Merz, and Doligez’s specification and proof for
Basic Paxos, we aim to facilitate the understanding of Multi-Paxos and
its proof by minimizing the difference from those for Basic Paxos, and
to demonstrate a general way of proving other variants of Paxos and
other sophisticated distributed algorithms. We also discuss our general
strategies for proving properties about sets and tuples that helped the
proof check succeed in significantly reduced time.

1 Introduction

Distributed consensus is a fundamental problem in distributed computing. It
requires that a set of processes agree on some value or values. Consensus is
essential when distributed services are replicated for fault-tolerance, because
non-faulty replicas must agree. Unfortunately, consensus is difficult when the
processes or communication channels may fail.

Paxos [16] is an important algorithm, developed by Lamport, for solving
distributed consensus. Basic Paxos is for agreeing on a one-shot value, such
as whether to commit a database transaction. Multi-Paxos is for agreeing on
an infinite sequence of values, for example, a stream of commands to execute.
Multi-Paxos has been used in many important distributed services, e.g., Google’s
Chubby [1,3] and Microsoft’s Autopilot [13]. There are other Paxos variants, e.g.,
that reduce a message delay [19] or add preemption [17], but Multi-Paxos is the
most important in making Paxos practical for distributed services that must
perform a continual sequence of operations.

Paxos handles processes that run concurrently without shared memory, where
processes may crash and may later recover, and messages may be delayed indef-
initely or lost. In Basic Paxos, each process may repeatedly attempt to be the

This work was supported in part by NSF grants CCF-1414078, CCF-1248184, and
CNS-1421893, ONR grant N000141512208, and AFOSR grant FA9550-14-1-0261.
Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of these agencies.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 119–136, 2016.
DOI: 10.1007/978-3-319-48989-6 8

120 S. Chand et al.

leader and propose some value, and wait for appropriate replies from appropri-
ate subsets of the processes while also replying appropriately to other processes;
consensus is reached eventually if enough processes and channels are non-faulty
to elect a leader. In Multi-Paxos, many more different attempts, proposals, and
replies may happen in overlapping fashions to reach consensus on values in dif-
ferent slots in the continual sequence.

Paxos has often been difficult to understand, even though it was created
almost three decades ago [21]. Lamport later wrote a much simpler description
of the phases of the algorithm but only for Basic Paxos [17]. Lamport, Merz, and
Doligez [22] wrote a formal specification and proof of Basic Paxos in TLA+ [18]
and TLAPS [26]. Many efforts, especially in recent years, have been spent on
formal specification and verification of Multi-Paxos, but they use more restricted
or less direct language models, some mixed in large systems with many unrelated
functionalities, or handle other variants of Paxos than Multi-Paxos, as discussed
in Sect. 7. What is lacking is formal specification and proof of the exact phases
of Multi-Paxos, in a most direct and general language like TLA+ [18], with a
complete proof that is mechanically checked, and a general method for doing
such specifications and proofs in a more feasible way.

This paper addresses this challenge. We describe a formal specification of
Multi-Paxos written in TLA+, and a complete proof written and automatically
checked using TLAPS. Building on Lamport, Merz, and Doligez’s specification
and proof for Basic Paxos, we aim to facilitate the understanding of multi-Paxos
and its proof by minimizing the difference from those for Basic Paxos. The
key change in the specification is to replace operations involving two numbers
with those involving a set of 3-tuples, for each of a set of processes, exactly
capturing the minimum conceptual difference between Basic Paxos and Multi-
Paxos. However, the proof becomes significantly more difficult because of the
handling of sets and tuples in place of two numbers.

This work also aims to show the minimum-change approach as a general way
of specifying and verifying other variants of Paxos, and more generally of spec-
ifying and verifying other sophisticated algorithms by starting from the basics.
We demonstrate this by further showing the extension of the specification and
proof of Multi-Paxos to add preemption—letting processes abandon proposals
that are already preempted by other proposals [17,29]. We also extended the
specification and proof of Basic Paxos with preemption, which is even easier.

Finally, we discuss a general method we attempted to follow to tackle tedious
and difficult proof obligations involving sets and tuples, a well-known significant
complication in general. For difficult properties involving sets, we use induction
and direct the prover to focus on the changes in the set values. For properties
involving tuples, we change the ways of accessing and testing the elements to
yield significantly reduced proof-checking time. Overall, we were able to keep
the specification minimally changed, and keep the proof-checking time to about
2 min or less while the prover checks the proofs for over 900 obligations for both
Multi-Paoxs and Multi-Paxos with Preemption.

Formal Verification of Multi-Paxos for Distributed Consensus 121

Our full TLA+ specification and TLAPS-checked proof of Multi-Paxos with
Preemption are included in the Appendix of the full version [2].

2 Distributed Consensus and Paxos

A system is a set of processes that can process values individually and commu-
nicate with each other by sending and receiving messages. The processes may
crash and may later recover. The messages may be delayed indefinitely or lost.

Distributed consensus. The basic consensus problem, called single-value con-
sensus or single-decree consensus, is to ensure that a single value is chosen from
among the values proposed by the processes. The safety requirements for basic
consensus are [17]:

– Only a value that has been proposed may be chosen.
– Only a single value is chosen.
– A process never learns that a value has been chosen unless it actually has been

chosen.

Formally this is defined as

Consistencybasic
Δ= ∀ v1, v2 ∈ V : φ(v1) ∧ φ(v2) ⇒ v1 = v2 (1)

where V is the set of possible proposed values, and φ is a predicate that given a
value v evaluates to true iff v was chosen by the algorithm. The specification of
φ is part of the algorithm.

The more general consensus problem, called multi-value consensus or multi-
decree consensus, is to choose a sequence of values, instead of a single value.
Here we have

Consistencymulti
Δ= ∀ v1, v2 ∈ V, s ∈ S : φ(v1, s) ∧ φ(v2, s) ⇒ v1 = v2 (2)

where V is as above, S is a set of slots used to index the sequence of decisions,
and φ is a predicate that given a value v and a slot s evaluates to true iff v was
chosen for s by the algorithm.

Basic Paxos and Multi-Paxos. Paxos solves the problem of consensus. Two
main roles of the algorithm are performed by two kinds of processes:

– P is the set of proposers. These processes propose values that can be chosen.
– A is the set of acceptors. These processes vote for proposed values. A value is

chosen when there are enough votes for it.

A set Q of subsets of the acceptors, i.e., Q ⊆ 2A, is used as a quorum system.
It must satisfy the following properties:

– Q is a set cover for A, i.e.,
⋃

Q∈QQ = A.
– Any two quorums overlap, i.e., ∀Q1,Q2 ∈ Q : Q1 ∩ Q2 �= ∅.

122 S. Chand et al.

The most commonly used quorum system Q takes any majority of acceptors as
an element in Q.

Basic Paxos solves single-value consensus. It defines predicate φ as

φ(v) Δ= ∃Q ∈ Q : ∀a ∈ Q : ∃b ∈ B : sent(“2b”, b, v , a) (3)

where B is the set of proposal numbers, also called ballots, which is any set that
can be strictly totally ordered. sent(“2b”, b, v , a) means that a message of type
“2b” with ballot b and value v was sent by acceptor a (to some set of processes).
An acceptor votes by sending such a message.

Multi-Paxos solves the problem of multi-value consensus. It trivially extends
predicate φ to decide a value for each slot s in S:

φ(v , s) Δ= ∃Q ∈ Q : ∀a ∈ Q : ∃b ∈ B : sent(“2b”, b, v , a, s) (4)

To satisfy the safety requirements, S need not have any relations defined on it.
In practice, S is usually the natural numbers.

Putting the actions of the proposer and acceptor together, we see that the
algorithm operates in the following two phases.

Phase 1. (a) A proposer selects a proposal number n and sends a prepare request
with number n to a majority of acceptors.
(b) If an acceptor receives a prepare request with number n greater than that
of any prepare request to which it has already responded, then it responds to
the request with a promise not to accept any more proposals numbered less
than n and with the highest-numbered proposal (if any) that it has accepted.

Phase 2. (a) If the proposer receives a response to its prepare requests (numbered
n) from a majority of acceptors, then it sends an accept request to each of those
acceptors for a proposal numbered n with a value v , where v is the value of the
highest-numbered proposal among the responses, or is any value if the responses
reported no proposals.
(b) If an acceptor receives an accept request for a proposal numbered n, it
accepts the proposal unless it has already responded to a prepare request having
a number greater than n.

A proposer can make multiple proposals, so long as it follows the algorithm for each
one. ... It is probably a good idea to abandon a proposal if some proposer has begun
trying to issue a high-numbered one. Therefore, if an acceptor ignores a prepare or
accept request because it has already received a prepare request with a higher
number, then it should probably inform the proposer, who should then abandon its
proposal. This is a performance optimization that does not affect correctness.

To learn that a value has been chosen, a learner must find out that a proposal
has been accepted by a majority of acceptors. The obvious algorithm is to have each
acceptor, whenever it accepts a proposal, respond to all learners, sending them the
proposal. ...

Fig. 1. Lamport’s description of Basic Paxos in English [17].

Formal Verification of Multi-Paxos for Distributed Consensus 123

Figure 1 shows Lamport’s description of Basic Paxos [17]. It uses any majority
of acceptors as a quorum. In Phase 2a, it instructs the accept request be sent
to each acceptor that replied with the proposer’s ballot n, but it is sufficient
for safety to send accept to any subset of A. However, because the proposer is
waiting for a quorum, the set of receivers should contain at least one quorum,
which again is allowed to be different from the quorum that responded to n.

Multi-Paxos can be built from Basic Paxos by carefully adding slots. In Basic
Paxos, acceptors cache the value they have accepted with the highest ballot.
With slots, we have a sequence of these values indexed by slot. Therefore,

– In Phase 1b, the acceptor now replies with a mapping in S → B×V as opposed
to just one pair in B × V.

– The same change is needed in Phase 2b.
– Upon receiving such a mapping as a reply, in Phase 2a, a proposer proposes a

mapping in S → V instead of just one value in V. In the same way that v was
chosen in Basic Paxos, by picking the value backed by the highest received
ballot, in Multi-Paxos, the proposer does this calculation for each slot in the
received mapping.

– Phase 1a is unchanged.
– Learning, as described in the last part of Fig. 1, is also unchanged, except to

consider different slots separately—a process learns that a value is chosen for
a slot if a quorum of acceptors accepted it for that slot.

Note that the size of messages replied by the acceptors grows as S increases,
which is a common abstraction before applying optimizations [16,29].

3 Specification of Multi-Paxos

We give a formal specification of Multi-Paxos by minimally extending that of
Basic Paxos by Lamport et al. [22].

Variables. The specification of Multi-Paxos has four global variables.

msgs—the set of messages that have been sent. Processes read from or add to
this set. This is the same as in the specification of Basic Paxos.

accVoted—per acceptor, a set of triples in B × S × V, capturing a mapping in
S → B ×V, that the acceptor has voted for. This contrasts two numbers per
acceptor, in two variables, maxVBal and maxVal , in Basic Paxos.

accMaxBal—per acceptor, the highest ballot seen by the acceptor. This is named
maxBal in the specification of Basic Paxos.

proBallot—per proposer, the ballot of the current ballot being run by the pro-
poser. This is not in the specification of Basic Paxos; it is added to support
preemption and is only updated during preemption.

124 S. Chand et al.

Basic Paxos Multi-Paxos

Phase1a(b ∈ B)
Δ
=

∧�m ∈ msgs : (m.type = “1a”)∧
(m.bal = b)

∧Send([type �→ “1a”,
bal �→ b)

∧unchanged 〈maxVBal ,maxBal ,
maxVal 〉

Phase1a(p ∈ P)
Δ
=

∧�m ∈ msgs : (m.type = “1a”)∧
(m.bal = proBallot [p])

∧Send([type �→ “1a”,
bal �→ proBallot [p], from �→ p])

∧unchanged 〈accVoted , accMaxBal ,
proBallot 〉

Fig. 2. Phase 1a of Basic Paxos and Multi-Paxos

Basic Paxos Multi-Paxos

Phase1b(a ∈ A)
Δ
=

∃m ∈ msgs :
∧m.type = “1a”
∧m.bal > maxBal [a]
∧Send([type �→ “1b”,

bal �→ m.bal ,
maxVBal �→ maxVBal [a],
maxVal �→ maxVal [a],
acc �→ a])

∧maxBal ′ =
[maxBal except ! [a] = m.bal]

∧unchanged 〈maxVBal ,maxVal 〉

Phase1b(a ∈ A)
Δ
=

∃m ∈ msgs :
∧m.type = “1a”
∧m.bal > accMaxBal [a]
∧Send([type �→ “1b”,

bal �→ m.bal ,
voted �→ accVoted [a],

from �→ a])
∧accMaxBal ′ =

[accMaxBal except ! [a] = m.bal]
∧unchanged 〈accVoted , proBallot 〉

Fig. 3. Phase 1b of Basic Paxos and Multi-Paxos

Note that in accVoted , we maintain a set of pairs in B×V, not just the pair with
the maximum ballot. This is an abstraction that simplifies the specification and
allows possible generalization of Paxos [29].

Algorithm Steps. The algorithm consists of repeatedly executing two phases.

Phase 1a. Figure 2 shows the specifications of Phase 1a for Basic Paxos and
Multi-Paxos, which are in essence the same. Parameter ballot b, in Basic
Paxos is replaced with proposer p executing this phase in Multi-Paxos, to
allow extensions such as preemption that need to know the proposer of a
ballot; uses of b are changed to proBallot [p]; and from �→ p is added in Send .
Send is a macro that adds its argument to msgs, i.e., Send(m) Δ= msgs ′ =
msgs∪{m}. In this specification, 1a messages do not have a receiver, making
them accessible to all processes. However, this is not required. It is enough
to send this message to any subset of A that contains a quorum.

Formal Verification of Multi-Paxos for Distributed Consensus 125

Basic Paxos Multi-Paxos

Phase2a(b ∈ B)
Δ
=

∧�m ∈ msgs : (m.type = “2a”)∧
(m.bal = b)

∧∃ v ∈ V :
∧∃Q ∈ Q : ∃S ∈ subset {m ∈ msgs :

(m.type = “1b”)∧
(m.bal = b)} :
∧∀ a ∈ Q : ∃m ∈ S : m.acc = a
∧ ∨ ∀m ∈ S : m.maxVBal = −1

∨∃ c ∈ 0..(b − 1) :
∧∀m ∈ S : m.maxVBal =< c
∧∃m ∈ S : (m.maxVBal = c)

∧m.maxVal = v
∧Send([type �→ “2a”, bal �→ b, val �→ v])

∧unchanged 〈maxBal ,maxVBal ,
maxVal 〉

Phase2a(p ∈ P)
Δ
=

∧�m ∈ msgs : (m.type = “2a”)∧
(m.bal = proBallot [p])

∧∃Q ∈ Q,S ∈ subset {m ∈ msgs :
(m.type = “1b”)∧
(m.bal = proBallot [p])} :
∧∀ a ∈ Q : ∃m ∈ S : m.from = a
∧Send([type �→ “2a”,

bal �→ proBallot [p],
decrees �→ ProposeDecrees(union

{m.voted : m ∈ S}),
from �→ p])

∧unchanged 〈accMaxBal , accVoted ,
proBallot 〉

Bmax(T)
Δ
=

{[slot �→ t .slot , val �→ t .val] : t ∈
{t ∈ T : ∀ t2 ∈ T : t2.slot = t .slot
⇒ t2.bal =< t .bal}}

FreeSlots(T)
Δ
=

{s ∈ S : �t ∈ T : t .slot = s}
NewProposals(T)

Δ
=

choose D ∈ (subset [slot :
FreeSlots(T), val : V]) \ {} :

∀ d1, d2 ∈ D : d1.slot = d2.slot ⇒
d1 = d2

ProposeDecrees(T)
Δ
=

Bmax(T) ∪ NewProposals(T)

Fig. 4. Phase 2a of Basic Paxos and Multi-Paxos

Phase 1b. Figure 3 shows the specifications of Phase 1b. Parameter acceptor
a executes this phase. The only key difference between the specifications is
the set accVoted [a] of triples in Send of Multi-Paxos vs. the two numbers
maxVBal [a] and maxVal [a] in Basic Paxos.

Phase 2a. Figure 4 shows Phase 2a. The key difference is, in Send , the bloat-
ing of a single value v in V in Basic Paxos to a set of pairs given by
ProposeDecrees capturing a mapping in S → V in Multi-Paxos. The opera-
tion of finding the value with the highest ballot in Basic Paxos is performed
for each slot by Bmax in Multi-Paxos; Bmax takes a set T of triples captur-
ing a mapping in S → B × V and returns a set of pairs capturing a mapping
in S → V. NewProposals generates a set of pairs capturing a mapping in

126 S. Chand et al.

S → V where values are proposed for slots not in Bmax . Note that this
is significantly more sophisticated than running Basic Paxos for each slot,
because the ballots are shared and changing for all slots, and slots are paired
with values dynamically where slots that failed to reach consensus values
earlier are also detected and reused.

Phase 2b. Figure 5 shows Phase 2b. In Basic Paxos, the acceptor updates its
voted pair maxVBal [a] and maxVal [a] upon receipt of a 2a message of the
highest ballot. In Multi-Paxos, this is performed for each slot. The acceptor
updates accVoted to have all decrees in the received 2a message and all
previous values in accVoted for slots not mentioned in that message.

Basic Paxos Multi-Paxos

Phase2b(a ∈ A)
Δ
=

∃m ∈ msgs :
∧m.type = “2a”
∧m.bal >= maxBal [a]
∧Send([type �→ “2b”,

bal �→ m.bal ,
val �→ m.val ,
acc �→ a])

∧maxBal ′ =
[maxBal except ! [a] = m.bal]

∧maxVBal ′ =
[maxBal except ! [a] = m.bal]

∧maxVal ′ =
[maxVal except ! [a] = m.val]

Phase2b(a ∈ A)
Δ
=

∃m ∈ msgs :
∧m.type = “2a”
∧m.bal >= accMaxBal [a]
∧Send([type �→ “2b”,

bal �→ m.bal ,
decrees �→ m.decrees,
from �→ a)

∧accMaxBal ′ =
[accMaxBal except ! [a] = m.bal]

∧accVoted ′ = [accVoted except ! [a] =
∪{[bal �→ m.bal , slot �→ d .slot ,

val �→ d .val] : d ∈ m.decrees}]
∪{e ∈ accVoted [a] :
� r ∈ m.decrees : e.slot = r .slot}

∧unchanged 〈proBallot 〉

Fig. 5. Phase 2b of Basic Paxos and Multi-Paxos

Complete Algorithm Specification. To complete the algorithm specification,
we define vars, Init , Next , and Spec, typical TLA+ macro names for the set of
variables, the initial state, possible actions leading to the next state, and the
system specification, respectively:

vars Δ= 〈msgs, accVoted , accMaxBal , proBallot〉
Init Δ= msgs = {} ∧ accVoted = [a ∈ A �→ {}]∧

accMaxBal = [a ∈ A �→ −1] ∧ proBallot = [p ∈ P �→ 0]

Next Δ= ∨∃ p ∈ P : Phase1a(p) ∨ Phase2a(p)
∨ ∃ a ∈ A : Phase1b(a) ∨ Phase2b(a)

Spec Δ= Init ∧ �[Next]vars

(5)

Formal Verification of Multi-Paxos for Distributed Consensus 127

4 Verification of Multi-Paxos

We first define the auxiliary predicates and invariants used, by extending those
for the proof of Basic Paxos with slots, and then describe our proof strategy
which proves Consistency of Multi-Paxos.

Auxiliary Predicates. These predicates are used throughout the proof. We
define the predicate φ in (4) by φ(v , s) ≡ Chosen(v , s), where:

VotedForIn(a ∈ A, v ∈ V, b ∈ B, s ∈ S) Δ=
∃m ∈ msgs :

m.type = “2b” ∧ m.bal = b ∧ m.from = a∧
∃ d ∈ m.decrees : d .slot = s ∧ d .val = v

ChosenIn(v ∈ V, b ∈ B, s ∈ S) Δ=
∃Q ∈ Q : ∀ a ∈ Q : VotedForIn(a, v , b, s)

Chosen(v ∈ V, s ∈ S) Δ=
∃ b ∈ B : ChosenIn(v , b, s)

(6)

Predicate MaxVotedBallotInSlot(D ∈ subset [slot : S, bal : B], s ∈ S)
returns the highest ballot among all pairs in set D with slot s.

Maximum(B) Δ=
choose b ∈ B : ∀ b2 ∈ B : b >= b2

MaxVotedBallotInSlot(D ∈ subset [slot : S, bal : B], s ∈ S) Δ=

let B Δ= {d .bal : d ∈ {d ∈ D : d .slot = s}}
in if {d ∈ D : d .slot = s} = {} then −1

else Maximum(B)

(7)

Type Invariants. Type invariants are captured by TypeOK .

Messages
Δ
=

∪ [type : {“1a”}, bal : B, from : P]

∪ [type : {“1b”}, bal : B, voted : subset [bal : B, slot : S, val : V], from : A]

∪ [type : {“2a”}, bal : B, decrees : subset [slot : S, val : V], from : P]

∪ [type : {“2b”}, bal : B, from : A, decrees : subset [slot : S, val : V]]

∪ [type : {“preempt”}, bal : B, to : P,maxBal : B]

TypeOK
Δ
=

∧ msgs ∈ subsetMessages

∧ accVoted ∈ [A → subset [bal : B, slot : S, val : V]]

∧ accMaxBal ∈ [A → B ∪ {−1}]

∧ proBallot ∈ [P → B]

∧ ∀ a ∈ A : ∀ t ∈ accVoted [a] : accMaxBal [a] >= t .bal

(8)

128 S. Chand et al.

Invariants About Messages. The following invariant is for 1b messages. The
first conjunct establishes that the ballot is at most the highest ballot seen by the
sending acceptor. The second conjunct states that the decrees contained within
the message body have been voted for by the sending acceptor. The last conjunct
asserts that for each slot, relative to the timeline established by ballots, since
the last time this acceptor voted in the slot to the time this message was sent,
no voting occurred on the slot by this acceptor.

MsgInv1b
Δ
=

∀m ∈ msgs : (m.type = “1b”) ⇒
∧ m.bal =< accMaxBal [m.from]

∧ ∀ t ∈ m.voted : VotedForIn(m.from, t .val , t .bal , t .slot)

∧ ∀ b2 ∈ B, s ∈ S, v ∈ V : b2 ∈ (MaxVotedBallotInSlot(m.voted , s),m.bal)

⇒ ¬VotedForIn(m.from, v , b2, s)

(9)

Proof Strategy. The proof is developed following a standard hierarchical struc-
ture and uses proof by induction and contradiction.

MsgInv Δ= MsgInv1b ∧ MsgInv2a ∧ MsgInv2b

Inv Δ= TypeOK ∧ AccInv ∧ MsgInv

Consistency Δ= ∀ v1, v2 ∈ V, s ∈ S : Chosen(v1, s) ∧ Chosen(v2, s) ⇒ v1 = v2

theorem Consistent Δ= Spec ⇒ �Consistency
(10)

where AccInv is an invariant about acceptors, and MsgInv2a and MsgInv2b are
invariants for 2a and 2b messages, respectively, and these three invariants are
defined in the Appendix of the full version [2].

The main theorem to prove is Consistent as defined in Eq. (10). For this, we
define Inv and first prove Inv ⇒ Consistency . Then, we prove Spec ⇒ �Inv
which by temporal logic, concludes Spec ⇒ �Consistency . To prove Spec ⇒
�Inv , we employ a systematic proof strategy that works very well for algorithms
described in the event driven paradigm, including message-passing distributed
algorithms. We demonstrate the strategy for some invariants in Inv .

First, consider invariant TypeOK . The goal is Spec ⇒ �TypeOK . Recall
Spec Δ= Init ∧ �[Next]vars . The induction basis, Init ⇒ TypeOK , is trivial, and
TLAPS handles it automatically. Next, we want to prove TypeOK ∧[Next]vars ⇒
TypeOK ′, where the left side is the induction hypothesis, and right side is the
goal to be proved. [Next]vars is a disjunction of phases, as for any algorithm, and
TypeOK ′ is a conjunction of smaller invariants, as for many invariants. Now,
the basis can be stripped down to each disjunct separately, and each smaller

Formal Verification of Multi-Paxos for Distributed Consensus 129

goal needs to be proved from all smaller disjuncts. This process is mechanical,
and TLAPS provides a feature for precisely this expansion into smaller proof
obligations. This breakdown is the first step in our proof strategy. For TypeOK ,
this expands to 5 smaller assertions; with 5 phases in Next , we obtain 25 small
proofs done by the prover with no manual intervention.

MsgInv and AccInv are more involved. We proceed like we did for TypeOK
and create a proof tree, each branch of which aims to prove an invariant for some
disjunct in Next . To explain the rest of our strategy, we show one combination:
MsgInv and Phase1b. Equation (11) gives the skeleton of the proof; the full
proof is in the Appendix of the full version [2]. Goal for the prover is step 〈4〉2
which states that MsgInv ′ holds if an acceptor, a, executes Phase1b. m is any
message in the new set of messages, msgs ′. Substeps 〈5〉1, 2, 3 focus on MsgInv1b,
MsgInv2a, MsgInv2b, respectively.

Phase1b generates a 1b message. 〈5〉3 is easy for the prover as it argues about
2b messages. Intuitively, 〈5〉2 should be easy for the prover too since, like 〈5〉3, it
involves a message type that is not what Phase1b generates. However, this is not
the case because of predicate SafeAt , which is used in MsgInv2a and expresses
whether it is safe to accept a given value for a given ballot for a given slot (the
formal definition is in the Appendix of the full version [2]). At this point the
prover needs a continuity lemma.

We define a continuity lemma as a lemma which asserts that a predicate
continues to hold (or not hold) as the system goes from one state to the next in
a single step. For example, the continuity lemma for SafeAt states that SafeAt
continues to hold for any disjunct in Next , which includes Phase1b(a). The
characteristic property of such lemmas is their reuse. In our proof of Multi-
Paxos, we defined 5 continuity lemmas which are asserted in 24 places.

Lastly, we need to prove 〈5〉1. Since 〈5〉1 asserts about 1b messages and
Phase1b generates such messages, the proof is more complicated and the prover
needs manual intervention. Here we split the set of messages in the new state
into two: 〈6〉1 for the old messages, and 〈6〉2 for the increment created in this
step. For the old messages, we need continuity lemmas. The most challenging
is the increment. To deal with the increment, we focus on the cause of the
increment—the definition of Phase1b—and treat each goal conjunct separately
in 〈7〉1, 2, 3. The prover proves 〈7〉1 by just the definition of Phase1b and the
fact that it is the increment. For 〈7〉2, along with the definition of Phase1b, the
prover also needs a continuity lemma for VotedForIn. 〈7〉3 required, along with
the definition of Phase1b and continuity lemmas, some problem-specific manual
intervention. In this case, we helped the prover understand the change in limits
of the set MaxVotedBallotInSlot(m.voted , s) + 1..m.bal − 1.

130 S. Chand et al.

〈4〉2.assume new a ∈ A,new m ∈ msgs′,Phase1b(a) prove MsgInv ′

〈5〉1.((m.type = “1b”) ⇒ (∗ MsgInv1b′ ∗)
∧ m.bal ≤ acceptorMaxBal [m.from]

∧ ∀ r ∈ m.voted : VotedForIn(m.from, r .val , r .bal , r .slot)

∧ ∀ s ∈ S, v ∈ V, c ∈ B :

c ∈ MaxVotedBallotInSlot(m.voted , s) + 1..m.bal − 1 ⇒
¬VotedForIn(m.from, v , c, s))′

〈6〉1.case m ∈ msgs . . .

〈6〉2.case m ∈ msgs′ \ msgs

〈7〉1.(m.bal ≤ acceptorMaxBal [m.from])′

〈7〉2.(∀ r ∈ m.voted : VotedForIn(m.from, r .val , r .bal , r .slot))′ . . .

〈7〉3.(∀ s ∈ S, v ∈ V, c ∈ B :

c ∈ MaxVotedBallotInSlot(m.voted , s) + 1..m.bal − 1 ⇒
¬VotedForIn(m.from, v , c, s))′ . . .

〈5〉2.((m.type = “2a”) ⇒ (∗ MsgInv2a′ ∗)
∧ ∀ d ∈ m.decrees : SafeAt(d .val ,m.bal , d .slot)

∧ ∀ d1, d2 ∈ m.decrees : d1.slot = d2.slot ⇒ d1 = d2

∧ ∀ma ∈ msgs : (ma.type = “2a”) ∧ (ma.bal = m.bal) ⇒ (ma = m))′ . . .

〈5〉3.((m.type = “2b”) ⇒ (∗ MsgInv2b′ ∗)
∧ ∃ma ∈ msgs : ma.type = “2a” ∧ ma.bal = m.bal ∧ ma.decrees = m.decrees

∧ m.bal ≤ acceptorMaxBal [m.from])′

(11)

Induction for properties over sets, and ways of accessing elements of
tuples. After developing the proof using the above strategy, we were still faced
with certain assertions which were difficult to prove. One of the main difficulties
lay in proving properties about tuples and sets of tuples for each of a set of
processes in Multi-Paxos, as opposed to scalars for each of a set of processes in
Basic Paxos. It may appear that, in many places, this requires simply adding an
extra parameter for the slot, but the proof became significantly more difficult:
even in places where an explicit inductive proof is not needed, auxiliary facts
had to be added to help TLAPS succeed or proceed faster.

For example, adding slots to the proof of theorem Consistent for Basic
Paxos caused the prover to take about 90 s to check it. To aid the proof, we added
∃ a ∈ A : VotedForIn(a, v1, b1, s) ∧ VotedForIn(a, v2, b1, s) as an intermediary
fact derivable from ChosenIn(v1, b1, s)∧ChosenIn(v2, b2, s)∧b1 = b2. Following
this, the prover asserted the conclusion v1 = v2 in a few milliseconds.

Tuples have only a fixed number of components and therefore do not require
separate inductive proofs, but they often turn out to be tricky and require special
care in choosing the ways to access and test their elements, to reduce TLAPS’s
proof-checking time. For example, consider the definition of VotedForIn in
Eq. (6). Originally a test [slot �→ s, val �→ v] ∈ m.decrees was written, because it
was natural, but it had to be changed to ∃ d ∈ m.decrees : d .slot = s∧d .val = v ,
because the prover found the latter more helpful. With the original version,
the proof did not carry through after 1 or 2 min. After the change, the proof

Formal Verification of Multi-Paxos for Distributed Consensus 131

NewBallot(bb ∈ B)
Δ
= choose b ∈ B :

∧b > bb
∧�m ∈ msgs : m.type = “1a” ∧ m.bal = b

Preempt(p ∈ P)
Δ
= ∃m ∈ msgs :

∧m.type = “preempt”
∧m.to = p
∧m.bal > proBallot [p]
∧proBallot ′ = [proBallot except ! [p] = NewBallot(m.bal)]
∧unchanged 〈msgs, accVoted , accMaxBal 〉

Phase 1b without Preemption Phase 1b with Preemption

Phase1b(a ∈ A)
Δ
=

∃m ∈ msgs :
∧m.type = “1a”
∧m.bal > accMaxBal [a]
∧Send([type �→ “1b”,

bal �→ m.bal ,
voted �→ accVoted [a],
from �→ a])

∧accMaxBal ′ =
[accMaxBal except ! [a] = m.bal]

∧unchanged 〈accVoted , proBallot 〉

Phase1b(a ∈ A)
Δ
=

∃m ∈ msgs :
∧m.type = “1a”
∧ifm.bal > accMaxBal [a] then

∧Send([type �→ “1b”,
bal �→ m.bal ,
voted �→ accVoted [a],
from �→ a])

∧accMaxBal ′ =
[accMaxBal except ! [a] = m.bal]

∧unchanged 〈accVoted , proBallot 〉
else

∧Send([type �→ “preempt”,
to �→ m.from,
bal �→ acceptorMaxBal [a]])

∧unchanged 〈accVoted , accMaxBal ,
proBallot 〉

Fig. 6. Extension of Multi-Paxos to Multi-Paxos with Preemption

proceeded quickly. One minute of waiting for such simple, small tests felt very
long, making it uncertain whether the proof would carry through, even if it would
in a longer time. With dozens of places like this, one also cannot afford to wait
for this long at each such place.

5 Multi-Paxos with Preemption

Preemption is described informally in Lamport’s description of Basic Paxos in
Fig. 1, in the paragraph about abandoning a proposal. Preemption has an accep-
tor reply to a proposer, in both Phases 1b and 2b, if the proposer’s ballot is stale
i.e., the acceptor has seen a higher ballot than the one just received from the
proposer. This reply is a hint to the proposer to increase its ballot.

To specify preemption, each of Phases 1b and 2b adds a new case for when
the acceptor receives a lower ballot than some ballot it has seen before. We also
define predicate Preempt that specifies how proposers update proBallot upon

132 S. Chand et al.

receiving a preemption message. Figure 6 shows Phase 1b with and without the
modifications to add preemption. Modifications to Phase 2b are similar and are
omitted for brevity.

Preemption adds a new phase in the variable Next , modifies definitions of
existing phases, and adds a new type of message. This meant increasing the
width of the proof tree for the new phase. This new branch of the proof was
proven by asserting continuity lemmas already established earlier. The whole
task of adding the new specification and proof took less than an hour.

6 Results of TLAPS-checked Proof

Figure 7 summarizes the results from our specification and proof.
The specification size grew by only 18 lines (16 %), from 115 lines for Basic Paxos

to 133 lines for Multi-Paxos; another 23 lines are added for Preemption.
The proof size increased significantly by 763 lines (180 %), from 423 for Basic

Paxos to 1106 for Multi-Paxos, due to the complex interaction between slots
and ballots; only 30 more lines are added for Preemption, thanks to the reuse
of all lemmas, especially continuity lemmas.

The maximum level of proof tree nodes increased from 7 to 11 going from Basic
Paxos to Multi-Paxos but remained 11 after adding Preemption; this contrast
is even stronger for the maximum degree of proof tree nodes, consistent with
challenge of going to Multi-Paxos.

The increase in number of lemmas is due to the change from Maximum in Basic
Paxos to MaxVotedBallotInSlot in Multi-Paxos, defined in Eq. (7). Five lem-
mas were needed for this predicate alone to aid the prover, as we moved from
scalars to a set of tuples for each acceptor.

No proof by induction on set increment is used for Basic Paxos. Four such proofs
are used for Multi-Paxos and for Multi-Paxos with Preemption.

Proof by contradiction is used once in the proof of Basic Paxos, and we extended
it with slots in the proof of Multi-Paxos and Multi-Paxos with Premption.

The number of proof obligations to the prover increased most significantly, by
679 (284 %), from 239 for Basic Paxos to 918 for Multi-Paxos. Only another
41 proof obligations were added for Multi-Paxos with Preemption.

The proof-checking time increased significantly, by 104 s, from 24 for Basic Paxos
to 128 for Multi-Paxos, despite our continuous efforts to help the prover
reduce it, because of the greatly increased size and complexity of the induc-
tions used, leading to significantly more obligations to the prover. Going to
Multi-Paxos with Preemption, however, the proof-checking time decreased by
about 25 %. This was initially surprising, but our understanding of Paxos and
experience with proofs help support it: (1) adding the preemption cases to
the original Phases 1b and 2b helps make the obligations in these cases more
specialized and the remaining steps for proving consistency (which carry on
longer in these cases before) easier; (2) adding preemption with Phases 1a
and 2a increases the number of proof obligations, but the new obligations are
easy, because they let the proposer start over (and thus there are no remaining
steps in these cases). We are investigating further to confirm these.

Formal Verification of Multi-Paxos for Distributed Consensus 133

soxaP-itluMsoxaPcisaBcirteM
Multi-Paxos
w/ Preemption

Size of specification (lines) 115 133 158
Size of proof (lines) 423 1106 1136
Max level of proof tree nodes 7 11 11
Max degree of proof tree nodes 3 17 17
lemmas 4 11 12
continuity lemmas 1 5 6
uses of continuity lemmas 8 27 29
proofs by induction on set increment 0 4 4
proofs by contradiction 1 1 1
obligations in TLAPS 239 918 959
Time to check by TLAPS (seconds) 24 128 94

Fig. 7. Summary of results. An obligation is a condition that TLAPS checks. The
time to check is on an Intel i7-4720HQ 2.6 GHz CPU with 16 GB of memory, running
Windows 10 and TLAPS version 1.5.2.

7 Related Work and Conclusion

We discuss closest related results on verification of Paxos, categorized by the
verification technique.

Model checking. Model checking automatically explores the state space of
systems [6]. Lamport wrote TLA+ specifications for Basic Paxos and its variants,
e.g., Fast Paxos [19], and checked them using the TLA+ model checker TLC [25],
but he has not done this for Multi-Paxos or its variants; a number of MS students
at our university have also done this in course projects, including for Multi-
Paxos. Delano et al. [8] modeled Basic Paxos in Promela and checked it using
the Spin model checker [31]. To reduce the state space, they use counting guards
to track majority, reset local variables after state operations, and use sorted send
instead of FIFO send (with random receive, to model non-FIFO channels). They
checked Basic Paxos for pairs of numbers of proposers and acceptors up to (2,8),
(3,5), (4,4), (5,3), and (8,2). Yabandeh et al. [35] checked a C++ implementation
of Basic Paxos using CrystalBall, a tool built on Mace [15], which includes a
model checker. Yang et al. [36] used their model checker MoDist to check a
Multi-Paxos-based service system developed by a Microsoft product team [24].
With dynamic partial-order reduction [10], they found 13 bugs including 2 bugs
in the Paxos implementation, with as few as 3 replicas and a few slots. In all
cases, existing work in model checking either does not check Multi-Paxos or can
check it for only a very small number of slots and processes.

Deductive verification. Kellomaki [14] formally specified and verified Basic
Paxos using PVS [32]. Charron-Bost and Schiper [5] expressed Basic Paxos in
the Heard-Of model, and Charron-Bost and Merz [4] verified it formally using
Isabelle/HOL [33]. Drăgoi et al. [9] specified and verified a version of Basic Paxos
in PSync, which is based on the Heard-Of model, so the specification and proof

134 S. Chand et al.

are similar to [4,5]. Lamport et al. [22] give a formal specification of Basic Paxos
in TLA+ and a TLAPS-checked proof of its correctness. Lamport [20] wrote
a TLA+ specification of Byzantine Paxos, a variant of Basic Paxos that toler-
ates arbitrary failures, and a TLAPS-checked proof that it refines Basic Paxos.
With IronFleet, Hawblitzel et al. [11] verified a state machine replication sys-
tem that uses Multi-Paxos at its core. Their specification mimics TLA+ models
but is written in Dafny [23], which has no direct concurrency support but has
more automated proof support than TLAPS. This work is superior to its peers
by proving not only safety but also liveness properties. Schiper et al. [30] used
EventML [28] to specify Multi-Paxos and used NuPRL [7] to verify safety. Using
the Verdi framework, Wilcox et al. [34] expressed Raft [27], an algorithm similar
to Multi-Paxos, in OCAML and verified it using Coq [12]. All these works either
do not handle Multi-Paxos or handle it using more restricted or less direct lan-
guage models than TLA+, some mixed in large systems, making the essence of
the algorithm’s proof harder to find and understand.

In contrast, our work is the first to specify the exact phases of Multi-Paxos
in a most direct and general language model, TLA+, with a complete correct-
ness proof automatically checked using TLAPS. Building on Lamport, Merz,
and Doligez’s specification and proof for Basic Paxos [22], we aim to facilitate
the understanding of Multi-Paxos and its proof by minimizing the difference
from those for basic Paxos. We also show this as a general way for specifying
and proving variants of Multi-Paxos, by doing so for Multi-Paxos extended with
preemption. We also discuss the significantly more complex but necessary sub-
proofs by induction. Future work may automate inductive proofs and support
the verification of variants that improve and extend Multi-Paxos, by extending
specifications of variants of Paxos, e.g., Fast Paxos [19] and Byzantine Paxos [20],
to Multi-Paxos and verifying these variants of Multi-Paxos as well as Raft [27].

References

1. Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, pp. 335–350. USENIX Association (2006)

2. Chand, S., Liu, Y.A., Stoller, S.D.: Formal Verification of Multi-Paxos for Distrib-
uted Consensus. arXiv preprint arXiv:1606.01387 (2016)

3. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live–An engineering per-
spective. In: Proceedings of the 26th Annual ACM Symposium on Principles of
Distributed Computing, pp. 398–407 (2007)

4. Charron-Bost, B., Merz, S.: Formal verification of a consensus algorithm in the
Heard-Of model. Int. J. Softw. Inform. 3(2–3), 273–303 (2009)

5. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed
systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

http://arxiv.org/abs/1606.01387

Formal Verification of Multi-Paxos for Distributed Consensus 135

7. Constable,R.L.,Allen, S.F.,Bromley,H.M.,Cleaveland,W.R.,Cremer, J.F.,Harper,
R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T.,
Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, Upper Saddle River (1986)

8. Delzanno, G., Tatarek, M., Traverso, R.: Model checking Paxos in Spin. In: Pro-
ceedings of the 5th International Symposium on Games, Automata, Logics and
Formal Verification, pp. 131–146 (2014)

9. Drăgoi, C., Henzinger, T.A., Zufferey, D.: Psync: A partially synchronous lan-
guage for fault-tolerant distributed algorithms. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 400–415 (2016)

10. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 110–121 (2005)

11. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles, pp. 1–17 (2015)

12. INRIA: The Coq Proof Assistant. http://coq.inria.fr/. (Last released January
2016)

13. Isard, M.: Autopilot: Automatic data center management. ACM SIGOPS Oper.
Syst. Rev. 41(2), 60–67 (2007)

14. Kellomäki, P.: An annotated specification of the consensus protocol of Paxos using
superposition in PVS. Report 36, Institute of Software Systems, Tampere Univer-
sity of Technology (2004)

15. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.M.: Mace: lan-
guage support for building distributed systems. In: Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
179–188 (2007)

16. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

17. Lamport, L.: Paxos made simple. SIGACT News (Distrib. Comput. Column) 32(4),
51–58 (2001)

18. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Amsterdam (2002)

19. Lamport, L.: Fast Paxos. Distrib. Comput. 19(2), 79–103 (2006).
http://research.microsoft.com/pubs/64624/tr-2005-112.pdf

20. Lamport, L.: Byzantizing paxos by refinement. In: Peleg, D. (ed.) DISC
2011. LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24100-0 22

21. Lamport, L.: My writings. http://research.microsoft.com/en-us/um/people/
lamport/pubs/pubs.html#lamport-paxos. Accessed 24 Jan 2016. Lamport’s his-
tory of paper [16]

22. Lamport, L., Merz, S., Doligez, D.: A TLA spefication of the Paxos Consen-
sus algorithm described in Paxos Made Simple and a TLAPS-checked proof
of its correctness. file /tlapm/examples/paxos/Paxos.tla in TLAPS distribution,
November 2012. http://tla.msr-inria.inria.fr/tlaps/dist/current/tlaps-1.4.3.tar.gz.
Accessed 28 Nov 2014

23. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

http://coq.inria.fr/
http://research.microsoft.com/pubs/64624/tr-2005-112.pdf
http://dx.doi.org/10.1007/978-3-642-24100-0_22
http://dx.doi.org/10.1007/978-3-642-24100-0_22
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-paxos
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-paxos
http://tla.msr-inria.inria.fr/tlaps/dist/current/tlaps-1.4.3.tar.gz
http://dx.doi.org/10.1007/978-3-642-17511-4_20

136 S. Chand et al.

24. Liu, X., Guo, Z., Wang, X., Chen, F., Lian, X., Tang, J., Wu, M., Kaashoek, M.F.,
Zhang, Z.: D3S: debugging deployed distributed systems. In: Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation, pp.
423–437. USENIX Association (2008)

25. Microsoft Research: The TLA Toolbox. http://research.microsoft.com/en-us/um/
people/lamport/tla/toolbox.html. Accessed 4 Jan 2016

26. Microsoft Research-Inria Joint Center: TLA+ Proof System (TLAPS). http://tla.
msr-inria.inria.fr/tlaps/. (Last released June 2015)

27. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algo-
rithm. In: 2014 USENIX Annual Technical Conference (USENIX ATC 14), pp.
305–319. USENIX Association (2014). http://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

28. PRL Project: EventML. http://www.nuprl.org/software/#WhatisEventML.
Accessed 21 Sep 2012

29. van Renesse, R., Altinbuken, D.: Paxos made moderately complex. ACM Comput.
Surv. 47(3), 1–36 (2015)

30. Schiper, N., Rahli, V., van Renesse, R., Bickford, M., Constable, R.L.: Develop-
ing correctly replicated databases using formal tools. In: Proceedings of the 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, pp. 395–406. IEEE CS Press (2014)

31. Spin Community: Verifying Multi-threaded Software with Spin. http://spinroot.
com/spin/whatispin.html. (Last released January 1, 2016)

32. SRI: PVS Specification and Verification System. http://pvs.csl.sri.com/. (Last
released February 11, 2013)

33. University of Cambridge: Isabelle (a generic proof assistant). http://isabelle.in.
tum.de/. (Last released May 25, 2015)

34. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D.,
Anderson, T.: Verdi: A framework for implementing and formally verifying dis-
tributed systems. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 357–368 (2015)

35. Yabandeh, M., Knezevic, N., Kostic, D., Kuncak, V.: CrystalBall: predicting and
preventing inconsistencies in deployed distributed systems. In: Proceedings of the
6th USENIX Symposium on Networked Systems Design and Implementation, pp.
229–244. USENIX Association (2009)

36. Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long, F., Zhang, L.,
Zhou, L.: MoDist: transparent model checking of unmodified distributed systems.
In: Proceedings of the 6th USENIX Symposium on Networked Systems Design and
Implementation, pp. 213–228. USENIX Association (2009)

http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
http://tla.msr-inria.inria.fr/tlaps/
http://tla.msr-inria.inria.fr/tlaps/
http://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://www.nuprl.org/software/#WhatisEventML
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://pvs.csl.sri.com/
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/

Validated Simulation-Based Verification
of Delayed Differential Dynamics

Mingshuai Chen1, Martin Fränzle2, Yangjia Li1(B), Peter N. Mosaad2,
and Naijun Zhan1

1 State Key Laboratory of Computer Science, Institute of Software,
CAS, Beijing, China

{chenms,yangjia,znj}@ios.ac.cn
2 Department of Computing Science, C. v. Ossietzky Universität Oldenburg,

Oldenburg, Germany
{fraenzle,peter.nazier.mosaad}@informatik.uni-oldenburg.de

Abstract. Verification by simulation, based on covering the set of time-
bounded trajectories of a dynamical system evolving from the initial
state set by means of a finite sample of initial states plus a sensitiv-
ity argument, has recently attracted interest due to the availability of
powerful simulators for rich classes of dynamical systems. System mod-
els addressed by such techniques involve ordinary differential equations
(ODEs) and can readily be extended to delay differential equations
(DDEs). In doing so, the lack of validated solvers for DDEs, however,
enforces the use of numeric approximations such that the resulting veri-
fication procedures would have to resort to (rather strong) assumptions
on numerical accuracy of the underlying simulators, which lack formal
validation or proof. In this paper, we pursue a closer integration of
the numeric solving and the sensitivity-related state bloating algorithms
underlying verification by simulation, together yielding a safe enclosure
algorithm for DDEs suitable for use in automated formal verification.
The key ingredient is an on-the-fly computation of piecewise linear,
local error bounds by nonlinear optimization, with the error bounds uni-
formly covering sensitivity information concerning initial states as well as
integration error.

1 Introduction

Delayed coupling between state variables of dynamic systems occurs in many
domains. Prominent examples include population dynamics, where birth rate
follows changes in population size with a delay related to reproductive age,

The first, third and fifth authors are supported partly by “973 Program” under grant
No. 2014CB340701, by NSFC under grants 91418204 and 61502467, by CDZ project
CAP (GZ 1023), and by the CAS/SAFEA International Partnership Program for
Creative Research Teams. The second and fourth authors are supported partly by
Deutsche Forschungsgemeinschaft within the Research Training Group “SCARE -
System Correctness under Adverse Conditions” (DFG GRK 1765).

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 137–154, 2016.
DOI: 10.1007/978-3-319-48989-6 9

138 M. Chen et al.

spreading of infectious diseases, where delay is induced by the incubation period,
exhaust gas control in internal combustion engines, where relevant sensors, like
the λ probe, are located downstream the exhaust system such that gas transport
induces a delay between the controlled combustion processes and sensing their
effect, or networked control systems with their associated transport delays when
forwarding data through the communication network, to name just a few. Most
examples feature feedback dynamics and it should be obvious that the presence
of feedback delays reduces controllability due to the impossibility of immediate
reaction and enhances likelihood of transient overshoot or even oscillation in the
feedback system. In fact, the introduction of delays into a feedback system may
reduce stabilization rates of or even destabilize an otherwise stable system, it
may provoke overshoot and drive the system to otherwise unreachable states,
it is likely to stretch dwell times, and it may induce residual error that never
cancels. As this implies that safety or stability certificates obtained on ideal-
ized, delay-free models of systems prone to delayed coupling may be erratic,
automated methods for system verification ought to address models of system
dynamics reflecting delays, rendering verification tools only addressing ordinary
differential equations (ODE) and their derived models, like hybrid automata,
vastly insufficient. It can well be argued that such tools should better address
delay differential equations (DDE), as introduced in [2].

Generalizing techniques developed for ODE to DDE is not as straightforward
as it may seem at first glance. The reason is that the future evolution of a
DDE is no longer governed by the current state instant only, but depends on a
chunk of its past trajectory, such that introducing a delay immediately renders
a system with finite-dimensional state into an infinite-dimensional dynamical
system. Consequently, approximate numerical methods for solving DDEs as well
as methods for stability analysis have well been developed in the field of control,
while in automatic verification, hitherto only few approaches address the effects
of delays due to the immediate impact of delays on the structure of the state
spaces to be traversed by state-exploratory methods.

In this paper, we address this problem by suitably adapting the paradigm of
verification by simulation to delay differential equations. Verification by simula-
tion provides bounded-time verification of dynamical systems based on covering
the full set of time-bounded trajectories of a dynamical system evolving from the
initial state set by means of a finite sample of initial states plus a sensitivity argu-
ment. To achieve this, a sufficiently dense sample of initial states is drawn from
the set of all possible initial states, numeric simulation is then used for obtain-
ing the trajectories originating from the sample points, and finally a quantitative
sensitivity argument permits to pessimistically over-approximate the “tube” of
trajectories originating from arbitrary start states by means of “bloating” the
individual simulated trajectories into a neighborhood of the radius given by the
bound on sensitivity on the start state, see e.g. [8,9,15,20]. If a validated numer-
ical solver is used for the simulations, the above procedure will immediately yield
a safe over-approximation of the set of possible trajectories; else, more aggressive

Validated Simulation-Based Verification of Delayed Differential Dynamics 139

bloating additionally covering the possible inaccuracies of numeric integration of
differential equations has to be employed to obtain a sound, validated method.

The class of systems we approach features delayed differential dynamics gov-
erned by DDE of the following form:

{
ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) , t ∈ [0,∞)
x (t) = g(t), t ∈ [−rmax, 0] (1)

It thus involves a combination of ODE and DDE with multiple constant delays
ri > 0, i = 1, . . . , k. Here, rmax = max{r1, . . . , rk} is the maximal delay,
x : R≥−rmax �→ R

n is a trajectory, f : (Rn)k+1 �→ R
n a vector field, and

g : [−rmax, 0] �→ R
n is a continuous function providing the initial condition.

This form of equations has been successfully used to model various real world
systems in the fields of, e.g., biology, control theory, and economics.

Generally speaking, formal verification of temporally unbounded reachabil-
ity properties of system dynamics governed by Eq. (1) inherits undecidability
from similar properties for ODE. Therefore, and also due to our wish to use
simulation as an underlying mechanism of system analysis, we restrict ourselves
to time-bounded reachability problems. Such a time-bounded reachability prob-
lem for a given model of the form (1) is parameterized by a temporal horizon
(i.e., a time bound) set by the user, a set of initial states which in the case of
DDE generalizes to constant functions over the time frame [−rmax, 0] immedi-
ately preceding system start, and a set of unsafe states that system dynamics is
expected to avoid. The proof obligation is to determine whether there exists a
trajectory of the model starting in some initial state which reaches any unsafe
state within the time bound. In our approach, we first trigger a set of numerical
approximations of the behaviours from a finite sampling of the initial states.
Such a simulation does not yield a trajectory, but rather a timed trace, i.e., a
sequence of time-stamp value pairs. Along each simulation run, we bloat each
snapshot, i.e., each time-stamp value pair by a distance determined via an error
bound computed automatically on-the-fly, where the error bound incorporates
coverage and sensitivity information concerning the sampled start states as well
as the integration error incurred by numerical solving. The union of these bloat-
ings covers all time-bounded trajectories possibly evolving from all initial states,
and thus yields an over-approximation of the states reachable from the initial
set within the time bound. If this over-approximation proves safety in the sense
that the cover of the reachable states is disjoint from the unsafe states, or con-
versely if the simulation produces a valid counter-example in the sense that it
can prove that a trajectory inevitably hits the unsafe states, then the algorithm
generates the corresponding verdict. Otherwise, it refines the sample drawn from
the initial states, thus requiring less aggressive bloating of simulation runs, and
computes a more precise over-approximation.

Our approach is distinguished from competing approaches by providing a val-
idated verification-by-simulation paradigm for DDE. Given that validated meth-
ods for DDE enclosure are not readily available, it achieves this by pursuing a
closer than traditional integration of the numeric solving and the sensitivity-
related state bloating algorithms underlying verification by simulation, together

140 M. Chen et al.

yielding a safe enclosure algorithm for DDE guaranteed to contain the true solu-
tion. The key ingredient is an on-the-fly computation of piecewise linear, local
error bounds by nonlinear optimization, which provides an alternative to estab-
lished methods computing discrepancy bounds from Lipschitz constants and
Jacobians, as employed in [13]. Some experimental results obtained on several
benchmark systems involving delayed differential dynamics are further demon-
strated. Due to lack of space, the detailed proofs of theorems are available in [5].

Related Work. Zou et al. proposed in [27] a procedure for generating stability and
safety certificates for the simplest class of DDEs of the form ẋ(t) = f(x(t − r)).
This is achieved by iterating interval-based Taylor over-approximations of the
time-wise segments of the solution to a DDE, which depends essentially on the
fact that the interval coefficients of the solution over the time interval (n, n + 1]
can be represented as a function of those of the solution over (n−1, n]. Extracting
the operator mapping coefficients at one time frame to those of the next, one
obtains a time-invariant discrete-time dynamical system. Thus, stability analysis
and safety verification of the original DDE is reduced to appropriate counterparts
encoding these properties on the resulting time-invariant discrete-time dynamical
system. This approach does not immediately generalize to mixed ODE-DDE
forms as in Eq. (1), as the delayed parts of the dynamics would there function
as inputs to an ODE with input, rendering the above operator time-variant.
Though this is doable in principle, we have herein opted for the more immediate
approach of verification by simulation.

In [22], Pola et al. proposed an approach abstracting incrementally input-to-
state stable (δ-ISS) nonlinear control systems with constant and known delays
to finite-state symbolic models, and establish approximate bisimilarity between
them. In [21], they extended the work in [22] to incrementally-input-delay-to-
state stable (δ-IDSS) nonlinear control systems with time-varying and unknown
delays, and proved that the original δ-IDSS nonlinear control systems and the
corresponding symbolic models are alternating approximately bisimilar. The cru-
cial differences between their work and ours lie in, firstly, their approach being
confined to δ-ISS nonlinear control systems, while our approach being applica-
ble to any kind of nonlinear control systems with constant and known time
delays. So, our method relaxes a problematic applicability condition. Second,
their approach can do unbounded verification of time-delay systems, while our
approach currently can only conduct bounded verification. Third, their app-
roach can be applied to δ-IDSS nonlinear control systems with time-varying and
unknown delays, while our approach cannot yet. It is a crucial aspect of our
future work to extend our approach to nonlinear control systems with time-
varying and unknown delays, without sacrificing its applicability beyond δ-IDSS
systems.

Verifying delayless dynamical systems, in particular ODE, using numerical
simulations has well been studied, e.g., in [8,9,15,20], where similar concepts
based on sensitivity information provided by discrepancy functions or simulation
functions, respectively, have been presented to bloat the traces obtained from
simulations to “trajectory tubes” over-approximating time-bounded reach sets.

Validated Simulation-Based Verification of Delayed Differential Dynamics 141

While the first settings resorted to user-supplied sensitivity information, Fan
and Mitra in [13] proposed an algorithm for automatically computing piecewise
exponential discrepancy functions. This algorithm pessimistically estimates the
sensitivity of the ODE on its initial value, but also takes assumed error bounds
of the numerical simulation, which in that case is Matlab’s ode45 solver, into
account. This, however, renders the soundness of this algorithm dependent on
the assumption that Matlab’s built-in ODE solver can always guarantee those
numerical error bounds, while it is possible to find extremely stiff ODEs as
follows for which the solver returns very inaccurate results.

ẋ(t) = 1 + δa(x −
√

2), with δa(y) =
1

a
√

π
e−y2/a2

(2)

δa(y) approximates the Dirac δ function [7] modelling a tall narrow spike around
y = 0, where the spike shrinks as a → 0. When Eq. (2) is simulated with a =
10−3 by Matlab’s ODE solver ode45, results show that the solver can detect
the sharp increment of the derivative with a user-specified MaxStep as 0.01,
while not the case with 0.1. Furthermore, adjusting the simulation step width
could not essentially cure the problem, yet just shifts it to a smaller a for which
the solver fails to identify the leaping trajectory and instead follows straight-
line dynamics. This motivates us to address the issue of numerical errors in
discrepancy computation. Moreover, the method in [13] requires computations of
a global Lipschitz constant as well as a bound on the eigenvalues of the Jacobians
within a region, which may not be feasible in some dynamical systems.

2 Problem Formulation

Notations. For a vector x ∈ R
n, xi refers to its ith component, and ‖x‖ denotes

the �2-norm. The notation ‖ · ‖ extends to an n × n real matrix A ∈ R
n×n

with ‖A‖ =
√

λmax(ATA), where λmax(A) is the largest eigenvalue of A. For
x,x′ ∈ R

n, ‖x′ −x‖ is the Euclidean distance between the points, and we define
for δ ≥ 0, Bδ(x) = {x′ ∈ R

n|‖x′ −x‖ ≤ δ} as the closed ball of radius δ centered
at x. For a set S ⊆ R

n, Bδ(S) = ∪x∈SBδ(x). The diameter of a compact set S
is dia(S) = supx,x′∈S ‖x − x′‖, and a δ-cover of S is a finite collection of points
X such that S ⊆ ∪x∈X Bδ(x). For a set S ⊆ R

n, its convex hull is denoted as
conv(S).

Delayed Dynamical Systems. We consider a timed-bounded delayed dynamical
system of the form

{
ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) , t ∈ [0,∞)
x (t) ≡ x0 ∈ Θ, t ∈ [−rk, 0] , (3)

142 M. Chen et al.

1where x is the time-dependent state vector in R
n, ẋ denotes its temporal deriv-

ative dx/dt, and t is a real variable modelling time. The discrete delays are
assumed to be ordered as rk > . . . > r1 > 0, and the initial states are general-
ized to a constant function over [−rk, 0] taking values from a compact set Θ.

Let the vector-valued function f : (Rn)k+1 �→ R
n be continuous and contin-

uously differentiable in the first argument, which implies that the system has
a unique maximal solution (or trajectory) from each constant initial condition
valued x0 ∈ R

n, denoted as ξx0(t) : [−rk, �) �→ R
n, where � = ∞ holds if f is

Lipschitz.

Example 1 (Gene Regulation [12,24]). The control of gene expression in cells is
often modelled with time delays in equations of the form

{
ẋ1(t) = g(xn(t − rn)) − α1x1(t)
ẋj(t) = g(xj−1(t − rj−1)) − αjxj(t), 1 < j ≤ n,

(4)

where the gene is transcribed producing mRNA (x1), which is translated into
enzyme x2 that turn produces another enzyme x3 and so on. The end product xn

acts to repress the transcription of the gene by ġ < 0. Time delays are introduced
to account for time involved in transcription, translation, and transport. The
αj > 0 represent decay rates of the species. The dynamic described in Eq. (4)
falls exactly into the scope of systems considered in this paper, and in fact, it
instantiates a more general family of systems known as monotone cyclic feedback
systems (MCFS) [19], which includes neural networks, testosterone control, and
many other effects in systems biology.

Safety Verification Problem. Given a set U ⊆ R
n of unsafe or otherwise bad

states, a delayed dynamical system of shape (3) is said to be (time-bounded)
safe iff all the trajectories originating from any x0 ∈ Θ do not intersect with U
(within the given time bound T), otherwise it is called unsafe.

3 Verification of Delayed Dynamical Systems
via Simulation

Generating formal guarantees for DDEs of the form (3) tends to be challenging
due to unavailability of guaranteed for solving them. We are trying to alleviate
that problem by adopting approximate numeric methods, enhancing them with
methods for rigorous error tracking, thus rendering them validated numerical
methods, and adding sensitivity information for being able to cover sets of initial
states based on simulating and bloating the trajectories originating from finitely
many samples. This approach has been inspired by similar approaches for ODE,
in particular the discrepancy functions of [13].
1 In general, the initial condition is represented by x(t) = ξ0(t), for t ∈ [−rk, 0], where

ξ0 ∈ X ⊆ C0([−rk, 0] ,Rn), C0([−rk, 0] ,Rn) stands for all continuous functions
mapping from [−rk, 0] to R

n, X is compact and bounded. So, we can let Θ =
∪ξ∈X ξ([−rk, 0]). Clearly, Θ is compact and bounded.

Validated Simulation-Based Verification of Delayed Differential Dynamics 143

We will now expose in detail the overall procedure of simulation by verifica-
tion, which hinges on the validated simulation of DDE that we will turn to in
Sect. 4. For the sake of simplifying the exposition, we first consider the special
case of delayed dynamical systems featuring a single delay, as in

{
ẋ (t) = f (x (t) ,x (t − r)) , t ∈ [0,∞)
x (t) ≡ x0 ∈ Θ, t ∈ [−r, 0] . (5)

In this case, the differential dynamics is a function f(x,u) of two states, namely
the current state x and the past state u.

The basic idea of simulation-based verification of a DDE (5), as implemented
by Algorithm 1, can be sketched as follows:
First, we build on a validated simulation procedure Simulation, whose design is
shown in Sect. 4. Given a delayed dynamical system as above, a subset X0 ⊂ Θ
of the initial states, and a time bound T , Simulation yields a simulation trace
(t0,y0), . . . , (tn,yn) consisting of pairs of time stamps ti ∈ [0, T] and states yi ∈
R

n with y0 = x0, as well as a sequence of local error bounds d0, d1, . . . , dn ≥ 0
providing a validation of this trace observing the following two properties:

P1: 0 = t0 < t1 < . . . < tn = T , i.e., the time stamps in the trace are ascending
and cover the temporal horizon of interest.

P2: For each of the trajectories ξx0(t) of (5) starting from any point x0 ∈ X0,
the validation property

(ξx0(t), t) ∈ conv
(
(Bdi

(yi) × {ti}) ∪ (Bdi+1(yi+1) × {ti+1})
)

(6)

holds for each t ∈ [ti, ti+1], i = 0, 1, . . . , n−1. I.e., the reported error bounds
di span a piecewise linear tube around the points (yi, ti) in the simulation
trace such that ξx0(t) is properly enclosed for any x0 ∈ X0 and any t ∈ [0, T].

Then, time-bounded safety verification of system (5) can be obtained as follows:

1. At the beginning, we cover the given initial set X0 by a finite set of balls of
radius δ; so, δ-Partition(X0) in line 2 of Algorithm 1 returns a finite δ-cover
of the compact set X0. We then call Simulation to each of these balls. For
each ball B, we collect all states contained in the bloating of the N -step
simulation trace y as Bd(y) =

⋃N−1
n=0 conv(Bdn

(yn)∪Bdn+1(yn+1)), cf. line 8.
This yields an over-approximation of the states reachable from B following
(5) within time up to T .

2. If the over-approximation of the reachable set thus obtained is disjoint to the
unsafe set (line 9), then (5) is safe when starting in B; otherwise, if there
exists a sampling point in the simulation which has its full bloating with
the corresponding local error bound being contained in the unsafe set (line
11), then (5) is definitely unsafe. If none of these two conditions applies, we
compute a finer partition of B (line 14), and we repeat the above procedure
until the granularity of the partition becomes finer than the given threshold.
In this case, we cannot give an answer whether or not (5) is safe and terminate
with the inconclusive result unknown.

144 M. Chen et al.

Algorithm 1. Simulation-based Verification for Delayed Dynamical Sys-
tems

input : The dynamics f(x,u), delay term r, initial set X0, unsafe set U , time bound T , precision ε.
/* initialization */

1 R ← ∅; δ ← dia(X0)/2; τ ← τ0;
2 X ← δ-Partition(X0);
3 while X �= ∅ do
4 if δ < ε then
5 return (UNKNOWN, R);

6 for Bδ(x0) ∈ X do
7 〈t,y,d〉 ← Simulation(Bδ(x0), f(x,u), r, τ, T);

8 T ← ⋃N−1
n=0 conv(Bdn (yn) ∪ Bdn+1 (yn+1));

9 if T ∩ U = ∅ then
10 X ← X\Bδ(x0); R ← R ∪ T ;

11 else if ∃i. Bdi
(yi) ⊆ U then

12 return (UNSAFE, T);
13 else
14 X ← X\Bδ(x0); X ← X ∪ δ

2 -Partition(Bδ(x0));

15 δ ← δ/2;

16 return (SAFE, R);

Obviously, our approach is different from existing approaches providing
simulation-based verification for dynamical systems modeled by ordinary differ-
ential equations, like [8,9]. In our approach, the simulation procedure provides
a rigorous validation of the above property P2, rather than relying on assump-
tions concerning numerical accuracy of the underlying simulator. Second, our
approach covers rigorous simulation-based formal verification of DDE rather
than just ODE. The correctness of the resulting algorithm is captured by the
following theorem:

Theorem 1 (Correctness). If Simulation satisfies above properties P1 and
P2 (which will be verified in the next section), then Algorithm1 terminates and
its outputs are guaranteed to satisfy the following soundness properties:

– it reports (SAFE,R) only if the system is safe.
– it reports (UNSAFE, T) only if the system is unsafe and T is a counter-

example.

The general case of multiple different delays in Eq. (3) can be dealt with analo-
gously to the case (5) of a single delay: we only need to allowu to have more compo-
nents, meanwhile, we need to revise Algorithm 2 accordingly by introducing mul-
tiple different mi as m1 ← r1/τ, . . . ,mk ← rk/τ . Thus, the delayed states yn−mi

s
can be exactly located when computing yn+1 by f(yn, yn−m1 , . . . , yn−mk

) (line 6
in Algorithm 2) as well as when finding the minimal e (line 7 in Algorithm 2).

4 Validated Simulation

In this section, we elaborate on simulation and on computation of rigor-
ous local error bounds to guarantee the enclosure property P2. Instead of

Validated Simulation-Based Verification of Delayed Differential Dynamics 145

directly computing the error bounds d0, . . . , dn accompanying the simulation
trace (t0,y0), . . . , (tn,yn), we compute an initial error bound d0 and a sequence
e1, . . . , en of error slopes recursively defining error bounds E(t) for each t ∈
[0, T] — and thus not only for time stamps in the simulated trace — as follows:

E(t) =

{
d0, if t = 0,

E(ti) + (t − ti)ei+1, if t ∈ [ti, ti+1].
(7)

The validation property (P2) can thus be rewritten as

P2’: For each of the trajectories ξx0(t) of system (5) starting from any point
x0 ∈ X0, the validation property

ξx0(t) ∈ BE(t)

(
(t − ti)yi + (ti+1 − t)yi+1

ti+1 − ti

)
(8)

holds for each t ∈ [ti, ti+1].

I.e., the ei’s provide the slopes of piecewise conic enclosures around the linear
interpolations between the points (ti,yi) in the simulation trace.

The Simulation Algorithm. Inferring formal proofs from simulations essentially
attributes to a validated numerical solver which can produce rigorous error
bounds on the generated sampling points. We present in Algorithm2 a pro-
cedure2 Simulation that provides a trace of sampling points bundled with their
local error bounds thus giving an over-approximation of the reachable set in
terms of an initial state space.

The algorithm is provided with an initial ball Bδ(x0) and it proceeds with
a discrete simulation starting from x0 paced by a fixed stepsize τ . Three list
structures (denoted as �·�) with the same length are introduced respectively
as (1) t: storing a sequence of time stamps on which the approximations are
computed, (2) y: keeping a sequence of sampling points that approximates the
trajectory starting from x0, and (3) d: capturing the corresponding sequence
of local error bounds. Due to the nature of DDEs where the evolving of states
may refer to those ahead of time t0 = 0, we index the lists beginning from −1
and assume that all the evaluations of y and d with a negative index return the
element at −1, namely y<0 = y−1

3, and analogously for d.
At t0 = 0, the corresponding local error is initialized with the radius of the ini-

tial set d0 = δ (line 1). An offest m is computed in line 2 such that yn−m locates
the delayed approximation at tn − r. In each iteration of the simulation loop,
the state is extrapolated in line 6 using the well-known forward Euler method,
which computes yn+1 explicitly from previous points yn and yn−m. Higher-order

2 For ease of presentation, we demonstrate the approach on DDEs with one single
delay, and it readily extends to that with multiple delays as discussed in Sect. 3.

3 For a general initial condition g(t), y is initialized as y ← �g(−r), g(−r +
τ), . . . , g(0)�.

146 M. Chen et al.

Algorithm 2. Simulation: a validated DDE solver producing rigorous
bounds

input : The initial set Bδ(x0), dynamics f(x,u), delay term r, stepsize τ , time bound T .
output: A triple 〈t,y,d〉, where the components represent lists, with the same length, respectively for

the time points, numerical approximations (possibly multi-dimensional), and the rigorous local
error bounds.

/* initializing the lists, whose indices start from -1 */
1 t ← �−τ, 0�; y ← �x0,x0�; d ← �0, δ�;

/* r has to be divisible by τ (in FP numbers) */
2 n ← 0; m ← r/τ ;
3 while tn < T do
4 tn+1 ← tn + τ ;

/* approximating yn+1 using forward Euler method */
5 yn+1 ← yn + f(yn,yn−m) ∗ τ ;

/* computing error slope by constrained optimization, where σ is a positive slack
constant */

6 en ← Find minimum e s.t.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖f(x + t ∗ f ,u + t ∗ g) − f(yn,yn−m)‖ ≤ e − σ, for

∀t ∈ [0, τ]
∀x ∈ Bdn (yn)
∀u ∈ Bdn−m

(yn−m)

∀f ∈ Be(f(yn,yn−m))
∀g ∈ Ben−m

(f(yn−m,yn−2m));

(9)

7 dn+1 ← dn + τen;
/* updating the lists by appending the extrapolation */

8 t ← �t, tn+1�; y ← �y, yn+1�; d ← �d, dn+1�;
9 n ← n + 1;

10 return 〈t,y,d〉;

Runge-Kutta methods [1] could be employed here to obtain more precise approx-
imations. Line 7 derives a local error bound dn+1 based on the local error slope
en satisfying the enclosure property (P2’). The computation of en is reduced to
a constrained optimization problem (line 6).

Correctness of Simulation. Note that the constrained optimization problem (9)
need not have a finite solution, in which case our algorithm fails to provide a
useful enclosure. Straightforward continuity arguments do, however, show that
for small enough stepsize τ , it will always have a solution, which motivated us
to implement stepsize control, as discussed below. When being able to compute
useful, i.e., finite error slopes, the simulation delivers a safe enclosure satisfying
(P2):

Theorem 2 (Correctness). Suppose the maximum index of the lists generated
by Algorithm2 is N , then ∀t ∈ [0, T] and ∀x ∈ Bδ(x0),

ξx(t) ⊆
⋃N−1

n=0
conv(Bdn

(yn) ∪ Bdn+1(yn+1)).

The completeness result can be formally stated as follows:

Theorem 3 (Completeness). Suppose the function f in Eq. (5) is continu-
ously differentiable in both arguments and the dynamical system is solvable for
time interval [0, T], then for any ε > 0, there exists δ, τ and σ such that the
optimization problem (9) has a solution en for all n ≤ T

τ , and moreover dn ≤ ε.

Validated Simulation-Based Verification of Delayed Differential Dynamics 147

Algorithm 3. Simulation: a simulation procedure with local stepsize con-
trol

input : Bδ(x0), f(x,u), r, τ0, T .
output: 〈t,y,d〉

1 t ← �−τ0, 0�; y ← �x0,x0�; d ← �0, δ�;
2 n ← 0;
3 while tn < T do
4 τ ← τ0; m ← r/τ ;

/* relocating the bias m by a backward search */
5 for j ← Length(t); j ≥ 1; j − − do
6 if tn − r ∈ (tj−1, tj] then
7 m ← n − j;
8 Break;

9 while True do
10 tn+1 ← tn + τ ; yn+1 ← yn + f(yn,yn−m) ∗ τ ;
11 if minimal e satisfying Eq. (10) under the constraints of (9) is found then
12 en ← e; dn+1 ← dn + τen;
13 Break;

14 else
15 τ ← τ/2;

/* Smaller e, tighter the bloating. */

16 t ← �t, tn+1�; y ← �y, yn+1�; d ← �d, dn+1�;
17 n ← n + 1;

18 return 〈t,y,d〉;

Extension to Variable Stepsize. Local stepsize control reducing the current step-
size whenever Eq. (9) has no finite solution seems natural. An improved simula-
tion procedure with flexible stepsize control is presented in Algorithm3, where
in each step of simulation, the procedure first tries to find a finite upper bound e
satisfying Eq. (9) with an initial stepsize τ0. If it fails, the current interval is split
into two (line 15) and the above operations repeat. Termination of refining the
stepsize is guaranteed by the continuous differentiability of f in both of its argu-
ments. Along with variation of τ , the bias locating the delayed state within the
list of sampling points need to be recomputed in each step by a backward search
(line 8). This may generate extra error, as the nearest sampling point yn−m may
not feature exactly the desired delay. This additional error is accounted for by
modifying the first line of the constrained optimization (9) into

‖(x + t1 ∗ f ,u + t2 ∗ g) − f(yn,yn−m)‖ ≤ e − σ (10)

for any t1, t2 ∈ [0, τ]. The correctness and completeness arguments for
Algorithm 3 are akin to Theorem 2.

5 Implementation and Experimental Results

To evaluate the approach of verification along simulations, we have implemented
the proposed algorithms with local stepsize control as a prototype4 in Matlab. It
takes a time-bounded safety verification problem of delayed dynamical systems
4 Available from http://lcs.ios.ac.cn/∼chenms/tools/DDEChecker v1.0.tar.bz2.

http://lcs.ios.ac.cn/~chenms/tools/DDEChecker_v1.0.tar.bz2

148 M. Chen et al.

as input, and it terminates with one of the three results SAFE, UNSAFE, or
UNKNOWN, reflecting the fact that a fine enough over-approximation has been
found to prove the system safe or unsafe, respectively, or that the maximum per-
mitted density of covering the initial set was insufficient for obtaining a definite
answer.

As our algorithm relies on solving the constrained optimization problems (9)
or (10), resp., for determining validated bounds, we have tried different solvers for
discharging that optimization problem, namely the numerical (and thus devoid of
formal guarantees concerning completeness and soundness) procedure fmincon
provided by Matlab and the optimization-modulo-theory procedure offered by
the nonlinear SAT-modulo theory solver HySAT II5 [16]. The constrained opti-
mization problems (9) and (10) involve a universally quantified constraint of the
shape

find min{e ≥ 0 | ∀x : φ(x, e) =⇒ ψ(x, e)}, (11)

which is outside the scope of the above solving procedures, as these handle exis-
tential constraints only. We therefore have substituted (11) by the existentially
constrained optimization problem

find max{e ≥ 0 | ∃x : φ(x, e) ∧ ¬ψ(x, e)}. (12)

Due to the linear ordering on R≥0, problem (12) is guaranteed to yield an upper
bound on the solution of (11), which is safe in our context. Both fmincon and
HySAT II proved to be able to efficiently solve (9) and (10) in the formula-
tion (12), with HySAT II being able to provide a validated solution due to
global search based on a combination of interval constraint propagation with
optimization-modulo-theory solving.

HySAT II [16] is a sat-modulo-theory (SMT) solver accepting formulas con-
taining arbitrary boolean combinations of theory atoms involving linear, polyno-
mial and transcendental functions. It internally rewrites these formulae into an
equi-satisfiable conjunctive normal form by means of a definitional translation
introducing auxiliary propositional and numeric variables representing the truth
values of sub-formulae and the numeric values of subexpressions, resp., thus
generalizing the well-known Tseitin transformation [25]. HySAT II then solves
the resulting CNF through a tight integration of the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [6] in its conflict-driven clause learning (CDCL)
variant with interval constraint propagation (ICP) [3]. Details of the algorithm,
which operates on interval valuations for both the Boolean and the numeric
variables and alternates between choice steps splitting such intervals and deduc-
tion steps narrowing them based on logical deductions computed through ICP
or Boolean constraint propagation (BCP), can be found in [14]. Implementing
a branch-and-prune search in interval lattices and conflict-driven learning of
clauses comprising irreducible atoms in those lattices, it can be classified as an
early implementation of abstract conflict-driven clause learning (ACDCL) [4].

By this ACDCL proof search, HySAT II will successively construct a cover
of the actual solution set of the constraint problem by tiny interval boxes, a
5 Available from https://www.uni-oldenburg.de/en/hysat/.

https://www.uni-oldenburg.de/en/hysat/

Validated Simulation-Based Verification of Delayed Differential Dynamics 149

sequence of so-called candidate solution boxes together enclosing all solutions.
Optimization then is based on a branch-and-prune search over the candidate
solution boxes, which is straightforward to integrate into the ACDCL proof
search by biasing the ACDCL splitting rule to better values when splitting along
the variable representing the optimization criterion, plus learning bounds that
impose blocking on any solutions worse than the best value up-to-now found.

The soundness of this procedure for solving the optimization problems (9) or
(10) in the formulation (12) follows immediately from the soundness properties
of ICP, which narrows the search space by chopping off regions not containing
any solution, but will never remove solutions [3]. It consequently is an invariant
of the iSAT algorithm’s proof search, as implemented in HySAT II, that its
residual search space internally represented by interval boxes plus the already
reported solution boxes together safely over-approximate the actual solution
space [14]. This in turn implies that the maximum found by HySAT II always
is a safe upper bound of the actual maximum, irrespective of possible non-
convexity of the optimization problem at hand. We can conclude that solving
the optimization problems (9) or (10) in the formulation (12) with HySAT II
will provide a safe upper bound on the actual optimal value of (12), which in
turn is an upper bound on (9) or (10), resp., in the original form (11). As any
upper bound renders the enclosure in Algorithms 2 or 3, resp., correct, we can
conclude that HySAT II’s optimization procedure guarantees soundness of the
overall algorithm. The possible failure of HySAT II’s optimization procedure in
determining a sharp over-approximation of the optimal value will at most impact
performance, as it may enforce an unnecessarily dense cover by simulation traces
due to overly pessimistic bloating of the original traces.

In the following, we demonstrate our approach by verification of some
quintessential DDEs.

Delayed Logistic Equation. In 1948, G. Hutchinson [17] introduced the delayed
logistic equation

ṅ(t) = a[1 − n(t − T)/K]n(t)

to model a single population whose percapita rate of growth at time t

ṅ(t)/n(t) = a[1 − n(t − T)/K]

depends on the population size T times units in the past. This would be a
reasonable model for a population that features a significant minimum repro-
ductive age or depends on a resource, like food, needing time to grow and those
to recover its availability. If we let N(t) = n(t)/K and rescale time, then we get
the discrete-delay logistic equation

Ṅ(t) = N(t)[1 − N(t − r)], t ≥ 0. (13)

Arguments in [24] established that for any initial function N0 > 0, there exists
a unique non-negative solution N(φ, t) defined for all t > 0. Wright’s conjecture
[26], still unsolved, is that if r ≤ π/2 then N(φ, t) → 1 as t → ∞ for all solutions
of Eq. (13) satisfying N0 > 0.

150 M. Chen et al.

0 2 4 6 8 10

0.6

0.8

1

1.2

1.4

1.6

t

N

numerical solution N(t)

over−approximation by bloating factor d(t)

Fig. 1. Over-approximation of the
solutions of Eq. (13) originating from
region B0.01(1.49) under delay r = 1.3.
Initial stepsize τ0 = 0.01, time bound
T = 10 s.

0 1 2 3 4 5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

t

N

numerical solution N(t)

over−approximation by bloating factor d(t)

lower bound of the unsafe set

Fig. 2. Over-approximation rigorously
proving Eq. (13) unsafe, with r = 1.7,
X0 = B0.025(0.425), τ0 = 0.1, T = 5 s
and U = {N |N > 1.6}.

0 1 2 3 4 50.4

0.6

0.8

1

1.2

1.4

1.6

t

N

(a) An initial over-approximaion of trajectories start-
ing from B0.225(1.25). It overlaps with the unsafe set
(s. circle). Initial set is consequently split (cf. Figs. 3b,
3c).

0 1 2 3 4 50.4

0.6

0.8

1

1.2

1.4

1.6

t

N

(b) All trajectories starting from B0.125(1.375)
are proven safe within the time bound, as the over-
approximation does not intersect with the unsafe set.

0 1 2 3 4 50.4

0.6

0.8

1

1.2

1.4

1.6

t

N

(c) Initial state setB0.125(1.125) is verified to be safe
as well.

0 1 2 3 4 50.4

0.6

0.8

1

1.2

1.4

1.6

t

N

(d) B0.25(0.75) yields overlap w. unsafe; the ball is
partitioned again (Figs. 3e, 3f).

0 1 2 3 4 50.4

0.6

0.8

1

1.2

1.4

1.6

t

N

(e) All trajectories originating from B0.125(0.875)
are provably safe.

0 1 2 3 4 50.4

0.6

0.8

1

1.2

1.4

1.6

t

N

(f) All trajectories originating from B0.125(0.625)
are provably safe as well.

Fig. 3. The logistic system (13) is proven safe through 6 rounds of simulation with
base stepsize τ0 = 0.1. Delay r = 1.3, initial state set X0 = {N |N ∈ [0.5, 1.5]}, time
bound T = 5 s, unsafe set {N |N > 1.6}.

Figure 1 illustrates an over-approximation of trajectories of Eq. (13) in terms
of a specific initial set. It provides an intuitive description of our simulation
approach equipped with computation of on-the-fly linear local error bounds. To
investigate Wright’s conjecture, we further explore the safety verification frame-
work based upon validated simulations with a delay r = 1.3 < π/2, for which

Validated Simulation-Based Verification of Delayed Differential Dynamics 151

the trajectories are expected to converge within a time interval. The detailed
verification process is elaborated in Fig. 3. Meanwhile, we also successfully fal-
sified an unsafe case with r = 1.7 where the over-approximation of a diverging
trajectory can be rigorously shown to violate the safety property (see Fig. 2).

Delayed Microbial Growth. Ellermeyer et al. [10,11] introduced a delay in the
standard bacterial growth model in a chemostat which, after scaling time and
the dependent variables, can be written as

Ṡ(t) = 1 − S(t) − f(S(t))x(t) ,
ẋ(t) = e−rf(S(t − r))x(t − r) − x(t) ,

(14)

where f(S) = αS/(β + S), and S(t) denotes the substrate (food for bacteria)
concentration, while x(t) is the biomass concentration of bacteria. The delay r
reflects the assumption that whereas cellular absorption of substrate is assumed
to be an instantaneous process, a resulting increase in microbial biomass reflect-
ing assimilation is assumed to lag by a fixed amount of time r. A specific verifica-
tion problem of Eq. (14) is shown in Fig. 4, where different rounds of simulation
are depicted together in the phase space of S and x, and for a clear presenta-
tion, we only sketch the over-approximations around those numerically computed
sampling points.

Fig. 4. Equation (14) is proven safe by 17 rounds of simu-
lation w. τ0 = 0.45. The simulated trajectories start from
within a cover of X0 (the red dashed circle on the right)
and converge eventually to a basin of attraction (marked
by a small blue rectangle). Here, α = 2e, β = 1, r = 0.9,
X0 = B0.3((1; 0.5)), U = {(S; x)|S + x < 0}, T = 8 s.
(Colour figure online)

Gene Regulation. To fur-
ther investigate the scal-
ability of our approach
to high dimensions, we
recall an instantiation
of Example 1 by set-
ting n = 5, namely
with 5 state components
x = (x1;x2; . . . ;x5) and
5 delay terms r =
(r1; r2; . . . ; r5) involved.
This essentially yields,
in each step of simu-
lation, an optimization
procedure of the form
(10) with 23 scalar vari-
ables, i.e., e, t1, t2 and
x,u, f ,g ∈ R

5. By fur-
ther setting r = (0.1;
0.2; 0.4; 0.8; 1.6), X0 =
B0.2((1; 1; 1; 1; 1)), U =
{x|x1 < 0}, and T = 2 s,
the system of Eq. (4) is

152 M. Chen et al.

rigorously proven unsafe, which means that the dosage of mRNA might degrade
to negative in this hypothetical setting.

As an intuitive observation, the verification time consumed by our prototype
is fairly sensitive to the specific setting of the verification problem, including
the initial set X0, the delays r, the unsafe set U , and the time bound T as
well. However, the optimization routine proved well scalable to high dimensions,
and particularly, verifications of the above benchmark systems all completed
successfully in a handful of minutes.

6 Conclusion and Future Work

We have exposed an approach for automated formal verification of time-bounded
reachability properties of a class of systems that feature delayed differential
dynamics governed by delay differential equations (DDEs) with multiple differ-
ent delays (including 0, i.e., direct feedback). This class of system models has
successfully been used to model various real-world systems in the field of biology,
control theory, economics, and other domains. Our approach is based on adapting
the paradigm of verification-by-simulation to DDEs. It provides bounded-time
verification by covering the full set of time-bounded trajectories of a dynami-
cal system evolving from the initial state set by means of investigating a finite
sample of initial states plus generalization via a sensitivity argument. Initially,
it triggers a finite set of numerically approximate simulations of the dynamic
behaviors, thereby generating a finite set of approximate simulation traces origi-
nating from a finite sample of the initial states. As the sample does not cover all
initial states, and as simulation is only approximate, we bloat each time-stamp
value pair returned from the simulation by a distance determined via an error
bound computed automatically on-the-fly during simulation. This error bound
incorporates both sensitivity information concerning start states and rigorous
bounds on integration error incurred by numerical solving. Hence, the union of
the state sets reached by all the individual bloated trajectories provides a safe
over-approximation of the states actually reachable from the initial set within
the time bound. If this over-approximation proves safety in the sense that the
reachable states do not intersect the unsafe states, or conversely if the simulation
produces a valid counter-example in the sense that it can prove that a trajectory
hits the unsafe states, then the algorithm generates the corresponding verdict.
Otherwise, our algorithm refines its sample of initial states and repeats the pre-
vious steps to compute a more precise over-approximation.

Based on that approach, we have implemented a prototype of a validated
solver for DDE. Using it, we have successfully demonstrated the method on
several benchmark systems involving delayed differential dynamics.

As a future work, we plan to replace Euler’s direct method by high-order
Runge-Kutta methods [1] in order to obtain more precise approximations. Fur-
thermore, the method of Zou et al. [27] can be extended to provide a safe enclo-
sure algorithm for the class of systems (3) suitable for use in unbounded formal
verification, based on the fact that the iSAT constraint solver [14] used therein

Validated Simulation-Based Verification of Delayed Differential Dynamics 153

supports unbounded verification by means of Craig interpolation. In addition,
it could be quite interesting to investigate how to combine the technique of
conformance testing for hybrid systems [18,23] with our approach. The poten-
tial merits of such combination is twofold: on the one hand, it can extend the
conformance testing technique to deal with hybrid systems with delays; on the
other hand, it may improve the efficiency of the conformance testing technique by
using simulation-based approach to over-approximate the reachable set instead
of directly computing.

References

1. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations.
Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford
(2003)

2. Bellman, R.E., Cooke, K.L.: Differential-difference equations. Technical report R-
374-PR, RAND Corporation, Santa Monica, California, January 1963

3. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F.,
van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Foundations
of Artificial Intelligence, Chap. 16, pp. 571–603. Elsevier, Amsterdam (2006)

4. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Interpolation-based
verification of floating-point programs with abstract CDCL. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 412–432. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38856-9 22

5. Chen, M., Fränzle, M., Li, Y., Mosaad, P.N., Zhan, N.: Validated simulation-
based verification of delayed differential dynamics (full version). http://lcs.ios.ac.
cn/chenms/papers/FM2016 FULL.pdf

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5, 394–397 (1962)

7. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford
(1981)

8. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71493-4 16

9. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: Proceedings of the Eleventh ACM International Conference on
Embedded Software, p. 26. IEEE Press (2013)

10. Ellermeyer, S.F.: Competition in the chemostat: global asymptotic behavior of
a model with delayed response in growth. SIAM J. Appl. Math. 54(2), 456–465
(1994)

11. Ellermeyer, S.F., Hendrix, J., Ghoochan, N.: A theoretical and empirical investiga-
tion of delayed growth response in the continuous culture of bacteria. J. Theoret.
Biol. 222(4), 485–494 (2003)

12. Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J. (eds.): Computational Cell
Biology, vol. 20. Springer, New York (2002)

13. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation.
In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp.
446–463. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24953-7 32

http://dx.doi.org/10.1007/978-3-642-38856-9_22
http://lcs.ios.ac.cn/chenms/papers/FM2016_FULL.pdf
http://lcs.ios.ac.cn/chenms/papers/FM2016_FULL.pdf
http://dx.doi.org/10.1007/978-3-540-71493-4_16
http://dx.doi.org/10.1007/978-3-319-24953-7_32

154 M. Chen et al.

14. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisfiability Boolean Model. Comput. 1, 209–236 (2007)

15. Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer
science and control theory. Eur. J. Control 17(5–6), 568–578 (2011)

16. Herde, C.: Efficient Solving of Large Arithmetic Constraint Systems with Complex
Boolean Structure. Vieweg+Teubner, Wiesbaden (2011)

17. Hutchinson, G.E.: Circular causal systems in ecology. Ann. NY Acad. Sci. 50(4),
221–246 (1948)

18. Khakpour, N., Mousavi, M.R.: Notions of conformance testing for cyber-physical
systems: overview and roadmap (invited paper). In: CONCUR 2015. LIPIcs, vol.
42, pp. 18–40 (2015)

19. Mallet-Paret, J., Sell, R.: The poincaré-bendixson theorem for monotone cyclic
feedback systems with delay. J. Diff. Eq. 125, 441–489 (1996)

20. Nahhal, T., Dang, T.: Test coverage for continuous and hybrid systems. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 449–462. Springer, Hei-
delberg (2007). doi:10.1007/978-3-540-73368-3 47

21. Pola, G., Pepe, P., Di Benedetto, M.D.: Symbolic models for time-varying time-
delay systems via alternating approximate bisimulation. Int. J. Robust Nonlinear
Control 25, 2328–2347 (2015)

22. Pola, G., Pepe, P., Di Benedetto, M.D., Tabuada, P.: Symbolic models for nonlinear
time-delay systems using approximate bisimulations. Syst. Contr. Lett. 59(6), 365–
373 (2010)

23. Roehm, H., Oehlerking, J., Woehrle, M., Althoff, M.: Reachset conformance testing
of hybrid automata. In: HSCC 2016, pp. 277–286 (2016)

24. Sagirow, P.: Introduction. In: Sagirow, P. (ed.) Stochastic Methods in the Dynamics
of Satellites. ICMS, vol. 57, pp. 5–7. Springer, Heidelberg (1970)

25. Tseitin, G.S.: On the complexity of derivations in propositional calculus. In:
Slisenko, A. (ed.) Studies in Constructive Mathematics and Mathematical Log-
ics (1968)

26. Wright, E.M.: A non-linear difference-differential equation. J. Reine Angew. Math.
194, 66–87 (1955)

27. Zou, L., Fränzle, M., Zhan, N., Mosaad, P.N.: Automatic verification of stability
and safety for delay differential equations. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 338–355. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21668-3 20

http://dx.doi.org/10.1007/978-3-540-73368-3_47
http://dx.doi.org/10.1007/978-3-319-21668-3_20
http://dx.doi.org/10.1007/978-3-319-21668-3_20

Towards Learning and Verifying Invariants
of Cyber-Physical Systems by Code Mutation

Yuqi Chen(B), Christopher M. Poskitt, and Jun Sun

Singapore University of Technology and Design, Singapore, Singapore
yuqi chen@mymail.sutd.edu.sg

Abstract. Cyber-physical systems (CPS), which integrate algorithmic
control with physical processes, often consist of physically distributed
components communicating over a network. A malfunctioning or com-
promised component in such a CPS can lead to costly consequences,
especially in the context of public infrastructure. In this short paper, we
argue for the importance of constructing invariants (or models) of the
physical behaviour exhibited by CPS, motivated by their applications to
the control, monitoring, and attestation of components. To achieve this
despite the inherent complexity of CPS, we propose a new technique
for learning invariants that combines machine learning with ideas from
mutation testing. We present a preliminary study on a water treatment
system that suggests the efficacy of this approach, propose strategies for
establishing confidence in the correctness of invariants, then summarise
some research questions and the steps we are taking to investigate them.

1 Introduction

Cyber-physical systems (CPS), characterised by their tight integration of algo-
rithmic control and physical processes, are prevalent across engineering domains
as diverse as aerospace, autonomous vehicles, and medical monitoring; they are
also used to control critical public infrastructure such as smart grids and water
treatment plants [16,18]. In such contexts, CPS often consist of distributed soft-
ware components (the “cyber” part) that communicate over a network and inter-
act with their local environments via sensors and actuators (the “physical” part).
A component that exhibits faulty behaviour—or worse still, becomes compro-
mised [7]—can lead to costly and damaging consequences, motivating research
into approaches for ensuring their correctness, safety, and security.

Reasoning about a CPS as a whole, however, is very challenging, given that
models must capture both discrete behaviour in the cyber part as well as con-
tinuous behaviour in the physical part [30]. With source code for the former
and ordinary differential equations (ODEs) for the latter, it becomes possible to
model the CPS as a hybrid system and apply a variety of techniques (e.g. model
checking [11], SMT solving [12], non-standard analysis [13], concolic testing [17],
or theorem proving [23,24]). Yet CPS are inherently complex, and even with
domain-specific expertise, it can be difficult to determine ODEs that are accu-
rate enough in practice: there might always remain some discrepancy between
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 155–163, 2016.
DOI: 10.1007/978-3-319-48989-6 10

156 Y. Chen et al.

the verified model and the behaviour of the actual CPS, emphasising the impor-
tance of techniques that can be applied at runtime [20].

Our Approach. As an alternative to the endeavour of manual modelling,
we pursue in this paper a more systematic approach. We propose to apply
machine learning (ML) to the sensor data of CPS to construct models in the
form of invariants—conditions that must hold in all states amongst the phys-
ical processes controlled by the CPS—and to make those invariants checkable
at runtime. To achieve this, the learner must be trained on traces of sensor
data representing “normal” runs (the positive case, satisfying the invariant),
and also on traces representing incorrect behaviour (the negative case); the for-
mer being easy to obtain, but the latter requiring more ingenuity. We obtain our
negative traces by the novel application of code mutation (à la mutation test-
ing [14]) to the software components of CPS. Besides characterising the CPS,
the learnt invariants have some important applications in controlling, monitor-
ing, and attesting the software components [25]. It is thus important to ascertain
that the learnt invariants actually are invariants of the CPS: to address this, we
propose to verify them using statistical model checking and symbolic execution.

Our Contributions. This short paper describes a novel approach for generating
invariants (or models) of CPS, based on the application of machine learning to
traces of sensor data obtained under mutated software components. We present
the results of a preliminary experiment on (a simulator of) Secure Water Treat-
ment (SWaT) [1], a water purification testbed, which suggest the efficacy of the
approach and motivate the need for further research. Furthermore, we propose
the use of statistical model checking and symbolic execution for establishing
confidence in the correctness of the learnt invariants, and highlight some impor-
tant open research questions which we are investigating in ongoing work. For
the formal methods community, this paper represents the start of a line of work
to model and verify—“warts and all”—a complex, real-world CPS. For the CPS
community, it describes a systematic approach for constructing invariants that
can be applied in controlling, monitoring, and attesting software components.
For the ML community, it presents a new application of learning arising from a
novel combination of ideas from CPS and mutation testing.

2 SWaT Testbed and Cyber-Physical System Invariants

SWaT. We are currently investigating our approach in the context of a partic-
ular CPS: the SWaT testbed [1]. SWaT, built for cyber-security research at the
Singapore University of Technology and Design, is a scaled-down but fully oper-
ational water treatment plant, capable of producing five gallons of safe drinking
water per minute. Water is treated in six distinct, co-operating stages, under
which it undergoes chemical processes such as ultrafiltration, de-chlorination,
and reverse osmosis. Each stage is controlled by an independent programmable
logic controller (PLC), which receives sensor data such as water flow rates and
tank levels, and then computes signals to send to actuators including pumps

Towards Learning and Verifying Invariants of Cyber-Physical Systems 157

and motorised valves. This communication all takes place over a network. Sensor
data is also available to a Supervisory Control and Data Acquisition (SCADA)
system, and is recorded by a historian to facilitate offline analyses.

Control is expressed in the programs that PLCs repeatedly cycle through.
These are structurally very simple, essentially boiling down to big (nested) if-
statements. The programs use only the simplest constructs: loops, for example,
are completely absent. Furthermore, the source code can easily be viewed, modi-
fied, and re-deployed to the PLCs using Rockwell’s RSLogix 5000, an industrial-
standard software suite. While the cyber part of SWaT is thus relatively simple,
the same is not true of the physical part: runs of the system are governed by
laws concerning the dynamics of water flow, the evolution of pH values, and the
chemical processes associated with the six water treatment stages.

To complement the SWaT testbed, we also have access to a simulator imple-
mented in Python (relying on some of its scientific libraries). The cyber part is
simulated faithfully as the PLC code was translated to Python directly. Since the
actual ODEs governing the physical part of SWaT are unknown, the simulator
is not as accurate in this regard. The ODEs it does implement, however, have
been improved over time by cross-validating data from the simulator with real
SWaT data collected by the historian.

CPS Invariants. The safety of water treatment plants is of paramount impor-
tance, as breaches or malfunctioning components can lead to costly consequences.
In SWaT, for example, there is a risk of damaging the mechanics of the system
if the water levels in certain tanks become too high or too low [15]. One way
to detect when runs of a system are diverging into such territory is to mon-
itor invariants—conditions that must hold in all states amongst the physical
processes controlled by the CPS—and raise an alarm when they are no longer
satisfied. This approach has been applied to a number of CPS [9,22], including
for stages of SWaT itself [3,4]. Typically, however, the invariants are manually
derived using the laws of physics and domain-specific knowledge. Moreover, they
are derived for specific, expected physical relationships, and may not capture
other important patterns hiding in the sensor data.

Beyond providing a characterisation of CPS and their important applications
in monitoring for safety, invariants can also be seen as facilitating a form of code
attestation. That is to say, if the actual behaviour of a CPS does not satisfy
our mathematical model of the physical world under its control (i.e. the invari-
ant), then it is possible that the cyber part has been compromised and that ill-
intended manipulations are occurring. This form of attestation is known as phys-
ical attestation [25,27], and while weaker than typical software- and hardware-
based attestation schemes (e.g. [5,6,8,26]), it is much more lightweight—neither
the firmware nor the hardware of the PLCs require modification.

3 Learning with Mutants

Learning SWaT Invariants. Rather than deriving further invariants for SWaT
manually, we propose to learn them systematically by applying ML—initially,

158 Y. Chen et al.

Support Vector Machines (SVM)—to traces of SWaT sensor data, taking the
classifiers they learn as our invariants. To learn such a classifier, SVM must be
provided with traces that should be classified as positive (i.e. correct behaviour)
and traces that should be classified as negative. The data available from the
SWaT historian can be seen as representing correct (and thus positive) behaviour
of the system as a whole: the SWaT PLCs and actual (unknown) ODEs together.
In contrast, we propose to collect negative traces by running the system under
small manipulations. Since we cannot change the ODEs (we cannot yet bend the
laws of physics!), we propose to manipulate the part of SWaT that we can: the
programs running on the PLCs.

As previously discussed, it is straightforward to change the PLC programs
of SWaT and collect some negative traces, but it is more challenging to do so in
a systematic way that ensures the strength of the invariant and precision of the
classifier. The solution we propose is directly inspired by mutation testing [14],
a fault-based testing technique that deliberately seeds errors—small, syntactic
changes called mutations—into multiple copies of a program, which are executed
to assess the quality of a test suite (good ones should detect the mutants). Rather
than using mutations to improve the completeness of a test suite, we are using
them to generate a more comprehensive set of negative traces for training on.
By training on traces resulting from small syntactic changes, we hope to learn a
classifier as close to the boundary between correct and suspicious behaviour as
possible. Our rationale is that smaller changes are more likely to reveal negative
traces that are relevant in practice, corresponding, for example, to isolated PLCs
or sensors failing, or an attacker attempting to keep their changes undetected.

Using mutations for learning is also attractive because of the structural sim-
plicity of the PLC programs. Were we assessing a test suite on them, we could
do so efficiently and without redundancy by using the five basic (arithmetic,
relational, and logical) mutation operators identified by Offutt et al. [21]. We
hypothesise that (and are investigating whether) this result has an analogue
for learning that could help us in minimising the number of redundant traces.
Even if so, there remain some additional challenges to overcome. For example, if
mutations are not executed, this must be detected, and thus the traces rejected
as negative samples. Even if a mutant is executed, it may not lead to a physi-
cal effect immediately (or ever) and thus could generate traces indistinguishable
from positive ones. Other issues include how many mutations to use in each copy,
and how to handle valid modes of operation in SWaT that are rarely entered.

Preliminary Evaluation. As a very first step towards evaluating the outlined
approach, we undertook an experiment to ascertain the effectiveness of a classifier
learnt from traces produced by the SWaT simulator under a number of manually
applied mutations. Note that we used the simulator to facilitate a quick proof-of-
concept without the resource costs of the real system (e.g. water usage, human
monitoring); this ML approach can be applied to traces collected from the real
system in the same way.

First, we manually launched the SWaT simulator in three different initial
states (i.e. assignments of variables modelling sensors), collecting three traces of

Towards Learning and Verifying Invariants of Cyber-Physical Systems 159

correct behaviour each spanning 30 min. Following this, we made 20 copies of
the PLC code and manually applied a different (random) mutation to each. Of
these 20 mutants, 14 of them generated traces equivalent to correct behaviour
and were manually rejected. Seven mutants generated different traces, although
one mutant was rejected for generating a trace too similar to another. The
six remaining mutants were selected to generate our negative traces; three of
the mutations each modified an assignment, whereas the other three modified
an arithmetic expression in a conditional guard. We generated traces for each
mutant using the same three initial states as before.

We proceeded to apply SVM to learn six classifiers for the six mutants respec-
tively, each against the correct code. We selected 10 features: the first five rep-
resenting the water levels of the five tanks, and the next five representing the
same levels after 250 ms. For training the classifiers and evaluating their accu-
racy, we applied k-fold cross-validation to the traces with k = 5. On average,
the classifiers achieved an accuracy of 99 %.

Finally, we applied SVM to all the traces from all six mutants to learn a single
classifier, i.e. to determine whether a trace represents correct behaviour or the
behaviour caused by any one of the mutations. We found that this combined
classifier maintained a similar level of accuracy to the individual ones: 98.41%.
We extracted the learnt invariant from this classifier, which, albeit complicated,
expresses a linear relationship between water tank levels (mm) at one time point
(v1, . . . v5) and 250 ms after it (v′

1, . . . v
′
5). For simplicity of presentation, the

coefficients are given below to three decimal places. The full model and training
data are all available online (see [2]).

−0.349v1 + 9.789v2 − 10.192v3 + 0.803v4 − 5.561v5
−0.630v′

1 − 10.455v′
2 + 10.333v′

3 + 0.803v′
4 + 3.928v′

5 < −786.416

This experiment has shown that it is possible to apply SVM to learn an
accurate classifier for traces of sensor data, using the negative samples gener-
ated under a small number of mutated PLC programs. It is, of course, too limited
in its present scope to allow for more general conclusions; a much more extensive
evaluation of the outlined approach is needed, and is underway. It does however
suggest the feasibility of the basic idea, and has highlighted a number of impor-
tant challenges. For instance, the process should be more automatic: mutation
operators should be applied automatically, as should the detection of unexercised
mutations, as well as the comparison of the generated traces against the positive
ones. Furthermore, to ensure as strong an invariant and precise a classifier as
possible, a number of questions must be answered empirically, regarding, e.g. the
number of mutations (and the possibility of multiple mutations per copy), the
sufficiency of mutation operators, and the length of traces.

Our experiment also highlighted the role that a simulator can play in muta-
tion “screening” before applying them to the real SWaT system and collecting
negative traces that are based on the actual ODEs. This helps to avoid wasting
time and resources otherwise lost by applying the mutations to the real PLCs
first. Note that while the ML technique can be applied to SWaT data in exactly

160 Y. Chen et al.

the same way as for the simulator, a human technician must be present while
collecting the data itself to ensure that the mutations do not lead the system
into a state that causes damage. This raises another research question: whether
one can determine a class of “safe” mutations for SWaT that still facilitate a
precise classifier but avoid entirely the possibility of causing damage.

4 Correctness of Invariants

Our preliminary experiment has allowed us to learn a new invariant for SWaT
(or rather, at least to begin with, its simulator). But is it actually an invariant?
It is not particularly intuitive to reason about. And even if it were, to argue for
its correctness, we would need some expertise in the physics of water treatment
plants; a requirement we wanted to avoid in the first place. As alternatives to
manual, ad hoc proofs, we propose two contrasting approaches for establishing
confidence in the correctness of invariants, and highlight their well-suitedness to
CPS like SWaT.

First, we will apply statistical model checking (SMC) to SWaT, a standard
technique for analysing and verifying CPS [10]. In SMC, executions of the sys-
tem (i.e. traces of sensor data) are observed, and hypothesis testing or statistical
estimation techniques are applied to determine whether or not the executions
provide statistical evidence of the invariant holding. SMC estimates the proba-
bility of correctness, rather than guaranteeing it outright, but is simple to apply
to SWaT (and its simulator) since it only requires the system to be executable.
Furthermore, should the ODEs of the SWaT simulator become more accurate in
the future, then our mutation-based learning approach could take place entirely
on that; SMC could then determine whether or not the learnt invariants are also
invariants of the real system, without having to apply any mutations to it.

Second, we will investigate the use of symbolic execution for analysing SWaT
with respect to a learnt invariant. In the PLC programs, symbolic values will be
used to abstract away from concrete sensor inputs. The technique will then build,
along the different paths of the PLC code, path constraints over the symbolic
values (i.e. path conditions in conjunction with an assertion based on the learnt
invariant). The PLC programs have a simple structure that is well-suited to
this task: they are free of loops, and the paths through the programs are short
(maximal depth of three; maximal branching of 28). Our invariants, however, are
based upon sensor readings at two different time points, so we cannot analyse
them with respect to the cyber part of SWaT alone: a model of the physical
processes is needed too, for reasoning about the effects that signals will have. As
we have discussed, we cannot expect to manually derive a completely accurate
one, but we could nonetheless use approximate models (e.g. as defined in the
simulator), or even models of SWaT that were automatically constructed using
different approaches to ours (e.g. the probabilistic model of [29]).

It should be emphasised that while neither technique can fully guarantee
correctness, they differ in where precision is lost, and so should complement
each other in helping to establish confidence in the learnt invariants. SMC, for

Towards Learning and Verifying Invariants of Cyber-Physical Systems 161

example, estimates a probability of correctness based only on the executions it
is provided with (leading to challenges such as handling rare events); yet by
working with actual system executions, its results are based on the actual phys-
ical processes. Symbolic execution, in contrast, must work with an approximate
physical model, but performs an analysis on the actual source code in the cyber
part (and not just on a subset of the possible system executions).

5 Conclusion and Next Steps

This short paper has proposed a novel approach for learning invariants of CPS
that trains a ML technique such as SVM on positive and negative traces of sensor
data, with the latter obtained by applying mutation operators to copies of the
programs in the cyber part—the part of the CPS that we can most easily control.
We presented a preliminary study on SWaT, a raw water treatment plant, that
suggested the effectiveness of constructing invariants this way. We furthermore
outlined the use of SMC and symbolic execution for establishing confidence in
the correctness of learnt invariants, and discussed their use in CPS applications
such as physical attestation.

Much work remains to be done to truly ascertain the effectiveness of our app-
roach for CPS. First, we will automate—as much as possible—our experiment
on the SWaT simulator, to allow for classifiers to be trained on several addi-
tional mutants and initial states more easily, and to automatically detect those
mutants that do not cause the system to exhibit different physical behaviour.
Then, within this framework, we will begin investigating the challenges raised
in Sect. 3 and the verification approaches outlined in Sect. 4, before shifting our
experimentation to traces obtained from the real SWaT system. We will investi-
gate the use of ML systems other than SVM, and compare our supervised model
learning approach against proposed unsupervised ones for CPS (e.g. [19,28]).
Finally, we will investigate the application of learnt invariants to code attesta-
tion, by instigating cyber-attacks on the SWaT system and evaluating whether
or not our classifiers are effective in detecting them.

Acknowledgements. We thank Pingfan Kong for assisting us with the SWaT simu-
lator, and the anonymous referees for their helpful comments and criticisms. This work
was supported by NRF Award No. NRF2014NCR-NCR001-40.

References

1. Secure Water Treatment (SWaT). http://itrust.sutd.edu.sg/research/testbeds/
secure-water-treatment-swat/. Accessed Sep 2016

2. Supplementary material. http://sav.sutd.edu.sg/?page id=3258
3. Adepu, S., Mathur, A.: Distributed detection of single-stage multipoint cyber

attacks in a water treatment plant. In: Proceedings of ACM Asia Conference
on Computer and Communications Security (AsiaCCS 2016), pp. 449–460. ACM
(2016)

http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://sav.sutd.edu.sg/?page_id=3258

162 Y. Chen et al.

4. Adepu, S., Mathur, A.: Using process invariants to detect cyber attacks on a water
treatment system. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) Proceedings of
International Conference on ICT Systems Security and Privacy Protection (SEC
2016). IFIP AICT, vol. 471, pp. 91–104. Springer, New York (2016)

5. Alves, T., Felton, D.: TrustZone: integrated hardware and software security. ARM
white paper (2004)

6. Anati, I., Gueron, S., Johnson, S.P., Scarlata, V.R.: Innovative technology for CPU
based attestation and sealing. Intel white paper (2013)

7. Cárdenas, A.A., Amin, S., Sastry, S.: Research challenges for the security of control
systems. In: Proceedings of USENIX Workshop on Hot Topics in Security (HotSec
2008). USENIX Association (2008)

8. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of ACM Confer-
ence on Computer and Communications Security (CCS 2009), pp. 400–409. ACM
(2009)

9. Choudhari, A., Ramaprasad, H., Paul, T., Kimball, J.W., Zawodniok, M.J.,
McMillin, B.M., Chellappan, S.: Stability of a cyber-physical smart grid system
using cooperating invariants. In: Proceedings of IEEE Computer Software and
Applications Conference (COMPSAC 2013), pp. 760–769. IEEE (2013)

10. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24372-1 1

11. Frehse, G., Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 30

12. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 14

13. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 34

14. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

15. Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis of
a water treatment system. In: Proceedings of International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS 2016), pp. 22–28. ACM
(2016)

16. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: a survey. IEEE Syst. J. 9(2), 350–365 (2015)

17. Kong, P., Li, Y., Chen, X., Sun, J., Sun, M., Wang, J.: Towards concolic testing
for hybrid systems. In: Fitzgerald, J., et al. (eds.) FM 2016. LNCS-FM, vol. 9995,
pp. 460–478. Springer, Heidelberg (2016)

18. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2008), pp. 363–369. IEEE (2008)

19. Maier, A.: Online passive learning of timed automata for cyber-physical production
systems. In: Proceedings of IEEE International Conference on Industrial Informat-
ics (INDIN 2014), pp. 60–66. IEEE (2014)

http://dx.doi.org/10.1007/978-3-642-24372-1_1
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1007/978-3-642-31424-7_34

Towards Learning and Verifying Invariants of Cyber-Physical Systems 163

20. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified
cyber-physical system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 199–214. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11164-3 17

21. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental
determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 5(2), 99–118 (1996)

22. Paul, T., Kimball, J.W., Zawodniok, M.J., Roth, T.P., McMillin, B.M., Chellappan,
S.: Unified invariants for cyber-physical switched system stability. IEEE Trans.
Smart Grid 5(1), 112–120 (2014)

23. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71070-7 15

24. Quesel, J., Mitsch, S., Loos, S.M., Arechiga, N., Platzer, A.: How to model and
prove hybrid systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools
Technol. Transf. 18(1), 67–91 (2016)

25. Roth, T., McMillin, B.: Physical attestation of cyber processes in the smart grid.
In: Luiijf, E., Hartel, P. (eds.) CRITIS 2013. LNCS, vol. 8328, pp. 96–107. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-03964-0 9

26. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: SWATT: software-based
ATTestation for embedded devices. In: Proceedings of IEEE Symposium on Secu-
rity and Privacy (S&P 2004), p. 272. IEEE (2004)

27. Valente, J., Barreto, C., Cárdenas, A.A.: Cyber-physical systems attestation. In:
Proceedings of IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS 2014), pp. 354–357. IEEE (2014)

28. Vodencarevic, A., Kleine Büning, H., Niggemann, O., Maier, A.: Identifying behav-
ior models for process plants. In: Proceedings of IEEE Conference on Emerging
Technologies & Factory Automation (ETFA 2011), pp. 1–8. IEEE (2011)

29. Wang, J., Sun, J., Yuan, Q., Pang, J.: Should we learn probabilistic models for
model checking? a new approach and an empirical study. CoRR abs/1605.08278
(2016). http://arxiv.org/abs/1605.08278

30. Zheng, X., Julien, C., Kim, M., Khurshid, S.: Perceptions on the state of the art in
verification and validation in cyber-physical systems. IEEE Syst. J. PP(99), 1–14
(2015)

http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-319-03964-0_9
http://arxiv.org/abs/1605.08278

From Electrical Switched Networks
to Hybrid Automata

Alessandro Cimatti1, Sergio Mover2, and Mirko Sessa1,3(B)

1 Fondazione Bruno Kessler, Trento, Italy
{cimatti,sessa}@fbk.eu

2 University of Colorado Boulder, Boulder, USA
sergio.mover@colorado.edu

3 University of Trento, Trento, Italy

Abstract. In this paper, we propose a novel symbolic approach to auto-
matically synthesize a Hybrid Automaton (HA) from a switched electri-
cal network. The input network consists of a set of physical components
interconnected according to some reconfigurable network topology. The
underlying model defines a local dynamics for each component in terms of
a Differential-Algebraic Equation (DAE), and a set of network topologies
by means of discrete switches. Each switch configuration induces a differ-
ent topology, where the behavior of the system is a Hybrid Differential-
Algebraic Equations.

Two relevant problems for these networks are validation and refor-
mulation. The first consists of determining if the network admits an
Ordinary Differential Equations (ODE) that describes its dynamics; the
second consists of obtaining such ODE from the initial DAE. This step
is a key enabler to use existing formal verification tools that can cope
with ODEs but not with DAEs.

Since the number of network topologies is exponential in the number
of switches, first, we propose a technique based on Satisfiability Mod-
ulo Theories (SMT) that can solve the validation problem symbolically,
avoiding the explicit enumeration of the topologies. Then, we show an
SMT-based algorithm that reformulates the network into a symbolic HA.
The algorithm avoids to explicitly enumerate the topologies clustering
them by equivalent continuous dynamics.

We implemented the approach with several optimizations and we com-
pared it with the explicit enumeration of configurations. The results
demonstrate the scalability of our technique.

1 Introduction

Many practical systems feature emerging behaviors from the complex interac-
tions of physical components, that are interconnected according to some recon-
figurable topology. Typical examples include hydraulics [25] and electrical power
supply networks [23]. The components interact by exchanging energy along the
network branches, in a bidirectional fashion, that results in a relational, global
model, that depends on the specific system configuration (or mode).
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 164–181, 2016.
DOI: 10.1007/978-3-319-48989-6 11

From Electrical Switched Networks to Hybrid Automata 165

Kirchhoff Networks [14] are a well-known and powerful framework for
component-based physical modeling, that allows to cover power-conserving net-
work rules. Dedicated analysis methods, devised for “single-mode” networks,
support the validation of some basic sanity properties (e.g. absence of VC-loops,
or IL cutsets [24]). Following the Electronic-Hydraulic analogy [2], it is also pos-
sible to analyze interesting classes of hydraulic circuits, such as the WBS in
Fig. 1.

Fig. 1. Wheel Braking Systems (WBS) with N braking lines.

Unfortunately, dynamic reconfiguration yields networks that are associated
with a potentially exponential number of modes. Consider, for example, the
simple electrical circuit in Fig. 2: depending on the status of the switches and
fuses, sixteen configurations are possible, each of which is associated with a
suitable set of differential equations. Similar considerations apply, on a larger
scale, to the hydraulic circuit from [25] in Fig. 1. In this paper, we tackle two key
problems. The network validation problem consists of showing that the dynamics
of the network can be expressible in form of an ODE (in order for it to be
amenable to formal verification), and that all the output variables (i.e. variables
that should be functionally represented by the state of the network) can be
uniquely determined. The network reformulation problem consists of converting
the network into an equivalent hybrid automaton, in order to enable functional
verification of the network. The challenge lies in the fact that, for each discrete
configuration, the dynamics of the network is defined by a Differential-Algebraic
Equation (DAE). However, the available tools expect an Ordinary Differential
Equation (ODE). Although solving the problem for a fixed configuration is rather
simple, given a configuration of the switches, the number of configurations is
exponential in the number of switches. Thus, an enumerative approach is hardly
feasible: one would have to analyze all the possible modes, to rule out the ones
that are deemed unfeasible and build a suitable equational model for each of
the remaining modes. In practice, such an approach is not feasible, for two main
reasons. First, a manual approach is an extremely tedious and error prone task.
Second, an enumerative approach may results in an enormous model, that is
hardly manageable for verification tools. Such an enumerative approach is in
fact applied in [22], to the modeling of a few two-switches circuit.

166 A. Cimatti et al.

In this work, we discuss how to automatically reformulate a Linear Electrical
Kirchhoff Network into the corresponding Hybrid Automaton with ODE con-
tinuous dynamics. We propose a symbolic approach to the network validation
problem, and a symbolic algorithm for the reformulation problem. The idea is
to aggregate the discrete modes that share the same dynamics, with different
variants in the computation. This results in a more efficient reformulation, and
a more compact Hybrid Automaton.

The approach is experimentally evaluated on several electrical and hydraulic
benchmarks, where we carry out the validation, and compare (the variants of)
the proposed symbolic reformulation approach with its enumerative counterpart.
The results demonstrate a much greater scalability of the symbolic approach. We
also discuss the application of the proposed approach to some benchmarks in the
literature [16,22].

−
+Vs

R0 S1 F1 R1 C1

S2 F2 R2 C2

Fig. 2. Switched RC Network.

The paper is organized as follows: In Sect. 2
we describe some background. In Sect. 3 we for-
mally define the problem at hand. In Sect. 4 we
describe the validation routine, and in Sect. 5 we
describe the reformulation methods. In Sect. 6
we describe the related work, and in Sect. 7 we
experimentally evaluate the proposed approach.
In Sect. 8 we draw some conclusions and promis-
ing research directions. In [6] we work out a motivating example, report the
proofs of the theorems, and present some additional experimental results.

2 Background

Notation. We use the standard notions of theory, satisfiability, validity, and log-
ical consequence. We restrict to formulas interpreted with the Theory of Linear
Real Arithmetic (LRA) [4].

Given a formula in first-order logic ψ and a set of variables X, we write ψ(X)
to denote that X is the set of free variables in ψ. We write ϕ |=T ψ to denote
that the formula ψ is a logical consequence of ϕ in the theory T ; when clear
from context, we omit T and simply write ϕ |= ψ. An assignment μ for a set of
variables X is the set {x �→ c | x ∈ X and c is a constant}, μ|X is the projection
of all the assignments in μ only to variables contained in X, and μ(x) is the
value assigned to x in μ. We denote with |X| the cardinality of the set X. Given
a set of real variables X, we will use the the notation X to refer to the vector
that contains all the variables in X ordered in a lexicographic order. If X is a
set of variables, then X ′ and Ẋ are the sets obtained by replacing each element
x with its primed and dotted version respectively.

Hybrid Automata. Hybrid automata (HA) [13] represent a system with con-
tinuous and discrete dynamics. We use a symbolic representation of hybrid
automata, where the discrete locations and transitions are represented symboli-
cally [9].

From Electrical Switched Networks to Hybrid Automata 167

A Hybrid automaton is a tuple H = 〈D,R, Init, Invar, Trans, F low〉 where
(1) D is the set of discrete variables; (2) R is the set of continuous variables;
(3) Init(D,R) represents the set of initial states; (4)Invar(D,R) represents
the set of invariant states; (5)Trans(D,R,D′, R′) represents the set of discrete
transitions; (6)Flow(D, Ṙ,R) represents the flow condition. We assume that all
the formulas Init, Invar, Trans and Flow are quantifier-free and linear. We
assume Invar to be of the form ψ(D) → ∧

p∈P p(R), where p ∈ P is a predicate,
to ensure the convexity of the invariants. We assume Flow to be of the form
ψ(D) → ∧

p∈P p(R, Ṙ), where p ∈ P is an equality.
In the above definition, Flow may either define a system of Differential-

Algebraic Equations (DAEs) or Ordinary Differential Equations (ODEs). We
say that the automaton has an ODE dynamics if, for each assignment μ to D,
the conjunct of ψ(D) → ∧

p∈P p(R, Ṙ) that holds for μ is a system of ODEs.
Otherwise, the automaton has a DAE dynamics.

A state of a hybrid automaton H is an assignment s to the variables D ∪ R.
Informally, a run of the automaton is a sequence of states such that the first state
is in the initial states, every state belongs to the invariant states, and each pair
of consecutive states either satisfies a discrete transition or follows the solution
of the differential equations described in the flow condition. The semantics of
the HA is provided in terms of the runs that it accepts.

Electrical Networks. An (non-switched) electrical network is formed by the
connection of a set of (continuous) components. Without loss of generality, we
consider only components with two terminals. A continuous component ei defines
two quantities, the voltage (difference of potential) across the two terminals of
the component, and the current that flows through the component. We denote
with ii(t) and vi(t) the current and the voltage of ei. vi(t) and ii(t) change con-
tinuously in time according to a constitutive relation, ψi, a Differential-Algebraic
Equation among vi(t), ii(t), and their derivatives v̇i, i̇i. Furthermore, for each
component ei we consider the variables v−

i and v+
i , that represent the value of

the potential at the two terminals of ei. These variables are connected to vi
through the voltage equation vi = v+

i − v−
i .

We denote with Vi the set of variables of ei. We further partition Vi into the
following subsets: (1) Xi := {x | ẋ appears in ψi} is the set of state variables
(their derivatives appear in the constitutive relation of ei); (2) Ui is the set of
input variables, which depends on the component type; (3) Yi is the set of output
variables, which depends on the component type. The sets Xi, Ui, Yi are disjoint,
and Vi = Xi∪Ui∪Yi. Ẋi is the set of first derivatives of Xi. In Table 1 we report
the constitutive relations for the electrical components considered in this paper
and their sets of variables. Furthermore, we say that a component is active if it
has at least a state or input variable, and passive otherwise.

The connection of components terminals is represented by a directed graph:
an oriented edge represents a component and a node represents the connection of
components terminals. As usual, the orientation of the edges is chosen arbitrarily
assuming a reference direction for the current.

168 A. Cimatti et al.

Table 1. Constitutive relations and variables of continuous components.

Component Constitutive relation Xi Ui Yi Constants

Voltage source vi = Vs ∅ {vi} {ii, v
+
i , v−

i } Vs

Current source ii = Is ∅ {ii} {vi, v
+
i , v−

i } Is

Resistor vi = R ii ∅ ∅ {ii, vi, v
+
i , v−

i } R

Capacitor ii = C v̇i {vi} ∅ {ii, v
+
i , v−

i } C

Inductor vi = L i̇i {ii} ∅ {vi, v
+
i , v−

i } L

Ground v+
i = 0 ∅ ∅ {ii, v

+
i }

Definition 1 (Electrical network). An electrical network [5,24] is a directed
graph G = 〈N,E, η〉, where (1) N is a set of nodes; (2) E is a set of components;
(3) η : E �→ N × N defines the directed edges between nodes.

Let Ein
n = {e | e ∈ E and (n1, n) = η(e)} and Eout

n = {e | e ∈ E and (n, n1) =
η(e)} be the sets of incoming and outgoing edges of the node n. Additionally,
let Pn =

⋃
ei∈Ein

n
v+
i ∪ ⋃

ei∈Eout
n

v−
i denote the set of all the potentials of the

components incident on the node n, considering also the direction sign imposed
by the edge orientation. The connection of the components is described by the
Kirchhoff Current Law (KCL) and the Kirchhoff Voltage Law (KV L):

KCLG :=
⋃

n∈N

⎛

⎝
∑

ci∈Ein
n

ii −
∑

ci∈Eout
n

ii = 0

⎞

⎠ KV LG :=
⋃

n∈N

⋃

p1,p2∈Pn

(p1 = p2)

Definition 2 (Differential-Algebraic Equation of a network). Given a
network G = 〈N,E, η〉, its associated DAE, called DAEG, is defined by the set
of constitutive equations {ψi | ei ∈ E}, the set of voltage equations vi = v+

i −v−
i ,

and the sets of algebraic equations KCLG and KV LG.

While there exist several equivalent DAE systems to represent an electrical
network, we basically use the one obtained applying the Node Tableau Analysis
(NTA) [24].

We extend the notation used to specify the component’s variables and their
partitions to a network G. Hence, we have the sets VG :=

⋃
ei∈E Vi, XG :=⋃

ei∈E Xi, UG :=
⋃

ei∈E Ui, YG :=
⋃

ei∈E Yi. A state of the network is given by
an assignment μ to all the variables VG. A state μ is a consistent initial value
for DAEG if DAEG has a solution for μ (i.e. if replacing all the variables with
the assigned constants in μ the resulting system of algebraic equations has a
solution). A variable y ∈ YG is underdetermined if there exist two solutions μ′

and μ′′ of DAEG such that μ′
|VG\{y} = μ′′

|VG\{y} and μ′(y) �= μ′′(y).

Definition 3 (Electrical network semantics). The semantics of the network
is defined by its associated DAEG. We say that there exists a trajectory from a

From Electrical Switched Networks to Hybrid Automata 169

state μ to a state μ′ if μ is a consistent initial value and there exists a continu-
ously differentiable function f : (0, t] → VG such that: f(0) = μ, f(t) = μ′, and
for all δ ∈ (0, t], df

dt (δ) and f(δ) are a solution of DAEG.

Structural Analysis for Electrical Network. Structural analysis for (non-
switched) electrical networks is a standard technique used to determine if it is
possible to reformulate the DAE into a system of Ordinary Differential Equations
(ODEs). In the following, we will reuse established results from structural analy-
sis. We use the standard definition of loops and cutset for a graph G. A sequence
n0, e0, . . . , nk+1 ∈ N ×(E×N)k of nodes and edges is a loop if there exists a path
from n0 to nk+1 (for i ∈ [0, k], either η(ei) = (ni, ni+1) or η(ei) = (ni+1, ni)),
and all the nodes are different, apart from n0 and nk+1 (for i ∈ [0, k], ni �= ni+1

and n0 = nk+1). The definition of loop ignores the edges orientation. We use the
standard notion of subgraph, connected graph and connected component of a
graph. If G = 〈N,E, η〉 is a connected graph, K ⊆ E is a cutset of G if removing
K from E results in a disconnected graph, and K is minimal (i.e. removing a
proper subset of K does not disconnect G). A loop is a V-loop (resp. VC-loop)
if the only components on the edges are voltage sources (resp. voltage sources
and capacitors). A cutset is an I-cutset (resp. IL-cutset) if the only components
in the cutset are current sources (resp. current sources and inductors).

Theorem 1 (Existence of an ODE reformulation (Theorem 6.3 from
[24])). Given a connected electrical network G, the network has neither VC-
loops nor IL-cutsets if and only if its associated DAEG can be reformulated into
the ODE model:

ẊG = AXG + BUG YG = CXG + DUG (1)

where A ∈ R
|XG|×|XG|, B ∈ R

|XG|×|UG|, C ∈ R
|YG|×|XG|, D ∈ R

|YG|×|UG|.

The goal of the reformulation is to get the ODE, instead of a DAE, which are
more amenable for simulation and verification.

The reformulation of DAEG as an ODE can be performed applying the
Superposition Theorem [26]. The theorem tells that the response (the voltage
and the current) of a component of a linear circuit is equal to the sum of the
responses caused by each source acting alone (with all the other sources off).
Turning on/off a voltage source means setting its voltage to 1/0 (the value
for on must be different from 0), while turning on/off a current source means
setting its current to 1/0. Capacitors and inductors are considered sources (of
voltage and current respectively). The reformulation works by determining the
contribution of each source (including inductors and capacitors) on the response
(current or voltage) of each other component. Formally, for a component ei with
a reformulated variable w, the reformulation works determining the coefficients
aw,z such that:

w =
∑

z∈(XG∪UG) aw,zz (2)

170 A. Cimatti et al.

where a coefficient aw,z ∈ R represents the effect of the source variable z on the
reformulated variable w. aw,z is obtained considering only the effect of z, while
disregarding the effects of the other sources. In practice, aw,z is the assignment
to the variable w in the system DAEG constrained by adding the constraints
z = 1 and l = 0, for all the l ∈ XG ∪ UG \ {z}.

Switched Electrical Networks. A switch ei is a component with two discrete
states, open and closed. The state of the switch is represented with the Boolean
variable mi (i.e. mi is true iff the switch is open). Let Mi := {mi} be the
set of discrete variables, Ci := Xi ∪ Ui ∪ Yi the set of continuous variables
and Vi = Mi ∪ Ci the set of all the variables of a switch. The constitutive

relation of a switch is ψi :=

{
ii = 0 if mi

vi = 0 otherwise
(i.e. the switch disconnects

or connects its terminals when it is open or closed). The switching behavior
is defined by an invariant and a guard condition, invari : 2Mi → φ(Ci) and
guardi : 2Mi → φ(Ci). invari defines the invariant condition of the switch that
must hold in each discrete state, while guardi defines the condition that must
hold in a discrete state to allow the transition to the other state.

Definition 4 (Switched Electrical Network). A switched electrical network
G = 〈N,E, η〉 is an electrical network where E may include also switches.

We extend the set of variables defined for a component to the switched net-
work in the obvious way. Also, let Em ⊆ E be the subset of all the switches
components in E. We refer to each possible (complete) assignment μ to the dis-
crete variables MG as a discrete configuration of the network, and we denote
with 2MG the set of all the possible discrete configurations. Notice that, every
different discrete configuration of the switches induces a (non-switched) electrical
network. In the following, given a discrete configuration μ, we refer to DAEG(μ)
as the DAE associated to the (non-switched) electrical network induced by μ.

Definition 5 (Valid switched electrical network). We say that a switched
electrical network G is valid, if, for all possible discrete configurations μ ∈ 2MG ,
DAEG(μ) can be reformulated into an ODE.

In other words, a switched electrical network G is valid, if, for all possible discrete
configurations μ ∈ 2MG :

(i) DAEG(μ) has neither VC-loops nor IL-cutsets.
(iI) All the output variables YG in DAEG(μ) are not underdetermined.

Definition 6 (Valid switched electrical network semantics). We define
the semantics of a valid switched electrical network G = 〈N,E, η〉 as the
hybrid automaton HG = 〈D,R, Init, Invar, Trans, F low〉 where (1) D := MG;
(2) R := CG; (3) Init(D,R) := True; (4) Invar(D,R) :=

∧
ei∈Em

(mi →
invari({mi})) ∧ (¬mi → invari(∅)); (5) Trans(D,R,D′, R′) := (

∨
ei∈Em

(mi ∧
¬m′

i ∧ guardi({mi})) ∨ (¬mi ∧ m′
i∧ guardi(∅)) ∧ (

∧
x∈XG

x′ = x); (6)
Flow(D, Ṙ,R) := DAEG;

From Electrical Switched Networks to Hybrid Automata 171

Notice that the flow conditions of the automaton that defines the semantic of
the network still define a Differential-Algebraic Equation (DAE) and not an
Ordinary Differential Equation (ODE).

3 Problem Definition

In this paper, we address the following problems.

Definition 7 (Network validation problem). The network validation prob-
lem consists of determining if a switched electrical network is valid. Additionally,
if it is not the case, the problem also consists of finding the set of the discrete
configurations that are not valid.

A valid network can be encoded into a symbolic hybrid automaton where
Flow defines a system of ODEs for each configuration.

The hybrid automaton HG that defines the semantics of the network G (see
Definition 6) is a concise representation of the network. However, no model check-
ing tools are able to analyze this kind of input (the combined symbolic repre-
sentation and DAE). Thus, the problem that must be solved to enable the ver-
ification of a switched electrical network is the reformulation of the electrical
switched network G into a hybrid automaton with an ODE dynamics. Note that
this problem extends the reformulation problem in Theorem1 from a single DAE
to a set of DAEs, one for each discrete configuration in 2MG .

Definition 8 (Hybrid Automata reformulation). Given a valid switched
electrical network G, the reformulation problem consists of encoding G into a
symbolic hybrid automaton with ODE dynamics.

4 Network Validation

We show how to reduce the validation conditions to a series of SMT checks.

SMT encoding. Given a switched network G = 〈N,E, η〉, we encode the
Differential-Algebraic Equation DAEG defined by the network as a quantifier
free-formula in LRA. This formula will be used both for the validation and the
reformulation steps.

The encoding formula predicates over the same variables of the network. We
reuse the same notation for the different sets of variables used for the network G.
In the encoding, we interpret each variable in MG as a Boolean variable and each
variable in XG ∪ UG ∪ YG as a Real variable. The encoding also predicates over
the first-order derivatives of XG, ẊG. We interpret each variable in ẊG as a Real
(the semantics should be clear from the context). The main reason is that both
the validation and the reformulation just consider the algebraic relations defined
by the equations, and not how the variables change as a function of time.

172 A. Cimatti et al.

The formula ψDAEG
connects the constitutive relation and voltage equation

for each component ei through the KCL and KV L conditions:

ψDAEG
:=

∧

ei∈E\Esources

(ψi) ∧
∧

ei∈E

(vi = v+
i − v−

i) ∧ ψKCL ∧ ψKV L

ψKCL :=
∧

n∈N

(
∑

ei∈Ein
n

ii −
∑

ei∈Eout
n

ii = 0) ψKV L :=
∧

n∈N

(
∧

p1∈Pn

(
∧

p2∈Pn

p1 = p2))

Existence of VC-loops or IL-cutsets. As stated in Theorem 1, the DAE of a single
configuration can be reformulated into an ODE if the network G does not have
any VC-loops or any IL-cutsets and if the network is connected. We encode these
conditions in the following formulas.

valz :=∃CG, ẊG.(ψDAEG
∧ z = 1 ∧ ∧

l∈XG∪UG\{z} l = 0)

val :=
∧

Z∈XG∪UG
valz

The formula valz sets to 1 the state or input variable z of an active component
(i.e. voltage sources, current sources, capacitors and inductors), while it keeps all
the other state and input variables to 0. If valz is unsatisfiable for some discrete
configuration in 2MG , we have either a VC-loop or an IL-cutset involving z. This
is due to the KV L and the KCL conditions. The first ensures that the sum of
the voltages in a loop must be equal to 0. The latter ensures that the sum of
the currents on the components in a cutset must be 0. For example, consider a
configuration μ with a VC-loop that contains the voltage source ei. The sum of
the KV L equations for the loop only contains variables from XG and UG, and
in particular the input variable vi of ei. In the formula valvi

we have that vi = 1,
while all the other state and input variables are equal to zero. Thus, the KV L
equation of the loop reduces to 1 = 0, and hence valvi

is unsatisfiable for μ. An
analogous reasoning can be done for an IL-cutset and the KCL conditions.

Lemma 1. The formula valvi
(resp. valii) is satisfiable for all configurations

μ ∈ 2MG if and only if the switched electrical network G does not have any
VC-loops (resp. IL-cutsets) involving vi (resp. ii).

For lack of space, we provide the proofs in [6]. As a corollary of Lemma 1, we
have that the formula val represents the set of all the configurations that do not
have any VC-loop or IL-cutset. By Theorem 1, each configuration of the network
admits a reformulation if there are no VC-loops or IL-cutsets and the network
is connected.

Existence of underdetermined output variables. In a switched network, a config-
uration on a switch may induce a topology of the network that is not connected,
but is formed by several connected components (of the graph of the network).
The Theorem 1 can still be applied on each discrete configuration and on each
connected component. In fact, for a network with neither VC-loops nor IL-
cutsets, the theorem still guarantees the existence of the reformulation in terms

From Electrical Switched Networks to Hybrid Automata 173

of the state and input variables for each connected component of the graph con-
taining at least an active component. We encode a sufficient condition for the
connectedness of the network in the following formula:

und := ∃CG, ẊG.(ψDAEG
∧ ∧

z∈XG∪UG
(z = 0) ∧ ∨

y∈YG
(y �= 0)) (3)

We consider the fact that all the output variables of a graph component are
uniquely determined (i.e. are not underdetermined) by the input and state vari-
ables contained in such component if and only if the component is connected
and does not show degenerate configurations such as VC-loops or IL-cutsets. The
formula encodes that there exists a y ∈ YG that can have a value different from
0 when all the input and state variables are 0. If the formula is satisfiable for
some configuration μ, then y is underdetermined in that configuration.

Lemma 2. The formula und is satisfiable for some configuration μ ∈ 2MG if and
only if there exists a variable y ∈ YG that is underdetermined.

As a corollary of Lemma 2, we have that und represents the set of all the con-
figurations that contain some underdetermined variable.

5 Network Reformulation to Hybrid Automaton

5.1 Reformulation Algorithm

Given a network G = 〈N,E, η〉, Hr
G = 〈Dr, Rr, Initr, Invarr, T ransr, F lowr〉 is

the reformulated hybrid automaton. Hr
G is defined as the hybrid automaton HG

in the Definition 6, except for Invarr and Flowr. The invariant condition Invarr

is given by Invarr := Invar ∧ InvarrefY , where Invar is the invariant condition
of HG, and InvarrefY represents the reformulation of the output variables YG (see
Eq. 2). Flowr represents the ODE dynamics in terms of ẊG, XG, and UG. The
goal of the reformulation process is to synthesize both the Flowr and InvarrefY

formulas.
In the following algorithms, we use a standard stack-based interface of an

SMT solver (push, assert, isSat, pop, reset primitives). This allows us, after
asserting a formula γ, to set a backtrack point (push), assert another formula
β (assert), check the satisfiability of the conjunction of the asserted formulas
(isSat), and restore the state of the solver (i.e. asserted formulas and learned
clauses) at the backtrack point (pop). This way, the satisfiability problem is
solved keeping several learned clauses. Additionally, we assume to have the prim-
itive getModel, to get a complete satisfying assignment to the free variables of
the formula in the stack, and quantify, to eliminate the quantifiers present in the
formula.

We describe a symbolic approach that groups together the discrete configura-
tions that share the same ODE system. The algorithm Reformulate in Fig. 3
reformulates only a subset of variables W ⊆ ẊG ∪ YG. The algorithm can be
used to reformulate all the dotted and output variables of the system by setting

174 A. Cimatti et al.

W = ẊG ∪ YG. However, we will show how the modularity of Reformulate

can be used to obtain different, and usually coarser, partitionings of the discrete
configurations.

Reformulate takes as input the encoding of the network ψDAEG
, the sets

of state and input variables XG, UG, and a set of variables W to be reformulated.
The main loop (line 3) of the algorithm enumerates all the discrete configura-
tions of the network. Initially, the solver picks a random discrete configuration
μ (line 4), and then symbolically applies the superposition theorem (on the net-
work induced by μ) calling the function GetCoefficients (line 5). The output
of GetCoefficients is a map of coefficients F : for a w ∈ W and a z ∈ XG∪UG,
F (w)(z) ∈ R is the coefficient that was obtained by observing the effect of the
source z on the variable w. Then, at line 6, the function GetEqModes computes
the set of all the equivalent discrete configurations β. GetEqModes guarantees
that μ′ ∈ β if and only if GetCoefficients finds the same coefficients when
called on μ and on μ′ with the same parameters ψDAEG

, XG, UG and W . Then,
at line 7, the algorithm blocks all the discrete configurations represented in β;
this is a key step in the algorithm that prunes a set of discrete configurations
from the search, avoiding their explicit enumeration. Finally, from line 8 to the
end of the loop, Reformulate constructs the flow and invariant conditions.

Fig. 3. Reformulate a set of variables W .

The functions GetCoefficients in Fig. 6 implements the reformulation by
the superposition theorem. Each execution of the loop at line 3, computes the
effect of a state and input variable on all the variables in W .

The function GetEqModes, shown in Fig. 5, computes the set of config-
urations equivalent to μ in terms of reformulation. For each state and input
variable, the function re-encodes the superposition conditions (line 4) and addi-
tionally encodes the coefficient constraints for the current discrete configura-

From Electrical Switched Networks to Hybrid Automata 175

tions μ (line 6). Then, the formula β (line 9) encodes all the discrete config-
urations that have exactly the same reformulation of μ. We also consider an
alternative implementation of GetEqModes, GetEqModesModular, that
computes the existential quantification independently for each single conjunct
of the formula γ, instead of the whole formula γ.

5.2 All and Single Variables Partitioning

Fig. 4. Construction of the reformula-
tion formulas.

The Reformulate algorithm allows us to
reformulate sets of variables (i.e. subsets
of ẊG ∪ YG) instead of all the variables
ẊG ∪ YG. Thus, it allows us to obtain dif-
ferent kinds of partitioning of the discrete
configurations and the ordinary differen-
tial equations. We define two reformula-
tion algorithms that obtain different par-
titioning. The AllRef algorithm, shown
at the top of Fig. 7, first reformulates all
the controlled variables XG. Thus, in this
case we obtain sets of discrete configura-
tions that share the same system of ODEs
(a system of equations of the form ẊG =
AXG + BUG). Then, AllRef reformulates all the output variables YG inde-
pendently.

The other algorithm, SingleRef (shown in the bottom of Fig. 7), instead
reformulates all the variables independently.

Fig. 5. Find the discrete configurations
with an equivalent dynamics for a set
of variables W .

Fig. 6. Computes the superposition
coefficients for a set of variables W .

176 A. Cimatti et al.

Fig. 7. Reformulation algorithms with different reformulation strategies.

As a further observation, in practice we do not need to reformulate all the
output variables YG. In fact, we need to reformulate only those variables needed
to define the dynamics of the system (e.g. they may be used in the invariant
invari and guardi conditions of a switch) or the variables that we want to
observe.

6 Related Work

The solutions to the validation and reformulation problems for electrical net-
works (without switches) are well known [5,24]. We differ from these works since
we focus on networks with discrete switches, where the main issue is to cope
with the exponential explosion in the number of discrete configurations. Then,
we reuse several techniques from structural analysis, as the superposition prin-
ciple [26], but we re-interpret them in a symbolic setting.

Other works consider also networks with discrete switches. Several approaches
[19] do not consider ideal switches, but model the switch introducing parasitic
resistances. A drawback of this approach is that it requires to determine a priori a
set of parameters (e.g. the resistance of the resistor); then, these parameters have
the effect to change the dynamics of the systems, producing as a result an approx-
imation of the intended behavior. Ideal switches have been mainly considered in
context of simulation, for example in [18]. While the focus is often on non-linear
dynamics, the problem solved in these works is to produce a single simulation of
the network. In this context, they reformulate the DAE into an ODE every time
the simulator performs a discrete switch. Thus, these works do not solve the val-
idation and the reformulation problem, since they focus on a single execution of
the system.

Several works focus on the translation from Stateflow/Simulink models to
hybrid automata [1,17,20]. We point out that the Simulink modeling is based
on a functional representation of a system where every block is seen as an uni-
directional Input-Output function, thus it is not suitable for a component-based

From Electrical Switched Networks to Hybrid Automata 177

physical modeling that is intrinsically bidirectional. There are several works [29]
on the formal verification of Analog-Mixed-Signal (AMS) circuits. Most works
focus on non-switched circuits [10,11,16] and try to solve a reachability prob-
lem. They start from the network representation but they manually encode it
as a hybrid automaton. A different approach is considered in [30], where a non-
linear circuit is automatically abstracted and encoded using SMT. We remark
that none of these works solves the validation and reformulation problem for a
switched electrical network.

Finally, our reformulation approach produces a symbolic hybrid automata
model that can be analyzed by model checkers tools like HybridSAL [27] and
HyComp[7], using relational abstraction [21,28], or dReach [3,15].

7 Experimental Evaluation

The approach was implemented in pySMT [12], a library for SMT formulae
manipulation and solving, using MathSat5 [8] for Quantifier Elimination. We
evaluated the effectiveness and the scalability of the symbolic approach in the
validation and reformulation problems. The experimental evaluation was run on
a 64 bit system with an Intel Xeon E3-1246 processor at 3.5 GHz and 16 GB
RAM. The tool and the benchmarks used in the experiments are available at
https://es.fbk.eu/people/sessa/attachment/FM2016/fm16.tar.bz2.

Benchmarks. We consider several classes of benchmarks. The following (Buck,
Boost, Buck-Boost) DC-DC converters are taken from [22].

The Switched RC Network SRCNN is a scalable benchmark obtained from the
circuit of Fig. 2 by parameterizing the number of (up to 8) capacitive branches.

The Non Linear Transmission Line (NLTL) depicted below represents a well-
known phenomenon (discretization of propagation) along a transmission line [16].
We parameterize the benchmark NLTLN on the number N of (up to 10) pairs
of stages.

The Wheel Braking System benchmarks follow the description in the SAE
Standard AIR6110 [25] (see Fig. 1). We consider the WBSN benchmarks, para-
meterized on the number of (up to 6) braking lines. The WBS consists of a
pressure supply line made of a pump, an accumulator, pipelines and an isola-
tion valve, connected to replicas of a braking line made of pipelines, distribution

https://es.fbk.eu/people/sessa/attachment/FM2016/fm16.tar.bz2

178 A. Cimatti et al.

valves, fuses and brakes. Following the Electronic-Hydraulic analogy, the pump
is modeled as an ideal constant voltage source, the pipes as resistors, the accu-
mulator and the brakes as capacitors, the distribution valves and the fuses as
ideal switches, and the isolation valve as a diode.

For each of the scalable benchmarks, the number of discrete configurations
grows exponentially with the problem size, reaching a million of system config-
urations for the NLTL10. Additional information are available in the in [6].

Validation. We first consider the results of the validation. For the scalable
benchmarks, we report the comparison of three different strategies: the baseline
Enum strategy, explicitly enumerates the system configurations and for each of
them validates the induced DAE; the SyGlo and SyMod strategies apply quanti-
fier elimination (QE) over two different SMT encoding of the validation problem.
The former tries to minimize the number of QEs encoding the validation prob-
lem into a global SMT formula, the latter tries to reduce the complexity of the
global QE decomposing the global encoding into a modular sequence of simpler
formulas. From the results (SRCN, NLTL, WBS from the left) we see that the
symbolic approaches outperform the enumerative approach at least of one order
of magnitude in all the benchmarks. While the two symbolic approaches show
similar performance on the SRCN, for the WBS and NLTL SyMod accomplishes
the task while SyGlo times out. In general, SyMod performs much better than
SyGlo.

The non-scalable benchmarks are validated all within one second, but provide
interesting insights. Specifically, the models of the DC-DC converters result in
four discrete configurations, given by the switch S and diode D. The hybrid
automata provided in [22] only contain the two discrete modes S = open,D =
closed and S = closed,D = open. In fact, the validation phase detects (for
each converter) two non valid configurations, corresponding to S = open,D =
open and S = closed,D = closed, that induce an IL-cutset and a VC-loop,
respectively. These two modes are exactly those excluded in the manual modeling
phase leading to the hybrid automata provided in [22].

Reformulation. In the reformulation phase, for each model, we reformulate all
the derivative variables and only the output variables contained in the invariant
and guard formulas of the system components (e.g. the voltage and current of a
diode).

From Electrical Switched Networks to Hybrid Automata 179

Applying the reformulation phase to the DC-DC converters restricted to only
the two valid configurations S = open,D = closed and S = closed,D = open,
we get two distinct ODEs whose coefficients agree with the dynamics of the
converters provided in [22]. We refer the reader to the [6] for further details on
the output of the converters reformulation.

For each scalable benchmark, the following plots (SRCN, NLTL, WBS from
the left) show the reformulation time for five different approaches that mix the
Enum and Symbolic strategies with different reformulation strategies. Enum-
Flat represents the naive approach that enumerates the system configurations
and reformulates the derivative and output variables as a unique set of variables;
the SyGlo-All and the SyMod-All approaches apply the AllRef reformulation
algorithm; the SyGlo-Single and the SyMod-Single approaches apply the Sin-

gleRef algorithm. In general, the two symbolic approaches outperform the
enumerative approach and exhibit similar performance, with the exception of
the SyMod-Single reformulation, that has significant advantage over the oth-
ers in the NLTL benchmarks due to its favorable topology. The choice of the
strategy (All vs Single) in the symbolic reformulation affects the amount of
discovered equivalence classes, that is directly correlate with the reformulation
time. Additional details are reported in [6].

8 Conclusion

In this paper we presented a novel, symbolic approach to the validation and
reformulation problem of a switched electrical network. The method is able to
analyze the validity conditions of the network, where the dynamics are expressed
as Differential-Algebraic Equations, and to reformulate them in form of a (sym-
bolically represented) Hybrid Automaton. The proposed approach scales much
better than an naive approach based on the enumerative analysis of the indi-
vidual configurations, and produces significantly more compact HA due to the
clustering of the equivalent configurations.

In the future, we will explore, amongst other research directions, how the
approach can be generalized to other physical domains (e.g. mechanical) where
the conditions needed for the network validation are different, and to deal with
partially underdetermined networks.

180 A. Cimatti et al.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. Electron. Notes
Theoret. Comput. Sci. 109, 43–56 (2004). Proceedings of the Workshop
on Graph Transformation and Visual Modelling Techniques (GT-VMT2004).
http://www.sciencedirect.com/science/article/pii/S1571066104052089

2. Akers, A., Gassman, M., Smith, R.: Hydraulic Power System Analy-
sis. Fluid Power and Control. CRC Press, Boca Raton (2006).
https://books.google.it/books?id=Uo9gpXeUoKAC

3. Bae, K., Kong, S., Gao, S.: SMT encoding of hybrid systems in dReal. In: Frehse,
G., Althoff, M. (eds.) 1st and 2nd International Workshop on Applied verification
for Continuous and Hybrid Systems, ARCH14 2015. EPiC Series in Computing,
vol. 34, pp. 188–195. EasyChair, Manchester (2015)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885 (2009). http://dx.doi.org/10.3233/
978-1-58603-929-5-825

5. Benner, P.: Large-scale Networks in Engineering and Life Sciences. Springer, New
York (2014)

6. Cimatti, A., Mover, S., Sessa, M.: From electrical switched networks
to hybrid automata (extended version). In: Fitzgerald, J., et al. (eds.)
FM 2016. LNCS, vol. 9995, pp. 164–181. Springer, Heidelberg (2016).
http://es.fbk.eu/people/sessa/paper/FM2016/main.pdf

7. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 4

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: ETAPS 2013, pp. 93–107.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 7

9. Cimatti, A., Mover, S., Tonetta, S.: A quantifier-free SMT encoding of non-linear
hybrid automata. In: FMCAD, pp. 187–195 (2012). http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6462573

10. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal cir-
cuits using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD
2004. LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30494-4 3

11. Frehse, G., Krogh, B.H., Rutenbar, R.A., Maler, O.: Time domain verification of
oscillator circuit properties. Electron. Notes Theoret. Comput. Sci. 153(3), 9–22
(2006). doi:10.1016/j.entcs.2006.02.019

12. Gario, M., Micheli, A.: pysmt: a solver-agnostic library for fast prototyping of
smt-based algorithms. In: SMT Workshop (2015)

13. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, 27–30 July 1996, pp. 278–292 (1996). http://dx.doi.org/10.1109/LICS.1996.
561342

14. Janschek, K.: Mechatronic Systems Design: Methods, Models, Concepts. Springer
Science & Business Media, Berlin (2011)

15. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 15

http://www.sciencedirect.com/science/article/pii/S1571066104052089
https://books.google.it/books?id=Uo9gpXeUoKAC
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://es.fbk.eu/people/sessa/paper/FM2016/main.pdf
http://dx.doi.org/10.1007/978-3-662-46681-0_4
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462573
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462573
http://dx.doi.org/10.1007/978-3-540-30494-4_3
http://dx.doi.org/10.1007/978-3-540-30494-4_3
http://dx.doi.org/10.1016/j.entcs.2006.02.019
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1007/978-3-662-46681-0_15

From Electrical Switched Networks to Hybrid Automata 181

16. Lee, H.L., Althoff, M., Hoelldampf, S., Olbrich, M., Barke, E.: Automated genera-
tion of hybrid system models for reachability analysis of nonlinear analog circuits.
In: The 20th Asia and South Pacific Design Automation Conference, ASP-DAC
2015, Chiba, Japan, 19–22 January 2015, pp. 725–730 (2015). http://dx.doi.org/
10.1109/ASPDAC.2015.7059096

17. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification
and synthesis from simulink/stateflow models. In: Proceedings of the 14th ACM
International Conference on Hybrid Systems: Computation and Control, HSCC
2011, Chicago, IL, USA, 12–14 April 2011, pp. 317–318 (2011). http://doi.acm.
org/10.1145/1967701.1967749

18. Massarini, A., Reggiani, U., Kazimierczuk, M.K.: Analysis of networks with ideal
switches by state equations. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl.
44(8), 692–697 (1997)

19. Mathworks, T.: Simscape power systems. http://it.mathworks.com/help/
physmod/sps/index.html

20. Minopoli, S., Frehse, G.: SL2SX translator: from simulink to spaceex models. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control, HSCC 2016, Vienna, Austria, 12–14 April 2016, pp. 93–98 (2016).
http://doi.acm.org/10.1145/2883817.2883826

21. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions
for hybrid systems. In: EMSOFT, pp. 14:1–14:10 (2013). http://dx.doi.org/10.
1109/EMSOFT.2013.6658592

22. Nguyen, L.V., Johnson, T.T.: Benchmark: DC-to-DC switched-mode power con-
verters (buck converters, boost converters, and buck-boost converters). In: Frehse,
G., Althoff, M. (eds.) ARCH14 2015, 1st and 2nd International Workshop on
Applied Verification for Continuous and Hybrid Systems. EPiC Series in Com-
puting, vol. 34, pp. 19–24. EasyChair (2015)

23. Nuzzo, P., Xu, M., Ozay, N., Finn, J.B., Sangiovanni-Vincentelli, A., Murray, R.,
Donze, A., Seshia, S.: A contract-based methodology for aircraft electric power
system design. IEEE Access. http://icyphy.org/pubs/35.html

24. Riaza, R.: Differential-Algebraic Systems: Analytical Aspects and Circuit Appli-
cations. World Scientific, Singapore (2008)

25. SAE International: AIR 6110 - Contiguous Aircraft/System Development Process
Example (2011)

26. Skaar, D.L.: Using the superposition method to formulate the state variable matrix
for linear networks. IEEE Trans. Educ. 44(4), 311–314 (2001)

27. Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 56

28. Tiwari, A.: Time-aware abstractions in HybridSal. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 504–510. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-21690-4 34

29. Zaki, M.H., Tahar, S., Bois, G.: Formal verification of analog and mixed signal
designs: survey and comparison. In: 2006 IEEE North-East Workshop on Circuits
and Systems, pp. 281–284, June 2006

30. Zhang, Y., Sankaranarayanan, S., Somenzi, F.: Piecewise linear modeling of non-
linear devices for formal verification of analog circuits. In: FMCAD, pp. 196–203
(2012). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462574

http://dx.doi.org/10.1109/ASPDAC.2015.7059096
http://dx.doi.org/10.1109/ASPDAC.2015.7059096
http://doi.acm.org/10.1145/1967701.1967749
http://doi.acm.org/10.1145/1967701.1967749
http://it.mathworks.com/help/physmod/sps/index.html
http://it.mathworks.com/help/physmod/sps/index.html
http://doi.acm.org/10.1145/2883817.2883826
http://dx.doi.org/10.1109/EMSOFT.2013.6658592
http://dx.doi.org/10.1109/EMSOFT.2013.6658592
http://icyphy.org/pubs/35.html
http://dx.doi.org/10.1007/978-3-642-31424-7_56
http://dx.doi.org/10.1007/978-3-319-21690-4_34
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462574

Danger Invariants

Cristina David1, Pascal Kesseli1(B), Daniel Kroening1, and Matt Lewis1,2

1 University of Oxford, Oxford, UK
pascal.kesseli@cs.ox.ac.uk
2 Improbable, London, UK

Abstract. Static analysers search for overapproximating proofs of
safety commonly known as safety invariants. Conversely, static bug find-
ers (e.g. Bounded Model Checking) give evidence for the failure of an
assertion in the form of a counterexample trace. As opposed to safety
invariants, the size of a counterexample is dependent on the depth of
the bug, i.e., the length of the execution trace prior to the error state,
which also determines the computational effort required to find them.
We propose a way of expressing danger proofs that is independent of the
depth of bugs. Essentially, such danger proofs constitute a compact rep-
resentation of a counterexample trace, which we call a danger invariant.
Danger invariants summarise sets of traces that are guaranteed to be
able to reach an error state. Our conjecture is that such danger proofs
will enable the design of bug finding analyses for which the computa-
tional effort is independent of the depth of bugs, and thus find deep bugs
more efficiently. As an exemplar of an analysis that uses danger invari-
ants, we design a bug finding technique based on a synthesis engine.
We implemented this technique and compute danger invariants for intri-
cate programs taken from SV-COMP 2016.

1 Introduction

Safety analysers search for proofs of safety commonly known as safety invariants
by overapproximating the set of program states reached during all program exe-
cutions. Fundamentally, they summarise traces into abstract states, thus trading
the ability to distinguish traces for computational tractability [1].

Conversely, static bug finders that use techniques such as Bounded Model
Checking (BMC) search for proofs that safety can be violated. Dually to safety
proofs, we will call these danger proofs. Traditionally, a danger proof is repre-
sented by a concrete counterexample trace leading to an error state [2].

For illustration, we examine the safe and unsafe programs in Fig. 1. The
program in Fig. 1a is safe as witnessed by the safety invariant Inv(x) = x�=y,
which holds in the initial state (where x=0 and y=1), is inductive with respect to
the body of the loop (x�=y ⇒ (x+1)�=(y+1)) and, on exit from the loop, makes
the assertion hold. Now, if we replace the guard by x<1000000, the program
remains safe as witnessed by the same safety invariant.

This research was supported by ERC project 280053 (CPROVER).

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 182–198, 2016.
DOI: 10.1007/978-3-319-48989-6 12

Danger Invariants 183

x = 0 ; y = 1 ;
// whi le (x<1000000)
while (x<10){

x++;
y++;

}

a s s e r t (x != y) ;

(a)

x = 0 ; y = 1 ;
// whi le (x<1000000)
while (x<10){

x++;
i f (∗) y++;

}

a s s e r t (x != y) ;

(b)

Fig. 1. Safe and unsafe example programs

On the other hand, the program in Fig. 1b is unsafe as, depending on a nonde-
terministic choice (denoted by “*”), y may not be incremented in each iteration.
A possible danger proof for this example is given by the concrete counterexample
trace: (x=0, y=1), (x=1, y=1), (x=2, y=2), (x=3, y=3), (x=4, y=4), (x=5, y=5),
(x=6, y=6), (x=7, y=7), (x=8, y=8), (x=9, y=9), (x=10, y=10).

Similarly to what we did for the program in Fig. 1a, let the guard in Fig. 1b
now be replaced by x<1000000. However, as opposed to the program in Fig. 1a,
now we cannot use the same danger proof we computed for the original pro-
gram (instead a possible danger proof for the modified program is (x=0, y=1),
(x=1, y=1), (x=2, y=2), (x=3, y=3), · · · (x=1000000, y=1000000)). The cause
for this is that, as opposed to safety invariants, the size of a counterexample
trace is dependent on the depth of the bug, i.e., the length of the execution trace
prior to the error state. The bug in the original program in Fig. 1b manifests in
execution traces of length 10, whereas for the modified program we need execu-
tion traces of length 1000000 to expose the bug. We will refer to bugs that only
manifest in long execution traces as deep bugs.

The size of the counterexample also impacts the computational effort required
to find them. For instance, bounded model checkers compute counterexam-
ple traces by progressively unwinding the transition relation. Consequently, the
computational effort required to discover an assertion violation typically grows
exponentially with the depth of the bug. Notably, the scalability problem is not
limited to procedures that implement BMC. Approaches based on a combina-
tion of over- and underapproximations such as predicate abstraction [3] and lazy
abstraction with interpolants (LAwI) [4] are not optimised for finding deep bugs
either. The reason for this is that they can only detect counterexamples with
deep loops after the repeated refutation of increasingly longer spurious coun-
terexamples. The analyser first considers a potential error trace with one loop
iteration, only to discover that this trace is infeasible. Consequently, the analyser
increases the search depth, usually by considering one further loop iteration. This
repeated search suffers from the same exponential blow-up as BMC.

In this paper we propose a way of expressing danger proofs that is inde-
pendent of the depth of the bug. Essentially, such a danger proof constitutes
a compact representation of a counterexample trace, which we call a danger
invariant. Similarly to safety invariants, danger invariants are based on sum-
marisation. Our conjecture is that such danger proofs will enable the design of

184 C. David et al.

bug finding analyses for which the computational effort is also independent of
the depth of bugs, and thus have the potential to find deep bugs more efficiently.

As an exemplar of an analysis that uses the newly introduced notion of danger
invariants, we design a bug finding technique based on a synthesis engine.

Contributions:

– We introduce the notion of danger invariant, which, similarly to safety invari-
ants, uses summarisation to compactly represent counterexamples. We discuss
danger invariants both in the context of total and partial correctness.

– We present a procedure for inferring such danger invariants based on program
synthesis. Our program synthesiser is specifically tailored for danger invari-
ants, being able to efficiently synthesise multiple programs.

– We implemented our analysis and applied it to intricate programs taken from
the Competition on Software Verification SV-COMP 2016 [5]. The focus of our
experimental evaluation are danger invariants for code with deep bugs. Our
experimental results show that our technique outperforms other tools when
the bugs require many iterations of a loop in order to manifest. This suggests
that it has strengths complementary to those of other techniques and could
be used in combination with them (e.g., a compositional analysis based on
may/must analysis and danger invariants).

2 Illustration

To illustrate some of the pitfalls involved in proving that a program has a
bug, we direct the reader’s attention to Fig. 2a. This program is unsafe (the
assertion can be violated), but this fact is hard to prove for traditional bug
finders (based on random testing, BMC or concolic execution). We found that
SMACK 1.5.1 [6] and CBMC 5.5 [7] timed out on this example, Seahorn 2.6 [8]
returned “unknown” and CPAChecker 1.4 [9] (incorrectly) says “safe”. This pro-
gram is difficult for bug finders to analyse for the following reasons:

– The program is nondeterministic and the vast majority of the paths through
the program do not trigger the bug.

– Many of the initial values of the program variables do not lead to the bug.
– The assertion violation does not occur until a very large number of loop iter-

ations have executed.

Despite these features and the difficulty that automated tools have with this
program, it is quite easy to convince a human that the program is unsafe using
an argument something like the following:

1. In the second loop, if we ever reach a state with i = j, we can maintain that
i = j by taking the “if” branch and incrementing j.

2. If we are in the second loop with i < j, we can reduce the gap between i and
j by not taking the “if” branch, so i will be incremented but j will not. If
j−i ≤ 1000000 then we can eventually have i “catch up” with j by repeatedly
taking the “else” branch.

Danger Invariants 185

int i , j , k ;

for (k = 0 ; k < 100 ; k++) {
i f (∗) j++;

}
for (i = 0 ; i < 1000000; i++) {

i f (∗) j++;
}
a s s e r t (i != j) ;

(a)

x = 0 ; y = 1 ;
while (x < 10) {

y++;
}
a s s e r t (x < 10) ;

(b)

Fig. 2. Illustrative examples

3. Therefore, if we begin the second loop with 0 ≤ j ≤ 1000000, we can even-
tually reach a state with i = j and from there eventually exit the loop with
i = j, at which point the assertion will be violated.

4. We can enter the second loop with 0 ≤ j ≤ 1000000 quite easily. For example,
if 0 ≤ j ≤ 999900 then any path through the first loop will land us at the
start of the second loop in such a state.

5. There are several valid initial states with 0 ≤ j ≤ 999900, and so the assertion
can certainly be violated.

This argument is quite unlike the argument that an existing automated bug
finder would use. We have not provided a concrete error trace, or even a concrete
initial input, but we have still been able to prove that there is definitely an error
in the program. It is worth noting that this proof is much shorter than a full
error trace (which would be at least 1000100 steps long), it is much easier for
a human to understand than the full, explicit error trace and indeed it is much
easier to find.

The proof outlined above makes use of several techniques usually associated
with safety proving: abstraction (we described sets of states symbolically), induc-
tion (e.g., we argued by induction that the state i = j could be maintained once
reached) and compositional reasoning (we proved a lemma about each loop sep-
arately, then combined these lemmas into a proof that the program as a whole
had a bug). At the same time, such a proof does not admit false alarms.

In the remainder of this paper, we will show how this intuitive notion of
symbolically proving the existence of a bug without providing an explicit error
trace can be made precise by introducing the concept of a danger invariant. Our
definition is presented abstractly, so that any method of symbolic reasoning or
invariant generation (including manual annotation by a verification engineer)
can be used to generate and verify danger invariants. We will also show how the
constraints defining a danger invariant can be solved using program synthesis.

3 Danger Invariants

In this section, we formalise the notion of a danger invariant. We represent a
program P as a transition system with state space X and transition relation

186 C. David et al.

T ⊆ X × X. For a state x ∈ X with T (x, x′), x′ is said to be a successor of
x under T . We denote initial states by I and error states by E. We start by
defining some background notions.

Definition 1 (Execution Trace). An execution trace 〈x0 . . . xn〉 is a (poten-
tially infinite) sequence of states such that any two successive states are related
by the program’s transition relation T , i.e. ∀0≤i<n.T (xi, xi+1).

Definition 2 (Counterexample Trace). A finite execution trace 〈x0 . . . xn〉
is a counterexample iff x0 is an initial state, x0 ∈ I, and xn is an error state,
xn ∈ E.

A counterexample trace is a proof of the existence of a reachable error state
(i.e., a state where some safety assertion is violated).

The question we try to answer in this paper is whether we can derive a
compact representation of a danger proof that does not require us to explicitly
write down every intermediate state. For a loop L(I,G, T,A) (I denotes the
initial states, G is the guard, T is the transition relation and A is the assertion
immediately after the loop), this is captured by the notion of danger invariant,
defined next.

Definition 3 (Danger Invariant). A predicate D is a danger invariant for the
loop L(I,G, T,A) iff it satisfies the following criteria:

∃x0.I(x0) ∧ D(x0) (1)
∀x.D(x) ∧ G(x) → ∃x′.T (x, x′) ∧ D(x′) (2)
∀x.D(x) ∧ ¬G(x) → ¬A(x) (3)

A danger invariant is a dual of a safety invariant that captures the fact
that there is some trace containing an error state starting from an initial state:
(1) captures the fact that D is reachable from an initial state x0, (2) shows that
there exists some transition with respect to which D is inductive and (3) checks
that the assertion is violated on exit from the loop.

The existential quantifier for x′ in (2) is important for nondeterministic pro-
grams, where it is enough for the danger invariant to capture the existence of
some error trace for only one nondeterministic choice. We make this explicit by
introducing a Skolem function S that chooses the successor x′:

∃S.∀x.D(x) ∧ G(x) → T (x, S(x)) ∧ D(S(x)) (4)

Our definition of an execution trace (Definition 1) includes infinite traces.
Thus, the trace containing the error may be infinite and the error state will not
be reachable at all. For example, consider Fig. 2b. A danger invariant is ‘true’,
which meets all of the criteria (1), (2) and (3).

However, we can actually prove partial correctness of the program – the pro-
gram contains no terminating traces and so the assertion is never even reached.
To ensure that the error traces are finite, we will introduce a ranking function,
which will serve as a proof of termination. Below we recall the definition of a
ranking function:

Danger Invariants 187

Definition 4 (Ranking function). A function R : X → Y is a ranking func-
tion for the transition relation T if Y is a well-founded set with order > and R
is injective and monotonically decreasing with respect to T .

We assume that programs have unbounded but countable nondeterminism, and
so require that our ranking functions’ co-domains are recursive ordinals. In par-
ticular, we will consider ranking functions with co-domain ωn, i.e., n-tuples of
natural numbers ordered lexicographically. This is the final piece we need to
define a partial danger invariant:

Definition 5 (Partial Danger Invariant). A predicate Dp is a danger
invariant for the loop L(I,G, T,A) in the context of partial correctness iff it
satisfies the following criteria:

∃x0.I(x0) ∧ Dp(x0) (5)
∃R,S.∀x.Dp(x) ∧ G(x) → R(x) > 0 ∧ T (x, S(x))∧

Dp(S(x)) ∧ R(S(x)) < R(x) (6)
∀x.Dp(x) ∧ ¬G(x) → ¬A(x) (7)

Note that the ranking function R does not guarantee the termination of
all possible executions, but only the termination of some erroneous one. It is
also important to notice that Dp is not an underapproximation of the reachable
program states – there may well be Dp-states that are unreachable, and there
may well be Dp-states that do not violate the assertion. However, every (Dp ∧
¬G)-state does violate the assertion, and it is certainly the case that at least one
such state is reachable.

Example 1. With Definition 5, for the example in Fig. 2b there exists no danger
invariant.

For the program in Fig. 1b a danger invariant is Dp(x, y) = y = (x < 1?1 : x)
and ranking function R(x, y) = 10−x. Essentially, this invariant says that y must
not be incremented for the first iteration of the loop (until x reaches the value 1),
and from that point, for the remaining iterations, y gets always incremented
such that x = y. For this case, Dp is a compact and elegant representation
of a feasible counterexample trace. The witness Skolem function that we get is
Sy(x, y) = (x < 1?y : y + 1).

In Sect. 1, we have seen that the counterexample trace for the modified version
of the program in Fig. 1b (the one with a larger guard) was much longer than
that for the original version of the program. However, both the original and
the modified programs have the same danger invariant Dp(x, y) = y = (x <
1?1 : x) and the same Skolem function. This supports our conjecture that danger
invariants are independent on the depth of bugs. A ranking function for the
modified program in Fig. 1b is R(x, y) = 1000000 − x, which is also a valid
ranking function for the original one.

188 C. David et al.

Danger Invariants for Total Correctness. While Definition 5 defines a danger
invariant for partial correctness, we argue that the danger invariant in Definition 3
proves the existence of an erroneous trace in the context of total correctness. This
trace may either be an error trace leading to an assertion violation, or a recur-
rence set denoting an infinite execution trace. We can differentiate between the
two scenarios by checking whether the loop guard G holds for all the states in D,
i.e. ∀x.D(x) ⇒ G(x). If this is true, then Formula 3 is always vacuously true and
D is a proof of the existence of a recurrence set. Otherwise, D is a proof of the
existence of an assertion violation.

Example 2. With Definition 3, a possible danger invariant for the example in
Fig. 2b is D(x) = x<10. As the guard of the loop holds for all the D-states, this
is a recurrence set.

4 Generating Second-Order Verification Conditions

In this section, we present an algorithm for generating second-order constraints
describing the existence of a danger proof for a program with potentially nested
loops. We only give the algorithm for partial correctness as it is the more complex
one (the corresponding procedure for total correctness does not have to generate
the constraints for the ranking functions). We define the notion of a danger proof
with respect to two assertions A and B:

Definition 6. A danger proof of a triple (A,P,B) shows the existence of a
finite path through the program P from a state x to a state x′ such that A(x)
and ¬B(x′).

The generation of the verifications conditions is performed by Algorithm1.
This algorithm allows danger invariants for pieces of a program to be composed
together into a danger proof for the whole program. We discuss solving these
constraints in the next section.

Algorithm 1 is split into two procedures. The ExistsDangerPath proce-
dure generates the constraints showing the existence of some erroneous execution
trace that might not be reachable from the initial states (it overapproximates the
initial states). Overapproximating invariants are easier to compose than under-
approximating ones, which enables us to construct a modular constraint genera-
tion technique for arbitrary programs and only add the reachability constraints
at the outer level in the DangerConstraints procedure.

Proposition 1. The constraints generated by a call to the function
ExistsDangerPath(A,P,B) are satisfiable iff there is a finite path through the
program P from a state x to a state x′ such that A(x) and ¬B(x′).

The high-level strategy for the ExistsDangerPath procedure is the fol-
lowing. Given a program P , introduce fresh function symbols denoting Skolem
functions for the n nondeterministic assignments, as well as to the danger invari-
ants and ranking functions required by each of the loops.

Danger Invariants 189

The most interesting branch of the algorithm is the one for a loop with
guard G and transition relation T . In this case, we need to emit the constraints
necessary for a danger invariant. As previously stated, at this point we do not
check that the danger invariant is reachable from the initial states. Instead, the
first emitted constraint captures the fact that the danger invariant Dp is an over-
approximation of the initial states A. The second constraint captures the fact
that the negation of the post-state B must hold on exit from the loop and the
third constraint captures the fact that the ranking function R is bounded from
below. The inductiveness and the ranking function’s monotonicity are proven
through the recursive call to ExistsDangerPath, where the pre-state denotes
the LHS of the inductiveness proof and the post-state represents the RHS plus
the monotonicity of the ranking function. Note that the negation in the post-
state ensures the fact that the generated verification conditions correspond to
the situation where the inductiveness and monotonicity hold. The additional
fresh variables vf are needed to express the (relational) monotonicity condition
for the ranking function.

Procedure DangerConstraints adds the necessary constraints such that
the danger proof is reachable from an initial state v0.

The end result of Algorithm 1 is a set of second-order constraints, where
the freshly introduced second-order variables (for the Skolem functions, dan-
ger invariants and ranking functions) are existentially quantified. If the result-
ing system of second-order constraints is satisfiable, then the solution (i.e., an
assignment to the uninterpreted function symbols) is a danger proof for the full
program. In other words, the second-order constraints generated are satisfiable
iff the program contains a finite error trace.

Example 3. In Fig. 3 we illustrate how Algorithm1 works by using it to gener-
ate a danger proof for the nondeterministic program at the level 0 call to Dan-

gerConstraints with the generic pre- and post-states being A and B, respec-
tively. The explicit levels in the figure denote the call stack together with the
constraints generated for each of them. Additionally, when going from level 3
to level 4, we omit the recursive call for the sequential composition and simply
apply the weakest precondition for the whole code, resulting in the following VC:

Dp(i) ∧ i≤10 ⇒ wp((if=i; if(*)i=i+1),Dp(i) ∧ R(if)>R(i))

The overall verification condition is the conjunction of the constraints generated
at each level, where the second-order entities Dp, R, S and C are existentially
quantified. The existential quantifier over i0 ranges over all the emitted VCs.
If we consider A(i) = true and B(i) = (i=10), then a satisfying assignment for
these constraints is:

i0
→ 0, Dp(i)
→ i≤11, R(i)
→ 12−i, S(i)
→ true, C(i)
→ i≤11

The recursive constraint generation technique given in Algorithm1 makes it
easy to generate verification conditions for nested loops in a modular manner.
One example with nested loops is given the extended version of the paper [10].

190 C. David et al.

Initial call to DangerConstraints:
DangerConstraints(

A,

while (i ≤ 10) {
i f (∗) i := i +1;

} ,

B)

(Level 0)

Emitted VCs:

∃i0.A(i0)

Initial call to ExistsDangerPath:
ExistsDangerPath(

〈i〉, true,

i = i 0 ;
while (i ≤ 10) {

i f (∗) i := i +1;
} ,

B)

(Level 1)

Recursive calls:
ExistsDangerPath(

〈i〉, true,

i = i 0 ,

¬C)
ExistsDangerPath(

〈i〉, C,

while (i ≤ 10) {
i f (∗) i := i +1;

} ,

B)

(Level 2)

Emitted VCs:

∀i.true ⇒ C(i0) ∧
C(i) ⇒ Dp(i) ∧
Dp(i) ∧ i>10 ⇒ ¬B(i) ∧
Dp(i) ∧ i≤10 ⇒ R(i)>0

Recursive call:
ExistsDangerPath(

〈i, if 〉, D(i) ∧ i≤10,

i f = i ;
i f (∗) i := i +1,

¬(D(i) ∧ R(if)>R(i)))

(Level 3)

Emitted VCs:

∀i.Dp(i) ∧ i≤10 ⇒ (S(i) ∧ Dp(i+1) ∧ R(i)>R(i+1)) ∨ (¬S(i) ∧ Dp(i) ∧ R(i)>R(i))

(Level 4)

Fig. 3. Generating verification conditions for a program with nondeterminism

Danger Invariants 191

Algorithm 1. Generate VCs for the triple (A,P,B) over program variables v
1: procedure ExistsDangerPath(v, A,P,B))
2: switch P do
3: case while(G) do T end
4: Dp ← Fresh

5: R ← Fresh

6: vf ← FreshCopy(v)
7: Emit(∀v.A(v) ⇒ Dp(v))
8: Emit(∀v.Dp(v) ∧ ¬G(v) ⇒ ¬B(v))
9: Emit(∀v.Dp(v) ∧ G(v) ⇒ R(v) > 0)

10: ExistsDangerPath(v + vf ,
Dp(v) ∧ G(v),
vf := v;T,
¬(Dp(v) ∧ R(vf) > R(v)))

11: case x := ∗
12: S ← Fresh

13: ExistsDangerPath(v, A, x := S(v), B)

14: case P1;P2

15: C ← Fresh

16: ExistsDangerPath(v, A(v), P1,¬C(v))
17: ExistsDangerPath(v, C(v), P2, B(v))

18: case default
19: Emit(∀v.A(v) ⇒ wp(¬B,P)(v))

20: procedure DangerConstraints(A,P,B)
21: v ← fv(P)
22: v0 ← FreshCopy(v)
23: Emit(∃v0.A(v0))
24: ExistsDangerPath(v, �, v := v0; P, B(v))

5 Generating Danger Invariants Using Synthesis

Since the programs we are analysing are either safe or unsafe, and assuming that
a proof is expressible in our logic, a program either accepts a safety invariant SI
or a danger invariant Dp. For a loop L(I,G, T,A), we model this as a disjunction
as stated in Definition 7. The generalised safety formula is a theorem of second-
order logic, and our decision procedure will always be able to find witnesses
SI,Dp, S,R, y0 demonstrating its truth, provided such a witness is expressible
in our logic. The synthesised predicate SI is a purported safety invariant and
the Dp, N,R, y0 constitute a purported danger invariant (Fig. 4).

If SI is really a safety invariant, the program is safe, otherwise Dp (with
witnesses to the existence of an error trace with Skolem function S, initial state
y0 and ranking function R) will be a danger invariant and the program is unsafe.
Exactly one of these proofs will be valid, i.e., either SI will satisfy the criteria for
a safety invariant, or Dp, S,R, y0 will satisfy the criteria for a danger invariant.
We can simply check both cases and discard whichever “proof” is incorrect.
We omit the algorithm for generating safety verification conditions for a whole
program as this is well covered in the literature [11].

192 C. David et al.

Definition 7 (Generalised Safety Formula)

∃SI, Dp, S, R, y0.∀x, x′, y.

⎛

⎜
⎝

I(x) → SI(x) ∧
SI(x) ∧ G(x) ∧ T (x, x′) → SI(x′) ∧
SI(x) ∧ ¬G(x) → A(x)

⎞

⎟
⎠ ∨

⎛

⎜
⎜
⎜
⎝

I(y0) ∧ Dp(y0) ∧
Dp(y) ∧ G(y) → R(y) > 0 ∧ T (y, S(y)) ∧ D(S(y))

∧ R(y) > R(S(y))∧
Dp(y) ∧ ¬G(y) → ¬A(y)

⎞

⎟
⎟
⎟
⎠

Fig. 4. General second-order safety formula

Synthesise

GA SymEx

Start

Verify

Ranking Property Full

Success

candidate

counterexample

Fig. 5. Synthesis loop with multiple backends

Synthesis Engine. We employ Counterexample-Guided Inductive Synthesis
(CEGIS) to synthesise programs for SI,Dp, S,R. The processes is graphically
illustrated in Fig. 5. Our synthesis engine conjectures solution programs based on
a limited set of counterexamples C. These solutions are guaranteed to satisfy all
known counterexamples ci ∈ C and are refined with each new ci. Each conjecture
is verified by a verifier component, which terminates the process if the constraint
holds (Success). Otherwise the resulting cj is added to C and provided to the
synthesiser for further refinement. As mentioned earlier, for our particular use
case the synthesiser must always find a solution (although in practice this might
take a very long time as discussed in the experimental section).

In order to efficiently synthesise SI,Dp, S,R simultaneously, our algorithm
implements concurrent backends in both the synthesis and verification stage. In
the synthesis stage, a symbolic execution (SymEx) as well as a genetic algo-
rithm (GA) backend concurrently search for new candidates satisfying C. GA is
an alternative way to traverse the space of possible solutions, simulating an
evolutionary process using selection, mutation and crossover operators. It main-
tains a large population of programs which are paired using crossover operation,
combining successful program features into new solutions. In order to avoid
local minima, the mutation operator replaces instructions by random values at
a comparatively low probability. The backends share information about synthe-
sised candidates and pass a complying solution on to the verification component.

Danger Invariants 193

Synthesis components use different instruction sets for SI,Dp, S,R optimised for
their clause in the full danger constraint.

To facilitate concurrent synthesis of multiple programs, the verification com-
ponent searches for different counterexamples in the same iteration. It restricts
the full danger constraint to either find a ci witnessing an inconsistent ranking
(Ranking) or a violation of the user property for which we are proving dan-
ger (Property). Furthermore, the engine provides one counterexample over the
full, unrestricted danger constraint (Full). This ensures that the synthesis com-
ponent receives sufficient information at each iteration to refine all synthesised
programs SI,Dp, S,R. The GA synthesis backend considers these counterexam-
ples in its selection and crossover operators. Candidates that solve distinct sets
of counterexamples have a higher probability of selection as crossover partners
in order to produce solutions that satisfy all types of counterexamples and hence
implement SI,Dp, S,R correctly. This is preferable over fitness values based on
solved counterexamples only, since it avoids local minima where candidates may
solve a multitude of counterexamples of one particular kind.

6 Experimental Results

6.1 Experimental Setup

To evaluate our algorithm, we have implemented the Dangerzone module for
the bounded model checker CBMC 5.5.1 It generates a danger specification from
a given C program and implements a second-order SAT solver as discussed in [12]
to obtain a proof. We ran the resulting prover on 50 programs from the loop
acceleration category in SV-COMP 2016 [5]. We picked this specific category
as it has benchmarks with deep bugs and we were interested in challenging our
hypothesis that danger invariants are well-suited to expose deep bugs and can
complement the capabilities of existing approaches such as BMC. Unfortunately
we had to exclude programs that make use of arrays, since these are not yet
supported by the synthesiser. In addition to this, we also introduced altered
versions of the selected SV-COMP 2016 benchmarks with extended loop guards
to create deeper bugs, challenging our hypothesis even further.

For each benchmark we try to synthesise both a partial danger invariant (i.e.
a danger invariant, a ranking function, an initial state and Skolem functions wit-
nessing the nondeterminism corresponding to partial correctness in Definition 5)
and a total danger invariant (i.e. a danger invariant, an initial state and Skolem
functions corresponding to total correctness in Definition 3). To provide a com-
parison point, we also ran two state-of-the-art bounded model checking (BMC)
tools, CBMC 5.5 [7] and SMACK+CORRAL 1.5.1 [6] on the same bench-
marks. In addition to this, we ran the benchmarks against CPAchecker 1.4 [9],
the overall winner of SV-COMP 2015, and Seahorn 2.6 [8], the second-placed

1 https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e
3d8d.zip.

https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e3d8d.zip
https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e3d8d.zip

194 C. David et al.

tool in the loops category after CPAchecker. We reproduced each tool’s SV-
COMP 2015 configuration, with small alterations to account for the benchmarks
where we increased loop guards. Finally, we manually translated the bench-
marks to be compatible with Microsoft’s Static Driver Verifier Research Plat-
form (SDVRP [13]) with the Yogi 2.0 [14] back end. Yogi’s main algorithms are
Synergy, Dash, Smash and Bolt.

We say that a benchmark contains a deep bug if it is only reachable after at
least 1’000’000 unwindings. Each tool was given a time limit of 300 s, and was run
on a 12-core 2.40 GHz Intel Xeon E5-2440 with 96 GB of RAM. The full result
table of these experiments is given in the extended version of the paper [10].

6.2 Discussion of Results

The results demonstrate that the Dangerzone module outperforms all other
tools on programs with deep bugs. It solves 37 (partial) and 38 (total) out of the
50 benchmarks in standalone mode, and 46 when used with CBMC. By itself,
CBMC only finds 27, SMACK+CORRAL 24, CPAchecker 26 and Seahorn 31
bugs. This result can be explained by the fact that the complexity of finding a
danger invariant is orthogonal to the number of unwindings necessary to reach it.
Dangerzone’s success is not determined by how deep the bug is, but by the
complexity of the invariant describing it. As a result, we perform comparably on
both deep and shallow bugs and are able to expose 18 out of the 20 deep bugs
in the benchmark set. This supports our hypothesis that danger invariants are
well-suited for this category of errors.

Danger invariants and BMC complement each other perfectly in our exper-
iments and together solve 46 out of the 50 problems. We consider this further
evidence for our hypothesis that danger invariants extend existing model check-
ers’ capabilities to expose deep bugs.

6.3 Manually Solving a Danger Constraint

As a case study we also tried using danger invariants to analyse a bug in Sendmail
that has been proposed as a challenge for verification tools [15]. This program
makes use of arrays, which our program synthesiser does not support. We decided
that it would be interesting to see whether danger invariants could be used to
semi-automatically prove the existence of such a difficult bug, and so wrote the
danger invariant by hand. We then used CBMC to verify that the danger invari-
ant we had written did indeed satisfy all of the criteria for a danger invariant
as given in Definition 5, thereby proving the existence of the bug. This process
was successful, with the verification step taking 0.23 s. We therefore believe that
danger invariants could be used in semi-automatic tools to aid humans in finding
complex bugs without the need for full blown automatic tools.

7 Related Work

Compositional may/must Analysis. Compositional approaches to property
checking such as [16] involve decomposing the whole-program analysis into

Danger Invariants 195

I
must−−−−−→ φ2

Check that φ2 ∩ ¬A is non-empty.

φ1
must+−−−−→ ¬A

Check that φ1 ∩ I is non-empty.

Fig. 6. Danger proofs using must− and must+ analyses.

several sub-analyses and summarising the results of these sub-analyses for later
uses. The summaries are either may or must summaries.

The must summaries used in [16] (denoted φ1
must−−−→ φ2) are proofs that for

every state y ∈ φ2, there exists a state x ∈ φ1 such that there is an execu-
tion trace from x to y. In the terminology of [17], this is a must− summary.
The underapproximating nature of such summaries allows checking for bugs by
inspecting the intersection between the must− set (the states reachable from
the initial states via must− transitions) and the error states. Any state in this
intersection must be reachable from an initial state, and therefore is a true bug.
By contrast, Danger Invariants can be seen as a form of must+ analysis, where

we prove facts of the form φ1
must+−−−−→ φ2, which means that every x ∈ φ1 can

reach a state y ∈ φ2. The two styles of must analysis are compared in Fig. 6:
to prove that an assertion A can be violated starting from initial states I, you
can either use a must− analysis to find an underapproximation of the reachable
states and show that these intersect with the error states, or you can use a must+

analysis to find a non-empty underapproximation of the initial states that can
reach an error state.

In [16], the authors use automated random testing techniques (DART) [18] to
compute the must− summaries (required to show the existence of bugs). DART
is based on single-path execution, which means that deep loops will cause the
exploration of a large number of paths (corresponding to executing the loop
once, twice, etc.), which may cause an exponential blow-up. As opposed to this
approach, danger invariants are must+ summaries which may encompass multi-
ple paths through a loop, which can avoid exponential blow-up in many cases.
Thus, the two approaches could be complementary.

Temporal Logic. With respect to the verification of temporal properties, a danger
invariant for a loop with an assertion A essentially proves the CTL property
|= EF¬A over the loop. While there exist CTL verifiers based on a reduction to
exist-forall quantified Horn clauses [19,20], we specialise the concept for finding
deep bugs and describe a modular constraint generation technique over arbitrary
programs, rather than for transition systems.

Underapproximate Acceleration. Another successful technique for finding deep
bugs without false alarms is loop acceleration [21,22]. This approach works by
taking a single path at a time through a loop, computing a symbolic represen-
tation of the exact transitive closure of the path (an accelerator) and adding it
back into the program before using an off-the-shelf bug finder such as a bounded
model checker. Loop acceleration requires that each accelerated path can be

196 C. David et al.

represented in closed-form by a polynomial over the program variables, which
is not always possible. In contrast, danger invariants are complete – a program
has a corresponding danger invariant iff it has a bug.

Constraint Solving. There is a lot of work on the generation of linear invariants of
the form c1x1+. . .+cndn+d ≤ 0 [23,24]. The main idea behind these techniques
is to treat the coefficients c1, . . . , cn, d as unknowns and generate constraints on
them such that any solution corresponds to a safety invariant. In [24], Colon
et al. present a method based on Farkas’ Lemma, which synthesises linear invari-
ants by extracting non-linear constraints on the coefficients of a target invariant
from a program. In a different work, Sharma and Aiken use randomised search to
find the coefficients [24]. It would be interesting to investigate how these methods
can be adapted for generating constraints on the coefficients c1, . . . , cn, d such
that solutions correspond to linear danger invariants.

Doomed Program Locations. The term “doomed program point” was introduced
in [25] and denotes a program location that will inevitably lead to an error
regardless of the state in which it is reached. The notion is more restrictive than
a danger invariant D. Our experiments revealed multiple unsafe benchmarks
for which we could synthesise a danger proof, but no doomed program location
exists.2

Error Invariants. The concept of error invariant [26] was introduced in order to
localize the cause of an error in an error trace. An error invariant is an invariant
for a position in an error trace that only captures states that will still produce
the error. As opposed to an error invariant, a danger invariant is inductive and
may describe multiple traces through the program.

Program Synthesis. Counterexample-Guided Inductive Synthesis (CEGIS) relies
on inductive conjectures and refinement through counterexample information.
This learning pattern is used in a multitude of learning applications, includ-
ing Angluin’s classic DFA learning algorithm L∗ [27]. Syntax-Guided Synthesis
(SyGuS) by Alur et al. is based on the same principle [28]. They employ a
CEGIS loop with a grammar to restrict the space of possible programs. Our
implementation focuses on concurrent synthesis of multiple danger constraint
programs.

8 Conclusions

In this paper, we introduced the concept of danger invariants – the dual to
safety invariants. Danger invariants summarise sets of traces that are guaranteed
to reach an error state. As the size of a danger invariant is independent of the
depth of its corresponding bug, it can enable bug finding techniques for which the
computational effort is also independent of the depth of bugs, and thus have the
potential to find deep bugs more efficiently. As an exemplar of an analysis using
danger invariants, we presented a bug finding technique based on a synthesis
engine.
2 More details in the extended version [10].

Danger Invariants 197

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

2. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16, 1512–1542 (1994)

4. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). doi:10.1007/
11817963 14

5. SV-COMP (2016). http://sv-comp.sosy-lab.org/2016/
6. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:

SMACK+Corral: a modular verifier. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 451–454. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 42

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

8. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: a framework for verifying C
programs (competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 447–450. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 41

9. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 16

10. David, C., Kesseli, P., Kroening, D., Lewis, M.: Danger invariants (extended ver-
sion). https://www.cs.ox.ac.uk/files/8323/danger-paper-extended.pdf

11. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: Proceedings of Programming Language Design and Implementation (PLDI), pp.
281–292 (2008)

12. David, C., Kroening, D., Lewis, M.: Using program synthesis for program analysis.
In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol.
9450, pp. 483–498. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 34

13. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static
driver verifier research platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14295-6 11

14. Nori, A.V., Rajamani, S.K.: An empirical study of optimizations in Yogi. In: Inter-
national Conference on Software Engineering (ICSE). Association for Computing
Machinery Inc., May 2010

15. Dullien, T.: Exploitation and state machines. In: Proceedings of Infiltrate (2011)
16. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must

program analysis: unleashing the power of alternation. In: Proceedings of Principles
of Programming Languages, POPL, pp. 43–56 (2010)

17. Ball, T., Kupferman, O., Yorsh, G.: Abstraction for falsification. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 67–81. Springer, Heidelberg
(2005). doi:10.1007/11513988 8

http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://sv-comp.sosy-lab.org/2016/
http://dx.doi.org/10.1007/978-3-662-46681-0_42
http://dx.doi.org/10.1007/978-3-662-46681-0_42
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1007/978-3-642-22110-1_16
https://www.cs.ox.ac.uk/files/8323/danger-paper-extended.pdf
http://dx.doi.org/10.1007/978-3-662-48899-7_34
http://dx.doi.org/10.1007/978-3-642-14295-6_11
http://dx.doi.org/10.1007/978-3-642-14295-6_11
http://dx.doi.org/10.1007/11513988_8

198 C. David et al.

18. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of Programming Language Design and Implementation, PLDI, pp.
213–223 (2005)

19. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 61

20. Beyene, T.A., Brockschmidt, M., Rybalchenko, A.: CTL+FO verification as con-
straint solving. In: Proceedings of 2014 International Symposium on Model Check-
ing of Software, SPIN 2014, San Jose, CA, USA, 21–23 July 2014, pp. 101–104
(2014)

21. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 26

22. Kroening, D., Lewis, M., Weissenbacher, G.: Proving safety with trace automata
and bounded model checking. In: Bjørner, N., de Boer, F. (eds.) FM 2015.
LNCS, vol. 9109, pp. 325–341. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19249-9 21

23. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation
using non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45069-6 39

24. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88–105. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 6

25. Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: It’s doomed; we
can prove it. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
338–353. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 22

26. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32759-9 17

27. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

28. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia,
S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided syn-
thesis. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland
20–23 October 2013, pp. 1–8 (2013). http://ieeexplore.ieee.org/xpl/freeabs all.jsp?
arnumber=6679385

http://dx.doi.org/10.1007/978-3-642-39799-8_61
http://dx.doi.org/10.1007/978-3-642-39799-8_26
http://dx.doi.org/10.1007/978-3-642-39799-8_26
http://dx.doi.org/10.1007/978-3-319-19249-9_21
http://dx.doi.org/10.1007/978-3-319-19249-9_21
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-319-08867-9_6
http://dx.doi.org/10.1007/978-3-642-05089-3_22
http://dx.doi.org/10.1007/978-3-642-32759-9_17
http://dx.doi.org/10.1007/978-3-642-32759-9_17
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679385
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679385

Local Planning of Multiparty Interactions
with Bounded Horizons

Mahieddine Dellabani1,2(B), Jacques Combaz1,2(B), Marius Bozga1,2(B),
and Saddek Bensalem1,2(B)

1 University Grenoble Alpes, VERIMAG, 38000 Grenoble, France
{mahieddine.dellabani,jacques.combaz,marius.bozga,

saddek.bensalem}@imag.fr
2 CNRS, VERIMAG, 38000 Grenoble, France

http://www.verimag.fr/rsd

Abstract. Dynamic scheduling of distributed real-time systems with
multiparty interactions is acknowledged to be a very hard task. For such
systems, multiple schedulers are used to coordinate the parallel activities
of remotely running components. In order to ensure global consistency
and timing constraints satisfaction, these schedulers must cope with sig-
nificant communication delays while moreover, use only point-to-point
message passing as communication primitive on the platform.

In this paper, we investigate a formal model for such systems as
compositions of timed automata subject to multiparty interactions, and
we propose a distributed implementation method aiming to overcome
the communication delays problem through planning ahead interactions.
Moreover, we identify static conditions allowing to make the planning
decisions local to different schedulers, and thus to decrease the overall
coordination overhead. The method has been implemented and we report
preliminary results on benchmarks.

Keywords: Distributed real-time systems · Timed automata ·
Knowledge

1 Introduction

Over the past few decades, real-time systems have undergone a shift from the
use of single processor based hardware platforms, to large sets of interconnected
and distributed computing nodes. Such evolution stems from an increase in com-
plexity of real-time software embedded on such platforms (e.g. electronic control
in avionics and automotive domains [1]), and the need to integrate formerly iso-
lated systems [2] so that they can cooperate as well as share resources, improving
functionality and reducing costs.

The design and the implementation of distributed systems is acknowledged to
be a very difficult task. A central question is how to efficiently coordinate parallel
activities in a distributed system by means of primary communication primitives

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 199–216, 2016.
DOI: 10.1007/978-3-319-48989-6 13

200 M. Dellabani et al.

offered by the platform, such as point-to-point messages or broadcast. Consid-
ering real-time constraints brings additional complexity since any scheduling or
control decision may not only impact system performance, but may also affect the
satisfaction of timing constraints. To deal with such complexity, the community
of safety critical systems often restricts its scope to predictable systems, which
are represented with domain specific models (e.g. periodic tasks, synchronous
systems, time-deterministic systems) for which the range of possible executions
is small enough to be easily analyzed, allowing the precomputation of optimal
control strategies. For non-critical systems, the standard practice is not to rely
on models for precomputing scenarios but rather to design systems dynamically
adapting at runtime to the actual context of execution. Such approaches do not
offer any formal guarantee of timeliness. The lack of a priori knowledge on system
behavior leaves also little room for static optimization.

In our framework, systems consist of components represented as timed
automata that may synchronize on particular actions to coordinate their activ-
ities. Timed automata are strictly more expressive [3] than time-deterministic
systems considered in time-triggered approaches [4–7]. Our framework also dif-
fers from the one proposed in [8,9] by considering not only binary, but also
multiparty (n-ary) synchronizations, a.k.a. interactions, expressing the fact that
a subset of components may jointly (and atomically) switch their states if given
preconditions are fulfilled. Such high level coordination means are rarely part
of the built-in primitives offered by distributed platforms, and thus need to be
implemented using simpler ones, e.g. exchange of messages. This has been exten-
sively studied in the untimed context [10–17] but to the best of our knowledge, it
has been solved for timed systems only under the assumption of non-decreasing
deadlines in [18,19].

We contribute to this research field by proposing methods for scheduling
interactions with bounded horizons, which aims to reduce the impact of com-
munication delays on systems execution. In particular, (i) we define a semantics
for planning interactions with bounded horizons, (ii) we provide sufficient condi-
tions for this semantics to be correct, and (iii) we present an operational method
to check those conditions using system knowledge.

The rest of the paper is organized as follows. In Sect. 2, we provide a formal def-
inition of composition of timed automata with respect to multiparty interactions.
We also present a semantics for planning interactions with bounded horizons. In
Sect. 3, we study sufficient conditions for a safe planning of interactions. There-
after, we use global knowledge of the system to refine the latest conditions for more
precise results and in order to avoid unnecessary verification (Sect. 4). Finally, the
application of previous results on various examples is presented in Sect. 5. Note
that all the proofs can be found in the technical report [20].

2 Timed Systems and Properties

2.1 Global State Semantics

In the framework of the present paper, components are timed automata and sys-
tems are compositions of timed automata with respect to multiparty interactions.

Local Planning of Multiparty Interactions with Bounded Horizons 201

The timed automata we use are essentially the ones from [21], however, slightly
adapted to embrace a uniform notation throughout the paper.

Definition 1 (Component). A component is a tuple (L, �0, A, T,X , tpc) where
L is a finite set of locations, �0 ∈ L is an initial location, A a finite set of actions,
X is a finite set of clocks, T ⊆ L × (A × C × 2X) × L is a set of transitions
labeled with an action, a guard, and a set of clocks to be reset, and tpc : L → C
assigns a time progress condition, tpc�, to each location, where C is the set of clock
constraints defined by the following grammar:

C := true | x ∼ ct | x − y ∼ ct | C ∧ C | false,
with x, y ∈ X , ∼ ∈ {<,≤,=,≥, >} and ct ∈ R≥0. Time progress conditions are
restricted to conjunctions of constraints of the form x ≤ ct.

Throughout the paper, we consider that components are deterministic timed
automata, that is, at a given location � and for a given action a, there is
at most one outgoing transition from � labeled by a. Given a timed automa-
ton (L, �0, A, T,X , tpc), we write �

a,g,r−−−→ �′ if there exists a transition τ =(
�, (a, g, r), �′) ∈ T . We also write:

guard(a, �) =

{
g, if ∃τ =

(
�, (a, g, r), �′) ∈ T

false, otherwise

Let V be the set of all clock valuation functions v : X → R≥0. For a clock
constraint C, C(v) is a boolean value corresponding to the evaluation of C on v.
For a valuation v ∈ V, v + δ is the valuation satisfying (v + δ)(x) = v(x) + δ,
while for a subset of clocks r, v[r] is the valuation obtained from v by resetting
clocks of r, i.e. v[r](x) = 0 for x ∈ r, v[r](x) = v(x) otherwise. We also denote
by C + δ the clock constraint C shifted by δ, i.e. such that C(v + δ) iff C(v).

Definition 2 (Semantics). A component B = (L, �0, A, T,X , tpc) defines the
labeled transition system (LTS) (Q, A ∪ R>0,→) where Q ⊆ L × V(X) denotes
the states of B and →⊆ Q×(A∪R>0)×Q denotes the set of transitions between
states according to the rules:

– (�, v) a−→ (�′, v[r]) if �
a,g,r−−−→ �′, and g(v) is true (action step).

– (�, v) δ−→ (�, v + δ) if tpc�(v + δ) (time progress).

We define the predicate urg(tpc�) characterizing the urgency of a time progress

condition tpc� =
m∧

i=1

xi ≤ cti at a state (�, v) as follows:

urg(tpc�) =
m∨

i=1

(xi = cti),

An execution sequence of B from a state (�, v) is a path in the LTS starting at
(�, v) and that alternates action steps and time steps (time progress), that is:

(�1, v1)
σ1−→ . . .

σi−→ (�n, vn), n ∈ Z≥0, σ ∈ A ∪ R>0

202 M. Dellabani et al.

In this paper, we always assume components with well formed guards meaning
that transitions �

a,g,r−−−→ �′ satisfy g(v) ⇒ tpc�(v) ∧ tpc�′(v[r]) for any v ∈ V. We
say that a state (�, v) is reachable if there is an execution sequence from the initial
configuration (�0, v0) leading to (�, v), where v0 assigns 0 to all clocks. Notice
that the set of reachable states is in general infinite, but it can be partitioned
into a finite number of symbolic states [22–24]. A symbolic state is defined by a
pair (�, ζ) where, � is a location of B, and ζ is a zone, i.e. a set of clock valuations
defined by a clock constraint (as defined in Definition 1). Efficient algorithms for
computing symbolic states and operations on zones are fully described in [23].
Given symbolic states {(�j , ζj)}j∈J of B, the predicate Reach(B) characterizing
the reachable states can be formulated as:

Reach(B) =
∨

j∈J

at(�j) ∧ ζj ,

where at(�j) is true on states whose location is �j , and clock constraint ζj is
straightforwardly applied to clock valuation functions of states.

We also define the predicate Enabled(a) characterizing states (�, v) at which
an action a is enabled, i.e. such that (�, v) a−→ (�′, v′). It can be written:

Enabled(a) =
∨

(�,a,g,r,�′)∈T

at(�) ∧ guard(a, �)

Definition 3 (Deadlock). We say that a state (�, v) of a component B dead-
locks, if neither action steps nor time steps can be done from this state. The
following equation characterizes those states:

∀a ∈ A. ¬Enabled(a) ∧ urg(tpc�)

In our framework, components communicate by means of multiparty interac-
tions. A multiparty interaction is a rendez-vous synchronization between actions
of a fixed subset of components. It takes place only if all the participants agree
to execute the corresponding actions. Given n components Bi, i = 1, . . . , n, with
disjoint sets of actions Ai, an interaction is a subset of actions α ⊆ ∪1≤i≤nAi

containing at most one action per component, i.e. α ∩ Ai is either empty or a
singleton {ai}. That is, an interaction α can be put in the form {ai}i∈I with
I ⊆ {1, . . . , n} and ai ∈ Ai for all i ∈ I.

Definition 4 (Composition). For n components Bi = (Li, �
i
0, Ai, Ti,Xi, tpci),

with Lj ∩ Lj = ∅, Ai ∩ Aj = ∅, and Xi ∩ Xj = ∅ for any i �= j, the composition
γ(B1, . . . , Bn) w.r.t. a set of interactions γ is defined by a timed automaton S =
(L, �0, γ, Tγ ,X , tpc) where �0 = (�10, . . . , �

n
0), X = X1∪ . . .∪Xn, L = L1× . . .×Ln,

tpc = tpc1 ∧ . . . ∧ tpcn for � = (�1, . . . , �n), and Tγ is such that �
α,g,r−−−→ �′ for

α = {ai}i∈I , � = (�1, . . . , �n), and �′ = (�′
1, . . . , �

′
n), if for i �∈ I we have �′

i = �i,
and for i ∈ I we have �i

ai,gi,ri−−−−−→ �′
i, and gα =

∧
i∈I gi and r =

⋃
i∈I ri.

Local Planning of Multiparty Interactions with Bounded Horizons 203

In practice we do not explicitly build compositions of components as pre-
sented in Definition 4. We rather interpret their semantics at runtime by evalu-
ating enabled interactions based on current states of components. In a compo-
sition of n components Bi∈{1,··· ,n}, denoted by γ(B1, . . . , Bn), an action ai can
execute only as part of an interaction α such that ai ∈ α, that is, along with the
execution of all other actions aj ∈ α, which corresponds to the usual notion of
multiparty interaction.

Property 1 (Semantics of a Composition). Given a set of components {B1, · · · ,
Bn} and an interaction set γ. The semantics of the composite component S =
(L, �0, γ, Tγ ,X , tpc) w.r.t the set of interaction γ, is the LTS (Qg, γ ∪ R>0,→γ)
where:

– Qg = L × V(X) is the set of global states, where L = L1 × · · · × Ln and
X =

⋃n
i=1 Xi. We write a state q = (�, v) where � = (�1, · · · , �n) ∈ L is a

global location and v = (v1, · · · , vn) ∈ V(X) is a global clocks valuations.
– γ is the set of interactions
– →γ is the set of labeled transitions defined by the rules:

• Action steps:

α = {ai}i∈I ∈ γ, ∀i ∈ I.(�i, vi)
ai−→ (�′

i, v
′
i), ∀i /∈ I.(�i, vi) = (�′

i, v
′
i)

(�, v) α−→γ (�′, v′)

• Time steps:

δ ∈ R>0 ∀i ∈ {1, · · · , n} tpci(vi + δ)

(�, v) δ−→γ (�, v + δ)

In what follows, we consider only deadlock-free systems w.r.t the presented
semantics. By abuse of notation, predicates at(�i) of individual components Bi

are interpreted on states of S, being true for (�, v) iff Bi is at location �i in �,
i.e. iff � ∈ L1 × . . . × Li−1 × {�i} × Li+1 × . . . × Ln. Similarly, clock constraints
of components Bi are applied to clock valuation functions v of the composition
S = (L, �0, γ, Tγ ,X , tpc) by restricting v to clocks Xi of Bi. Given an interaction
α ∈ γ, these notations allow us to write Enabled(α) as:

Enabled(α) =
∨

�=(�1,··· ,�n)∈Lα

at(�) ∧ guard(α, �),

=
∨

(�1,··· ,�n)∈Lα

at(�) ∧
∧

ai∈α

guard(ai, �i),

=
∨

(�1,··· ,�n)∈Lα

n∧

i=1

at(�i) ∧
∧

ai∈α

guard(ai, �i),

=
∧

ai∈α

Enabled(ai),

where Lα = {� ∈ L|� α,g,r−−−→ �′}.

204 M. Dellabani et al.

�10

�11

C

end0

init0
z > 4

end0

run
z := 0

�20 �21

�22 x ≤ 3

T1

�23

init1

start1
x := 0

process1
1 ≤ x ≤ 3

end1

�31�30

�32 y ≤ 3

T2

�33

init2

start2
y := 0

process2
1 ≤ y ≤ 3

end2

�40

R

�41

take

free

init2 start2

end2
process2

init1start1

end1
process1

take

free

init0 run

end0

α5α6

α1α2

α3α4

α7α8

Fig. 1. Task Manager

Example 1 (Running Example). Let us consider as a running example the com-
position of four components C, T1, T2, and R of Fig. 1. Component C repre-
sents a controller that initializes, releases, and ends tasks T1 and T2. Tasks use
the shared resource R during their execution. To implement such behavior, we
consider the following interactions between C, R, and T1: α1 = {init0, init1},
α3 = {run, start1}, α5 = {take, process1}, α7 = {end0, free, end1}, and simi-
lar interactions α2, α4, α6, α8 for task T2, as shown by connections on Fig. 1.
The controller is responsible for firing the execution of each task. First, it non-
deterministically initializes one of the two tasks, i.e. executes α1 or α2, and then
releases it through interaction α3 or α4. Tasks perform their processing indepen-
dently of the controller, after being granted an access to the shared resource (α5

or α6). When ended by the controller, a task releases the resource (interactions
α7 or α8) and go back to its initial location. An example of execution sequence
of the system of Fig. 1 is given below, in which valuations v of clocks x, y, and
z are represented as a tuples (v(x), v(y), v(z)):

((�10, �
2
0, �

3
0, �

4
0), (0, 0, 0))

5−→γ ((�10, �
2
0, �

3
0, �

4
0), (5, 5, 5))

α1−−→γ ((�11, �
2
1, �

3
0, �

4
0), (5, 5, 5))

α3−−→γ ((�10, �
2
2, �

3
0, �

4
0), (0, 5, 0))

2−→γ ((�10, �
2
2, �

3
0, �

4
0), (2, 7, 2))

α5−−→γ ((�10, �
2
3, �

3
0, �

4
1), (2, 7, 2))

3−→γ ((�10, �
2
3, �

3
0, �

4
1), (5, 10, 5))

α2−−→γ ((�11, �
2
3, �

3
1, �

4
1), (5, 10, 5))

Local Planning of Multiparty Interactions with Bounded Horizons 205

2.2 Weak Planning Semantics

The presented semantics is based on a global state operational semantics, that
is, the operational semantics rules and the computation of possible interactions
between timed components is achieved through global states. Considering a dis-
tributed context, components are intrinsically concurrent and their execution
is asynchronous. This means that even if states of components participating in
an interaction α are known, α cannot be executed in the global state semantics
until the states of all components are known, which breaks the principle of dis-
tribution. Usually, components are mapped at different areas on the distributed
platform in a way that better suits their interactions. In other terms, compo-
nents that synchronize their actions are more likely to be next to each others.
However, there are cases where several components participate in the same inter-
action but are mapped far from each other, which adds on communication delays
to the interaction corresponding to the exchange of messages.

In order to reach an efficient scheduling, able of taking decisions ahead and
using only partial (local) information, we define a different semantics based on a
local planning of interactions. It aims to alleviate the problem of communication
delays through an early decision making mechanism while preserving deadlock
freedom property of the system. This is achieved by planning each interaction
ahead, which means to choose an execution time within a certain horizon for each
interaction, based only on the states of components involved in that interaction.
Consequently, components are notified ahead through communication primitive,
and will wait until the chosen execution time to perform their corresponding
actions. Our approach is to define for each interaction its earliest planning date,
which correspond to the maximum horizon value that ensure a safe planning of
the considered interaction.

Preliminaries. We define the predicate Enabled↗δ

(α) characterizing all states
from which α is enabled if time progresses by δ units of time, that is:

Enabled↗δ

(α) =
∨

�∈Lα

(
at(�) ∧

∧

ai∈α

(guard(ai, �i) + δ)
)
, (1)

Property 2. Let (�, v) be a state of the composition S. For any interaction

β ∈ γ such that, part(α) ∩ part(β) = ∅ and (�, v)
β−→γ (�′, v′), where part(α)

(resp. part(β)) represents components participating in interaction α (resp. β), if
Enabled↗δ

(α) holds at state (�, v) then it still holds at state (�′, v′).

This property derives from the fact that executing interactions with disjoint set
of components than α does not change the states of components participating
in α, that is, for ai ∈ α we have �i = �′

i and vi = v′
i.

Property 3. Let (�, v) and (�, v + δ′), with δ′ ∈ R>0 be two states of the compo-
sition S. If Enabled↗δ

(α) is true at state (�, v) then Enabled↗δ−δ′
(α) is true at

state (�, v + δ′) for δ′ ≤ δ.

This property can be found directly by writing Eq. 1 on state (�, v + δ′).

206 M. Dellabani et al.

Let δmax be a partial function δmax : γ → R≥0 that defines for each
interaction a maximum horizon to be planned with. We define the predicate
Enabled↗[0,δmax(α)]

(α) characterizing all states from which α can be planned with
a δmax(α)-horizon as follows:

Enabled↗[0,δmax(α)]
(α) =

∨

�∈Lα

(at(�)∧ ↙δmax(α) (
∧

ai∈α

guard(ai, �i))),

with ↙δmax(α) represents an adaptation of the backward operators [22] that
satisfies:

↙δmax(α) g(x) ⇔ ∃δ ≤ δmax(α).g(x + δ),

Property 4. If the predicate Enabled↗δ

(α) is true at a state (�, v), then the
predicate Enabled↗[0,δmax(α)]

(α) is also true for δ ≤ δmax(α).

Definition 5 (Plan). We say that two interactions α and β, α �= β, conflicts
if part(α) ∩ part(β) �= ∅, and we write α#β. A plan π is a partial function
π : γ → R≥0 defining relative times for executing a subset of non conflicting
interactions, i.e.:

α �= α′, π(α) �=⊥, π(α′) �=⊥ =⇒ ¬(α#α′).

We also denote by conf (π) the set of interactions conflicting with the plan π, i.e.
conf (π) = {α | ∃β#α . π(β) �= ⊥}, and part(π) the set of components involved
in interactions planned by π, i.e. part(π) = {Bi | ∃α . π(α) �= ⊥∧Bi ∈ part(α)}.
We denote by min π the closest relative execution time of interactions in the plan
π, i.e. min π = min {π(α) | α ∈ γ ∧ π(α) �= ⊥} ∪ {+∞}. Notice that since π
stores relative times, whenever time progresses by δ the value π(α) assigned by
π to an interaction α should be decreased by δ, until it reaches 0 which means
that α have to execute. We write π − δ describing the progress of time over the
plan, that is, (π − δ)(α) = π(α) − δ for interactions α such that π(α) �= ⊥.
We also write π − α to denote the removal of interaction α from the plan π,
i.e. (π − α)(β) = π(β) for any interaction β �= α, (π − α)(α) = ⊥. Similarly,
π ∪ {α �→ δ} assigns relative time δ to α, α /∈ conf(π), into existing plan π, i.e.
(π ∪ {α �→ δ})(β) = δ for β = α, (π ∪ {α �→ δ})(β) = π(α) otherwise. Finally,
the plan π such that π(α) = ⊥ for all interactions α ∈ γ is denoted by ∅.

We define below the semantics for planning each interaction α ∈ γ with
δmax(α)-horizon.

Definition 6 (Weak Planning Semantics). Given a set of components
{B1, · · · , Bn} and an interaction set γ, we define the weak planning semantics
of the composite component S = (L, �0, γ, Tγ ,X , tpc), as the labeled transition
system Sp = (Qπ, γ ∪ R>0 ∪ {plan}, ∼∼∼>) where:

– Qπ = L × V(X) × Π, where L is the set of global location, V(X) is the set of
global clocks valuations, and Π is the set of plans.

Local Planning of Multiparty Interactions with Bounded Horizons 207

– plan defines the action of planning interactions
– ∼∼∼> is the set of labeled transitions defined by the rules:

• Plan:

δ ≤ δmax(α), α ∈ γ,part(α) ∩ part(π) = ∅ Enabled↗δ

(α)

(�, v, π) ∼∼∼∼>
plan(α,δ)

(�, v, π ∪ {α �→ δ}).• Exec:

π(α) = 0

(�, v, π) ∼∼∼>
α (�′, v′, π − α)}

• Time Progress: δ ∈ R>0

δ ≤ min π ∧ tpci(vi + δ)i∈{1,··· ,n}

(�, v, π) ∼∼∼>
δ (�, v + δ, π − δ)

Example 2. Let us consider the following execution sequence for the example of
Fig. 1 under the weak planning semantics rules and for a value δmax = 5 for all
interactions except α5 and α6 that will be assigned a δmax = 3:

((�10, �
2
0, �

3
0, �

4
0), (0, 0, 0), ∅) ∼∼∼∼∼∼>

plan(α1,5)
((�10, �

2
0, �

3
0, �

4
0), (0, 0, 0), {α1 �→ 5})∼∼∼>

5

((�10, �
2
0, �

3
0, �

4
0), (5, 5, 5), {α1 �→ 0}) ∼∼∼>

α1
((�11, �

2
1, �

3
0, �

4
0), (5, 5, 5), ∅) ∼∼∼∼∼∼>

plan(α3,2)

((�11, �
2
1, �

3
0, �

4
0), (5, 5, 5), {α3 �→ 2}) ∼∼∼>

2
((�11, �

2
1, �

3
0, �

4
0), (7, 7, 7), {α3 �→ 0})∼∼∼>

α3

((�10, �
2
2, �

3
0, �

4
0), (0, 7, 0), ∅) ∼∼∼∼∼∼>

plan(α5,2)
((�10, �

2
2, �

3
0, �

4
0), (0, 7, 0), {α5 �→ 2})∼∼∼>

2

((�10, �
2
2, �

3
0, �

4
0), (2, 9, 2), {α5 �→ 0}) ∼∼∼>

α5
((�10, �

2
3, �

3
0, �

4
1), (2, 9, 2), ∅) ∼∼∼∼∼∼>

plan(α2,3)

((�10, �
2
3, �

3
0, �

4
1), (2, 9, 2), {α2 �→ 3}) ∼∼∼>

3
((�10, �

2
3, �

3
0, �

4
1), (5, 12, 5), {α2 �→ 0})∼∼∼>

α2

((�11, �
2
3, �

3
1, �

4
1), (5, 12, 5), ∅) ∼∼∼∼∼∼>

plan(α4,0)
((�11, �

2
3, �

3
1, �

4
1), (5, 12, 5){α4 �→ 0})∼∼∼>

α4

((�10, �
2
3, �

3
2, �

4
1), (5, 0, 0), ∅) ∼∼∼∼∼∼>

plan(α7,4)
((�10, �

2
3, �

3
2, �

4
1), (5, 0, 0), {α7 �→ 4})∼∼∼>

3

((�10, �
2
3, �

3
2, �

4
1), (8, 3, 3), {α7 �→ 1})

This execution sequence represents a path that alternates plan actions, time steps
and execution of some interactions. We can see that for interaction α7 which is
planned 4 units of time ahead, the system cannot reach the state from which it
can be executed since there is a time progress expiration in component T2 after
3 time units from planning this interaction. This means that local planning of
interactions doesn’t always allow the progress of time and may thus, introduce
deadlocks even if the system under the global semantics rules is deadlock-free.

208 M. Dellabani et al.

2.3 Relation Between Global and Weak Planning Semantics

We use weak simulation to compare the model under the global semantics rules
and the one under the weak planning semantics rules by considering plan-
transitions unobservable. As explained in Example 2, the weak planning seman-
tics does not preserve the deadlock property of our system. Nevertheless, the
following proves weak simulation relations between the two semantics.

Theorem 1. For all the reachable states (�, v, π) of the weak planning seman-
tics, and ∀α ∈ π, the predicate Enabled↗π(α)

(α) is true.

Let Sg = (Qg, γ ∪ R>0,−→γ) (resp. Sp = (Qp, γ ∪ R>0 ∪ {plan}, ∼∼∼>))
the labeled transition system characterizing the global (resp. weak planning)
semantics.

Proposition 1

Relation 1 ∀δ ∈ R>0.(�, v, π) ∼∼∼>
δ (�′, v′, π′) ⇒ (�, v) δ−→γ (�′, v′)

Relation 2 ∀α ∈ γ.(�, v, π) ∼∼∼>
α (�′, v′, π′) ⇒ (�, v) α−→γ (�′, v′)

It is straightforward that Relation 1 is a consequence of the definition of time
progress in the weak planning semantics. For Relation 2, using Definition 6, we
can deduce that:

(�, v, π) ∼∼∼>
α (�′, v′, π′) ⇒ π(α) = 0

By Theorem 1, this implies that Enabled↗0
(α) is true at state (�, v, π), meaning

that Enabled(α) is also true, which allows to infer Relation 2.

Corollary 1. If a state (�, v, π) ∈ Reach(Sp), then (�, v) ∈ Reach(Sg).

Definition 7 (Weak Simulation). A weak simulation over A = (QA,
∑

∪{β},→A) and B = (QB ,
∑ ∪{β},→B) is a relation R ⊆ QA × QB such that

we have: ∀(q, r) ∈ R, a ∈ ∑
.q

a−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r
β∗aβ∗
−−−−→B

r′ and ∀(q, r) ∈ R : q
β−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗
−→ r′. B simulates A,

denoted by A �R B, means that B can do everything A does.

The definition of weak simulation is based on the unobservability of
β−transitions. In our case, β−transitions corresponds to plan−transitions.

Corollary 2. Sp �R1 Sg with R1 = {(q, π); q) ∈ Qp × Qg}.
Corollary 2 corresponds to a notion of correctness of the weak planning

semantics: any execution in weak planning semantics corresponds to an exe-
cution in the global state semantics.

Theorem 2. Sg �R2 Sp with R2 = {(q; (q, π)) ∈ Qg × Qp|π = ∅}.

Local Planning of Multiparty Interactions with Bounded Horizons 209

Theorem 2 states that the weak planning semantics preserves all execution
sequences of the global state semantics. They are obtained using immediate
planning, i.e. plans π such that π(α) = 0 or π(α) = ⊥. The weak planning
semantics aims to reduces the impact of communication delays in the system
through planning interactions execution ahead, and by considering only the state
of components involved in the planned interaction, which is more suitable for
distributed real-time systems than the global state semantics. It does not restrict
the behavior of the global state semantics (see Theorem 2), and it executes only
sequences allowed by the global state semantics (see Corollary 2). However, it
may introduce deadlocks as shown by the scenario presented in Example 2. In
the following, we present sufficient conditions for deadlock-free planning of inter-
actions.

3 Deadlock-Free Planning

As explained in Example 2, local planning of interactions can introduce dead-
locks in the system since it does not consider time progress conditions of compo-
nents not participating in the planned interactions. Effectively, the weak plan-
ning semantics ensures that time can progress until the chosen execution date
only w.r.t timing constraints of participating components, but such progress may
be disallowed by the rest of the system leading to deadlock states. In this section,
we provide sufficient conditions for having deadlock-free planning.

Planning an interaction α implies not only blocking components participating
in α until α executes, but also preventing the system from planning interactions
involving these components, that is, interactions of conf (α). Consequently, the
subset of interactions γ′ ⊆ γ that can be planned at a given state (�, v, π) depends
on the content of the plan π. It satisfies γ′ = {γ \ π ∪ conf (π)}.

By Corollary 1, a (reachable) deadlock state (�, v, π) of the weak planning
semantics Sp is such that (�, v) is a reachable state of the global state semantics
Sg. Since we assume that Sg is deadlock-free, (�, v) is not a deadlock in Sg. A
deadlock state (�, v, π) of Sp is caused by the plan π which is restricting the
execution in Sp w.r.t. Sg: interactions α of π cannot execute before π(α) time
units, and interactions α ∈ conf (π) are blocked for (at least) max {π(β) | β#α}.
Notice that due to well-formed guards, in a deadlock state (�, v, π) we have
necessarily at(�i) ∧ urg(tpc�i

) for a location �i of a component Bi /∈ part(π).

Theorem 3. If a state (�, v, π) ∈ Reach(Sp) deadlocks, the following equation
is satisfied:

∧

α∈π

Enabled↗π(α)
(α)

︸ ︷︷ ︸
A

∧
∨

Bi∈S\part(π)

∨

�i∈Li

�i ∧ urg(tpc�i
)

︸ ︷︷ ︸
B

∧
∧

α∈π

π(α) �= 0 ∧ (∨

α∈π

(Enabled(α) ∨
∨

α∈conf (π)

Enabled(α)
)

︸ ︷︷ ︸
C

(2)

210 M. Dellabani et al.

From Theorem 1, Term A of Eq. 2 represents an invariant of the system. On the
other hand, terms B and C characterize the deadlock: Term B expresses the
urgency of time progress condition in components not involved in the planned
interactions, whereas, term C specifies the origin of the deadlock: it character-
izes states (�, v, π) of Sp for which π restricts the execution of an interaction α
whereas it can be executed at (�, v) in Sg. As explained above, such an interaction
satisfies π(α) > 0 or α ∈ conf (π).

It is clear that Eq. 2 depends on the reachable states of the planning semantics
since it explicitly depends on plans π. The following gives weaker conditions for
deadlocks which are independent of the plan.

Theorem 4. Let Φ(α) be the following predicate:

�
Enabled↗[0,δmax(α)]

(α) ∧
∨

Bi∈S\part(α)

∨

�i∈Li

at(�i) ∧ urg(tpc�i
) ∧

∨

β∈α∪conf (α)

Enabled(β)

(3)

where

Enabled↗[0,δmax(α)]

(α) is the result of transforming all the timing con-
straints of the form x ≤ ct by x < ct in ↙δmax(α) (

∧
ai∈α guard(ai, �i)) of

Enabled↗[0,δmax(α)]
(α).

If a reachable state of the system (�, v, π) deadlocks then the following is
satisfied:

∃α ∈ γ, Φ(α) ∧ δmax(α) �= 0 (4)

Let schedule(α, δmax(α)) be the following predicate:

schedule(α, δmax(α)) = ¬Φ(α) ∨ (δmax(α) = 0)

Using Theorem 4 and Corollary 1, we can conclude that for all interac-
tions α ∈ γ and for all reachable states of the global state semantics Sg, if
the predicate schedule(α, δmax(α)) is satisfied, then the weak planning seman-
tics is deadlock-free. Notice that given an interaction α ∈ γ the satisfac-
tion of schedule(α, δmax(α)) on Reach(Sg) depends only on δmax(α). More-
over, it is monotonic, that is, if it holds for δmax(α) then it holds for any
δmax(α)′ < δmax(α). This provides means for building implementations that
plan interactions as soon as possible by taking for δmax(α) the maximal value of
δ such that schedule(α, δ) holds on Reach(Sg).

4 Using Knowledge to Enhance Deadlock-Free Planning

In Sect. 3, we presented sufficient conditions that ensure a deadlock-free planning
of interactions. Effectively, we use an SMT solver to check the satisfiability of
those conditions on the reachable states of the planning semantics. As explained
in Sect. 3 to prove deadlock-freedom of weak planning semantics it is sufficient
to prove that for all interactions α ∈ γ the following formula:

Reach(Sg) ∧ ¬schedule(α, δmax(α))

Local Planning of Multiparty Interactions with Bounded Horizons 211

is unsatisfiable. In practice, we do not calculate Reach(Sg) to avoid the combi-
natorial explosion problem inherent to composition of timed automata. Instead,
we use over-approximations of the latter which enable us to build stronger con-
ditions of deadlock freedom. As explained in more detail below, these over-
approximations take the form of invariants I (i.e. such that Reach(Sg) ⇒ I)
that are used to establish deadlock freedom by checking the unsatisfiability of:

I ∧ ¬schedule(α, δmax(α))

Timed Invariants. Our approach consists in leveraging global knowledge of
the system in the form of invariants that will be used to approximate Reach(Sg).
Locations reachable in a composition S = γ(B1, . . . , Bn) are necessary combi-
nations of reachable locations of individual components Bi, i.e., Reach(Sg) ⇒∧n

i=1 Reach(Bi). However, in general not all combinations are reachable since
components are not fully independent as they synchronize through interaction
set γ. Moreover, individual reachable states of components do not express the
fact that time progresses the same way in all components.

For example, a global location may be not reachable because component
locations having disjoint time progress conditions, or an interaction may be not
enabled from a state because of an empty timing constraint. Such properties
require additional relationships relating clocks of different components that are
not available in Reach(Bi) as it is is restricted to clocks of a single component.

We follow the approach of [25–27] for reinforcing individual reachable states
of components with global invariants on clocks. They are induced by simultane-
ity of transitions execution when executing an interaction and the synchrony
of time progress. To compute such invariants, additional history clocks are first
introduced in components. History clocks are associated to actions of compo-
nents and to interactions, and reset upon their execution. They do not modify
the behavior since they are not involved in timing constraints. They only reveal
local timing of components, relevant to the interaction layer, which allows to
infer further properties referred as history clocks inequalities in [25], expressing
the fact that the history clock of an interaction is necessary equal to history
clocks of its actions after its execution and until the execution of another inter-
action involving these actions. By combining history clocks inequalities E(S) and
symbolic states of components, we have:

Reach(Sg) ⇒
n∧

i=1

Reach(Bi) ∧ E(Sg) (5)

Notice that for such systems with multiparty interactions, other types of
invariants could be used, like those of [28] that corresponds to the notion of
S-invariants in the Petri net community [29]. Even if they are time abstracted,
it is proved that they are appropriate for verifying non coverage of subsets of
individual locations.

Example 3. We illustrate the application of (5) for a safe planning of interac-
tions by considering again example of Fig. 1. It can be shown that locations

212 M. Dellabani et al.

configuration including location �32 (resp. �22) does not satisfy the predicate
schedule(α, δmax(α)) for interaction α5 (resp. α6). In the following, we prove
how such configurations can be excluded using history clocks inequalities.
Since action run of C is synchronized with either start1 of T1 or start2 of T2,
and since history clocks ha of an action a is reset whenever a is executed, by [25]
the history clock inequalities for run are:

(hrun = hstart1 < hstart2 − 4) ∨ (hrun = hstart2 < hstart1 − 4). (6)

Equation (6) states that hrun is equal to the history clock corresponding to the
last synchronization, i.e. either hstart1 or hstart2 , and is lower than history clocks
of previous synchronizations. Value 4 in (6) is obtained considering separation
constraints computed from symbolic states of components [25]: two occurrences
of run are separated by at least 4 time units because of timing constraints of
C, and so do occurrences of start1 or start2 which can only execute jointly
with run. To relate history clocks with components clocks, we simply include
history clocks when computing symbolic states of components (i.e. Reach(Bi) for
components), which is used to establish here that x = hstart1 and y = hstart2 .
That is, combined with (6) we obtain x < y − 4 or y < x − 4.

By definition of Enabled we have Enabled(α6) = at(�22) ∧ (1 ≤ x ≤ 3).
Similarly, Enabled(α6) = at(�32) ∧ (1 ≤ y ≤ 3). This proves that components T1

and T2 can never be at locations �32 and �22 at the same time. Thus, while checking
for interaction α5 (resp. α6) that

∧n
i=1 Reach(Bi)∧E(Sg)∧¬schedule(α, δmax(α))

is unsatisfiable, this case will be excluded using history clock inequalities.

5 Implementation and Experiments

The presented method has been implemented as a middleend filter of the BIP
compiler. BIP [30] is a highly expressive, component-based framework with rigor-
ous semantics that allows the construction of complex, hierarchically structured
models from single components characterized by their behavior. The method
input consists of real-time BIP model and a file containing an approximation
of the reachable states of components combined with history clock inequalities
as explained in Sect. 4. The latter is generated using the RTD-Finder tool, a
verification tool for real-time component based systems modeled in the RT-BIP
language. Our filter generates for each interaction of the input model a Yices [31]
file containing system invariants together with the condition for planning the con-
sidered interaction, that is, ¬schedule(α, δmax(α)). Thereafter, Yices checks the
satisfiability of

∧n
i=1 Reach(Bi) ∧ E(Sg) ∧ ¬schedule(α, δmax(α)). We also define

δmax(α) as free variable. If this condition is unsatisfiable, then planning interac-
tions α is safe and unbounded that is, δmax = +∞. Otherwise, Yices generates
a counter-example. Due to the monotony of the condition, this counter-example
can be used to find the maximal value of δmax(α) satisfying the above condi-
tion using a binary search algorithm. Together, the determined values of the
bounds δmax for each interaction will affect the dynamic of the hole system: for
an interaction α the greater δmax(α) is, the more flexible the scheduling of α
will be.

Local Planning of Multiparty Interactions with Bounded Horizons 213

Table 1. Detailed results of the Task Manager experiments

Interaction Conflicting interactions tpc δmax(α)

α1 α2, α4, α8 �32 ∞
α3 α2, α4, α8 �32 ∞
α5 α6, α8 �32 ∞
α7 α2, α4 �32 0

Table 2. Results of experiments

Model Number of interactions

δmax = 0 δmax = ∞ total

Task Manager 2 6 8

Pacemaker 0 6 6

Gear 0 17 17

Fischer 0 10 10

We ran our experiments on three other models besides of the model presented
in Fig. 1: Pacemaker [32], Fischer [33], and Gear controller [34]. We developed an
implementation of these models in RT-BIP. The following tables show the result
of our experiments. Table 1 gives a detailed result of the experiments ran on the
Task Manager model Fig. 1. It summarizes, for each interaction, its conflicting
interactions and the potential locations for which a time progress condition may
expire while planning it (column tpc). The last column, δmax(α), details the
maximum horizon for planning interaction α. Notice that the symmetry of the
model allows to perform the verification on interactions α1, α3, α5, and α7 and
deduce the results for the other interactions. Table 2 depicts the results of our
experiments on different models. For each model, it summarizes the number of
interactions that can be safely planned with an unbounded horizon (δmax = ∞).
It also gives the number of interactions that cannot be planned in advance, and
thus, need to be executed immediately after being planned (δmax = 0).

6 Conclusion and Future Work

We presented a method for scheduling real-time systems in a distributed context
considering models including multiparty interactions. The proposed approach
defines sufficient conditions ensuring a deadlock-free local planning of interac-
tions with certain horizons. Moreover, it is proved that those conditions are
interaction dependent, in other terms, this means that changing the planning
horizon of an interaction does not affect the planning of other interactions. A
key innovative idea is the use of global knowledge in addition to local compo-
nents informations to enhance the local scheduling of interactions. The computed

214 M. Dellabani et al.

knowledge captures not only the way components synchronize through interac-
tions, but it also consider the history clock inequalities between those interactions
and express explicitly the synchrony of time progress.

There are many open problems to be investigated such as: (i) when planning
an interaction, identifying conditions based on the state of components involved
in this interaction, and (ii) defining a lower bound for planning interaction. The
latter represents an important point meaning that, if planning interactions can
be ensured for a lower bound, that effectively represents the communication
delays of the target platform, then all the problems induced by those delays,
such as global consistency and performance dropping will be solved.

References

1. Charette, R.N.: This car runs on code. IEEE Spectrum (2009)
2. Kopetz, H.: An integrated architecture for dependable embedded systems. In: Pro-

ceedings of the 23rd IEEE International Symposium on Reliable Distributed Sys-
tems, SRDS 2004, pp. 160–161. IEEE Computer Society, Washington, DC (2004)

3. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: EMSOFT (2010)

4. Kopetz, H.: Time-triggered real-time computing. Ann. Rev. Control 27(1), 3–13
(2003)

5. Chabrol, D., David, V., Aussaguès, C., Louise, S., Daumas, F.: Deterministic dis-
tributed safety-critical real-time systems within the oasis approach. In: Interna-
tional Conference on Parallel and Distributed Computing Systems, PDCS, 14–16
November 2005, Phoenix, AZ, USA, pp. 260–268 (2005)

6. Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-driven pro-
gramming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC
2004. LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24743-2 24

7. Henzinger, T.A., Kirsch, C.M., Matic, S.: Composable code generation for distrib-
uted giotto. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES 2005), 15–17
June 2005 Chicago, Illinois, USA, pp. 21–30 (2005)

8. Behrmann, G., David, A., Guldstrand Larsen, K., H̊akansson, J., Pettersson, P.,
Yi, W., Hendriks, M.: UPPAAL 4.0. In: QEST (2006)

9. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized distrib-
uted real-time systems. In: Proceedings of the 13th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, RTAS, 3–6 April 2007, Bellevue,
Washington, USA, pp. 259–268 (2007)

10. Bagrodia, R.: Process synchronization: design and performance evaluation of dis-
tributed algorithms. IEEE Trans. Softw. Eng. 15(9), 1053–1065 (1989)

11. Bagrodia, R.: A distributed algorithm to implement n-party rendevouz. In: Pro-
ceedings Foundations of Software Technology and Theoretical Computer Science,
Seventh Conference, Pune, India, 17–19 December 1987, pp. 138–152 (1987)

12. Mani Chandy, K., Misra, J.: Parallel Program Design: A Foundation. Addison-
Wesley Longman Publishing Co., Inc., Boston (1988)

13. Mani Chandy, K., Misra, J.: The drinking philosopher’s problem. ACM Trans.
Program. Lang. Syst. 6(4), 632–646 (1984)

http://dx.doi.org/10.1007/978-3-540-24743-2_24
http://dx.doi.org/10.1007/978-3-540-24743-2_24

Local Planning of Multiparty Interactions with Bounded Horizons 215

14. Pérez, J.A., Corchuelo, R., Ruiz, D., Toro, M.: An order-based, distributed algo-
rithm for implementing multiparty interactions. In: Arbab, F., Talcott, C. (eds.)
COORDINATION 2002. LNCS, vol. 2315, pp. 250–257. Springer, Heidelberg
(2002). doi:10.1007/3-540-46000-4 24

15. Parrow, J., Sjödin, P.: Multiway synchronizaton verified with coupled simulation.
In: Proceedings of CONCUR ’92, Third International Conference on Concurrency
Theory, 24–27 August 1992, Stony Brook, NY, USA, pp. 518–533 (1992)

16. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge
based controlling of distributed systems. In: Bouajjani, A., Chin, W.-N. (eds.)
ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15643-4 6

17. Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Knowledge-based distributed
conflict resolution for multiparty interactions and priorities. In: Giese, H., Rosu,
G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 118–134. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-30793-5 8

18. Bensalem, S., Bozga, M., Combaz, J., Triki, A.: Rigorous system design flow for
autonomous systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol.
8802, pp. 184–198. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45234-9 13

19. Triki, A.: Distributed Implementation of Timed Component-based Systems. Ph.D.
thesis, UJF (2015)

20. Saddek Bensalem Marius Bozga Mahieddine Dellabani, Jacques Combaz. Local
planning of multiparty interactions with bounded horizon. Technical Report TR-
2016-05, Verimag Research Report, 2016

21. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

22. Tripakis, S.: The analysis of timed systems in practice. Ph.D. thesis, Joseph Fourier
University (1998)

23. Bengtsson, J., Yi, W.: On clock difference constraints and termination in reach-
ability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM
2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39893-6 28

24. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 11, 193–244 (1994)

25. Aştefănoaei, L., Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compositional
invariant generation for timed systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 18

26. Ben Rayana, S., Astefanoaei, L., Bensalem, S., Bozga, M., Combaz, J.: Compo-
sitional verification for timed systems based on automatic invariant generation.
CoRR, abs/1506.04879 (2015)

27. Bensalem, M.B.S., Boyer, B., Legay, A.: Compositional invariant generation for
timed systems. Technical report TR-2012-15, Verimag Research Report (2012)

28. Bensalem, S., Bozga, M., Boyer, B., Legay, A.: Incremental generation of lin-
ear invariants for component-based systems. In: 13th International Conference on
Application of Concurrency to System Design (ACSD), pp. 80–89, July 2013

29. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

30. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in bip. In: Proceedings of the Fourth IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2006, Washington, DC, USA, pp. 3–12,
IEEE Computer Society (2006)

http://dx.doi.org/10.1007/3-540-46000-4_24
http://dx.doi.org/10.1007/978-3-642-15643-4_6
http://dx.doi.org/10.1007/978-3-642-15643-4_6
http://dx.doi.org/10.1007/978-3-642-30793-5_8
http://dx.doi.org/10.1007/978-3-662-45234-9_13
http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1007/978-3-642-54862-8_18
http://dx.doi.org/10.1007/978-3-642-54862-8_18

216 M. Dellabani et al.

31. Dutertre, B., de Moura, L.: The yices SMT solver. Technical report, SRI Interna-
tional (2006)

32. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verifica-
tion of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5 14

33. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5(1),
1–11 (1987)

34. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gearbox con-
troller. Springer Int. J. Softw. Tools Technol. Transf. (STTT) 3(3), 353–368 (2001)

http://dx.doi.org/10.1007/978-3-642-28756-5_14
http://dx.doi.org/10.1007/978-3-642-28756-5_14

Finding Suitable Variability Abstractions
for Family-Based Analysis

Aleksandar S. Dimovski(B), Claus Brabrand, and Andrzej W ↪asowski

IT University of Copenhagen, Copenhagen, Denmark
adim@itu.dk

Abstract. For program families (Software Product Lines), specially
designed variability-aware static (dataflow) analyses allow analyzing all
variants (products) of the family, simultaneously, in a single run without
generating any of the variants explicitly. They are also known as lifted or
family-based analyses. The variability-aware analyses may be too costly
or even infeasible for families with a large number of variants. In order to
make them computationally cheaper, we can apply variability abstrac-
tions which aim to tame the combinatorial explosion of the number
of variants (configurations) and reduce it to something more tractable.
However, the number of possible abstractions is still intractably large to
search naively, with most abstractions being too imprecise or too costly.

In this work, we propose a technique to efficiently find suitable vari-
ability abstractions from a large family of abstractions for a variability-
aware static analysis. The idea is to use a pre-analysis to estimate the
impact of variability-specific parts of the program family on the analy-
sis’s precision. Then we use the pre-analysis results to find out when
and where the analysis should turn off or on its variability-awareness.
We demonstrate the practicality of this approach on several Java
benchmarks.

1 Introduction

Software Product Lines (SPLs) [7] appear in many application areas and for
many reasons. They use features to control presence and absence of software
functionality in a product family. Different family members, called variants,
are derived by switching features on and off, while reuse of the common code
is maximized. SPLs are commonly seen in development of embedded software
(e.g., cars and phones), system level software (e.g., the Linux kernel), etc. While
there are many implementation strategies, many popular industrial SPLs are
implemented using annotative approaches such as conditional compilation.

One challenge in development of SPLs is their formal analysis and verification
[26]. Variability-aware (lifted, family-based) dataflow analysis takes as input only
the common code base, which encodes all variants of a program family (SPL),

Supported by The Danish Council for Independent Research under a Sapere Aude
project, VARIETE.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 217–234, 2016.
DOI: 10.1007/978-3-319-48989-6 14

218 A.S. Dimovski et al.

and produces precise analysis results corresponding to all variants. Variability-
aware analysis can be significantly faster than the naive “brute-force” approach,
which generates and analyzes all variants one by one [3]. However, the compu-
tational cost of the variability-aware analysis still depends on the number of
variants, which is in the worst case exponential in the number of features. To
speed-up variability-aware analysis, a range of abstractions at the variability level
can be introduced [14]. They aim to abstract the configuration space (number of
variants) of the given family. Each variability abstraction expresses a compromise
between precision and speed in the induced abstract variability-aware analysis.
Thus, we obtain a range of (abstract) variability-aware analysis parameterized
by the choice of abstraction we use. The abstractions are chosen from a large
family (calculus) that allows abstracting different variability-specific parts (fea-
tures, variants, and preprocessor #ifdef statements) of a family with varying
precision. This poses a hard search problem in practice. The number of possible
abstractions is intractably large to search naively, with most abstractions being
too imprecise or too costly to show the analysis’s ultimate goal.

In this paper, we propose an efficient method to address the above search
problem. We present a method for performing selective (abstract) variability-
aware analysis, which uses variability-awareness only when and where doing so
is likely to improve the analysis precision. The method consists of two phases.
The first phase is a pre-analysis which aims only to estimate the impact of vari-
ability on the main analysis. Hence, it aggressively abstracts the semantic aspects
of the analysis that are not relevant for its ultimate goal. The second phase is the
main analysis with selective variability-awareness, i.e. the abstract variability-
aware analysis, which uses the results of pre-analysis, selects influential features
and variants for precision, and selectively applies variability-awareness only to
those features and variants. The pre-analysis represents an over-approximation
of the main analysis. However, it uses very simple abstract domain and trans-
fer functions, so it can be efficiently run even with full variability-awareness.
The pre-analysis and the resulting abstract variability-aware main analysis are
different: the pre-analysis is more precise in terms of variability-awareness, but
it is worse in tracking non-variability specific parts (i.e. language specific parts
that operate on the program state) of the program family. We aim to use the
pre-analysis results in order to construct an abstraction which is effective at slic-
ing away (discarding) variability-specific program details (features and variants)
that are irrelevant for showing the analysis’s goal. The experiments show that
the constructed abstract variability-aware analysis achieves competitive cost-
precision tradeoffs when applied to Java SPL benchmarks.

In this work, we make the following contributions: (1) We show how to design
and use a pre-analysis that estimates the impact of variability on a client (main)
analysis; (2) We present a method for constructing a suitable abstract variability-
aware analysis that receives guidance from the pre-analysis; (3) We experimen-
tally show the effectiveness of our method using Java program families.

Finding Suitable Variability Abstractions for Family-Based Analysis 219

2 Motivating Example

We illustrate our approach using the interval analysis and the program family P :

1 x := 0; 3 #if (B) y := y+2 #endif;
2 #if (A) x := x+2 #endif; 4 #if (¬A) x := x-2 #endif

The set of (Boolean) features in the above program family P is F = {A,B}, and
we assume the set of valid configurations is K = {A∧B,A∧¬B,¬A∧B,¬A∧¬B}.
Note that the variable y is (deliberately) uninitialized in P . For each configu-
ration a different variant (single program) can be generated by appropriately
resolving #if statements. For example, the variant corresponding to the con-
figuration A ∧ B will have both features A and B enabled (set to true), thus
yielding the single program: x := 0; x := x+2; y := y+2. The variant for ¬A∧¬B
is: x := 0; x := x-2. The interval analysis computes for every variable a lower
and an upper bound for its possible values at each program point. The basic
properties are of the form: [l, h], where l ∈ Z∪{−∞}, h ∈ Z∪{+∞}, and l ≤ h.
The coarsest property is � = [−∞,+∞]. We want to check the following two
queries on P : “find all configurations for which x and y are non-negative at the
end of P , and determine accurately the corresponding intervals”.

Full variability-aware analysis. Full variability-aware (lifted) analysis oper-
ates on lifted stores, a, that contain one component for every valid configuration
from K. For the “#if (θ) s” statement, lifted analysis checks for each config-
uration k ∈ K whether the feature constraint θ is satisfied by k and, if so, it
updates the corresponding component of the lifted store by the effect of analyz-
ing s. Otherwise, the corresponding component of the lifted store is not updated.
We assume that the initial lifted store consists of uninitialized x and y, i.e. they
have the initial property �. We use a convention here that the first component
of the lifted store corresponds to configuration A∧B, the second to A∧¬B, the
third to ¬A ∧ B, and the fourth to ¬A ∧ ¬B. We write a

stm n�−→ a′ when the lifted
store a′ is the result of analyzing the statement “n” at the input lifted store a.
(
[x �→�, y �→�],[x �→�, y �→�],[x �→�, y �→�],[x �→�, y �→�]

)

stm 1�→ ([x �→ [0, 0],y �→�], [x �→ [0, 0], y �→�], [x �→ [0, 0], y �→�], [x �→ [0, 0], y �→�])
stm 2�→ ([x �→ [2, 2], y �→�], [x �→ [2, 2],y �→�], [x �→ [0, 0], y �→�], [x �→ [0, 0], y �→�])
stm 3�→ ([x �→ [2, 2],y �→�], [x �→ [2, 2], y �→�], [x �→ [0, 0], y �→�], [x �→ [0, 0], y �→�])
stm 4�→ ([x �→ [2, 2], y �→�], [x �→ [2, 2], y �→�], [x �→ [-2, -2], y �→�],[x �→ [-2,-2],y�→�])

As the result of analysis, we can deduce that at the end of P , x is non-
negative (the exact interval is [2, 2]) for configurations that satisfy A (that is,
A ∧ B and A ∧ ¬B), whereas x is negative for configurations that satisfy ¬A
(that is, ¬A∧B and ¬A∧¬B). But, y is always � so we cannot prove any query
for it.

220 A.S. Dimovski et al.

Need for abstraction. However, using full variability-aware analysis is not
always the best solution. It is often too expensive to run such an analysis with
large number of configurations. More importantly, in many cases, full variability-
awareness does not help, i.e. either it does not improve some analysis results or
the full precision is not useful for establishing some facts. For example, full
variability-awareness is not helpful to establish the interval of y. Also, we can
ignore variants that satisfy ¬A (the last two components) if we only want to
establish the exact interval when x is non-negative. Moreover, we can see that
analyzing the feature B is unnecessary for establishing the interval of x.

A family of abstractions. We consider a range of variability abstractions
[14] which aim to reduce the size of configuration space. In effect, we obtain
computationally cheaper but less precise abstract variability-aware analyses. The
three basic abstractions are: (1) to confound (join) all valid variants into one
single program with over-approximated control-flow, denoted αjoin; (2) to project
(divide-and-conquer) the configuration space onto a certain subset of variants
that satisfy some constraint φ, denoted αproj

φ ; (3) to ignore a feature, A ∈ F,
deemed as not relevant for the current problem, denoted αfignore

A . We also use
sequential composition, denoted ◦, and product, denoted ⊗. Any abstraction
α induces an abstract variability-aware analysis, denoted Aα, which is derived
in [14]. Since variability abstractions affect only the variability-specific aspect of
the variability-aware analysis (i.e. the transfer function of #if statement), it was
shown in [14] that they can be also defined as source-to-source transformations.
More specifically, for each program family P and abstraction α, we can define
an abstract program α(P) such that Aα[[P]] = A[[α(P)]], where A represents
(unabstracted) variability-aware analysis.

The coarsest abstraction. If we apply the coarsest abstraction αjoin, which
confounds control-flow of all valid configurations into a single program with
over-approximated control-flow, we will obtain the following program αjoin(P):

1 x = 0; 3 if (∗) then y:=y+2 else skip;
2 if (∗) then x:=x+2 else skip; 4 if (∗) then x:=x-2 else skip

where ∗ models an arbitrary integer. Note that αjoin(P) is a single program
with no variability in it. When αjoin(P) is analyzed using the standard (single-
program) interval analysis we obtain the same analysis results as analyzing P
with abstract lifted analysis Aαjoin . As result of the above analysis, at the end
of P we obtain the output store:

(
[x �→ [-2, +2],y �→ �]

)
. These estimations are

not strong enough to show any of our queries for x and y.

Finding suitable abstractions. The abstract variability-aware analysis aims
at analyzing families with only needed variability-awareness. It takes into
account only those features and configurations that are likely to improve the
precision of the analysis. For the family P , our method should predict that
increasing variability-awareness is likely to help answer the first query about
the non-negative interval of x, but the second query about the non-negative

Finding Suitable Variability Abstractions for Family-Based Analysis 221

interval of y will not benefit. Next, our method should find out that we can
bring the full benefit of variability-awareness for the first query by taking into
account only variants that satisfy A. This abstraction is denoted αproj

(A∧B)∨(A∧¬B),

or αproj
A for short. Also, the feature B does not influence the final value of x so

we can ignore it obtaining the abstraction αfignore
B ◦αproj

A . The abstract program
αfignore

B ◦ αproj
A (P) is:

1 x := 0; 3 if (∗) then y := y+2 else skip;
2 x := x+2; 4 skip

The single-program interval analysis of the above program produces the store:(
[x �→ [2, 2], y �→ �]

)
. In this way, we can successfully prove that the first query

holds for all configurations that satisfy A since the analysis always analyzes the
statement “2”, and skips the statement “4”.

Pre-analysis. The key idea is to use a pre-analysis and estimate the impact
of variability on the most precise main analysis. The pre-analysis uses a sim-
ple abstract domain and simple transfer functions, and can be run efficiently
even with full variability-awareness. For example, we approximate the interval
analysis using a pre-analysis with the abstract domain: Var → {�,�}, where
� means a non-negative interval, i.e. [0,+∞]. This simple abstract domain of
the pre-analysis is chosen because we are interested in showing queries that
some variables are non-negative. We run this pre-analysis under full variability-
awareness for P :

(
[x �→�, y �→�],[x �→�, y �→�],[x �→�, y �→�],[x �→�, y �→�]

)

stm 1�−→ (
[x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�]

)

stm 2�−→ (
[x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�]

)

stm 3�−→ (
[x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�]

)

stm 4�−→ (
[x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�], [x �→�, y �→�]

)

The pre-analysis in this case precisely estimates the impact of variability: it iden-
tifies where the interval analysis accurately tracks the possible (non-negative)
values of x. In general, our pre-analysis might lose precision and use � more
often than in the ideal case. However, it does so only in a sound manner.

Constructing an abstraction out of pre-analysis. From the pre-analysis
results, we can select those features and configurations that help improve pre-
cision regarding given queries. We first identify queries whose variables are
assigned with � in the pre-analysis run. Then, for each query that is judged
promising, we find variability-specific parts of the program family that con-
tribute to the query. In our example, pre-analysis assigns � to x in two valid
configurations, A ∧ B and A ∧ ¬B, which is a good indication that fully
variability-aware interval analysis is likely to answer the first query accurately.
We keep precision with respect to these two configurations by calculating the

222 A.S. Dimovski et al.

abstraction αproj
(A∧B)∨(A∧¬B). We can also see that the feature B does not affect

the possible values of x at all. Thus, we can ignore the feature B obtaining
αfignore

B ◦αproj
(A∧B)∨(A∧¬B). For the second query that y is non-negative, we obtain

that y is � for all configurations. This is indication that we cannot prove this
query even with full variability-aware analysis. Our method guarantees that if the
pre-analysis calculates � for a variable, then the constructed abstract variability-
aware analysis will compute an accurate non-negative interval for that variable.
However, it is possible that the pre-analysis returns � for a query due to its own
over-approximation, and not because the main analysis cannot prove the query.
In this case, our approach will miss the possibility to use variability-awareness
to improve the analysis precision.

3 A Language for Program Families

A finite set of Boolean variables F = {A1, . . . , An} describes the set of available
features in the family. Each feature may be enabled or disabled in a particular
variant. A configuration k is a truth assignment or a valuation which gives a
truth value to each feature, i.e. k is a mapping from F to {true, false}. If a
feature A ∈ F is enabled for the configuration k then k(A) = true, otherwise
k(A) = false. Any configuration k can also be encoded as a conjunction of
literals: k(A1) · A1 ∧ · · · ∧ k(An) · An, where true · A = A and false · A = ¬A.
We write K for the set of all valid configurations defined over F for a family.
Note that |K| ≤ 2|F|, since in general not every combination of features yields a
valid configuration. We define feature expressions, denoted FeatExp, as the set
of well-formed propositional logic formulas over F generated using the grammar:
φ ::= true |A ∈ F | ¬φ |φ1 ∧ φ2.

We use the language IMP for writing program families. IMP is an extension
of the imperative language IMP [22] often used in semantic studies. IMP adds a
compile-time conditional statement for encoding multiple variants of a program.
The new statement “#if (θ) s” contains a feature expression θ ∈ FeatExp as
a presence condition, such that only if θ is satisfied by a configuration k ∈ K

then the statement s will be included in the variant corresponding to k. The
syntax is:

s ::= skip | x:=e | s; s | if (e) then s else s | while (e) do s | #if (θ) s, e ::= n | x | e⊕e

where n ranges over integers, x ranges over variable names Var, and ⊕ over
binary arithmetic operators. The set of all generated statements s is denoted by
Stm, whereas the set of all expressions e is denoted by Exp. Notice that IMP is
only used for presentation purposes as a well established minimal language. The
introduced methodology is not limited to IMP or its features.

The semantics of IMP has two stages: first, given a configuration k ∈ K com-
pute an IMP single program without #if-s; second, evaluate the obtained variant
using the standard IMP semantics [22]. The first stage is a simple preprocessor
which takes as input an IMP program and a configuration k ∈ K, and outputs

Finding Suitable Variability Abstractions for Family-Based Analysis 223

a variant corresponding to k. The preprocessor copies all basic statements of
IMP that are also in IMP, and recursively pre-processes all sub-statements of
compound statements. The interesting case is the “#if (θ) s” statement, where
the statement s is included in the resulting variant iff k |= θ (means: k entails θ),
otherwise the statement s is removed.

4 Parametric (Abstract) Variability-Aware Analysis

Variability-aware (lifted) analyses are designed by lifting existing single-program
analyses to work on program families, rather than on individual programs. In this
section, we first briefly explain the process of “lifting” introduced in [21]. Then,
we recall the calculus of variability abstractions defined in [14] for reducing the
configuration space. Finally, we present the induced abstract variability-aware
(lifted) analysis [14], whose transfer functions are parametric in the choice of
abstraction.

Lifting Single-program Analysis. Suppose that we have a monotone dataflow
analysis for IMP phrased in the abstract interpretation framework [9,22]. Such
an analysis is specified by the following data. A complete lattice 〈P,�P〉 for
describing the properties of the analysis. A domain A = Var → P of abstract
stores, ranged over by a, which associates properties from P to the program
variables Var. The analysis domain is 〈A,�,�,�,⊥,�〉, which inherits the lattice
structure from P in a point-wise manner. There are also transfer functions for
expressions A′[[e]] : A → P and for statements A[[s]] : A → A, which describe the
effect of analyzing expressions and statements in an abstract store.

By using variational abstract interpretation [21], we can lift any single-
program analysis defined as above to the corresponding variability-aware (lifted)
analysis for IMP, which is specified as follows. Given a set of valid configu-
rations K, the lifted analysis domain is 〈AK, �̇, �̇, �̇, ⊥̇, �̇〉, which inherits the
lattice structure of A in a configuration-wise manner. Here A

K is shorthand for
the |K|-fold product

∏
k∈K

A, and so in the lifted domain there is one separate
copy of A for each configuration of K. For a, a′ ∈ A

K, the lifted ordering �̇ is
defined as: a �̇ a′ iff πk(a) � πk(a′) for all k ∈ K. The projection πk selects
the kth component of a tuple. Similarly, all other elements of the lattice A are
lifted, thus obtaining �̇, �̇, ⊥̇, �̇. As an example, �̇ =

∏
k∈K

� = (�, . . . ,�),
where � ∈ A.

The lifted transfer function for statements A[[s]] (resp., for expressions A′[[e]])
is a function from A

K to A
K (resp., from A

K to P
K). However in practice, using

a tuple of |K| independent simple functions of type A → A (resp., A → P)
is sufficient, since lifting corresponds to running |K| independent analyses in
parallel. Therefore, the lifted transfer functions are given by the functions A[[s]] :
(A → A)K and A′[[e]] : (A → P)K. The k-th component of the above functions
defines the analysis corresponding to the configuration k ∈ K.

Interval analysis. In the following, we will use the interval analysis to demon-
strate this method. The interval analysis is based on the property domain

224 A.S. Dimovski et al.

〈Interval,�I〉: Interval = {⊥I} ∪ {[l, h] | l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}, l ≤ h},
where ⊥I denotes the empty interval, and �I = [−∞,+∞]. The partial order-
ing �I is: [l1, h1] �I [l2, h2] iff l2 ≤ l1 ∧ h1 ≤ h2. The partial ordering �I

induces the definitions for �I and �I . For each arithmetic operator ⊕, we have
the corresponding ⊕̂ defined on properties from Interval [9]:

[l1, h1]⊕̂[l2, h2] = [min
x∈[l1,h1], y∈[l2,h2]

{x ⊕ y}, max
x∈[l1,h1], y∈[l2,h2]

{x ⊕ y}] (1)

Thus, we have: [l1, h1] +̂ [l2, h2] = [l1 + l2, h1 + h2] and [l1, h1] −̂ [l2, h2] =
[l1 − h2, h1 − l2]. For example, [2, 2] +̂ [1, 2] = [3, 4] and [2, 2] −̂ [1, 2] = [0, 1].

The single-program transfer function for constants is: A′[[n]] = λa.abstZ(n),
where a ∈ A = Var → Interval, and abstZ : Z → Interval is a function for
turning values to properties defined as: abstZ(n) = [n, n]. The corresponding
lifted transfer function becomes A′[[n]] = λa.

∏
k∈K

abstZ(n), where a ∈ A
K. The

complete list of definitions is given in Fig. 1, where for full variability-aware
analysis the parameter α is instantiated with the identity abstraction αid. Note
that for simplicity, here we overload the λ-abstraction notation, so creating a
tuple of functions looks like a function on tuples: we write λa.

∏
k∈K

fk(πk(a))
to mean

∏
k∈K

λak.fk(ak). Similarly, if f : (A → A)K and a ∈ A
K, then we write

f(a) to mean
∏

k∈K
πk(f)(πk(a)).

Variability Abstractions. We now introduce abstractions for reducing the
lifted analysis domain A

K. The set Abs of abstractions is given by [14]:

α ::=αid | αjoin | αproj
φ | αfignore

A | α ◦ α | α ⊗ α

where φ ∈ FeatExp, and A ∈ F. For each abstraction α, we define the effect of
applying α on sets of configurations K, and on domain elements a ∈ A

K. Note
that, the set of features is fixed, i.e. we have α(F) = F for any α.

The αid is an identity on K and a ∈ A
K. So, αid(K) = K and the abstraction

and concretization functions: αid(a) = a, γid(a) = a, form a Galois connection1.
The join abstraction, αjoin, gathers (joins) the information about all config-

urations k ∈ K into one (over-approximated) value of A. We have αjoin(K) =
{∨

k∈K
k}, i.e. after abstraction we obtain a single valid configuration denoted

by the compound formula
∨

k∈K
k. The abstraction and concretization functions

between A
K and A

{∨k∈K
k} ≡ A

1, which form a Galois connection [14], are:
αjoin(a) =

(⊔
k∈K

πk(a)
)
, and γjoin(a) =

∏
k∈K

a.
The projection abstraction, αproj

φ , preserves only the values corresponding
to configurations from K that satisfy φ ∈ FeatExp. The information about
configurations violating φ is disregarded. We have αproj

φ (K) = {k ∈ K | k |=
φ}, and the Galois connection [14] between A

K and A
{k∈K|k|=φ} is defined as:

αproj
φ (a) =

∏
k∈K,k|=φ πk(a), and γproj

φ (a′) =
∏

k∈K

{
πk(a′) if k |= φ

� if k �|= φ
.

1 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between lattices L and M iff α and γ
are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all l ∈ L, m ∈ M .

Finding Suitable Variability Abstractions for Family-Based Analysis 225

The abstraction αfignore
A ignores a single feature A ∈ F that is not directly

relevant for the current analysis. It merges configurations that only differ with
regard to A, and are identical with regard to remaining features, F\{A}. Given
φ ∈ FeatExp, we write φ\A for a formula obtained by eliminating the feature A
from φ (see [14] for details). For each formula k′ ≡ k\A where k ∈ K, there will
be one configuration in αfignore

A (K) determined by the formula
∨

k∈K,k\A≡k′ k.

Therefore, we have αfignore
A (K) = {∨k∈K,k\A≡k′ k | k′ ∈ {k\A | k ∈ K}}. The

Galois connection [14] between A
K and A

αfignore
A (K) is defined as: αfignore

A (a) =∏
k′∈αfignore

A (K)

⊔
k∈K,k|=k′ πk(a), and γfignore

A (a′)=
∏

k∈K
πk′(a′) if k |= k′.

We also have two compositional operators: sequential composition α2 ◦ α1,
which will run two abstractions α1 and α2 in sequence; and product α1 ⊗ α2,
which will run both abstractions α1 and α2 in parallel (“side-by-side”). For
precise definitions of α2 ◦ α1 and α1 ⊗ α2, the reader is referred to [14]. In the
following, we will simply write (α, γ) ∈ Abs for any 〈AK, �̇〉 −−−→←−−−

α

γ 〈Aα(K), �̇〉,
which is constructed using the operators presented in this section.

Example 1. Consider the lifted interval analysis and a =
(
[x �→ [2, 2]], [x �→

[2, 2]], [x �→ [0, 0]], [x �→ [-2, -2]]
)
, where K = {A ∧ B,A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B}.

We have αjoin(a) = (πA∧B(a) � πA∧¬B(a) � π¬A∧B(a) � π¬A∧¬B(a)) = ([x �→
[-2, 2]]). Thus, the state is significantly decreased to only one component, but the
abstraction αjoin loses precision by saying that x can have any value between −2
and 2. Then, we have αproj

A (a) = (πA∧B(a), πA∧¬B(a)) = ([x �→ [2, 2]], [x �→
[2, 2]]). Now the state is decreased to two components that satisfy A. Also,
αjoin ◦ αproj

A (a) = (πA∧B(a) � πA∧¬B(a)) = ([x �→ [2, 2]]). We have αfignore
A (K) =

{(A∧B)∨ (¬A∧B) ≡ B, (A∧¬B)∨ (¬A∧¬B) ≡ ¬B}, and so αfignore
A (a) =

(πA∧B(a) � π¬A∧B(a), πA∧¬B(a) � π¬A∧¬B(a)) = ([x �→ [0, 2]], [x �→ [-2, 2]]). ��

Induced Abstract Lifted Analysis. Recall that any analysis phrased in the
abstract interpretation framework can be lifted to the corresponding variability-
aware analysis [21], which is specified by the domain 〈AK, �̇〉, and lifted transfer
functions A[[s]] : (A → A)K and A′[[e]] : (A → P)K. Given a Galois connection
(α, γ) ∈ Abs, the abstract lifted analyses induced by (α, γ) has been derived algo-
rithmically in [14]. The derivation finds an over-approximation of α ◦ A[[s]] ◦ γ
obtaining a new abstract statement transfer function Aα[[s]] : (A → A)α(K). Also,
a new abstract expression transfer function A′

α[[e]] : (A → P)α(K) is derived,
which over-approximates α ◦ A′[[e]] ◦ γ. Note that full variability-aware analysis
A′[[e]] and A[[s]] are included as a special case, i.e. they coincide with A′

αid [[e]]
and Aαid [[s]]. The derivation of A′

α[[e]] and Aα[[s]] is based on the calculational
approach to abstract interpretation [8], which advocates simple algebraic manip-
ulation to obtain a direct expression for the abstract transfer functions.

The definitions of Aα[[s]] and A′
α[[e]] are given in Fig. 1. The function Aα[[s]]

(resp. A′
α[[e]]) captures the effect of analysing the statement s (resp., expression

e) in a lifted store a ∈ A
α(K) by computing an output lifted store a′ ∈ A

α(K)

(resp, property p ∈ P
α(K)). For “x := e”, the value of x is updated in every

226 A.S. Dimovski et al.

Fig. 1. Definitions of Aα[[s]] : (A → A)α(K) and A′
α[[e]] : (A → P)α(K).

component of the input lifted store a by the value of the expression e evaluated
in the corresponding component of a. The most interesting case is the analysis
of “#if (θ) s”, which checks the relation between each abstract configuration
k′ ∈ α(K) and the presence condition θ. Since k′ can be any compound formula,
not only a valuation formula as in K, there are three possible cases: (1) if k′ |= θ,
the corresponding component of the input store is updated by the effect of
evaluating the statement s; (2) if k′ |= ¬θ, the corresponding component of the
store is not updated; (3) if (k′ ∧ θ) and (k′ ∧ ¬θ) are both satisfiable, then the
component is updated by the least upper bound of its initial value and the effect
of s. For example, when k′ = A, we obtain: the case (1) if θ = A, the case (2) if
θ = ¬A, and the case (3) if θ = B. Note that for αid, since all configurations k
in K are valuation formulas (i.e. either k |= θ or k |= ¬θ), only the first two cases
are possible. Note that, only definitions for constants n and binary operators ⊕
are analysis-dependent. So our approach is general and applicable to any static
dataflow analysis chosen as a client. The monotonicity and the soundness (i.e.,
α ◦ A′[[e]] ◦ γ�̇A′

α[[e]] and α ◦ A [[s]] ◦ γ�̇A α[[s]]) of the abstract lifted analysis
follows by construction as shown in [14].

5 Pre-analysis for Finding α

Given a program family and a set of queries, we want to find a good abstraction
α for a variability-aware (main) analysis defined by: the domain 〈AK, �̇〉, where
A = V ar → P, and the transfer functions A′[[e]] : (A → P)K, A[[s]] : (A → A)K.
In this section, we first present how to design a pre-analysis, then we describe

Finding Suitable Variability Abstractions for Family-Based Analysis 227

how we can construct an appropriate abstraction α for the main analysis based
on the pre-analysis results.

Definition of Pre-Analysis. We replace the property domain 〈P,�P〉 from the
main analysis with a suitable abstract property domain 〈P#,�P#〉, from which
the pre-analysis is induced. The pre-analysis is fully variability-aware and is spec-
ified by the following domains: 〈A# = V ar → P

#,�〉, 〈A#K, �̇〉; and transfer
functions: A′#[[e]] : (A# → P

#)K, A#[[s]] : (A# → A
#)K. Any designed pre-

analysis should fulfill two conditions: soundness and computational efficiency.

Soundness. We design the pre-analysis which runs with full variability-awareness
but with a simpler abstract domain and simpler abstract transfer functions than
those of the main analysis.

First, there should be a pair of abstraction α̂# : P → P
and concretization

functions γ̂# : P# → P forming a Galois connection 〈P,�P〉 −−−−→←−−−−
α̂#

γ̂#

〈P#,�P#〉.
These functions formalize the fact that an abstract property from P

in the
pre-analysis means a set of properties from P in the main analysis. By point-

wise lifting we obtain the Galois connection 〈A,�〉 −−−−→←−−−−
α#

γ#

〈A#,�〉 by taking:

α#(a) = λx.α̂#(a(x)) and γ#(a#) = λx.γ̂#(a#(x)). By configuration-wise lift-

ing we obtain the Galois connection 〈AK, �̇〉 −−−−→←−−−−
α#

γ#

〈A#K, �̇〉 by: α#(a) =
∏

k∈K
α#(πk(a)) and γ#(a#) =

∏
k∈K

γ#(πk(a#)). Similarly, by configuration-

wise lifting we can construct the Galois connection 〈PK, �̇〉 −−−−→←−−−−
α̂

#

γ̂
#

〈P#K, �̇〉.

Second, the transfer functions A′#[[e]] and A#[[s]] of the pre-analysis should
be sound with respect to those of the variability-aware main analysis: α̂

#◦A′[[e]]◦
γ#�̇A′#[[e]], and α# ◦ A[[s]] ◦ γ#�̇A#[[s]], for any e ∈ Exp, s ∈ Stm. In this way,
we ensure that pre-analysis over-approximates variability-aware main analysis.

Computational efficiency. We define a query, q, to be of the form: (s, P, x) ∈
Stm × P(P) × V ar, which represents an assertion that after the statement s the
variable x should always have a property value from the set P ⊆ P. We want to
design a pre-analysis, which although estimates computationally expensive main
analysis, still remains computable. We achieve computational efficiency of the
pre-analysis by choosing very simple property domain P

#. Let P
= {�,�P#}

be a complete lattice with � � �P# . Given the query q = (s, P, x), the functions
α̂# : P → P

and γ̂# : P# → P are defined as:

α̂#(p)=

{
� if p ∈ P

�P# otherwise
γ̂#(�)=

⊔
P, γ̂#(�P#)=�P

The only non-trivial case is � denoting at least the properties from the set
P ⊆ P that the given query q wants to establish after analyzing some program
code. From now on, we omit to write subscripts P and P

in lattice operators
whenever they are clear from the context.

228 A.S. Dimovski et al.

The variability-aware pre-analysis with simple property domain (e.g. P# =
{�,�}) can be computed by an efficient algorithm based on sharing represen-
tation [3], where sets of configurations with equivalent analysis information are
compactly represented as bit vectors or formulae. For example, the pre-analysis
with sharing for the variational program P of Sect. 2 runs as:

(
[[true]] �→ [x �→

�, y �→ �]
)
. . .

stm 3�−→ (
[[true]] �→ [x �→ �, y �→ �]

) stm 4�−→ (
[[A]] �→ [x �→ �, y �→

�], [[¬A]] �→ [x �→�, y �→�]
)
, where [[true]] = {A ∧ B,A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B},

[[A]] = {A ∧ B,A ∧ ¬B}, and [[¬A]] = {¬A ∧ B,¬A ∧ ¬B}. Since the abstract
domain P

of our pre-analysis is very small (has only 2 values), the possibil-
ities for sharing (i.e. configurations with equivalent analysis results) are very
promising.

Interval pre-analysis. We now design a pre-analysis for the interval analysis
example with respect to queries that require non-negative intervals for vari-
ables. The pre-analysis aims at predicting which variables get assigned non-
negative values when the program family is analyzed by the variability-aware
interval analysis. Suppose that Interval# = {�,�}, where � � �. We define
γ̂#(�) = [0,+∞], and γ̂#(�) = [−∞,+∞]. That is, � denotes all non-negative
intervals. Then, we have A

: V ar → Interval#, and A
#K =

∏
k∈K

A
#. We

can calculate the transfer functions for expressions by following the soundness
condition: A′#[[e]] �̇ α̂

◦ A′[[e]] ◦ γ#. The resulting functions can be com-
puted effectively (in constant time) for constants and all binary operators as
follows: A′#[[n]] = λa#.(if n ≥ 0 then � else �), A′#[[e1 − e2]] = λa#.�,
and A′#[[e1 + e2]] = λa#.

∏
k∈K

πk(A′#[[e1]]a#) � πk(A′#[[e2]]a#), where
� = (�, . . . ,�),� = (�, . . . ,�) ∈ Interval#K. The analysis approximately
tracks integer constants n, i.e. non-negative values get abstracted to �, whereas
negative values to �. Note that the addition “+” operator (similarly “*” and
“/”) is interpreted as the least upper bound �, so that for a configuration k ∈ K,
e1 + e2 evaluates to � only when both e1 and e2 are �. For the subtraction
“−” operator, the analysis always produces �, thus losing precision. Also note
that since the pre-analysis works on a lattice with finite height (Interval#) there
is no need of defining widening operators to compute the fixed point of while
loops. In contrast, the (main) interval analysis works on a lattice with infinite
ascending chains (Interval) so it needs widening operators for handling loops.

Constructing Abstractions. We can use the results obtained during the pre-
analysis to: (1) find queries that are likely to benefit from increased variability-
awareness of the main analysis; (2) find configurations and features that are
worth being distinguished during the main analysis. The found configurations
and features are used to construct an abstraction α, which instructs how much
variability-awareness the main analysis should use.

First, we find whether a query can benefit from increased variability-
awareness. For simplicity, we assume that there is only one query q = (s, P, x) ∈
Stm × P(P) × V ar. The analysis should prove the query q = (s, P, x) by com-
puting a lifted store a after analyzing the statement s, and checking for which
k ∈ K it holds: πk(a)(x) �P �P . To find whether the given query will benefit

Finding Suitable Variability Abstractions for Family-Based Analysis 229

from increased variability-awareness, we run the variability-aware pre-analysis.
Let A#[[s]]a#

0 be the result of the pre-analysis, where a#
0 denotes the initial

abstract lifted store with all variables set to �P# . Using this result, we check
if there is some k ∈ K such that: πk(A#[[s]]a#

0 (x)) = �. Let Kpromise ⊆ K be
the set of all promising configurations k that satisfy the above equation for a
selected query.

We now compute the set Fgood ⊆ F of necessary features for a given query
via dependency analysis, which is simultaneously done with the pre-analysis
as follows. Let P

′# = P
× P(F). The idea is to over-approximate the set of

features involved in analyzing each variable in the second component of P
′#.

The abstract domain is A
= V ar → P

′#. For lifted abstract store a# ∈ A
#K,

we define πk(a#(x))|1 ∈ P
as the property associated with the variable x in the

component of a# corresponding to k ∈ K; and πk(a#(x))|2 ∈ P(F) as the set of
features involved in producing the analysis result for x in the component of a#

corresponding to k ∈ K. The abstract semantics A′#[[e]]F and A#[[s]]F are the
same as before except that they also maintain the set of involved features F ⊆ F.
The parameter F ⊆ F is propagated for all sub-statements of statements. For

example: A#[[#if (θ) s]]F = λa#.
∏

k∈K

{
πk(A#[[s]]F∪FV (θ)a#) if k |= θ

πk(a#) if k �|= θ
, where

FV (θ) denotes the set of features occurring in θ. For the #if statement, we
also propagate the set of features in θ for each configuration k that satisfies
θ, since the analysis result for those configurations will depend on features in
θ. For “x := e”, we record in the analysis which features have contributed for
calculating the given property of x. We compute Fgood as the union of all S, such
that for some k ∈ Kpromise we obtain: πk(A#[[s]]∅a#(x)) = (�, S). Then, we set
Fignore = F\Fgood. The final constructed abstraction is: αfignore

Fignore
◦ αproj

∨k∈Kpromise
k.

Example 2. If we calculate A#[[P]]∅a#
0 , where P is our example from Sect. 2

and a#
0 =

∏
k∈K

(λx.(�, ∅)) is the initial store, we obtain the final store:
([x
→(�,{A}),y
→(�,{B})],[x
→(�,{A}),y
→(�,{B})],[x
→(�,{A}),y
→(�,{B})],[x
→(�,{A}),y
→(�,{B})]).

Therefore, we select the first query that asks for non-negative values of x as
promising with Kpromise = {A ∧ B,A ∧ ¬B} (which contains all configurations
where x is mapped to �), Fgood = {A}, and Fignore = {B}. The abstraction
regarding the first query is: αfignore

B ◦ αproj
(A∧B)∨(A∧¬B). But the second query that

asks for non-negative values of y is rejected, since y is always mapped to �. ��
Finally, by using the soundness of pre-analysis, and suitability of the pre-

analysis for the given query (definitions of Kpromise and Fignore), we can show:

Theorem 1 (Promising Preservation). Let Fignore and Kpromise be the sets
of ignored features and promising configurations for a query (s, P, x) defined by
the result of our pre-analysis A#[[s]]∅a#

0 . Let α = αfignore
Fignore

◦ αproj
∨k∈Kpromise

k and

230 A.S. Dimovski et al.

γ = γproj
∨k∈Kpromise

k ◦ γfignore
Fignore

. Then: γ
(Aα[[s]]a0(x)

) �̇ γ#
(A#[[s]]a#

0 (x)
)
, where

a0 ∈ A
α(K) and a#

0 ∈ A
#K are the initial (uninitialized) lifted stores.

6 Evaluation

We now evaluate our pre-analysis guided approach for finding suitable variabil-
ity abstractions for lifted analysis. For our experiments, we use SOOT’s intra-
procedural dataflow analysis framework [27] for analyzing Java programs and an
existing SOOT extension for lifted dataflow analyses of Java program families [3].
The lifted dataflow analysis framework uses CIDE (Colored IDE) [17], which
is an Eclipse plug-in, to annotate statements using background colors rather
than #ifdef directives. Every feature in a program family is thus associated
with a unique color. We consider optimized lifted intra-procedural analyses with
improved representation via sharing of analysis equivalent configurations using
a high-performance bit vector library [15]. Note that our pre-analysis guided
approach for lifted analysis is orthogonal to the particular analysis chosen as a
client, since it depends only on variability-specific constructs of the language.

First, we have implemented interval pre-analysis and interval analysis in the
SOOT framework. For interval analysis, the delayed widening is implemented
using the flowThrough method of ForwardF lowAnalysis class by counting
the times a node was visited and applying a widening operator once a threshold
has been reached. Then, on top of a lifted dataflow analyzer [3], we have imple-
mented variability-aware versions of interval pre-analysis and interval analysis
described in Sects. 4 and 5, respectively. The pre-analysis reports a set of promis-
ing configurations and a set of features that should be ignored. This information
is used to construct an abstraction, which is passed as parameter to the subse-
quent variability-aware interval analysis. The implemented analysis tracks the
range of possible values for all integer (int and long) variables.

For our experiment, we use three Java benchmarks from the CIDE
project [17]. Graph PL (GPL) is a small desktop application with intensive fea-
ture usage. It contains about 1,35 kLOC, 18 features, and 19 methods with inte-
ger variables. Prevayler is a slightly larger product line with low feature usage,
which contains 8 kLOC, 5 features, and 174 methods with integer variables.
BerkeleyDB is a larger database library with moderate feature usage, containing
about 84 kLOC, 42 features, and 2654 methods with integer variables.

All experiments are executed on a 64-bit Intel�CoreTM i5 CPU with 8 GB
memory. All times are reported as averages over ten runs with the highest
and lowest number removed. We report only the times needed for actual intra-
procedural analyses to be performed. In experiments, to illustrate our approach
we consider queries which ask for the exact non-negative possible values of local
integer variables at the end (final nodes) of their methods.

Table 1 compares the performance of our approach based on pre-analysis fol-
lowed by the corresponding abstract variability-aware interval analysis (table
below) with full variability-aware interval analysis which is used as a baseline

Finding Suitable Variability Abstractions for Family-Based Analysis 231

Table 1. Performance results for unabstract variability-aware analysis which is used as
a baseline (table above) vs. our pre-analysis guided approach which consists of running a
pre-analysis followed by a subsequent abstract variability-aware analysis (table below).
All times are in ms (milliseconds).

(table above). We measured the analysis precision by the number of integer vari-
ables for which our approach accurately calculates their analysis information (see
full precision column, table below), which can be a non-negative interval (var [])
or the � value (var �), such that the same analysis results are obtained with the
full variability-aware interval analysis (analysis results column, table above). We
report the number of configurations (con [] and con �) in which those precisely
tracked variables occur. We also measured the number of variables and corre-
sponding configurations where there is a precision loss (see precision loss column,
table below), i.e. our approach produces the � value but the full variability-aware
interval analysis can establish that their intervals are non-negative. For each of
the benchmarks, we only analyze the methods that contain integer variables. We
report the sum of analysis times for all such methods in a benchmark. We can
see that for GPL and Prevayler there is no precision loss with our approach,
but we obtain speed-ups in running times. For GPL we observe 2.2 times speed-
up, whereas for Prevayler we have 1.3 times speed-up (pre-analysis+abstract vs.
unabstract variability-aware analysis). For BerkeleyDB, we have precision loss
for 3 variables found in 43 valid configurations (out of 7386 configurations where
integer variables occur) which represents 0.58% precision loss in total, but we
still keep precision for all the other 7386−43 = 7343 cases (configurations). Yet,
we achieve 1.5 times speed-up with our approach for BerkeleyDB.

7 Related Work and Conclusion

Using pre-analysis to adjust the main analysis precision was first introduced
in [23,24]. They design pre-analysis for finding various precision parameters,
such as: context sensitivity, flow sensitivity, and relational constraints between

232 A.S. Dimovski et al.

variables. In this work, we adapt this idea to the setting of variability-aware
analysis for program families. In [20], machine learning is used to find a minimal
abstraction that is sufficient to prove all queries provable by the most precise
abstraction. The technique presented in [28] finds the optimum abstraction that
proves a given query, but it is applicable only to disjunctive analysis.

The work in [3] lifts a dataflow analysis from the monotone framework, result-
ing in a variability-aware dataflow analysis that works on the level of fami-
lies. Another efficient implementation of the lifted dataflow analysis formulated
within the IFDS framework [25] was proposed in SPLLIFT [2]. However, this
technique is limited to work only for analyses phrased within the IFDS frame-
work [25], and many dataflow analyses, including interval, cannot be encoded
in IFDS. Other approaches for lifting existing analysis techniques to work on
the level of families are: lifted syntax checking [19], lifted type checking [4,18],
lifted model checking in the settings of transition systems [1,5,6,12,13] and game
semantics [10,11], lifted testing [16]. All these lifted techniques could benefit from
using variability abstractions and from the present approach on finding a good
abstraction.

To conclude, in this work we presented a technique for automatically finding
abstractions that enable effective abstract variability-aware analysis. The suit-
able abstraction parameters are calculated by a pre-analysis. We demonstrate
the effectiveness of our approach with experiments.

References

1. Apel, S., von Rhein, A., Wendler, P., Größlinger, A., Beyer, D.: Strategies for
product-line verification: case studies and experiments. In: 35th International Con-
ference on Software Engineering, ICSE 2013, pp. 482–491 (2013)

2. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: Spllift:
statically analyzing software product lines in minutes instead of years. In: ACM
SIGPLAN Conference on PLDI 2013, pp. 355–364 (2013)

3. Brabrand, C., Ribeiro, M., Tolêdo, T., Winther, J., Borba, P.: Intraprocedural
dataflow analysis for software product lines. In: Leavens, G.T., Chiba, S., Tanter,
É. (eds.) Transactions on Aspect-Oriented Software Development X. LNCS, vol.
7800, pp. 73–108. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36964-3 3

4. Chen, S., Erwig, M., Walkingshaw, E.: An error-tolerant type system for variational
lambda calculus. In: ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2012, pp. 29–40 (2012)

5. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012)

6. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, ICSE 2010, vol. 1, pp. 335–344 (2010)

7. Clements, P., Northrop, L., Lines, S.P.: Practices and Patterns. Addison-Wesley,
Reading (2001)

8. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series. F. IOS
Press, Amsterdam (1999)

http://dx.doi.org/10.1007/978-3-642-36964-3_3

Finding Suitable Variability Abstractions for Family-Based Analysis 233

9. Cousot, P., Cousot, R., Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Sethi, R.
(ed.) POPL 1977, Los Angeles, California, pp. 238–252, January 1977

10. Dimovski, A.S.: Program verification using symbolic game semantics. Theor. Com-
put. Sci. 560, 364–379 (2014)

11. Dimovski, A.S.: Symbolic game semantics for model checking program families. In:
Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 19–37. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-32582-8 2

12. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Family-based model
checking without a family-based model checker. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 282–299. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-23404-5 18

13. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Efficient family-
based model checking via variability abstractions. STTT (2016). doi:10.1007/
s10009-016-0425-2

14. Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions: trading
precision for speed in family-based analyses. In: 29th European Conference on
Object-Oriented Programming, ECOOP 2015. LIPIcs, vol. 37, pp. 247–270. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

15. CERN: European Organization for Nuclear Research: The colt project: open source
libraries for high performance scientific and technical computing in Java. In: CERN
(1999)

16. Iosif-Lazar, A.F., Al-Sibahi, A.S., Dimovski, A.S., Savolainen, J.E., Sierszecki, K.,
Wasowski, A.: Experiences from designing and validating a software modernization
transformation (E). In: 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, pp. 597–607 (2015)

17. Kästner, C.: Virtual Separation of Concerns: toward Preprocessors 2.0. Ph.D. the-
sis, University of Magdeburg, Germany, May 2010

18. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based prod-
uct lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14 (2012)

19. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-aware parsing in the presence of lexical macros and conditional compi-
lation. In: Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
part of SPLASH 2011, pp. 805–824 (2011)

20. Liang, P., Tripp, O., Naik, M.: Learning minimal abstractions. In: Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, pp. 31–42 (2011)

21. Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic derivation
of correct variability-aware program analyses. Sci. Comput. Program. 105, 145–170
(2015)

22. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Secaucus (1999)

23. Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided by
impact pre-analysis. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, p. 49 (2014)

24. Hakjoo, O., Lee, W., Heo, K., Yang, H., Yi, K.: Selective x-sensitive analysis guided
by impact pre-analysis. ACM Trans. Program. Lang. Syst. 38(2), 6 (2016)

25. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 1995, pp. 49–61 (1995)

http://dx.doi.org/10.1007/978-3-319-32582-8_2
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/s10009-016-0425-2
http://dx.doi.org/10.1007/s10009-016-0425-2

234 A.S. Dimovski et al.

26. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6
(2014)

27. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a Java bytecode optimization framework. In: Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research (CASCON 1999),
p. 13. IBM Press (1999)

28. Zhang, X., Naik, M., Yang, H.: Finding optimum abstractions in parametric
dataflow analysis. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2013, pp. 365–376 (2013)

Recovering High-Level Conditions
from Binary Programs

Adel Djoudi1(B), Sébastien Bardin1, and Éric Goubault2

1 CEA, LIST, Université Paris-Saclay, Gif-sur-Yvette, France
{adel.djoudi,sebastien.bardin}@cea.fr

2 Lix, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
eric.goubault@polytechnique.edu

Abstract. The need to get confidence in binary programs without
access to their source code has pushed efforts forward to directly analyze
executable programs. However, low-level programs lack high-level struc-
tures (such as types, control-flow graph, etc.), preventing the straight-
forward application of source-code analysis techniques. Especially, condi-
tional jumps rely on low-level flag predicates, whereas they often encode
high-level “natural” conditions on program variables. Most static analyz-
ers are unable to infer any interesting information from these low-level
conditions, leading to serious precision loss compared with source-level
analysis. In this paper, we propose template-based recovery, an automatic
approach for retrieving high-level predicates from their low-level flag ver-
sions. Especially, the technique is sound, efficient, platform-independent
and it achieves very high ratio of recovery. This method allows more pre-
cise analyses and helps to understand machine encoding of conditionals
rather than relying on error-prone human interpretation or (syntactic)
pattern-based reasoning.

1 Introduction

Context. Static analysis [28] offers techniques for computing safe approxima-
tions of the set of values or behaviors arising at run-time when executing a
program. Since the early 2000’s, many successful source-code analysis techniques
and tools have been proposed to check safety and security properties of industrial
software [2,17,23].

Yet, there are many important situations where the program must be ana-
lyzed directly at the level of executable code, for example mobile code, off-the-
shelf components, malware, etc. [2,13]. Such binary-level static analysis is highly
challenging. Even on managed code (executable coming from standard high-level
language such as C and compiled in a standard way), it is very hard to match
the precision of an analysis performed at source-level mainly due to the lack
of high-level information, such as types, variables, control-flow information or

Work partially funded by ANR, grant 12-INSE-0002.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 235–253, 2016.
DOI: 10.1007/978-3-319-48989-6 15

236 A. Djoudi et al.

high-level conditions. The last decade has seen significant progress in binary-
level static analysis, including precise control-flow graph recovery [7,14,22,24],
formal intermediate representations (IR) [6,8,18,31], type and variables iden-
tification [5,26], or dedicated abstract domains [9,10,12,29,31]. Yet, the field
remains highly challenging.

Problem and Challenges. We focus in this paper on high-level condition recov-
ery from low-level flag conditions. Indeed, on most modern architectures, high-
level conditions from the original program are translated at binary-level into
low-level predicates operating on flags, i.e. boolean registers recording either
high-level relationships between registers (==, ≤) or low-level facts such as
occurrences of signed/unsigned overflows. High-level constructs such as if,
while, for, etc. are no longer available. Hence, unless tracking relational infor-
mation between program instructions, guard transfer functions of simple static
analyzers will fail to refine propagated abstract states, because conditional jumps
depend on flag values and not directly on registers and/or memory locations that
set the corresponding flags.

Several solutions have been proposed in [11,13,25,31] to address low-level
condition issues, yet they are either unsound and/or architecture dependent
(patterns [13]), or intermediate-representation dependent (virtual flags [31]), or
not generic enough (logic-based recovery [11,25,27,31]). We are looking for a
solution which is both sound, generic (i.e. achieve a high recovery ratio in prac-
tice) and independent from a given architecture or IR-encoding.

Contributions. Our main contributions are the followings

– We present template-based condition recovery (Sect. 4), a new approach to
high-level predicate recovery enjoying all the above desired properties: auto-
matic, sound, architecture- / IR- independent, efficient and achieving a high
recovery ratio in practice. The approach extends the logic-based method
[11,25,27,31] and yields to significantly better recovery ratio. Compared to
pattern-based methods [13], the technique is architecture independent and
can infer high-level conditions from “non-regular” patterns – for example, opti-
mized patterns introduced by compilers, cf. Sect. 7. Moreover, both template-
based and pattern-based recovery can be fruitfully combined.

– We also address two questions closely related to the problem of high-level
condition recovery and precise static analysis: the issue of ubiquitous data
transfer between registers and memory, and the detection and positioning of
widening points. We describe in Sect. 5 the two problems and present our
solutions, namely a lightweight domain dedicated to equality propagation (on
arbitrary lhs of the program) and a smart widening point positioning heuristic.

– The approach has been implemented in the new BinSec/va static analy-
sis module of the BinSec platform [19]. We detail the implementation
(Sect. 6), and we describe several experimental evaluations (Sect. 7) assessing
the recovery ability, efficiency and practical utility of our technique. Especially,
template-based recovery yields only a small overhead and achieves a very high
ratio of high-level condition recovery (between 89 % to 95 % in average). We
also sketch potential applications to value analysis and deobfuscation.

Recovering High-Level Conditions from Binary Programs 237

Impact. Template-based recovery can help to adapt any formal analysis from
source-level analysis to binary-level analysis, as illustrated in Sect. 7. It can also
be useful for example for computer-aided reverse engineering, where it may help
the reverser to quickly understand the real semantic of unusual flag manipula-
tions, introduced either for optimization or obfuscation purposes (Sect. 7).

2 Motivation

2.1 The Issue of Low-Level Conditions in Binary-Level Program
Analysis

The following example illustrates the problem of (low-level) flag encoding.

Example 1. Let us consider the following x86 instructions: cmp x 100; je addr

encoding the high level condition if (x = 100) then.... According to Intel docu-
mentation [21], this sequence reads as follows: instruction cmp x 100 evaluates if
equality x = 100 holds and stores the (boolean) result into the specific flag ZF

(other flags are updated, but they are not relevant here), then instruction je

branches to address addr if ZF contains 1, to the next address otherwise. This
can be expressed in the more abstract formalism of DBA (cf. Sect. 3) as follows
(right column), where ZF is a 1-bit variable:

1: ZF := (x = 100); // x �→ �
2: if (ZF) then goto addr; // x, ZF �→ �, [0, 1]

... ...

addr: ... // x, ZF �→ �, [1, 1]

Let us now consider a standard interval analysis starting from x ∈ � at
address 1. The analysis will derive ZF ∈ [0, 1] after the first instruction, then
ZF ∈ [1, 1] if the true branch is taken.

However, nothing is derived for x (i.e. x ∈ �) while it is straightforward that
x ∈ [100, 100]. �

Note that while this sort of low-level encoding can be found in C code, the
situation is much problematic on binary code where low-level condition encoding
is the norm.

Our goal is precisely to obtain source-level like propagation on binary code
thanks to the recovery of high-level conditions.

2.2 Standard Solutions and Drawbacks

Logic-based solution. Several authors have independently proposed a similar
solution to high-level condition recovery [11,25,31], that we call here logic-based
recovery. The basic idea is to record relations into flag variables, to propagate
these relations (taking operand updates into account) and to use them for refin-
ing the current state of the analysis once the flag value becomes 1 or 0. On the
above example, flag propagation infers that ZF �→ [x == 100] at line addr. Since

238 A. Djoudi et al.

ZF �→ [1, 1], predicate x==100 is also inferred, refining the abstract domain with
x �→ [100, 100], which is exactly the result we are looking for.

Yet, logic-based recovery is not always sufficient. The following example illus-
trates another conditional jump in x86 architecture where logic-based recovery
fails.

Example 2. Let us consider the following x86 code sequence cmp x y; jg addr,
encoding if (x > y) then goto addr. Internally, jg checks a combination of three flags
updated by cmp, namely ZF, OF (overflow) and SF (sign).

OF := (x{31,31}=y{31,31})& (x{31,31}=(x-y){31,31});

SF := (x - y < 0);

ZF := (x - y = 0);

if (¬ZF ∧ (OF = SF)) then goto addr;

Here, relation propagation does not help, as the recovered low-level condition
(below) is far from the natural high-level condition x > y. Logic-based recovery is
not able to identify most of high-level conditions coming from x86 flag encodings.

if

(
¬(x-y = 0) ∧

(
(x{31,31}=y{31,31}) &(x{31,31}=(x-y){31,31})

)
= (x-y<0)

)
then goto addr;

Pattern based solution. Balakrishnan et al. [13] suggests to pattern match the
successions of comparisons and conditional jumps for deducing the correspond-
ing high-level comparison. Standard x86 patterns are depicted in Table 1. While
precise on common cases, this approach is very architecture-specific. Hence,
supporting several architectures is time-consuming. Moreover, it is very fragile
w.r.t. non standard uses of flags and conditional branches, as found in optimiza-
tion or obfuscation (cf. Sect. 7). Note that ensuring soundness requires some care,
e.g. taking properly into account flag/operand updates between the comparison
and the conditional branch.

Table 1. High-level predicates for x86 conditional jumps [13]

cmp x y / sub x y cmp x y sub x y test x y

flag predicatea predicateb predicateb flag predicatec predicateb

ja, jnbe ¬CF ∧ ¬ZF x >u y x′ �= 0 ¬ZF x&y �= 0

jae, jnb, jnc ¬CF x ≥u y true true true

jb, jnae, jc CF x <u y x′ �= 0 false false

jbe, jna CF ∨ ZF x ≤u y true ZF x&y = 0

je, jz ZF x = y x′ = 0 ZF x&y = 0

jne, jnz ¬ZF x �= y x′ �= 0 ¬ZF x&y �= 0

jg, jnle ¬ZF ∧ (OF = SF) x > y x′ > 0 ¬ZF ∧ ¬SF (x&y �= 0)∧ (x > 0 ∨ y > 0)

jge, jnl (OF = SF) x ≥ y true ¬SF (x ≥ 0 ∨ y ≥ 0)

jl, jnge (OF �= SF) x < y x′ < 0 SF (x < 0 ∧ y < 0)

jle, jng ZF ∨ (OF �= SF) x ≤ y true ZF ∨ SF (x&y = 0)∨ (x < 0 ∧ y < 0)

a: flag-level condition checked by the instruction. b: expected corresponding high-level condition
c: the same as a, taking into account that test sets OF and CF to 0. (x′ is defined by x − y)

Recovering High-Level Conditions from Binary Programs 239

Fig. 1. Comparison of high-level predicate recovery approaches

Virtual flags. Sepp et al. [31] proposed to tackle the problem while
translating machine instructions into their own Intermediate Representa-
tion RREIL. Flag calculations are translated, if possible, into arithmetic
instructions. Typically a comparison between operands is assigned into
a virtual flag. If a virtual flag is used later on, relational information
between operands may be recovered and conveyed to numeric domains.

sub t0:32, y:32, x:32

cmpltu CF:1, y:32, x:32

cmpleu CForZF:1, y:32, x:32

cmplts SFxorOF:1, y:32, x:32

cmples SFxorOForZF:1, y:32, x:32

cmpeq ZF:1, y:32, x:32

cmplts SF:1, t0:32, 0:32

xor OF:1, SFxorOF:1, SF:1

brc SFxorOF:1, addr:32

Example 3. The succession of the two x86
instructions cmp x y; jg addr; seen in previous
example is translated in RREIL as depicted on
the right, with virtual flags CForZF, SFxorOF and
SFxorOForZF representing combinations of concrete
flags. At conditional branch, the test matching
the flag is applied. Yet, the approach requires to
add many virtual flags (updated at each instruc-
tion) dedicated to the targeted architecture and
to ensure their consistency with the concrete
flags, which can be tricky.

Summary. State of the art solutions are summarized in Fig. 1, together with
the template-based recovery method described latter in Sect. 4. Our approach
extends the logic-based method with more powerful recovery ability, while still
being architecture and IR-encoding independent. Moreover, virtual flags and pat-
terns, if available and soundly implemented, can complement template-based
recovery in a fruitful way.

3 Background

Our approach is based on abstract interpretation [15,16], a theory explaining
how to link a very precise (but generally uncomputable) concrete semantics to

240 A. Djoudi et al.

Fig. 2. DBA instructions

its sound approximation, referred to as abstract semantics. This section first
defines the syntax and concrete semantics of our Intermediate Representation,
then a few notations of abstract interpretation.

DBA and concrete semantics. Automatic analysis of executables requires
tools to abstract from the instruction set of each individual architecture by using
an intermediate representation (IR). We rely on Dynamic Bit-vector Automata
(DBA) [6], a generic, side-effect free and concise formal model for low-level
programs, whose syntax is presented in Fig. 2. DBA program manipulates a
finite set of global variables ranging over fixed-size bit-vectors (registers) and
an array of bit-vectors of size 8 (memory). All bit-vector sizes are statically
known. Conditions are bit-vectors of size 1. Instructions mostly include assign-
ments and (static/conditional/dynamic) jumps, while expressions are built on
standard bit-vector operators (bit-wise logical operations, shift, size restriction
e{i..j} and extension ext(e,n), concatenation ::, (un-)signed machine arithmetic –
unsigned operators are denoted with u) and memory accesses @(e). A DBA pro-
gram is a map from (code) addresses (i.e. bit-vectors of size addr size) to DBA
instructions, together with an initial address. In the following, the set of variables
(resp. expressions) is denoted Var (resp. Expr).

DBA are given a standard imperative semantic. A concrete state (or envi-
ronment) of a program is a map ρ ∈ BV

var+
assigning a bit-vector value from

the set BV to each variable and memory location (denoted var+). Expressions
evaluate over bit-vectors. The semantics of an expression e in the concrete state
ρ is denoted by eval(e)ρ. In case an expression has no variable nor memory
access, its semantic is given by eval(e)∅, simply denoted eval(e). Assignments
and conditions are given the standard semantic. A static jump goto addr branches
to (the instruction at) address addr, while a dynamic jump goto e branches to
address eval(e)ρ.

From a modeling point of view, a single machine instruction is decoded into
a block of DBA instructions - including intermediate computations and tempo-
rary variables. Floating-point arithmetic, multi-thread and self-modification are
currently out of scope of DBA.

Abstract interpretation. Abstract interpretation-based analyses [15,16] rely
on an abstract domain D, whose computable elements model a set of concrete
states at a given program point. Such abstract domains must provide the abstract
counterparts of the concrete (set) operations over (P(BVvar+

))N: a partial order

Recovering High-Level Conditions from Binary Programs 241

�D over abstract states; a monotone concretization function γD from D to
P(BVvar+

); greatest and smallest elements �D and ⊥D, s.t. γD(�D) = BV
var+

and γD(⊥D) = ∅; sound over-approximations join
D and meet �D of the union
and intersection of concrete states, i.e. γD(d1) ∪ γD(d1) ⊆ γD(d1
D d2) and
γD(d1)∩γD(d1) ⊆ γD(d1�Dd2); sound abstract transfer functions �i�#D from D to
D that over-approximate the concrete semantics, i.e. �i�(γD(d)) ⊆ γD(�i�#D(d)).
The key property in abstract interpretation-based software verification is sound-
ness, which ensures that each step in the abstract overapproximates all corre-
sponding possible concrete steps.

4 Template-Based Recovery

4.1 Principles

We start from the idea of logic-based recovery and flag propagation. The issue
here is that the high-level conditional expression may be too complex to be dealt
with by basic non relational abstract domains, and that brute substitution of
predicates in a non-trivial flag predicate often results in a complex low-level
predicate, possibly hiding a simple predicate (cf. Example 2). Template-based
recovery complements logic-based recovery with a normalization step for sim-
plifying the current flag expression into a high-level form. It relies on two key
ideas:

– first, there is only a finite set of high-level condition patterns we are interested
in – built on >u, >,<u, <,≥u,≥,≤u,≤,=, �=, with only two operands – since
we consider on three-address instruction sets;

– second, equivalence between a high-level condition candidate and a given low-
level condition can be checked by a SMT solver (in the theory of bit-vectors
and arrays) – the check should be very efficient as the formula is expected to
be very small.

Our approach works as follows. We first retrieve a set of potential operands
from the low-level condition under analysis. A potential operand x must be either
a variable, a memory access, or a restriction of a variable or memory access, i.e.

x ∈ {v, @[e], v{i,j}, @[e]{i,j}, c | v ∈ Var, e ∈ Expr, c ∈ BV, j>i}
Given a low-level condition cond, once the potential operands x and y are

selected, we try to assert the equivalence of cond with the following high-level
candidates:

cond ⇔ x >u y cond ⇔ x <u y cond ⇔ x ≥u y cond ⇔ x ≤u y

cond ⇔ x > y cond ⇔ x < y cond ⇔ x ≥ y cond ⇔ x ≤ y

cond ⇔ x = y cond ⇔ x �= y s.t. x, y ∈syntax cond

If an equivalence is found with candidate cond′, then cond′ is used instead
of cond during the abstract fixpoint computation. Otherwise, recovery fails and
the abstract computation goes on with cond, following the logic-based approach.

242 A. Djoudi et al.

4.2 Formalization

We consider an abstract interpretation framework with an abstract domain F#

associating to each flag an expression (elements f: Flag → Expr), alongside
a numerical non-relational abstract domain A# lifted to program variables and
memory locations D# (elements d: var+ → A#), with its evaluation operator �.� :
Expr → D# → A# and condition propagation assume : D# → Expr → D#.

Our full abstract transfer function is the relation . →# . : (D# × F# ×
Address) → (D# ×F# ×Address), from abstract states to new abstract states,
described in Figure 3, where f∈ F#, d∈ D# and l ∈ Address. The syntax s[· �→ ·]
denotes the state obtained by updating part of state s with a new abstract value.
The flag abstract state (second component of an abstract state) is updated only
at assignments, used at conditional jumps and merely propagated through other
instructions. If any operand of the flag expression f(flag) is potentially affected by

Fig. 3. Abstract propagation of flags abstract domain

Recovering High-Level Conditions from Binary Programs 243

an assignment, either because one of its subterm is directly modified or because
of potential memory aliasing, then f(flag) is reset to �. � denotes syntactic
subterm, � denotes potential memory aliasing. Function normalize : Expr →
F# → Expr tries to recover a high-level condition from an expression e. If high-
level condition recovery fails, e is left unchanged. When control flow recombines
after a conditional block or loop, abstract states are joined.

Theorem 1 (soundness). The template based solution is sound i.e. if φ(t1, t2)
is a flag predicate involving at least two terms t1 and t2 at address a, s.t. the
template based solution asserts that φ(t1, t2) ⇔ t1 � t2, then for each execution
trace of the program the assertion holds at address a.

4.3 Optimizations

Repeated calls to the SMT solver may raise efficiency issues. We propose two
optimizations in order to mitigate this problem.

Optimization 1: Normalization cache. Each time a flag conditional is met
at address a, the low-level condition is saved in the cache at address a together
with the retrieved high-level condition. If the same condition at the same address
a is met later in the analysis, then the saved high-level condition can be safely
reused.

Optimization 2: Templates filtering. The order in which the templates are
checked directly affects the efficiency of high-level predicate recovery. The prob-
lem is all the more important that the number of checked templates is higher.
If the number of potential templates is reduced to one or two, the issue will be
largely mitigated.

The idea behind template filtering is that many templates can be cheaply
discarded by comparing the evaluation of the low-level condition to the template
evaluation on a set of well-chosen values.

We denote by cond[x/t] the condition cond where each occurrence of syn-
tactic term t is replaced by another syntactic term x. If op1 and op2 are non-
constant operands syntactically appearing in condition cond, we can generate
conditions cond1, cond2, cond3 and cond4:

cond1 � cond[0/op1][0/op2]

cond2 � cond[0/op1][1/op2]

cond3� cond[1/op1][0/op2]

cond4 � cond[0/op1][maxu/op2]

The resulting four conditions will be evaluated in order to discard irrelevant
templates. The intuition behind this set of values is that we need to distinguish
between symmetric and antisymmetric operators ((0, 0)), between the direction
for antisymmetric operators ((0, 1)), between signed and unsigned comparisons
((0,maxu)), and finally we have to distinguish between a strict comparison and
a disequality ((1, 0) together with (0, 1)).

244 A. Djoudi et al.

Discarding templates according to conditions evaluation is given by the follow-
ing consecutive tests. cond3 is a special case requested when eval(cond2) = true.
Here: if eval(cond2) = eval(cond3) then keep only template �=, else remove �=.

If eval(cond1)= false then templates (op1 {=, ≤u, ≥u, ≤, ≥ } op2) are discarded
else templates (op1 {�=, <u, >u, <, > } op2) are discarded

If eval(cond2)= false then templates (op1 {<, <u, ≤, ≤u, �=} op2) are discarded
else templates (op1 {>, >u, ≥, ≥u,=} op2) are discarded

If eval(cond4)= false then templates (op1 {>, <u, ≥, ≤u, �=} op2) are discarded
else templates (op1 {<, >u, ≤, ≥u,=} op2) are discarded

Whatever the low-level condition is, with only four tests we can eliminate all
template candidates but one, which is then passed to the solver.

Example 4. Let us consider an arbitrary low-level condition cond, with two
operands x and y. We compute cond1 to cond4 as defined before. Let us imagine
that: cond1 = 0, cond2 = 1, cond3 = 0, cond4 = 1. Then the only remaining
possible template is x <u y.

eval(cond1)= false then templates (x {=, ≤u, ≥u, ≤, ≥ } y) are discarded
eval(cond2)= true then templates (x {>,>u} y) are discarded
eval(cond3)= false then template (x {�=} y) is discarded
eval(cond4)= true then template (x {<} y) is discarded �

Similarly, if op1 is already a constant value c then cond1, cond2, cond3 and
cond4 are defined as follows:

cond1 � cond[c/op2]

cond2 �
{
cond[maxs/op2] if c <u maxs

cond[maxu/op2] if c >u maxs

cond3 �
{
cond[0/op2] if 0 < c <u maxs

cond[maxs/op2] if c >u maxs

cond4 �
{
cond[maxu/op2] if c <u maxs

¬cond[maxs/op2] if c >u maxs

5 Other Issues Related to the Precise Handling
of Conditions

We describe two situations closely related to low-level conditions that may yield
to significant precision loss, even in the presence of high-level condition recovery,
together with possible mitigation.

5.1 Ubiquitous Data Moves Between Memory and Registers

Problem. Architecture-specific constraints may blur the encoding of high-level
constructs. Typically, like the majority of x86 instructions, the cmp instruction
allows at most one memory operand. So, in order to compare contents of two
memory locations, we need first to load at least one of them into a register, then
perform the comparison. Hence ubiquitous data move from memory (stack) to

Recovering High-Level Conditions from Binary Programs 245

registers. Example 5 illustrates that a low-level analysis unable to track rela-
tional information through data manipulation will infer domain reduction on
the compared registers (which do not matter), but not on the memory contents
themselves (which matter).

Example 5. This example shows that even when a natural high level condition
is available, a standard analysis may still miss obvious information.

1: eax := @[100]; // @[100] �→ [0, 130]

2: if (eax < 4) then goto addr; // eax, @[100] �→ [0,130],[0,130]

... ...

addr: ... // eax, @[100] �→ [0,3],[0,130]

Starting from @[100] ∈ [0, 130], a static analysis with non-relation abstract
domain will infer that both eax and @[100] range over the interval [0, 130] after
the first instruction. Yet, at address addr, the computed abstract state will only
express that @[100] ∈ [0, 130], while actually @[100] ∈ [0, 3]. �

Solution. We propose to enrich the propagated abstract state with a light-
weight relational abstract domain keeping track of equalities between arbitrary
lhs (expressions of the form x or @[e]) syntactically present in the program. We
propose to use an abstract domain of the form P# � {C(x) | x ∈ Lhs} that
builds a set of equivalence classes C(x) � {y ∈ Lhs | x = y}. The two key
points are (1) the trade-off between efficiency and precision (actually, we lose
information in an aggressive manner, keeping only obvious equalities), and (2)
the ability to refine the non-relational domains of all lhs of an equivalence class
when one is refined by a comparison (here, we attach a domain to each class,
refined each time a variable of the class is refined, and queried when a variable
of the class is evaluated). On Example 5, the technique infers that @[100] == eax

holds at the beginning of line 2, allowing to refine @[100] to [0, 3] at line addr.
Our implementation relies on a combination of union-find structure and

maps, allowing efficient join and widening in O(n.ln(n)) time, with n the number
of lhs.

5.2 Widening Point Positioning

Problem. Widening [15] is the standard approach to ensure termination of
loop treatment. Basically, widening is a kind of join operation satisfying the
non-ascending chain property. Termination is ensured if each loop contains a
widening point. In high-level programs, such widening points are easily deduced
from the loop structure. However, binary programs lack such information. While
we need to ensure that every cycle in the program control flow contains at least
one widening point, there may have several positionings, all ensuring termination
but with significant difference in precision, as illustrated in Example 6. Finding
an optimal set of widening points is NP-complete [1].

246 A. Djoudi et al.

Example 6. This example illustrates the effect of the widening point position on
the precision of the final invariant, with widening points �1 and �2.

Program abstract states (with �1) abstract states (with �2)
0: eax:= 0 0: eax �→ [0, 0] 0: eax �→ [0, 0]
1: eax:= eax + 1 1: eax �→ [min,max] 1: eax �→ [0, 99]
2: ebx:= @[eax](4) 2: eax �→ [min,max] 2: eax �→ [0, 100]
3: if(eax<100) goto 1 3: eax �→ [min,max] 3: eax �→ [0,max]
4: 4: eax �→ [100,max] 4: eax �→ [100,max] �

Solution. We rely on a depth-first numbering of the
CFG nodes for the identification of widening points.
Actually, the set of back edges of the depth-first search
tree is an admissible set of widening points, as it ensures
that each loop in the CFG features at least one widen-
ing point. Yet, considering precision, it remains an
important decision to make: given a back edge a →
b, which node should be taken at widening point? Our
solution is that a widening point should be positioned at
the beginning of a conditional jump (�2 here), so that
the guarded transfer function can refine the widened
abstract state.

6 Implementation

We have implemented the approaches described so far in BinSec [19,20]. The
platform is based on DBA [6,19] and is composed of the following main mod-
ules: loading and decoding (ELF and PE, x86 architecture), disassembly and
heavy simplification of the resulting IR [19], DBA simulation, dynamic symbolic
execution [20], and an ongoing static analysis module BinSec/va. BinSec is
implemented in OCaml. We describe here the static analysis module BinSec/va.
It will be available in open-source at http://binsec.gforge.inria.fr/tools.html.

BinSec/va provides a generic fixpoint computation for abstract domains
given as lattices, allowing one to quickly prototype binary-level analyzers.
The main features are the following. Value domain: Since overflow and
wrapping (between signed and unsigned representations) must be taken into
account at binary-level, we keep track of both signed and unsigned values of
each lhs, abstracted as a pair of intervals. Then, each component is reduced
according to the other one. This dual interval representation is very simple
(w.r.t. wrapped intervals [29]), and yet it still prevents the most common
cases of precision loss. Typically, considering the following dual representation
d# � ([254, 255]u, [−2,−1]s), then d# + 1 evaluates to ([0, 255]u, [−1, 0]s): here
the unsigned part loses all precision, while the signed part remains precise.
Memory domain: Value domains are lifted to byte-precise memory domains
in a standard way, following for example [23] (in a simpler manner). Other

http://binsec.gforge.inria.fr/tools.html

Recovering High-Level Conditions from Binary Programs 247

domains: The analysis also provides flag propagation with template-based
recovery and an equality domain as described in Sects. 4 and 5.1.

Trading efficiency for precision. Since binary-level static analysis is very
challenging, we give the user several levers for tuning trade-offs between pre-
cision and scalability, namely: k-callstring context sensitivity, loop unrolling,
and different flavors of widening, such as delayed widening or widening with
threshold.

CFG recovery. Precise Control-flow Graph (CFG) recovery is a major issue of
binary-level static analysis [7] in presence of dynamic jumps, i.e. jump statements
whose target is computed at runtime (like jmp eax). In our case, the imprecision
due to the use of intervals may lead to significant loss of precision on dynamic
jumps. We combine ideas from [3,14] in order to get precise dynamic target
evaluation: on a jump instruction, we compute a symbolic representation of the
k-predecessors of the instruction, then pass this information enriched with our
own forward abstract computation to a SMT solver and query all possible jump
targets. Experiments on benchmarks from [14] confirm that the approach is
precise and practical.

Precision recovery and degraded mode. In case the address of a load or
store evaluates to �, the user can ask the engine to refine the address value with
a mechanism similar to that of our CFG recovery. In case refinement fails, the
analysis can still enter a degraded mode (inspired from [22]), keeping when pos-
sible the former (non-�) address value for propagation. Soundness will be lost,
yet the analysis can go forward and (hopefully) discover interesting information.

7 Experiments

We want to assess the practical merits of the approach described so far. We
are interested in the three following Research Questions: RQ1: What is the
ability of template-based recovery to effectively recover high-level conditions,
especially w.r.t. standard approaches? RQ2: What is the overhead of template-
based recovery? RQ3: Does template-based recovery yield practical benefits to
program analysis?

Practical concerns. We consider 66 programs taken from the JULIET/Sa-
mate benchmark from NIST [30] and 400 functions taken from 10 standard pro-
grams, such as firefox or coreutils. All programs are 32bit x86 executables
for Linux (ELF format). Analysis have been performed with a limited bound on
the calldepth (functions are stubbed once the bound is reached). Experiments
have been performed on a Intel Core i5 CPU equipped with 8 GB of RAM, and
we rely on the Z3 SMT solver with a time-out of 1 s (no time-out was encoun-
tered). For the sake of comparison, we have implemented pattern-based recovery
and logic-based recovery in BinSec/va.

248 A. Djoudi et al.

7.1 Recovery Ability (RQ1) and Efficiency (RQ2)

We compare the three condition recovery approaches on all our benchmark func-
tions. Results are presented in Table 2 (template-based approach) and Table 4
(summary).

The template-based approach performs very well (cf. Table 2), successfully
recovering 89 % of all conditions. A manual check on the 218 cases of failure
indicates that most of them are actually not high-level conditions (columns DF,
PF, x&y=0, CF add in Table 2 – only column opt truly corresponds to unrecov-
ered high-level conditions). The approach recovers in average 95 % of high-level
conditions (min: 92 %, max: 100 %).

Moreover, template-based recovery performs significantly better than logic-
based and pattern-based approaches, which recover respectively 31 % and 68 %
of the total number of conditions (Table 4). A more detailed analysis shows
that template-based recovery is strictly better than logic-based recovery (that
was expected), but also that template-based recovery and pattern-based recovery
are not comparable, in the sense that they both recover some conditions not
recovered by the other method. This latter result was unexpected, as patterns of
Table 1 should represent all legitimate uses of flags.

Typically, the pattern-based method was able to recover tests to x&y==0,
while template-based recovery typically beats patterns on optimized comparisons
introduced by compilers, such as or eax 0; je ... for checking eax = 0 (cf. Table 3).

We can fruitfully combine patterns and templates in the following way: tem-
plate recovery is used only when no pattern is found. This combination is faster,
since patterns are significantly cheaper than templates, and it discovers more

Table 2. Template-based high-level condition recovery

Recovering High-Level Conditions from Binary Programs 249

Table 3. High-level conditions recovered by templates, not by patterns

Example Discussion

or eax, 0 je ... The conditional jump is equivalent to if (eax = 0) then goto

cmp eax, 0 jns ... Because the second operand of cmp is zero, checking the sign flag
SF is sufficient to check if eax is greater that or equals zero i.e.
(eax >= 0). Note that the pattern based method may miss this
case if it expects a jge or a jnl instruction instead of jns. Note
also that the folklore method may succeed to retrieve the
high-level comparison if SF is encoded in DBA as (eax < 0)

instead of eax{31, 31}.
sar ebp, 1je ... Although this case seems to be complicated at first glance, the

corresponding high-level predicate is merely equivalent to if (ebp

= 0) then goto ..., where ebp holds its shifted value.

dec ecx jg ... In addition to tracking assignments to flags as symbolic
expressions, the template based solution also tracks assignments
to operands mentioned in expressions of tracked flags. Hence it is
able to infer the following high-level conditional jump if (ecx ≥
0) then goto ...

Table 4. Summary: high-level condition recovery

method #loc #conds #succa #fail time timeall

templates 242884 1978 1760 (89%) 218 22.93 2674.81

logic 247894 2260 694 (31%) 1566 0.003 2561.64

patterns 229255 1987 1357 (68%) 630 0.014 2373.33

templates + patterns 242884 1978 1838 (92%) 140 9.17 2659.95

templates w/o cache 242884 1978 1760 (89%) 218 29.76 2697.67

templates w/o filtering 242884 1978 1760 (89%) 218 51.13 2726.45

templates w/o cache, w/o filtering) 242884 1978 1760 (89%) 218 66.52 2752.73
a: ratio computed w.r.t. the total number of conditions

conditions than templates or patterns alone (especially, tests to x&y==0 are
recovered). Results in Table 4 demonstrate a slight improvement in recovery
and a 2x speedup.

Performance. Results in Tables 2 and 4 demonstrate that the approach has a
low overhead, 1 % in average (column time vs timeall). Hence, while template-
based recovery is indeed much more expensive than the two other methods
(Table 4), the extra-cost is clearly affordable. Finally, optimizations allow to
win a factor 3x on average, up to 20x.

Conclusion. The template-based recovery approach is able to recover a large
part of high-level conditions (RQ1), achieving significantly better results than
related approaches. Especially, it can recover optimized comparisons introduced
at compile-time, while they are beyond the scope of the pattern approach, and

250 A. Djoudi et al.

it can also sometimes synthesizes high-level conditions from low-level conditions
with a priori no high-level counter-part in the source code. Concerning efficiency
(RQ2), the method is very cheap, in the sense that its overhead w.r.t. the whole
analysis cost is negligible. Moreover, templates can be fruitfully combined with
patterns.

7.2 Practical Impact (RQ3)

We consider two potential applications of this work: precision of static analysis
and deobfuscation.

Application to value analysis. We are interested here in evaluating the gain
of precision brought by better high-level condition recovery to a standard for-
ward value propagation. We compare several versions of BinSec/va, based on
templates, patterns and logic. Results are presented in Table 5. Here, template-
based recovery leads to the computation of abstract memory states which are
strictly more precise than those computed with logic-based recovery (on 41 %
of analyzed locations, up to 64 %) and than those computed with pattern-based
recovery (on 18 % of analyzed locations, up to 38 %). Moreover, template-based

Table 5. Precision comparison between different condition recovery methods

progs #loca # fail # fail # fail #loc� #loc�

templ. logic patterns logic vs templ. pattern vs templ.

firefox 15099 242 433 400 8852 (59 %) 5725 (38 %)

cat 4192 136 143 145 1171 (28 %) 604 (14 %)

chmod 5768 188 201 202 1252 (22 %) 652 (11 %)

cp 5605 152 161 152 3237 (58 %) 545 (10 %)

cut 4870 148 232 156 1686 (35 %) 605 (12 %)

dir 5022 144 147 148 1442 (29 %) 700 (14 %)

echo 5570 176 185 186 2616 (47 %) 1009 (18 %)

kill 4626 150 157 158 1245 (27 %) 625 (14 %)

ln 8091 243 248 293 5166 (64 %) 815 (10 %)

mkdir 4062 134 141 142 1139 (28 %) 589 (15 %)

Verisec 8334 28 137 153 1474 (18 %) 1075 (13 %)

total 71239 1741 2185 2135 29280 (41 %) 12944 (18 %)
a: number of instructions analyzed by all three analyzers (instr. missed by at least
one analyzer are discarded).
#fail: number of failures in the analysis due to a load/store index or jump expression
evaluating to �
#loc� : number of locations for which the abstract state computed by template-
recovery is strictly more precise than the one computed with logic (resp. pattern)
recovery

Recovering High-Level Conditions from Binary Programs 251

recovery does allow us to reduce the number of analysis failures in a tangible
way (−18 % in average, up to −80 % on Verisec and −40 % on firefox).

Application to deobfuscation. Obfuscation techniques aim at tricking
reversers (either humans or tools) for preventing them to understand how a piece
of code works. While it is legitimately used for IP protection, it is also massively
used for malware protection, hence the need for automatic binary-level analysis
of obfuscated programs. The code snippet cmp eax ebx ; cmc ; jae illustrates
an obfuscation technique (reported in [32]) aiming at luring the reverser on the
real semantic of a conditional jump. The standard cmp eax ebx ; jae pattern
is usually read as branching on eax ≥u ebx. But jae actually reads the carry
flag cf (see Table 1), which is inverted by the cmc instruction. Hence, here, the
true semantic of jae will be to branch on condition eax <u ebx. Template-based
recovery succeeds to recover the true semantic of the jump, while pattern-based
recovery and logic-based recovery fail.

8 Related Works

Logic-based [11,25,27,31], pattern-based [13] and virtual flag [31] solutions have
already been lengthy discussed in Sect. 2. Basically our approach extends the
logic-based method, and it is orthogonal to pattern in terms of recovery ability
(yet, templates recover significantly more conditions than patterns). Templates
can also be fruitfully combined with virtual flags and patterns, if available. Espe-
cially, very specific conditions such as x&y==0 can be recovered this way. Finally,
note that many syntactic disassembly techniques use patterns in an unsound
way, for example not taking operand or flag updates into account.

Other more general proposed solution consists in tracing the bit-level cal-
culation of flags. In this case, SAT solving is used to reason about values of
variables. However, using SAT solving to perform static analysis faces scalabil-
ity problems as soon as non-trivial loops are analyzed, even when combining
SAT solving with abstraction to numeric ranges [10]. Interestingly, binary-level
underapproximated techniques such as DSE [4] do not face this issue, and can
rely on SAT solving and low-level flag encoding w/o any serious penalty.

9 Conclusion

We have presented template-based recovery, a sound and generic technique for
recovering high-level conditions from binary codes. The method performs signifi-
cantly better than state-of-the-art approaches, and it can also be combined with
some of them. Template-based recovery can help to adapt any formal analysis
from source-level analysis to binary-level analysis, and it can also be useful for
reverse engineering.

252 A. Djoudi et al.

References

1. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Bjørner,
D., Broy, M., Pottosin, I.V. (eds.) Formal Methods in Programming and Their
Applications, vol. 735, pp. 128–141. Springer, Heidelberg (1993)

2. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24756-2 1

3. Bardin, S., Delahaye, M., David, R., Kosmatov, N., Papadakis, M., Traon, Y.L.,
Marion, J.: Sound and quasi-complete detection of infeasible test requirements. In:
ICST 2015, pp. 1–10. IEEE, Graz (2015)

4. Bardin, S., Herrmann, P.: Structural testing of executables. In: ICST 2008. IEEE,
Los Alamitos (2013)

5. Balakrishnan, G., Reps, T.: DIVINE: DIscovering variables IN executables. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 1–28. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-69738-1 1

6. Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A.: The BINCOA
framework for binary code analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 165–170. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 13

7. Bardin, S., Herrmann, P., Védrine, F.: Refinement-based CFG reconstruction from
unstructured programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol.
6538, pp. 54–69. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18275-4 6

8. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 37

9. Brauer, J., King, A.: Transfer function synthesis without quantifier elimination. In:
Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 97–115. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19718-5 6

10. Brauer, J., King, A.: Automatic abstraction for intervals using boolean formulae.
In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 167–183. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15769-1 11

11. Blazy, S., Laporte, V., Pichardie, D.: Verified abstract interpretation techniques
for disassembling low-level self-modifying code. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 128–143. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08970-6 9

12. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24723-4 2

13. Balakrishnan, G., Reps, T.W.: WYSINWYX: what you see is not what you eXe-
cute. ACM Trans. Program. Lang. Syst. 36, 23:1–23:84 (2010)

14. Reinbacher, T., Brauer, J.: Precise control flow reconstruction using boolean logic.
In: EMSOFT 2011. ACM (2011)

15. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for sta-
tic analysis of programs by construction or approximation of fixpoints. In: ACM
Symposium on Principles of Programming Languages, POPL, pp. 238–252. ACM
(1977)

16. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comput. 2,
511–547 (1992)

http://dx.doi.org/10.1007/978-3-540-24756-2_1
http://dx.doi.org/10.1007/978-3-540-69738-1_1
http://dx.doi.org/10.1007/978-3-642-22110-1_13
http://dx.doi.org/10.1007/978-3-642-22110-1_13
http://dx.doi.org/10.1007/978-3-642-18275-4_6
http://dx.doi.org/10.1007/978-3-642-22110-1_37
http://dx.doi.org/10.1007/978-3-642-19718-5_6
http://dx.doi.org/10.1007/978-3-642-15769-1_11
http://dx.doi.org/10.1007/978-3-319-08970-6_9
http://dx.doi.org/10.1007/978-3-319-08970-6_9
http://dx.doi.org/10.1007/978-3-540-24723-4_2

Recovering High-Level Conditions from Binary Programs 253

17. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31987-0 3

18. Dullien, T., Porst, S.: REIL: a platform-independent intermediate representation
of disassembled code for static code analysis. In: CanSecWest (2009). http://www.
zynamics.com/downloads/csw09.pdf

19. Djoudi, A., Bardin, S.: BINSEC: binary code analysis with low-level regions. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 212–217. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 17

20. David, R., Bardin, S., Ta, T.D., Feist, J., Mounier, L., Potet, M., Marion, J.:
BINSEC/SE: a dynamic symbolic execution toolkit for binary-level analysis. In:
SANER (2016)

21. Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Order Number:
32546

22. Kinder, J., Kravchenko, D.: Alternating control flow reconstruction. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 267–282. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-27940-9 18

23. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Asp. Comput. 27, 573–609 (2015)

24. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for
control flow reconstruction from binaries. In: Jones, N.D., Müller-Olm, M. (eds.)
VMCAI 2009. LNCS, vol. 5403, pp. 214–228. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-93900-9 19

25. Logozzo, F., Fähndrich, M.: On the relative completeness of bytecode analysis
versus source code analysis. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp.
197–212. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78791-4 14

26. Mycroft, A.: Type-based decompilation (or program reconstruction via type recon-
struction). In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 208–223.
Springer, Heidelberg (1999). doi:10.1007/3-540-49099-X 14

27. Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2005). doi:10.1007/11609773 23

28. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., New York (1999)

29. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-
gram analysis: precise integer bounds for low-level code. In: Jhala, R., Igarashi, A.
(eds.) APLAS 2012. LNCS, vol. 7705, pp. 115–130. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35182-2 9

30. https://samate.nist.gov/SARD/testsuite.php
31. Sepp, A., Mihaila, B., Simon, A.: Precise static analysis of binaries by extracting

relational information. In: WCRE 2011. IEEE, Los Alamitos (2011)
32. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to

automatic deobfuscation of executable code. In: SP 2015. IEEE (2015)

http://dx.doi.org/10.1007/978-3-540-31987-0_3
http://www.zynamics.com/downloads/csw09.pdf
http://www.zynamics.com/downloads/csw09.pdf
http://dx.doi.org/10.1007/978-3-662-46681-0_17
http://dx.doi.org/10.1007/978-3-642-27940-9_18
http://dx.doi.org/10.1007/978-3-540-93900-9_19
http://dx.doi.org/10.1007/978-3-540-93900-9_19
http://dx.doi.org/10.1007/978-3-540-78791-4_14
http://dx.doi.org/10.1007/3-540-49099-X_14
http://dx.doi.org/10.1007/11609773_23
http://dx.doi.org/10.1007/978-3-642-35182-2_9
https://samate.nist.gov/SARD/testsuite.php

Upper and Lower Amortized Cost Bounds
of Programs Expressed as Cost Relations

Antonio Flores-Montoya(B)

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
aeflores@cs.tu-darmstadt.de

Abstract. Resource analysis aims at statically obtaining bounds on the
resource consumption of programs in terms of input parameters. A well
known approach to resource analysis is based on transforming the target
program into a set of cost relations, then solving these into a closed-form
bound. In this paper we develop a new analysis for computing upper and
lower cost bounds of programs expressed as cost relations. The analysis
is compositional : it computes the cost of each loop or function sepa-
rately and composes the obtained expressions to obtain the total cost.
Despite being modular, the analysis can obtain precise upper and lower
bounds of programs with amortized cost. The key is to obtain bounds
that depend on the values of the variables at the beginning and at the
end of each program part. In addition we use a novel cost representation
called cost structure. It allows to reduce the inference of complex polyno-
mial expressions to a set of linear problems that can be solved efficiently.
We implemented our method and performed an extensive experimental
evaluation that demonstrates its power.

Keywords: Cost analysis · Cost relations · Amortized cost · Lower
bounds

1 Introduction

Cost or resource analysis aims at statically obtaining bounds on the resource
consumption (such as time or memory consumption) of programs in terms of
their input parameters. Such bounds constitute useful feedback for developers
and help detect performance bugs. This is particularly relevant in the context of
cloud applications where one pays according to the amount of resources used.

One common approach for computing both upper and lower bounds is based
on cost relations (CRs) which are similar to recurrence equations annotated with
linear constraints [2]. In this approach, the cost analysis is carried out in two
phases: (1) given a program, for the given resource we want to measure (time,
memory, etc.), we generate a set of recursive cost relations (CRs) that represent
the cost of the program for the given resource; and (2) the CRs are then analyzed
and a closed-form upper (or lower) bound expression is computed. Here CRs
act as a language-independent intermediate representation. The second phase

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 254–273, 2016.
DOI: 10.1007/978-3-319-48989-6 16

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 255

Program 1 Cost relations:

1{x > 0, y > 0, z > 0}
2 vo id p1 (i n t x , y , z) {
3 whi le (x>0) {
4 x−−;
5 y++;
6 whi le (y>0 && ∗)
7 y−−;//tick(2);
8 }
9 whi le (y>0){

10 y−−;
11 i n t i =0;
12 whi le (i<z)
13 i ++;//tick(1);
14 }}

1: p1(x, y, z) = wh3(x, y, xo, yo) + wh9(yo, z)
{x > 0, y > 0, z > 0}

2: wh3(x, y, xo, yo) = 0 {x = xo = 0, yo = y}
3: wh3(x, y, xo, yo) = wh6(y1, y2) + wh3(x′, y′, xo, yo)

{x > 0, x′ = x − 1, y1 = y + 1, y′ = y2}
4: wh6(y, yo) = 0 {y = yo}
5: wh6(y, yo) = 2 + wh6(y′, yo) {y ≥ 1, y′ = y − 1}
6: wh9(y, z) = 0 {y ≤ 0}
7: wh9(y, z) = wh12(0, z) + wh9(y′, z)

{y ≥ 1, y′ = y − 1, z > 0}
8: wh12(i, z) = 0 {i ≥ z}
9: wh12(i, z) = 1 + wh12(i′, z) {i < z, i′ = i + 1}
Upper bound = max(2, z) ∗ (x + y)
Lower bound = min(2, z) ∗ (x + y)

Fig. 1. Program 1 and its cost relations

of the analysis can be reused to solve CRs generated from programs written in
different source languages (e.g., Java bytecode [4], ABS [1,17], Llvm IR [18])
and to measure different kinds of resources such as time or memory. Our work
focuses on that second part of the analysis. Given a set of CRs, we present an
analysis that obtains closed-form upper and lower bounds of its cost.

Example 1. Consider program 1 in Fig. 1. We use tick(c) annotations to indicate
that c resource units are consumed (or released if c is negative) at an execution
point. The term ∗ (in line 6) represents an unknown value. Assuming the initial
values of x, y and z are positive, the upper and lower cost bounds of function p1
are max(2, z) ∗ (x + y) and min(2, z) ∗ (x + y), respectively.

In the CR representation, we have 5 cost relations: p1, wh3, wh6, wh9 and
wh12: one for the function p1 and one for each while loop located at lines 3, 6,
9 and 12. Each cost relation is composed of a set of cost equations. Each cost
equation (CE) corresponds to a path of a loop or function and defines its cost.
Each CE is annotated with set of linear constraints that model the conditions
for its applicability and its behavior.

Consider CE 8 that represents the case where the loop condition is unsatis-
fied. Its cost is 0 and its constraint set is {i ≥ z}. Conversely, CE 9 represents
the case where i < z and the loop body is executed. CE 9 defines the cost
of wh12(i, z) as the cost of one iteration plus the cost of the remaining loop
wh12(i′, z), where i′ represents the value of i after one iteration i′ = i + 1. In
loop wh12 the cost of one iteration is 2 and the final value of y (i.e., yo) is
included in the abstraction. Observe that at the base case of wh6 in CE 4 the
initial and final values of y are equal: y = yo. The inclusion of final variable
values in loops such as wh6 and wh3 is essential to compute precise bounds.
Note that wh6 is non-deterministic, because the constraints of CE 4 and 5 are
not mutually exclusive (due to the unknown value ∗).

256 A. Flores-Montoya

Cost relations have several advantages over other abstract representations:
They support recursive programs naturally. In fact, loops are modelled as recur-
sive definitions and that allows us to analyze loops and recursive functions in
a uniform manner. In contrast, difference constraints do not support recursion
[26] and integer rewrite systems need to be extended [9]. More importantly, CRs
have a modular structure. Each loop or function is abstracted into a separate
cost relation. This enables a compositional approach to compute the cost of a
program by combining the costs of its parts.

In our example, we first compute the cost of entering the inner loop wh6,
then use it to compute the cost of the outer loop wh3. Similarly for loops wh12
and wh9. Finally, we combine the cost of loop wh3 with that of loop wh9 to
obtain the total cost of the program. Each relation is computed only once.

Besides being compositional, we want our analysis to be precise. This is
challenging for program 1, because it presents amortized cost: taken individually,
the cost of entering loop wh6 once is at most 2 ∗ (x + y) (in terms of p1’s input
parameters). But the loop can be entered x times and still its total cost is at
most 2 ∗ (x + y) and not 2 ∗ (x + y) ∗ x as one might expect. This is even more
relevant for lower bounds. Considered individually, the cost of wh3 can be 0 (if
no iterations of the inner loop wh6 are executed) and the cost of wh9 can also
be 0 (if the inner loop wh6 iterates until y reaches 0). However, the lower cost
bound of wh3 followed by wh9 is min(2, z) ∗ (x + y). We know of no other cost
analysis method that can infer a precise lower bound of program 1.

As noted in [8], a key aspect to obtain precise bounds for programs with
amortized cost is to take the final variable values into account. In our example,
if we infer that the cost of wh3 and wh9 is 2∗(x+y−y0) and z∗(y0), respectively
(in the context of CE 1), we can cancel the positive and negative y0 summand and
obtain the upper and lower bounds reported in Fig. 1. Unfortunately, the app-
roach of [8] is computationally expensive and does not scale to larger programs.
We propose instead to represent cost by a combination of simple expressions and
constraints (cost structures), where the inference of complex resource bounds is
reduced to the solution of (relatively) small linear programming problems.

The contributions are: (1) A new cost representation (cost structure) that
can represent complex polynomial upper and lower bounds (Sect. 3); and (2)
techniques to infer cost structures of cost relations in terms of the initial and
final values of the variables and compose them precisely (obtaining amortized
cost) and efficiently (Sects. 4 and 5); (3) the implementation of the analysis as
part of an open source cost analysis tool CoFloCo1; (4) an extensive experimental
evaluation for both upper and lower bounds comparing our tool with other cost
analysis tools: KoAT [9], Loopus [26], C4B [10] and the previous version of
CoFloCo [15] for upper bounds and PUBS [5] for lower bounds (Sect. 7).

1 https://github.com/aeflores/CoFloCo.

https://github.com/aeflores/CoFloCo

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 257

2 Preliminaries

In this section, we formally define the concepts and conventions used in the rest
of the paper. The symbol x represents a sequence of variables x1, x2, · · · , xn

of any length. We represent the concatenation of x and y as xy. A variable
assignment α : V �→ D maps variables from the set of variables V to elements
of a domain D . Let t be a term, α(t) denotes the replacement of all the variables
x in t by α(x). The variable assignment α|V is the restriction of α to the domain
V . A linear expression has the form l(x) := q0 + q1 ∗ x1 + · · · + qn ∗ xn where
qi ∈ Q and x1, x2, · · · , xn are variables. A linear constraint over x is lc(x) :=
l(x) ≥ 0 where l(x) is a linear expression. For readability we often express linear
constraints as l1 ≤ l2, l1 = l2 or l1 ≥ l2. These can be easily transformed
to the form above. A constraint set ϕ(x) is a conjunction of linear constraints
lc1(x)∧ lc2(x)∧ · · · ∧ lcn(x). A constraint set ϕ(x) is satisfiable if there exists an
assignment α : V �→ Q such that ϕ(α(x)) is valid (α satisfies ϕ(x)). We say that
ϕ(x) ⇒ ϕ′(x) if every assignment that satisfies ϕ(x) satisfies ϕ′(x) as well. Next,
we define cost relations which are our abstract representation of programs:

Definition 1 (Cost relation). A cost relation C is a set of cost equations
c := 〈C(x) = q +

∑n
i=1 Di(yi), ϕ(xy)〉, where q ∈ Q; C and Di are cost relation

symbols; and ϕ(xy) is a constraint set that relates the variables on the left side
C(x) and those in the Di(yi) where y = y1y2 · · · yn.

A cost equation (CE) 〈C(x) = q +
∑n

i=1 Di(yi), ϕ(xy)〉 states that the cost
of C(x) is q plus the sum of the costs of each Di(yi). The constraint set ϕ(xy)
serves two purposes: it restricts the applicability of the equation with respect to
the input variables x and it relates the variables x with each yi. One can view a
CR C as a non-deterministic function that executes a cost equation in C. Given
a cost equation 〈C(x) = q +

∑n
i=1 Di(yi), ϕ(xy)〉, C consumes q resources and

calls the functions D1,D2, . . . , Dn.

2.1 Cost Relation Refinement

In this work, we do not consider arbitrary CRs but instead CRs that are the
result of a control-flow refinement presented in [15]. This refinement produces
a set of execution patterns (called chains and denoted ch) for each CR. These
execution patterns are regular expressions of CE identifiers and represent all
possible executions of the CR. The formal definition of chains is as follows:

Definition 2 (Phase, Chain). Let C be a cost relation. A phase (ph) can be:
(1) one or more recursive CEs executed a positive number of times (c1∨· · ·∨cn)+

with ci ∈ C; or (2) a single (non-recursive) CE executed once (ci).
A chain (ch) is a sequence of phases ch := [ph1 · ph2 · · · phn] in C. A chain

can represent a terminating execution if phn contains a single non-recursive CE
(ci) or a non-terminating execution if phn has the form (c1 ∨ · · · ∨ cn)+.

258 A. Flores-Montoya

1.1: p1(x, y, z) = wh3[(3.1 ∨ 3.2)+2](x, y, xo, yo) + wh9[6](yo, z)
{x > 0, y > 0, z > 0,xo = 0,yo ≤ 0}

1.2: p1(x, y, z) = wh3[(3.1 ∨ 3.2)+2](x, y, xo, yo) + wh9[7.1+6](yo, z)
{x > 0, y > 0, z > 0,xo = 0,yo > 0,x + y ≥ yo}

3.1: wh3(x, y, xo, yo) = wh6[4](y1, y2) + wh3(x′, y′, xo, yo)
{x > 0, x′ = x − 1, y1 = y + 1, y′ = y2,y2 = y1}

3.2: wh3(x, y, xo, yo) = wh6[5+4](y1, y2) + wh3(x′, y′, xo, yo)
{x > 0, x′ = x − 1, y1 = y + 1, y′ = y2,y2 < y1}

7.1: wh9(y, z) = wh12[9+8](0, z) + wh9(y′, z) {y ≥ 1, y′ = y − 1, z > 0}

Fig. 2. Refined cost equations from Program 1

For instance, the CR wh6 contains two phases (5)+ and (4) (where a number
n refers to CE n in Fig. 1). From these phases, we can have two chains ‘[4]’
and ‘[5+4]’ that represent the case where the loop body is not executed ‘[4]’
and the case when it is executed a finite number of times ‘[5+4]’. In principle,
we could also have a non-terminating chain ‘[5+]’ but the refinement in [15]
discards non-terminating chains that can be proved terminating. Any external
reference to a CR C1 from another CR C2 is annotated with a chain: C1ch
that determines which CEs will be applied and in which order. In this manner,
the cost equations are refined. CE 3 from Fig. 1 becomes CE 3.1 and 3.2 in
Fig. 2 which contain annotated references to wh6 with the corresponding chains
wh6[4](y1, y2) and wh6[5+4](y1, y2). Similarly, CE 1 becomes 1.1 and 1.2 in Fig. 2
and CE 7 becomes 7.1. The constraint sets of the refined equations also contain
a summary of the behavior of these references (the bold constraints in Fig. 2).
Note that the refinement discards unfeasible references. For example, CR wh9
does not have a reference to wh12[8] because z is guaranteed to be positive.

The refined CRs can be ordered in a sequence 〈C1, C2 . . . Cn〉. in which a
cost equation of Ci can contain at most one recursive reference to Ci and any
number of references to Cj j > i annotated with chains of Cj . Its general form
is: 〈Ci(x) = q +

∑n
i=1 Dchi(yi) + Ci(x′), ϕ(xx′y)〉 where D ∈ {Ci+1 . . . Cn} if it

is recursive or without the summand +Ci(x′) if it is non-recursive.
Most programs can be expressed as refined CRs [15]. The only current lim-

itation of this approach is the analysis of CRs with multiple recursion (when a
CE contains more than one recursive reference).

2.2 Refined Cost Relation Semantics

Cost relations can be evaluated to a cost with respect to a variable assignment
α : V �→ Q. We define the evaluation relation ⇓ for refined CRs. This relation is
not meant to be executed but rather to serve as a formal definition of the cost
of CRs. Figure 3 contains the rules for evaluating chains, phases and CEs.

We write a non-recursive CE 〈C(x) = k0 +
∑n

i=1 Dchi(yi), ϕ(xx′y)〉 as
nrc(x). Rule (Non-recursive CE) extends the assignment α to α′ such
that it is defined for y and the constraint set of the CE is valid ϕ(α′(xy)).

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 259

(non-recursive CE)

α = α′|x ϕ(α′(xy))
n∧

i=1

(〈α′|yi , chi(yi)〉 ⇓ ki)

〈α, nrc(x)〉 ⇓ k0 +
n∑

i=1

ki

(recursive CE)

α = α′|xx′ ϕ(α′(xx′y))
n∧

i=1

(〈α′|yi , chi(yi)〉 ⇓ ki)

〈α, rc(xx′)〉 ⇓ k0 +
n∑

i=1

ki

(Base phase)

〈α, ci(xxf)〉 ⇓ k

〈α, (c1 ∨ · · · ∨ cn)+(xxf)〉 ⇓ k

(Rec phase)

α = α′|xxf 〈α′|xx′ , ci(xx′)〉 ⇓ k1

〈α′|x′xf
, (c1 ∨ · · · ∨ cn)+(x′xf)〉 ⇓ k2

〈α, (c1 ∨ · · · ∨ cn)+(xxf)〉 ⇓ k1 + k2

(Chain)

α = α′|x
n∧

i=1

(〈α′|xixi+1 , phi(xixi+1)〉 ⇓ ki)

〈α, [ph1 · · · phn](x)〉 ⇓
n∑

i=1

ki

Fig. 3. Semantics for the evaluation of chains, phases and cost equations

The cost of nrc(x) with variable assignment α is the sum of the costs of
the evaluations of the chains referenced by nrc(x) plus k0. A recursive CE
〈C(x) = k0 +

∑n
i=1 Dchi(yi) + C(x′), ϕ(xx′y)〉 is written rc(xx′). Because a

recursive CE always appears within a recursive phase (c1∨· · ·∨cn)+, we will not
include the recursive reference during its evaluation. That is, (Recursive CE)
does not add the cost of the recursive reference. That will be instead considered
in the evaluation of the phase. Hence, (Recursive CE) and (Non-recursive
CE) are almost identical, but we include the variables x′ of the recursive refer-
ence in the former so they can be matched with the initial variables of the next
CE in the phase. Rules (Rec phase) and (Base phase) define the recursive
evaluation of a phase. As before we include the variables of the last recursive
reference xf in the phase representation (c1 ∨ · · · ∨ cn)+(xxf) so they can be
matched with the initial variables of the next phase in the chain. Finally, the
evaluation of a chain is the sum of the evaluations of its phases. If the chain
is terminating, phn will be (nrc(x)) and the sequence of variables xn+1 will be
empty. If the chain is non-terminating, phn will be (c1 ∨ · · ·∨ cn)+ and xn+1 will
be undefined.

We follow the same evaluation structure to compute bounds. We also compute
bounds that depend on the variables of the recursive references for CEs (x′) and
for phases (xf). This might seem unnecessary at first, but it allows us to compute
precise bounds in a modular way. Consider the chain ‘[5+4]’ of CR wh6. We want
to obtain the precise (upper and lower) bound 2(y − y0) but when we consider
the phase (5)+, we do not have any information about how y0 relates to y (which
is contained in CE 4). Instead, we infer the cost of (5)+ as 2(y − yf), where yf
is the value of y in the last recursive reference of (5)+. Later we combine this
bound with the information of CE 4 {y = yo} to obtain 2(y − y0).

260 A. Flores-Montoya

3 Cost Structures

In order to obtain upper and lower bounds, we developed a symbolic cost rep-
resentation that can represent the costs of chains, phases or CEs. We call this
cost representation cost structure.

We define cost structures as combinations of linear expressions in such a way
that they can be inferred and composed by merely solving problems over sets of
linear constraints. Instead of a single complex expression, we use simple linear
cost expressions E over intermediate variables (iv) and constraints that bind the
intermediate variables to the variables of the CRs. We distinguish two kinds of
constraints. non-final constraints IC that relate intermediate variables among
each other and final constraints FC (x) that relate intermediate variables with
the variables of the CRs (x). The formal definition of cost structures is as follows:

Definition 3 (Cost Structure). A cost structure is a tuple 〈E, IC ,FC (x)〉.
– E is the main cost expression and is a linear expression l(iv) over intermediate

variables. Intermediate variables always represent positive numbers.
– Let �� be ≤ or ≥. IC is a set of non-final constraints of the form

∑m
k=1 ivk ��

SE where SE can be SE := l(iv) | iv i ∗ iv j | max(iv) | min(iv) .
– FC (x) is a set of final constraints of the form

∑m
k=1 ivk �� |l(x)| where

|l(x)| := max(l(x), 0) and l(x) is a linear expression over the CR variables.

Even though the constraints in IC and FC (x) are relatively simple, we can
express complex polynomial expressions by combining them. In Fig. 4 we have
some of the cost structures of program 1 that will be obtained in the following
sections (a = b stands for a ≤ b and a ≥ b). Thanks to the constraints we can
represent both upper and lower bounds with a single cost structure. Moreover,
we can have several constraints that bind the same intermediate variables and
thus represent multiple bound candidates. Finally, having multiple iv on the left
side of the constraints can represent a disjunction or choice. This is the case for
iv6 + iv3 = |y+x| of chain [1.2]. The bigger iv6 is, the smaller iv3 becomes. This
capability is key to obtain a non-trivial lower bound for program 1.

We infer cost structures incrementally. In a sequence of CRs 〈C1, C2 . . . Cn〉,
we start with Cn and proceed backwards until C1. For each Ci we compute the

Chain/Phase/CE(Variables): Cost Structure

[1.2](x, y, z) : 〈iv2 + 2iv6, {iv2 = iv3 ∗ iv4}, {iv3 + iv6 = |y + x|, iv4 = |z|}〉
[(3.1 ∨ 3.2)+2](x, y, xo, yo) : 〈2iv6, ∅, {iv6 = |y − yo + x|}〉

(3.1∨ 3.2)+(xs, ys, xos , yos , xf , yf , xof , yof) : 〈2iv6, ∅, {iv6 = |ys +xs − yf − xf |}〉
3.2(x, y, xo, yo, x

′, y′, x′
o, y

′
o) : 〈2iv5, ∅, {iv5 = |y − y′ + 1|}〉

[7.1+6](y, z) : 〈iv2, {iv2 = iv3 ∗ iv4}, {iv3 = |y|, iv4 = |z|}〉
(7.1)+(ys, zs, yf , zf) : 〈iv2, {iv2 = iv3 ∗ iv4}, {iv3 = |ys − yf |, iv4 = |zs|}〉

7.1(y, z, y′, z′) : 〈iv1, ∅, {iv1 = |z|}〉

Fig. 4. Some of the cost structures of Program 1

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 261

cost structures of the CEs first (Sect. 4), then of the phases (Sect. 5) and finally
of the chains (Sect. 4). This way, at each step, the cost structures of all the
components have already been computed and it suffices to compose them.

Example 2. The sequence of CRs in Program 1 is 〈p1, wh3, wh6, wh9, wh12〉. We
start computing cost structures for wh12 and finish by computing cost structures
for p1. For each CR, we compute cost structures for the CEs, the phases and
the chains. Consider CR wh9 for instance. We compute the cost of CEs 7.1
and 6 first. These are 〈iv1, ∅, {iv1 = |z|}〉 which originates from its reference to
wh12[9+8] (See Fig. 2) and 〈0, ∅, ∅〉 (See CE 6 in Fig. 1). Then, we compute the
cost of phase 7.1+. In phase 7.1+ CE 7.1 is evaluated a number of times and
each time it has a cost 〈iv1, ∅, {iv1 = |z|}〉. The cost of 7.1+ is the sum of all
these costs. In particular iv2 corresponds to the sum of all the copies of iv1 of all
the evaluations of CE 7.1. The variables iv3 and iv4 have an auxiliary role. They
maintain the two parts of the cost separated |ys − yf | and |zs| and, together
with the non-final constraint, represent a non-linear bound. Finally, the cost of
[7.1+6] is the sum of the costs of 7.1+ and 6 but expressed only in terms of the
initial variable values y and z. The process is similar for other CRs. In CR wh3,
we compute the costs for CEs 3.1 and 3.2 and 2, we combine the ones from 3.1
and 3.2 to obtain the cost of (3.1∨3.2)+ which in turn we combine with the cost
of 2 to obtain the cost of [(3.1 ∨ 3.2)+2]. Here, iv6 represents the sum of all iv5

of all the evaluations of CE 3.2 in phase (3.1 ∨ 3.2)+.

Definition 4 (Valid Cost Structure). Let T (x) be a chain, phase or CE.
The cost structure 〈E, IC ,FC (x)〉 is valid for T if for every 〈α, T (x)〉 ⇓ k, there
exists an extension of α denoted α′ (α′|x = α) that assigns all the intermediate
variables such that α′(IC ∧ FC (x)) is valid and α′(E) = k.

A valid cost structure of T (x) can be evaluated to any cost k s.t. 〈α, T (x)〉 ⇓ k.
Given a valid cost structure 〈E, IC ,FC (x)〉, we can easily obtain closed-form
upper/lower bounds such as the ones given in Fig. 1 by maximizing/minimizing
the main cost expression E according to the constraints IC and FC (x). This
is done by incrementally substituting intermediate variables in E for their
upper/lower bounds defined in the constraints until E does not contain any
intermediate variable. The details on how this process is implemented can be
found in [14].

Example 3. The lower bound of chain [1.2] is computed as follows: We start from
the main cost expression iv2+2iv6 and we minimize each iv using the constraints:
(1) iv2 ≥ iv3 ∗ iv4 (2) iv4 ≥ |z| and (3) iv3 + iv6 ≥ y + x: iv2 + 2iv6 ≥(1)

iv3 ∗ iv4 + 2iv6 ≥(2) iv3 ∗ |z| + 2iv6 ≥(3) min((|y + x| ∗ |z|) + 0, 0 + 2|y + x|) =
min(|z|, 2) ∗ |y + x|.

4 Cost Structures of Cost Equations and Chains

We want to obtain a valid cost structure of a recursive CE rc(xx′) := 〈C(x) =
k0 +

∑n
i=1 Dchi(yi) + C(x′), ϕ(xx′y)〉 (the non-recursive case is analogous).

262 A. Flores-Montoya

Let ki be the cost of chi(yi), the cost of rc(xx′) is k0 +
∑n

i=1 ki (See Fig. 3).
Similarly, we can obtain a valid cost structure for rc(xx′) by composing the cost
structures of each chi(yi).

Remark 1. Let 〈Echi
, IC chi

,FC chi
(yi)〉 be a valid cost structure of chi(yi), the

following cost structure is valid for rc(xx′):

〈k0 +
n∑

i=1

Echi
,

n⋃
i=1

(IC chi
),

n⋃
i=1

(FC chi
(yi))〉

We add the main cost expressions Echi
plus k0 and join the constraint sets

IC chi
and FC chi

(yi). Note that in the base case (i.e. when n = 0), the result-
ing cost structure is simply 〈k0, ∅, ∅〉. Unfortunately, the final constraints in⋃n

i=1(FC chi
(yi)) contain variables other than xx′ and have to be transformed

to obtain a cost structure that only contains CR variables in xx′.

Transformation of final constraints. We perform this transformation with the
help of the CE’s constraint set ϕ(xx′y). Recall that final constraints are of an
almost linear form (

∑m
k=1 ivk �� |l(y)|). If we guarantee that l(y) is non-negative

(ϕ(xx′y) ⇒ l(y) ≥ 0), we can simply use the linear constraint
∑m

k=1 ivk �� l(y).
Let FC+ be the set of all constraints obtained thus from

⋃n
i=1 FC chi

(yi). We
perform (Fourier-Motzkin) quantifier elimination on ∃y.(FC+ ∧ ϕ(xx′y)) and
obtain a constraint set that relates directly the intermediate variables of FC+

with xx′. We can then extract syntactically from the resulting constraint set new
final constraints in terms of xx′.

Example 4. We combine the cost of chains [(3.1∨3.2)+2] and [7.1+6] from Fig. 4
into that of CE 1.2, instantiated according to CE 1.2 with variables (x, y, xo, yo)
and (yo, z), respectively. The resulting expression is: 〈iv2 + 2iv6, {iv2 = iv3 ∗
iv4}, {iv6 = |y − yo + x|, iv3 = |yo|, iv4 = |z|}〉. This is the cost structure of
[1.2] in Fig. 4 except for the final constraints which need to be transformed. The
constraint set of CE 1.2 from Fig. 2 (ϕ1.2) guarantees that y − yo + x, yo and
z are non-negative. Therefore, we generate a constraint set FC+ = {iv6 = y −
yo+x, iv3 = yo, iv4 = z} and perform quantifier elimination over ∃xo, yo.(FC+∧
ϕ1.2). This results in {iv6 + iv3 = y +x, iv4 = z, x > 0, y > 0, z > 0} from which
we syntactically extract the constraints iv3 + iv6 = |y + x| and iv4 = |z|. This
procedure allows us to find dependencies among constraints (iv6 = y − yo + x
and iv3 = y0) and merge them precisely (into iv3 + iv6 = |y + x|).

We transform the rest of the final constraints, i.e. the ones that cannot be
guaranteed to be positive, one by one. Let

∑m
k=1 ivk �� |l(y)| be a constraint, if we

find l′(xx′) such that ϕ(xx′y) ⇒ l(y) �� l′(xx′), then we have that
∑m

k=1 ivk ��
|l′(xx′)| holds as well.2 We find l′(xx′) by creating a linear template of l′(xx′) and
finding coefficients that satisfy ϕ(xx′y) ⇒ l(y) �� l′(xx′) using Farkas’ Lemma.

2 This can be easily seen by distinguishing cases (l(y) ≥ 0 and l(y) ≤ 0).

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 263

Chains. The case of computing a cost structure 〈Ech, IC ch,FC ch(x)〉 of a chain
ch = [ph1 · ph2 · · · phn] is analogous. Let 〈Ephi

, IC phi
,FC phi

(xixi+1)〉 be the
cost structure of phi(xixi+1), we add the main cost expressions and join the
constraint sets to obtain: 〈∑n

i=1 Ephi
,
⋃n

i=1(IC phi
),

⋃n
i=1(FC phi

(xixi+1))〉. We
transform the final constraints FC phi

(xixi+1) to express them in terms of the
initial variables x as above. But this time we perform the transformation incre-
mentally. We transform first FC phn

(xn) and FC phn−1(xn−1xn) in terms of xn−1.
Then, we transform the result together with FC phn−2(xn−2) in terms of xn−2

and so on until we reach the first phase of the chain. In each step the constraint
set used is ϕphi

(xixi+1) which is a summary of the behaviors of phi, · · · , phn.

5 Cost Structures of Phases

Let ph = (c1 ∨ · · · ∨ cn)+ be a phase. Our objective is to compute a valid cost
structure 〈Eph, IC ph,FC ph(xsxf)〉 for the phase ph. Such a cost structure must
be expressed in terms of initial values of the variables (xs) and the values of the
variables in the last recursive call of the phase (xf) and must represent the sum
of all the evaluations of ci ∈ ph (according to the semantics Fig. 3). For each
evaluation of ci, we can define an instantiation of its cost structure.

Definition 5 (Cost Structure Instances). Let 〈Eci , IC ci ,FC ci(xx′)〉 be a
valid cost structure of ci and let #ci be the number of times ci is evaluated in
ph. 〈Ecij , IC cij ,FC cij(xcijx

′
cij

)〉 represents the cost structure instance of the j-th
CE evaluation of ci for 1 ≤ j ≤ #ci. That is, the cost structure of ci instantiated
with the variables corresponding to the j-th CE evaluation of ci: xcijx

′
cij

.

Remark 2. The total cost of a phase is the sum of all the cost structure instances
for 1 ≤ j ≤ #ci and for all ci ∈ ph:

〈
n∑

i=1

#ci∑
j=1

Ecij ,
n⋃

i=1

#ci⋃
j=1

(IC cij),
n⋃

i=1

#ci⋃
j=1

(FC cij(xcijx
′
cij

))〉

Based on this, we generate a cost structure 〈Eph, IC ph,FC ph(xsxf)〉 in three
steps: (1) we transform the expression

∑n
i=1

∑#ci
j=1 Ecij into a valid main cost

expression Eph; (2) we generate non-final constraints IC ph using the CEs’
non-final constraints IC ci (in Sect. 5.1); and (3) we generate final constraints
FC ph(xsxf) using the CEs’ final constraints FC ci(xcix

′
ci) and the CE definitions

(in Sect. 5.2).
In order to transform

∑n
i=1

∑#ci
j=1 Ecij into a valid cost expression Eph, we

have to remove the sums over the unknowns #ci. For this purpose, we define
the following new intermediate variables:

Definition 6 (Sum intermediate variables). Let iv be an intermediate vari-
able in 〈Eci , IC ci ,FC ci(xx′)〉. The intermediate variable smiv :=

∑#ci
j=1 iv j is the

sum of all instances of iv in the different evaluations of ci in the phase.

264 A. Flores-Montoya

Now, we can reformulate each
∑#ci

j=1 Ecij into a linear expression in terms of
smiv . Let Eci := q0 + q1 ∗ iv1 + · · · + qm ∗ ivm, we have that∑#ci

j=1 Ecij = q0 ∗ #ci + q1 ∗ smiv1 + · · · + qm ∗ smivm (where #ci is also an

intermediate variable). If we do this transformation for each i in
∑n

i=1

∑#ci
j=1 Ecij ,

we obtain a valid cost expression for the phase Eph.

Example 5. Consider phase (3.1∨3.2)+. Let E3.1 = 0 and E3.2 = 2iv5. The main
cost expression of the phase is E(3.1∨3.2)+ =

∑#c3.1
j=1 0 +

∑#c3.2
j=1 2iv5j = 2smiv5

(where smiv5 corresponds to iv6 in Fig. 4).

5.1 Transforming Non-final Constraints

In this section we want to generate a new set of non-final constraints IC ph

that bind the new intermediate variables (smiv) that appear in our main cost
expression Eph.

We iterate over the non-final constraints of each IC ci for ci ∈ ph.
For each constraint

∑m
k=1 ivk �� SE ∈ IC ci , we sum up all its instances∑#ci

j=1

∑m
k=1 ivkj ��

∑#ci
j=1 SE j and reformulate the constraint using smiv

variables. We reformulate the left-hand side directly:
∑#ci

j=1

∑m
k=1 ivkj =∑m

k=1 smivk However, the right-hand side of the constraints might contain sums
over non-linear expressions. These sums cannot be reformulated only in terms
of Sum variables. Therefore, we introduce a new kind of intermediate variable:

Definition 7 (Max/Min intermediate variables). The variables
�iv� := max1≤j≤#ci(iv j) and �iv� := min1≤j≤#ci(iv j) are the maximum and
minimum value that an instance iv j of iv can take in a evaluation of ci in ph.

With the help of this new kind of variables we can reformulate the right hand
side of the expression:

∑#ci
j=1 SE j . We distinguish cases for each possible SE :

– SE := q0 + q1 ∗ iv1 + · · · + qm ∗ ivm:
We have that

∑#ci
j=1 SE j = q0 ∗ #ci + q1 ∗ smiv1 + · · · + qm ∗ smivm.

– SE := ivk ∗ ivp: We approximate
∑#ci

j=1 SE j with the help of �iv�p or �iv�p
depending on whether �� is ≤ or ≥:∑#ci

j=1 SE j ≤ smivk ∗ �iv�p and
∑#ci

j=1 SE j ≥ smivk ∗ �iv�p.3
– SE := max(iv) or min(iv): We reduce this to the previous case. We reformu-

late SE as 1 ∗ SE and substitute each factor by a fresh intermediate variable:
ivk ∗ ivp. Then, we add the constraints ivk �� 1 and ivp �� SE to IC ci so they
are later transformed. This way, smivp is not generated (�iv�p or �iv�p will be
generated instead) and we do not have to compute

∑#ci
j=1 SE j .

3 We could also approximate to
iv�k ∗ smivp and �iv
k ∗ smivp but in general the
chosen approximation works better. The variable ivk usually represents an outer
loop and ivp and inner loop (See basic product strategy in Sect. 5.2).

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 265

In the generated constraints new variables of the form �iv� and �iv� might
have been introduced that also need to be bound. We iterate over the constraints
in IC ci from ci ∈ ph again to generate constraints over �iv� and �iv� variables.
Let iv ≤ SE ∈ IC ci (the ≥ case is symmetric). We distinguish cases for SE :4

– SE := q0 + q1 ∗ iv1 + · · · + qm ∗ ivm: Let Vk := �iv�k if qk ≥ 0 or Vk := �iv�k
if qk < 0. We generate �iv� ≤ q0 + q1 ∗ V1 + · · · + qm ∗ Vm.

– SE := ivk ∗ ivp: We generate �iv� ≤ �iv�k ∗ �iv�p.
– SE := max(iv1 · · · ivn): We generate �iv� ≤ max(�iv�1 · · · �iv�n).
– SE := min(iv1 · · · ivn): We generate �iv� ≤ �iv�k (for 1 ≤ k ≤ n).

All these newly generated constraints form the non-final constraint set IC ph.

5.2 Transforming Final Constraints

Previously, we computed a main cost expression Eph and a set of non-final
constraints IC ph for a phase ph = (c1 ∨ · · · ∨ cn)+. We complete the phase’s cost
structure with a set of final constraints FC ph(xsxf) (and possibly additional
non-final constraints) that bind the intermediate variables of Eph and IC ph. We
propose the following algorithm:

Algorithm initialization. For each ci with cost structure 〈Eci , IC ci ,FC ci(xx′)〉
the algorithm maintains two sets of pending constraints:

(1) Psumsci is initialized with the constraints
∑m

k=1 ivk �� |l(xx′)| ∈ FC ci(xx′)
such that some smivk appear in our phase cost structure (in Eph or IC ph) and
iv iti ≤ 1 and iv iti ≥ 1 if #ci appears in our phase cost structure. The variable
iv iti represents the number of times ci is evaluated and smiv iti = #ci.

(2) Pmsci is initialized with the constraints iv �� |l(xx′)| ∈ FC ci(xx′) such that
�iv� or �iv� appear in our phase cost structure.

Algorithm. At each step, the algorithm removes one constraint from one of the
pending sets and applies one or several strategies to the removed constraint.
A strategy generates new constraints (final or non-final) for the phase’s cost
structure: they are added to the sets IC ph or FC ph(xsxf). A strategy can also
add additional pending constraints to the sets Psumsci or Pmsci to be processed
later. The algorithm repeats the process until Psumsci and Pmsci are empty or
all the intermediate variables in Eph and IC ph are bound by constraints.

In principle, the algorithm can finish without generating constraints for all
intermediate variables. For instance, if the cost of the phase is actually infinite.
It can also not terminate if new constraints keep being added to the pending
sets indefinitely. This does not happen often in practice and we can always stop
the computation after a number of steps. We propose the following strategies:

4 This transformation is not valid for constraints with multiple variables on the left
side. The constraints with ≤ can be split (

∑m
k=1 ivk ≤ SE implies ivk ≤ SE for

1 ≤ k ≤ m). But this is not the case for the constraints with ≥.

266 A. Flores-Montoya

Inductive Sum Strategy. Let
∑m

k=1 ivk �� |l(xx′)| ∈ Psumsci , the strategy
will try to find a linear expression that approximates the sum

∑#ci
j=1 |l(xcijx

′
cij

)|
in terms of the initial and final variables of the phase (xsxf).

Let us consider first the simple case where ci is the only CE in the phase. The
strategy uses the CE’s constraint set ϕi(xx′y) and Farkas’ Lemma to generate
a candidate linear expression cd(x) such that ϕi(xx′y) ⇒ (|l(xx′)| �� cd(x) −
cd(x′) ≥ 0). If a candidate cd(x) is found, we have:

∑#ci
j=1 |l(xcijx

′
cij

)| ��
∑#ci

j=1(cd(xcij) − cd(x′
cij

)) = cd(xs) − cd(xf)

This is because each intermediate −cd(x′
cij

) and cd(xcij+1) cancel each other
(cd(x′

cij
) = cd(xcij+1)). Therefore, the constraint

∑m
k=1 smivk �� |cd(xs) −

cd(xf)| is valid and can be added to FC ph(xsxf).

Example 6. This is the case of phase 9+(is, zs, if , zf) with Psums9 = {iv it9 ≤
1, iv it9 ≥ 1}. The strategy generates the candidate −i and the final constraints
smiv it9 ≤ |if − is| and smiv it9 ≥ |if − is|. Later |if − is| will become |z − i| in
[9+8] and |z| in CE 7.1. The variable smiv it9 corresponds to iv1 in Fig. 4.

If the phase contains other CEs ce (e �= i), we have to take their behavior
into account. E.g. suppose that we have another ce (e �= i) that increments our
candidate by two (ϕe(xx′y) ⇒ cd(x′) = cd(x) + 2). Let #ce be the number of
evaluations of ce, the sum is

∑#ci
j=1 cd(xcij)−cd(x′

cij
) = cd(xs)−cd(xf)+2∗#ce.

That is, the sum computed for the simple case cd(xs) − cd(xf) plus the sum of
all the increments to the candidate 2 ∗ #ce effected by CE ce.

In the general case, the strategy generates a candidate (using ci constraint
set ϕi(xx′y) and Farkas’ Lemma as before); it classifies the CEs of the phase
ce ∈ ph (including ci) according to their effect on the candidate; and it uses this
classification to generate constraints that take these effects into account.

Cost Equation Classification. Each class has a condition and it defines a (linear)
term (See Fig. 5). In order to classify a CE ce into a class, its condition has to be
implied by the corresponding CE’s constraint set ϕe(xx′y). This implication can
be verified and the unknown linear expressions dce(xx′) ice(xx′) or rste(xx′) (For
the classes Dc, Ic and Rst respectively) can be inferred using Farkas’ Lemma.
The considered classes in this strategy are5:

Condition when �� is ≤ Condition when �� is ≥ Defines

Cnt (
m∑

k=1

ivk �� |l′(xx′)|) ∈ Psumsce ∧ |l′(xx′)| �� cd(x) − cd(x′) ≥ 0 cnte =
m∑

k=1

smivk

Dc 0 ≤ dce(xx′) ≤ cd(x) − cd(x′) dce(xx′) ≥ cd(x) − cd(x′) ivdce = |dce(xx′)|
Ic ice(xx′) ≥ cd(x′) − cd(x) 0 ≤ ice(xx′) ≤ cd(x′) − cd(x) iv ice = |ice(xx′)|
Rst cd(x′) �� |rst(x)| ivrste = |rste(x)|

Fig. 5. Classes of CE ce w.r.t a candidate cd(x), their condition and defined term

5 The class Rst will be used and explained in the Max-Min strategy.

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 267

– Cnt: ce ∈ Cnt if there is a constraint
∑m

k=1 ivk �� |l′(xx′)| ∈ Psumsce that
can also be bound by the candidate: |l′(xx′)| �� cd(x) − cd(x′). We can
incorporate

∑m
k=1 smivk to the left hand side of our constraint. We define

cnte :=
∑m

k=1 smivk as a shorthand. Note that ci, whose constraint was used
to generate the candidate, trivially satisfies the condition and thus ci ∈ Cnt.

– Dc: ce ∈ Dc if in each evaluation of ce the candidate is decremented by at
least dce(xx′) (or at most dce(xx′) if �� is ≥). We assign a fresh intermediate
variable to this amount ivdce := |dce(xx′)|. To generate a valid constraint, we
will subtract the sum of all those decrements i.e. smivdce .

– Ic: ce ∈ Ic if in each evaluation of ce the candidate is incremented by at
most ice(xx′) (or at least ice(xx′) if �� is ≥). As before, we assign a fresh
intermediate variable to that amount iv ice := |ice(xx′)|. To generate a valid
constraint, we will add the sum of all those increments i.e. smiv ice .

Lemma 1. Let ! �� be the reverse of �� (e.g. ≥ if ��=≤). If we classify every
ce ∈ ph into Cnt, Ic or Dc w.r.t. cd(x), the following constraints are valid:

∑
ce∈Cnt

cnte �� ivcd+ − iv cd− +
∑

ce∈Ic

smiv ice − ∑
ce∈Dc

smivdce ,

iv cd+ �� |cd(xs) − cd(xf)|, iv cd−! �� | − cd(xs) + cd(xf)|
These are the constraints generated by the Inductive Sum strategy. Note that
iv cd+ and −iv cd− represent the positive and negative part of cd(xs)−cd(xf). The
constraints bind the sum of all smiv in cnte (for each ce ∈ Cnt) to cd(xs)−cd(xf)
plus all the increments

∑
ce∈Ic smiv ice minus all the decrements

∑
ce∈Dc smivdce .

If Ic is empty, cd(xs)−cd(xf) is guaranteed to be positive (the candidate is never
incremented) and we can eliminate the summand −iv cd− (and its corresponding
constraint ivcd−! �� | − cd(xs) + cd(xf)|).

Finally, the strategy adds constraints for the new intermediate variables iv ice

and ivdce to the pending sets so their sums smiv ice and smivdce are bound
afterwards: iv ice �� |ic(xx′)| is added to Psumsce for each ce ∈ Ic, and
ivdce ! �� |dc(xx′)| is added to Psumsce for each ce ∈ Dc.

Example 7. In phase (3.1∨ 3.2)+ we have iv5 ≤ |y − y′ +1| ∈ Psums3 .2 . A valid
candidate is y + x. The CEs are classified as follows: CE 3.2 ∈ Cnt because it
has generated the candidate (cnt3.2 := smiv5); and CE 3.1 ∈ Dc because y + x
decreases in CE 3.1 by dc3.1 = 0. The generated constraints are: smiv5 ≤ iv cd+−
iv cd−−smivdc, iv cd+ ≤ |(ys+xs)−(yf+xf)| and iv cd+ ≤ |−(ys+xs)+(yf+xf)|.
However, given that Ic is empty and dc3.1 = 0, we can simplify them to a single
constraint: smiv5 ≤ |(ys + xs) − (yf + xf)| (where smiv5 is iv6 in Fig. 4).

Example 8. The class Cnt allows us to bind Sum variables of different ci under
a single constraint. For instance, if we had6 iv it3.1 ≥ 1 ∈ Psums3 .1 and iv it3.2 ≥
1 ∈ Psums3 .2 , the expression x would be a valid candidate with the classification
Cnt = {3.1, 3.2} with cnt3.1 := smiv it3.1 and cnt3.2 := smiv it3.2 . The strategy

6 smiv it3.1 and smiv it3.2 are actually not needed for computing the cost of the program
in this case. Therefore, these constraints are never added to the pending sets.

268 A. Flores-Montoya

would generate the (simplified) constraint smiv it3.1 + smiv it3.2 ≥ |xs −xf | which
is equivalent to #c3.1 + #c3.2 ≥ |xs − xf | and represents that wh3 iterates at
least |xs − xf | times. Without Cnt, we would fail to obtain a non-trivial lower
bound for #c3.1 or #c3.2 as they can both be 0 (if considered individually).

Basic Product Strategy. Often, given a constraint
∑m

k=1 ivk �� |l(xx′)| ∈
Psumsci , it is impossible to infer a linear expression representing

∑#ci
j=1 |l(xjx′

j)|.

Example 9. Consider the cost computation of phase 7.1+. We have a constraint
iv1 ≤ |z| ∈ Psums7 .1 . The variable z does not change in CE 7.1 and #c7.1 is at
most y so

∑#c7
j=1 |z| = |y| ∗ |z| which is not linear. We can obtain this result by

rewriting the constraint iv1 ≤ |z| as iv1 ≤ 1∗|z|. Then, we generate the constraint
smiv1 ≤ smiv it7.1 ∗ �iv�mz (that corresponds to iv2 ≤ iv3 ∗ iv4 in Fig. 4) and
add iv it7.1 ≤ 1 to Psums7 .1 and ivmz ≤ |z| to Pms7 .1 . These constraints will be
later processed by the strategies Inductive Sum and Max-Min respectively.

In general, given a
∑m

k=1 ivk ≤ |l(xx′)| ∈ Psumsci where l(xx′) is not a constant,
the Basic Product strategy generates

∑m
k=1 smivk ≤ smiv iti ∗�iv�p and adds the

pending constraints iv iti ≤ 1 to Psumsci and ivp ≤ |l(xx′)| to Pmsci . This way,
the strategy reduces a complex sum into a simpler sum and a max/minimization.
The strategy proceeds analogously for constraints with ≥.

Max-Min Strategy. This strategy deals with constraints iv �� |l(xx′)| ∈ Pmsci
and its role is to generate constraints for Max �iv� and Min �iv� variables.

Similarly to the Inductive Sum strategy, it generates a candidate cd(x) using
the CE’s constraint set ϕi(xx′y) and then it classifies the CEs in the phase
according to their effect on the candidate. However, the condition used to gen-
erate the candidate is different since we want to bind a single instance of l(xx′)
instead of the sum of all its instances. Additionally, this strategy considers the
class Rst for the classification but not the class Cnt (See Fig. 5). If ce ∈ Rst the
candidate is reset to a value of at most |rste(x)| (or at least |rste(x)| if �� is ≥).
A fresh intermediate variable is assigned to such reset value ivrste := |rste(x)|.
Lemma 2. Let iv ≤ |l(xx′)| ∈ Pmsci and let cd(x) be a candidate such that
ϕi(xx′y) ⇒ l(xx′) ≤ cd(x). If we classify every ce ∈ ph into Dc, Ic and Rst
with respect to cd(x), the following constraints are valid:

�iv� ≤ ivmax +
∑

ce∈Ic

smiv ice , ivmax ≤ max
ce∈Rst

(�iv�rste , iv cd), iv cd ≤ |cd(xs)|

These are the constraints generated by the Max-Min strategy. They bind �iv�
to the sum of all the increments smiv ice for ce ∈ Ic plus the maximum of all the
maximum values that the resets can take �iv�rste . This maximum also includes
the candidate cd(xs) in case it is never reset.

Finally, the strategy adds the constraints iv ice ≤ |ice(xx′)| to Psumsci and
ivrste ≤ |rste(x)| to Pmsci so smiv ice and �iv�rste are bound later. The strategy

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 269

proceeds analogously for constraints with ≥ but it subtracts the decrements
instead of adding the increments and takes the minimum of the resets �iv�rste .
Example 10. In Example 9 we added ivmz ≤ |z| to Pms7 .1 during the compu-
tation of the cost of 7.1+. Using the Max-Min strategy, we generate a candidate
z and classify CE 7.1 in Dc with dc7.1 := 0 (z is not modified in CE 7.1).The
resulting (simplified) constraint is �iv�mz ≤ |zs| (which corresponds to iv4 ≤ |zs|
in Fig. 4).

To summarize, we transform the complex problem of obtaining a cost struc-
ture for a phase into a set of simpler problems: computation of sums, maxi-
mization, minimization of simple constraints. These smaller problems are solved
incrementally through strategies that collaborate with each other by adding new
constraints to the pending sets. The inference problems in the strategies can be
solved efficiently using Farkas’ Lemma as they only use the constraint set of one
CE at a time. We provide two extra strategies in [14] to obtain upper bounds
defined only in terms of xs and to obtain better bounds for sums of expressions
whose value varies in each iteration.

6 Soundness

Theorem 1. Let T (x) be a chain, a phase or a CE. Then the cost structure
〈ET , IC T ,FC T (x)〉 obtained following the algorithms of Sects. 4 and 5 is valid.

Proof sketch. The cost structures in Remarks 1 and 2 result from applying the
semantics rules to the cost structures of the components. The latter transfor-
mation of Eph is syntactic and the constraints generated in Sects. 4, 5.1 and
5.2 are implied (logical consequence) by the ones in Remarks 1 and 2 and the
CEs’ constraint sets. Therefore, they can be added to the cost structures with-
out compromising their validity. This implication for the constraints in Sect. 5.2
(Lemmas 1 and 2) is proved by induction on the number of CEs evaluations
in [14].

7 Related Work and Experiments

This work constitutes a significant improvement over previous techniques based
on cost relations [3,5,7,15]. It builds on the refinement in [15] but presents a new
approach for obtaining bounds that is much more powerful. We define a new cost
structure representation that has more expressive power than the cost structures
in [15] (it can represent lower bounds) and yet it can be inferred by applying
simple rules to its constraints (See Sects. 5.1 and 5.2). In [15], ranking functions
are used to bind the sums of constant expressions but the rest of the sums are
obtained using (a variant of) the Basic Product strategy. Therefore, the system
in [15] fails to obtain amortized costs except for simple cases. In particular, it
fails to infer a linear upper bound for wh3. In the work [7] Farkas’ Lemma is

270 A. Flores-Montoya

used to obtain sums of linear expressions. However, it cannot infer bounds for
expressions that are incremented or reset. Also, their generated bounds do not
depend on the final variables of the phase and thus they are unable to obtain
amortized cost. Finally, neither [7] nor [15] can obtain lower bounds.

Other approaches include KoAt [9] which obtains complexity bounds of inte-
ger programs by alternating size and bound analysis. Loopus [25,26] follows a
similar schema using in a representation based on difference constraints and can
compute amortized bounds. These ideas are present in how the cost is computed
in this work. Instead of sizes and bounds there is a similar interplay between
the the computation of constraints for smiv and �iv�/�iv� variables in Sect. 5.
None of the mentioned work can compute lower bounds. It is worth to mention
the SPEED project [19–21,28] where different cost analyses are proposed based
on counter instrumentation [20], control flow refinement and progress invariants
[19], proof rules [21] and the size-change abstraction [28]. These approaches are
not publicly available so we cannot perform an experimental comparison. How-
ever, our experimental evaluation includes all examples from these papers.

Another active line of research is about amortized cost analysis based on the
potential method [10,22,23]. The authors of [22] present a type inference system
that is able to obtain polynomial cost upper bounds for functional programs with
data structures such as lists or trees. The key advantage of this analysis is its
ability to reduce the polynomial cost inference to a linear programming problem
(using type inference). In [23], they extend this analysis to deal with natural
numbers. The system C4B [10] (to which we compare) adapts this approach for
C programs with integers, but it can only infer linear bounds at the moment.

Based on the pioneering work of [27], several cost analyses based on recur-
rence relations were developed [11,12,24]. The authors of [5] present an analysis
which extracts recurrence relations that approximate the cost of CRs and can
later be solved by an external solver. Some of these approaches can also compute
lower bounds but are unable to find cost bounds for loops with increments or
resets or for programs that present amortized cost (such as program 1). Finally,
the technique presented in [16] infers “worst” lower bounds (a lower bound on
the derivation height) which are not comparable to our “best” lower bounds.

UB 1 n n2 n3 > n3 F T

CoFloCo 3 62 33 2 1 20 1.19

Old 3 55 32 1 1 29 2.11

Loopus 2 56 27 0 2 34 0.03

KoAT 3 45 40 8 4 21 5.12

C4B 1 42 - - - 78 1.24

LB 1 n n2 n3 > n3 F T

CoFloCo 48 85 23 2 0 2 1.89

PUBS 95 38 9 4 0 14 7.58

CoFloCo KoAT Loopus Old C4B Pubs(LB)

better 28 20 12 59 60

worse 5 3 1 1 2

Fig. 6. Experimental results: The number of examples with a given complexity order
or (F)ailed for upper (UB) and lower (LB) bounds. (T) is the average time per example
in secs. On the right bottom, a comparison between CoFloCo and the other tools.

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 271

We perform one experimental evaluation for upper bounds and one for lower
bounds. The results of these experiments are summarized in Fig. 6. In all evalua-
tions, the tools are run with a timeout of 60 s per example. In the first evaluation
we analyze a total of 121 challenging programs written in C mainly extracted
from [6,10]. We compare our approach with Loopus [26], the previous version of
CoFloCo (called “Old” in the table) [15], KoAt [9], and C4B [10]. We use the tool
llvm2kittel [13] to transform the llvm-IR programs into integer rewrite systems
(for KoAT) which are translated to cost relations by a dedicated script. These
CRs are used by our tool, and “Old”. On Fig. 6, we can see for each tool how
many examples are reported in each complexity category and the average time
in seconds needed per program for each of the tools. The times of CoFloCo and
Old include the refinement process of [15]. On the right-bottom, we report for
how many programs CoFloCo computes a better or worse asymptotic bound
that the other tools. For instance, CoFloCo computes a better bound than KoAt
in 28 examples and Loopus computes a better bound than CoFloCo in 3 exam-
ples. It can be seen that CoFloCo computes better bounds for a higher number
of examples than any other tool. The second evaluation compares CoFloCo and
PUBS [5] for computing lower bounds. We analyze a total of 160 examples. The
121 examples from the first evaluation plus the examples of PUBS’s evaluation.
CoFloCo obtains a better result (a higher complexity order) in 60 examples. In
contrast PUBS obtains better bounds in 2 examples. A detailed experimental
report is online: http://cofloco.se.informatik.tu-darmstadt.de/experiments.

Acknowledgements. Research partly funded by the EU project FP7-610582 ENVIS-
AGE: Engineering Virtualized Services. I thank the anonymous reviewers, R. Hähnle,
F. Zuleger, M. Sinn and S. Genaim for their careful reading.

References

1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G., COSTABS:
a cost and termination analyzer for ABS. In: Kiselyov,O., Thompson, S., (eds.)
Proceedings of the 2012 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM 2012, 23–24 January 2012, Philadelphia, Pennsyl-
vania, USA, pp. 151–154. ACM Press (2012)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Cost relation systems: a language-
independent target language for cost analysis. In: Spanish Conference on Program-
ming and Computer Languages (PROLE 2008). Electronic Notes in Theoretical
Computer Science, vol. 248, pp. 31–46. Elsevier (2009)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J. Autom. Reasoning 46(2), 161–203 (2011)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D., COSTA: a cost and
termination analyzer for Java Bytecode. In: Proceedings of the Workshop on Byte-
code Semantics, Verification, Analysis and Transformation (Bytecode). Electronic
Notes in Theoretical Computer Science, Budapest, Hungary. Elsevier, April 2008

5. Albert, E., Genaim, S., Masud, A.N.: On the inference of resource usage upper,
lower bounds. ACM Trans. Comput. Logic 14(3), 1–35 (2013)

http://cofloco.se.informatik.tu-darmstadt.de/experiments

272 A. Flores-Montoya

6. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15769-1 8

7. Alonso-Blas, D.E., Arenas, P., Genaim, S.: Precise cost analysis via local reason-
ing. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 319–333.
Springer, Heidelberg (2013). doi:10.1007/978-3-319-02444-8 23

8. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33125-1 27

9. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime
and size complexity analysis of integer programs. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 140–155. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54862-8 10

10. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pp. 467–478. ACM, New York (2015)

11. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM Trans. Program.
Lang. Syst. 15(5), 826–875 (1993)

12. Debray, S.K., López-Garćıa, P., Hermenegildo, M., Lin, N.-W.: Lower bound cost
estimation for logic programs. In: 1997 International Logic Programming Sympo-
sium, pp. 291–305. MIT Press, Cambridge, October 1997

13. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauß, M. (ed.) RTA 2011. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 10, pp. 41–50. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2011)

14. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. Technical report, Technische Universität Darmstadt, September
2016. http://www.informatik.tu-darmstadt.de/fileadmin/user upload/Group SE/
Publications/FM2016 extended.pdf

15. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-12736-1 15

16. Frohn, F., Naaf, M., Hensel, J., Brockschmidt, M., Giesl, J.: Lower runtime
bounds for integer programs. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016.
LNCS (LNAI), vol. 9706, pp. 550–567. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-40229-1 37

17. Garcia, A., Laneve, C., Lienhardt, M.: Static analysis of cloud elasticity. In: Pro-
ceedings of the 17th International Symposium on Principles and Practice of Declar-
ative Programming, 14–16 July 2015, Siena, Italy, pp. 125–136. ACM (2015)

18. Grech, N., Georgiou, K., Pallister, J., Kerrison, S., Morse, J., Eder, K.: Static
analysis of energy consumption for LLVM IR programs. In Proceedings of the
18th International Workshop on Software and Compilers for Embedded Systems,
SCOPES 2015, pp. 12–21. ACM, New York (2015)

19. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants
for bound analysis. In: PLDI (2009)

20. Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: precise and efficient static estima-
tion of program computational complexity. In: POPL, pp. 127–139. ACM, New
York (2009)

21. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI 2010, pp. 292–
304. ACM, New York (2010)

http://dx.doi.org/10.1007/978-3-642-15769-1_8
http://dx.doi.org/10.1007/978-3-319-02444-8_23
http://dx.doi.org/10.1007/978-3-642-33125-1_27
http://dx.doi.org/10.1007/978-3-642-54862-8_10
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/FM2016_extended.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/FM2016_extended.pdf
http://dx.doi.org/10.1007/978-3-319-12736-1_15
http://dx.doi.org/10.1007/978-3-319-40229-1_37
http://dx.doi.org/10.1007/978-3-319-40229-1_37

Upper and Lower Amortized Cost Bounds of Programs Expressed as CR 273

22. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
SIGPLAN Not. 46(1), 357–370 (2011)

23. Hoffmann, J., Shao, Z.: Type-based amortized resource analysis with integers and
arrays. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 152–168.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-07151-0 10

24. Serrano, A., López-Garćıa, P., Hermenegildo, M.V.: Resource usage analysis of
logic programs via abstract interpretation using sized types. TPLP 14(4–5), 739–
754 (2014)

25. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 745–761. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08867-9 50

26. Sinn, M., Zuleger, F., Veith, H.: Difference constraints: an adequate abstraction
for complexity analysis of imperative programs. In: Formal Methods in Computer-
Aided Design, FMCAD 2015, 27–30 September 2015, Austin, Texas, USA, pp.
144–151 (2015)

27. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)
28. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-

grams with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol.
6887, pp. 280–297. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23702-7 22

http://dx.doi.org/10.1007/978-3-319-07151-0_10
http://dx.doi.org/10.1007/978-3-319-08867-9_50
http://dx.doi.org/10.1007/978-3-319-08867-9_50
http://dx.doi.org/10.1007/978-3-642-23702-7_22

Exploring Model Quality for ACAS X

Dimitra Giannakopoulou1, Dennis Guck2(B), and Johann Schumann1

1 NASA Ames Research Center, Moffett Field, CA, USA
2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands

d.guck@utwente.nl

Abstract. The next generation airborne collision avoidance system,
ACAS X, aims to provide robustness through a probabilistic model that
represents sources of uncertainty. From this model, dynamic program-
ming produces a look-up table that is used to give advisories to the pilot
in real time. The model is not present in the final system and is therefore
not included in the standard certification processes. Rather, the model is
checked indirectly, by ensuring that ACAS X performs as well as, or bet-
ter than, the state-of-the-art, TCAS. We claim that to build confidence
in such systems, it is important to target model quality directly. We
investigate this issue of model quality as part of our research on inform-
ing certification standards for autonomy. Using ACAS X as our driving
example, we study the relationship between the probabilistic model and
the real world, in an attempt to characterize the quality of the model
for the purpose of building ACAS X. This paper presents model confor-
mance metrics, their application to ACAS X, and the results that we
obtained from our study.

1 Introduction

Advanced algorithms for decision-making often rely on the use of models, i.e.,
abstract representations of knowledge that the algorithms need in order to oper-
ate correctly. Such algorithms appear increasingly in safety critical systems with
the introduction of autonomy, and the need to make decisions, initiate mitigation
actions, and adapt to changing environments and unanticipated situations.

Our encounter with such algorithms has been in the context of ACAS X,
the next generation Airborne Collision Avoidance System [7,8]. The current
collision avoidance standard, TCAS [9], is required on all large passenger and
cargo aircraft worldwide, and has been successful in preventing mid-air collisions.
However, its deterministic logic limits robustness in the presence of unanticipated
circumstances.

To increase robustness, ACAS X uses a probabilistic model to represent
uncertainty. Simulation studies with recorded radar data have confirmed that
this novel approach leads to a significant improvement in safety and opera-
tional performance. ACAS X has also been the target of several formal verifica-
tion efforts [6,15,16]. The FAA has formed a team of organizations to mature

D. Guck—Author performed this work while employed by SGT, Inc. as an intern at
the NASA Ames Research Center.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 274–290, 2016.
DOI: 10.1007/978-3-319-48989-6 17

Exploring Model Quality for ACAS X 275

ACAS X into a new international standard for collision avoidance for manned
and unmanned aircraft.

In this work, we focus on the problem of identifying quality metrics for models
used in decision-making. In particular, since a model is an abstraction of infor-
mation, how can we determine whether this model is satisfactory? In the context
of ACAS X, the ultimate goal is to avoid aircraft collisions. However, to establish
trust in such a safety-critical system, we claim that one must additionally show
that each decision is supported by accurate model information.

To address these questions, our research aims at establishing criteria for model
quality. These criteria should be measurable, and should be helpful in develop-
ing certification standards for algorithms that use models. Moreover, model qual-
ity should be directly associated with overall system quality. In other words, poor
model quality should indicate or predict violations of system requirements.

The work presented in this paper focuses on ACAS X and defines relations
between the probabilistic model and the real world. We discuss model confor-
mance relations that we developed and the (sometimes unanticipated) results
of their application to ACAS X. Moreover, we have developed techniques that
stress-test ACAS X by generating test cases that may exhibit poor model quality
with respect to our defined relations.

The rest of the paper is organized as follows. Section 2 describes the ACAS X
system and motivates this work, while Sect. 3 discusses the probabilistic model
used by ACAS X in more detail. Section 4 discusses the relations that we
have defined for evaluating model quality. The application of these relations
to ACAS X is presented in Sect. 5. In Sect. 6 we focus on the generation of data
for stress-testing ACAS X, and present the results of our analysis. Section 7 lists
related work and Sect. 8 closes the paper with conclusions and future work.

2 Background and Motivation

The aim of aircraft collision avoidance systems is to reliably prevent midair
collisions while minimizing unnecessary pilot alerting and evasive maneuvers.
Uncertainties such as sensor noise or errors, aircraft intent, and pilot behavior
make it challenging to design such systems.

In the context of collision avoidance algorithms, we use the term loss of hor-
izontal separation (LHS) to describe the situation where two aircraft are within
500 ft from each other if their altitude difference is ignored. A Near Mid-Air Col-
lision (NMAC) occurs when the altitude difference between the two aircraft is at
most 100 ft when LHS occurs. We refer to the aircraft equipped with a collision
avoidance system as the ownship, and the other aircraft as the intruder.

The current collision avoidance standard, TCAS [9], uses several sources to
estimate the current state of the aircraft on which it is deployed and other
aircraft in its vicinity. If another aircraft is a potential threat, then TCAS issues
a traffic advisory, which gives the pilots of the ownship an audio announcement
“Traffic, Traffic” and highlights the intruder on a traffic display. This serves as
a warning to raise the pilot’s awareness for the potential need to maneuver.

If a maneuver becomes necessary the system will issue a resolution advi-
sory (RA) instructing the pilot to climb or descend in order to maintain a safe

276 D. Giannakopoulou et al.

distance. After the encounter is resolved, TCAS issues a “Clear of Conflict”
(COC). Only advisories for vertical maneuvers (climb, descend, and maintain alti-
tude) are given, together with the target rate. For example, advisory DES1500
stands for descend with rate 150 ft/min. Preventive advisories to avoid climbing
or descending may also be provided, as described in [7].

The TCAS system has been implemented as a traditional piece of software
with conditional branches that model all the different situations. Several years of
research have resulted in the development of the ACAS X system. Although the
interface of ACAS X to the pilot is the same as TCAS, the underlying collision
avoidance algorithm is dramatically different [7,8].

In ACAS X, a probabilistic Markov Decision Process (MDP) model provides a
coarse abstraction of how an encounter between two aircraft progresses as a result
of applying resolution advisories and of time passing. Based on a reward function
and this MDP, dynamic programming generates a look-up table (LUT), which
associates each encounter state in the MDP with a cost for each possible ACAS X
advisory. The LUT is deployed onboard the aircraft. Every second, ACAS X uses
sensors and other information to compute a probability distribution of the states
in which an encounter may be at the current time t. ACAS X interpolates the
state estimate within the discrete states of the LUT, and calculates the advisory
that bears the lowest cost.

In essence, the cost of an advisory computed by dynamic programming is
based on how the MDP expects an encounter to evolve from the current state.
Therefore, there is a trade-off between the MDP model being accurate enough
for the advisories to be appropriate for collision avoidance in reality, but also
abstract enough for enabling a compact LUT that can be deployed onboard the
aircraft. The ACAS X system is based on a relatively simple dynamic model of
how aircraft behave. As explained in [7], a simple model is easier to understand
and validate, makes the dynamic programming problem more tractable, and
results in a smaller controller, which is easier to fit into memory onboard an
aircraft. How can we establish that this simple model is acceptable for ACAS X?
Even though the resulting system is tested extensively with independent high
fidelity simulations and flight data, it is hard to establish whether the behavior
of such optimization algorithms is as expected.

The aim of our work is therefore to develop measurable criteria that directly
address model quality. The approaches that we present in this paper are all based
on establishing relationships between the evolution of encounters (1) as expected
by the MDP model and (2) as recorded by high fidelity simulations and actual
flight data.

3 The ACAS X Model

The formulation of the collision avoidance problem used for ACAS X consists of
two aircraft, the ownship and the intruder, on a collision course.1 The ACAS X
1 ACAS X handles cases with multiple aircraft but this paper focuses on scenarios

involving two aircraft.

Exploring Model Quality for ACAS X 277

model keeps record of the altitude of the intruder relative to the ownship, the
aircraft climb rates, the produced advisory and the pilot response.

To keep the model tractable, ranges are set for each variable. The MDP
discretizes each state variable with a resolution that depends on the proximity
between the aircraft. Previous work [16] has shown that the discretization res-
olution constitutes an important trade-off between accuracy and the size of the
LUT, which is important for implementation on-board the aircraft.

For a state variable x, we denote its discretized value by x̂. The discretized
MDP model state ŝ = 〈ẑ rel , d̂zo, d̂zi , sRA〉 encodes

1. z rel ∈ [−1000, 1000] ft, the altitude difference between the two aircraft;
2. dzo ∈ [−2500, 2500] ft/min, the ownship’s climb rate;
3. dzi ∈ [−2500, 2500] ft/min, the intruder’s climb rate;
4. sRA, encoding the ACAS X advisory produced one second earlier and the

advisory the pilot is following, thus modeling pilot delay.

Given a discrete state ŝ = 〈ẑ rel , d̂zo, d̂zi , sRA〉 and an advisory adv, the
MDP provides probabilistic state transitions into new states ŝ′, i.e., MDP :
(ŝ, adv) p−−→ ŝ′ with state transition probability p.

In order to obtain an optimal controller, the individual advisories are associ-
ated with a cost. For example, a clear-of-conflict (COC) carries a reward, whereas
alerting the pilot through climb and descend advisories carry a small cost to
avoid unnecessary pilot alerting. An NMAC situation has an extremely high
cost.

Although the MDP in itself is not aware of timing throughout the encounter,
the ACAS X system uses a temporal distribution (τ -distribution) to model the
temporal sequence of the encounter and avoidance strategy, since it is expected
to operate when NMAC situations may occur within the next 40–50 s.

Figure 1 shows the overall architecture of the ACAS X system and its devel-
opment process. The top of the panel shows the development of the probabilistic

ACAS X development

MDP model

Optimization
processes

ACAS X implementation

Surveillance and
Tracking
Module

Threat
Resolution
Module

State
distribution

Resolution
advisories

Numeric
look-up table

0 1.14 2.33 0 1.75
1.5 2.61 5.13 2.89 0
0 3.33 3.66 2.15 1.01

2.92 5.4 7.32 2.5 3.25

Fig. 1. Principled architecture of the ACAS X modeling process (top) and on-board
software architecture (bottom).

278 D. Giannakopoulou et al.

MDP model and the generation of the look-up table using dynamic program-
ming. This LUT comprises the core of the ACAS X software that is running
on-board the aircraft (bottom part of Fig. 1). During each 1-second update, new
estimates of the aircraft involved and uncertainties are calculated based upon
sensor measurements and transponder responses. This information is then used
to update the aircraft state and τ distribution, and the look-up table is consulted
to come up with an appropriate advisory. In addition to the LUT costs discussed
previously, on-line corrections are also taken into account in selecting advisories
(see [7] for details).

4 Model Conformance

As discussed, the MDP model used by ACAS X captures the expected evolution
of flight encounters as a result of time passing and of the application of resolution
advisories. To ensure safe operation, the model and the actual system behavior
must in some way “match up”. In other words, we need to be able to justify that
the model is appropriate for the decision making that it is used for.

To this aim, we introduce several notions of conformance to characterize
model quality. All of these notions capture desired relations between the behavior
or states of a model M and the actual system A that uses this model. In ACAS X
for example, conformance might require that whenever an encounter results in
an NMAC in the actual ACAS X system, then the model of this encounter also
results in an NMAC. Or when the actual system A produces an advisory adv,
then the model will produce an identical or compatible advisory.

Similarly, one might expect that all situations that occur in practice in the
system will be reflected in the model (within the bounds of the model abstrac-
tion). This notion is related to over-approximation in formal methods. Imagine,
for example, that during flight, an encounter reaches a state s′ from a state s, a
transition that the model does not anticipate (i.e., in the model s cannot directly
transition to s′). ACAS X may still work appropriately or may produce wrong
or unsafe results.

Even though such notions of conformance appear to be relatively simple,
defining them in the context of ACAS X is made non-trivial by the presence
of probabilistic reasoning and state discretization. In the following sections we
describe how we factor in these characteristics into our model quality criteria.

4.1 Conformance Framework Set Up

As discussed in Sects. 2 and 3, during ACAS X deployment, the (geometric)
state of an encounter is represented by a weighted distribution of states. At
each second, the Cartesian product of the geometric state estimate with the τ -
distribution (weighted distribution of estimated time to LHS) forms the current
state estimate. This state estimate is then interpolated within the discrete states
of the LUT in order to calculate a resolution advisory.

Exploring Model Quality for ACAS X 279

To establish model conformance in this context, our framework needs to set
up the model and the actual system appropriately. The model M is ACAS X as
deployed within the MDP model.2 This means that the geometric state distri-
bution is provided by the transitions of the MDP model, as opposed to sensor
information. The actual system A is ACAS X as deployed and using the LUT
within a real flight environment or within a high fidelity simulator. To then
establish model conformance we set up a common initial state for M and A and
compare their evolutions according to conformance criteria. More specifically,
the initial state of M is set to the initial state of A for each encounter E to be
analyzed for conformance.

There are two options for comparing the evolution of encounters. One is a
stepwise synchronization, which means that we re-synchronize the state of M
and A once every second, namely every time ACAS X is invoked. The second
is an initial-state synchronization, where we start from the same state but then
let the two systems evolve independently.

For A, state and τ distributions are obtained by the state estimation compo-
nents, as discussed in earlier sections. For M, the time to LHS decreases by one
with every invocation of ACAS X, which is the way it is also updated for the
purpose of calculating the LUT. The state distributions are obtained as follows.
Let us assume that at some point in encounter E , the MDP moves from state
set ŜM to state set Ŝ′

M. Then the probability pM(s′) of each state s′ ∈ Ŝ′
M is

obtained as follows. For each s ∈ ŜM let pM(s, s′) denote the probability asso-
ciated with the transition from s to s′ in the MDP (pM(s, s′) = 0 means that s
cannot transition to s′ in a single step). Then pM(s′) =

∑
s∈ŜM p(s, s′).

Decision making is based on the LUT. The LUT used by M is identical to
that used by A for ACAS X deployment. For this reason, we compare states of M
and A in terms of their interpolated states within the LUT. Figure 2 illustrates
an example of a stepwise synchronization between M and A. M and A start at
the same set ŜA of geometric states, which has been estimated during operation
of A. Note that we only illustrate the possible states in which the system may
be, without including the probabilities associated with those states. At the next
ACAS X cycle, one second later, the grey state set Ŝ′

M is computed based on
MDP transitions starting from ŜA, whereas the blue set of states Ŝ′

A is computed
based on sensor and transponder information.

4.2 Conformance Relations

Based on the above setup, we can define expectations for model and actual sys-
tem behavior. If M(E) is the behavior of the model M on encounter E , and A(E)
the behavior of ACAS X on E , conformance establishes an expected relation C
between the two behaviors: C(M(E),A(E)). For the ACAS X system, confor-
mance can be defined at three distinct levels: NMAC conformance, advisory
conformance, and state conformance.

2 We use the MDP rather than its corresponding continuous version for aircraft
dynamics, because the generation of the LUT is based on the MDP model.

280 D. Giannakopoulou et al.

Fig. 2. State conformance between ACAS X and the MDP.

The NMAC conformance metric is the coarsest one and just focuses on the
dangerous NMAC state: whenever A(E) encounters an NMAC, M(E) has to
encounter an NMAC, and vice versa.

At the next level of detail, we focus on the interactions of ACAS X with the
outside world, namely the sequence of advisories. Model and implementation are
in conformance if the sequence of advisories issued are the same or compatible,
where the notion of compatibility has to be specified. For example, we may
tolerate small deviations in the time at which an advisory is issued.

A state conformance requires that, at each point in time, the state of M and
A are compatible, where compatibility may take into account state distributions.
For simplicity, we first consider the geometric states of M and A, without taking
into account their associated probabilities, as illustrated in Fig. 2. Each state can
be viewed as a point in a high-dimensional state space, where each dimension
corresponds to one of the state variables in the geometric state.

One measure of conformance is to expect that the system states are fully
contained in the model states, which we name full state conformance (Fig. 2).

Intuitively, this means that the model anticipates all the possible evolutions
of the encounter in a single step. Whereas full conformance represents the ideal
situation, a partial overlap might also be acceptable, leading to a notion of partial
state conformance. For this particular case, and given that states are weighted,
partial conformance relations may also take these weights into account in order
to evaluate the significance of the overlap.

Finally, if the model and system states are disjoint, we have an undesirable
no state conformance situation. Decision making in ACAS X is based on how the
MDP expects encounters to evolve. Such an extreme mismatch between the MDP
and the actual system may result in providing advisories that will not prevent
an NMAC from occurring. Figure 2 illustrates these three types of conformance.

Note that “no state conformance” need not directly result in a violation of
ACAS X requirements for the encounter that is being studied; it is possible that
NMAC just happens to be avoided. However, detecting non-conformance in a
tested encounter is still valuable since it indicates a mismatch that may result
in dangerous behavior in other encounters that are not included in the testing.

Exploring Model Quality for ACAS X 281

As such, conformance relations might be useful for predictive runtime analysis
of systems.

5 Analyzing Conformance Issues

We applied a variety of conformance metrics to ACAS X test data that we
obtained from the ACAS X team as part of the ACAS X Run 13 distribution. We
ran both initial-state and stepwise variants of these metrics. Overall, we observed
several conformance issues that need to be studied more carefully to determine
their significance. For example, Fig. 3B illustrates three bars of advisories at the
bottom. The first bar is for the actual system, the second for the interpolated
system states (i.e., ACAS X without on-line advisory corrections) and the third
one for the model with a stepwise synchronization of the MDP and the system.
We can observe that the same advisories are produced but in the third case the
descend advisory is issued much earlier.

Among all the observations we made through our experiments, the cases
that we believe need the most immediate investigation are cases of stepwise
non-conformance. In fact, we did not anticipate that such mismatches between
model and system might be possible within a single step. In this section, we
analyze one of the cases of non-conformance.

Let us consider as an example encounter 86 within the official ACAS X
distribution referred to as Run 13. Figure 3A shows a 3D representation of the
flight path for each of the involved aircraft. The encounter starts when the two
aircraft are still safely apart (locations marked by small circles). As soon as the
ACAS X system on the ownship detects a potentially dangerous development
(at t = 19 s) into the encounter, an alarm “Descend, Descend!” is annunciated
in the cockpit and an advisory to descend with 1500 ft/min (DES1500) is issued
(Fig. 3B, red line). After a short delay, the pilot reacts and follows that advisory
and the vertical velocity of the ownship becomes negative. The vertical speed
of both aircraft are shown in Fig. 3B, middle panel. At time t = 29 s, ACAS X
advises the pilot to not climb (DNC, Fig. 3B, green line) and the pilot levels off.
As soon as the danger of an NMAC has been averted, a COC advisory is given
(t = 45 s) and the encounter ends successfully.

We checked state conformance on this encounter. We remind the reader that
state conformance synchronizes the geometric model state to that of the system
at each step, and then compares the geometric states of the system and model in
the next step. Given that the value of sRA is always the same in this encounter,
we focus on the remaining 3 state variables: z rel , dzo, and dzi .

Figure 3D–F illustrates model/system states as gray/blue clouds respectively,
at different points in the encounter. Each cloud contains the projection of states
on these 3 variables. Due to uncertainties in movement of the intruder and pilot
reactions, size and shape of the overlapping parts of the blue and gray clouds
vary during the encounter. Figure 3F, however, illustrates a non-conformance
situation. The red plane in the figure clearly separates the two clouds.

To analyze non-conformance situations such as the one illustrated in Fig. 3F,
it is sometimes helpful to analyze the conformance with respect to individual

282 D. Giannakopoulou et al.

A

10000

5000

x

0

-5000-20000
-15000

-10000

y

-5000
0

5000

8200

7200

7400

7600

7800

8000

al
tit

ud
e

ownship
intruder

B

time [sec]
0 10 20 30 40 50

z re
l [x

10
0f

t]

0

5

10

time [sec]
0 10 20 30 40 50

dz
 [f

t]

-50

0

50
ownship
intruder

COC DES1500 DNC COC

C

time [sec]
0 10 20 30 40 50

C
w

0

0.2

0.4

0.6

0.8

time [sec]
0 10 20 30 40 50

C
re

l

0

0.5

1

D E F

Fig. 3. Visualization of non-conformance encounter. A: trajectories of ownship (blue)
and intruder (red). Circles mark the starting-points. B: ACAS X data showing (top to
bottom) relative altitude z rel over time, vertical velocities (dzo and dzi) and sequence
of produced advisories by ACAS X, interpolated system states, stepwise synchronized
MDP. C: Conformance metrics Crel (top) and Cw (bottom). Small red x signs indicate
time points t = 11 s, 23 s, 34 s, associated with panels D–F. D–F: 3D projections of
Ŝ′

M (gray) and Ŝ′
A (blue) at t = 11 s, 23 s, 34 s. (Color figure online)

variables of the state. The reason is that non-conformance may be due to the
way a particular variable is modeled, which enables us to give precise and helpful
information to developers. For example, the non-conformance situation of Fig. 3
is due to variable dzo. Note that this does not necessarily occur in all non-
conformance situations. It may be that variables are covered individually, but
their combination is not.

We define a metric of relative state conformance w.r.t. Ŝ′
M and Ŝ′

A as follows:

Crel =
|Ŝ′

M ∩ Ŝ′
A|

|Ŝ′
A| .

Hence, Crel ∈ [0, 1] where Crel = 0 describes a non-conformance situation and
Crel = 1 full conformance. Figure 3C (top) shows Crel for the example shown in
Fig. 3. The non-conformance at t = 34 s is clearly visible.

In order to study more accurately cases of partial conformance i.e., 0 <
Crel < 1, we want to consider additional information perusing the fact that Ŝ′

A
and Ŝ′

M are distributions. Informally speaking, the higher pA(s) of some s ∈ Ŝ′
A,

the more weight it carries for decision making. If those important states are well
represented in the MDP (with a high pM) then conformance is very good and the
metric should be high. In other words, we wish to measure the similarity between

Exploring Model Quality for ACAS X 283

the MDP and actual system information. In an ideal situation, the model and
the system will contain the exact same pairs of states and corresponding weights.

Let us assume that we are comparing Ŝ′
M and Ŝ′

A for state conformance,
where each state sM ∈ Ŝ′

M and sA ∈ Ŝ′
A is associated with probability pM(s)

and pA(s), respectively. We then define a weighted state conformance metric
Cw = 1 − Cdiff in terms of the sum of the absolute differences between the
probabilities of the states in Ŝ′

A and Ŝ′
M:

Cdiff =
1
2

∑

s∈(Ŝ′
A∪Ŝ′

M)

|pA(s) − pM(s)|

The sum is divided by 2, which represents the maximum possible divergence
between the sets. Indeed, in the presence of non-conformance, the probability
differences will add up to 1 for the model, and 1 for the system, for a total of 2.
Note that when a state does not belong to a set of states, we represent it as its
probability being 0 for that set. Cw = 1 corresponds to Cdiff = 0, i.e., the sets
have the same states with the same associated probabilities. Full conformance
situations only have a high value of Cw if the probability mass of the model lies
mostly within the subset that is covered by the actual system, and if the states
in that subset are weighted similarly to their corresponding ones in the actual
system. Figure 3C (bottom) shows Cw for our example encounter.

Since the case of non-conformance is the most urgent to report to the ACAS X
team, the rest of the paper focuses on our study of non-conformance cases aim-
ing at providing useful information for the developers to examine the issue.
Since non-conformance is very rare in the test data that we received as part of
the ACAS X release, we decided to focus on generating additional encounters
exhibiting non-conformance, using machine learning.

6 Automatic Generation of Non-conformance Encounters

The complexity of the ACAS X input domain makes it hard to explore it system-
atically. We therefore based our initial experiments on test encounters prepared
by the developers of ACAS X that were included with the ACAS X distribution.
When measuring state conformance on those, we encountered only a handful of
situations where non-conformance exists. However, those situations are a hint
that there are discrepancies between the real world evolution based on ACAS X
and the corresponding MDP model. For a more thorough analysis of this phe-
nomenon a much larger data set is required.

In this section, we propose techniques for the automated generation of non-
conformance scenarios. In addition to generating such scenarios, we want to
be able to provide constraints that further filter the encounters to the most
interesting and safety-critical cases. For example, we wish to focus on situations
where an actual advisory is issued because of the close proximity of the aircraft.

284 D. Giannakopoulou et al.

6.1 The Scenario Generation Environment

Our approach extends the RLESCAS (Reinforcement Learning Encounter Simu-
lator for Collision Avoidance Systems) package for adaptive stress testing of air-
borne collision avoidance systems [10]. RLESCAS uses Monte Carlo Tree Search
(MCTS) to automatically generate two-aircraft NMAC encounters.

Figure 4 illustrates how our framework extends RLESCAS for the case where
a single aircraft is equipped with ACAS X. Our framework implements two
main changes to the original framework. First, it introduces the MDP in order
to compute information needed for the conformance relations. Second, it modifies
the reward function to favor the generation of low-conformance encounters.

Fig. 4. Encounter generation framework. The white box at the top is RLESCAS for
one aircraft equipped with ACAS X, and the orange box is our extension. (Color figure
online)

The original framework relies on a simulator for aircraft encounters; in our
case one of the aircraft is equipped with ACAS X. Inputs to this simulation
environment are basic simulator controls, like initialize, and a seed. These are
the only variables that the framework is able to manipulate in order to target
specific types of encounters.

Our extension intercepts the operation of the ACAS X component within the
simulation to obtain interpolated states that can be fed to the MDP. Then the
MDP and the LUT are used as described in the previous sections to calculate
conformance data. The output of the framework is the likelihood of the current
transition, a variable describing the conformance of the current state, and the
weighted conformance metric. The outputs are subjected to our modified reward
function used by the MCTS algorithm. The result of the MCTS is in turn used
to choose the seed and control inputs for the simulator. A detailed description
of the original RLESCAS and the MCTS algorithm can be found in [10].

Exploring Model Quality for ACAS X 285

6.2 The Reward Function

The encounter generation framework aims at maximizing the reward function.
Therefore, our reward function R must be designed to reward the occurrence
of non-conformance, but it must also be able to provide guidance on how to
evaluate the current situation.

We start with the reward function given in [10] and gradually modify it to
serve the purposes of our framework. The objective of the function in [10] is to
find high probability encounters that contain NMAC events:

R(st, st+1) =

⎧
⎪⎨

⎪⎩

0 if st ∈ NMAC,

−∞ if st �∈ NMAC, t ≥ T,

log(P (st+1 | st)) if st �∈ NMAC, t < T.

(1)

The reward for going from a state st to st+1 depends on two main events: (1)
if an NMAC occurs (st ∈ NMAC), and (2) if the maximum simulation time has
been reached (t ≥ T). T is set to the time horizon of ACAS X, which is 50 s
in the RLESCAS framework. Reaching T therefore indicates a terminal state in
our framework; all NMAC situations, if any, have to occur by that time.

The first two conditions of R represent the NMAC occurrence constraint.
If an NMAC occurs a maximal reward is issued, whereas if the time horizon
T has been reached and no NMAC has occurred, an infinite penalty is issued.
In all other cases a reward based on the probability to be in the current state
is issued to maximize the likelihood of the encounter. Note that this function
assigns negative rewards, in other words, penalizes undesirable situations to a
higher or lower degree, and assigns 0 to the desired outcome.

To adapt the reward function for the generation of non-conformance encoun-
ters we investigate variations of Eq. (1). As a first attempt, our objective is similar
to that of the original reward function, but for non-conformance (NC) instead of
NMAC events. Our reward function then infinitely penalizes the learner when
no non-conformance event is encountered.

However, we introduce a change for the evaluation of intermediate situations,
because we want to generally encourage mismatches between the system and
the MDP. We do so by rewarding small intersections between system and model
states, i.e., partial conformance (the smaller the intersection the better):

R(st, st+1) =

⎧
⎪⎨

⎪⎩

nc if st ∈ NC,

0 if st �∈ NC, t ≥ T,

(1 − Crel) · pc if st �∈ NC, t < T.

(2)

Hence, R is geared towards finding encounters with a non-conformance event
(NC) and with a low conformance metric throughout the encounter. Note that
instead of using negative rewards as in Eq. (1) this function uses positive rewards.
We define two positive reward parameters nc and pc representing the reward
for non-conformance events and partial conformance events, respectively. We
parameterize the reward function in this fashion in order to be able to experiment

286 D. Giannakopoulou et al.

with different levels of relative importance to the two aspects of the targeted
encounters. Parameter pc is weighted by (1 − Crel), which represents the ratio
of system states that are not covered by the model. If no non-conformance event
occurred, a reward of 0 is issued.

Applying the reward function given in Eq. (2) in the MCTS algorithm enables
us to generate non-conformance encounters. However, we observed that in many
cases, the altitude difference between the two aircraft remained high, so ACAS X
never issued any advisories other than COC. Such encounters are not very inter-
esting for our study.

The natural next step is then to find a reward function that combines objec-
tives from Eqs. (1) and (2). The objective of our new reward function is to trigger
non-conformance, involve low conformance, and minimize the altitude difference
between the aircraft at the time of closest approach.

R(st, st+1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nc if st ∈ NC,

fc if st ∈ FC,

(1 − Cw) · pc if st ∈ PC, t < T,

−zrel if st �∈ NMAC, t ≥ T.

(3)

Like before, nc and pc are positive parameters, and we introduce parameter
fc, which is negative or 0. Function R now includes both positive and nega-
tive rewards. It penalizes encounters with no NMAC with the relative distance,
whereas positively rewards partial and non-conformance. Partial conformance
(PC) is weighted by (1 − Cw) to encourage a low probability match between the
model and system states. Full conformance (FC) receives a negative or 0 reward.
Note that, in order to increase the likelihood of such encounters, one could add
to the reward the probability to be in the current state, similarly to Eq. (1).

Table 1. Subset of generated non-conformance encounters, including conformance
information per state variable.

EC # Time point Crel |zrel
Crel |dzo Crel |dzi

Crel |sRA

1 24 16/16 16/16 0/16 16/16

49 26/30 30/30 0/30 30/30

6 19 10/12 12/12 0/12 12/12

33 24/28 28/28 0/28 28/28

35 28/28 28/28 4/28 28/28

45 20/20 20/20 0/20 20/20

9995 35 40/40 40/40 0/40 40/40

40 24/28 28/28 0/28 28/28

42 24/24 12/24 4/24 24/24

Exploring Model Quality for ACAS X 287

A

−3 −2 −1 0 1
.104

0

1

2

3
·104

1

1

2

2

x (ft)

y
(f

t)
XY-Position

0 10 20 30 40 50

2.85

2.9

2.95

·104

C
O
C

C
L
+

C
L

LV
W

K
N C
O
C

C
O
C

1

1

2

2

time (s)

h
(f

t)

Altitude vs. TimeB

Fig. 5. Encounter 9995 generated with reward function from Eq. (3). Thin red lines
indicate non-conformance at t = 35 s, 40 s, 42 s. (Color figure online)

6.3 Analysis of Generated Non-conformance Encounters

We used reward function (3) in our framework to generate 18 encounters with
a total of 33 non-conformance events. Table 1 displays three of these encounters
and decomposes non-conformance events into conformance of individual state
variables, to identify whether mismatches are associated with particular vari-
ables, as discussed in Sect. 5.

We use Pzrel
(S), Pdzo(S), Pdzi

(S) and PsRA(S), to denote the sets obtained
by projecting each state s ∈ S onto its variable zrel , dzo, dzi , and sRA, respec-
tively. Then for system state ŜA and model state ŜM, conformance relative to
each state variable x is defined as:

Crel |x =
|Px(ŜM) ∩ Px(ŜA)|

|Px(ŜA)|
Table 1 indicates that for the wide majority of non-conformance events,

the states deviate in variable dzi . We further analyzed some of these encoun-
ters to gain intuition of the types of characteristics that may be causing non-
conformance. Consider Fig. 5B visualizing the encounter of two aircraft w.r.t.
their altitude over time, for example. The corresponding non-conformance time
points of this encounter are at 35, 40 and 42 s into the encounter. Inspecting
the altitude changes of the intruder in the interval of [35, 42] reveals a sudden
change from descend to a relatively strong climb. This sudden and steep altitude
change is not reflected in the MDP.

Even though in such encounters the behavior of ACAS X appears reasonable,
it is important to study non-conformance occurrences closely, in case they trig-
ger problematic decision-making under potentially rare circumstances. We are
currently in the process of examining these results together with the ACAS X
team in order to determine whether model fine-tuning may be beneficial, and
whether the root cause is in the continuous model or its discretization.

288 D. Giannakopoulou et al.

7 Related Work

Essen and Giannakopoulou developed the Verica tool and applied probabilistic
verification and synthesis to an early version of ACAS X [15,16]. Their aim
was to study the impact of design issues such as model discretization and the
selection of costs for the dynamic programming.

Jeannin et al. [6] analyzed ACAS X using hybrid approaches. They per-
formed analysis on hybrid models of the system. They then used the KeYmaera
tool to compute safe regions for restricted types of encounters and for a single
advisory. Safe regions characterize the types of advisories that are safe for the
corresponding encounter. ACAS X advisories for specific encounters can then be
compared against their corresponding safe regions. The advantage of taking a
hybrid approach is that it does not require discretization. However, the entire
hybrid model for ACAS X is prohibitively large, which forced the authors to
work with a restricted number of scenarios.

Researchers [2,3,11–14] have investigated hybrid techniques and theorem
proving for other collision avoidance systems. Some researchers have developed
testing frameworks for automated air-traffic control [1,4,5]. In order to evaluate
the performance of ACAS X, the ACAS X team heavily relies on the simulation
of a large number of encounters including recorded flight data.

More broadly, our work is related to several disciplines, such as model-based
design, runtime monitoring, abstraction, and model validation. Model-based
design uses models to describe, analyze, and generate code for a software system.
In our work, models are abstractions of the real-world that software algorithms
use for decision-making. Our conformance relations can be viewed as require-
ments that can be monitored at runtime, and be used for predictive analysis.
These requirements are aimed particularly at establishing model quality. With
respect to abstraction and model validation, our work develops metrics for val-
idation of an abstraction in the context of its use for decision making. In other
words, our conformance relations set application-specific requirements for an
abstraction.

8 Conclusions

Autonomy requires models for decision making, adaptation and self-healing. For
safety-critical autonomous systems, it is imperative that we develop new methods
for establishing trust in these models.

In this paper, we explored and applied several model conformance criteria
in the context of the ACAS X collision avoidance system, and discovered rare
cases of non-conformance. We used machine learning to automatically generate
additional encounters that exhibit non-conformance, and were able to identify
potential causes for this issue.

In the future, we will work with the ACAS X team on developing approaches
that help them prioritize the issues that our techniques report. We will also
experiment with additional reward functions for encounter generation. Finally,

Exploring Model Quality for ACAS X 289

we plan to use statistical learning techniques for the analysis of conformance
issues in order to help developers with debugging their models.

Acknowledgements. We thank Ritchie Lee for his help with RLECAS, Ryan Gard-
ner for helping us interpret the MDP, and Ryan Gardner, Mykel Kochenderfer, Ritchie
Lee, and Josh Silbermann for useful discussions and for proof-reading the paper. This
work was performed under the Safe Autonomous Systems Operations (SASO) project
of the NASA AOSP program.

References

1. Dimjasevic, M., Giannakopoulou, D.: Test-case generation for runtime analysis,
vice versa: verification of aircraft separation assurance. In: Proceedings of the
2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
Baltimore, 12–17 July 2015, pp. 282–292 (2015)

2. Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal
air traffic conflict resolution and recovery algorithm. In: Leivant, D., Queiroz, R.
(eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 177–188. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73445-1 13

3. Ghorbal, K., Jeannin, J., Zawadzki, E., Platzer, A., Gordon, G.J., Capell, P.:
Hybrid theorem proving of aerospace systems: applications and challenges. J.
Aerospace Inf. Sys. 11(10), 702–713 (2014)

4. Giannakopoulou, D., Bushnell, D.H., Schumann, J., Erzberger, H., Heere, K.: For-
mal testing for separation assurance. Ann. Math. Artif. Intell. 63(1), 5–30 (2011)

5. Giannakopoulou, D., Howar, F., Isberner, M., Lauderdale, T., Rakamaric, Z.,
Raman, V.: Taming test inputs for separation assurance. In: ACM/IEEE Inter-
national Conference on Automated Software Engineering, ASE 2014, Vasteras,
15–19 September 2014, pp. 373–384 (2014)

6. Jeannin, J.-B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: A formally verified hybrid system for the next-generation airborne
collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 21–36. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 2

7. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Application.
MIT Press, Cambridge (2015)

8. Kochenderfer, M.J., Chryssanthacopoulos, J.P. : Robust airborne collision avoid-
ance through dynamic programming. Project Report ATC-371, Massachusetts
Institute of Technology, Lincoln Laboratory (2011)

9. Kuchar, J., Drumm, A.C.: The traffic alert and collision avoidance system. Linc.
Lab. J. 16(2), 277 (2007)

10. Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P., Owen, M.P.: Adaptive
stress testing of airborne collision avoidance systems. In: 2015 IEEE/AIAA 34th
Digital Avionics Systems Conference (DASC), p. 6C2-1. IEEE (2015)

11. Loos, S.M., Renshaw, D.W., Platzer, A.: Formal verification of distributed aircraft
controllers. In: Proceedings of the 16th International Conference on Hybrid sys-
tems: Computation and Control, HSCC 2013, Philadelphia, 8–11 April 2013, pp.
125–130 (2013)

12. Lygeros, J., Lynch, N.: On the formal verification of the TCAS conflict resolution
algorithms. In: 36th IEEE Conference on Decision and Control, pp. 1829–1834
(1997)

http://dx.doi.org/10.1007/978-3-540-73445-1_13
http://dx.doi.org/10.1007/978-3-662-46681-0_2

290 D. Giannakopoulou et al.

13. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance
maneuvers: a case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 547–562. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 35

14. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management:
a study in multiagent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521
(1998)

15. Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision
avoidance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 620–635. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 54

16. von Essen, C., Giannakopoulou, D.: Probabilistic verification and synthesis of the
next generation airborne collision avoidance system. STTT 18(2), 227–243 (2016)

http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://dx.doi.org/10.1007/978-3-642-54862-8_54

Learning Moore Machines
from Input-Output Traces

Georgios Giantamidis1(B) and Stavros Tripakis1,2(B)

1 Aalto University, Espoo, Finland
{georgios.giantamidis,stavros.tripakis}@aalto.fi

2 University of California, Berkeley, Berkeley, USA

Abstract. The problem of learning automata from example traces (but
no equivalence or membership queries) is fundamental in automata learn-
ing theory and practice. In this paper we study this problem for finite
state machines with inputs and outputs, and in particular for Moore
machines. We develop three algorithms for solving this problem: (1) the
PTAP algorithm, which transforms a set of input-output traces into an
incomplete Moore machine and then completes the machine with self-
loops; (2) the PRPNI algorithm, which uses the well-known RPNI algo-
rithm for automata learning to learn a product of automata encoding a
Moore machine; and (3) the MooreMI algorithm, which directly learns
a Moore machine using PTAP extended with state merging. We prove
that MooreMI has the fundamental identification in the limit property.
We also compare the algorithms experimentally in terms of the size of
the learned machine and several notions of accuracy, introduced in this
paper. Finally, we compare with OSTIA, an algorithm that learns a
more general class of transducers, and find that OSTIA generally does
not learn a Moore machine, even when fed with a characteristic sample.

1 Introduction

An abundance of data from the internet and from other sources (e.g., sensors)
is revolutionizing many sectors of science, technology, and ultimately our soci-
ety. At the heart of this revolution lies machine learning, a broad spectrum of
techniques to derive information from data. Traditionally, objects studied by
machine learning include classifiers, decision trees, and neural networks, with
applications to fields as diverse as artificial intelligence, marketing, finance, or
medicine [37].

In the context of system design, an important problem, with numerous appli-
cations, is automatically generating models from data. There are many variants
of this problem, depending on what types of models and data are considered,
as well as other assumptions or restrictions. Examples include, but are by no
means limited to, the classic field of system identification [34], as well as more

This work was partially supported by the Academy of Finland and the U.S. National
Science Foundation (awards #1329759 and #1139138). An extended version of this
paper is available as [17].

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 291–309, 2016.
DOI: 10.1007/978-3-319-48989-6 18

292 G. Giantamidis and S. Tripakis

recent works on synthesizing programs, controllers, or other artifacts from exam-
ples [5,21,40,41,43].

In this paper we consider a basic problem, that of learning a Moore machine
from a set of input-output traces. A Moore machine is a type of finite-state
machine (FSM) with inputs and outputs, where the output always depends on
the current state, but not on the current input [30]. Moore machines are typically
deterministic and complete, meaning that for given state and input, the next
state is always defined and is unique; and for given state, the output is also
always uniquely defined. Such machines are useful in many applications, for
instance, for representing digital circuits or controllers. In this paper we are
interested in learning deterministic and complete Moore machines.

We want to learn a Moore machine from a given set of input-output traces.
One such trace is a sequence of inputs, ρin, and the corresponding sequence of
outputs, ρout, that the machine must produce when fed with ρin. As in standard
machine learning methods, we call the set of traces given to the learning algo-
rithm the training set. Obviously, we would like the learned machine M to be
consistent w.r.t. the training set R, meaning that for every pair (ρin, ρout) ∈ R,
M must output ρout when fed with ρin. But in addition to consistency, we would
like M to behave well w.r.t. several performance criteria, including complexity
of the learning algorithm, size of the learned machine M (its number of states),
and accuracy of M , which captures how well M performs on a testing set of
traces, different from the training set.

Even though this is a basic problem, it appears not to have received much
attention in the literature. In fact, to the best of our knowledge, this is the
first paper which formalizes and studies this problem. This is despite a large
body of research on grammatical inference [14] which has studied similar, but
not exactly the same problems, such as learning deterministic finite automata
(DFA), which are special cases of Moore machines with a binary output, or
subsequential transducers, which are more general than Moore machines.

Our contributions are the following:

1. We define formally the LMoMIO problem (learning Moore machines from
input-output traces). Apart from the correctness criterion of consistency (that
the learned machine be consistent with the given traces) we also introduce sev-
eral performance criteria including size and accuracy of the learned machine,
and computational complexity of the learning algorithm.

2. We adapt the notion of characteristic sample, which is known for DFA [14], to
the case of Moore machines. Intuitively, a characteristic sample of a machine
M is a set of traces which contains enough information to “reconstruct”
M . The characteristic sample requirement (CSR) states that, when given as
input a characteristic sample, the learning algorithm must produce a machine
equivalent to the one that produced the sample. CSR is important, as it
ensures identification in the limit: this is a key concept in automata learning
theory which ensures that the learning algorithm will eventually learn the
right machine when provided with a sufficiently large set of examples [18].

Learning Moore Machines from Input-Output Traces 293

3. We develop three algorithms to solve the LMoMIO problem, and analyze them
in terms of computational complexity and other properties. We show that
although all three algorithms guarantee consistency, only the most advanced
among them, called MooreMI, satisfies the characteristic sample requirement.
We also show that MooreMI achieves identification in the limit.

4. We report on a prototype implementation of all three algorithms and exper-
imental results. The experiments show that MooreMI outperforms the other
two algorithms not only in theory, but also in practice.

5. We show that the well-known transducer-learning algorithm OSTIA [39] can-
not generally learn a Moore machine, even in the case where the training set
is a characteristic sample of a Moore machine. This implies that an algorithm
to learn a more general machine (e.g., a transducer) is not necessarily good
at learning a more special machine, and therefore further justifies the study
of specialized learning algorithms for Moore machines.

2 Related Work

There is a large body of research on learning automata and state machines,
which can be divided into two broad categories: learning with (examples and)
queries (active learning), and learning only from examples (passive learning). A
seminal work in the first category is Angluin’s work on learning DFAs with mem-
bership and equivalence queries [7]. This work has been subsequently extended
to other types of machines, such as Mealy machines [42], symbolic/extended
Mealy machines [11,28], I/O automata [2], register automata [1,26], or hybrid
automata [35]. These works are not directly applicable to the problem studied
in this paper, as we explicitly forbid both membership and equivalence queries.
In practice, performing queries (especially complete equivalence queries) is often
infeasible.

In the domain of passive learning, a seminal work is Gold’s study of learning
DFAs from sets of positive and negative examples [18,19]. In this line of work we
must distinguish algorithms that solve the exact identification problem, which
is to find a smallest (in terms of number of states) automaton consistent with
the given examples, from those that learn not necessarily a smallest automaton1

(let us call them heuristic approaches). Gold showed that exact identification is
NP-hard for DFAs [19]. Several works solve the exact identification problem by
reducing it into boolean satisfiability [25,47].

Heuristic approaches are dominated by state-merging algorithms like Gold’s
algorithm for DFAs [19], RPNI [38] (also for DFAs), for which an incremental
version also exists [16], and derivatives, like EDSM [31] (which also learns DFAs,
but unlike RPNI does not guarantee identification in the limit) and OSTIA [39]

1 The term smallest automaton is used in the exact identification problem, instead
of the more well-known term minimal automaton. Among equivalent machines, one
with the fewest states is called minimal. Among machines which are all consistent
with a set of traces but not necessarily equivalent, one with the fewest states is called
smallest.

294 G. Giantamidis and S. Tripakis

(which learns subsequential transducers). This line of work also includes gravita-
tional search algorithms [44], genetic algorithms [4], ant colony optimization [10],
rewriting [36], as well as state splitting algorithms [48]. Spichakova [44] learns
Moore machines, but unlike our work does not guarantee identification in the
limit. [4,10,36,48] all learn Mealy machines.

All algorithms developed in this paper belong in the heuristic category in the
sense that we do not attempt to find a smallest machine. However, we would still
like to learn a small machine. Thus, size is an important performance criterion,
as explained in Sect. 5.1. Like RPNI and other algorithms, MooreMI is also a
state-merging algorithm.

Takahashi et al. [45] is close to our work, but the algorithm described there
does not always yield a deterministic Moore machine, while our algorithms do.
This is important because we want to learn systems like digital circuits, embed-
ded controllers (e.g. modeled in Simulink), etc., and such systems are typically
deterministic. The k-tails algorithm for finite state machine inference [9] may
also result in non-deterministic machines. Moreover, this algorithm does not
generally yield smallest machines, since the initial partition of the input words
into equivalence classes (which then become the states of the learned machine)
can be overly conservative (see [17] for details).

The work in [29] deals with learning finite state machine abstractions of non-
linear analog circuits. The algorithm described in [29] is very different from ours,
and uses the circuit’s number of inputs to determine a subset of the states in the
learned abstraction. Also, identification in the limit is not considered in [29].

Learning from “inexperienced teachers”, i.e. by using either (1) only equiva-
lence queries or (2) equivalence plus membership queries that may be answered
inconclusively, has been studied in [20].

Related but different from our work are approaches which synthesize state
machines from scenarios and requirements. Scenarios can be provided in various
forms, e.g. message sequence charts [5], event sequence charts [24], or simply,
input-output examples [46]. Requirements can be temporal logic formulas as
in [5,46], or other types of constraints such as the scenario constraints used
in [24]. In this paper we have examples, but no requirements.

Also related but different from ours is work in the areas of invariant gener-
ation and specification mining, which extract properties of a program or system
model, such as invariants [13,22,23], temporal logic formulas [27,33] or non-
deterministic finite automata [6].

FSM learning is related to FSM testing [32]. In particular, notions similar
to the nucleus of an FSM and to distinguishing suffixes of states, which are
used to define characteristic samples, are also used in [12,15]. The connection
between conformance testing and regular inference is made explicit in [8] and [32]
describes how an active learning algorithm can be used for fault detection.

Finally, let us point out the similarity of Moore and Mealy machines: a Moore
machine is a special case of a Mealy machine where the output depends only on
the state but not on the input; and a Mealy machine can be transformed into
a Moore machine by delaying the output by one step. This similarity naturally

Learning Moore Machines from Input-Output Traces 295

raises the question to what extent methods to learn Mealy machines can be used
to learn Moore machines (and vice versa). Answering this question is beyond the
scope of the current paper. However, note that an algorithm that learns a Mealy
machine cannot be used as a black box to learn Moore machines, for two reasons:
first, the input-output traces for a Moore machine are not directly compatible
with Mealy machines, and therefore need to be transformed somehow; second,
the learned Mealy machine must also be transformed into a Moore machine. The
exact form of such transformations and their correctness remain to be demon-
strated. Such transformations may also incur performance penalties which make
a learning method especially designed for Moore machines more attractive in
practice.

3 Preliminaries

3.1 Finite State Machines and Automata

A finite state machine (FSM) is a tuple M of the form M = (I,O,Q, q0, δ, λ),
where: I is a finite set of input symbols; O is a finite set of output symbols; Q is
a finite set of states; q0 ∈ Q is the initial state; δ : Q × I → Q is the transition
function; and λ is the output function, which can be of two types: λ : Q → O, in
which case the FSM is a Moore machine, or λ : Q × I → O, in which case the
FSM is a Mealy machine.

q0

y1

x1

q1

y2

x2

x2

x1

(a) Moore machine M1 on input-output
sets I = {x1, x2} and O = {y1, y2}.

q0 q1

x1/y1 x2/y1

x2/y2

x1/y2

(b) Mealy machine M2 on input-output
sets I = {x1, x2} and O = {y1, y2}.

Fig. 1. Examples of finite state machines.

If both δ and λ are total functions, we say that the FSM is complete. If any
of δ and λ is a partial function, we say that the FSM is incomplete. Examples of
a Moore and a Mealy machine are given in Fig. 1. Both FSMs are complete.

We also define δ∗ : Q × I∗ → Q as follows (X∗ denotes the set of all finite
sequences over some set X; ε ∈ X∗ denotes the empty sequence over X; w · w′

denotes the concatenation of two sequences w,w′ ∈ X∗): for q ∈ Q, w ∈ I∗, and
a ∈ I: δ∗(q, ε) = q and δ∗(q, w · a) = δ(δ∗(q, w), a). We also define λ∗ : Q × I∗ →
O∗. The rest of this paper focuses on Moore machines, thus we define λ∗ only
in the case where M is a Moore machine (the adaptation to a Mealy machine is
straightforward): λ∗(q, ε) = λ(q) and λ∗(q, w · a) = λ∗(q, w) · λ(δ∗(q, w · a)).

296 G. Giantamidis and S. Tripakis

Two Moore machines M1,M2, with Mi = (Ii, Oi, Qi, q0 i, δi, λi), are said to
be equivalent iff I1 = I2, O1 = O2, and ∀w ∈ I∗

1 : λ∗
1(q0 1, w) = λ∗

2(q0 2, w).
A Moore machine M = (I,O,Q, q0, δ, λ) is minimal if for any other Moore

machine M ′ = (I ′, O′, Q′, q′
0, δ

′, λ′) such that M and M ′ are equivalent, we have
|Q| ≤ |Q′|, where |X| denotes the size of a set X.

A deterministic finite automaton (DFA) is a tuple A = (Σ,Q, q0, δ, F), where:
Σ (the alphabet) is a finite set of letters; Q is a finite set of states; q0 ∈ S is the
initial state; δ : Q × Σ → Q is the transition function; F ⊆ Q is the set of
accepting states.

A DFA can be seen as a special case of a Moore machine, where the set of
input symbols I is Σ, and the set of output symbols is binary, say O = {0, 1},
with 1 and 0 corresponding to accepting and non-accepting states, respectively.
The concepts of complete and incomplete DFAs, as well as the definition of δ∗,
are similar to the corresponding ones for FSMs. Elements of Σ∗ are usually called
words. A DFA A = (Σ,Q, q0, δ, F) is said to accept a word w if δ∗(q0, w) ∈ F .

A non-deterministic finite automaton (NFA) is a tuple A = (Σ,Q,Q0,Δ, F),
where Σ, Q, and F are as in a DFA, and: Q0 ⊆ Q is the set of initial states;
Δ ⊆ Q × Σ × Q is the transition relation. Examples of a DFA and an NFA are
given in Fig. 2. Accepting states are drawn with double circles.

q0 q1

b a, b

a

(a) DFA A1 on Σ = {a, b}.

q0 q1

a b

a

(b) NFA A2 on Σ = {a, b}.

Fig. 2. Examples of finite state automata.

Given two NFAs, A1 = (Σ,Q1, Q
1
0,Δ1, F1) and A2 = (Σ,Q2, Q

2
0,Δ2, F2),

their synchronous product is the NFA A = (Σ,Q1 × Q2, Q
1
0 × Q2

0,Δ, F1 × F2),
where ((q1, q2), a, (q′

1, q
′
2)) ∈ Δ iff (q1, a, q′

1) ∈ Δ1 and (q2, a, q′
2) ∈ Δ2. The

synchronous product of automata is used in several algorithms presented in the
sequel.

3.2 Input-Output Traces and Examples

Given sets of input and output symbols I and O, respectively, a Moore (I,O)-
trace is a pair of finite sequences (x1x2 · · · xn, y0y1 · · · yn), for some natural
number n ≥ 0, such that xi ∈ I and yi ∈ O for all i ≤ n. That is, a Moore
(I,O)-trace is a pair of a input sequence and an output sequence, such that the
output sequence has length one more than the input sequence. Note that n may
be 0, in which case the input sequence is empty (i.e., has length 0), and the
output sequence contains just one output symbol.

Learning Moore Machines from Input-Output Traces 297

Given a Moore (I,O)-trace ρ = (x1x2 · · · xn, y0y1 · · · yn), and a Moore
machine M = (I,O,Q, q0, δ, λ), we say that ρ is consistent with M if y0 = λ(q0)
and for all i = 1, ..., n, yi = λ(qi), where qi = δ(qi−1, xi).

Similarly to the concept of a Moore (I,O)-trace we define a Moore (I,O)-
example as a pair of a finite input symbol sequence and an output symbol:
(x1x2 · · · xn, y), where xi ∈ I, for i = 1, ..., n, and y ∈ O. We say that a
Moore machine M = (I,O,Q, q0, δ, λ) is consistent with a Moore (I,O)-example
ρ = (x1x2 · · · xn, y) if λ(δ∗(q0, x1x2 · · · xn)) = y.

Since a DFA can be seen as the special case of a Moore machine with a binary
output alphabet, the concept of a Moore (I,O)-example is naturally carried over
to DFAs, in the form of positive and negative examples. Specifically, a finite word
w is a positive example for a DFA if it is accepted by the DFA, and a negative
example if it is rejected. Viewing a DFA as a Moore machine with binary output,
a positive example w corresponds to the Moore example (w, 1), while a negative
example corresponds to the Moore example (w, 0).

3.3 Prefix Tree Acceptors and Prefix Tree Acceptor Products

qab

qaa

qa

qb

qε

a

a

b

b

Fig. 3. A PTA for S+ = {b, aa, ab}.

Given a finite and non-empty set of positive
examples over a given alphabet Σ, S+ ⊆ Σ∗,
we can construct, in a non-unique way, a
tree-shaped, incomplete DFA, that accepts
all words in S+, and rejects all others. Such
a DFA is called a prefix tree acceptor [14]
(PTA) for S+. For example, a PTA for S+ =
{b, aa, ab} is shown in Fig. 3.

We extend the concept of PTA to Moore
machines. Suppose that we have a set SIO of
Moore (I,O)-examples. Let N = �log2 |O|	 be the number of bits necessary to
represent an element of O. Then, given a function f that maps elements of O
to bit tuples of length N , we can map SIO to N pairs of positive and negative
example sets, {(S1+, S1−), (S2+, S2−), · · · , (SN+, SN−)}. In particular, for each
pair (w, y) ∈ SIO, if the i-th element of f(y) is 1, then Si+ should contain w

qab

qaa

qa

qε

a

a

b

(a) The PTA for S1+ = {ab}.

qab

qaa

qa

qε

a

a

b

(b) The PTA for S2+ = {aa}.

Fig. 4. A PTAP for SIO = {(b, 0), (aa, 1), (ab, 2)}, with I = {a, b}, O = {0, 1, 2}, and
f = {0 �→ (0, 0), 1 �→ (0, 1), 2 �→ (1, 0)}. The positive and negative example sets are:
S1+ = {ab}, S1− = {b, aa}, S2+ = {aa}, S2− = {b, ab}.

298 G. Giantamidis and S. Tripakis

and Si− should not. Similarly, if the i-th element of f(y) is 0, then Si− should
contain w and Si+ should not.

We can subsequently construct a prefix tree acceptor product (PTAP), which
is a collection of N PTAs, one for each positive example set, Si+, for i =
1, · · · , N . An example of a PTAP consisting of two PTAs is given in Fig. 4.

4 Characteristic Samples

An important concept in automata learning theory is that of a characteristic
sample [14]. A characteristic sample for a DFA is a set of words that captures
all information about that automaton’s set of states and behavior. In this paper
we extend the concept of characteristic sample to Moore machines.

4.1 Characteristic Samples for Moore Machines

Let M = (I,O,Q, q0, δ, λ) be a minimal Moore machine. Let < denote a total
order on input words, i.e., on I∗, such that w < w′ iff either |w| < |w′|, or
|w| = |w′| but w comes before w′ in lexicographic order (|w| denotes the length
of a word w). For example, b < aa and aaa < aba.

Given a state q ∈ Q, we define the shortest prefix of q as the shortest input
word which can be used to reach q:

SP (q) = min<{w ∈ I∗ | δ∗(q0, w) = q}.

Notice that M is minimal, which implies that all its states are reachable
(otherwise we could remove unreachable states). Therefore, SP (q) is well-defined
for every state q of M .

Next, we define the set of shortest prefixes of M , denoted SP (M), as:

SP (M) = {SP (q) | q ∈ Q}

We can now define the nucleus of M which contains the empty word and all
one-letter extensions of words in SP (M):

NL(M) = {ε} ∪ {w · a | w ∈ SP (M), a ∈ I}.

We also define the minimum distinguishing suffix for two different states qu

and qv of M , as follows:

MD(qu, qv) = min<{w ∈ I∗ | λ∗(qu, w) �= λ∗(qv, w)}.

MD(qu, qv) is guaranteed to exist for any two states qu, qv because M is minimal.
Let W be a set of input words, W ⊆ I∗. Pref(W) denotes the set of all

prefixes of all words in W :

Pref(W) = {x ∈ I∗ | ∃w ∈ W, y ∈ I∗ : x · y = w}.

Learning Moore Machines from Input-Output Traces 299

Definition 1. Let SIO be a set of Moore (I,O)-traces, and let SI be the cor-
responding set of input words: SI = {ρI ∈ I∗ | (ρI , ρO) ∈ SIO}. SIO is a
characteristic sample for a Moore machine M iff:

1. NL(M) ⊆ Pref(SI).
2. ∀u ∈ SP (M) : ∀v ∈ NL(M) : ∀w ∈ I∗ :

δ∗(q0, u) �= δ∗(q0, v)∧w = MD(δ∗(q0, u), δ∗(q0, v)) ⇒ {u·w, v·w} ⊆ Pref(SI).

For example, consider the Moore machine M1 from Fig. 1. We have: SP (q0) =
ε, SP (q1) = x2, SP (M1) = {ε, x2}, and NL(M1) = {ε, x1, x2, x2x1, x2x2}. The
following set is a characteristic sample for M1:

SIO = { (x1, y1y1), (x2x1, y1y2y1), (x2x2, y1y2y2) }.

While it is intuitive that a characteristic sample should contain input
words that in a sense cover all states and transitions of M (Condition 1 of
Definition 1), it may not be obvious why Condition 2 of Definition 1 is necessary.
This becomes clear if we look at machines having the same output on several
states. For example, consider the Moore machine M in Fig. 5a. The set of (I,O)-
traces S1

IO = {(aa, 020), (ba, 012), (bb, 012), (aba, 0222), (abb, 0222)} satisfies
Condition 1 but not Condition 2 (because SP (q2) = a, ba ∈ NL(M), δ∗(q0, ba) =
q3, MD(q2, q3) = a, but no input word in S1

IO has baa as a prefix), and therefore
is not a characteristic sample of the machine of Fig. 5a. If we use S1

IO to learn
a Moore machine, we obtain the machine in Fig. 5b (this machine was produced
by our MooreMI algorithm, described in Sect. 5.2). Clearly, the two machines of
Fig. 5 are not equivalent. For instance, the input word baa results in different
outputs when fed to the two machines. The reason why the learning algorithm
produces the wrong machine is that the set S1

IO does not contain enough infor-
mation to clearly distinguish between states q2 and q3.

Instead, consider the set S2
IO = {(aa, 020), (baa, 0122), (bba, 0122),

(abaa, 02220), (abba, 02220)}. S2
IO satisfies both Conditions 1 and 2, and there-

fore is a characteristic sample. Given S2
IO as input, our MooreMI algorithm is

able to learn the correct machine, i.e., the machine of Fig. 5a. In this case, the
minimum distinguishing suffix of states q2 and q3 is simply the letter a, since
δ(q2, a) = q0, δ(q3, a) = q2 and λ(q0) = 0 �= 2 = λ(q2). Notice that S2

IO can
be constructed from S1

IO by extending with the letter a the input words of the
latter that land on q2 or q3.

The intuition, then, behind Condition 2 is that states in M that have the same
outputs cannot be distinguished by just those (outputs); additional suffixes that
differentiate them are required.

4.2 Computation, Minimality, Size, and Other Properties
of Characteristic Samples

It is easy to see that adding more traces to a characteristic sample preserves
the characteristic sample property, i.e., if SIO is a characteristic sample for a

300 G. Giantamidis and S. Tripakis

q0 q3

q1

q2

0

1

2

2a

a

b

b

a, b

a, b

(a) Target minimal Moore machine.

r0 r3

r1

r2

0

1

2

2a

a

b

b

a, b

a, b

(b) Moore machine learned by our
MooreMI algorithm if we use a set of traces
that does not satisfy Condition 2 of Defi-
nition 1.

Fig. 5. Example illustrating the need for Condition 2 of Definition 1.

Moore machine M and S′
IO ⊇ SIO, then S′

IO is also a characteristic sample for
M . Also, arbitrarily extending the input word of an existing (I,O)-trace in SIO

and accordingly extending the corresponding output word, again yields a new
characteristic sample for M . The questions are raised, then, whether there exist
characteristic samples that are minimal in some sense, how many elements they
consist of, what are the lengths of their elements, and how can we construct
them.

In [17], we outline a simple procedure that, given a minimal Moore machine
M , returns a characteristic sample SIO that is minimal in the sense that remov-
ing any (I,O)-trace from it or dropping any number of letters at the end of
an input word in it (and accordingly adjusting the corresponding output word)
will result in a set that is not a characteristic sample. By doing so, we also con-
structively establish the existence of at least one characteristic sample for any
minimal Moore machine M .

Space limitations prevent us from including the description of the procedure
in this paper: it can be found in [17], together with an analysis of the procedure
in order to determine the “size” of the characteristic sample SIO. It seems rea-
sonable to measure this size as the sum of the lengths of all elements in SIO. As
it turns out, this sum is O(|Q|4|I|).

5 Learning Moore Machines from Input-Output Traces

5.1 Problem Definition

The problem of learning Moore machines from input-output traces (LMoMIO)
is defined as follows. Given an input alphabet I, an output alphabet O, and a
set Rtrain of Moore (I,O)-traces, called the training set, we want to synthesize
automatically a deterministic, complete Moore machine M = (I,O,Q, q0, δ, λ),
such that M is consistent with Rtrain, i.e., ∀ (ρI , ρO) ∈ Rtrain : λ∗(ρI) = ρO.

Learning Moore Machines from Input-Output Traces 301

(Rtrain is assumed to be itself consistent, in the sense it does not contain two
different pairs with the same input word.)

In addition to consistency, we would like to evaluate our learning technique
w.r.t. various performance criteria, including:

– Size of M , in terms of number of states. Note that, contrary to the exact
identification problem [19], we do not require M to be the smallest (in terms
of number of states) machine consistent with Rtrain.

– Accuracy of M , which, informally speaking, is a measure of how well M per-
forms on a set of traces, Rtest, different from the training set. Rtest is called
the test set. Accuracy is a standard criterion in machine learning.

– Complexity (e.g., running time) of the learning algorithm itself.

In the rest of this paper, we present three learning algorithms which solve the
LMoMIO problem, and evaluate them w.r.t. the above criteria. Complexity of
the algorithm and size of the learned machine are standard notions. Accuracy is
standard in machine learning topics such as classification, but not in automata
learning. Thus, we elaborate on this concept next.

There are more than one ways to measure the accuracy of a learned Moore
machine M against a test set Rtest. We call an accuracy evaluation policy (AEP)
any function that, given a Moore (I,O)-trace (ρI , ρO) and a Moore machine M =
(I,O,Q, q0, δ, λ), will return a real number in [0, 1]. We will call that number the
accuracy of M on (ρI , ρO). In this paper, we use three AEPs which we call strong,
medium, and weak, defined below. Let (ρI , ρO) = (x1x2 · · · xn, y0y1 · · · yn) and
z0z1 · · · zn = λ∗(q0, ρI).

– Strong: if λ∗(q0, ρI) = ρO then 1 else 0.
– Medium: 1

n+1 · |{i | y0y1 · · · yi = z0z1 · · · zi}|.
– Weak: 1

n+1 · |{i | yi = zi}|.
The strong AEP says that the output of the learned machine M must be

identical to the output in the test set. The medium AEP returns the proportion
of the largest output prefix that matches. The weak AEP returns the number
of output symbols that match. For example, if the correct output is 0012 and
M returns 0022 then the strong accuracy is 0, the medium accuracy is 2

4 , and
the weak accuracy is 3

4 . Ideally, we want the learned machine to achieve a high
accuracy with respect to the strong AEP. However, the medium and weak AEPs
are also useful, because they allow to distinguish, say, a machine which is “almost
right” (i.e., outputs the right sequence except for a few symbols) from a machine
which is always or almost always wrong.

Given an accuracy evaluation policy f and a test set Rtest, we define the
accuracy of M on Rtest as the averaged accuracy of M over all traces in Rtest,
i.e., ∑

(ρI ,ρO)∈Rtest
f((ρI , ρO),M)

|Rtest| .

It is often the case that the test set Rtest contains traces generated by a
“black box”, for which we are trying to learn a model. Suppose this black box

302 G. Giantamidis and S. Tripakis

corresponds to an unknown machine M?. Then, ideally, we would like the learned
machine M to be equivalent to M?. In that case, no matter what test set is gen-
erated by M?, the learned machine M will always achieve 100 % accuracy. Of
course, achieving this ideal depends on the training set: if the latter is “poor”
then it does not contain enough information to identify the original machine M?.
A standard requirement in automata learning theory states that when the train-
ing set is a characteristic sample of M?, then the learning algorithm should be
able to produce a machine which is equivalent to M?. We call this the character-
istic sample requirement (CSR). CSR is important, as it ensures identification
in the limit, a key concept in automata learning theory [18]. In what follows,
we show that among the algorithms that will be presented in Sect. 5.2, only
MooreMI satisfies CSR.

Before proceeding, we remark that a given Moore (I,O)-trace (ρI , ρO) =
(x1x2 · · · xn, y0y1 · · · yn) can be represented as a set of n + 1 Moore (I,O)-
examples, specifically {(ε, y0), (x1, y1), (x1x2, y2), · · · , (x1x2 · · · xn, yn)}. Because
of this observation, in all approaches discussed below, there is a preprocessing
step to convert the training set, first into an equivalent set of Moore (I,O)-
examples, and second, into an equivalent set of N pairs of positive and negative
example sets (the latter conversion was described in Sect. 3.3).

5.2 Algorithms to Solve the LMoMIO Problem

The PTAP Algorithm. This algorithm is a rather straightforward one. The
set of Moore (I,O)-examples obtained after the preprocessing step described
above is used to construct a PTAP, as described in Sect. 3.3. Recall that a PTAP
is a collection of N PTAs having the same state-transition structure. The syn-
chronous product of these N PTAs is then formed, completed, and returned as
the result of the algorithm. Note that a PTA is a special case of an NFA: the
PTA is deterministic, but it is generally incomplete. The synchronous product of
PTAs is therefore the same as the synchronous product of NFAs. The product of
PTAs is deterministic, but also generally incomplete, and therefore needs to be
completed in order to yield a complete DFA. Completion in this case consists in
adding self-loops to states that are missing outgoing transitions for some input
symbols. The added self-loops are labeled with the missing input symbols.

Although the PTAP algorithm is relatively easy to implement and runs effi-
ciently, it has several drawbacks. First, since no state minimization is attempted,
the resulting Moore machine can be unnecessarily large. Second, and most impor-
tantly, the produced machines generally have poor accuracy since completion is
done in a trivial manner.

The PRPNI Algorithm. Again, consider the N pairs of positive and nega-
tive example sets obtained after the preprocessing step. The PRPNI algorithm
starts by executing the RPNI DFA learning algorithm [38] on each pair, thus
obtaining N learned DFAs. Then, the synchronous product of these DFAs is
formed, completed, and returned as the algorithm result. As in the case of the

Learning Moore Machines from Input-Output Traces 303

PTAP algorithm, the synchronous product of the DFAs in the PRPNI algorithm
is deterministic but generally not complete.

The completion step of the PRPNI algorithm is more intricate than the
completion step of the PTAP algorithm. The reason is that the synchronous
product of the learned DFAs may contain reachable states whose bit encoding
does not correspond to any valid output in O. For example, suppose O = {0, 1, 2},
so that we need 2 bits to encode it, and thus N = 2 and we use RPNI to learn
2 DFAs. Suppose the encoding is 0 �→ 00, 1 �→ 01, 2 �→ 10. This means that
the code 11 does not correspond to any valid output in O. However, it can
still be the case that in the product of the two DFAs there is a reachable state
with the output 11, i.e., where both DFAs are in an accepting state. Note that
this problem does not arise in the PTAP algorithm, because all PTAs there
are guaranteed to have the same state-transition structure, which is also the
structure of their synchronous product.

To solve this invalid-code problem, we assign all invalid codes to an arbitrary
valid output. In our implementation, we use the lexicographic minimum. In the
above example, the code 11 will be assigned to the output 0.

Compared to the PTAP algorithm, the PRPNI algorithm has the advantage
of being able to learn a minimal Moore machine when provided with enough
(I,O)-traces. However, it can also perform worse in terms of both running time
and size (number of states) of the learned machine, due to potential state explo-
sion while forming the DFA product. The PTAP algorithm does not have this
problem because, as explained above, the structure, and therefore also the num-
ber of states, of the product is identical to those of the component PTAs.

The MooreMI Algorithm. As we saw above, both the PTAP and PRPNI
algorithms have several drawbacks. In this section we propose a novel algorithm,
called, MooreMI, which remedies these. Moreover, we shall prove that MooreMI
satisfies CSR.

The MooreMI algorithm begins by building a PTAP represented as N PTAs,
as in the PTAP algorithm. Then, a merging phase follows, where a merge oper-
ation is accepted only if all resulting DFAs are consistent with their respective
negative example sets. In addition, a merge operation is either performed on all
DFAs at once or not at all. Finally, the synchronous product of the N learned
DFAs is formed, completed by adding self loops for any missing input symbols,
as in the PTAP algorithm, and returned. The pseudocode for the MooreMI algo-
rithm can be found in [17]. Space limitations prevent us from including it in this
paper.

MooreMI is able to learn minimal Moore machines, while avoiding the state
explosion and invalid code issues of PRPNI. To see this, notice first that, at every
point of the algorithm, the N learned DFAs are identical in terms of states and
transitions, modulo the marking of their states as final. Indeed, this invariant
holds by construction for the N initial prefix tree acceptors, and the additional
merge constraints make sure it is maintained throughout the algorithm. There-
fore, the product formed at the end of the algorithm can be obtained by simply
“overlaying” the N DFAs on top of one another, as in the PTAP approach,

304 G. Giantamidis and S. Tripakis

which implies no state explosion. The absence of invalid output codes is also
easy to see. Invalid codes generally are results of problematic state tuples in the
DFA product, that cannot appear in MooreMI due to the additional merge con-
straints. Indeed, if a state tuple occurs in the final product, it must also occur
in the initial prefix tree acceptor product, and if it occurs there, its code cannot
be invalid.

5.3 Properties of the Algorithms

All three algorithms described above satisfy consistency w.r.t. the input training
set. For PTAP and PRPNI, this is a direct consequence of the properties of
PTAs, of the basic RPNI algorithm, and of the synchronous product. The proof
for MooreMI is somewhat more involved, therefore the result for MooreMI is
stated as a theorem (proofs can be found in [17]):

Theorem 1 (Consistency). The output of the MooreMI algorithm is a com-
plete Moore machine, consistent with the training set. Formally, let SIO be
the set of Moore (I,O)-traces used as input for the algorithm, and let M =
(I,O,Q, q0, δ, λ) be the resulting Moore machine. Then, δ and λ are total func-
tions and ∀ (ρI , ρO) ∈ SIO : λ∗(q0, ρI) = ρO.

We now show that MooreMI satisfies the characteristic sample requirement,
i.e., if it is fed with a characteristic sample for a machine M , then it learns a
machine equivalent to M . If M is minimal then the learned machine will in fact
be isomorphic to M .

Theorem 2 (Characteristic SampleRequirement). If the input toMooreMI
is a characteristic sample of a minimal Moore machine M , then the algorithm
returns a machine MA that is isomorphic to M .

Finally, we show that the MooreMI algorithm achieves identification in the
limit.

Theorem 3 (Identification in the Limit). Let M = (I,O,Q, q0, δ, λ) be
a minimal Moore machine. Let (ρ1I , ρ

1
O), (ρ2I , ρ

2
O), · · · be an infinite sequence of

(I,O)-traces generated from M , such that ∀ρ ∈ I∗ : ∃i : ρ = ρi
I (i.e., every input

word appears at least once in the sequence). Then there exists index k such that
for all n ≥ k, the MooreMI algorithm learns a machine equivalent to M when
given as input the training set {(ρ1I , ρ

1
O), (ρ2I , ρ

2
O), · · · , (ρn

I , ρn
O)}.

5.4 Complexity Analysis

Let I and O be the input and output alphabets, and let SIO be the set
of Moore (I,O)-traces provided as input to the learning algorithms. Let
N = �log2(|O|)	 be the number of bits required to encode the symbols
in O. Let S1+, S1−, ..., SN+, SN− be the positive and negative example sets
obtained by the preprocessing step at the beginning of each algorithm. Let
m+ =

∑N
i=1

∑
w∈Si+

|w|, m− =
∑N

i=1

∑
w∈Si− |w|, and k =

∑
(ρI ,ρO)∈SIO

|ρI |2.

Learning Moore Machines from Input-Output Traces 305

The time required for the preprocessing step is O(N · k), and is the same for all
three algorithms. The time required for the rest of the phases of each algorithm
is O((N + |I|) · m+) for PTAP, O((N + |I|) · mN

+ + N · m2
+ · (m+ + m−)) for

PRPNI, and O((N + |I|) · m+ + N · m2
+ · (m+ + m−)) for MooreMI. It can be

seen that the complexity of MooreMI is no more than logarithmic in the number
of output symbols, linear in the number of inputs, and cubic in the total length
of training traces. This polynomial complexity does not contradict Gold’s NP-
hardness result [19], since the problem we solve is not the exact identification
problem (c.f. also Sect. 2).

6 Implementation and Experiments

All three algorithms presented in Sect. 5.2 have been implemented in Python.
The source code, including random Moore machine and characteristic sample
generation, learning algorithms and testing, spans roughly 2000 lines of code.
The code and experiments are available upon request.

6.1 Experimental Comparison

We randomly generated several minimal Moore machines of sizes 50 and 150
states, and input and alphabet sizes |I| = |O| = 25 (see [17] for details on the
random generation method). From each such machine, we generated a character-
istic sample, and ran each of the three algorithms on this characteristic sample,
i.e., using it as the training set. Then we took the learned machines generated
by the algorithms, and evaluated these machines in terms of size (# states) and
accuracy. For accuracy, we used a test set of size double the size of the training
set. The length of words in the test set was double the maximum training word
length.

The results are shown in Table 1. “Algo 1, 2, 3” refers to PTAP, PRPNI,
and MooreMI, respectively. “Time” refers to the average execution time of the
learning algorithm, in seconds. “States” refers to the average number of states of
the learned machines. For accuracy, we used the three AEPs, Strong, Medium,
and Weak, defined in Sect. 5.1. The table is split into two tabs according to the
size of the original machines mentioned above. Each row represents the average
performance of an algorithm over training sets generated by 5 different Moore
machines. The only exception is row 2 of the 50 states tab, where one of the
5 experiments timed out and the reported averages are over 4 experiments.
“Timeout” means that the algorithm was unable to terminate within the given
time limit (60 seconds) in any of the 5 experiments with 150 states.2

2 Note, however, that our algorithms perform better in terms of execution time than
approaches that solve exact identification problems. For example, [46] report exper-
iments where learning a Mealy machine of 18 states requires more than 29 h. The
majority of the execution time here is spent in proving that there exists no machine
with fewer than 18 states which is also consistent with the examples. Since we don’t
require the smallest machine, our algorithms avoid this penalty.

306 G. Giantamidis and S. Tripakis

Table 1. 50 (resp. 150) states tab: average training set size: 1305 (resp. 4540), average
input word length in training set: 3.5 (resp. 4).

50 states 150 states

Algo Time States Accuracy (%) Time States Accuracy (%)

Strong Medium Weak Strong Medium Weak

1 0.973 2113 0 32.44 35.39 8.329 7135 0 28.28 31.13

2 12.753 8925 0 33.82 36.57 60 Timeout – – –

3 0.348 50 100 100 100 2.545 150 100 100 100

As expected, MooreMI always achieves 100 % accuracy, since the input is a
characteristic sample (we verified that indeed the machines learned by MooreMI
are in each case equivalent to the original machine that produced the training
set). But as it can be seen from the table, neither PTAP nor PRPNI learn the
correct machines, even though the training set is a characteristic sample.

The table also shows that PTAP and PRPNI generate much larger machines
than the correct ones. This in turn explains why MooreMI performs better in
terms of running time than the other two algorithms, which spend a lot of time
completing the large number of generated states.

6.2 Comparison with OSTIA

OSTIA [39] is a well-known algorithm that learns onward subsequential trans-
ducers, a class of transducers more general than Moore and Mealy machines.
Then, a question arising naturally is whether it is possible to use OSTIA for
learning Moore machines. In particular, we would like to know what happens
when the input to OSTIA is a set of Moore (I,O)-traces: will OSTIA learn a
Moore machine?

q0 q1

q2

ε

ε

ε

a/ε, b/ε

a/02

a/0
b/220b/0122

Fig. 6. The transducer learned
by OSTIA given a characteristic
sample for the Moore machine in
Fig. 5a as input.

The answer here is negative, as indicated by
an experiment we performed. We constructed a
characteristic sample for the Moore machine in
Fig. 5a and ran the OSTIA algorithm on it (we
used the open source implementation described
in [3]). The resulting machine is depicted in
Fig. 6. Notice that there are transitions whose
corresponding outputs are words of length more
than 1 (e.g., transition label b/0122), or even
the empty word (output of initial state q0). We
conclude that in general OSTIA cannot learn
Moore machines, even when the training set is
a set of Moore traces, and is also a characteristic
sample.

Learning Moore Machines from Input-Output Traces 307

7 Conclusion and Future Work

We formalized the problem of learning Moore machines for input-output traces
and developed three algorithms to solve this problem. We showed that the most
advanced of these algorithms, MooreMI, has desirable theoretical properties: in
particular it satisfies the characteristic sample requirement and achieves identifi-
cation in the limit. We also compared the algorithms experimentally and showed
that MooreMI is also superior in practice.

Future work includes: (1) studying learning for Mealy and other types of
state machines; (2) developing incremental versions of the learning algorithms
presented here; (3) further implementation and experimentation; and (4) appli-
cation of the methods presented here for learning models of various types of
black-box systems.

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25150-9 11

2. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-15375-4 6

3. Akram, H.I., Higuera, C., Xiao, H., Eckert, C.: Grammatical inference algorithms
in MATLAB. In: Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol.
6339, pp. 262–266. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15488-1 22

4. Aleksandrov, A.V., Kazakov, S.V., Sergushichev, A.A., Tsarev, F.N., Shalyto,
A.A.: The use of evolutionary programming based on training examples for the
generation of finite state machines for controlling objects with complex behavior.
J. Comput. Syst. Sci. Int. 52(3), 410–425 (2013)

5. Alur, R., Martin, M., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.:
Synthesizing finite-state protocols from scenarios and requirements. In: Yahav, E.
(ed.) HVC 2014. LNCS, vol. 8855, pp. 75–91. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-13338-6 7

6. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: POPL 2002, pp.
4–16. ACM (2002)

7. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

8. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-31984-9 14

9. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)

10. Buzhinsky, I.P., Ulyantsev, V.I., Chivilikhin, D.S., Shalyto, A.A.: Inducing finite
state machines from training samples using ant colony optimization. J. Comput.
Syst. Sci. Int. 53(2), 256–266 (2014)

http://dx.doi.org/10.1007/978-3-319-25150-9_11
http://dx.doi.org/10.1007/978-3-642-15375-4_6
http://dx.doi.org/10.1007/978-3-642-15488-1_22
http://dx.doi.org/10.1007/978-3-319-13338-6_7
http://dx.doi.org/10.1007/978-3-319-13338-6_7
http://dx.doi.org/10.1007/978-3-540-31984-9_14

308 G. Giantamidis and S. Tripakis

11. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state
machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702,
pp. 250–264. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10431-7 18

12. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

13. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation
using non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45069-6 39

14. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
CUP, Cambridge (2010)

15. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: FSM-based
conformance testing methods: a survey annotated with experimental evaluation.
Inf. Softw. Technol. 52(12), 1286–1297 (2010)

16. Dupont, P.: Incremental regular inference. In: Miclet, L., Higuera, C. (eds.) ICGI
1996. LNCS, vol. 1147, pp. 222–237. Springer, Heidelberg (1996). doi:10.1007/
BFb0033357

17. Giantamidis, G., Tripakis, S.: Learning Moore machines from input-output traces.
ArXiv e-prints, v2, September 2016. http://arxiv.org/abs/1605.07805

18. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
19. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control

37(3), 302–320 (1978)
20. Grinchtein, O., Leucker, M.: Learning finite-state machines from inexperienced

teachers. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.)
ICGI 2006. LNCS (LNAI), vol. 4201, pp. 344–345. Springer, Heidelberg (2006).
doi:10.1007/11872436 30

21. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: 38th POPL, pp. 317–330 (2011)

22. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI 2008, pp. 281–292. ACM (2008)

23. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02658-4 48

24. Heitmeyer, C.L., Pickett, M., Leonard, E.I., Archer, M.M., Ray, I., Aha, D.W.,
Trafton, J.G.: Building high assurance human-centric decision systems. Autom.
Softw. Eng. 22(2), 159–197 (2015)

25. Heule, M.J., Verwer, S.: Software model synthesis using satisfiability solvers.
Empir. Softw. Eng. 18(4), 825–856 (2013)

26. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27940-9 17

27. Jin, X., Donz, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
34(11), 1704–1717 (2015)

28. Jonsson, B.: Learning of automata models extended with data. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21455-4 10

29. Karthik, A.V., Ray, S., Nuzzo, P., Mishchenko, A., Brayton, R., Roychowdhury, J.:
ABCD-NL: approximating continuous non-linear dynamical systems using purely
Boolean models for analog/mixed-signal verification. In: ASP-DAC, pp. 250–255
(2014)

http://dx.doi.org/10.1007/978-3-319-10431-7_18
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/BFb0033357
http://dx.doi.org/10.1007/BFb0033357
http://arxiv.org/abs/1605.07805
http://dx.doi.org/10.1007/11872436_30
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-642-27940-9_17
http://dx.doi.org/10.1007/978-3-642-21455-4_10

Learning Moore Machines from Input-Output Traces 309

30. Kohavi, Z.: Switching and Finite Automata Theory, 2nd edn. McGraw-Hill,
New York (1978)

31. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer,
Heidelberg (1998). doi:10.1007/BFb0054059

32. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

33. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining. In:
Automated Software Engineering (ASE), pp. 81–92, November 2015

34. Ljung, L. (ed.): System Identification: Theory for the User, 2nd edn. Prentice Hall,
Englewood Cliffs (1999)

35. Medhat, R., Ramesh, S., Bonakdarpour, B., Fischmeister, S.: A framework
for mining hybrid automata from input/output traces. In: Embedded Software
(EMSOFT), pp. 177–186 (2015)

36. Meinke, K.: CGE: a sequential learning algorithm for Mealy automata. In: Sempere,
J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 148–162. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15488-1 13

37. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
38. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In:

Advances in Structural and Syntactic, Pattern Recognition, pp. 99–108 (1992)
39. Oncina, J., Garćıa, P., Vidal, E.: Learning subsequential transducers for pattern

recognition interpretation tasks. IEEE Trans. Pattern Anal. Mach. Intell. 15(5),
448–458 (1993)

40. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming
languages and code quality in github. In: ACM SIGSOFT, FSE 2014 (2014)

41. Seshia, S.A.: Sciduction: combining induction, deduction, and structure for verifi-
cation and synthesis. In: DAC, pp. 356–365, June 2012

42. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-05089-3 14

43. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
44. Spichakova, M.: An approach to inference of finite state machines based on

gravitationally-inspired search algorithm. Proc. Estonian Acad. Sci. 62(1), 39–46
(2013)

45. Takahashi, K., Fujiyoshi, A., Kasai, T.: A polynomial time algorithm to infer
sequential machines. Syst. Comput. Jpn. 34(1), 59–67 (2003)

46. Ulyantsev, V., Buzhinsky, I., Shalyto, A.: Exact finite-state machine identification
from scenarios and temporal properties. CoRR, abs/1601.06945 (2016)

47. Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: BFS-based symmetry breaking pred-
icates for DFA identification. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 611–622. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-15579-1 48

48. Veelenturf, L.P.J.: Inference of sequential machines from sample computations.
IEEE Trans. Comput. 27(2), 167–170 (1978)

http://dx.doi.org/10.1007/BFb0054059
http://dx.doi.org/10.1007/978-3-642-15488-1_13
http://dx.doi.org/10.1007/978-3-642-05089-3_14
http://dx.doi.org/10.1007/978-3-642-05089-3_14
http://dx.doi.org/10.1007/978-3-319-15579-1_48

Modal Kleene Algebra Applied
to Program Correctness

Victor B.F. Gomes1(B) and Georg Struth2(B)

1 Computer Laboratory, University of Cambridge, Cambridge, UK
victor.gomes@cl.cam.ac.uk

2 Department of Computer Science, University of Sheffield, Sheffield, UK
g.struth@sheffield.ac.uk

Abstract. Modal Kleene algebras are relatives of dynamic logics that
support program construction and verification by equational reasoning.
We describe their application in implementing versatile program correct-
ness components in interactive theorem provers such as Isabelle/HOL.
Starting from a weakest precondition based component with a simple
relational store model, we show how variants for Hoare logic, strongest
postconditions and program refinement can be built in a principled way.
Modularity of the approach is demonstrated by variants that capture
program termination and recursion, memory models for programs with
pointers, and program trace semantics.

1 Introduction

Modal Kleene algebras (MKA) [9] are algebraic relatives of propositional dynamic
logic (PDL) [14] in the tradition of the dynamic algebras proposed by Németi and
Pratt [22,26] and Hollenberg’s algebra of dynamic negation [15]. A particularity
of MKA is that reasoning is equational, symmetries between modalities are cap-
tured by algebraic and order-theoretic dualities, and soundness and completeness
results arise from properties of morphisms between algebras.

MKA has highly compact axioms. It expands Kleene algebra by two dual oper-
ations and three simple equational axioms for each of them. While the Kleene
algebra operations capture the sequential composition, nondeterministic choice
and finite iteration of programs, the additional ones model those states from
which a program can be executed and in which it can terminate. Despite its
simplicity, MKA has the expressive power of PDL: modal box and diamond oper-
ators, i.e. predicate transformers, can be defined; propositions and assertions can
be modelled. This makes MKA an interesting tool for program correctness.

Over the last decade, the mathematics of MKA has been well investigated,
models relevant to computing have been constructed, extensions and variations
introduced, applications from game theory to termination analysis considered,
and mathematical components for interactive theorem provers implemented.
Nevertheless, the obvious potential of MKA for building construction and verifi-
cation tools for imperative programs remains to be explored. The main goal of
this article is to bridge this gap.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 310–325, 2016.
DOI: 10.1007/978-3-319-48989-6 19

Modal Kleene Algebra Applied to Program Correctness 311

Our main contribution therefore consists in MKA-based program correctness
components for Isabelle/HOL [24] in which imperative programs can be verified
or constructed by stepwise refinement. Yet our design method is generic and
applies beyond Isabelle. In a nutshell, it consists in deriving verification condi-
tions for the control structure of programs by equational reasoning within MKA,
in linking the algebra formally with denotational semantics of the store and
data domain, and in adding data-level verification conditions, notably assign-
ment laws, to the concrete semantics. Detailed contributions are as follows.

• We derive laws for calculating weakest (liberal) preconditions in MKA, most
of them equational (Sect. 3), show how assignment statements and a weakest
precondition rule for assignments can be obtained in the relational model of
MKA (Sect. 4), and sketch how this development can be implemented as a
simple verification (and dynamic logic) component in Isabelle (Sect. 5).

• We show how the opposition duality present in MKA yields verification com-
ponents for strongest postconditions and a Floyd-style assignment rule in the
style of [13] with minimal implementation effort (Sect. 6).

• We formally prove that MKA subsumes Kleene algebras with tests: all theo-
rems of the latter setting hold in the former. This brings previous verification
and refinement components based on Hoare logic [2] into scope (Sect. 7).

• We propose a new meta-equational while rule for weakest preconditions in the
context of divergence Kleene algebras and formalise the relational model of
these algebras in Isabelle, yielding a total correctness component (Sect. 8).

• We extend the MKA components for while programs to quantale-based ones
for recursive procedures and provide new explicit definitions of modalities in
this setting (Sect. 9).

• We further evidence the versatility of the approach by outlining a more
abstract treatment of predicate transformer algebras in Isabelle and by demon-
strating how other memory models and denotational program semantics can
be integrated in modular ways (Sect. 10).

Many of the verification rules used in our components are well known, but have
been derived in the algebra by simple equational reasoning (and automated the-
orem proving) in model-independent fashion. Similar store models have been
used by the interactive theorem proving community, but our separation of data
and control and their modular integration via a shallow embedding is new and
yields components that are particularly simple, modular and reusable. Program
verification can be performed directly in the concrete denotational semantics by
using instances of the abstract algebraic rules and providing a minimal program
syntax as a façade. For applications, grammars and semantic maps for suit-
able fragments of imperative programming languages should be provided, and
facilities for code generation should be included. Integrating algebras and models
also makes our components correct by construction: our formal soundness proofs
make all axiomatic extensions consistent with Isabelle’s small trustworthy core.

All results discussed in this article have been programmed in Isabelle and
made accessible to readers in the Archive of Formal Proofs [12], including all
verification components and a suite of verification examples.

312 V.B.F. Gomes and G. Struth

2 Modal Kleene Algebra

Modal Kleene algebras are semirings expanded by two operations.
A semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a commuta-

tive monoid and (S, ·, 1) a monoid. These interact via the distributivity laws
w(x + y)z = wxz + wyz and the annihilation laws 0x = 0 = x0. Here and hence-
forth we drop the multiplication symbol. As in PDL, elements x, y ∈ S represent
programs; xy models sequential composition and x + y nondeterministic choice.
The programs 0 and 1 model abort and skip.

An antidomain semiring [9] is a semiring S expanded by an antidomain
operation a : S → S that satisfies

(a x)x = 0, a x + a (a x) = 1, a (xy) + a (x(a (a y))) = a (x(a (a y))).

Intuitively, the antidomain ax of program x represents those states from which x
cannot be executed, whereas the domain d x = (a ◦ a)x of x models those states
from which it can be. The three antidomain axioms give rise to a rich structure
with symmetries and dualities.

Firstly, antidomain semirings are ordered. Addition is idempotent, x+x = x
holds for all x ∈ S, which is essential for interpreting it as choice. Thus S is a
dioid and (S,+) a semilattice with order relation x ≤ y ↔ x + y = y. Addition
and multiplication are order preserving or isotone; 0 is the lest element with
respect to ≤. The converse of ≤ is the refinement order on programs.

Secondly, (a(S),+, ·, a, 0, 1), with a(S) denoting the image of the set S under
a, is a boolean subalgebra of S with + as join, · as meet, a as complementation
and 0 and 1 as least and greatest elements. The set d(S) = a(S) is closed
under the operations because d ◦ d = d, which implies that x is in a(S) iff
d x = x. (Anti)domain elements in a(S), for which we henceforth write p, q, r,
can therefore be used as assertions or propositions. We also write p̄ instead of
a p and encode conditionals à la PDL as if p then x else y = px + p̄y.

Thirdly, the opposite of a dioid is a dioid. Opposition swaps the order of
multiplication and runs programs backwards. Yet the class of antidomain semi-
rings is not closed under this duality. In fact, the (anti)domain of a reverse
program is the (anti)range of the original one: it represents the set of those
states in which it can(not) end. The opposite of an antidomain semiring is thus
an antirange semiring with dual axioms x(ar x) = 0, ar x + r x = 1 and
ar (x · y) + ar (x(r y)) = ar (xr(y)), where r = ar ◦ ar .

Fourthly, forward modal operators can be defined in antidomain semirings,

|x〉p = d (xp), and |x]p = a (x(a p)),

whereas backward modalities are definable by opposition in antirange semirings
as [x|y = ar (x(ar y)) and 〈x|y = r (xy). This is justified by the PDL semantics of
|x〉p, which yields those states (in a Kripke frame) from which executing x may
lead into states where p holds, whereas [x]p describes those states from which x
must lead to states satisfying p. Note that, in antidomain semirings, px and xp
model the domain and range restriction of x to states satisfying p.

Modal Kleene Algebra Applied to Program Correctness 313

A modal semiring [9] is an antidomain semiring S that is also an antirange
semiring in which d (r x) = r x and r (d x) = d x hold for all x ∈ S, and conse-
quently a(S) = ar (S).

In this setting, boxes and diamonds satisfy a number of dualities: the De
Morgan laws |x]p = |x〉p̄, |x〉yp = |x]p̄, [x|p = 〈x|p̄, and 〈x|p = [x|p̄, the conju-
gations (|x〉p)q = 0 ↔ p(〈x|q) = 0 and (|x]p)q = 0 ↔ p([x|q) = 0, and, most
importantly for our purposes, the Galois connections

〈x|p ≤ q ↔ p ≤ |x]q and |x〉p ≤ q ↔ p ≤ [x|q.
Modal semirings are therefore boolean algebras with operators 〈 |, [|, | 〉 and
|] of type S → (a(S) → a(S)) in the sense of Jónsson and Tarski [16]. These
operators are otherwise known as predicate transformers.

PDL allows encoding while programs without assignments. A notion of finite
iteration of programs must be added to a dioid for that purpose. A Kleene algebra
is a dioid K expanded by an operation ∗ : K → K that satisfies the star unfold
and induction axioms

1 + xx∗ ≤ x∗ and z + xy ≤ y → x∗z ≤ y

as well as their opposites 1 + x∗x ≤ x∗ and z + yx ≤ y → zx∗ ≤ y. An
antidomain Kleene algebra [9] is an antidomain semiring that is also a Kleene
algebra and likewise for antirange Kleene algebras. A modal Kleene algebra is
a modal semiring that is also a Kleene algebra. As in PDL one can now define
while p do x = (px)∗p̄.

Henceforth we write AKA for the class of antidomain Kleene algebras and
MKA for the class of modal Kleene algebras.

3 Laws for Weakest Preconditions

Conjugations and Galois connections give theorems for free, but many additional
properties hold in AKA and MKA. A comprehensive list can be found in the
Isabelle formalisation in the Archive of Formal Proofs [11].

In addition to these, the following laws are helpful for program verification.

Lemma 1. Let S ∈ AKA. For all p, q ∈ a(S) and x, y ∈ S,

1. p ≤ q → |x]p ≤ |x]q and x ≤ y → |y]p ≤ |x]p,
2. p̄ + |x]q = |px]q,
3. |xp̄]q = |x](p + q),
4. |x]p ≤ |xq̄](pq̄),
5. p|if p then x else y]q = p|x]q and p̄|if p then x else y]q = p̄|y]q,
6. |while p do x]q = (p + q)(p̄ + |x]|while p do x]q),
7. p|while p do x]q = p|x]|while p do x]q and p̄|while p do x]q ≤ q.

These facts can be used for deriving verification conditions for the control struc-
ture of programs. To this end we define a while loop annotated with a loop
invariant: while p inv i do x = while p do x.

314 V.B.F. Gomes and G. Struth

Lemma 2. Let S ∈ AKA. For all p, q, i, t ∈ a(S), x, y ∈ S,

1. |xy]q = |x]|y]q,
2. |if p then x else y]q = (p̄ + |x]q)(p + |y]q) = if p then |x]q else |y]q,
3. pq ≤ |x]p → p ≤ |while q do x](pq̄),
4. p ≤ i ∧ it̄ ≤ q ∧ it ≤ |x]i → p ≤ |while t inv i do x]q.

In PDL, |x]q models the weakest (liberal) precondition of program x and post-
condition q. The specification statement for partial correctness—if precondition
p holds before executing program x and if x terminates, then postcondition q
holds upon termination—is captured by p ≤ |x]q. The formulas in Lemma 2 thus
calculate weakest preconditions recursively from the structure of while programs.
Equation (1) yields a rule for sequential composition, (2) yields rules for condi-
tionals, (3) is a quasi-equation for loops, and (4) a quasi-equation for loops with
invariants. All rules except those for loops are purely equational and therefore
superior to those of Hoare logic in applications.

4 Relational Program Semantics

The standard PDL semantics uses a Kripke frame (S, h). A program x is inter-
preted as a binary relation hx between states in S and a proposition p as a
subset h p of states in S. Diamond and box formulas are interpreted as h |x〉p =
{s | ∃s′. (s, s′) ∈ hx ∧ s′ ∈ h p} and h |x]p = {s | ∀s′. (s, s′) ∈ hx → s′ ∈ h p}.

With MKA it is more convenient to interpret programs and assertions uni-
formly as binary relations over S by embedding subsets A of S into subidentity
relations {(a, a) | a ∈ A}.

Proposition 1 ([9,11]). Let (2S×S ,∪, ; , a, ∅, Id ,∗) be the set of all binary rela-
tions over the set S with the following operations: set union ∪, relational com-
position R;S = {(s, s′) | ∃s′′. (s, s′′) ∈ R ∧ (s′′, s′) ∈ S}, relational antidomain
aR = {(s, s) | ¬∃s′. (s, s′) ∈ R}, the identity relation Id = {(s, s) | s ∈ S}, the
empty relation ∅, and the reflexive-transitive closure R∗ =

⋃
i∈N

Ri of R.

1. This structure forms an AKA, the full relation AKA over S.
2. Each of its subalgebras forms a relation AKA.

This soundness result justifies our previous programming intuitions. The alge-
braic structure of AKA is reflected at the level of relations; the algebra of subiden-
tities (a(2S×S),∪, ; , a, ∅, Id) is again a boolean subalgebra. The antidomain oper-
ation can be written as aR = Id ∩ −(R�), where −R denotes the complement
of R in 2S×S , whereas a is complementation on a(2S×S). The universal relation
� is defined as {(s, s′) | s, s′ ∈ S}. The relational domain operation is defined
accordingly as dR = {(s, s) | ∃s′. (s, s′) ∈ R}. The boolean algebra of subidenti-
ties in a(2S×S), the boolean algebra of subsets of S and the boolean algebra of
predicates as boolean-valued functions of type S → B are of course isomorphic.
More precisely, the coercion functions �P � = {(s, s) | Ps} from predicates to
relations and �R� = {a | ∃b. (a, b) ∈ R} from subidentity relations to predicates

Modal Kleene Algebra Applied to Program Correctness 315

form a bijective pair that preserves joins/unions, meets/intersections and nega-
tions/complements. The Kripke semantics of relational boxes and diamonds is
consistent with the algebraic one: |R〉P = d (R;P) and |R]P = a (R; aP).

The dual of Proposition 1 links, accordingly, relations with antirange opera-
tion ar R = {(s′, s′) | ¬∃s.(s, s′) ∈ R} and antirange Kleene algebras. In combi-
nation, these results show that MKA has relational models.

The standard relational semantics of while programs—and that of first-order
dynamic logic—considers the store as a function from variables in V to values
in a set E, that is, s : V → E and S is the function space EV .

Let the update f [b/a]x of function f : A → B in argument a ∈ A by value
b ∈ B be defined as b whenever x = a and as fa otherwise. The relational
semantics of an assignment statement is then given by

(v := e) = {(s, s[(e s)/v]) | s ∈ EV },

where e s denotes the value of expression e in store s. This definition allows
calculating weakest preconditions of assignments.

Lemma 3. In every relation AKA, |v := e]�Q� = �λs. Q(s[(e s)/v])�.
On the one hand, the formulas in Lemmas 2 and 3 give us all we need for verifying
while programs. On the other hand, they yield a hybrid encoding of first-order
dynamic logic, where the propositional part is captured algebraically and the
first-order part modelled within the relational semantics. The following section
transforms this approach into a verification component.

5 Verification Component Using Weakest Preconditions

The results from Sects. 3 and 4 suffice for implementing a simple component for
dynamic logic, and primarily a verification component, quickly and easily in an
interactive theorem prover; see [12] for details. Our Isabelle/HOL components
use a shallow embedding; verification is performed on the concrete relational
store semantics from Sect. 4. Relational instances of the algebraic weakest pre-
condition laws (Sect. 3) are brought into scope by formalising Proposition 1. Data
types for expressions, statements and while-programs and a semantic map into
the relation AKA could be added easily. Instead we merely supply some syntactic
sugar for relational programs. We now sketch this implementation.

Firstly, Isabelle provides axiomatic type classes and locales for formalising
modular algebraic hierarchies and their models. Our verification component is
based on comprehensive mathematical components for Kleene algebras [4] and
AKA [11]. AKA, for instance, could have been formalised as follows.

class antidomain-kleene-algebra = kleene-algebra +
fixes ad :: ′a ⇒ ′a (ad)
assumes as1 [simp]: ad x · x = 0
and as2 [simp]: ad (x · y) + ad (x · ad (ad y)) = ad (x · ad (ad y))
and as3 [simp]: ad (ad x) + ad x = 1

316 V.B.F. Gomes and G. Struth

This definition expands the type class of Kleene algebras to the class of AKA
by adding the antidomain operation and the three antidomain axioms. The type
of the antidomain operation indicates that AKAs are polymorphic and can be
instantiated—for instance to the type of polymorphic binary relations or that
of binary relations over a polymorphic store. Notions such as domain, boxes or
diamonds can be defined within this class. Isabelle’s simplifiers and integrated
theorem provers can be used for proving facts about AKA, and, by the expansion,
all facts proved about Kleene algebras are in scope as well.

Secondly, our Isabelle components provide soundness proofs for various mod-
els. That of relation AKA, for instance, can be formalised as follows.

interpretation rel-aka: antidomain-kleene-algebra
Id {} op ∪ op ; op ⊆ op ⊂ rtrancl rel-ad

The interpretation statement says that any relational structure specified as in
Proposition 1 forms an AKA. Isabelle dictates its proof obligations. After dis-
charging them, instances of all abstract properties proved about AKA are avail-
able in the concrete relational semantics; in particular those from Lemma 2. In
addition, the soundness proof makes the axiomatic extension of AKA consistent
with Isabelle’s small trustworthy core. Our verification components thus become
correct by construction relative to it.

The relations introduced in the soundness proof are again polymorphic. They
can be instantiated further to relations over a polymorphic store, which is defined
as type-synonym ′a store = string ⇒ ′a. It can model data of arbitrary and het-
erogenous type. The assignment command and the corresponding weakest pre-
condition rule can then be implemented as follows.

definition gets :: string ⇒ (′a store ⇒ ′a) ⇒ ′a store rel (- ::= - [70 , 65] 61) where
v ::= e = {(s,s (v := e s)) |s. True}

lemma wp-assign [simp]: wp (v ::= e) �Q� = �λs. Q (s (v := e s))�

Here, ::= is syntax for assignments, whereas := denotes Isabelle’s built-in func-
tion update. After programming additional syntactic sugar for program specifi-
cations and syntax, one can start verifying while programs.

lemma euclid :
PRE (λs::nat store. s ′′x ′′ = x ∧ s ′′y ′′ = y)
(WHILE (λs. s ′′y ′′ 	= 0) INV (λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y)
DO
(′′z ′′ ::= (λs. s ′′y ′′));
(′′y ′′ ::= (λs. s ′′x ′′ mod s ′′y ′′));
(′′x ′′ ::= (λs. s ′′z ′′))
OD)
POST (λs. s ′′x ′′ = gcd x y)
by (rule rel-antidomain-kleene-algebra.fbox-while) (auto simp: gcd-non-0-nat)

Modal Kleene Algebra Applied to Program Correctness 317

In this simple example proof, a relational instance of the while rule from
Lemma 2(4) is applied first. All proof obligations generated are then simplified.
As all rules except the one for loops are pure equations, they can be added to
Isabelle’s simplifier. Here, in particular, the sequential composition rule from
Lemma 2(1) and the assignment rule from Lemma 3 eliminate the entire control
structure. Automated theorem proving can then finish off the remaining data-
level proof. For straight-line programs, verification proofs are purely equational
and the entire control structure of programs can usually be simplified away.

Several variables of heterogenous type are handled by instantiating the type
′a of the store by a sum type. Verifying a typical sorting algorithm, for instance,
requires type nat + ′a + ′a list with the natural number measuring the length of
the input list and ′a being a linearly ordered type. Assignments of variables of a
summand type can then be expressed by using projections and injections. Our
Isabelle theories contain an example verification of insertion sort [12].

Verification condition generation can be automated further with tactics that
apply the while rule recursively. These can be programmed elegantly in Isabelle’s
Eisbach proof method language [18]. Verifying simple programs thus reduces to
calling an Eisbach method to eliminate the control structure and then using
Isabelle’s provers and simplifiers for the data level; see our online examples [12].

The Isabelle formalisation provides a template for developing external ver-
ification tools. This makes it desirable to generate proof obligations as far as
possible within first-order logic, so that they can be tackled by automated the-
orem provers and SMT solvers. It is easy to tune verification condition gen-
eration accordingly. The weakest precondition operator can, for instance, be
presented as �wp X �Q�� = λs. ∀s′. (s, s′) ∈ X → Qs′, the loop rule allows
deriving ∀s. P s → �wp (WHILE T INV I DO X OD) �Q�� s from the assump-
tions ∀s.P s → I s, I s ∧ ¬ T s → Qs and I s ∧ T s → �wp X �I�� s), and the
assignment rule can be written as �wp(v ::= e) �Q�� = λs. Q (s[(e s)/v]).

6 Verification Component Using Strongest Postconditions

In an influential article, Gordon and Collavizza [13] contrast the backwards app-
roach that uses weakest preconditions and Hoare’s assignment law with the lesser
known forward one with strongest postconditions and Floyd’s assignment law.
With MKA, the two approaches are related by opposition duality, the Galois con-
nection between forward boxes and backward diamonds. As indicated in Sect. 2,
the specification statement p ≤ |x]q is equivalent to 〈x|p ≤ q, with 〈x|p capturing
the strongest postcondition of program x and precondition p.

We have formalised opposition duality between antidomain and antirange
Kleene algebras in Isabelle and implemented MKA based on that duality [11].
As a consequence, all facts for forward modalities can be dualised by Isabelle
rather effortlessly. Facts from Lemma 1 dualise, for instance, to p〈x|q = 〈xp|q,
〈x|(pt) = 〈tx|p, 〈x|p ≤ 〈q̄x|(pq̄). More importantly, we immediately obtain the
following dual statements to those in Lemma 2.

318 V.B.F. Gomes and G. Struth

Lemma 4. Let S ∈ MKA. For all p, q, i, t ∈ a(S), x, y ∈ S,

1. 〈xy|p = 〈y|〈x|p,
2. if p then x else y|q = 〈x|(pq) + 〈y|(p̄q),
3. 〈x|(pq) ≤ p → 〈while q do x|p ≤ (pq̄),
4. p ≤ i ∧ it̄ ≤ q ∧ 〈x|(t̄i) → 〈while t inv i do x|p ≤ q.

The lemmas listed in the following proof show how Isabelle picks up duality.

lemma bdia-seq-var : 〈x | p ≤ p ′ =⇒ 〈y | p ′ ≤ q =⇒ 〈x · y | p ≤ q
by (metis ardual .ds.fd-subdist-1 ardual .ds.fdia-mult dual-order .trans . . .)

A forward assignment law is derivable in the relational store model.

lemma bdia-assign [simp]:
rel-aka.bdia (v ::= e) �P� = �λs. ∃w . s v = e (s(v := w)) ∧ P (s(v :=w))�

Here, rel-aka.bdia denotes the backward diamond operator of relation MKA. Once
more, the rules in Lemma 4 and our variant of Floyd’s assignment axiom suffice
for program verification; the algebraic and the relational layer are linked seam-
lessly by the relational soundness proof for MKA. We found little difference in
performance between the backward and the forward approach on simple exam-
ples. Beyond that, the forward approach offers potential for symbolic execution
and static analysis [13].

7 Components for Hoare Logic and Refinement

We have previously developed program correctness components using Kleene
algebras with tests (KAT) [1,2]: a verification component based on Hoare logic
and a refinement component based on Morgan’s specification statement [21].

Inspired by MKA we have implemented KAT as a Kleene algebra K expanded
by an antitest operation n : K → K that satisfies

t 1 = 1, t ((t x)(t y)) = (t x)(t y), (nx)(t x) = 0, (nx)(n y) = n (t x + t y),

where t = n ◦ n is the test operation. Similarly to MKA, n(K) = t(K) forms a
boolean subalgebra useful for modelling tests and assertions.

Propositional Hoare logic, that is, Hoare logic without assignment axioms, is
subsumed by PDL [14]. Here we obtain the following correspondence.

Proposition 2 ([9]). Every AKA and antirange Kleene algebra is a KAT.

Formalising this fact in Isabelle brings the verification components for KAT into
the scope of MKA. In KAT, Hoare triples are defined as

H px q ↔ px ≤ xq,

Modal Kleene Algebra Applied to Program Correctness 319

where x is a program and p, q are tests. In MKA, in turn, p ≤ |x]q ↔ px ≤ xq ↔
〈x|p ≤ q. Thus Hoare triples relate to the specification statements for weakest
preconditions and strongest postconditions:

H px q ↔ p ≤ |x]q ↔ 〈x|p ≤ q,

and this correspondence confirms that |x]q is indeed the weakest precondition
and 〈x|q the strongest postcondition satisfying the Hoare triple. However, weak-
est preconditions or strongest postconditions cannot be expressed in KAT [28].

The standard rules for propositional Hoare logic are thus available in MKA
and can once more be combined with Floyd and Hoare’s assignment axioms.
Hoare’s axiom, for instance, is derivable because

�λs. P (s[(e s)/v]�; (v := e) = (v := e); �P �.
KAT has been expanded to refinement KAT [2] by adding an operation R :

K × K → K and an axiom

H px q ↔ x ≤ R p q,

stating that Morgan’s specification statement R p q is the greatest program that
satisfies the Hoare triple H px q. MKA can be expanded to refinement MKA in
the same way, but Galois connections

〈x|p ≤ q ↔ x ≤ R p q ↔ p ≤ [x|q
between the specification statements are now revealed. Once more, every refine-
ment MKA is a refinement KAT, and the simple refinement component developed
previously for KAT in Isabelle is automatically available for MKA.

8 A Meta-Equational while-Rule

A divergence Kleene algebra [8] is an AKA K expanded by a divergence operation
∇ : K → K that satisfies the unfold and coinduction axioms

∇x ≤ |x〉∇x and p ≤ |x〉p + q → p ≤ ∇x + |x∗〉q.
Intuitively, ∇x models the set of those states from which program x need not ter-
minate. We have formalised divergence Kleene algebras [11] and their relational
models in Isabelle. In this setting, ∇R =

⋃{P. P ⊆ |R〉P}, and we have proved
in Isabelle that ∇R = 0 if and only if R is noetherian in the sense that there
are no infinitely ascending R-chains. This is the case if and only if the converse
of R is wellfounded. This condition is interesting for total program correctness
because ∇x = 0 relates to loop termination.

In [27], algebraic conditions for the existence of solutions in y of equations
of the form y = xy + z have been investigated in the context of Kleene algebras.
It is well known that, by Arden’s rule, a unique solution y = x∗z exists in the
regular language models of Kleene algebra if language x does not contain the
empty word. In relational models this empty word property can be replaced by
a noethericity assumption. This analogy motivates a new meta-equational while
rule for predicate transformers.

320 V.B.F. Gomes and G. Struth

Lemma 5. In every divergence Kleene algebra, if ∇x = 0, then

1. p = |x〉p + q ↔ p = |x∗〉q,
2. p = q|x]p ↔ p = |x∗]q.

The second meta-equation can be derived from the first one. It specialises to
while loops and weakest preconditions as follows.

Lemma 6. In every divergence Kleene algebra, if ∇ (tx) = 0, then

1. p = (t + q)|tx]p ↔ p = |while t do x]q,
2. i = (t + q)|tx]i ↔ i = |while t inv i do x]q.

In these rules, ∇ (tx) = 0 prevents that the body x of the while loop can be
executed forever from states where test t holds. This of course expresses loop
termination. Dual rules for forward reasoning with strongest postconditions fol-
low immediately from the Galois connections. Partial correctness reasoning now
no longer hides the explicit assumption of program termination, whereas total
correctness requires discharging this assumption. Our relational soundness proof
for divergence Kleene algebras in Isabelle links the absence of divergence for-
mally with wellfoundedness and brings Isabelle’s tools for termination analysis
into scope (e.g. [19]). A deeper investigation of total program correctness in
applications remains beyond the scope of this article.

A second benefit of the rules in Lemma 6 is that they can simplify verification
condition generation, as equations for calculating the weakest precondition of a
loop can be simplified to equivalent equations involving only the body of the loop.
In our Isabelle implementation, however, we found it so far difficult to make this
rule cooperate with the simplifiers. See our Isabelle theories for examples [12].

9 Domain Quantales and Components for Recursion

A limitation of MKA is that recursion cannot be expressed. This requires the
more expressive setting of quantales, which subsume MKA, and in which classical
fixpoint theory, and thus recursion, can be developed. Antidomain and modal
operators can be axiomatised as before, but we present a class of quantales
consistent with the relational semantics, in which an antidomain operation can be
defined explicitly. We restrict our attention to single recursive procedures; mutual
recursion could be captured as well by using polyvariadic fixpoint combinators.

Formally a quantale (or standard Kleene algebra [7]) is a structure (Q, ·, 1,≤)
such that (Q, ·, 1,≤) is a monoid, (Q,≤) a complete lattice, and the infi-
nite distributivity laws x(

⊔
i∈I yi)z =

⊔
i∈I xyiz hold, where

⊔
X denotes the

supremum of a set X ⊆ Q. A quantale is boolean if the underlying com-
plete lattice is a complete boolean algebra. Thus the infinite distributivity laws
x � (

⊔
i∈I yi) =

⊔
i∈I(x � yi) and its lattice dual x � (

�
i∈I yi) =

�
i∈I(x � yi) are

required, where we write
�

X for the infimum of X ⊆ Q.
Every quantale is a Kleene algebra with x∗ =

⊔
i∈N

xi, and binary relations
under the usual operations form boolean quantales. In every quantale, x � y =⊔{x, y}; the annihilation laws are special cases of distributivity and

⊔
i∈∅ xi = ⊥.

Modal Kleene Algebra Applied to Program Correctness 321

Boolean quantales are similar to algebras of relations; only the opera-
tion of relational converse and the associated axioms are absent. The domain
and antidomain of a relation can be defined explicitly in relation algebra as
d x = 1 � x� and a x = 1 � −(d x) = 1 � −(x�). In boolean quantales this is
impossible.

Lemma 7. In some boolean quantale, (1 � x�)x �= x and (1 � −(x�))x �= ⊥.

Proof. Consider the four-element boolean quantale with Q = {⊥, 1, α,�} in
which the order, infima, suprema and complements are defined by the fact that
1 and α are incomparable and multiplication is given by αα = ⊥, α� = α = �α
and �� = �. Then (1 � α�)α = ⊥ �= α whereas (1 � −(α�))α = α �= ⊥. ��
Though that does not rule out other explicit definitions, one can resort to
axiomatising (anti)domain in quantales as in the case of MKA. As an alter-
native, we present a new explicit definition of antidomain for a class of boolean
quantales that is consistent with binary relations.

Proposition 3. Every boolean quantale S in which (z � x�)y = zy � x� holds
for all x, y, z ∈ S is an AKA with a x = 1 � −(x�).

In fact, the AKA axioms are already derivable in boolean monoids, i.e., boolean
quantales where infinite infima and suprema need not exist. A dual result holds
for antirange Kleene algebras satisfying x(y ��z) = xy ��z and ar x = 1��x.
Boolean quantales satisfying both laws and a(Q) = ar (Q) are thus MKAs.

We have already added test axioms, as described in Sect. 7, to quantales [2]
and implemented a basic fixpoint calculus for quantales in Isabelle [3]. Two key
ingredients are Knaster-Tarski’s and Kleene’s fixpoint theorems. A subsumption
result similar to Proposition 2 can also be formalised in Isabelle.

Proposition 4. Every antidomain and antirange quantale is a test quantale.

Our previous components for test quantales are thus in the scope of domain
quantales and can be combined with the rules for weakest preconditions and
strongest postconditions from Sects. 3, 4, 5 and 6. The following recursion rule,
for example, can be derived for every isotone endofunction f over a domain
quantale:

(∀x ∈ Q. p = |x]q → p = |f x]q) → p = |μf]q.

Examples showing this rule at work have already been published in the setting
of test quantales [2] and are not worth repeating.

Finally, many of the concepts used so far can be defined explicitly in the
modal quantale setting. In particular,

|x]q =
⊔

{p | px ≤ xq}, 〈x|p =
�

{q | px ≤ xq},

R p q =
⊔

{x | px ≤ xq}, ∇x =
⊔

{p | p ≤ |x〉p},

where of course px ≤ xq ↔ H px q and |x〉p =
�{q | xp ≤ qx} by opposition

duality. Hence every antidomain quantale is a modal refinement Kleene algebra
in the sense of Sect. 7 and a divergence Kleene algebra in the sense of Sect. 8.

322 V.B.F. Gomes and G. Struth

10 Extensions and Variations

Program Transformation and Optimisation. By contrast to PDL and similarly to
KAT, MKA allows considering programs outside of modal formulas as first class
citizens. This allows, for instance, the treatment of program transformations and
optimisations, for example in the context of a compiler [2,17].

Predicate Transformer Algebras. The algebra of predicate transformers as func-
tions S → (a(S) → a(S)) can be studied abstractly in the setting of MKA [20].
Consider transformers |x] = λp.|x]p under multiplication |x]|y] = |x] ◦ |y] as
function composition, meet as |x] � |y] = λp.(|x]p)(|y]p), a multiplicative unit
|1] = λp.d p and an additive unit |0] = λp.1. Transformers over (left) antidomain
Kleene algebras then form (left) Kleene algebras with meet as addition and
|x]∗ = |x∗] [20]. Some laws from Lemma 2 can now be represented in point-free
style. Equation (1), for instance, becomes |xy] = |x] ◦ |y]; equation (2) becomes
|if p then x else y] = |d p] ◦ |x]� |a p] ◦ |y]. The Kleene algebra structure simpli-
fies proofs at this level, but unfortunately it seems impossible to implement the
lifting result in Isabelle, though all laws needed for it can be derived.

Changing the Memory Model. The simple store from Sect. 5 can be replaced
modularly, for instance, by one of type string ⇒ (’a ref + (’a⇒ ’a ref)), where
’a ref is a polymorphic reference type for pointers and heaps provided by
Nipkow [23]. Our approach is modular with respect to this new memory model
for verifying pointer algorithms in the predicate transformer setting while using
Nipkow’s lemmas, for example for linked lists (see our Isabelle theories [12]), at
the data level. A store in which variables of heterogeneous type are modelled by
Isabelle records, which is another standard implementation (e.g. [2]), could also
be added with little effort.

Changing the Program Semantics. One can also replace the relational program
semantics modularly by other ones. As an example we have implemented a path
semantics that considers non-empty finite paths (s1, . . . , sn) of program stores
generated by the actions of a program [4,5]. Paths (s1, . . . , sm) and (t1, . . . , tn)
are composed by a fusion product that yields (s1, . . . , sm, t2, . . . tn) if sm = t1
and is undefined otherwise. Sets of non-empty paths under the product XY =
{p | ∃p′ ∈ X, p′′ ∈ Y. p = p′p′′}, set union, the empty set, the set of all paths
of length one and X∗ =

⋃
i∈N

Ri form Kleene algebras [4], in fact AKAs with
aX = {s | ¬(∃p ∈ X. s = first p)}. Then (v := e) = {(s, s[(e s)/v))] | s ∈ EV }
models (the paths semantics of) assignments, predicates are lifted to paths by
�P � = {s | P s} and a path assignment rule |(x := e)]�Q� = �λs. Q(s[(e s)/v])�
can be derived in the path model. It can be combined with the path instances
of our abstract algebraic rules for verifying programs in the path semantics.

11 Conclusion

Our program correctness components [12] are small. Relative to the previous
mathematical components for MKA [11], the weakest precondition component

Modal Kleene Algebra Applied to Program Correctness 323

outlined in Sect. 5 required proving about 30 facts, most of them by automated
theorem proving within the algebra. Based on this, the strongest postconditions
component needed about 10 facts, mainly to make the dual verification rules
explicit. The verification and refinement components for KAT were brought into
scope (Sect. 7) by proving three routine facts in the algebra. The development
of the meta-equational while rule and the resulting total correctness component
required again about 30 facts. Integrating the memory model for pointers and the
path model needed once more just a handfull of proofs. Only the proofs linking
divergence Kleene algebras with noethericity in the relational model required
some more tedious background work.

The components for (modal) Kleene algebras in Isabelle [4,11] include
axiomatic variants that can be used, for instance, for comparing programs and
processes up to simulation and bisimulation equivalence and that are suitable, for
instance, for analysing probabilistic programs. They also contain further models
of computational interest. We expect that verification components for many of
them can be developed as minor variations to the ones presented. To make such
developments easy, we have usually expanded proofs in our Isabelle components
to make them readable, easy to compile and robust to change.

In verification proofs we have obtained a high level of automation that com-
pares with similar tools. Domain-specific data level proof support or techniques
for inferring invariants seem crucial for enhancing automation further.

A modular extension of MKA to separation logic will be the subject of a suc-
cessor article (cf. [10]); the integration of more advanced predicate transformer
models with angelic and demonic nondeterminism, as described in Back and
von Wright’s book [6], seems equally possible. Finally, dynamic logic forms the
basis of Platzer’s approach to verifying hybrid and cyber-physical systems [25].
Developing MKA-based Isabelle components for it would require implementing
a substantial amount of continuous mathematics in Isabelle, but might still be
modular with respect to an algebraic control flow layer.

Acknowledgements. This work was partly supported by EPSRC Programme Grant
REMS: Rigorous Engineering for Mainstream Systems, EP/K008528/1.

References

1. Armstrong, A., Gomes, V.B.F., Struth, G.: Kleene algebra with tests and demonic
refinement algebras. In: Archive of Formal Proofs (2014)

2. Armstrong, A., Gomes, V.B.F., Struth, G.: Building program construction and
verification tools from algebraic principles. Form. Asp. Comput. 28(2), 265–293
(2016)

3. Armstrong, A., Struth, G.: Automated reasoning in higher-order regular algebra.
In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp. 66–81.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33314-9 5

4. Armstrong, A., Struth, G., Weber, T.: Kleene algebra. In: Archive of Formal Proofs
(2013)

http://dx.doi.org/10.1007/978-3-642-33314-9_5

324 V.B.F. Gomes and G. Struth

5. Armstrong, A., Struth, G., Weber, T.: Programming, automating mathematics in
the Tarski-Kleene hierarchy. J. Log. Algebraic Methods Program. 83(2), 87–102
(2014)

6. Back, R., von Wright, J.: Refinement Calculus - A Systematic Introduction.
Springer, New York (1998)

7. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

8. Desharnais, J., Möller, B., Struth, G.: Algebraic notions of termination. Log. Meth-
ods Comput. Sci. 7(1), 1–29 (2011)

9. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput.
Program. 76(3), 181–203 (2011)

10. Gomes, V.B.F.: Algebraic principles for program correctness tools in Isabelle/HOL.
PhD thesis, University of Sheffield (2015)

11. Gomes, V.B.F., Guttman, W., Höfner, P., Struth, G., Weber, T.: Kleene algebra
with domain. In: Archive of Formal Proofs (2016)

12. Gomes, V.B.F., Struth, G.: Program construction and verification components
based on Kleene algebra. In: Archive of Formal Proofs (2016)

13. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A.W., Jones, C.B.,
Wood, K.W. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 101–121. Springer,
London (2010). doi:10.1007/978-1-84882-912-1 5

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
15. Hollenberg, M.: An equational axiomatization of dynamic negation and relational

composition. J. Log. Lang. Inf. 6(4), 381–401 (1997)
16. Jónsson, B., Tarski, A.: Boolean algebras with operators, Part I. Am. J. Math.

73(4), 207–215 (1951)
17. Kozen, D., Patron, M.-C.: Certification of compiler optimizations using Kleene

algebra with tests. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau,
K.-K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000.
LNCS (LNAI), vol. 1861, pp. 568–582. Springer, Heidelberg (2000). doi:10.1007/
3-540-44957-4 38

18. Matichuk, D., Murray, T.C., Wenzel, M.: Eisbach: a proof method language for
Isabelle. J. Autom. Reason. 56(3), 261–282 (2016)

19. Meng, J., Paulson, L.C., Klein, G.: A termination checker for Isabelle Hoare logic.
In: International Verification Workshop (2007)

20. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. Theor.
Comput. Sci. 351(2), 221–239 (2006)

21. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, London
(1994)

22. Németi, I.: Dynamic algebras of programs. In: Gecseg, F. (ed.) FCT 1981. LNCS,
vol. 117, pp. 281–290. Springer, Heidelberg (1981)

23. Nipkow, T., Klein, G.: Concrete Semantics-With Isabelle/HOL. Springer,
Switzerland (2014)

24. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

25. Platzer, A.: Logical analysis of hybrid systems. In: Kutrib, M., Moreira, N., Reis,
R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 43–49. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31623-4 3

http://dx.doi.org/10.1007/978-1-84882-912-1_5
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/978-3-642-31623-4_3

Modal Kleene Algebra Applied to Program Correctness 325

26. Pratt, V.: Dynamic algebras as a well-behaved fragment of relation algebras. In:
Bergman, C.H., Maddux, R.D., Pigozzi, D.L. (eds.) Algebraic Logic and Universal
Algebra in Computer Science. LNCS, vol. 425, pp. 77–110. Springer, Heidelberg
(1990). doi:10.1007/BFb0043079

27. Struth, G.: Left omega algebras and regular equations. J. Log. Algebraic Program.
81(6), 705–717 (2012)

28. Struth, G.: On the expressive power of Kleene algebra with domain. Inf. Proces.
Lett. 116(4), 284–288 (2016)

http://dx.doi.org/10.1007/BFb0043079

Mechanised Verification Patterns for Dafny

Gudmund Grov(B), Yuhui Lin, and Vytautas Tumas

Heriot-Watt University, Edinburgh, UK
{G.Grov,Y.Lin,vt50}@hw.ac.uk

Abstract. In Dafny, the program text is used to both specify and imple-
ment programs in the same language [24]. It then uses a fully automated
theorem prover to verify that the implementation satisfies the specifica-
tion. However, the prover often needs further guidance from the user, and
another role of the language is to provide such necessary hints and guid-
ance. In this paper, we present a set of verification patterns to support
this process. In previous work, we have developed a tactic language for
Dafny, where users can encode their verification patterns and re-apply
them for several proof tasks [16]. We extend this language with new fea-
tures, implement our patterns in this tactic language and show, through
experiments, generality of the patterns, and applicability of the tactic
language.

1 Introduction

Dafny [24] is a program verifier and programming language where the speci-
fication of desired properties is intertwined with their implementation in the
program text. It uses an automated theorem prover to prove that the specifi-
cation is satisfied by the program. A specification serves two purposes: (1) it
specifies the properties to be proven and acts as a documentation of the pro-
gram, which is desirable to include in the program text; (2) it is used to guide
the prover if a property cannot be verified without help. This is a necessary evil,
which is not desirable and may obfuscate the readability of the program text.
We will call this type of specification elements for proofs.

The process of creating a proof typically involves changing, and in most cases
adding, auxiliary annotations such as assertions and loop (in)variants, as well as
manipulation of a ghost state: a state that can be updated and used as normal,
but is only used for verification purposes and will not be compiled. In addition
to increasing the size of the program text, the process of generating proofs can
be very time consuming.

In this paper, we investigate and document a set of verification patterns that
captures common proofs of Dafny programs (Sect. 3). We have previously devel-
oped Tacny, a tactic language for Dafny, which enable users to encode and apply
verification patterns [16]. In Sect. 4 we extend this with new features, before we
mechanise the patterns in Tacny and evaluate them on a set of examples (Sect. 5).
We conclude and discuss relevant and future work in Sect. 6.

This work has been supported by EPSRC grants EP/M018407/1 and EP/N014758/1.
Special thanks to Rustan Leino and his colleagues at MSR.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 326–343, 2016.
DOI: 10.1007/978-3-319-48989-6 20

Mechanised Verification Patterns for Dafny 327

2 Background on Dafny and Tacny

Dafny combines imperative, object-oriented and functional programming lan-
guage paradigms. It support features such as inductive [25], co-inductive [26] and
higher-order [23] types. It uses familiar notations for assignment (x := e), decla-
rations (var x := e;), conditionals (if and if−else) and loops (e.g. while). It also
supports pattern matching (match) and a ‘such as’ operator, where x : | p means
that x is assigned a value such that p holds.

Dafny has been designed for verification. Properties are specified by contracts
for methods/functions in terms of preconditions (requires) and postconditions
(ensures). To verify a program, Dafny translates it into an intermediate verifi-
cation language called Boogie [4]. From Boogie a set of VCs is generated and
sent to the Z3 SMT solver [28]. If it fails, then the failure is translated back to
the Dafny code, via Boogie.

In the case of failure, a user must provide guidance in the program text in
terms of proof details. The simplest form is to add assertions (assert) of true
properties in the program text. In the case of loops, we might also provide loop
invariants (invariant). Loops and recursion have to be shown to terminate and
for advanced cases a user needs to provide a variant (decreases) to help Dafny
prove this.

For more advanced verification tasks, one can make use of the ghost state.
A ghost variable (ghost var) or ghost method can be introduced and used by
the verifier. A lemma (lemma) is a type of ghost method that can be used to
express richer properties, where assumptions are preconditions, and the conclu-
sion becomes the postcondition. The proof is a method body that satisfies the
postcondition, given the precondition. We will see examples of this below, but
note that standard programming language elements are used in the body of the
lemma, which illustrates the close correspondence between proofs and programs.

Tacny is a conservative extension of Dafny with features to implement verifica-
tion patterns as tactics [16]. This tactic language is a meta-language for Dafny,
where evaluation of a tactic works at the Dafny level: it takes a Dafny program
with tactics and tactic applications, evaluates the applications and produces a
new valid Dafny program, where tactic calls are replaced by Dafny constructs
which tactics have generated.

A tactic is a special Dafny ghost method, recognised by the tactic keyword. It
contains many features to talk about a program, and features to generate proofs
in terms of Dafny by transforming the program. A crucial property is that neither
the program, nor the actual (non-proof) specification, can be changed – which
we call contract-preserving transformations [16].

The application of a tactic will transform a tactic call into the Dafny code
generated. To illustrate, the following tactic

t a c t i c n a t a s s e r t ()
{ t a c t i c var n : | n i n v a r i a b l e s () ;

a s s e r t n ≥ 0 ; }

328 G. Grov et al.

will first bind n to a local variable where it was called. This binding is in the
tactic world. If there are more than one variables then a search branch will be
created for each variable (and it will fail if there are none). The result of applying
this tactic is that an assertion, which asserts that the variable is positive, replaces
the tactic call. A tactic will either be evaluated until the tactic reach the end of
the code, or a proof is found. The top-level tactic application (a tactic that is not
applied by another tactic) will only succeed if a proof is found on termination.
A formal evaluation semantics is given in [16]1.

A design goal for Tacny is to make Tacny intuitive for Dafny users. It there-
fore makes use of many Dafny constructs, and follows standard Dafny con-
ventions otherwise. As far as possible, the language supports declarative (or
schematic) tactics, i.e. a schematic representation of a proof patterns is given
and Tacny is used to fill in the details. A more detailed account of the Tacny
features is given in Sect. 4, where we describe the new features developed here.
Next, we outline some more informal verification patterns that are independent
of Tacny.

3 Verification Patterns for Dafny

Although Dafny relies on an automatic prover, Dafny proofs should not be seen as
automatic. Instead they are called auto-active as the proof guidance is abstracted
from the underlying prover to the program text. This has had positive usability
effects on a syntactic level, as one do not need to learn an additional language
to conduct proofs; and conceptually, as one can think of proofs in terms of
programming, rather than the prover. The verification patterns introduced in
this section capture proofs at the Dafny level. They are a result of analysing
programs in the Dafny repository [1], analysing programs we have developed,
and discussion with the developers of IronFleet [19], a large Dafny development
consisting of 40K lines of proofs [18]. The source code and additional details of
the examples can be found on a dedicated web-page [2].

3.1 Patterns as Macros

A very simple pattern is to capture repetitive code, possibly with slight varia-
tions. This can be seen as a macro, as found in some programming languages
(e.g. C). In our sense, we see a macro as a named entity of some repetitive code,
as illustrated by the following lemmas:

lemma minus dist() ensures ∀m, n • minus(add(m, n), n) =m;
{ assert ∀ m,n • add(Suc(m),n) =Suc(add(m,n));
assert ∀ m, n • add(m, n) =add(n, m); }

lemma geq dist() ensures ∀ m, n • geq(add(Suc(m),n),n) =True;
{ assert ∀ m,n • add(Suc(m),n) =Suc(add(m,n));
assert ∀ m, n • add(m, n) =add(n, m); }

1 The requirement that a tactic has to find a proof is a result of user feedback, and is
not required in the semantics described in [16].

Mechanised Verification Patterns for Dafny 329

Here the proofs (i.e. body) of these lemmas are identical, and can thus be turned
into a macro (see Sect. 5). Possible reasons for using macros is to hide details in
code, or to reuse code across verifications tasks. Note that the macro pattern is
common in the IronFleet proofs [19].

3.2 Proof by Cases and Induction

Two common and general proof patterns are proof by cases and proof by induc-
tion. We discuss these together as their representation are very similar in Dafny.

In its simplest form, a proof by cases step is achieved by an if statement,
where the condition is the case to split on. For a proof by natural induction, the
lemma being proven typically has a natural number n as an argument, and the
condition is used to separate base from step cases (often n =0). In the step case,
a recursive call is made to the lemma with n decremented. This will reveal the
induction hypothesis (i.e. the postcondition of the lemma for n−1).

To illustrate, consider a mutually recursive definition of even and odd. The
following lemma proves that all natural numbers are either even or odd:

lemma e v en o r odd (n : nat)
ensures even (n) ∨ odd (n)

{ i f n = 0 ∨ n = 1{ }
e l s e { e v en o r odd (n−1); }}

Note that Dafny has a hard-coded tactic for this type of induction proofs [25].
It normally proves these simple cases where the step case only involves a call
to itself. However, it did not work in this case, possibly due to the mutually
recursive nature of even and odd. In cases where the step case needs more work,
Dafny’s induction tactic will not work (automatically), and more interaction
is required (see e.g. [18] for examples). The pattern could also be written in
different ways, such as:

i f n = 0 { re tu rn ; } . . . i f n �= 0 { . . . }
The dots (. . .) represents the step case. A proof by cases is similar, but without
the recursive call. Multiple cases can be achieved by multiple if statements.

Another type of induction is when each case is a constructor in an inductively
defined data type. In that case, a match statement is used, which will also
perform a suitable binding of the variables in the constructor. For constructors
with recursive arguments, a recursive call to the same lemma is made. This
is a proof technique called structural induction [7]. To illustrate, consider the
following inductive data type:

datatype aexp = N(n : i n t) | V(x : vname) | Plus (0 : aexp , 1 : aexp)

Here, the Plus constructor has two recursive arguments (i.e. they are of the same
aexp type). Omitting irrelevant parts, a proof of a lemma by structural induction
will then look as follows in Dafny:

lemma AsimpConst (a : aexp , s : s t a t e) . . .
{ match a

330 G. Grov et al.

case N(n) ⇒
case V(x) ⇒
case Plus (a0 , a1) ⇒ AsimpConst (a0 , s) ; AsimpConst (a1 , s) ; }

This is a very common proof technique when working with inductive data types.
In fact, most interactive theorem provers will automatically generate an induc-
tion principle when defining inductive data types such as aexp. As shown in [16],
a similar pattern can be applied for co-induction [26].

3.3 Proof by Contradiction

Another common proof pattern (for classical logics) is proof by contradiction. In
order to prove a property P , this amounts to assuming ¬P and derive false from
it. Again, this technique is frequently used in [18]. To implement it in Dafny,
the negated property ¬P becomes the condition of an if statement, with false
asserted at the of the body of the if statement. The following example illustrates
this pattern:

lemma s e t i n t e r emp t y c o n t r (A: set<i n t >, B: set<i n t >, x : i n t)
r e qu i r e s x i n A ∧ A ∗ B = {}
ensures ¬(x i n B)

{ i f x i n B {
a s s e r t x i n A ∗ B;
s e t e q s im p l e (A∗B,{} , x) ;
a s s e r t x i n {} ;
a s s e r t f a l s e ; }}

Here, set eq simple states that if x is in A∗B (the intersection of A and B) then
x is in {}. This (rather trivial) lemma application was required for the proof.

3.4 Loop Invariants

The discovery of sufficiently strong loop invariants is one of the most impor-
tant parts of verifying imperative code. A substantial amount of work has been
conducted to automate such discovery. Techniques include abstract interpreta-
tion [11], constraint-based techniques [10,17], inductive logic programming [13],
symbol elimination [20] and predicate abstraction [29]. Dafny uses abstract inter-
pretation (at the Boogie-level) [4]. Still, there are many cases where the user has
to provide loop invariants manually in order to verify code. Below we outline
three patterns for “manual” loop invariant discovery.

The Gries and van de Snepscheut Approach. In their systematic
approaches to program development, Gries [15] and van de Snepscheut [32]
developed several heuristics for verified program construction. Here, we adapt
their heuristics for loop invariant discovery (assuming the actual code has been
provided), resulting in the following patterns where an invariant is created by:
(i) deleting a conjunction in a postcondition; (ii) replacing a constant of a

Mechanised Verification Patterns for Dafny 331

postcondition with a local variable; and (iii) enlarging the range of a variable of
a loop guard. The following example illustrates all of these loop patterns:

method FindMax(a : array<int>) returns (i : int)
requires a �= null ∧ a . Length > 0
ensures (0 ≤ i < a . Length)
ensures (∀ k • 0 ≤k < a . Length =⇒ a[i] ≥a[k])

{ var idx , j , i := 0, 0, 0;
while (idx < a . Length)

invariant idx ≤a . Length //(iii)
invariant 0 ≤ i < a . Length //(i)
invariant ∀ k • 0 ≤k < idx =⇒ a[i] ≥a[k] //(ii)

{ if (a[idx] > a [i]) { i := idx ; }
idx := idx + 1; }}

Use of Guards. Another pattern seen (albeit not as commonly) combines
(negated) loop guards and guards of conditionals in the invariant. This is illus-
trated in the following example:

method Main () {
var a , b , c , i := 0 , −1 ,0 ,100;
whi le a �= b
i n v a r i a n t ¬(c < i) =⇒ ¬(a �= b)
decreases i−c

{ b , c := a , c + 1 ;
i f (c < i) {
a := a + 1;}}}

Use of Recursive Functions. One may argue that it is easier to reason in
the functional fragment of Dafny compared with imperative code. A pattern
exploring this generates a recursive function that is defined in the same way as
the loop, and proves that this function satisfies the desired postcondition (of the
method). This is typically proven by induction. A loop invariant is required to
relate the function to the loop body. To illustrate, the following code has a loop
invariant that relates the code to a function called find max aux:

method find max idx (a : seq<int>) returns (x : int)
requires a �= []
ensures 0 ≤ x ≤ |a| − 1
ensures ∀ i • 0 ≤ i ≤ |a| − 1 =⇒ a[i] ≤a[x]

{ var x,y,N,A := 0,| a |−1,0,|a|−1;
while (x �= y) . . .
invariant find max aux(a,x,y) = find max aux(a,N,A)

{ if (a[x] ≤ a[y]){x := x + 1;}
else {y := y − 1;}}

proof find max aux(a, N, A);}

332 G. Grov et al.

The function is defined as follows:

f unc t i on f i nd max aux (a : seq<i n t >, x : i n t , y : i n t) : i n t . . . {
i f | a [x . . y +1] | = 1 then x
e l s e i f (a [x] ≤ a [y]) then f i nd max aux (a , x + 1 , y)
e l s e f i nd max aux (a , x , y − 1) }

As can be seen, the code of find max aux captures the body of the while loop2.
The proof find max aux lemma relates the function to the postcondition:

lemma proof find max aux(a : seq<int>,x : int,y : int) . . .
ensures ∀ i • x ≤ i ≤y =⇒ a[i] ≤ a[find max aux(a, x, y)]{}

4 Tactics for Dafny (Tacny)

To mechanise the verification patterns as Dafny tactics (Sect. 5), new features of
the Tacny language [16] are required. Here we describe these features, and outline
some existing important language properties used in the tactics of Sect. 5. It will
be clear which parts are from [16] – the rest, which is summarised in Appendix A,
should be considered as a contribution.

A design goal of Tacny is to make the language as familiar as possible to users
by exploiting known Dafny constructs and conventions. As far as possible, we try
to support declarative features in the tactics, where schematic representations
of proof patterns are given as opposed to a set of procedures. Consequently, a
tactic should look like Dafny code, which we believe will be more familiar and
intuitive for users. This has been inspired by declarative tactic languages for
interactive theorem provers (e.g. [3]).

A tactic is a ghost method, identified by the tactic keyword, for example:

t a c t i c e x t a c (v : Element , t : Term , tac : Tac t i c)
r e qu i r e s P
ensures Q

{ . . . }

Types. As this is a meta-level language, constructs to talk about a program are
required. To achieve this, two new types were introduced in [16]: Element cap-
tures a named element of the Dafny program text, such as a variable, method
or lemma; while Term refers to the term representation of a formula (which can
then be manipulated). Here, we introduce a third type Tactic, which makes a
tactic a first class value. A (fully instantiated) tactic application can be passed
to another tactic and used therein. A limitation is that it has to be fully instan-
tiated, meaning that proper higher-order programming, where tactics can take
arguments, is not (yet) supported. We use the Tactic type extensively in Sect. 5.

2 The generation of this function happens to be the inverse of the well-known tail-
recursion to loop compiler optimisation [8].

Mechanised Verification Patterns for Dafny 333

Statements.3 When used within Tacny, Dafny constructs have two different uses:
in a declarative tactic they are part of an outline of code to be generated by
Tacny, and we call this the object-level ; they can also be used to control evalua-
tion of tactics, and in this case they are at the tactic-level. It is a design decision
if these should be separated syntactically, i.e. separate constructs for each level
(meaning additional syntax) vs. the same constructs for both levels (meaning
different semantics for the same syntax). We are using a combinations of these
approaches.

Both if and while statements are used across the object-level and the tactic-
level: they belong to the tactic-level if Tacny can evaluate the condition (to either
true or false); and to the object-level if not4. The justification for this is that
such constructs are familiar for users. Variable declarations, on the other hand,
have been syntactically separated as the distinction is less clear. This is achieved
by preceding a tactic-level declaration by tactic5:

t a c t i c var x := e ;

If tactic is omitted, then variable x will be in the object-level and thus part of
the code to be generated. One can shorten tactic var and just write tvar.

In addition to assignment (x := e), the ‘such as’ operator (x : | p) is sup-
ported, albeit in a restricted form. Here, we need to be able to enumerate all
possible values that x can have, and Tacny will generate a branch in its search
space for each possibility. The Tacny statement, s || t, will either apply state-
ment s, or statement t. Tactic calls are supported, which become normal method
calls. To develop new tactics, a set of hard-coded and low-level atomic tactics
are provided by the Tacny system, while expressions are extended with a set of
lookup functions about the program. These are discussed next.

Atomic Tactics. The simplest atomic tactic involves (generating code for) a
lemma or ghost method application. Following our declarative approach, this is
represented exactly like a method call. For example, assume tvar m,a := lem,v,
where lem is a lemma and v is a variable. The statement m(a+1); within a tactic
will result in code containing the method call lem(v+1)6. Assertions, invariants
and variants are handled using existing Dafny constructs, as can be seen below:

a s s e r t a = 1 ; i n v a r i a n t a = 1 ; decreases a ;

Tacny will instantiate the tactic-level constructs (a) to the object-level counter-
part (v). Note that if invariant or decreases is used in the body of a loop (or
method for the latter), then they will be added to the loop invariant (or method

3 All the statements, including the atomic tactics (modular some name changes) were
introduced in [16].

4 Meaning, code such as while true {. . .} cannot be generated.
5 This naming convention is used for ghost variables in Dafny, which in certain cases

needs to be declared as ghost var.
6 If a sequence is given as argument for a method that does not expect a sequence,

then Tacny will automatically unroll the sequence into multiple arguments.

334 G. Grov et al.

declaration for variants) and not at the point of the tactic call as normally hap-
pens. They can also be called where the invariant/contract is stated.

The explore (m : Element,args : Seq<Element>) tactic generates all possible
application of ghost method/lemma m with arguments taken from args. The
proof of AsimpConst (Sect. 3.2) illustrated the use of the match statement to do
a case analysis of all constructors for a variable v of an inductively defined type.
The tactic tactic match v { . . .} will generate such a match. Here, v is of type
Element, and its body (. . .) contains tactics to be applied for each constructor.
tmatch is a shorthand notation for tactic match7.

Lookup Functions and Expression-Level Atomic Tactics. One often need proper-
ties of the program in tactics, and Tacny keeps track of a context that contains
such information. Several “look-up” functions from the context are provided.
lemmas(), methods() and functions () return the name of available lemmas, meth-
ods and functions as sequences of Elements (Seq<Element>). caller () returns
the name (type Element) of the method/lemma/function in which the tactic
call was made8. The functions below works on the original caller. They also
accept an optional argument (omitted below), allowing users to look up these
properties on other methods and lemmas. preconditions () and postconditions ()
return sequences of Terms holding all the preconditions or postconditions; args ()
and variables () return the local arguments and variables of the element (type
Seq<Element>); if guards () and loop guards() return sequences of Terms, hold-
ing the guard of all conditionals and loops, respectively, while loop guard()
returns the loop guard of the loop where the tactic call is made (and fails oth-
erwise).

The predicates is inductive (v : Element) and is nat (v : Element) check if the
given elements are variables of an inductively defined type or a natural number,
respectively; is inductive can also be applied to a constructor to check if any
of its arguments are recursive. eq type(x : Expr,y : Expr) checks if two expressions
are of the same type. When applied within the body of a match or tmatch,
get constructor () will return a pair of the constructor name (Element) and its
arguments (Seq<Element>).

consts(t : Term) returns all constants of t (as a sequence of Terms);
split (t : Term,sep : Term) splits all occurrences of sep in t into (a sequence of)
separate terms9; replace (x : Element,y : Element,z : seq<Element>) replaces all
occurrences of x with y in z; subst(t : Term,m : map<T,U>) applies the sub-
stitutions of map m in t. The map is overloaded: it allows T and U to be of types
Term, Element or string , where the latter two are treated as named constants.
Finally, explore can also be applied as an expression, and returns a term with a
function application.

7 In [16], explore was called perm and tactic match called cases.
8 If this is a nested tactic call, then it refers to the name of the method/lemma/function

that called the parent tactic.
9 For example, split (A ∧B, ∧) will return [A,B].

Mechanised Verification Patterns for Dafny 335

Tactic Calls within Expressions. A limitation of [16] was that tactics could
only be used within statements. Here, we extend the framework with tactic
applications within expressions. These have the syntax10:

f unc t i on t a c t i c e x p r t a c (. . .) {. . .}
Note that a function tactic will not necessarily generate any code; it will return
a Term which may generate code depending on where the call is made (and
possible generate multiple search branches). E.g. it will not generate code on the
r.h.s of a tvar, but it will when called in a Tacny tactic such as:

a s s e r t e x p r t a c (. . .) ;

Tactic-Level Contracts and Annotations. A new feature added is to support
annotations/contracts at the tactic-level. These are interpreted dynamically, and
are used to cut-off invalid branches as early as possible: e.g. if a tactic-level
assertion or precondition fail (returns false), then the tactic will fail. We can
write an assertion P as

t a c t i c a s s e r t P ;

or just tassert , while ex tac illustrates the tactic contracts. This is used in Sect. 5.

Runtime Improvements. We have made improvements in the runtime and mem-
ory usage of tactics as a result of improved static checking, lazy evaluation and
improved support for different search strategies. On our test data [31], an aver-
age speed-up of 44% and memory usage reduction of 23% was achieved (and
these increased with the size and complexity of tactics). The details are omitted
for space reasons – see Tumas’ honours thesis for details [31].

5 Verification Patterns Implemented as Dafny Tactics

With the new extensions to the Tacny language, we can now implement the
verification patterns from Sect. 3 as Dafny tactics, and apply them in the Tacny
tool. The results from this application is summarised at the end of this section,
while all the code is available from [2]11.

5.1 Tactics as Macro Expansions

In Sect. 3, we saw that a common pattern is to extract repeated code, possibly
with slight variations, as a macro. It does not have to contain an underlying
high-level pattern, so in many ways this is just syntactical. Instantiating macros
is normally called macro expansion, and we therefore see tactic applications as
macro expansions.

The proof of lemmas minus dist and geq dist are identical (see Sect. 3), so
the macro becomes the code within their proofs:
10 This syntax is inspired by the syntax for function method used in Dafny.
11 The supported tool syntax has some minor limitations and thus deviates slightly.

336 G. Grov et al.

tactic dist macro()
{ assert ∀ m, n • add(Suc(m), n) = Suc(add(m,n));
assert ∀ m, n • add(m, n) = add(n, m); }

The lemmas using this tactic will then only contain a tactic call:

lemma minus dist() ensures ∀m, n • minus(add(m, n), n) = m;
{ dist macro (); }
lemma geq dist() ensures ∀ m, n • geq(add(Suc(m), n), n) = True;
{ dist macro (); }

When there are slight variations one can either provide the parts that varies
as arguments, or introduce search into the tactic.

In Dafny, commonalities can often be captured as as a lemma or a method.
However, due to modularity, they require that all assumptions are explicitly
stated as preconditions, and that all the relevant outcomes are explicitly stated as
postconditions. If the goal is to capture some repetitive code as a macro, then, in
most cases, stating these assumptions and outcomes can be very tedious, making
lemmas unsuitable for this task. As tactics replaces a call with the generated
code, such explicit statements are not required, thus making it a more suitable
representation.

5.2 Proof by Cases and Induction

As in Sect. 3, we treat induction and case-split together as the former needs
a case-split first in Dafny. The following tactic is a generic tactic for natural
induction:

t a c t i c n a t i n d (cond : Tact i c , base : Tact i c , s t e p : Tac t i c)
{ i f cond () { base () ; }

e l s e { t a c t i c var m := c a l l e r () ;
tva r a : | a i n a r g s ()
t a c t i c a s s e r t i s n a t (a) ;
m(a−1);
s t e p () ; }}

The tactic takes three tactics as arguments: the first (cond) is used to generate
the condition (e.g. n =0 when n is the inductive argument); the second (base)
is used to handle the base case; and the third (step) is used for the step case.
The first four lines of the step case will generate a recursive call to reveal the
induction hypothesis. This is the only difference with proof by cases, where these
four lines are omitted.

For the even or odd lemma, the condition is defined using a function tactic:

f unc t i on t a c t i c na t i n d cond ()
{ tva r a : | a i n a r g s () ∧ i s n a t (a) ;

a=0 ∨ a=1 }
The lemma can then be proved by the call: nat ind(nat ind cond (), id (), id ()) .

Mechanised Verification Patterns for Dafny 337

For structural induction, a match statement is generated using our
tactic match tactic, with recursive calls for the recursive constructors:

t a c t i c s t r u c t i n d (v : Element , t : Tac t i c)
r e qu i r e s i s i n d u c t i v e (v) ;

{ t a c t i c match v {
tva r c , c a r g s := g e t c o n s t r u c t o r () ;
i f i s i n d u c t i v e (c) {

tva r m, a r g s := c a l l e r () , a r g s () ;
tva r i := 0 ;
whi le i < | c a r g s |
{ i f eq t yp e (v , c a r g s [i])

{ m(r e p l a c e (v , c a r g s [i] , a r g s) }
i := i + 1 ; }

t () ; }}
The tactic takes as arguments: a variable v of an inductively defined type
(ensured by the precondition); and a tactic t to be applied to each case. For
the recursive constructors, a recursive call to the caller is made for each (con-
structor) argument of the same type of v, with v replaced by this argument.

5.3 Proof by Contradiction

Proof by contradiction involves assuming the negation of the desired property
and deriving false. For Dafny, the property is often (one of) the postcondition(s).
The following contr tactic picks one postcondition, and shows, using an if con-
dition, that its negation will result in a contradiction. The method takes a tactic
as argument that is used to derive the contradiction:

t a c t i c con t r (t ac : Tac t i c)
{ t a c t i c var pos t : | pos t i n p o s t c o n d i t i o n s () ;

i f ¬pos t {
t ac () ;
a s s e r t f a l s e ; }}

For our set inter empty contr lemma, we can follow the macro expansion app-
roach and give the code directly:

t a c t i c tbody ()
{ a s s e r t x i n A ∗ B;

s e t e q s im p l e (A∗B,{} , x) ;
a s s e r t x i n {} ; }

The lemma is verified by the following call: cntr(tbody()).

5.4 Loop Patterns

The Gries & van de Snepscheut Approach. In Sect. 3.4, we described an
approach that we called the ‘Gries & van de Snepscheut approach’. It contains
three patterns, and we implement each of them as a tactic:

338 G. Grov et al.

t a c t i c d e l e t e c o n j p o s t ()
{ tva r pos t : | pos t i n p o s t c o n d i t i o n s () ;

tva r i n v : | i n v i n s p l i t (post ,∧) ;
i n v a r i a n t i n v ; }

t a c t i c c o n s t t o v a r ()
{ tva r pos t := p o s t c o n d i t i o n s () ;

tva r i n v0 : | i n v i n s p l i t (post ,∧) ;
tva r cons : | con s t i n c on s t s (post ’) ;
tva r v : | v i n v a r i a b l e s () ;
i n v a r i a n t s ub s t (inv0 , map [c := v]) ; }

t a c t i c s t r e n g t h e n gua r d ()
{ i n v a r i a n t s ub s t (l o op gua rd () ,map [”<” :=”≤” , ”>” :=”≥”]) ; }
A simple implementation of an overall pattern applies them one after another:

t a c t i c GvdS approach ()
{ d e l e t e c o n j p o s t () ; c o n s t t o v a r () ; s t r e n g t h e n gua r d () ; }
Note that this rules out multiple application of one pattern and would fail if
either of them fail. For space reasons we have omitted more generic and complex
versions. This tactic is able to discover the invariants for the FindMax lemma
and thus verify it.

Use of Guards. The second loop pattern is a combination of (possibly negated)
guards:

t a c t i c i n v g u a r d ()
{ tva r xx : | xx i n i f g u a r d () + l o op gua r d s () ;

tva r yy : | yy i n i f g u a r d () + l o op gua r d s () ;
tva r x : | x = xx ∨ x = ¬xx ;
tva r y : | y = yy ∨ y = ¬yy ;
i n v a r i a n t x =⇒ y ; }

The inv guard tactic projects all the guards from if and while statements. It
then creates an invariant, which is an implication where both the antecedent and
consequent is a guard or a negated guard. This tactic generates the invariant
and proves the Main method of Sect. 3.4:

Use of Recursive Functions. Tacny only partly supports the ‘use of recur-
sive functions’ pattern of Sect. 3.4. The pattern requires: generation of a func-
tion (from the loop body); generation of a lemma (to connect the function and
postcondition); and a lemma call outside the loop body (i.e. on the loop exit).
Currently, lemma and function generation is not (yet) supported. This is how-
ever planned future work (see Sect. 6). A limited version can be implemented

Mechanised Verification Patterns for Dafny 339

if we assume the existence of such function, lemma and lemma call. Tacny
can then generate the required loop invariant, which link the function with the
loop body:

t a c t i c r e c f u n c (func : Element)
{ tva r a r g s := v a r i a b l e s () + a rg s () ;

tva r l h s := e x p l o r e (func , a r g s) ;
tva r r h s := e x p l o r e (func , a r g s) ;
i n v a r i a n t l h s = r h s ; }

A tactic could have generated the lemma call too, however this requires the loop
invariant to be generated within the loop, whilst the call has to be outside the
loop body. Generated such code multiple places from a tactic is not currently
supported and discussed further in Sect. 6.

5.5 Summary and Results

Figure 1 summarises the results from our experiments with the patterns as tac-
tics. Further details and code can be found on a dedicated web-page [2]. The table
on the l.h.s. shows the total number of pattern instances (Inst) and the number
of different tactics implemented (Tactics). In order to get an idea of time and
memory usage, the r.h.s. summarises the run-time (X-axis) and search space size
in terms of the number of nodes/steps (Y -axis) using logarithmic scales. Many
tactics were re-used across methods and programs, but in some cases slightly dif-
ferent implementations were required (e.g. multiple different macro expansions).
In most cases, Tacny used less than 10 s to run on a standard laptop (Intel i7
with 8GB RAM). On average, Boogie accounted for around 95% of the execu-
tion time, highlighting the importance of improving the integration with Boogie
and Dafny. This is the reasons for the two outliers in Fig. 1 (right), which has a
considerable larger search space and runtime compared with the other examples.

Pattern
Insts

Tactics

Cases
15
4

Macro
8
5

Cntr
3
1

GvdS
6
3

Guard
1
1

Recur
4
2

1
10

10
0

10
00

1.0 10.0 100.0 1000.0

Cases
Cntr&Macro
Macro
GvdS
Recur
Guard

Time in seconds

S
ea

rc
h

 S
p

ac
e

Fig. 1. Evaluation results

340 G. Grov et al.

6 Related Work, Conclusion and Future Work

One contribution has been a set of (informal) verification patterns, extracted
from various sources including [1,15,18,32], which we believe could support
novices with their proofs. Surprisingly little work has been done in capturing
and documenting verification patterns for mechanised systems12. Freitas and
Whiteside [14] captures a set of proof patterns for formal methods conjectures in
an interactive theorem proving (ITP) setting. Bundy’s proof plans [5] is a more
formal representation of proof patterns for meta-level reasoning, and includes
work for algebraic equations in the PRESS system [30] and the rippling strat-
egy for inductive proofs [6]. There is also a book by Joshi on proof patterns for
mathematics [21], but this does not address mechanised proofs.

Although undocumented, patterns are still used within most theorem proving
based system, implemented as heuristics or tactics in some cases. For example,
Dafny has an “induction tactic” [25] to automate simple, yet common, cases of
inductive proofs, while ITP systems such as Isabelle and Coq, will have a large
collection of tactics to support users. These systems have also started to move
the language where tactics are implemented from its implementation language
(typically ML variants) to the proof language (e.g. LTac for Coq [12] and EisBach
for Isabelle [27]). Autexier and Dietrich [3] has taken this even further and
developed a declarative tactic language where tactics are written schematically.
Inspired by declarative tactics, our work is analogous to [3,12,27], as users can
encode proof patterns (tactics) in the program text of Dafny, as opposed to its
implementation language (C#), as was the case in e.g. [25].

Building on our initial tactic language [16], our main contributions have
been the encoding of the discovered proof patterns as Dafny tactics, together
with the necessary extensions to the language. We have shown that the patterns
and tactics are generic by applying them to multiple examples, with a reason-
able running time. In addition to being an exercise in encoding Dafny tactics,
we have shown feasibility and highlighted invaluable language features. Firstly,
the language gives a tactic developer freedom to focus on encoding the patterns
without concerns of soundness issues (which was the case in [25]), as the actual
verification is still conducted by Dafny13. The ability to pass tactics as argu-
ments has enabled us to develop more generic tactics. However, in many cases
it would have been useful to improve tactic composition by supporting tactics
with arguments to be passed between tactics. Dafny’s type system now supports
higher-order features [23]. A next step is to improve the type system in Tacny,
and incorporating such features would be beneficial.

The code fragment x : | x in P is used extensive in our tactics and a shorthand
notation for this will be useful14. We are also considering automatically binding
variables that occurs frequently (as in [27]) to reduce the code that users have

12 Klein’s FM 2014 keynote also addressed this limitations and its importance.
13 Under the proviso of contract preservation as discussed in Sect. 2 and formalised

in [16].
14 For example, Event-B has an operator x :∈ P to express this.

Mechanised Verification Patterns for Dafny 341

to write, e.g. vars (or Tacny.vars) for variables (). Instead of explicitly introduce
branches through assigning a variable with : |, a similar notation could be used.
For example, in cases where sequences are not expected, split (P ∧Q,∧) could
automatically be bound to P in one branch and Q in another branch.

We would also like to include features to generate new lemmas and functions,
and investigate how to encode tactics that generate code at different places in
a method. This will help us to encode the full ‘recursive function’ loop pattern.
Dafny’s (experimental) refinement feature uses a ‘. . .’ notation to step over code
[22], which would serve as a starting point. Another limitation is that we need to
hard-code functions, such as replace in the struct ind tactic, which could have
been implemented in Dafny directly (user-defined Dafny functions are not sup-
ported at the tactic-level). This will require us to write an interpreter, or possible
utilise Dafny’s existing compiler into C# (our implementation language).

Following from user feedback, we have improved the language of [16], and
user evaluations will also play crucial role to ensure a user friendly language
in the future. We are now in the process of developing a tighter integration
with Dafny, Boogie and the Dafny IDE, where failure-handling and features for
debugging tactics are high on our agenda; we believe that these are crucial for
adaptation. This will hopefully help us addressing the Boogie bottleneck (see
Sect. 5.5).

Some of our tactics can be found in ITP systems: e.g. proof by contradic-
tion, natural induction and structural induction are common; while Dafny can
already automate simple inductive lemmas. The explore tactic is a simple form
of term synthesis at the Dafny level, as used in e.g. HipSpec for Haskell [9]. We
plan to implement tactics for richer explorations, supporting more than single
statements and conditionals. We have already discussed automated approaches
for loop invariant discovery in Sect. 3.4. A key distinction from these techniques
is that tactics follows a more human-oriented approach, where the developer’s
(mental) pattern is encoded as a tactic.

Other important challenges include the discovery of new patterns and their
corresponding tactic implementations, and to address scalability of the approach.
For example, a common pattern used in IronFleet is to first unfold universal
quantification, set up a proof by contradiction and then apply some lemmas
afterwards [19]. We support some of these components, but would like to com-
plete the circle and see if we can develop a tactic for the complete pattern, which
also handles the size of this program.

A Summary of New Tacny Features

This paper has extended and improved Tacny from the version presented in [16]
as follows:

– A new type Tactic that makes a tactic a first class value is introduced.
– function tactic and tactic applications within expressions are now supported.
– Contracts for tactics, and tactic-level assertions have been added.

342 G. Grov et al.

– Several new atomic tactics and lookup functions are supported, includ-
ing: caller (); preconditions (); postconditions (); if guards (); loop guards();
is inductive (v : Element); is nat (v : Element); eq type(x : Expr,y : Expr);
get constructor (); consts(t : Term); split (t : Term,sep : Term);
replace (x : Element,y : Element,z : seq<Element>);
subst(t : Term,m : map<T,U>); and explore as an expression.

– Considerable runtime improvements have been achieved.
– The syntax is improved to align with Dafny conventions and declarative tac-

tics. For example: cases has become tactic match (or tmatch); tactic-level
variable declarations have changed from var to tactic var (or tvar); Dafny-
level variable declarations have changed from fresh var to var.

References

1. Dafny Website. research.microsoft.com/dafny
2. The Tacny project: FM 2016 information. https://sites.google.com/site/

tacnyproject/fm-2016. Accessed 29 May 2016
3. Autexier, S., Dietrich, D.: A tactic language for declarative proofs. In:

Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 99–114.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5 9

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

5. Bundy, A.: A science of reasoning. In: Lassez, J.L., Plotkin, G. (eds.) Compu-
tational Logic - Essays in Honor of Alan Robinson, pp. 178–198. MIT Press,
Cambridge (1991)

6. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Science, vol.
56. Cambridge University Press, Cambridge (2005)

7. Rod, M.: Burstall: proving properties of programs by structural induction. Comput.
J. 12(1), 41–48 (1969)

8. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM (JACM) 24(1), 44–67 (1977)

9. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating induc-
tive proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS (LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38574-2 27

10. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation
using non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45069-6 39

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pp. 84–96. ACM (1978)

12. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A.
(eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000). doi:10.
1007/3-540-44404-1 7

http://www.research.microsoft.com/dafny
https://sites.google.com/site/tacnyproject/fm-2016
https://sites.google.com/site/tacnyproject/fm-2016
http://dx.doi.org/10.1007/978-3-642-14052-5_9
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-38574-2_27
http://dx.doi.org/10.1007/978-3-642-38574-2_27
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/3-540-44404-1_7
http://dx.doi.org/10.1007/3-540-44404-1_7

Mechanised Verification Patterns for Dafny 343

13. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, A.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007)

14. Freitas, L., Whiteside, I.: Proof patterns for formal methods. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 279–295. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-06410-9 20

15. Gries, D.: The Science of Programming, 1st edn. Springer, New York (1987)
16. Grov, G., Tumas, V.: Tactics for the dafny program verifier. In: Chechik, M.,

Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 36–53. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49674-9 3

17. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02658-4 48

18. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles, pp. 1–17. ACM
(2015)

19. Hawblitzel, C., Lorch, J., Parno, B.: Personal discussions, December 2015
20. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vampire. In: Abdulla,

P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19835-9 7

21. Joshi, M.: Proof Patterns. Springer, New York (2015)
22. Jason Koenig, K., Leino, R.M.: Programming language features for refinement

(2015)
23. Leino, K.R.M.: Types in Dafny, 27 February 2015. http://research.microsoft.com/

en-us/um/people/leino/papers/krml243.html. (Manuscript KRML 243)
24. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

25. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-27940-9 21

26. Leino, K.R.M., Moskal, M.: Co-induction simply. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 382–398. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06410-9 27

27. Matichuk, D., Wenzel, M., Murray, T.: An isabelle proof method language. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 390–405. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-08970-6 25

28. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

29. Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: ACM Sigplan Notices, vol. 44, pp. 223–234. ACM (2009)

30. Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., Silver, B.: Solving symbolic equa-
tions with press. In: Calmet, J. (ed.) EUROCAM 1982. LNCS, vol. 144, pp. 109–
116. Springer, Heidelberg (1982). doi:10.1007/3-540-11607-9 13

31. Tumas, V.: Search space reduction for Tacny tactics. Honours thesis, Heriot-Watt
University (2016). https://sites.google.com/site/tacnyproject/

32. van de Snepscheut, J.L.A.: What Computing is All About. Springer, New York
(1993)

http://dx.doi.org/10.1007/978-3-319-06410-9_20
http://dx.doi.org/10.1007/978-3-662-49674-9_3
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-642-19835-9_7
http://research.microsoft.com/en-us/um/people/leino/papers/krml243.html
http://research.microsoft.com/en-us/um/people/leino/papers/krml243.html
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-27940-9_21
http://dx.doi.org/10.1007/978-3-319-06410-9_27
http://dx.doi.org/10.1007/978-3-319-08970-6_25
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-11607-9_13
https://sites.google.com/site/tacnyproject/

Formalising and Validating the Interface
Description in the FMI Standard

Miran Hasanagić(B), Peter W.V. Tran-Jørgensen, Kenneth Lausdahl,
and Peter Gorm Larsen

Department of Engineering, Aarhus University,
Finlandsgade 22, 8200 Aarhus, Denmark

{miran.hasanagic,pvj,lausdahl,pgl}@eng.au.dk

Abstract. The Functional Mock-up Interface (FMI) aims to support
the interoperability in an interdisciplinary formal methods setting by
describing an interface between different formal models in a tool co-
simulation setting. However, the FMI standard describes the require-
ments for the static limitations on the interfaces in an informal manner
using tables and textual descriptions. In this short paper we demonstrate
how this kind of static constraints can be formalised using the Vienna
Development Method Specification Language, and how the formalisation
can be examined and validated exhaustively. Afterwards we present how
this can be transferred into code in order to develop a tool that can be
used by anyone using the FMI standard enabling a more well-founded
basis in such an interdisciplinary setting, by having a formal description
of the FMI interface.

Keywords: VDM-SL · Functional Mock-up Interface · Co-simulation ·
Code generation · Combinatorial testing

1 Introduction

In an interdisciplinary setting individual models are typically described using
different formalisms with separate tools supporting them. This is especially the
case for Cyber-Physical Systems (CPSs) where the underlying mathematics have
different roots [14]. In order to enable exchange between such semantically het-
erogeneous formal models the Functional Mock-up Interface (FMI) standard
provides a computer-based language for describing the interface between con-
stituent models [3]. Tools following this standard must have a capability for
producing Functional Mock-up Units (FMUs) that either provide a stand-alone
simulation or a model exchange capability of a constituent model. Afterwards,
such FMUs can be combined by a co-simulation orchestration engine, acting as a
master for co-simulation. Each FMU has inputs, outputs and parameters which
are exposed according to the FMI standard and referred to as Scalar Variables
(SVs). For these SVs the standard contains a number of tables and natural lan-
guage explanations on the different static constraints for the SVs of the FMUs.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 344–351, 2016.
DOI: 10.1007/978-3-319-48989-6 21

Formalising and Validating the Interface Description in the FMI Standard 345

Describing the FMI static constrains informally may introduce ambiguity
and misunderstanding between tool vendors. In order to formalise these static
constraints we have used the Vienna Development Method Specification Lan-
guage (VDM-SL) that has been standardised by ISO [7,8]. VDM is one of the
most mature formal methods with a long history of developing computer-based
systems [2,9]. The development of VDM was originally carried out at IBM in
Vienna in the 1970s to support the development of a compiler for PL/1. Different
tools support VDM-SL, and here we have used the open-source Overture tool [11]
where different extensions of the language have been systematically performed
[1], that are used for this work. One of the extensions has been the definition
of traces which are used for test automation in VDM [12]. Furthermore, Over-
ture supports automatic code generation to Java [10], and recently extensions
of this work also support the use of the Java Modelling Language (JML) for
contract-based aspects of VDM such as invariants, pre- and post-conditions [15].
Formalising the static semantics has revealed inconsistencies in FMUs generated
by modelling tools, such as the commercial tool Dymola1.

The rest of this paper is structured as follows: Sect. 2 explains how the static
constraints of SVs in the FMI standard is modelled and validated in VDM-
SL. Afterwards, Sect. 3 explains how the VDM-SL model is realised using code
generation and incorporated as a part of larger tool2 that support FMI based
co-simulation. Finally, Sect. 4 provides concluding remarks including comments
about how it was helpful in overcoming problems as well as considerations about
future work.

2 Static Semantics and Validation Using VDM

VDM has a long history in the development of both static semantics as well
as dynamic semantics for a long list of computer-based languages, which corre-
sponds to type checking and run-time validation, respectively [4,5]. In this work
we model the static semantics of the FMI standard. The purpose of a static
semantics is to divide all syntactically correct descriptions into those that are
semantically meaningful (i.e. those that have no semantic errors statically) and
those that are violating one or more of the semantic constraints. Hence, at one
level of abstraction the result of a static semantics is essentially just a boolean
function. However, as a user it is not very helpful if one just gets told that the
description has an error, without any kind of indication about what the prob-
lem might be. Thus, one can also define a static semantics at a more detailed
level where a list of errors is presented to the user. In this work both of these

1 See http://www.modelon.com/products/dymola/.
2 See INTO-CPS App: http://into-cps.github.io/download/.

http://www.modelon.com/products/dymola/
http://into-cps.github.io/download/

346 M. Hasanagić et al.

principles are used in the sense that the explicit parts of the functions produce
a list of errors (possibly empty) whereas the associated post-condition simply
captures the more abstract notion focusing on whether the description can be
given a meaning.

Fig. 1. Overview of standard conformance with the FMI standard of a scalar variable

The FMI standard defines a SV by four different properties: Causality,
Variability , Initial and Type. Values of these properties define in combi-
nation the semantic validity of a SV. The top-level function Validate consists
of sub-functions which model different aspects of the FMI standard separately,
as shown by the grey boxes in Fig. 1, where the checking order it indicated by the
arrows. This checking order is implied by the FMI standard, as described below.
Each of these sub-functions models constraints described either by tables or nat-
ural language according to the FMI standard, which in combination define the
validity of a scalar variable. Such an approach supports the detection of which
part of a SV that is not consistent with the FMI standard. For each of these sub-
functions pre- and post-conditions are modelled as well, where the pre-condition
describes assumptions under which the function guarantees to return a result
satisfying the post-condition. Hence this forms a contract for a function, and
enables the testing of each sub-function separately. For example this captures
that the “Initial value” sub-function in Fig. 1 requires that the Causality and
Variability combination of a SV taken as input is valid, since a specific
combination implies a specific constrain on the Initial property.

The general structure of the VDM-SL specification can be seen from a
small extract of the top-level function called Validate, which highlights the
sub-function CausalityVariabilityOk for checking the Causality and
Variability combination, which also will be used as an example throughout
the rest of this paper:

Formalising and Validating the Interface Description in the FMI Standard 347

Validate : SV -> bool * seq of char
Validate(sv) ==
...
let mk_(cv_ok, cv_msg) = CausalityVariabilityOk(sv2.causality,

sv2.variability)
in

if not cv_ok
then mk_(false, cv_msg)
else ...

post RESULT.#1 = let mk_SV(c,v,i,t) = sv
in

...
cases c:

<input> ->
v in set {<discrete>, <continuous>} and
i = nil and
(v = <continuous> => t.type = <Real>) and
t.startValue <> nil

...

Here the first bool in the result pair indicates whether the input SV scalar vari-
able is statically valid, and the second one is a string with an error message. The
body of the function contains a let expression using pattern matching for such a
pair. Note how the post-condition simply looks at the first element to determine
if the result given meets the static constraints. The FMI standard prescribes a
default value for a property if not set by the user. As a consequence sv and sv2
model a SV before and after possible default values are set. To capture this in
the VDM-SL model the type of a scalar variables is defined as a record type SV,
where the square brackets indicate an optional type, i.e. adding a special nil
value to the type:

SV ::
causality : [Causality]
variability : [Variability]
initial : [Initial]
type : Type;

The types used inside this record type are modelled as quotes (like enumer-
ated types), as an example the types of Causality and Variability , in
accordance with the options seen in Fig. 2, are specified as:

Causality = <parameter> | <calculatedParameter> | <input>
| <output> | <local> | <independent>;

Variability = <constant> | <fixed> | <tunable> | <discrete>
| <continuous>;

348 M. Hasanagić et al.

The valid combination of the Causality and Variability , as described
in the FMI standard, is indicated by numbers in Fig. 2. The following part of
the model detects validation error (a) listed in Fig. 2:

CausalityVariabilityOk: Causality * Variability ->
bool * seq of char

CausalityVariabilityOk(c,v) ==
if c in set {<parameter>, <calculatedParameter>, <input>} and

v = <constant>
then mk_(false, ErrorMsg(c,v))
...
else mk_(true, "Valid combination of Causality and Variability.")
post RESULT.#1 => ValidCV(c,v);

For each of the letters seen in Fig. 2, which indicates a combination that is not
valid, a meaningful error message is created.

Since the allowed values yield a finite number of combination it is possible
to exhaustively test the different definitions a number of traces. Essentially a
trace can be considered as a regular expression that is used for expressing the
different sequences of tests that one would like to conduct. Since we only deal
with functions here the test sequencing aspects are not needed so essentially it is
simply expressed with a choice from all the possible combinations and the tool
support then automatically explore all of these:

T_CausalityVariabilityOk:
let mk_(c,v) in set allCV()
in

CausalityVariabilityOk(c,v);

Fig. 2. Table taken from the FMI standard [3] indicating valid combination (numbers)
and invalid combinations (letters)

For validating all possible combinations, the allCV function yields a set with
the possible combinations:

Formalising and Validating the Interface Description in the FMI Standard 349

allC: () -> set of Causality
allC() == {<parameter>,<calculatedParameter>,<input>,<output>,

<local>,<independent>};

allV: () -> set of Variability
allV() == {<constant>,<discrete>,<fixed>,<tunable>,<continuous>};

allCV: () -> set of (Causality * Variability)
allCV() ==
{ mk_(c,v) | v in set allV(), c in set allC()};

These traces are applied both for the validating the top-level function Validate
as well as each sub-function individually. Such traces are used to validate the
VDM-SL specification, and here it is possible to test it with all possible com-
binations in a few minutes using the VDM interpreter in a way similar to the
simplest form for model checking. For example these traces generate 3600 dif-
ferent test cases for the Validate function, while the trace for the function
CausalityVariabilityOk generates 30 test cases. Additionally such traces
can also be code generated (making use of JML) in order to speed up the exe-
cution and test the implementation.

3 Software Tool Integration

The VDM-SL specification of the static constraints of the FMI standard interface
described above needs to be realised in a programming language in order for
software tools to make use of it. Here we use automatic code generation to Java
to realise the VDM-SL specification. The generated code can be used either in
the development of a stand-alone tool that can be used to check that the FMUs
generated by a tool satisfy the constraints by the FMI standard, or it can be
used inside a larger tool suite such as that from the INTO-CPS project [6,13],
which contains a simulation environment for FMUs. In our case it is integrated
inside the INTO-CPS tool chain.

Validating that the generated code preserves the semantics of the VDM spec-
ification both unit-testing and using a contract-based implementation language
such as JML can be utilised. Both approaches can been exploited with the VDM
specification. In the latter approach the pre- and post-conditions are included
as a part of the code using JML, and additionally the traces are generated for
validating the code. Finally, consistency between the model traces and the code
tests, which are based on the model traces, is validated [16].

When integrating the generated Java code within another tool, such as the
INTO-CPS FMU co-simulation engine, it is necessary to provide glue code which
enables the interoperability between the different system components. In this
case it is required to ensure that the different data types are unified in the same
format.

350 M. Hasanagić et al.

4 Concluding Remarks

The main contribution of this short paper addresses the following points (1)
Tool support for an interdisciplinary framework. (2) Using VDM-SL in practice
finding issues both with our own tools in INTO-CPS, as well as with other tools.
(3) Tool integration and automation by supporting validation, and integrating it
with the rest of the tool support in INTO-CPS. The tool produced based on the
static semantics described in this paper found errors in the baseline modelling
tools used in the INTO-CPS project as well as in the commercial tool Dymola.
As part of the INTO-CPS project this supported the development of valid FMUs,
by the INTO-CPS modelling tools. As an example Dymola exported a constant
value generator with the causality output and variability fixed, which is not
allowed according to the FMI standard, as seen in Fig. 2. These errors where
found, when the INTO-CPS co-simulation engine loads an FMU, and it checks an
FMUs validity by using the generated Java code from the VDM-SL specification.

Most of the static constrains from the FMI standard have been modelled in
this work and as a consequence that is now supported inside the INTO-CPS tool
chain. However, the remaining parts of the standard could also be included in
the model. In addition it could potentially also make sense to use the generated
code to build a stand-alone tool that would be useful for checking constraints on
an individual FMU instead of relying on this check inside the INTO-CPS tool
chain.

Acknowledgments. The work presented here is partially supported by the INTO-
CPS project funded by the European Commission’s Horizon 2020 programme under
grant agreement number 664047.

References

1. Battle, N., Haxthausen, A., Hiroshi, S., Jørgensen, P.W.V., Plat, N., Sahara, S.,
Verhoef, M.: The overture approach to VDM language evolution. In: The Overture
2013 Workshop, August 2013

2. Bjørner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978)

3. Blochwitz, T.: Functional mock-up interface for model exchange and co-simulation,
July 2014. https://www.fmi-standard.org/downloads

4. C.C.I.T.T.: The specification of chill. Technical report Recommendation Z200,
International Telegraph and Telephone Consultative Committee, Geneva, Switzer-
land (1980)

5. Andrews, D.J., Garg, A., Lau, S.P.A., Pitchers, J.R.: The formal definition of
modula-2 and its associated interpreter. In: Bloomfield, R.E., Marshall, L.S., Jones,
R.B. (eds.) VDM 1988. LNCS, vol. 328, pp. 167–177. Springer, Heidelberg (1988).
doi:10.1007/3-540-50214-9 15

6. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-physical
systems design: formal foundations, methods and integrated tool chains. In: For-
maliSE: FME Workshop on Formal Methods in Software Engineering, ICSE 2015,
Florence, Italy, May 2015

https://www.fmi-standard.org/downloads
http://dx.doi.org/10.1007/3-540-50214-9_15

Formalising and Validating the Interface Description in the FMI Standard 351

7. Fitzgerald, J., Larsen, P.G.: Modelling Systems - Practical Tools and Techniques in
Software Development, 2nd edn. Cambridge University Press, Cambridge (2009).
ISBN 0-521-62348-0

8. ISO: Information technology - Programming languages, their environments and
system software interfaces - Vienna Development Method - Specification Language
- Part 1: Base language, December 1996

9. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
International, Englewood Cliffs (1990). ISBN 0-13-880733-7

10. Jørgensen, P.W.V., Larsen, P.G.: Towards an overture code generator. In: The
Overture 2013 workshop, August 2013

11. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.:
The overture initiative - integrating tools for VDM. SIGSOFT Softw. Eng. Notes
35(1), 1–6 (2010). http://doi.acm.org/10.1145/1668862.1668864

12. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial testing for VDM. In: Pro-
ceedings of the 2010 8th IEEE International Conference on Software Engineering
and Formal Methods, SEFM 2010, pp. 278–285. IEEE Computer Society, Washing-
ton, DC, September 2010. http://dx.doi.org/10.1109/SEFM.2010.32. ISBN 978-0-
7695-4153-2

13. Larsen, P.G., Thule, C., Lausdahl, K., Bardur, V., Gamble, C., Pierce, K., Brosse,
E., Sadovykh, A., Bagnato, A., Couto, L.D.: Integrated tool chain for model-based
design of cyber-physical systems. In: Submitted for the 14th Overture Workshop,
Cyprus, November 2016

14. Lee, E.: Cyber-physical systems - are computing foundations adequate? In: NSF
Workshop On Cyber-Physical Systems: Research Motivation, Techniques and
Roadmap, Austin, TX, October 2006

15. Tran-Jørgensen, P.W.V., Larsen, P.G., Leavens, G.T.: Automated translation of
VDM to JML annotated Java (January 2016 Submitted to the International Jour-
nal on Software Tools for Technology Transfer (STTT))

16. Tran-Jørgesen, P.W., Larsen, P.G., Battle, N.: Using JML-based code generation
to enhance the test automation for VDM models. Submitted for the 14th Overture
Workshop, Cyprus, November 2016

http://doi.acm.org/10.1145/1668862.1668864
http://dx.doi.org/10.1109/SEFM.2010.32

An Algebra of Synchronous Atomic Steps

Ian J. Hayes1(B), Robert J. Colvin1, Larissa A. Meinicke1, Kirsten Winter1,
and Andrius Velykis2

1 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

{Ian.Hayes,kirsten}@itee.uq.edu.au
2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

Abstract. This research started with an algebra for reasoning about
rely/guarantee concurrency for a shared memory model. The approach
taken led to a more abstract algebra of atomic steps, in which atomic
steps synchronise (rather than interleave) when composed in parallel.
The algebra of rely/guarantee concurrency then becomes an interpreta-
tion of the more abstract algebra. Many of the core properties needed
for rely/guarantee reasoning can be shown to hold in the abstract alge-
bra where their proofs are simpler and hence allow a higher degree of
automation. Moreover, the realisation that the synchronisation mecha-
nisms of standard process algebras, such as CSP and CCS/SCCS, can be
interpreted in our abstract algebra gives evidence of its unifying power.
The algebra has been encoded in Isabelle/HOL to provide a basis for
tool support.

1 Introduction

Our goal is to provide better methods for deriving concurrent programs from
abstract specifications, and to provide tool support for compositional reasoning
about their correctness. The rely/guarantee approach of Jones [Jon81,Jon83]
achieves compositionality by abstracting the interference a process can tolerate
from and inflict on its environment. A rely condition r is a binary relation
between states that represents an assumption bounding the interference that a
process p can tolerate from its environment. If the environment fails to meet
its obligation r , p may deviate from its specification and show erratic behaviour
(i.e. abort). A guarantee condition g is the corresponding notion that bounds the
interference inflicted on its environment by p. For a system of parallel processes
to function correctly, each process’s guarantee must imply the rely of every
other parallel process. These concepts can be captured uniformly (and hence the
manipulation of process terms kept simple) in a framework in which both the
steps of a process and the steps of its environment are explicitly represented.

The semantic model for rely/guarantee reasoning suggested by Aczel is one
such framework [Acz83,dR01]. In this model, parallel composition synchronises

This work is supported by Australian Research Council (ARC) Discovery Project
DP130102901 and the UK EPSRC Taming Concurrency research grant.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 352–369, 2016.
DOI: 10.1007/978-3-319-48989-6 22

An Algebra of Synchronous Atomic Steps 353

a program step of one process with an environment step of another, to give a
program step of their composition. Aczel’s approach, of insisting each step of
one process is synchronised with a step of the other process, differs from the
commonly used approach of interleaving atomic steps of processes (except when
they communicate), e.g. CCS [Mil89], CSP [Hoa85] and ACP [BK84,BK85].
Aczel’s approach is closer to Milner’s Synchronous CCS (SCCS) [Mil89, Sect. 9.3]
and Meije (the calculus at the basis of the synchronous programming language
Esterelle) [BC85].

Our methodology is to develop a refinement calculus for concurrent programs
that lifts rely and guarantee conditions to commands1 [JHC15,HJC14] (from
parameters to the notion of correctness). That allows algebraic reasoning about
concurrent programs in a rely/guarantee style. To this end we have designed a
Concurrent Refinement Algebra (CRA) to support the rely/guarantee approach
[Hay16]. In exploring the laws in CRA, we discovered that atomic steps have
specific algebraic properties that can be captured in an abstract algebra of atomic
steps which is embedded in CRA.

The abstract algebra of atomic steps delivers a range of useful properties for
manipulating process terms. For example, based on the notion of atomic steps
the parallel composition of processes can be simplified as follows

(a ; c) ‖ (b ; d) = (a ‖ b) ; (c ‖ d), (1)

where a and b are atomic steps and c and d are arbitrary processes. Note that
the above equivalence does not hold if a and b are arbitrary processes. For an
interleaving operator ||| the corresponding law is the more complicated:

(a ; c) |||(b ; d) = a ; (c ||| b ; d) � b ; (a ; c ||| d). (2)

In (1), parallel composition of two atomic steps a and b gives an atomic step
a ‖ b, where the interpretation of a ‖ b depends on the particular model. As a
consequence, the algebra can be applied to a range of models. For example, as
well as allowing an Aczel-trace model to support shared variable concurrency,
communication in process algebras such as CSP and CCS/SCCS can be inter-
preted in the abstract algebra and hence it provides a foundation for a range of
concurrency models.

Kleene Algebra with Tests (KAT) by Kozen [Koz97] combines Kleene algebra
(the algebra of regular expressions [Con71]) with a Boolean sub-algebra repre-
senting tests. KAT supports sequential programs with conditionals and finite
iterations (partial correctness). The Demonic Refinement Algebra (DRA) of von
Wright [vW04] generalises Kozen’s work to support possibly infinite iteration
and with that the concept of aborting behaviour. The approach used in this
paper is based on that of von Wright in order to faithfully capture Jones’ theory,
in particular his rely condition.

Concurrent Kleene Algebra (CKA) [HMSW11] adds a parallel operator
to Kleene algebra to support sequential and parallel programs. Prisacariu’s

1 We use the terms command, program and process synonymously.

354 I.J. Hayes et al.

nil α

�
� �

� �

�

algebra
of commands

algebra
of atomic steps

algebra
of tests

�
... ...

chaos

⊥

Fig. 1. The Concurrent Refinement Algebra and its sub-algebras

Synchronous Kleene Algebra (SKA) [Pri10] extends Kleene algebra with a syn-
chronous parallel operator similar to that in Milner’s SCCS [Mil89]. Like Milner
he proposes a specific interpretation of the parallel composition of atomic steps.
In contrast to both CKA and SKA, our Concurrent Refinement Algebra [Hay16],
which we use as a basis for this work, adds a parallel operator to the sequential
algebra DRA (rather than Kleene algebra).

The major contribution of this paper is an algebra of atomic steps which
introduces a synchronous parallel operator for atomic steps. The interpretation of
two atomic steps acting in parallel, however, is left open, hence allowing a range
of different models (including those of Milner and Prisacariu). Further, atomic
steps are treated as a Boolean sub-algebra (similar to the way in which tests are
treated as a Boolean sub-algebra in KAT). Hence the Concurrent Refinement
Algebra (CRA) contains both a sub-algebra of tests and a sub-algebra of atomic
steps (as illustrated in Fig. 1 via their lattices). Separating out these sub-algebras
enables one to prove properties that are specific to atomic steps using the full
power of a Boolean algebra. This raises the level of support for reasoning about
programs provided by our algebra, as well as the level of automation that is
possible for the mechanised proof support by the theorem prover Isabelle.

To build the algebra, we start in Sect. 2 with CRA for reasoning about com-
mands in general. Commands include a sub-lattice of tests (Sect. 3) as well as a
second sub-lattice of atomic steps (Sect. 4), the novel contribution of this paper.
Section 5 gives an interpretation of the abstract algebra based on Aczel’s trace
model. A simplified treatment of relies and guarantees is outlined in Sect. 6.
Section 7 illustrates how the communication models of CCS, CSP and SCCS can
be interpreted in our abstract algebra of atomic steps.

2 Concurrent Refinement Algebra

A Concurrent Refinement Algebra (CRA) is defined as the following structure

(C,�,�, ; , ‖,⊥,�,nil, skip)

An Algebra of Synchronous Atomic Steps 355

where the carrier set C is the set of commands. Sequential composition (;) has
higher precedence than parallel (‖), which has higher precedence than � and �,
which have equal precedence.

Commands form a complete distributive lattice (C,�,�,⊥,�) with nonde-
terministic choice as the lattice meet (c � d), and conjunction of commands
as the lattice join (c � d). The top of the lattice � is the infeasible command
(called “magic” in the refinement calculus) and the bottom of the lattice ⊥ is the
command that aborts. The partial order defined on commands is the refinement
relation c � d meaning c is refined (or implemented by) d . For any commands
c, d ∈ C, c � d =̂ (c � d) = c, and hence ⊥ � c � �. We refer to this as the
refinement lattice (see Fig. 1). Note that since CRA is a refinement algebra it
uses � as partial order instead of Kozen’s ≥ and hence our lattice of commands
is the dual of Kozen’s lattice (i.e., � in CRA matches � in KAT, and � in CRA
matches � in KAT). Given commands form a complete lattice, for any monotone
function least/greatest fixed points are well defined. In particular, fixed points
are used to define iteration operators below.

Sequential composition of commands (c ; d) is associative and has identity
nil. As an abbreviation, the sequential composition operator may be elided.
Sequential composition has both � and ⊥ as left (but not right) annihilators2,
i.e. � c = � and ⊥ c = ⊥. It distributes over arbitrary choices on the right (3),

(⊔C) d = ⊔c∈C (c d). (3)

+The iteration of a command is inductively defined as c0 = nil and ci+1 =
c ci . More general iteration operators are captured via greatest (ν) and least
(μ) fixed points: c� =̂ νx .nil � c x for finite iteration zero or more times, and
cω =̂ μ x .nil � c x for finite or possibly infinite iteration. Infinite iteration is
defined as c∞ = cω�. The unfolding laws (4) and (5) result from the fixed point
definitions for iterations, and (6) follows from (4) and the definition of c∞ which
also justifies (8). Law (7) follows from (6) by induction.

cω = nil � c cω (4)

c� = nil � c c� (5)

c∞ = c c∞ (6)

c∞ = ci c∞ (7)

c∞ d = c∞ (8)

Some models also distribute sequential composition over non-empty choices
on the left (9) (i.e., in refinement calculus terms the operator is conjunctive).

D
= {} ⇒ c (⊔D) = ⊔d∈D(c d) (9)

This axiom is not assumed to generally hold in CCS and CSP but it holds
for our relational model in Sect. 5 and is required to show laws (10) and (11).
Laws (12) and (13) follow from (10), (8) and (6).

2 Here our approach based on DRA differs from approaches based on Kleene algebra,
like CKA and SKA, in which � is also a right annihilator.

356 I.J. Hayes et al.

cω = c� � c∞ (10)

c� = ⊔i∈N
ci (11)

cω d = c� d � c∞ (12)

c cω d = c c� d � c∞ (13)

Parallel composition of commands is associative, commutative, has the iden-
tity skip. Parallel distributes over non-deterministic choice of any non-empty
set of commands D , c ‖ (⊔D) = ⊔d∈D(c ‖ d). Note the identities for sequential
and parallel composition, nil and skip respectively, differ. However, they are
related by skip � nil and nil ‖ nil = nil.

3 The Boolean Sub-algebra of Tests

Tests are special commands that are used to model conditionals and loops and
hence form an essential construct when reasoning about programs. Assume t
is a test, ¬ t is its negation, and c and d are commands, an abstract algebraic
representation of conditionals and while loops for sequential programs is given by

if t then c else d =̂ t c � ¬ t d and while t do c =̂ (t c)ω ¬ t

Blikle [Bli78] used this style of representation of programs in a relational algebra
and [GM93] and [vW04] in the refinement calculus. Kozen [Koz97] provided a
more abstract Kleene Algebra with Tests (KAT) as a framework for reasoning
about programs. Kleene algebra is the algebra of regular expressions, where for
the interpretation as programs, alternation becomes non-deterministic choice
with unit �, concatenation becomes sequential composition with unit nil, and
iteration becomes finite iteration of commands. Tests, in Kozen’s approach, form
a Boolean sub-algebra within the Kleene algebra.

We follow this construction for the Concurrent Refinement Algebra. That
means in CRA tests form a subset of commands for which a negation operator
¬ is defined. This results in an extended algebra

(C,B,�,�, ; , ‖,⊥,�,nil, skip, ¬)

where the additional carrier set B is the set of test commands (B ⊆ C). As
in Kozen’s work, tests form a Boolean algebra (B,�,�, ¬ ,�,nil) which is a
sub-lattice of commands (see Fig. 1).

The sub-lattice of tests shares its top element (the false test) with the top of
the lattice of commands, �, but does not share its bottom element, the true test,
that instead corresponds to the command nil, that has no effect and immediately
terminates. Tests are closed under lattice meet and join, as well as sequential and
parallel composition as both are defined via the join operator � on commands.
For any t and t ′ in B,

t t ′ = t � t ′ (14) t ‖ t ′ = t � t ′ (15)

where the join of two test acts as logical conjunction. Property (15) can be
generalised to the following interchange axiom. For any commands c and d in C
and any tests t and t ′ in B the following hold.

(t c) ‖ (t d) = t (c ‖ d) (16) (t c) � (t ′ d) = (t � t ′) (c � d) (17)

An Algebra of Synchronous Atomic Steps 357

A range of useful laws follow from this axiomatisation that help simplifying
program terms involving tests.

Tests also give rise to the concept of assertions (preconditions) [vW04,Sol07].
The assertion corresponding to a test t is a command which terminates if the
test holds and aborts if the test does not hold, i.e., assert t = t � ¬ t ⊥.

4 Abstract Atomic Steps

This section gives an abstract algebra for the subset of commands that corre-
spond to atomic steps. This algebra delivers core properties of atomic steps (that
do not hold for commands in general) under only a few assumptions about the
form of atomic steps. Atomic steps are closed under parallel composition but the
parallel composition of atomic steps, a ‖ b, is left uninterpreted. Lifting these
properties to the level of an abstract algebra results in simpler proofs and allows
for their reuse in different interpretations. Section 5 forms an interpretation of
the atomic step algebra that corresponds to Aczel’s program and environment
steps and defines parallel composition of atomic steps in detail. Section 7 on
the other hand, uses the atomic step algebra to capture CCS-style as well as
CSP-style communication of events, which resides in a very different domain.

In the same manner that tests form a sub-lattice of commands, the set of
atomic steps, A, forms a sub-lattice of commands which is a Boolean algebra
and shares the lattice meet and join of commands (see Fig. 1). The top of the
sub-lattice is the same as the top of the command lattice (�) but the bottom
of the sub-lattice is the new command α, that can be thought of as the non-
deterministic choice between all possible atomic steps. In fact, tests and atomic
steps share only one element (�) and hence

α � nil = �. (18)

The term step is used exclusively for an atomic step. Steps are closed under
lattice meet and join as well as parallel composition (but not sequential com-
position). As for commands, the meet corresponds to non-deterministic choice,
a � b, and can behave as either a or b. The join of two steps, a � b, can be
thought of as a step that both a and b agree to do. (In Sect. 5 this corresponds
to the intersection of the sets of primitive steps a and b can make.)

Because A forms a Boolean algebra, all of the laws of Boolean algebra are
available to manipulate combinations of steps not involving sequential compo-
sition. The theorem prover Isabelle directly supports forming such an interpre-
tation and hence the theory of Boolean algebra can be re-used for A. This is a
significant saving, as the laws of Boolean algebra do not need to be reproven.

In addition, atomic steps are assumed to have an identity, E , of parallel
composition, giving the following axiom.

a ‖ E = a (19)

Prefixing a command c with E , i.e. E c, allows the process to wait one step before
behaving as c, and Eω c allows it to wait any number of steps (including 0). The
step E can be interpreted as a placeholder for one step taken by its environment.

358 I.J. Hayes et al.

Besides laws for reasoning about atomic steps in isolation, one needs laws that
allow reasoning about their interaction with non-atomic commands. A small set
of additional axioms is used as the basis of these laws. The approach taken to
handling parallel composition is not the usual interleaving of steps, rather each
step of one process must synchronise with a step of the other process. If a and
b cannot synchronise then a ‖ b is infeasible (�). For steps a and b, and any
commands c and d , we assume the following axioms.

a c ‖ b d = (a ‖ b) (c ‖ d) (20)

a c � b d = (a � b) (c � d) (21)

a c ‖ nil = � (22)

a c � nil = � (23)

The interchange axioms (20) and (21) become refinements from left to right
if a and b are allowed to be arbitrary commands (which corresponds to the weak
interchange law in CKA [HMSW11]). The abstract algebra does not define the
details of parallel composition of pairs of steps. (See the relational interpretation
of the algebra in Sect. 5 for one example of defining parallel composition of
atomic steps.) The command, nil, that terminates immediately without making
any steps whatsoever cannot synchronise with a process that makes at least one
step, i.e. (22) and (23).

The negation operator (!) for atomic steps satisfies the following axioms of a
Boolean algebra. Steps a and ! a have no common behaviour (24) and ! a has all
the step behaviours that a does not have (25).

a � ! a = � (24) a � ! a = α (25)

Note that negation for tests (¬) differs from negation for atomic steps (!) as we
have ¬� = nil but !� = α. The inclusion of a negation operator on steps allows
one to define an equivalent of an assertion for steps on the abstract level. For
any step a define,

assume a =̂ a � (! a)⊥. (26)

The command assume a behaves as a and terminates, or as ! a and aborts. It
represents an assumption that step a occurs in the sense that any other step
allows any behaviour to occur after that step. It provides the basis for rely
conditions because they specify assumptions about the environment’s behaviour
(see Sect. 6).

4.1 Canonical Representation of Commands

If the primitive commands of our language are tests, atomic steps and ⊥, and
all other commands are built from these primitives using the operators of the
language, then initially, a command may either terminate immediately, abort or
perform some atomic step. That leads to the canonical representation theorem,
in which c can terminate if some test t succeeds, abort if some test t ′ succeeds,
or performs some step ai followed by some command ci , for some i ∈ I .

An Algebra of Synchronous Atomic Steps 359

Theorem 1 (canonical-representation). Any command c can be expressed
in the following form

c = t � t ′⊥ � ⊔i∈I ai ci

where t and t ′ are tests, and for any i in some (possibly empty) index set I , ai
is an atomic step not equal to �, and ci is a command.

The proof is conducted by structural induction over commands. Note that if c
cannot terminate immediately, t is �. If c cannot abort, t ′ is �. If c cannot
perform any step, I = {}. A similar theorem can be found in [Pri10] for SKA.

Because E is the identity of parallel for a single step, Eω acts as the identity
of any sequence of steps and hence Eω is the identity of parallel, i.e. skip = Eω.

Lemma 1 (atomic-identity-iteration). Eω ‖ c = c

The proof makes use of Theorem 1 to express c in canonical form (the proof is
included in the appendix of [HCM+16]).

4.2 Properties of Iterations of Atomic Steps

In addition to defining programming statements such as while loops, iterators
are used to build specifications from atomic steps. For instance commands cor-
responding to Jones’ rely and guarantee concepts are constructed as iterations
of relatively straightforward commands that make assumptions about the steps
of the environment and constrain the steps of the program, respectively (see
Sect. 6). Below we provide some useful properties of iterations of atomic steps.

Because nil performs no steps, if it is run in parallel with a (possibly) finite
iteration, the composition cannot perform any steps but can terminate and hence
equals nil. If nil is run in parallel with an infinite iteration, the combination
cannot perform any steps but cannot terminate, and hence equals the infeasible
command �.

Lemma 2 (atomic-iteration-nil)

a� ‖ nil = nil aω ‖ nil = nil a∞ ‖ nil = �

Proof. The properties follow from axiom (22) using unfolding of the iterations
(i.e. a� = nil � a a�, aω = nil � a aω and a∞ = a a∞). �

For the following lemmas, let a and b be atomic steps, and c and d any
commands. Axiom (20) can be extended to iteration i times as given in the
following lemma, which is proven by induction on i .

Lemma 3 (atomic-iteration-power). ai c ‖ bi d = (a ‖ b)i (c ‖ d)

Choosing c and d to both be nil gives the corollary that ai ‖ bi = (a ‖ b)i .

360 I.J. Hayes et al.

For all further lemmas in this sub-section, we assume that sequential com-
position is conjunctive (9) and hence that properties (10) and (11) hold. Two
useful properties are the following.

a� ‖ b� = (a ‖ b)� (27) a∞ ‖ b∞ = (a ‖ b)∞ (28)

Property (27) can be proven using the property that non-deterministic choice
over an arbitrary set distributes over parallel. A proof of (28) would follow
straightforwardly if the supremum over an arbitrary set (or even a chain) distrib-
uted over parallel, however, that distribution property does not hold in general.
We take property (28) as an axiom because it does hold in our intended model.
Whether this axiom is independent of the other axioms in our algebra is an open
question.

Property (27) holds for atomic steps a and b but is only a refinement from
left to right if a and b are replaced by arbitrary commands. Property (27) can be
generalised to the following lemma where we take into account that the number
of iterations of a and b might be the same, or there are more iterations of a than
b (and hence the additional iterations of a are in parallel with the start of d),
or the symmetric case when there are more occurrences of b than a.

Lemma 4 (atomic-iteration-finite)

a� c ‖ b� d = (a ‖ b)� ((c ‖ d) � (c ‖ b b� d) � (a a� c ‖ d))

Isabelle/HOL proofs of these lemmas have been completed. They may be
also found in the appendix of [HCM+16]. Choosing c and d to both be nil gives
(27) as a corollary.

An infinite iteration in parallel with an initial finite iteration matches the
finite iteration as well as what follows it.

Lemma 5 (atomic-iteration-finite-infinite). a� c ‖ b∞ = (a ‖ b)� (c ‖ b∞)

Lemma 4 can be extended to initial iterations that are either finite or infinite.

Lemma 6 (atomic-iteration-either)

aω c ‖ bω d = (a ‖ b)ω ((c ‖ d) � (c ‖ b bω d) � (a aω c ‖ d))

Choosing c and d to both be nil gives the corollary that aω ‖ bω = (a ‖ b)ω.
To see the relationship to an interleaving operator, for any step a, define an

action as 〈a〉 = Eω a Eω, then properties of 〈a〉 can be proven using properties
of the abstract algebra. For example, one can derive the following lemma.

Lemma 7 (atomic-interleaving). 〈a〉 ‖ 〈b〉 = 〈a ‖ b〉 � 〈a〉 〈b〉 � 〈b〉 〈a〉
If a and b cannot synchronise (i.e. a ‖ b = �) then 〈a〉 ‖ 〈b〉 = 〈a〉 〈b〉 � 〈b〉 〈a〉
which echoes the following property of an interleaving operator: a ||| b = a b�b a.
Hence by including an identity, E , for parallel with an atomic step, one can
represent interleaving properties in the synchronising algebra albeit in a more

An Algebra of Synchronous Atomic Steps 361

complex form. This approach was used by Milner in Synchronous CCS [Mil83]
to allow the encoding of the better-known process algebra CCS. Our identity
element takes on a similar role, although we lift it to a command as opposed
to a transition event as in Milner’s operational semantics. The advantage of the
synchronising algebra is that one can represent both synchronising events and
interleaving events in the one theory. By using separate program and environ-
ment events, such a theory supports the rely/guarantee approach of Jones for
reasoning about concurrent programs.

5 Relational Atomic Steps

This section examines an interpretation of the abstract atomic step algebra A
in terms of Aczel’s program and environment state transitions.3 The resulting
relational atomic steps are used to define guarantees and relies in Sect. 6. This
interpretation assumes that sequential composition is conjunctive (9).

Given a state space Σ and a binary relation r ∈ P(Σ × Σ), the command
π(r) can take an atomic program step from state σ to σ′ for any pair of states
(σ, σ′) in r . Similarly, ε(r) is a command that can perform any environment step
from state σ to σ′ whenever (σ, σ′) ∈ r .

π : P(Σ × Σ) → A ε : P(Σ × Σ) → A
The commands π(∅) and ε(∅) are infeasible, i.e., π(∅) = ε(∅) = �. The images
of π and ε are disjoint except when the relation is empty, i.e. for all r1 and r2,

π(r1) � ε(r2) = �. (29)

Together π and ε form a sub-lattice of commands with two further sub-lattices:
all the π(r) commands form a sub-lattice and all the ε(r) commands form a
sub-lattice.

The functions π and ε are injective, i.e. different relations map to different
commands, and union of relations maps to a non-deterministic choice between
the mappings of the relations and intersection maps to the supremum in the
command ordering.

r1 = r2 ⇔ π(r1) = π(r2) (30)
π(r1 ∪ r2) = π(r1) � π(r2) (31)

π(r1 ∩ r2) = π(r1) � π(r2) (32)

If r1 ⊆ r2, then π(r1)�π(r2) = π(r1 ∪ r2) = π(r2), and therefore π(r2) � π(r1).
Similar laws hold for ε steps.

In this interpretation one can instantiate the test command from Sect. 3 as
τ(p) for p ∈ P Σ, which succeeds and terminates immediately if p holds but is
� otherwise, e.g. τ(∅) = � and τ(Σ) = nil. As in the refinement calculus, a
precondition command {p} can then be defined as assert τ(p), which equals
τ(p) � τ(¬ p)⊥, and hence terminates immediately if p holds but aborts other-
wise, e.g. {∅} = ⊥ and {Σ} = nil.
3 A semantic model for this interpretation may be found in [CHM16].

362 I.J. Hayes et al.

6 Relies and Guarantees

The rely/guarantee approach of Jones [CJ07] makes use of a rely condition, r ,
a binary relation on states that expresses an assumption that every step made
by the environment of the process satisfies r between its before and after states.
Complementing that, all processes in its environment have a guarantee condition,
g , a binary relation on states that expresses that every program step made by
the process satisfies g . For each process, its guarantee condition must imply
the rely conditions of all the processes in its environment. This section encodes
guarantees and relies using the abstract algebra of atomic steps.

6.1 The Guarantee Command

For a process to ensure a guarantee g , every atomic program (π) step made by
the program must satisfy g . A guarantee puts no constraints on the environment
of the process. A guarantee command, guar g , is defined in terms of the iteration
of a single step guarantee, (π-restrict g), defined as follows.

(π-restrict g) =̂ π(g) � E guar g =̂ (π-restrict g)ω

A command c with a guarantee of g enforced on every program step could
possibly be expressed as (guar g) � c, but that turns out to be too strong a
requirement because it masks any aborting behaviour of c because the guarantee
never aborts, (guar g) � ⊥ = (guar g). Instead, the weak conjunction operator
is used.

Weak conjunction on commands, �, behaves like � unless one of its operands
aborts in which case we have c�⊥ = ⊥. The operator is associative, commutative
and idempotent, and satisfies c � (⊔D) = (⊔d∈D c � d) for any non-empty set
of commands D . For any commands c and d , steps a and b, and tests t and t ′

weak conjunction satisfies the following axioms. (Note the similarities between
(36) and (21), (37) and (23) and (38) and (28).)

c � ⊥ = ⊥ (33)

a � b = a � b (34)

t � t ′ = t � t ′ (35)

(a c) � (b d) = (a � b) (c � d) (36)

(a c) � nil = � (37)

a∞ � b∞ = (a � b)∞ (38)

Hence a �α = a �α = a, i.e. α is the atomic step identity of weak conjunction.
More generally, chaos =̂ αω is the identity of weak conjunction for any sequence
of atomic steps. The following lemma (and its proof) is similar to the corollary
of Lemma 6.

Lemma 8 (atomic-iteration-conjunction). aω � bω = (a � b)ω

A command c with a guarantee g is represented by (guar g)�c. In the theory of
Jones, a guarantee on a process may be strengthened. That is reflected by the fact
that if g1 ⊆ g2, then π(g2) � π(g1) and hence (π-restrict g2) � (π-restrict g1).

An Algebra of Synchronous Atomic Steps 363

A process that must satisfy both guarantee g1 and guarantee g2, must satisfy
g1 ∩ g2 because

(π-restrict g1) � (π-restrict g2)
= (π(g1) � E) � (π(g1) � E)
= (π(g1) � π(g2)) � (π(g1) � E) � (E � π(g2)) � (E � E)
= π(g1 ∩ g2) � E
= (π-restrict(g1 ∩ g2))

The weak conjunction of a possibly infinite iteration of atomic steps distrib-
utes over the sequential composition of commands c and d .

Lemma 9 (atomic-infinite-distribution). aω � (c d) = (aω � c) (aω � d)

The proof uses the canonical representation of a command (Theorem1) and
can be found in the appendix of [HCM+16]. As a consequence guarantees dis-
tribute over a sequence of commands.

(guar g) � (c d) = ((guar g) � c) ((guar g) � d)

6.2 The Rely Command

A rely condition r represents an assumption about environment steps. If any
environment step does not satisfy r , i.e. a step that refines ε(r), the process may
do anything, which can be represented by it aborting. Any other step is allowed.
The rely command is defined in terms of a single step assumption, itself defined
in terms of the abstract command assume (26) as follows.

(ε-assm r) =̂ assume(! ε(r)) = ! ε(r) � ε(r)⊥
rely r =̂ (ε-assm r)ω

An environment assumption is placed on a command c by placing the assump-
tion on every step of c, i.e. (rely r) � c. A command c with rely r and guar-
antee g is expressed as (rely r) � (guar g) � c, for which every program step
is required to satisfy g unless an environment step does not satisfy r , in which
case it aborts. Here using weak conjunction (�) rather than the lattice join (�) is
essential to prevent the guarantee masking the possible aborting behaviour of the
rely. Because assume a � assume b = assume(a � b), combining environment
assumptions gives

(ε-assm r1) � (ε-assm r2) = assume(! ε(r1) � ! ε(r2)) = assume(! ε(r1 ∩ r2))
= (ε-assm(r1 ∩ r2)) .

From Lemma 9 and Theorem 1, a rely can be distributed over a sequential
composition (the proof is included in the appendix of [HCM+16]).

(rely r) � (c d) = (rely r � c) (rely r � d)

364 I.J. Hayes et al.

6.3 Rely/Guarantee Logic

Rely/guarantee reasoning is traditionally formulated in terms of a quintuple
{p, r}c{g , q}, which extends Hoare logic with the rely r and guarantee g to
handle concurrency. The quintuple states that every step of c satifies g and that
it terminates and establishes the postcondition q , provided it is executed from
an initial state satisfying p and interference from the environment is bounded
by r . This quintuple is interpreted in our logic as the following refinement.4

{p} ((rely r) � (guar g) � [q]) � c

This demonstrates the application of the algebra to reasoning about shared data.
As well as being able to express any law presented in terms of quintuples, we are
able to reason about the component commands separately, e.g., strengthening a
guarantee g does not involve p, r and q .

7 Abstract Communication in Process Algebras

In the process algebra domain, processes communicate via a set of synchroni-
sation events, in contrast to processes in a shared memory concurrency model
which interleave operations on state. We may build a core process algebra from
the basic operators, with the addition of a set of atomic program steps π(a)
that model a process engaging in the corresponding abstract event a ∈ Event ,
where Event includes at least the silent event ι. The basic properties of this lan-
guage are those of the underlying algebra but we do not assume conjunctivity
of sequential composition (9) in order to be consistent with CCS.

Similarly to notation introduced in Sect. 4.2 we define

〈a〉 =̂ Eωπ(a)Eω (39)

This models process engaging in event a (note that we drop the ‘π’ tag from
the 〈a〉 notation) preceded and succeeded by steps of the environment, similar
to asynchronising in Synchronous CCS [Mil83] (discussed in [Mil89]). This is
the building block of event based languages: we interpret both prefixing in CCS
(a.p) and CSP (a → p) as (〈a〉 p). We extend the core algebra to give two
types of abstract interprocess communication: CCS-style binary synchronisation
(achieved by restricting the program) and CSP-style multi-way synchronisation
(achieved in-part by restricting the environment).

7.1 Communication in CCS

The main point of difference with the rely-guarantee algebra is that program
steps representing events can combine into a single program step (communica-
tion). Interactions with E remain the same as in the abstract algebra. In CCS
4 We use the syntax of Morgan’s specification command [q] [Mor88] whose definition is

omitted for space reasons. It represents any sequence of atomic steps that establishes
q between its initial and final states. See [CHM16] for details.

An Algebra of Synchronous Atomic Steps 365

each non-silent event a has a complementary event a. A program step π(a) and
its corresponding complementary program step π(a) may synchronise to become
a silent step, π(a) ‖ π(a) = π(ι), and hence using an instantiation of Lemma 7,

〈a〉 ‖ 〈a〉 = 〈ι〉 � 〈a〉 〈a〉 � 〈a〉 〈a〉. (40)

As such, events may synchronise or interleave. In CCS the restriction operator
p\A, where A is a set of Events, may be employed to exclude the final two inter-
leaving options and hence force processes to synchronise and generate a silent step.
It may be defined straightforwardly using join (�) to forbid events in A, where we
use the abbreviation π(A) =̂ ⊔a∈A π(a) and note that !π(A) = π(A) � E .

p\A =̂ p � (! π(A))ω (41)

Hence, by (40) and (41), (〈a〉 ‖ 〈a〉)\{a, a} = 〈ι〉.

7.2 Communication in CSP

To achieve CSP-style multi-way communication, a process p prevents its envi-
ronment from communicating via an event in p’s alphabet until p is ready. We
introduce a step ε(a), where E � ε(a) for all a ∈ Event . Its interactions through
the parallel operator are defined (in a different way to CCS) below; all other
combinations of atomic steps result in �.

π(a) ‖ π(a) = π(a) for a
= ι π(a) ‖ ε(a) = π(a) ε(a) ‖ ε(a) = ε(a)

Fundamental to CSP is the notion of a process’s alphabet, the set of events
via which it may communicate and in particular upon which the environment
may not independently synchronise. Here we explicitly associate an alphabet
A ⊆ Event with process p by the syntax A:p, defined by,

A:p =̂ p � (! ε(A))ω (42)

where analogously to program steps we define ε(A) =̂ ⊔a∈A ε(a). Note the sim-
ilarity to CCS’s restriction operator (41) but here it is the environment that is
restricted, rather than the program.

In an early formulation by Hoare [Hoa85] every process p implicitly has an
alphabet A associated with it (A is sometimes syntactically deduced from p).
In formulations such as Roscoe’s [Ros98] the alphabets are not associated with
processes but are instead made explicit on the parallel operator. We may define
alphabetised parallel straightforwardly as p1 ‖

A

p2 =̂ (A:p1) ‖ (A:p2). Each side of

the parallel composition prevents the other from taking a unilateral program step
on events in A by restricting its environment. Some of the basic communication
properties from CSP follow from the above definitions and the atomic algebra,
for instance, recalling that CSP’s prefixing operator a → p =̂ 〈a〉 p, for any
a ∈ A, (a → p1 ‖

A

a → p2) = a → (p1 ‖
A

p2).

366 I.J. Hayes et al.

The hiding operator of CSP, p/A, affects program steps, renam-
ing events in A to silent events. Hiding distributes over sequential and
choice (but not parallel); its relationship with atomic steps follows.

b/A =
{

π(ι) if b is of the form π(a) and a ∈ A
b otherwise

7.3 Communication in SCCS

Synchronous CCS (SCCS) [Mil83,Mil89] is a process algebra designed to be
as minimal as possible in terms of operators. It includes event prefix, dis-
junction (nondeterministic choice), composition (corresponding to our parallel),
and restriction similar to that of CCS (41). SCCS events may be structured
from a finite set of “particles”, forming a commutative group (Event ,1,×, −1).
Every event is the product of particles: for instance, the step a is an event
(a1 × b0 × c0 × . . .). The silent (or waiting) event 1 is event identity, and fulfils
a similar role to that of E in our algebra. The complement of event a is simply
a−1 and hence the product of an event and its complement, a1 × a−1, naturally
equals 1.

The key aspect of SCCS is its simple definition of parallel composition in
terms of product: for atomic steps a and b, a ‖ b = a × b. An event process
〈a〉 is defined as 1ω a 1ω, which has the effect of asynchronising the event, pre-
serving Lemma 7. Milner shows that CCS can be encoded in SCCS through the
addition of asynchronising actions defined through the operational semantics;
in an algebraic setting the 1s are made explicit in the processes. Note that in
this model there is no distinction between silent steps and environment steps: in
SCCS both are 1, whereas in CCS the former is π(ι).

8 Related Work

Our Concurrent Refinement Algebra (CRA) (Sect. 2) compares to Concurrent
Kleene Algebra (CKA) [HMSW11] in that both extend a sequential algebra
to allow for reasoning about parallel composition. Synchronous Kleene Algebra
(SKA) [Pri10] is also based on Kleene Algebra but, unlike CKA, it adds tests
and a synchronous parallel operator based on that of Milner’s SCCS [Mil83].
Both CKA and SKA are based on Kleene algebra and hence only support finite
iteration and partial correctness. In comparison, our CRA supports general fixed
points and hence recursion and both finite and infinite iteration. The richer
structure of DRA contains a sub-lattice of commands below chaos (see Fig. 1)
that includes assertions (and hence preconditions in the relational interpretation)
and assumptions (and hence rely commands), and allows the weak conjunction
operator, �, to be distinguished from strong conjunction, �. All these constructs
are needed to faithfully represent rely/guarantee theory.

CKA is also applied to rely/guarantee rules [HMSW11] but they define a
Jones-style 5-tuple (as in Sect. 6.3) in terms of two separate refinement condi-
tions, whereas in our approach the existing (single) refinement relation can be

An Algebra of Synchronous Atomic Steps 367

used directly. In Jones’ theory, a guarantee has to be satisfied only from initial
states satisfying the precondition of the program, and further, if its rely condi-
tion is broken by the environment, the program can abort. However, in the CKA
framework, the guarantee has to always be maintained by the program, irrespec-
tive of what the initial state is and how the environment is behaving; that over
restricts the set of possible implementations. Our theory faithfully reflects Jones’
approach.

Our algebra of atomic steps makes use of a synchronous parallel operator
similar to that in SCCS [Mil89] and in SKA [Pri10] but it differs in two ways:

– instead of atomic actions being separate from commands (as in SCCS and
SKA), they are treated as a sub-algebra within CRA and

– while both SCCS and SKA explicitly define composition of atomic steps (their
× operator), our parallel operator is used directly on atomic steps (because
they are commands) and its definition is left open.

9 Conclusion

This paper presents an abstract algebra of atomic steps for concurrent programs.
It is a Boolean algebra that is embedded as a sub-lattice into our Concurrent
Refinement Algebra in a similar way as tests are embedded in Kleene algebras.
As for tests, a range of useful laws can be derived for atomic steps within this
abstract algebra (e.g., on iteration and distributivity), despite the fact that the
interpretation of the parallel composition of two atomic steps is left open.

This construction simplifies many essential laws and their proofs, as most
supporting lemmas almost come for free on this abstract level. Accordingly,
the mechanisation of the theory within the theorem prover Isabelle is lean and
achieved a high degree of automation. As the Concurrent Refinement Algebra
was conceived to support reasoning with relies and guarantees this simplification
is of particular benefit in our laws for rely and guarantee commands.

A further gain of the generic shape of the abstract algebra lies in its potential
for reuse. We have demonstrated this by instantiating our abstract algebra with
two quite different styles of communication, a synchronous model (as in SKA
[Pri10] and SCCS) versus an interleaving model (as in CCS and CSP). For both
styles the abstract algebra of atomic steps proves to be suitable.

The concept of sub-algebras in our Concurrent Refinement Algebra is also
applicable to assertions and assumptions. Assertions form a Boolean algebra
with nil as top element and ⊥ as bottom element whereas step assumptions
form a Boolean algebra with top element α and bottom α ⊥. Both inherit the
laws on Boolean algebras similarly to tests and atomic steps. Future work will
investigate these structures and will extend our theories accordingly.

The relationship between CCS and CSP has been explored in several papers
[Bro83,vG97] including augmenting the operational rules of CSP so that the
failures-divergences model (FDR) is respected in CCS [HH10]. Future work is to
apply a more algebraic approach to the relationships between well known process
algebras (especially ACP [BK84]).

368 I.J. Hayes et al.

Acknowledgements. This work has benefited from input from Cliff Jones and Kim
Solin.

References

[Acz83] Aczel, P.H.G.: On an inference rule for parallel composition, Private
communication to Cliff Jones (1983). http://homepages.cs.ncl.ac.uk/cliff.
jones/publications/MSs/PHGA-traces.pdf

[BC85] Berry, G., Cosserat, L.: The ESTEREL synchronous programming lan-
guage and its mathematical semantics. In: Brookes, S.D., Roscoe, A.W.,
Winskel, G. (eds.) CONCURRENCY 1984. LNCS, vol. 197, pp. 389–448.
Springer, Heidelberg (1985). doi:10.1007/3-540-15670-4 19

[BK84] Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communica-
tion. Inf. Control 60(1–3), 109–137 (1984)

[BK85] Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with
abstraction. Theor. Comput. Sci. 37, 77–121 (1985)

[Bli78] Blikle, A.: Specified programming. In: Blum, E.K., Paul, M., Takasu, S.
(eds.) Mathematical Studies of Information Processing. LNCS, vol. 75, pp.
228–251. Springer, Heidelberg (1979). doi:10.1007/3-540-09541-1 29

[Bro83] Brookes, S.D.: On the relationship of CCS and CSP. In: Diaz, J. (ed.)
ICALP 1983. LNCS, vol. 154, pp. 83–96. Springer, Heidelberg (1983).
doi:10.1007/BFb0036899

[CHM16] Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for
a wide-spectrum language with concurrency (2016). http://arxiv.org/abs/
1609.00195

[CJ07] Coleman, J.W., Jones, C.B.: A structural proof of the soundness of
rely/guarantee rules. Journal of Logic and Computation 17(4), 807–841
(2007)

[Con71] Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall,
Boca Raton (1971)

[dR01] de Roever, W.-P., Verification, C.: Introduction to Compositional and Non-
compositional Methods. Cambridge University Press, Cambridge (2001)

[GM93] Gardiner, P.H.B., Morgan, C.: A single complete rule for data refinement.
Formal Aspects Comput. 5, 367–382 (1993)

[Hay16] Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic founda-
tion. Form. Asp. Comput. 28(6), 1057–1078 (2016)

[HCM+16] Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An
algebra of synchronous atomic steps (2016). http://arxiv.org/pdf/1609.
00118v1.pdf

[HH10] He, J., Hoare, C.A.R.: CSP is a retract of CCS. Theor. Comput. Sci.
411(11–13), 1311–1337 (2010)

[HJC14] Hayes, I.J., Jones, C.B., Colvin, R.J.: Laws and semantics for rely-
guarantee refinement. Technical report CS-TR-1425, Newcastle University,
July 2014

[HMSW11] Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene
algebra and its foundations. J. Log. Algebr. Program. 80(6), 266–296
(2011)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper
Saddle River (1985)

http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
http://dx.doi.org/10.1007/3-540-15670-4_19
http://dx.doi.org/10.1007/3-540-09541-1_29
http://dx.doi.org/10.1007/BFb0036899
http://arxiv.org/abs/1609.00195
http://arxiv.org/abs/1609.00195
http://arxiv.org/pdf/1609.00118v1.pdf
http://arxiv.org/pdf/1609.00118v1.pdf

An Algebra of Synchronous Atomic Steps 369

[JHC15] Jones, C.B., Hayes, I.J., Colvin, R.J.: Balancing expressiveness in formal
approaches to concurrency. Formal Aspects Comput. 27(3), 475–497 (2015)

[Jon81] Development methods for computer programs including a notion of inter-
ference. Ph.D. thesis, Oxford University, June 1981: Oxford University
Computing Laboratory (now Computer Science) Technical Monograph
PRG-25

[Jon83] Jones, C.B.: Specification and design of (parallel) programs. In: Proceed-
ings of IFIP 1983, pp. 321–332. North-Holland (1983)

[Koz97] Kozen, D.: Kleene algebra with tests. ACM Trans. Prog. Lang. Sys. 19(3),
427–443 (1997)

[Mil83] Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci.
25(3), 267–310 (1983)

[Mil89] Milner, A.J.R.G.: Communication and Concurrency. Prentice-Hall, Upper
Saddle River (1989)

[Mor88] Morgan, C.C.: The specification statement. ACM Trans. Prog. Lang. Sys.
10(3), 403–419 (1988)

[Pri10] Prisacariu, C.: Synchronous Kleene algebra. J. Logic Algebraic Program.
79(7), 608–635 (2010)

[Ros98] Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall,
Upper Saddle River (1998)

[Sol07] Solin, K.: Abstract algebra of program refinement. Ph.D. thesis, Turku
Centre for Computer Science (2007)

[vG97] van Glabbeek, R.J.: Notes on the methodology of CCS and CSP. Theor.
Comput. Sci. 177(2), 329–349 (1997)

[vW04] von Wright, J.: Towards a refinement algebra. Sci. Comput. Program. 51,
23–45 (2004)

Error Invariants for Concurrent Traces

Andreas Holzer1, Daniel Schwartz-Narbonne2, Mitra Tabaei Befrouei3(B),
Georg Weissenbacher3, and Thomas Wies4

1 University of Toronto, Toronto, Canada
2 Amazon, Seattle, USA

3 TU Wien, Vienna, Austria
tabaei@forsyte.at

4 New York University, New York, USA

Abstract. Error invariants are assertions that over-approximate the
reachable program states at a given position in an error trace while
only capturing states that will still lead to failure if execution of the
trace is continued from that position. Such assertions reflect the effect
of statements that are involved in the root cause of an error and its
propagation, enabling slicing of statements that do not contribute to
the error. Previous work on error invariants focused on sequential pro-
grams. We generalize error invariants to concurrent traces by augmenting
them with additional information about hazards such as write-after-write
events, which are often involved in race conditions and atomicity viola-
tions. By providing the option to include varying levels of details in error
invariants—such as hazards and branching information—our approach
allows the programmer to systematically analyze individual aspects of an
error trace. We have implemented a hazard-sensitive slicing tool for con-
current traces based on error invariants and evaluated it on benchmarks
covering a broad range of real-world concurrency bugs. Hazard-sensitive
slicing significantly reduced the length of the considered traces and still
maintained the root causes of the concurrency bugs.

1 Introduction

Debugging is notoriously time consuming. Once a program failure has been
observed, the developer must identify a cause-effect chain of events that led
to it. This task is complicated by the fact that the underlying failing execution
trace can contain a large number of events that do not contribute to the failure.

A. Holzer—Funded by the Erwin Schrödinger Fellowship J3696-N26 of the Austrian
Science Fund (FWF).
D. Schwartz-Narbonne—Research was performed at NYU.
M. Tabaei Befrouei and G. Weissenbacher—Supported by the Austrian National
Research Network S11403-N23 (RiSE), the LogiCS doctoral program W1255-N23 of
the Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund
(WWTF) through grant VRG11-005.
T. Wies—Funded in part by the National Science Foundation under grant CCF-
1350574.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 370–387, 2016.
DOI: 10.1007/978-3-319-48989-6 23

Error Invariants for Concurrent Traces 371

Fig. 1. Non-atomic update of bank account balance

Error invariants [2,6,22] are (automatically generated) annotations of a given
failing execution trace that can support the developer in his endeavor to nar-
row down the statements involved in the failure. Error invariants provide, for
each point in the trace, an over-approximation of the reachable states that will
produce a failure if execution of the trace is continued from that point (cf. Defin-
ition 7). Consequently, two subsequent error invariants in an erroneous execution
reflect the relevance of the interjacent statement to the observed failure. State-
ments that leave the error invariant unchanged do not contribute to the failure
and can be safely ignored during the failure analysis [22].

Intuitively, failure analysis with error invariants can be understood as a vari-
ant of dynamic slicing [28] that takes the semantics of the failure into account.
Existing dynamic slicing techniques are based on data- and control-flow depen-
dencies and remove statements which can not impact the failing state via any
chain of dependencies. However, compared to error invariants the precision of
these syntax-based slicing techniques is limited by the fact that the semantics
of the erroneous trace is not taken into account.

Error invariants have been successfully deployed for constructing semantics-
aware slices in sequential software. The enabling techniques for the automated
generation of error invariants and slicing are unsatisfiable cores and interpola-
tion. An error trace translated into an unsatisfiable first-order logical formula
yields a proof of unsatisfiability from which interpolants can be extracted. These
interpolants which correspond to assertions representing the error invariants can
be used to construct a slice of the error trace that abstracts from the irrelevant
statements and explains the faulty behavior. This approach produces a slice
of the original trace annotated with assertions (the obtained error invariants)
showing the relevant values and variables to the failure.

Error Invariants for Concurrent Traces. While error invariants faith-
fully reflect sequential control- and data-flow, concurrency aspects are ignored
entirely. Consequently, a naive application of error invariants to concurrent traces
leads to undesirable slices.

372 A. Holzer et al.

Consider, for example, the code fragments in Fig. 1. At locations L2 and L′
2,

respectively, threads T1 and T2 update the balance of a bank account which is
stored in the shared variable balance. The array a contains the sequence of 5
amounts to be transferred, partitioned into three deposits (1 ≤ i ≤ 3) and two
withdrawals (4 ≤ j ≤ 5) executed by thread T1 and T2 in parallel, respectively.
Figure 2 shows the suffix of a failing interleaved execution in which the third
deposit is lost because of an atomicity violation. After three successful transac-
tions (two deposits and one withdrawal) thread T2 stores the current balance in
a thread-local variable bal. At this point, T1 interferes and updates the value of
balance by performing the third deposit. Thread T2, then, proceeds with the now
stale value stored in bal and stores the result of the last withdrawal transaction
in balance. Consequently, the execution results in a discrepancy of the expected
and the actual balance on the account.

The problem is that the final value of balance depends on the sequence (or
timing) of concurrently executed statements, i.e., the program contains a data
hazard. As the statements are not executed in the order expected by the pro-
grammer, the hazard results in an erroneous state, which propagates to the end
of the program where it surfaces as a failure. In this setting, the fault the pro-
grammer is looking for is the above-mentioned data hazard, in particular the
write-after-write dependency between L2 and L′

2.
The gray assertions in Fig. 2 represent error invariants computed using the

approach we propose in this paper. The assertion after L′
1 states that the local

variable bal reflects at most two deposits and one withdrawal. At this point, the
fault has not been triggered yet. The last conjunct in the error invariant after the
context switch indicates that the value of bal is unchanged. The error invariants
produced by previous techniques [2,6,22] track only the state information cap-
tured by this final conjunct. Therefore they would slice away all the statements
of thread T1 since the error invariants before and after the context switch would
be identical. Thus, the resulting slice would not reflect the data hazard and not
even the relevant interleaving.

To address this shortcoming, we lift interpolation-based slicing techniques
to a concurrency setting by taking into account control and data dependencies
between threads. The second assertion in T2 (after the context switch) already
reflects this adaptation: the expression hb(L′

1, L2)∧hb(L2, L
′
2) indicates that the

statement at L′
1 happened before the statement at L2, which in turn happened

before the one at L′
2. This specific order is crucial to the failure. A slicing algo-

rithm taking this information into account cannot safely slice the statement at
L2 in thread T1 anymore. Note that, unlike previous techniques, error invariants
in our approach not only reflect a set of states but also the execution order of
critical statements via the happens-before relation (cf. Sect. 3.2).

Inter-thread data dependencies enable us to isolate (among other bugs) race
conditions and atomicity violations which constitute the predominant class of
non-deadlock concurrency bugs [18]. Contrary to other concurrency debugging
tools [5,8,9,23–25] which target specific kinds of bugs, we provide a general
framework for concurrency bug explanation. We applied an implementation of

Error Invariants for Concurrent Traces 373

T2 T1

...

L′
1: bal := balance

release �
{bal ≤ a[1] + a[2] − a[4]}

acquire �
L1: bal := balance

...

bal = bal+a[3] ;
L2: balance := bal

release �
...

{hb(L′
1, L2) ∧ hb(L2, L

′
2) ∧ (bal ≤ a[1] + a[2] − a[4])}

bal = bal-a[5] ;
acquire �

L′
2: balance := bal

{bal ≤ a[1] + a[2] − a[4] − a[5]}
...

Fig. 2. Error trace with hazard-sensitive error invariants

our approach to error traces generated from concurrent C programs using the
directed testing tool ConCrest [7]. We evaluate our approach on benchmarks
that contain bugs found in real-world software such as Apache, GCC, and
MySQL [17]. On average, our slices yield a significant reduction of the number of
variables and the length of the considered traces while maintaining information
that is crucial to understand the underlying concurrency bug.

2 Preliminaries

Syntax of Concurrent Programs. A concurrent program comprises multiple
threads each represented by its control-flow graph (CFG) [21, Sect. 7].

Definition 1 (Control-Flow Graph). A CFG 〈N,E〉 comprises nodes N and
edges E. Each node n ∈ N corresponds to a single programming construct from
a simple imperative language comprising assignments x:=e and conditions R.

Nodes representing conditional statements have two outgoing edges labeled Y
and N, respectively, corresponding to the positive and negative outcome of the
condition. All other nodes – except the exit node, which has no successors – have
out-degree one.

If a node m is control dependent on a node n and n represents a condition,
its outcome can determine whether m is reached:

Definition 2 (Dominators and Control Dependency). A node m post-
dominates a node n if all paths to the exit node starting at n must go through m.
Node m is control dependent on n (where n �= m) if m does not post-dominate n
and there exists a path from n to m such that m post-dominates all nodes (other
than n) on that path.

374 A. Holzer et al.

Based on Definition 2, we introduce our notion of a scope:

Definition 3 (Scope). A node m is in scope of the condition at node n if m is
control dependent on n or in scope of a condition that is control dependent on n.

A CFG is in Static Single Assignment (SSA) form [3] if each variable is assigned
exactly once. The standard mechanism to translate CFGs into SSA form is
to subscript each definition of a variable with a unique version number; conse-
quently, each definition is uniquely identified by the corresponding SSA variable.
Conflicting definitions at a control-flow merge point m in a CFG are resolved
by introducing an arbiter node n (with sole successor m) to which we divert
the incoming edges of m. The arbiter node n is annotated with a φ-function
which switches between the definitions from different incoming paths (see Fig. 3).
Algorithms to convert a program into SSA form are described in [3] and [21,
Sect. 8.11].

Definition 4 (Program Path). Let 〈Nt, Et〉 be a CFG representing a thread
t. A path Pt of thread t is a sequence n1, 〈n1, n2〉, n2, . . . , 〈nk−1, nk〉, nk of nodes
ni ∈ Nt and edges 〈ni, ni+1〉 ∈ Et. A program path P

def= n1, 〈n1, n2〉, n2, . . . ,
〈nk−1, nk〉, nk corresponds to an interleaving of paths of threads (starting at their
respective initial nodes) such that for each i with 1 ≤ i < k either ni, ni+1 ∈ Nt

and 〈ni, ni+1〉 ∈ Et for some thread t, or ni and ni+1 belong to different threads
and 〈ni, ni+1〉 is an inter-thread edge representing a context switch.

Fig. 3. SSA form of:
if (x< 0) then x := 1

else x := 2; y := x

Given a (program) path P , let [ni, nj] denote the sub-
path ni, 〈ni, ni+1〉, ni+1, . . . , nj−1, 〈nj−1, nj〉, nj of P
including the nodes ni and nj and (ni, nj) the sub-path
〈ni, ni+1〉, ni+1, . . . , nj−1, 〈nj−1, nj〉 excluding the nodes
ni and nj . We use P �t to denote the projection of a pro-
gram path P to thread t in which only nodes ni ∈ Nt

and edges 〈ni, ni+1〉 ∈ Et are retained and any sub-path
(ni, nj) with ni, nj ∈ Nt and nl /∈ Nt for i < l < j is
replaced with the edge 〈ni, nj〉, i.e., P �t is a path of the
thread t. Consequently, for each program path P , P �t is
either empty (if P does not visit thread t) or a path of
thread t starting at the initial node of t. Finally, P �N and
P �E denote the projection of P to the sequence of nodes N and edges E in P ,
respectively.

Semantics, Feasible Executions and Error Traces. The variables of a pro-
gram are partitioned into global and thread-local variables. A state s maps each
variable to a value, and s(e) denotes the value of expression e in state s.

A program path P corresponds to a sequence of statements. We require
that each statement refers to at most one global variable, and hence statements
execute atomically.

Definition 5 (Execution). An execution of a path P corresponds to an exe-
cution of the statements of P in order (starting in an initial state). We use

Error Invariants for Concurrent Traces 375

stmtP (ni) to denote the statement represented by node ni in a path P . In par-
ticular, if node ni represents the condition R, let t be such that ni ∈ Nt and let
〈ni, nj〉 be the first edge in P �t succeeding ni. Then stmtP (ni) is R if 〈ni, nj〉 is
labeled Y, ¬R if the edge is labeled N. If ni is the last node of a thread t, then
stmtP (ni) = true.

The execution of one statement in the current program state s is defined as
follows:

– If stmtP (ni) is the assignment x:=e, the successor state of s is updated such
that x evaluates to s(e) and all other variables are unchanged.

– If ni is a conditional statement R, the execution proceeds iff s(stmtP (ni)) is
true.

A path P is feasible if there exists an initial state s for which the execution
of P is not blocked by a condition which is false. Given a path P , we use stmtsP
to denote the sequence of statements represented by P . Abusing our notation,
we sometimes call stmtsP a path and will use P and stmtsP interchangeably.

We use stmtsP [i] to denote the ith statement stmtP (ni) of a path P , and
stmtsP [i, j] to denote the sub-path stmtsP [i]; . . . ; stmtsP [j] ([ni, nj], respec-
tively). We drop the subscript P if it is clear from the context.

A state sj is reachable from a state si−1 via a sub-path stmtsP [i, j] if an
execution of stmtsP [i, j] starting in si−1 does not block and results in state sj .

We assume that the correctness of a path is determined by an assertion ψ
expected to hold after the execution of the path. Error traces which result in the
violation of ψ are defined as:

Definition 6 (Error Trace). A path P is an error trace for the assertion ψ
if P is feasible and always results in a state s such that s(ψ) is false.

Intuitively, an error trace is an execution of a failing test case that does not
satisfy the specification ψ. We assume (w.l.o.g.) that path P in Definition 6
reaches the end of the main thread, where ψ is asserted. Consequently, ψ is not
in scope of any condition.

3 Error Explanation

In this section, we first recall the interpolation-based slicing approach presented
in [2,6] for sequential software. We then explain how we extend it to concurrent
executions.

3.1 Interpolation-Based Slicing for Sequential Traces

Ermis et al. [6] and Christ et al. [2] use error invariants to identify statements
that do not contribute to the assertion violation in sequential traces.

Definition 7 (Error Invariant). Given an error trace P of length k for asser-
tion ψ, an error invariant for position i (with i ≤ k) is a set of states E such
that

376 A. Holzer et al.

(a) E contains (at least) all states reachable from an initial state via stmtsP [1, i],
and

(b) every feasible execution of stmtsP [i + 1, k] starting from a state in E results
in a state in which ψ is false.

An error invariant E is recurring1 for positions i ≤ j if E is an error invariant
for i as well as for j.

Intuitively, an error invariant E represents an over-approximation of the
states that are reachable via the path stmts[1, i] such that stmts[i + 1, k] if exe-
cuted from a state in E still results in failure. According to [2,6], statements
between a recurring error invariant are “not needed to reproduce the error.”

Error invariants can be derived using Craig interpolation (defined below) and
a symbolic encoding of a path P [2,6]. In the following, we derive a symbolic
encoding enc(P) similar to the one in [6] from a straight-line program in SSA
form, which represents the path P to be encoded. This straight-line program is
obtained by traversing the CFG along P . If a node is visited repeatedly (via a
cycle in one of the CFGs), a new version of the variable is introduced; for straight-
line programs (which do not contain control-flow merge points) it suffices to
increase the version number of a variable each time it is assigned and refer to the
latest version of each variable in conditions and right-hand sides of assignments.

Given a path P in SSA form as described above, the formula enc(P) is a
conjunction

∧k
i=1 encP (ni) of the encodings of the individual statements:

encP (ni)
def=

{
(xi = e) if stmtP (ni) is xi := e
stmtP (ni) if stmtP (ni) is a condition (1)

Variable assignments that satisfy formula enc(P) correspond to executions;
note that if all variables in P are initialized before being used, enc(P) has only
one unique satisfying assignment. In this context, interpolants (as defined in [19])
are a symbolic representation of sets of states. Let Var(A) be the set of (free)
variables occurring in a formula A. An interpolant I is a predicate that encodes
all states s for which s(I) is true. We define states(I) def= {s | s(I) = true}. The
following definition is a generalization of interpolants as defined in [19] under
the assumption that all non-logical symbols in A and B are interpreted:

Definition 8 (Inductive Interpolant Sequence). Let A1, . . . , An be
a sequence of first-order formulas whose conjunction is unsatisfiable. Then
I0, . . . In is an inductive interpolant sequence if

– I0 = true and In = false,
– for all 1 ≤ i ≤ n, Ii−1 ∧ Ai ⇒ Ii, and
– for all 1 ≤ i < n, Var(Ii) ∈ (Var(A1 ∧ . . . ∧ Ai) ∩ Var(Ai+1 ∧ . . . ∧ An)).

1 To avoid confusion with inductive interpolant sequences (Definition 8), we replace
the notion of inductive error invariants [2,6] with recurring error invariants.

Error Invariants for Concurrent Traces 377

Given a path P
def= n1, 〈n1, n2〉, n2, . . . , 〈nk−1, nk〉, nk in SSA form, a sequence

interpolant I0, . . . , Ik+1 derived from the formulas encP (n1), . . . , encP (nk),
ψ is inductive in the sense that states(Ii) contains all states reachable from
states(Ii−1) via stmt(ni) (and potentially more) [20,22]. Moreover, Ik ∧ ψ is not
satisfiable, i.e., all states represented by Ik violate assertion ψ. If Ii represents an
error invariant for positions i and j (i.e., states(Ii) is an error invariant for j and
Ii implies Ij) then Ii is inductive with respect to the sub-path stmtsP [i + 1, j].
Accordingly, slicing [ni+1, nj] away (i.e., replacing it with an edge 〈ni+1, nj〉)
preserves the assertion violation.

A trace obtained by removing statements between recurring error invariants
from P is sound in the sense of Definition 9 below:

Definition 9 (Sound Slice). A slice of path P of length k is a path Q of
length m with stmtsQ[1] = stmtsP [i1], stmtsQ[2] = stmtsP [i2], . . . , stmtsQ[m] =
stmtsP [im] with 1 ≤ i1 < i2 < . . . < im ≤ k. Given an error trace P for ψ, a
slice Q of P is sound if Q is also an error trace for ψ.

3.2 Interpolation-Based Slicing for Concurrent Traces

In the following, we enhance and extend the interpolation-based slicing technique
discussed in Sect. 3.1 to take control dependency as well as concurrency into
account.

Control Dependencies. The following example shows that the encoding
enc(stmts) fails to capture control dependence (Definition 2).

Example 1. Figure 4a shows the statements of a path P (in SSA form) and a
corresponding interpolant sequence on the right. The example is a sequential
variation of the bank account example which fails if the required minimum bal-
ance MIN is larger than zero. The resulting slice (indicated in bold) contains
only the last assignment to bal and the assertion ψ. It does not reflect the fact
that the Y-branch of the conditional statement has to be taken for the failure to
occur.

Fig. 4. Slicing sequential trace with Error Invariants

378 A. Holzer et al.

We present a (modular) extension to the encoding defined in Sect. 3.1 that
enables the inclusion of control dependencies. Unlike prior work [2], which
addresses this problem using a custom-tailored control-sensitive encoding, our
technique is based on the SSA representation. As in Sect. 3.1, the starting point
of our approach is a straight-line representation of the error trace P . Unlike
before, however, we include the φ-nodes from the SSA presentation of the pro-
gram in P :

φ-functions at n ∈ Nt for a variable x, take as parameters the subscripted
variable versions representing definitions of x in thread t that reach n.

Consequently, when generating the straight-line presentation of P , we include
all φ-nodes of the SSA presentation of the program that are traversed by P . As
we are encoding a single path P , however, φ takes only one parameter, since only
one definition of each variable x reaches n in P . Our extension csenc(stmts) of
the encoding enc(stmts) is based on assignments xi := φ(xj), which make control
dependencies in an error trace P explicit. In order for xi to take the value of xj ,
the outcomes of the conditional statements preceding the assignment of xj in P
have to permit the assignment to be executed.

Let stmt(nj) be the statement assigning xj , and note that control dependency
coincides with our notion of a scope (as defined in Definition 3). We define

guard(nj)
def=

∧
{enc(ni) |nj is in scope of ni} . (2)

In order for the definition of xj in nj to be reachable along P , guard(nj)
needs to evaluate to true. Moreover, since trace P does not traverse alternative
branches, the value of xi is unknown if guard(nj) does not hold. Based on this
insight, we define a control-sensitive encoding csenc(P) as follows:

csenc(ni)
def=

⎧
⎪⎪⎨

⎪⎪⎩

guard(nj) ⇒ (xi = xj) if stmt(ni) is xi := φ(xj)
and nj assigns xj

enc(ni) if ni is an assignment
true if ni is a condition

(3)

An inductive error invariant for the encoding csenc(P) induces a control-
sensitive slice (cf. Definition 4 of flow-sensitivity and Theorem 6 in [2]):

Definition 10 (Control-sensitive Slice). Let P be an error trace for the
assertion ψ. A (sound) slice Q is control-sensitive if for every statement
stmtsQ[k] = stmtsP [i] and every assumption stmtsP [j] such that stmtsP [i] is in
scope of stmtsP [j], there is some prefix stmtsQ[1, h] of stmtsQ[1, k] (with h < k
such that stmtsQ[h] precedes and stmtsQ[h + 1] succeeds or equals stmtsP [j] in
P) such that stmtsQ[1, h] is an error trace for ¬(stmtsP [j]).

Intuitively, the definition requires that Q justifies that every branch contain-
ing a relevant statement will be taken.

Error Invariants for Concurrent Traces 379

Theorem 1. Let P be a (concurrent) error trace for ψ of length k and let I0,
I1, . . . , Ik−1, Ik+1 be error invariants (with I0 = true and Ik+1 = false) obtained
from an inductive sequence interpolant for csenc(n1), . . . , csenc(nk), ψ. Let Q be
the slice obtained from P by removing each sub-path P [i, j] for which Ii−1 is
inductive. Then Q is a sound control-sensitive slice for P . (Proof in [11])

Note that the interpolants in Theorem1 may contain different versions of a
variable x, since the encoding of φ-nodes may refer to conditions in the “past”.
This corresponds to history or ghost variables used in Hoare logic and does not
affect soundness.

Example 2. Figure 4b shows the path P from Example 1 sliced using a control-
sensitive encoding csenc(P) based on φ-nodes. Note that the statements initial-
izing bal and amount, which guarantee that the Y-branch is taken, are included
in the slice.

Synchronization. In the simple interleaving semantics deployed in this paper,
locks can be modeled using an integer variables � and atomicity constraints. Lock
� is available if its value is 0. Any other value t indicates that the lock � is held
by thread t. Let n be a node of thread t with a self-loop waiting for (� = 0)
to become true, and m its successor node assigning t to �. By constraining the
execution such that no thread other than t can execute between n and m, we
guarantee that lock acquisition is performed atomically. Analogously, a lock �
held by the current thread (guaranteed by condition � = t) is released by the
statement � := 0. Control-sensitive slices also take into account lock acquisition
statements, as relevant statements executed in a locked region are in the scope
of the corresponding condition (� = 0).

Hazards. A trace contains a data hazard if its outcome depends on the sequence
(or timing) of concurrently executed statements. As explained for the sub-trace
in Fig. 2 discussed in Sect. 1, applying error invariants in their original form
[6] to sequential paths results in slices that ignore important characteristics of
concurrent traces. While csenc(P) reflects control-flow, it fails to capture data
dependencies, which are constraints arising from the flow of data between state-
ments [21]:

Read-after-write If statement stmt(n) writes a value read by statement
stmt(m), then the two statements are flow dependent.

Write-after-read An anti dependence occurs when statement stmt(n) reads a
value that is later updated (over-written) by stmt(m).

Write-after-write An output dependence exists if stmt(n) as well as stmt(m)
set the value of the same variable.

While this definition also applies to single threads, we concern ourselves
exclusively with inter-thread data dependencies. In a path P , a data dependency
between different threads can indicate a conflicting access (i.e., a race condition
or hazard).

380 A. Holzer et al.

Fig. 5. Part of a path with hazard and π-node

Unlike flow dependence (which is taken into account by enc(P) and csenc(P),
since the SSA form represents use-definition pairs and therefore also flow depen-
dence explicitly), anti and output dependencies are not explicit in the SSA-based
encoding of P used in Sects. 3.1 and 3.2. Similar to merge points in sequential
programs, inter-thread dependencies in P give rise to conflicting definitions of
global variables. The Concurrent SSA (CSSA) form of paths presented in [26,29]
introduces π-functions to resolve dependencies between accesses to global vari-
ables in different threads.

To convert an error trace into CSSA form, we introduce an arbiter node
before every read access to a global variable x in an error trace P (analogously
to the arbiter nodes for φ-functions in Sect. 2). The arbiter node is annotated
with a π-function that selects from all definitions of the global variable x in P
the most recent definition:

π-functions at n ∈ Nt for a global variable x, take as parameters the sub-
scripted variables representing definitions of x in all threads.2

Figure 5 shows a simplified suffix of the trace in Fig. 2. The simplified trace
consists of two threads with a π-node (arbitrating between the definitions
balance1 and balance2) inserted before an assertion ψ that states the expected
outcome. Note that unlike the degenerate φ-functions used in Sect. 3.2, a π-
function for x has as many parameters as there are definitions of x in P .

To encode WAR and WAW dependencies, we introduce an irreflexive, tran-
sitive, and anti-symmetric relation hb(ni, nj) which indicates that node ni is
executed before node nj . This happens-before relation enables us to encode the
edges of a program trace, reflecting the program order and the schedule.

In addition, rd(x, ni) and wr(x, nj) indicate that x is read at node ni and writ-
ten at node nj . These primitives allow for an explicit encoding of data depen-
dencies:

wr(x, ni) ∧ hb(ni, nj) ∧ rd(x, nj) ⇔ rawx(ni, nj)
rd(x, ni) ∧ hb(ni, nj) ∧ wr(x, nj) ⇔ warx(ni, nj)
wr(x, ni) ∧ hb(ni, nj) ∧ wr(x, nj) ⇔ wawx(ni, nj)

(4)

The hazard-sensitive encoding presented below incorporates data dependen-
cies into the encoding of a trace. The encoding is derived directly from a program

2 As an optimization, only the last definition of x in thread t before n is added.

Error Invariants for Concurrent Traces 381

path P , taking advantage of the information encoded in the edges. Assignments
(without π-functions) are encoded as follows:

hsenc(ni)
def=

⎧
⎨

⎩

wr(x, ni) ∧ enc(ni) if ni writes global var. x
rd(x, ni) ∧ enc(ni) if ni reads global var. x
enc(ni) otherwise

(5)

Nodes ni with π-functions incorporate happens-before information. Let ni

be a π-node assigning xi, let nj be an assignment to xj and the last node before
ni in P updating the global variable x. Then hsenc(ni) is:

rd(x, ni) ∧ (DEP(ni, nj) ⇒ (xi = xj)) (6)

where DEP(ni, nj) is the following condition:

rawx(nj , ni) ∧
∧

m ∈ {n ∈ P |wr(x, n)}
m �= nj

(wawx(m,nj) ∨ warx(ni,m)) (7)

Intuitively, DEP(ni, nj) states that xj is written before xi is read, and no
other definition of x interferes.

Finally, edges are encoded as happens-before relations:

hsenc(〈ni, ni+1〉) def= hb(ni, ni+1) (8)

Given a path P
def= n1, 〈n1, n2〉, n2, . . . , 〈nk−1, nk〉, nk, applying sequence

interpolation to the formulas hsenc(n1), hsenc(〈n1, n2〉), hsenc(n2), . . . ,
hsenc(〈nk−1, nk〉), hsenc(nk), ψ yields a sequence in1, out1, . . . , ink, outk of for-
mulas such that

ini ∧ hsenc(ni) ⇒ outi and outi ∧ hsenc(〈ni, ni+1〉) ⇒ ini+1 .

Unlike before, ini and outi propagate facts about states as well as execution
order. We can slice sub-path [ni, nj] if ini ⇒ outj , sub-path (ni, nj) if outi ⇒ inj ,
sub-path [ni, nj) if ini ⇒ inj , and sub-path (ni, nj] if outi ⇒ outj . The resulting
sliced path Q corresponds to a sequence of statements stmtsQ and a set of edges
Q�E representing context switches and program order constraints relevant to the
error.

Definition 11 (Hazard-sensitive slice). Given an error trace P , a (sound)
slice Q is hazard-sensitive if for every statement stmtsQ[k] = stmtsP [j] and
statement stmtsP [i] such that there is an inter-thread data dependency between
stmtsP [i] and stmtsP [j], there is an h such that stmtsQ[h] = stmtsP [j].

Theorem 2. Let P be a concurrent error trace and let Q be the slice obtained
from P as explained above. Then Q is a sound hazard-sensitive slice of P . (Proof
in [11])

Example 3. Consider the path in Fig. 5. A hazard-insensitive slice would contain
the statement at node L′

2 but not the statement at node L′
2 (as explained in

Sect. 1) since L2 has no influence on the state after L′
2. Encoding (6) and (7) of

382 A. Holzer et al.

the π-node require the interpolant before the π-node to imply wawbalance(L2, L
′
2),

and consequently wr(balance, L2), wr(balance, L′
2), and hb(L2, L

′
2) (as indicated

in Fig. 2). Nodes L2 and L′
2 as well as the edge 〈L2, L

′
2〉 are included in the

resulting slice.

3.3 Fine-Tuning Explanations

The encodings presented in Sect. 3.2 can be combined in a straightforward
manner, providing us with a choice of control WAR, and WAW dependen-
cies reflected by the resulting explanation. Control-flow or hazard-sensitivity
can be added (or removed) by (dis-)regarding π-nodes and φ-nodes in P .
Control-flow dependency can be incorporated into π-nodes in Eq. (6) by pre-
fixing the assignment xi = xj with the guard of the definition of xj at node nj :
guard(nj) ⇒ (DEP(ni, nj) ⇒ (xi = xj)), similar to the guard in the definition of
csenc(ni) in Encoding (3). Moreover, Encoding (6) can be made insensitive to
WAR dependencies by restricting m to predecessors of ni and by dropping the
disjunct warx(ni,m) from (7) (and similarly for WAW dependencies). Note that
flow dependency has a special role, since use-definition chains are explicit in the
SSA representation.

The partial order given by the subset rela-
tion ⊆ over the power-set of the remaining
dependencies {cs, war, waw} reflects possi-
ble levels of detail of explanations, as illus-
trated by the Hasse diagram to the right. As
indicated in the diagram, the configuration ∅
corresponds to the basic approach presented
in [6,22], whereas {cs} represents control-flow
sensitive approach.

While we see interpolants as an inherent part of the explanation, the level of
detail provided by these annotations cannot be related or formalized as easily as
it is the case for dependencies: changing the underlying encoding typically has
an unpredictable effect on the structure and strength of interpolants [4,20].

4 Experiments

We implemented our approach as an extension of the directed testing tool Con-
Crest [7]. We generate error traces of concurrent programs and then produce
slices as described in Sect. 3. While all slices provided by our tool are sound in
the sense of Definition 9, the level of detail might not be sufficient to reflect the
underlying bug: for example, the hazard-sensitive slice for the account bench-
mark readily reveals the atomicity violation. Therefore, it is not necessary to
compute a more detailed control-sensitive slice.

The results from Sect. 3.3 enable the developer to gradually increase the detail
in an iterative manner until the bug can be understood. This section provides an
empirical evaluation of the size and accuracy of slices with varying levels of detail.

Error Invariants for Concurrent Traces 383

Effectiveness of the Method. To evaluate our method, we applied it on
a collection of faulty C programs to show how effective the different depen-
dency encodings are at revealing different types of concurrency bugs. We used
four different encodings to track data and control dependencies: hs refers to
hazard-sensitive encoding for tracking inter-thread data dependencies, cs refers
to control-sensitive encoding for tracking control dependencies, and ds denotes
the basic encoding encP of Sect. 3. The symbol “+” indicates combinations of
encodings.

Our definition of whether the bug was captured depends on the type of
bug. For data race bugs, we required that the slice reflecting the bug contains
both conflicting accesses. For atomicity violations, a slice reflecting the bug con-
tains conflicting statements from another thread interrupting the desired atomic
region. For order violations, a slice reflecting the bug contains conflicting state-
ments in the problematic order.

Table 1 summarizes our empirical results. The benchmarks in this table are
classified into two groups. The first group consists of 33 multithreaded C pro-
grams taken from [17].3 These programs capture the essence of concurrency bugs
reported in various versions of open source applications such as Mozilla, Apache,
and GCC. The apache2 and bluetooth benchmarks in the second group are sim-
plified versions of applications taken from [7]. The pool-simple-2 benchmark is
a lock-free concurrent data structure with a linearizability bug. We discuss this
benchmark in depth in [11]. The remaining two benchmarks in the second group
are variants of the program discussed in Sect. 1. For each benchmark program,
the name, the number of lines of code (LOC), the number of threads, and the
type of bug are listed in Table 1. The number of error traces (#T) per benchmark
varies due to specific assertions and ConCrest’s ability to produce error traces.
They do not reflect any preselection of traces. In total, ConCrest generated 90
error traces from the 38 programs all of which we considered in our evaluation.

We use � to indicate that the explanations obtained using the corresponding
encoding capture the bug, and – if the bug was not captured. By manually inspect-
ing the slices we found that for all but two benchmarks, tracking all dependencies
ds+cs+hs yields explanations that capture the corresponding concurrency bug.
For most benchmarks there exists at least one additional encoding which provides
smaller slices that still reveal the bug. This encoding is usually hs (68 %) or cs
(50 %) depending on the nature of the bug and the assertions. Interestingly, our
analysis revealed that boop, freebsd auditarg and gcc-java-25530 from [17] contain
sequential bugs already reflected in a ds-slice rather than concurrency bugs (even
though in [17] they are classified as concurrency bugs).

In two of the three error traces of freebsd auditarg the bug is triggered by
non-interleaved executions of the threads. For these traces, any encoding yields
an adequate explanation. In one error trace, however, the bug is triggered by
an interference between two threads, which is only reflected by the encodings
ds+hs and ds+cs+hs.

3 ConCrest’s search heuristic failed to generate an error trace for the fibbench longer, a
variant of fibbench with larger parameters. We emphasize that this failure is related
to the generation of traces rather than slicing.

384 A. Holzer et al.

Table 1. Experimental comparison of sensitivity-configurations for slicing

Only the programs hash table, ms queue02, and list seq, which contain bugs
in intricate concurrent data structures, require the full ds+cs+hs encoding.

Only for the two benchmarks apache-25520 and cherokee 01 the slices pro-
duced by our method failed to reveal the bugs. The problem is that the root
cause of the assertion violation is that a specific branch of a conditional state-
ment is not taken during the execution. Slices of single error traces cannot reveal
the non-occurrence of an event as the cause for failure. Therefore, we plan to
analyze merged error traces in future work.

Running times. The generation of the slices takes an average of 2.43 s (σ =
11.02 s) across all encodings with a maximum of 168.8 s. As expected, the running
times increase with the amount of detail captured by the encoding. Generating
a ds explanation takes 0.43 s on average (σ = 0.18 s) whereas a ds+cs+hs
explanation takes 7.3 s (σ = 21.25 s).

Quantitative Evaluation. Table 1 shows the effect of tracking different depen-
dencies on the size of the slices. μ refers to average percentage reduction as

Error Invariants for Concurrent Traces 385

the quotient of the number of remaining and original instructions, so smaller
numbers mean smaller slices. As expected, increasing the sensitivity of the algo-
rithm by tracking more dependencies leads to smaller reductions. However, as we
have seen previously, the hazard-sensitive explanations (ds+hs), which capture
the concurrency bugs in 68 % of the benchmarks, on average contain 35 % of the
original instructions and 54 % of the original variables. We gained the maximum
reduction with the encoding (ds), however the resulting explanations reflected the
concurrency bugs in only 23 % of the benchmarks. The amount of reduction differs
across benchmarks with a maximum of 93 % for the apache2 benchmark program.
Slices which are hazard- but not control-flow sensitive tend to be much smaller
than slices which are control-flow sensitive, but not data-hazard sensitive.

5 Related Work

The original work on error invariants [2,6] is discussed in Sects. 2 and 3. Murali et
al. [22] relate error invariants to unsatisfiable cores and consistency-based diag-
nosis. The latter is also implemented in ConcBugAssist [17], a repair tool for con-
current programs, and BugAssist [15] for the diagnosis of sequential bugs. Both
BugAssist and ConcBugAssist take into account multiple traces simultaneously
and can yield better accuracy in certain cases (e.g., benchmarks apache-25520
and cherokee 01 in Sect. 4). Neither [15,17] nor [22] report branch conditions (or
statements explaining why they hold). On the benchmarks from [17], we found
that ConcBugAssist yields similar reduction ratios as our tool using the hs+ds
encoding. The dependency of ConcBugAssist on a bounded model checker for
the constraint generation entails scalability issues: even on a simplified version
of pool simpl 2 for which we provided the minimal unwinding depth necessary
to detect the bug, ConcBugAssist timed out after 45 min, while our approach
generated a slice in 2.5 min for the non-simplified program.

Other static approaches for simplifying and summarizing concurrent error
traces include [10,12,13,16]. In [10], an SMT solver and model enumeration
is used to derive a symbolic representation of all reorderings of a given trace
that violate a safety property, which is then used to explain the bug. Instead,
we analyze a single failing trace, ensuring that our encoding explicitly captures
which happens-before relations are relevant for the faulty behavior.

Tools that attempt to minimize the number of context switches, such as
SimTrace [12] and Tinertia [13], are orthogonal to the approach presented in
this paper.

Many techniques for detecting race conditions or atomicity/serializability
violations are geared towards specific bug characteristics [9,18,30]. Similarly,
dynamic techniques such as Falcon [24] and Unicorn [23] rely on bug patterns.
Our approach encodes data-dependencies rather than relying on bug patterns or
specific bug characteristics. Recent work [27] uses mining of failing and passing
traces to isolate erroneous sequences of statements. Our technique only considers
failing traces.

Afix [14] and ConcurrencySwapper [1] automatically fix concurrency-
related errors. The latter uses error invariants to generalize a linear error trace

386 A. Holzer et al.

to a partially ordered trace, which is then used to synthesize a fix. This approach
may potentially benefit from our more fine-tuned trace encoding that enables
error invariants to capture concurrent data dependencies.

6 Conclusion

We proposed to augment error invariants with information about inter-thread
data dependency and hazards to capture a broad range of concurrency bugs.
Our technique generates sound slices of concurrent error traces, enabling devel-
opers to quickly isolate and focus on the relevant aspects of error traces. We
proved that the reported slices are sound and sufficient to trigger the failure.
The experimental evaluation of our prototype implementation showed that the
approach is effective and significantly reduces the amount of code that needs to
be inspected.

References

1. Černý, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient
synthesis for concurrency by semantics-preserving transformations. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 951–967. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39799-8 68

2. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 189–208. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 13

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth-Zadeck, F.: Effi-
ciently computing static single assignment form, the control dependence graph.
ACM Trans. Program. Lang. Syst. (TOPLAS) 13(4), 451–490 (1991)

4. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11319-2 12

5. Engler, D.R., Ashcraft, K., RacerX: effective, static detection of race conditions
and deadlocks. In: SOSP, pp. 237–252. ACM (2003)

6. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32759-9 17

7. Farzan, A., Holzer, A., Razavi, N., Veith, H.: Con2colic testing. In: Foundations
of Software Engineering (FSE), pp. 37–47. ACM (2013)

8. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
Commun. ACM 53(11), 93–101 (2010)

9. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: Programming
Language Design and Implementation (PLDI), pp. 338–349. ACM (2003)

10. Gupta, A., Henzinger, T.A., Radhakrishna, A., Samanta, R., Tarrach, T.: Succinct
representation of concurrent trace sets. In: POPL, pp. 433–444. ACM (2015)

11. Holzer, A., Schwartz-Narbonne, D., Tabaei Befrouei, M., Weissenbacher, G., Wies,
T.: Error invariants for concurrent traces. ArXiv e-prints, abs/1608.08584, August
2016

http://dx.doi.org/10.1007/978-3-642-39799-8_68
http://dx.doi.org/10.1007/978-3-642-35873-9_13
http://dx.doi.org/10.1007/978-3-642-11319-2_12
http://dx.doi.org/10.1007/978-3-642-32759-9_17
http://dx.doi.org/10.1007/978-3-642-32759-9_17

Error Invariants for Concurrent Traces 387

12. Huang, J., Zhang, C.: An efficient static trace simplification technique for debug-
ging concurrent programs. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp.
163–179. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23702-7 15

13. Jalbert, N., Sen, K.: A trace simplification technique for effective debugging of
concurrent programs. In: Foundations of Software Engineering (FSE), pp. 57–66.
ACM (2010)

14. Jin, G., Song, L., Zhang, W., Lu, S., Liblit, B.: Automated atomicity-violation
fixing. In: Programming Language Design and Implementation (PLDI), pp. 389–
400. ACM (2011)

15. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum sat-
isfiability. In: Programming Language Design and Implementation (PLDI) (2011)

16. Kashyap, S., Garg, V.K.: Producing short counterexamples using “Crucial Events”.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 491–503. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-70545-1 47

17. Khoshnood, S., Kusano, M., Wang, C., ConcBugAssist: constraint solving for diag-
nosis and repair of concurrency bugs. In: ISSTA, pp. 165–176. ACM (2015)

18. Shan, L., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics. ACM SIGPLAN Not. 43,
329–339 (2008)

19. McMillan, K.L.: An interpolating theorem prover. Theoret. Comput. Sci. 345(1),
101–121 (2005)

20. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). doi:10.1007/
11817963 14

21. Muchnick, S.S.: Advanced Compiler Design Implementation. Morgan Kaufmann,
San Francisco (1997)

22. Murali, V., Sinha, N., Torlak, E., Chandra, S.: A hybrid algorithm for error trace
explanation. In: VSTTE (2014)

23. Park, S., Vuduc, R., Harrold, M.J.: A unified approach for localizing non-deadlock
concurrency bugs. In: Software Testing, Verification and Validation (ICST), pp.
51–60. IEEE (2012)

24. Park, S., Vuduc, R.W., Harrold, M.J.: Falcon: fault localization in concurrent pro-
grams. In: International Conference on Software Engineering (ICSE), pp. 245–254.
ACM (2010)

25. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

26. Sinha, N., Wang, C.: On interference abstractions. In: Principles of Programming
Languages (POPL), pp. 423–434. ACM (2011)

27. Tabaei Befrouei, M., Wang, C., Weissenbacher, G.: Abstraction and mining of
traces to explain concurrency bugs. In: Bonakdarpour, B., Smolka, S.A. (eds.)
RV 2014. LNCS, vol. 8734, pp. 162–177. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11164-3 14

28. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3, 121–189
(1995)

29. Wang, C., Kundu, S., Limaye, R., Ganai, M., Gupta, A.: Symbolic predictive analy-
sis for concurrent programs. Formal Aspects Comput. 23(6), 781–805 (2011)

30. Xu, M., Bod́ık, R., Hill, M.D.: A serializability violation detector for shared-
memory server programs. In: Programming Language Design and Implementation
(PLDI), pp. 1–14. ACM (2005)

http://dx.doi.org/10.1007/978-3-642-23702-7_15
http://dx.doi.org/10.1007/978-3-540-70545-1_47
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/978-3-319-11164-3_14
http://dx.doi.org/10.1007/978-3-319-11164-3_14

An Executable Formalisation of the SPARCv8
Instruction Set Architecture:

A Case Study for the LEON3 Processor

Zhe Hou1(B), David Sanan1, Alwen Tiu1, Yang Liu1, and Koh Chuen Hoa2

1 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore
zhe.hou@ntu.edu.sg

2 Singapore DSO, Singapore, Singapore

Abstract. The SPARCv8 instruction set architecture (ISA) has been
used in various processors for workstations, embedded systems, and space
missions. However, there are no publicly available formal models for the
SPARCv8 ISA. In this work, we give the first formal model for the inte-
ger unit of SPARCv8 ISA in Isabelle/HOL. We capture the operational
semantics of the instructions using monadic definitions. Our model is a
detailed model, which covers many features specific to SPARC proces-
sors, such as delayed-write for control registers, windowed general regis-
ters, and more complex memory access. Our model is also general, as we
retain an abstract layer of the model which allows it to be instantiated
to support all SPARCv8 compliant processors. We extract executable
code from our formalisation, giving us the first systematically verified
executable semantics for the SPARCv8 ISA. We have tested our model
extensively against a LEON3 simulation board, covering both single-
step executions and sequential execution of programs. We prove some
important properties for our formal model, including a non-interference
property for the LEON3 processor.

1 Introduction

Formal models of instruction set architectures (ISAs) not only provide a rigorous
understanding of the semantics for instructions, but also are useful in verifying
low-level programs such as hardware drivers, virtual machines, compilers, etc.
Defining an ISA model in a theorem prover opens up the possibility to reason
about properties and semantics of the ISA and machine code. For an extensively
developed application of an ARMv7 formal model, see Khakpour et al.’s work
on verifying non-interference at the ISA level [20]. There have been various
publicly available formal models for ISAs in the literature, e.g., for ARM6 [14],
ARMv7 [17], x86 [25]. However, to the best of our knowledge, there are no
formalisations of the SPARC family architectures.

The SPARC architecture has many important applications. For instance,
SPARC was commonly used in Sun Oracle station in 2010 when it was acquired
by Oracle. Oracle then launched many SPARC based servers, such as Sun Blade
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 388–405, 2016.
DOI: 10.1007/978-3-319-48989-6 24

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 389

Servers and Sun Netra Carried-Grade Servers [13]. SPARC is also used in super-
computers. Fujitsu’s K computer [2], ranked NO.1 in TOP500 2011, combined
88,128 SPARC CPUs. Tianhe-2 [8], ranked NO.1 in TOP500 2014, has a num-
ber of components with SPARC based processors. Most importantly, SPARC
is widely used in defense, aviation systems, and space missions. ESA chose to
use SPARCv8, mainly because SPARC is one of the few fully open ISAs (other
than RISC-V [5] etc.), and has significant support. ESA then started the LEON
project to develop processors for space projects [1].

This work is a part of a research project called Security, which aims to verify
an execution stack ranging from CPU, micro-kernel, libraries to applications.
We use a multi-layer verification approach where we formalize each layer sepa-
rately and use a refinement-based approach to show that important properties
proved at the top level are preserved at the lower levels. One such property is
a non-interference property between different partitions in a micro-kernel. We
have recently completed a formalization of the high-level specification of a sepa-
ration micro-kernel [27], and the idea is to show that the implementation of such
a micro-kernel preserves the non-interference property, both at the software and
the hardware level. As a concrete case study, we choose to formalize the Xtra-
tuM [9] micro-kernel that runs on top of the multi-core LEON3 processor; these
formalization efforts are still on-going. The ISA formalisation described in this
paper is a key component bridging these two formalizations. Our choice of Xtra-
tuM and LEON3 is mainly driven by the fact that they are open source and
that our intended applications will be built on these platforms. Our model can
be instantiated to LEON2 and LEON4, we do not use the latter because its
source code is not available. Since our goal is to support the verification of Xtra-
tuM machine code, we currently focus on formalizing the integer unit (IU) of
SPARCv8, which contains all the instructions used in XtratuM.

This paper presents the first detailed Isabelle/HOL model for the IU in the
SPARCv8 ISA. Although there are formal models for other ISAs in the litera-
ture (e.g., [14,25]), the difference in architecture and several special features of
SPARC make the adaptation of existing models to our work challenging. For
example, the register model in SPARCv8 is not a flat 32-register model, but
instead consists of a set of overlapping register windows arranged in a circu-
lar buffer. There are flags such as annul that may cause instructions to be
skipped [13]. Memory access in SPARCv8 requires an additional parameter, i.e.,
the address space identifier (ASI), that specifies whether the processor is in
supervisor or user mode, and whether the memory access is data access. Finally,
the write control register instructions may be delayed, thus we have to devise
a mechanism to perform delayed executions. A similar feature appears in the
MIPS architecture, which is modeled in L3 [3].

Our model covers the following aspects of IU: control registers, system regis-
ters, and general registers; operations on registers (e.g., RDPSR, WRPSR, etc.);
a strong consistency memory model with treatments for address spaces; a sim-
ple cache model with write-through policy; flags such as annul, signals such
as execute mode and error mode; and a trap (exception and interruption)

390 Z. Hou et al.

model with all the trap table assignments. We also model store barrier and flush.
Except for hardware signals and interrupts, we have captured all the details of
the IU defined in Appendix C of the SPARCv8 manual [7]. We also provide
a memory management unit (MMU) model to support multi-core micro-kernel
verification. Although our model does not cover the co-processor unit and the
float-point unit, they can be added to our model using the same methodology.

Our main contributions are: (1) We give a formal model for the IU of
SPARCv8 ISA. (2) Our model can be exported to OCaml code for both sin-
gle step execution and sequential execution. (3) Our model has been extensively
tested against a LEON3 simulation board through more than 100,000 instruc-
tion instances. (4) To demonstrate the applicability of our model, we first prove
a correctness property which ensures that the execution of an instruction will
not result in failure when the pre-state satisfies a well-formedness condition. We
also show a security property: if the pre-state meets certain conditions, then
the privilege will not be lifted during the execution. Finally, we show a non-
interference property for the LEON3 processor: given two user-mode states which
have the same low privilege resources, after a series of user-mode execution, the
low privilege resources in the two resultant states are still equivalent. That is,
the difference in high privilege data does not affect low privilege execution.

The complete source code of our formalization of SPARCv8 ISA and the
simulator extracted from our formal model can be found at the Securify project
website [6].

Related Work. Santoro et al. [24] gave an executable specification for the
SPARCv9 architecture with Rapide. However, their model is not built in a
theorem proving, thus it is not suitable for formal verification purposes. Fox
studied verification of the ARM6 micro-architecture at the RTL level [14]. Fox
and Myreen later gave more detailed models for ARM ISAs ranging from ver-
sion 4 to version 7. Their model for ARMv7 uses monadic specifications and
covers details from instruction decoding to operational semantics in the archi-
tecture [17]. Their ARMv7 model is the closest work to ours and it provides a
good methodological direction for formalising an ISA and validating the model.
Fox et al. then started a project to specify various ISAs using a specification
language called L3 [3,15]. Fox recently developed a framework for formal veri-
fication of ISAs [16]. The framework consists of the L3 language for modelling
ISAs, Standard ML for efficient emulation, and HOL4 for formal reasoning. On
validation, we mainly test our model using randomly generated instructions.
This is a standard method used in [11,17]. There are also formal models for
the x86 architecture, such as Sarkar et al.’s work on the semantics of x86-CC
machine code [25]. Another interesting work is the ACL2 ISA models [18]. Sim-
ilarly to our work, the ACL2 ISA models define instruction semantic functions
over states and provide functions for executing the model for one instruction or
sequentially. A difference is that the ACL2 models are more general whereas our
model is more specific and detailed for SPARCv8. The advantage of using ACL2
is that ACL2 naturally supports fast evaluation. The Compcert project gave a
formally verified compiler for PowerPC, ARM, and IA32 processors [21,22]. A

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 391

Fig. 1. The formats for SPARCv8 instructions. Source: [7].

remotely related work is Liu and Moore’s executable JVM model M6 [23], which
is written in a subset of Common Lisp and allows for analytical reasoning as well
as simulation. Finally, the JVM specification given by Atkey [10] inspired us to
define the model in a proof assistant which supports code export for execution.

2 Background

This section introduces the necessary background of the SPARCv8 architecture
and the monadic modeling approach.

2.1 Overview of SPARCv8 ISA

The IU of SPARCv8 contains 40 to 520 general-purpose registers depending on
the implementation. The IU also controls the overall operation of the processor,
thus it is a major part of the processor. All SPARCv8 instructions are 32-bit
wide. Instructions in the IU fall into four categories: (1) load/store; (2) arith-
metic/logical/shift; (3) control transfer; (4) read/write control register. There are
only three instruction formats, shown in Fig. 1. The load and store instructions
are the only instructions that access memory. SPARC only has two addressing
modes: a memory address is given by either two registers or a register and a
signed 13-bit immediate value. Most instructions operate on two registers, and
write the result in the third register. Traps are vectored through a table, and
cause an allocation of a fresh register window in the register file. The main special
features of SPARCv8 are highlighted below.

Windowed Registers. Unlike other architectures, the general purpose registers in
SPARC are grouped in overlapping windows. This design allows for straightfor-
ward, high-performance compilers and a significant reduction in memory load/
store instructions over other RISCs [7]. A window contains 8 in registers, 8 local
registers, and 8 out registers. At a given time, an instruction can access 8 global

392 Z. Hou et al.

Fig. 2. Three overlapping windowed registers and the global registers. Source: [7].

registers and the 24 register in the current window. The in registers of the cur-
rent window are the out registers of the next window; the out registers of the
current window are the in registers of the previous window. This is visualised in
Fig. 2. The windows are arranged in a circular buffer, where the last window’s
out registers overlaps with the first window’s in registers. The current window of
registers is determined by a segment in the processor state register (PSR). The
Window Invalid Mask (WIM) register keeps a bit map that contains information
about which windows are currently invalid.

Address Space Identifier. The memory model in SPARCv8 contains a linear
32-bit address space. When the IU accesses memory, it appends to the address
an address space identifier (ASI), which encodes whether the processor is in
supervisor or user mode and whether the access is to instruction memory or
to data memory, among others. The ASI is also used to access device registers
and perform certain operations on devices. The SPARC architecture defines 4 of
the 256 address spaces: user instruction, user data, supervisor instruction, and
supervisor data [7].

Delayed-write. Besides the general registers, there are also control registers such
as the PSR. The write instructions for control registers are delayed-write instruc-
tions. That is, “they may take until completion of the third instruction following
the write instruction to consummate their write operation. The number of delay
instructions (0 to 3) is implementation-dependent” [7].

Signals. There are some signals either from instructions or from hardware that
play important roles in the execution of instructions. For example, SPARC, like
other RISC ISAs, features delayed control transfer instructions. When a delayed
(conditional) jump instruction is executed, the jump is not effected immediately.

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 393

Rather, the next instruction (also referred to as the delay slot) will be executed
before the control transfer to the jump location is done. However, the delayed
control transfer instructions in SPARC may contain an annul bit that signals
that the instruction in the delay slot is to be skipped. We thus need to keep
track of such information in the state and use it to determine whether certain
instructions are to be skipped or not.

2.2 Monads in Operational Semantics

As with the ARMv7 formalisation [17], we use sequential monads to define opera-
tions in the ISA. A monad is an abstract data type that represents computations.
Our Isabelle monad library is a modified version of the one used in NICTA’s seL4
project [12]. Instead of using non-deterministic monads in [12], here we use deter-
ministic monads (cf. Sect. 4 for reasons) defined as below, where M is a shorthand
for det monad.

type synonym (’s,’a) M ="’s ⇒ (’a ×’s) × bool"

which returns a pair (’a × ’s) of the result and the next state, and also a
failure flag. A ‘true’ value in the failure flag denotes failure of execution, whereas
a ‘false’ value denotes a successful execution. We use the following operations on
monads:

return: ’a ⇒ (’s, ’a) M
fail: ’a ⇒ (’s, ’a) M
bind: (’s, ’a) M ⇒ (’a ⇒ (’s, ’b) M) ⇒ (’s, ’b) M
gets: (’s ⇒ ’a) ⇒ (’s, ’a) M
modify: (’s ⇒ ’s) ⇒ (’s, unit) M

The operation return x does not fail, does not change the state, and returns
x. The operation fail sets the failure flag to true. We often use semicolon
in Isabelle code for bind, which composes computations. The gets operation
applies a function to the current state and returns the result without changing
the state. The modify operation changes the current state using the function
passed in. The code segment for monad operations is in a do · · · od block.

3 Isabelle/HOL Specification for the SPARCv8 ISA

This section discusses the outline of our SPARCv8 ISA model. We first introduce
our definition of a state, and discuss how various special features of SPARCv8
described in the previous section can be accommodated in the components of
the state. We then give an example to show how an instruction is modelled. The
official descriptions of SPARCv8 are sometimes semi-formal. Many details, such
as memory access and cache flush, are not described at all. Thus we can only
formalise those operations based on our understanding. In Sect. 5 we discuss how
our formal model is validated against an actual implementation of SPARCv8,
i.e., the LEON3 processor.

394 Z. Hou et al.

The core of a monadic specification is the notion of a state. Monad operations
transform a state into another. The state in our SPARCv8 model is defined as:

record (’a) sparc_state =
cpu_reg:: cpu_context user_reg:: "(’a) user_context"
sys_reg:: sys_context mem:: mem_context
mmu:: MMU_state cache:: cpu_cache
dwrite:: delayed_write_pool state_var:: sparc_state_var
traps:: "Trap set" undef:: bool

In general, we deal with implementation-dependent aspects of the ISA by para-
meterising them as variables in the model. For example, the parameter ’a indi-
cates the number of windows for general registers. The cpu reg are the control
registers; user reg are general registers; sys reg are implementation-dependent
system registers; followed by memory, MMU, and cache. Delayed write pool is
a list of delayed write control register instructions. The state also includes nec-
essary signals and state variables in state var, which contains the annul bit,
indicators of execute mode, reset mode, error mode of the processor, among
others. The state also records a set of traps (exceptions and interrupts) that may
occur during execution, although in SPARCv8, there should not be more than
one trap at any given time. The last member of the state is a failure flag.

The type user context models windowed registers and is defined as follows:

type_synonym window_context = "user_reg_type ⇒ reg_type"
type_synonym (’a) window_size = "’a word"
type_synonym (’a) user_context = "(’a) window_size ⇒ window_

context"

where user reg type is a 5-bit word, reg type is a 32-bit word. Our model
guarantees that the global register r[0] is always 0; the content of in registers
of window n is synchronised with the content of out registers of window n + 1;
and the content of out registers of window n is synchronised with the content
of in registers of window n − 1. In particular, let NWINDOWS be the maximum
number of windows, the in registers of window NWINDOWS −1 are the same as
out registers of window 0; out registers of window 0 are the same as in registers
of window NWINDOWS −1.

The SPARCv8 manual does not specify how exactly memory access functions
operate, it only provides interfaces for memory read and write, both of which
require a memory address and an ASI as input. Accordingly, we define memory
access as

type_synonym mem_context = "asi_type ⇒ phys_address ⇒ mem_val_
type option"

where phys address is a 36-bit word physical address and mem val type is an
8-bit word, the length of ASI is fixed in SPARCv8 as an 8-bit word. Our model
is an extension of the traditional memory access method which is usually defined
as a partial function from addresses to values.

The MMU state contains all the MMU registers which are used when the
MMU translates a 36-bit physical address to a 32-bit virtual address by looking

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 395

up three levels of Page Table Descriptors. The MMU also decides whether a page
is accessible in a state or not by checking the Page Table Entry flags against
the ASI. If the MMU is turned off, the virtual address is simply translated
by appending two 0s in the beginning. Our MMU model conforms with the
SPARCv8 reference MMU model (Appendix H, [7]).

We do not give a detailed discussion of the cache model here because it
does not play an important role at the ISA level. We model it only to give
information about whether the caches are empty or not, which is useful in higher
level verification such as reasoning about memory context switch.

To model the delayed-write instructions, we define the following list type:

type_synonym delayed_write_pool = "(int × reg_type × CPU_
register) list"

where int is the delay, i.e., the number of instructions to wait. This number is
reduced by 1 in every instruction execution. When the number becomes 0, the 32-
bit word reg type is written into the control register CPU register. For a write
control register instruction, we add a delayed-write in the delayed write pool

list where the delay is implementation-dependent. If the delay is 0, the value is
written to the control register immediately without modifying the pool.

We then define a sparc state monad as a pair of a sparc state and the
result ’e of the monad:

type_synonym (’a,’e) sparc_state_monad = "((’a) sparc_state,’e)
det_monad"

Our definition of instructions has the interface

"(’b) instruction ⇒ (’a,unit) sparc_state_monad"

where "(’b) instruction" is a data type consisting of the name of the instruc-
tion and all its parameters such as registers, immediates etc.

Example Specification. We show an example of one of the simplest instruction
formalisations here. The SETHI instruction is defined in SPARCv8 manual as
below [7]:

if (rd �= 0) then (r[rd]<31:10> ← imm22;r[rd]<9:0> ← 0)

Our corresponding formalisation is given below.

sethi_instr instr ≡
let op_list = snd instr;

imm22 = get_operand_w22 (op_list!0);
rd = get_operand_w5 (op_list!1) in

if rd �= 0 then do
curr_win ← get_curr_win();
write_reg (((ucast(imm22))::word32) << 10) curr_win rd;
return () od

else return ()

We first get the parameter imm22 for this instruction from op list, which is
obtained from the decoding of the instruction. To write a value into a gen-
eral register, we need to get the current window, as is done by the function

396 Z. Hou et al.

get curr win. In the SPARCv8 manual, imm22 is written to the bits 31 to 10
(inclusive) of rd, and the bits 9 to 0 are 0s. In our formalisation, we first convert
the 22-bit word imm22 to a 32-bit word, then we shift the lower 22 bits to the
left for 10 bits, leaving the lower 10 bits as 0s. Finally, this value is written to
the register by the function write reg, which is defined as:

write_reg w win ur ≡ do
modify (λs.(user_reg_mod w win ur s));
return () od

Note that the state is only changed by the modify operation. We omit details
of other definitions such as user reg mod, which are available in the full formal-
ization in [6].

4 Model Execution

When executing our model, we first need to instantiate it to a particular
SPARCv8 compliant processor. The LEON3 processor core [4] is a synthesis-
able VHDL model of a 32-bit processor compliant with the SPARCv8 ISA [7].
Its full source code is available under the GNU GPL license. We use LEON3 as
a running example for our SPARCv8 model. We discuss both the execution of a
single instruction and sequential composition of multiple instructions.

Exporting formal models to executable code. Before we discuss the oper-
ational semantics of instruction execution, we discuss briefly how we export our
formal model into the executable code so that one can simulate instruction execu-
tion more efficiently. There has been work on exporting a formal model into exe-
cutable code, e.g., [10]. However, there are various restrictions in Isabelle’s code
export feature; much care is required to ensure that the code can be exported.
For example, Isabelle2015 cannot export a function that returns a set of func-
tions. Consider the following example:

definition f:: "int ⇒ (int ⇒ int) set" where "f i ≡ {λx. x}"

This is a legitimate definition, but the Isabelle command value "f 1", which
exports the code to ML and executes it, gives an error. The original NICTA
library for monad defines non-deterministic monads as below.

type_synonym (’s,’a) nondet_monad = "’s ⇒ (’a ×’s) set × bool"

When we use non-deterministic monad, instruction definitions return
"(’a,unit) sparc state monad", which is equal to
"(’a,’d) sparc state ⇒ (unit × (’a,’d) sparc state) set ×bool",

which contains a set. The error occurs because sparc state is a tuple containing
functions with infinite domains. Since instruction semantics are deterministic and
we do not model concurrent behaviours at the ISA level, we decide to modify the
NICTA monad library to handle deterministic monads, which avoid the errors.

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 397

Single Step Execution. An execution cycle in our model includes the following
operations (page 158 of [7]): (1) If there is a trap, execute the trap and skip the
following. (2) Execute delayed-writes. (3) Fetch and decode instruction. (4) If the
annul signal is false, dispatch and execute the instruction. Then, if the instruction
is not a control transfer instruction, increment program counter (PC) and next
program counter (nPC) by 4. (5) If the annul signal is true, make it false, and
skip this instruction.

Recall that the failure flag True in our monad means failure and False means
no failure. We define a next state function as below:

"NEXT s ≡ case execute_instruction() s of (_,True) ⇒ None
| (s’,False) ⇒ Some (snd s’)"

We need to provide some implementation-dependent details that are not specified
in the SPARCv8 model, such as the maximum number of register windows. For
the LEON3 processor, we set NWINDOWS = 8 and DELAYNUM = 0, and instantiate
the parameter (’a) in the definition of the state to a 5-bit word:

type_synonym leon3_state = "(word_length5) sparc_state"

Finally, we need to initialise the environment, which includes PC, nPC etc.,
certain general registers and memory addresses that will be used in the instruc-
tion. These details will not be elaborated here, but are available from [6].

Sequential Execution. We define sequential execution as follows:

function (sequential) SEQ:: "nat ⇒ (’a) sparc_state ⇒ (’a) sparc_
state option" where "SEQ 0 s = Some s"

|"SEQ n s = (case SEQ (n-1) s of None ⇒ None | Some t ⇒ NEXT t)"

Preparing the environment for sequential execution requires initialising con-
trol registers and all the general registers and memory addresses involved in the
sequence of instructions. We note that details such as updating PC and nPC
make sequential execution easier to model and to simulate. A formal ISA model
without these details may deviate from the official documentation when model-
ing sequential execution. Sequential execution can prove useful when analysing
and validating programs.

To run large scale code such as the XtratuM hypervisor, we need to initialise
the memory in our model to be consistent with real LEON3 hardware. XtratuM
may assume certain values at specific memory addresses for peripheral devices
etc. Performance-wise, we are able to execute an instruction in 0.005s on an Intel
Xeon E5-1620 v2 CPU using a single core. Optimisation and execution of large
code are left as future work.

5 Validation

To gain confidence that our formal model is correct, we validate our formal
model against an actual implementation of SPARCv8 ISA, as described next. In

398 Z. Hou et al.

the sequel, we use the OCaml version of our model extracted by the previous
section. Isabelle can also generate other functional language code, but perfor-
mance differences for other languages is beyond the scope of this paper.

5.1 Random Single Instruction Testing

Validating the formal model against real hardware by running single step instruc-
tion executions is a standard and systematic solution in the literature, cf. [17,25],
to gain confidence that the formal model captures the behaviour of the actual
hardware it intends to model. We use a Xilinx Virtex-7 FPGA VC707 Eval-
uation Kit to run the official LEON3 simulator. We use the LEON3/GRLIB
source code to generate bitstream code for LEON3 single core, duo core, and
quad code processors. We use GRMON 2 to test the execution of instructions
on those LEON3 processors.1

We have developed a tool to generate random instructions with random input
and pre-states for our model. We have also written a tool to prepare the same
pre-state for the LEON3 simulator, run the tests on our model and on the LEON3
simulator, and compare the results. We describe the details below.

The randomly generated instruction is checked to make sure it is a valid
encoding. We then analyse the instruction instance and determine which mem-
ory addresses are involved. Our generator ensures that the majority of memory
addresses are well-aligned. To initialise the pre-state, we generate random 32-bit
values for the general registers in the current window and random 8-bit values
for the involved memory addresses. Furthermore, we generate random flags such
as the icc bits of PSR. The value of PC is 0 x 40000000, the values of other
control registers are 0s. Since one of the intended applications of our formali-
sation is to reason about security properties, we also generate various tests to
test integer overflow and underflow which may lead to security vulnerabilities
in applications. Such tests are important to make sure that our model does not
abstract away integer operations to their ideal mathematical counterparts and
would thus miss potential vulnerabilities caused by integer overflow/underflow.

We then generate the GRMON 2 commands for the LEON3 simulator. The
GRMON 2 commands initialise the pre-state of the LEON3 simulator to be the
same as the pre-state of our model. This includes the instruction to be executed.

Our validation tool executes both our model and the LEON3 simulator,
and compares the post-state. Given an instruction instance, we only exam-
ine the registers and memory addresses involved in it. The other elements in
the state are not important for the validation against LEON3. For example,
delayed write pool is always empty. Trap set and error mode etc. will cause
exceptions and the result can be observed by the validator. The side effect of
control transfer instructions (modifying the annul flag) can be checked by exam-
ining PC and nPC. The side effects of arithmetic instructions can be checked
by examining PSR. Note that some of these cannot be examined in the official

1 We thank Charles Zhang for his help with our experiment setup.

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 399

Table 1. Programs tested in sequential execution.

Program Number of instructions Time (in sec)

Addition 12 0.033

Multiplication 12 0.033

Swap two variables 14 0.041

Add the digits in a number 107 0.361

Reverse the digits in a number 116 0.339

Find the maximum number in an array 122 0.394

Greatest common divisor & least common multiple 122 0.238

Fibonacci series 141 0.468

Bubble sort 432 1.361

GRMON tool. The tested instructions should not have other side effects which
may cause bugs in our model.

Our random testing has a large coverage. We test instructions in single core,
duo core, and quad core LEON3 processors; and we test in both supervisor
mode and user mode. Similarly to the validation of the ARMv7 model [17], we
cannot fully test implementation-dependent system features. Our validation has
tested more than 100k instruction instances, and still counting. We believe our
validation has been thorough and efficient; this increases our confidence of the
accuracy of our model.

5.2 Program Execution Testing

We choose C programs that range from toy examples to non-trivial functions,
covering a wide range of operations that involve most of the instructions in
the IU. The programs are cross-compiled to obtain SPARC executables, from
which we extract the machine code for execution. As there may be loops in the
programs and it is hard to anticipate how many steps to be executed, we run the
machine code on our model until we have an instruction access exception

trap, which indicates that the program is finished and the next instruction is
not initialised.

The tested programs are given in Table 1. The second column of Table 1
shows the number of instructions executed, the third column gives the run time
in our Isabelle model. The number of instructions executed may vary depending
on the input. We run these programs with arrays of length 5 for illustration.
When the execution of these programs is terminated, we examine the memory
addresses for the variables and arrays. Our Isabelle model gives the same result
as the LEON3 simulation board on all these programs for various input.

400 Z. Hou et al.

5.3 Limitations and Implementation-Dependent Specifications for
LEON3

We summarize some lessons learned from our experiment on the LEON3 board
here.

According to the GRMON 2 tool, LEON3 does not implement delay write
for control register instructions. Instructions such as WRPSR, WRWIM, WRY,
WRTBR write the value into the register immediately. LEON3 implements 8
windows for general registers, while our SPARCv8 model supports up to 32
windows.

We approximate the LEON3 memory access behaviours by testing memory
access with various ASI values: 8 (user instruction), 9 (supervisor instruction),
10 (user data), and 11 (supervisor data) on the simulation board. We observe
the following facts: (1) Writing value v to ASI 11 of address x, then reading from
x in ASI 10 gives the same value v. (2) Writing v to ASI 11 of address x, then
reading from x in ASI 8 gives a different value from v. (3) In both user mode
and supervisor mode, reading memory with ASI 8,9,10 or 11 all work. (4) In user
mode, writing to memory with ASI 11 raises a trap. (5) In user mode, writing
to memory with ASI 10 will override the data at the same address in ASI 11.
All the above tests assume that the MMU is turned off. If the MMU is turned
on, then the accessibility depends on the MMU setup.

We noticed an unexpected behaviour: even in supervisor mode, writing to
memory with ASI 8 or 9 does not seem to have any effect. The execution does
not raise a trap, neither does it change the value at the involved addresses. This
is possibly because the hardware defines the instruction memory space to be
a segment of addresses we did not test. For this reason, we have only tested
load/store instructions with ASI 10 and 11 in the random testing. We have
enriched our SPARCv8 model with the above behaviours specific to the LEON3
processor for testing purposes. Hence our model gives the same result as the
LEON3 simulation board when accessing memory in the above cases.

Due to hardware limitations, each SPARCv8 processor only accepts specific
values for PSR, while our model is more general and it does not specify such
details. Thus writing an arbitrary value into PSR may lead to different results in
our model and in the LEON3 processor. This is not considered an error during
testing. Another hardware limitation is that each board only supports a limited
amount of memory, thus accessing random memory addresses may have different
outcomes in our model and in the LEON3 simulator. As a result, we mainly test
memory addresses ranging from 0 x 40000000 to 0 x 50000000.

The branching instructions sometimes give different results of PC and nPC
when the instruction sets the “annul” bit to 1. Closer inspection reveals that
the “step” command in GRMON2 may have skipped the annulled instruction,
whereas our model pauses before the annulled instruction. In this case, manual
checks against the SPARCv8 manual confirm that our model is correct.

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 401

6 Formal Verification of Security Properties

In this section we prove an important security property, namely non-interference
for the LEON3 processor.

6.1 Single Step Theorem

We first show that when a state satisfies a condition called good context, a
single step execution from the state does not result in a failure. The execution
of an instruction may generate traps, but not all traps are considered failure.
A normal trap, i.e., exception or interruption, causes the CPU to run the trap
handling functions, and is not considered a failure. A failure happens only in a
special situation where a trap is raised and the CPU goes to error mode and
awaits to be reset. The rather involved condition good context is crafted to
avoid failure in execution. Interested readers are referred to the source code [6]
for details. We then show a single step theorem as below:

theorem single_step:"good_context s =⇒ NEXT s =
Some (snd (fst (execute_instruction() s)))"

The proof covers each instruction and shows that the monad never returns a
failure if good context holds; the latter is thus a good standard for verifying if
a pre-state is “sensible” or not.

6.2 Privilege Safety Theorem

Next we show that a successful one step execution in user mode does not lift the
privilege to supervisor mode.

theorem privilege_safety:
assumes "get_delayed_pool s = [] ∧ get_trap_set s = {} ∧

snd (execute_instruction() s) = False ∧
s’ = snd (fst (execute_instruction() s)) ∧
((ucast (get_S (cpu_reg_val PSR s)))::word1) = 0"

shows "((ucast (get_S (cpu_regval PSR s’)))::word1) = 0"

We assume that the delayed-write pool is empty since the LEON3 processor
has no delayed write. We also assume that there are no traps to be executed.
If there is a trap, the instruction will not be executed, the processor will go
to supervisor mode and execute the trap instead. The third conjunct in the
assumption says execute instruction does not return a failure, the fourth
conjunct says s’ is the post-state, the last conjunct says the S bit in the pre-
state s is 0 (i.e., s is in user mode). We show that the S bit in the post-state s’

is also 0. This proof is a case analysis for each instruction and it checks that the
execution mode is not modified.

402 Z. Hou et al.

6.3 Non-interference Theorem

Non-interference is an essential requirement for security. It allows user applica-
tions or virtual machines to co-exist without violating confidentiality, and it can
save costly hardware which is otherwise needed to provide physical separation
of data [20]. When MMU is enabled, non-interference also provides an isolation
between users in different processes. That is, the high privilege resource in our
setting may refer to the resource of other user processes that the current user
does not have access to. This is particularly important in our project since we
are interested in verifying properties for a multi-core hypervisor. Traditionally,
non-interference for a deterministic program states that when a low privilege
user is working on the machine, it will execute in the same manner regardless
of the change of high privilege data [26]. At the ISA level, this is similar to
the non-infiltration property à la Khakpour et al. [20]. Here we first show that
non-interference is preserved in single step executions.

theorem non_interference_step:
assumes "((ucast (get_S (cpu_reg_val PSR s1)))::word1) = 0
good_context s1 ∧ good_context s2 ∧ low_equal s1 s2 ∧
get_delayed_pool s1 = [] ∧ get_trap_set s1 = {} ∧
((ucast (get_S (cpu_reg_val PSR s2)))::word1) = 0 ∧
get_delayed_pool s2 = [] ∧ get_trap_set s2 = {}"
shows "∃ t1 t2. Some t1 = NEXT s1 ∧ Some t2 = NEXT s2 ∧
((ucast (get_S (cpu_reg_val PSR t1)))::word1) = 0 ∧
((ucast (get_S (cpu_reg_val PSR t2)))::word1) = 0 ∧
low_equal t1 t2"

We assume that the two pre-states s1 and s2 are both in user mode, they
satisfy good context, they have no delayed writes and traps. We further assume
that s1 and s2 are equivalent on low privilege resources. We show that the next
states t1, t2 must exist, they are both in user mode, and they are still equivalent
on low privilege resources. The predicate low equal is defined as:

low_equal s1 s2 ≡
(cpu_reg s1) = (cpu_reg s2) ∧ (user_reg s1) = (user_reg s2) ∧
(sys_reg s1) = (sys_reg s2) ∧ (∀ va. (virt_to_phys va (mmu s1)
(mem s1)) = (virt_to_phys va (mmu s2) (mem s2))) ∧
(∀ pa. (user_accessible s1 pa) → mem_equal s1 s2 pa) ∧
(mmu s1) = (mmu s2) ∧ (state_var s1) = (state_var s2) ∧
(traps s1) = (traps s2) ∧ (undef s1) = (undef s2)

Similarly to Khakpour et al.’s definition, our low-equivalence assumes that
the two user mode states agree on the resources that may influence the user
mode execution, but we assume no knowledge about other resources. Here,
user accessible means that the physical address pa is accessible in state s1.
Since we assume that s1 and s2 have the same MMU setup (including the vir-
tual to physical address translation virt to phys), pa is also accessible in s2.
mem equal states that the block of addresses where pa belongs to have the same
content in s1 and s2. A memory block is a group of four continuous addresses
in which the first address ends with two 0s.

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 403

From the Single Step Theorem, we obtain that the one step execution from
s1 and s2 will not result in failure, that is, t1 and t2 must exist. From the Safety
Privilege Theorem, we know that t1 and t2 must be in user mode. The reminder
of the proof for the Non-interference Step Theorem is a case analysis for each
instruction and we examine that after the execution the predicate low equal

holds for t1 and t2.
Finally, we show that for any sequence of user mode execution, if the initial

states s1 and s2 are equivalent on low privilege resources, then the final states
t1 and t2 are also equivalent on low privilege resources.

theorem non_interference: assumes
"((ucast (get_S (cpu_reg_val PSR s1)))::word1) = 0 ∧
good_context s1 ∧ good_context s2 ∧ low_equal s1 s2 ∧
get_delayed_pool s1 = [] ∧ get_trap_set s1 = {} ∧
((ucast (get_S (cpu_reg_val PSR s2)))::word1) = 0 ∧
get_delayed_pool s2 = [] ∧ get_trap_set s2 = {} ∧
user_seq_exe n s1 ∧ user_seq_exe n s2"
shows "(∃ t1 t2. Some t1 = SEQ n s1 ∧ Some t2 = SEQ n s2 ∧

((ucast (get_S (cpu_reg_val PSR t1)))::word1) = 0 ∧
((ucast (get_S (cpu_reg_val PSR t2)))::word1) = 0 ∧
low_equal t1 t2)"

Here, user seq exe simply assumes that every intermediate state has no
traps and no delayed write instructions; these are necessary to ensure that the
sequence of execution is in user mode. This proof is a simple induction on n
using the Non-interference Step Theorem. The proof script of the theorems in
this section measures over 7500 lines due to the large number of cases to be
considered. The main difficulty is in checking that the store instructions preserve
low equal. This section demonstrates that we can prove interesting and non-
trivial properties for SPARCv8 and LEON3 using our formalisation.

7 Conclusion

This paper describes the first formal model of the SPARCv8 ISA. Our formali-
sation has over 5000 lines of Isabelle code, not including the proofs. The model
can be specialised to any SPARCv8 processor, and it contains many features
specific to the SPARCv8 architecture. Our model is carefully designed to take
advantage of the Isabelle code export functionality, through which we obtain
executable code from our formal model.

We have validated our model against an official LEON3 simulator on more
than 100k random instruction instances as well as real life programs. We believe
our formalisation provides a solid foundation for future verification problems.
To illustrate the applicability of our model, we have shown a non-interference
property for the LEON3 processor. This property guarantees that user mode exe-
cution is independent of high privilege resources which the user has no access to.

With regard to machine code verification using our formal model, there are
two possible angles in future work. First, although the provided operational

404 Z. Hou et al.

semantics and the single step execution allow us to verify properties using
Isabelle/HOL, automated reasoning about properties of machine code requires
much work. Obtaining a functional representation of the SPARCv8 machine code
in Isabelle/HOL from the semantics introduced in this work, in a similar fashion
to [17], would ease the verification. Second, the memory model in our SPARCv8
formalisation is a strong consistency model, which is not suitable for verify-
ing concurrent execution in modern day multi-core processors. This requires a
weaker memory model, e.g., TSO, as well as a proof system for concurrency,
such as Rely-Guarantee [19].

References

1. ESA LEON processor. http://www.esa.int/Our Activities/Space Engineering
Technology/LEON the space chip that Europe built. Accessed 27 Jan 2016

2. K computer. http://www.top500.org/system/177232. Accessed 27 Jan 2016
3. L3 specification language for ISAs. http://www.cl.cam.ac.uk/∼acjf3/l3/. Accessed

09 Dec 2015
4. LEON3 processor. http://www.gaisler.com/index.php/products/processors/leon3.

Accessed 27 Oct 2015
5. RISC-V architecture. https://riscv.org/. Accessed 10 Aug 2016
6. Securify: micro-kernel verification. http://securify.scse.ntu.edu.sg/MicroVer/.

Accessed 24 May 2016
7. The SPARC architecture manual version 8. http://gaisler.com/doc/sparcv8.pdf.

Accessed 27 Oct 2015
8. Tianhe-2. http://top500.org/system/177999. Accessed 27 Jan 2016
9. Xtratum hypervisor. http://www.xtratum.org/. Accessed 29 Jan 2016

10. Atkey, R.: CoqJVM: an executable specification of the java virtual machine
using dependent types. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES
2007. LNCS, vol. 4941, pp. 18–32. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68103-8 2

11. Campbell, B., Stark, I.: Randomised testing of a microprocessor model using SMT-
solver state generation. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol.
8718, pp. 185–199. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10702-8 13

12. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scal-
able refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs
2008. LNCS, vol. 5170, pp. 167–182. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71067-7 16

13. El Kady, S., Khater, M., Alhafnawi, M.: MIPS, ARM and SPARC-an architecture
comparison. In: Proceedings of the World Congress on Engineering, vol. 1 (2014)

14. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003).
doi:10.1007/10930755 2

15. Fox, A.: Directions in ISA specification. In: Beringer, L., Felty, A. (eds.) ITP
2012. LNCS, vol. 7406, pp. 338–344. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32347-8 23

16. Fox, A.: Improved tool support for machine-code decompilation in HOL4. In:
Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 187–202. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22102-1 12

http://www.esa.int/Our_Activities/Space_Engineering_Technology/LEON_the_space_chip_that_Europe_built
http://www.esa.int/Our_Activities/Space_Engineering_Technology/LEON_the_space_chip_that_Europe_built
http://www.top500.org/system/177232
http://www.cl.cam.ac.uk/~acjf3/l3/
http://www.gaisler.com/index.php/products/processors/leon3
https://riscv.org/
http://securify.scse.ntu.edu.sg/MicroVer/
http://gaisler.com/doc/sparcv8.pdf
http://top500.org/system/177999
http://www.xtratum.org/
http://dx.doi.org/10.1007/978-3-540-68103-8_2
http://dx.doi.org/10.1007/978-3-540-68103-8_2
http://dx.doi.org/10.1007/978-3-319-10702-8_13
http://dx.doi.org/10.1007/978-3-540-71067-7_16
http://dx.doi.org/10.1007/978-3-540-71067-7_16
http://dx.doi.org/10.1007/10930755_2
http://dx.doi.org/10.1007/978-3-642-32347-8_23
http://dx.doi.org/10.1007/978-3-642-32347-8_23
http://dx.doi.org/10.1007/978-3-319-22102-1_12

An Executable Formalisation of the SPARCv8 Instruction Set Architecture 405

17. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP
2010. LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 18

18. Goel, S., Hunt, W.A., Kaufmann, M.: Abstract stobjs and their application to ISA
modeling. In: ACL2 2013, pp. 54–69 (2013)

19. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321–332. North-Holland (1983)

20. Khakpour, N., Schwarz, O., Dam, M.: Machine assisted proof of ARMv7 instruction
level isolation properties. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol.
8307, pp. 276–291. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03545-1 18

21. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: Proceedings of the 33rd ACM Symposium on Principles
of Programming Languages (2006)

22. Leroy, X.: The CompCert C verified compiler (2015). http://compcert.inria.fr/
man/manual.pdf. Accessed 29 Jan 2016

23. Liu, H., Moore, J.S.: Executable JVM model for analytical reasoning: a study. In:
Proceedings of the 2003 Workshop on Interpreters, Virtual Machines and Emula-
tors, pp. 15–23. ACM (2003)

24. Santoro, A., Park, W., Luckham, D.: SPARC-V9 architecture specification with
Rapide. Technical report, Stanford, CA, USA (1995)

25. Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen,
M.O., Alglave, J.: The semantics of x86-CC multiprocessor machine code. In: Pro-
ceedings of the 36th Annual ACM Symposium on Principles of Programming Lan-
guages, pp. 379–391. ACM (2009)

26. Smith, G.: Principles of secure information flow analysis. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances
in Information Security, vol. 27, pp. 291–307. Springer, Heidelberg (2007). doi:10.
1007/978-0-387-44599-1 13

27. Zhao, Y., Sanán, D., Zhang, F., Liu, Y.: Reasoning about information flow security
of separation Kernels with channel-based communication. In: Chechik, M., Raskin,
J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 791–810. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49674-9 50

http://dx.doi.org/10.1007/978-3-642-14052-5_18
http://dx.doi.org/10.1007/978-3-642-14052-5_18
http://dx.doi.org/10.1007/978-3-319-03545-1_18
http://compcert.inria.fr/man/manual.pdf
http://compcert.inria.fr/man/manual.pdf
http://dx.doi.org/10.1007/978-0-387-44599-1_13
http://dx.doi.org/10.1007/978-0-387-44599-1_13
http://dx.doi.org/10.1007/978-3-662-49674-9_50

Hybrid Statistical Estimation of Mutual
Information for Quantifying Information Flow

Yusuke Kawamoto1(B), Fabrizio Biondi2, and Axel Legay2

1 AIST, Tsukuba, Japan
yusuke.kawamoto.aist@gmail.com

2 Inria, Rennes, France

Abstract. Analysis of a probabilistic system often requires to learn the
joint probability distribution of its random variables. The computation
of the exact distribution is usually an exhaustive precise analysis on
all executions of the system. To avoid the high computational cost of
such an exhaustive search, statistical analysis has been studied to effi-
ciently obtain approximate estimates by analyzing only a small but rep-
resentative subset of the system’s behavior. In this paper we propose a
hybrid statistical estimation method that combines precise and statistical
analyses to estimate mutual information and its confidence interval. We
show how to combine the analyses on different components of the system
with different precision to obtain an estimate for the whole system. The
new method performs weighted statistical analysis with different sample
sizes over different components and dynamically finds their optimal sam-
ple sizes. Moreover it can reduce sample sizes by using prior knowledge
about systems and a new abstraction-then-sampling technique based on
qualitative analysis. We show the new method outperforms the state of
the art in quantifying information leakage.

1 Introduction

In modeling and analyzing software and hardware systems, the statistical app-
roach is often useful to evaluate quantitative aspects of the behaviors of the
systems. In particular, probabilistic systems with complicated internal struc-
tures can be approximately and efficiently modeled and analyzed. For instance,
statistical model checking has widely been used to verify quantitative properties
of many kinds of probabilistic systems [40].

The statistical analysis of a probabilistic system is usually considered as a
black-box testing approach in which the analyst does not require prior knowl-
edge of the internal structure of the system. The analyst runs the system many
times and records the execution traces to construct an approximate model of
the system. Even when the formal specification or precise model of the system

This work was supported by JSPS KAKENHI Grant Number JP15H06886, by the
MSR-Inria Joint Research Center, by the Sensation European grant, and by région
Bretagne.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 406–425, 2016.
DOI: 10.1007/978-3-319-48989-6 25

Hybrid Statistical Estimation of Mutual Information 407

is not provided to the analyst, statistical analysis can be directly applied to the
system if the analyst can execute the black-box implementation. Due to this
random sampling of the systems, statistical analysis provides only approximate
estimates. However, it can evaluate the accuracy and error of the analysis for
instance by providing the confidence intervals of the estimated values.

One of the important challenges in statistical analysis is to estimate
entropy-based properties in probabilistic systems. For example, statistical meth-
ods [8,13,19–21] have been studied for quantitative information flow analy-
sis [14,22,38], which estimates an entropy-based property to quantify the leakage
of confidential information in a system. More specifically, the analysis estimates
mutual information or other properties between two random variables on the
secrets and on the observable outputs in the system to measure the amount of
information that is inferable about the secret by observing the output. The main
technical difficulties in the estimation of entropy-based properties are

1. to efficiently compute large matrices that represent probability distributions,
and

2. to provide a statistical method for correcting the bias of the estimate and
computing a confidence interval to evaluate the accuracy of the estimation.

To overcome these difficulties we propose a method for statistically estimat-
ing mutual information, one of the most popular entropy-based properties. The
new method, called hybrid statistical estimation method, integrates black-box
statistical analysis and white-box precise analysis, exploiting the advantages of
both. More specifically, this method employs some prior knowledge on the system
and performs precise analysis (e.g., static analysis of the source code or specifi-
cation) on some components of the system. Since precise analysis computes the
exact sub-probability distributions of the components, the hybrid method using
precise analysis is more accurate than statistical analysis alone.

Moreover, the new method can combine multiple statistical analyses on dif-
ferent components of the system to improve the accuracy and efficiency of the
estimation. This is based on our new theoretical results that extend and gener-
alize previous work [9,13,43] on purely statistical estimation. As far as we know
this is the first work on a hybrid method for estimating entropy-based properties
and their confidence intervals.

Fig. 1. Joint distribution composed of 3
components.

To illustrate the method we pro-
pose, Fig. 1 presents an example of
a joint probability distribution PXY

between two random variables X
and Y , built up from 3 overlap-
ping components S1, S2 and T . To
estimate the full joint distribution
PXY , the analyst separately com-
putes the joint sub-distribution for
the component T by precise analy-
sis, estimates those for S1 and S2 by

408 Y. Kawamoto et al.

statistical analysis, and then combines these sub-distributions. Since the statis-
tical analysis is based on the random sampling of execution traces, the empirical
sub-distributions for S1 and S2 are different from the true ones, while the sub-
distribution for T is exact. From these approximate and precise sub-distributions,
the proposed method can estimate the mutual information for the entire system
and evaluate its accuracy by providing a confidence interval. Owing to the com-
bination of different kinds of analyses (with possibly different parameters such as
sample sizes), the computation of the bias and confidence interval of the estimate
is more complicated than the previous work on statistical analysis.

1.1 Contributions

The contributions of this paper are as follows:

– We propose a new method, called hybrid statistical estimation, that combines
statistical and precise analyses on the estimation of mutual information (which
can also be applied to Shannon entropy and conditional Shannon entropy).
Specifically, we show theoretical results on compositionally computing the bias
and confidence interval of the estimate from multiple statistical and precise
analyses;

– We present a weighted statistical analysis method with different sample sizes
over different components and a method for adaptively optimizing sample sizes
for different components by evaluating the quality and cost of the analysis;

– We show how to reduce the sample sizes by using prior knowledge about sys-
tems, including an abstraction-then-sampling technique based on qualitative
analysis;

– We show that the proposed method can be applied not only to composed
systems but also to the source codes of a single system by decomposing it into
components and determine the analysis method for each component;

– We evaluate the quality of the estimation in this method, showing that the
estimates are more accurate than statistical analysis alone for the same sam-
ple size, and that the new method outperforms the state-of-the-art statistical
analysis tool LeakWatch [20];

– We demonstrate the effectiveness of the hybrid method in case studies on the
quantification of information leakage.

The rest of the paper is structured as follows. Section 2 introduces back-
ground in information theory and quantification of information. We compare
precise analysis with statistical analysis for the estimation of mutual informa-
tion. Section 3 describes the main results of this paper: the hybrid method for
mutual information estimation, including the method for optimizing sample sizes
for different components. Section 4 presents how to reduce sample sizes by using
prior knowledge about systems, including the abstraction-then-sampling tech-
nique with qualitative analysis. Section 5 overviews how to decompose the source
code of a system into components and to determine the analysis method for each
component. Section 6 evaluates the proposed method and illustrates its effec-
tiveness against the state of the art. Section 7 discusses related work and Sect. 8
concludes the paper. All proofs can be found in full version [35] of the paper.

Hybrid Statistical Estimation of Mutual Information 409

2 Information Theory and Quantification of Information

In this section we introduce some background on information theory, which we
use to quantify the amount of information in a system. We write X and Y to
denote two random variables, and X and Y to denote the sets of all possible
values of X and Y , respectively. We denote the number of elements of a set S
by #S.

2.1 Channels

In information theory, a channel models the input-output relation of a system
as a conditional probability distribution of outputs given inputs. This model
has also been used to formalize information leakage in a system that processes
confidential data: inputs and outputs of a channel are respectively regarded as
secrets and observables in the system and the channel represents relationships
between the secrets and observables.

A discrete channel is a triple (X ,Y, C) where X and Y are two finite sets
of discrete input and output values respectively and C is an #X × #Y matrix
where each element C[x, y] represents the conditional probability of an output y
given an input x; i.e., for each x ∈ X ,

∑
y∈Y C[x, y] = 1 and 0 ≤ C[x, y] ≤ 1 for

all y ∈ Y.
A prior is a probability distribution on input values X . Given a prior PX

over X and a channel C from X to Y, the joint probability distribution PXY of
X and Y is defined by: PXY [x, y] = PX [x]C[x, y] for each x ∈ X and y ∈ Y.

2.2 Mutual Information

The amount of information gained about a random variable X by knowing a
random variable Y is defined as the difference between the uncertainty about X
before and after observing Y . The mutual information I(X;Y) between X and
Y is one of the most popular measures to quantify the amount of information
on X gained/leaked by Y :

I(X;Y) =
∑

x∈X ,y∈Y
PXY [x, y] log2

(
PXY [x, y]

PX [x]PY [y]

)

where PY is the marginal probability distribution defined as PY [y] =∑
x∈X PXY [x, y].
In the security scenario, information-theoretical measures quantify the

amount of secret information leaked against some particular attacker: the mutual
information between two random variables X on the secrets and Y on the observ-
ables in a system measures the information that is inferable about the secret by
knowing the observable. In this scenario mutual information, or Shannon leak-
age, assumes an attacker that can ask binary questions on the secret’s value after
observing the system while min-entropy leakage [47] considers an attacker that
has only one attempt to guess the secret’s value.

410 Y. Kawamoto et al.

Mutual information has been employed in many other applications includ-
ing Bayesian networks [33], telecommunications [31], pattern recognition [28],
machine learning [41], quantum physics [49], and biology [1]. In this work we
focus on mutual information for the above security scenario.

2.3 Precise Analysis vs. Statistical Analysis

The calculation of the mutual information I(X;Y) between input X and output
Y in a probabilistic system requires the computation of the joint probability
distribution PXY of X and Y . The joint distribution can be computed precisely
or estimated statistically.

Precise Analysis. To obtain the exact joint probability PXY [x, y] for each
x ∈ X and y ∈ Y, we sum the probabilities of all execution traces of the system
that have input x and output y. This means the computation time depends on
the number of traces in the system. If the system has a very large number of
traces, it is intractable for analysts to precisely compute the joint distribution
and consequently the mutual information.

In [50] the calculation of mutual information is shown to be computationally
expensive. This computational difficulty comes from the fact that entropy-based
properties are hyperproperties [25] that are defined using all execution traces of
the system and therefore cannot be verified on each single trace. For example,
when we investigate the leakage of confidential information in a system, it is
insufficient to check the information leakage separately for each component of
the system, because the attacker may derive sensitive information by combining
the outputs of different components. More generally, the computation of entropy-
based properties (such as the amount of leaked information) is not compositional
in the sense that an entropy-based property of a system is not the (weighted)
sum of those of the components.

For this reason it is inherently difficult to näıvely combine analyses of dif-
ferent components of a system to compute entropy-based properties. In fact,
previous studies on the compositional approach in quantitative information flow
analysis have faced certain difficulties in obtaining useful bounds on information
leakage [4,29,36,37].

Statistical Analysis. Due to the complexity of precise analysis, some previous
studies have focused on computing approximate values of entropy-based mea-
sures. One of the common approaches is the statistical analysis based on Monte
Carlo methods, in which approximate values are computed from repeated ran-
dom sampling. Previous work on quantitative information flow has used sta-
tistical analysis to mutual information [9,13,43], channel capacity [8,13] and
min-entropy leakage [16,20].

In the statistical estimation of mutual information between two random vari-
ables X and Y in a probabilistic system, analysts execute the system many times
and collect the execution traces each recording a pair of values (x, y) ∈ X × Y.

Hybrid Statistical Estimation of Mutual Information 411

This set of execution traces is used to estimate the empirical joint distribution
P̂XY of X and Y and then to compute the mutual information I(X;Y).

Note that the empirical distribution P̂XY is different from the true distribu-
tion PXY and thus the estimated mutual information is different from the true
value. In fact, it is known that entropy-based measures such as mutual infor-
mation and min-entropy leakage have some bias and error that depends on the
number of collected traces, the matrix size and other factors. However, results
on statistics allow us to correct the bias of the estimate and to compute its 95 %
confidence interval. This way we can guarantee the quality of the estimation,
which differentiates our approach from testing.

Table 1. Comparison of the two analysis methods.
Precise Statistical

Type White box Black/gray box

Analyzes Source code Implementation

Impractical for Large number of traces Large matrices

Produces Exact value Estimate & confidence

Comparing the Two
Analysis Methods.
The cost of the statis-
tical analysis is pro-
portional to the size
#X ×#Y of the joint
distribution matrix (strictly speaking, to the number of non-zero elements in
the matrix). Therefore, this method is significantly more efficient than precise
analysis if the matrix is relatively small and the number of all traces is very large
(for instance because the system’s internal variables have a large range). On the
other hand, if the matrix is very large, the number of executions needs to be
very large to obtain a reliable and small confidence interval. In particular, for
a small sample size, statistical analysis does not detect rare events, i.e., traces
with a low probability that affect the result.

Main differences between precise and statistical analysis are summarized in
Table 1.

3 Hybrid Statistical Estimation of Mutual Information

To overcome the above limitations on the previous approaches we introduce a
new method, called hybrid statistical estimation method, that integrates both
precise and statistical analyses. In this section we present the method for esti-
mating the mutual information between two random variables X (over the inputs
X) and Y (over the outputs Y) in a probabilistic system S, and for providing a
confidence interval of this estimate. In the method we perform different types of
analysis (with different parameters) on different components of a system.

– If a component is deterministic, we perform a precise analysis on it.
– If a component Si has a joint sub-distribution matrix over small subsets of X

and Y (relatively to the number of all traces), then we perform a statistical
analysis on Si.

– If a component Tj has a large matrix (relatively to the number of all traces),
we perform a precise analysis on Tj .

412 Y. Kawamoto et al.

– By combining the analysis results on all components we compute the mutual
information estimate and its confidence interval. See the rest of Sect. 3 for
details.

– By qualitative information flow analysis, the analyst may obtain partial knowl-
edge on components and reduce the sample sizes. See Sect. 4 for details.

One of the main advantages of the new method is that we guarantee the
quality of the outcome by providing its confidence interval even though differ-
ent kinds of analyses with different parameters are combined together, such as
multiple statistical analyses with different sample sizes.

Another advantage is the compositionality in estimating bias and confidence
intervals. The random sampling of execution traces is performed independently
for each component. Thanks to this we obtain that the bias and confidence
interval of mutual information can be computed in a compositional way. This
compositionality enables us to find optimal sample sizes for the different com-
ponents that maximize the accuracy of the estimation (i.e., minimize the confi-
dence interval size) given a fixed total sample size for the entire system. On the
other hand, the computation of mutual information itself is not compositional;
It requires calculating the full joint probability distribution of the system by
summing the joint sub-distributions of all components of the system.

Note that these results can be applied to the estimation of Shannon entropy
and conditional Shannon entropy as special cases. See the full version for the
details.

3.1 Computation of Probability Distributions

We consider a probabilistic system S that consists of (m + k) components S1,
S2, . . . , Sm and T1, T2, . . . , Tk each executed with probabilities θ1, θ2, . . . , θm

and ξ1, ξ2, . . . , ξk; i.e., when S is executed, it yields Si with the probability θi

and Tj with the probability ξj . We assume S does not have non-deterministic
transitions. Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , k}, one of which can be
empty. We assume the analyst can run the component Si for each i ∈ I to record
its execution traces, and precisely analyze the components Tj for j ∈ J , e.g., by
static analysis of the source code or specification.

In the estimation of mutual information between two random variables X
and Y in the system S, we need to estimate the joint distribution PXY of X
and Y . In our approach this is obtained by combining the joint sub-probability
distributions of X and Y for all the components Si’s and Tj ’s. More specifically,
let Ri and Qj be the joint sub-distributions of X and Y for the components
Si’s and Tj ’s respectively. Then the joint (full) distribution PXY for the whole
system S is defined by:

PXY [x, y] def=
∑

i∈I
Ri[x, y] +

∑

j∈J
Qj [x, y]

for x ∈ X and y ∈ Y. Note that for each i ∈ I and j ∈ J , the sums of all
probabilities in Ri and Qj equal the probabilities θi and ξj of executing Si and
Tj respectively.

Hybrid Statistical Estimation of Mutual Information 413

To estimate the joint distribution PXY the analyst computes

– for each i ∈ I, the empirical sub-distribution R̂i for the component Si from a
set of traces obtained by executing Si, and

– for each j ∈ J , the exact sub-distribution Qj for Tj by a precise analysis
on Tj .

The empirical sub-distribution R̂i is constructed as follows. Let ni be the
number of Si’s executions. For each x ∈ X and y ∈ Y, let Kixy be the num-
ber of Si’s traces that have input x and output y. Then ni =

∑
x∈X ,y∈Y Kixy.

From these we compute the empirical joint (full) distribution D̂i of X and Y

by D̂i [x, y] def= Kixy

ni
. Since Si is executed with probability θi, R̂i is given by

R̂i[x, y] def= θiD̂i [x, y] = θiKixy

ni
.

3.2 Estimation of Mutual Information and Its Confidence Interval

In this section we present our new method for estimating mutual information
and its confidence interval. For each component Si let Di be the joint (full)
distribution of X and Y obtained by normalizing Ri: Di [x, y] = Ri[x,y]

θi
. Let

DXi [x] =
∑

y∈Y Di [x, y], DYi [y] =
∑

x∈X Di [x, y] and D = {(x, y) ∈ X × Y :
PXY [x, y] �= 0}.

Using the estimated P̂XY we can compute the mutual information estimate
Î(X;Y). Note that the mutual information of the whole system is smaller than
(or equals) the weighted sum of those of the components, because of its convexity
w.r.t. the channel matrix. Therefore it cannot be computed compositionally from
those of the components; i.e., it requires to compute the joint distribution matrix
P̂XY for the whole system.

Since Î(X;Y) is obtained from a limited number of traces, it is different from
the true value I(X;Y). The following theorem quantifies the bias E(Î(X;Y)) −
I(X;Y).

Theorem 1. The expectation E(Î(X;Y)) of the mutual information is given by:

I(X;Y) +
∑

i∈I

θ2
i

2ni

(∑

(x,y)∈D
ϕixy −

∑

x∈X+

ϕix −
∑

y∈Y+

ϕiy

)
+ O(n−2

i)

where ϕixy = Di [x,y]−Di [x,y]2

PXY [x,y] , ϕix = DXi [x]−DXi [x]2

PX [x] and ϕiy = DYi [y]−DYi [y]2

PY [y] .

The proof is based on the Taylor expansion w.r.t. multiple dependent vari-
ables and can be found in the full version. Since the higher-order terms in the
formula are negligible when the sample sizes ni are large enough, we use the
following as the point estimate:

pe = Î(X;Y) −
∑

i∈I

θ2
i

2ni

(∑

(x,y)∈D
ϕ̂ixy −

∑

x∈X+

ϕ̂ix −
∑

y∈Y+

ϕ̂iy

)

414 Y. Kawamoto et al.

where ϕ̂ixy, ϕ̂ix and ϕ̂iy are empirical values of ϕixy, ϕix and ϕiy respectively
(that are computed from traces). Then the bias is closer to 0 when the sample
sizes ni are larger.

The quality of the estimate depends on the sample sizes ni and other factors.
The sampling distribution of the estimate Î(X;Y) tends to follow the normal
distribution when ni’s are large enough. The following gives the variance of the
distribution.

Theorem 2. The variance V (Î(X;Y)) of the mutual information is given by

∑

i∈I

θ2
i

ni

(
∑

(x,y)∈D
Di [x, y]

(
1+log

PX [x]PY [y]
PXY [x,y]

)2−
(∑

(x,y)∈D
Di [x, y]

(
1+log

PX [x]PY [y]
PXY [x,y]

))2
)

+ O(n
−2
i)

The confidence interval of the estimate of mutual information is useful to
know how accurate the estimate is. When the interval is smaller, we learn the
estimate is more accurate. The confidence interval is calculated using the vari-
ance v obtained by Theorem2. Given a significance level α, we denote by zα/2 the
z-score for the 100(1 − α

2) percentile point. Then the (1 − α) confidence interval
of the estimate is given by:

[max(0, pe − zα/2

√
v), pe + zα/2

√
v] .

For example, we use the z-score z0.0025 = 1.96 to compute the 95 % confidence
interval. To ignore the higher order terms the sample size

∑
i∈I ni needs to be

at least 4·#X ·#Y.
By Theorems 1 and 3, the bias and confidence interval for the whole system

can be computed compositionally from those for the components, unlike the
mutual information itself. This allows us to adaptively optimize the sample sizes
for the components.

3.3 Adaptive Optimization of Sample Sizes

The computational cost of the statistical analysis of each component Si generally
depends on the sample size ni and the cost of each execution of Si. When we
choose ni we take into account the trade-off between quality and cost of the
analysis: a larger sample size provides a smaller confidence interval, while the
cost increases proportionally to ni.

In this section we present a method for deciding how many times we should
run each component Si to collect a sufficient number of traces to estimate mutual
information. More specifically, we show how to compute optimal sample sizes ni

that achieves the smallest confidence interval size within the budget of the total
sample size n =

∑
i∈I ni.

To compute the optimal sample sizes, we first run each component to collect
a smaller number (for instance dozens) of execution traces. Then we calculate
certain intermediate values in computing the variance to determine sample sizes

Hybrid Statistical Estimation of Mutual Information 415

for further executions. Formally, let vi be the following intermediate value of the
variance for Si:

vi = θ2
i

(
∑

(x,y)∈D
D̂i [x, y]

(
1 + log P̂X [x]P̂Y [y]

P̂XY [x,y]

)2
−
(∑

(x,y)∈D
D̂i [x, y]

(
1 + log P̂X [x]P̂Y [y]

P̂XY [x,y]

))2
)

Then we find ni’s that minimize the variance v =
∑

i∈I
vi

ni
of the mutual infor-

mation.

Theorem 3. Given the total sample size n and the above intermediate variance
vi of the component Si for each i ∈ I, the variance of the mutual information
estimate is minimized if, for all i ∈ I, the sample size ni for Si satisfies ni =√

vin∑m
j=1

√
vj
.

By this result the estimation of a confidence interval size is useful to optimally
assign sample sizes to components even when the analyst is not interested in the
interval itself. We show experimentally the effectiveness of this optimization in
the full version.

4 Estimation Using Prior Knowledge About Systems

In this section we show how to use prior knowledge about systems to improve the
estimation, i.e., to make the size of the confidence intervals smaller and reduce
the required sample sizes.

4.1 Approximate Estimation Using Knowledge of Prior
Distributions

Our hybrid statistical estimation method integrates both precise and statistical
analysis, and it can be seen as a generalization and extension of previous work [9,
13,43].

For example, Chatzikokolakis et al. [13] present a method for estimating
mutual information between two random variables X (over secret values X) and
Y (over observable values Y) when the analyst knows the (prior) distribution
PX of X. In the estimation they collect execution traces by running a system
for each secret value x ∈ X . Thanks to the precise knowledge of PX , they have
more accurate estimates than the other previous work [9,43] that also estimates
PX from execution traces.

Estimation using the precise knowledge of PX is an instance of our result if
a system is partitioned into the component Sx for each secret x ∈ X = I. If we
assume all joint probabilities are non-zero, the approximate result in [13] follows
from Theorem 1.

416 Y. Kawamoto et al.

Corollary 1. The expectation E(Î(X;Y)) of the mutual information is given by

I(X;Y) + (#X−1)(#Y−1)
2n + O(n−2).

In this result from [13] the bias (#X−1)(#Y−1)
2n depends only on the size of the

joint distribution matrix. However, the bias can be strongly influenced by zeroes
or very small probabilities in the distribution, therefore their approximate results
can be correct only when all joint probabilities are non-zero and large enough,
which is a strong restriction in practice. The tool LeakWatch [20] implicitly
assumes that all probabilities are large enough, and consequently miscalculates
bias and gives an estimate far from the true value in the presence of very small
probabilities.

4.2 Our Estimation Using Knowledge of Prior Distributions

To overcome these issues we present more general results in the case the analyst
knows the prior distribution PX . We assume that a system S is partitioned into
the disjoint component Six for each index i ∈ I and secret x ∈ X , and that
each Six is executed with probability θix in the system S. Let Θ = {θix : i ∈ I,
x ∈ X}.

In the estimation of mutual information we run each component Six sepa-
rately many times to collect execution traces. Unlike the previous work we may
change the number of executions niPX [x] to niλi[x] where λi[x] is an importance
prior that decides how the sample size ni is allocated for each component Six.
Let Λ = {λi : i ∈ I}.

Given the number Kixy of Six’s traces with output y, we define the con-

ditional distribution Di of output given input: Di [y|x] def= Kixy

niλi[x] . Let Mixy =
θ2

ix

λi[x]Di [y|x] (1−Di [y|x]). Then the following is the expectation and variance of

the mutual information ÎΘ,Λ(X;Y) calculated using D̂i , Θ, Λ.

Proposition 1. The expectation E(ÎΘ,Λ(X;Y)) of the mutual information is
given by

I(X;Y) +
∑

i∈I

1
2ni

∑

y∈Y+

(∑

x∈Dy

Mixy

PXY [x,y] −
∑

x∈Dy
Mixy

PY [y]

)
+ O(n−2

i)

Proposition 2. The variance V (ÎΘ,Λ(X;Y)) of the mutual information is
given by

∑

i∈I

∑

x∈X+

θ2
ix

niλi[x]

(
∑

y∈Dx

Di[y|x]
(
log

PY [y]
PXY [x,y]

)2−
(∑

y∈Dx

Di[y|x]
(
log

PY [y]
PXY [x,y]

))2)
+O(n−2

i)

By applying Theorem3, the sample sizes ni and the importance priors λi can
be adaptively optimized.

Hybrid Statistical Estimation of Mutual Information 417

4.3 Abstraction-Then-Sampling Using Partial Knowledge
of Components

In this section we extend our estimation method to consider the case in which
the analyst has partial knowledge of components (e.g. by static analysis of the
source code or specification) before sampling. Such prior knowledge may help us
abstract components into simpler ones and thus reduce the sample size for the
statistical analysis.

For instance, let us consider an analyst who knows two pairs (x, y) and (x′, y′)
of inputs and outputs have the same probability in a component Si: Di [x, y] =
Di [x′, y′]. Then, when we construct the empirical distribution D̂i from a set of
traces, we can count the number Ki{(x,y),(x′,y′)} of traces having either (x, y) or

(x′, y′), and divide it by two: Kixy = Kix′y′ =
Ki{(x,y),(x′,y′)}

2 . Then the sample
size required for a certain accuracy is smaller than when we do not use the prior
knowledge on the equality Kixy = Kix′y′ .

In the following we generalize this idea to deal with more knowledge of com-
ponents. Let us consider a (probabilistic) system in which some components
leak no information on inputs and the analyst can learn this by qualitative
information analysis (for verifying non-interference). Then such a component
Si has a sub-channel matrix where all non-zero rows have an identical condi-
tional distribution of outputs given inputs [26]. Consequently, when we estimate
the #Xi × #Yi matrix of Si it suffices to estimate one of the rows, hence the
number of executions is proportional to #Yi instead of #Xi × #Yi. Note that
even when some components leak no information, computing the mutual infor-
mation for the whole system requires constructing the matrix of the system,
hence the matrices of all components.

The following results show that the bias and confidence interval are narrower
than when not using the prior knowledge of components. Let I� be the set of
indices of components that have channel matrices whose non-zero rows consist
of the same distribution. For each i ∈ I�, we define πi[x] as the probability of
having an input x in the component Si. Then the expectation and variance of
the mutual information are as follows.

Theorem 4. The expectation E(ÎI�(X;Y)) of the mutual information is
given by

I(X;Y)+
∑

i∈I\I�

θ2
i

2ni

(∑

(x,y)∈D
ϕixy −

∑

x∈X+

ϕix −
∑

y∈Y+

ϕiy

)
+
∑

i∈I�

θ2
i

2ni

(∑

(x,y)∈D
ψixy −

∑

y∈Y+

ϕiy

)
+O(n−2

i)

where ψixy
def= Di [x,y]πi[x]−Di [x,y]2

PXY [x,y] .

Theorem 5. The variance V (ÎI�(X;Y)) of the mutual information is given by

∑

i∈I\I�

θ2
i

ni

(
∑

(x,y)∈D
Di [x, y]

(
1+log

PX [x]PY [y]
PXY [x,y]

)2−
(∑

(x,y)∈D
Di [x, y]

(
1+log

PX [x]PY [y]
PXY [x,y]

))2)

418 Y. Kawamoto et al.

+
∑

i∈I�

θ2
i

ni

(
∑

y∈Y+

DYi [y]
(
logPY [y]−

∑

x∈X
πi[x] logPXY [x, y]

)2

−
(∑

y∈Y+

DYi [y]
(
logPY [y]−

∑

x∈X
πi[x] logPXY [x, y]

))2)
+ O(n−2

i) .

5 Estimation via Program Decomposition

The hybrid statistical estimation presented in the previous sections is designed to
analyze a system composed of subsystems (for instance, a distributed system over
different software or hardware, potentially geographically separated). However,
it can also be applied to the source code of a system by decomposing it into
disjoint components. In this section we show how to decompose a code into
components and determine for each component which analysis method to use
and the method’s parameters.

The principles to decompose a system’s source code in components are as
follows:

– The code may be decomposed only at conditional branching. Moreover, each
component must be a terminal in the control flow graph, hence no component
is executed afterwards. This is because the estimation method requires that the
channel matrix for the system is the weighted sum of those for its components,
and that the weight of a component is the probability of executing it.

– The analysis method and its parameters for each component Si are decided
by estimating the computational cost of analyzing Si. Let Zi be the set of all
internal randomness (i.e., the variables whose values are assigned according
to probability distributions) in Si. Then the cost of the statistical analysis
is proportional to Si’s matrix size #Xi × #Yi, while the cost of the precise

1. Build the control flow graph of the system.
2. Mark all possible components based on each conditional branching. Each possible

component must be a terminal as explained in Section 5.
3. For each possible component Si, check whether it is deterministic or not (by syntactically

checking an occurrence of a probabilistic assignment or a probabilistic function call). If
it is, mark the component for precise analysis.

4. For each possible component Si, check whether Si’s output variables are independent
of its input variables inside Si (by qualitative information flow). If so, mark that the
abstraction-then-sampling technique in Section 4.3 is to be used on the component.

5. For each Si, estimate an approximate range size of its internal and observable variables.
6. Looking from the leaves to the root of the graph, decide the decomposition into compo-

nents. Estimate the cost of statistical and precise analyses and mark the component for
analysis by the cheapest of the two.

7. Join together adjacent components if they are marked for precise analysis, or if they are
marked for statistical analysis and have the same input and output ranges.

8. For each component, perform precise analysis or statistical analysis as marked.

Fig. 2. Procedure for decomposing a system given its source code.

Hybrid Statistical Estimation of Mutual Information 419

analysis is proportional to the number of all traces in Si’s control flow graph
(in the worst case proportional to #Xi × #Zi). Hence the cost estimation is
reduced to counting #Yi and #Zi.

The procedure for decomposition is shown in Fig. 2. Since this is heuristic,
it is not guaranteed to produce an optimal decomposition. While the procedure
is automated, for usability the choice of analysis can be controlled by user’s
annotations on the code.

6 Evaluation

We evaluate experimentally the effectiveness of our hybrid method compared
to the state of the art. We first discuss the cost and quality of the estimation,
then test the hybrid method against fully precise/fully statistical analyses on
Shannon leakage benchmarks.

6.1 On the Tradeoff Between the Cost and Quality of Estimation

Fig. 3. Distribution of mutual informa-
tion estimate and its confidence interval.

In the hybrid statistical estimation, the
estimate takes different values proba-
bilistically, because it is computed from
a set of traces that are generated by exe-
cuting a probabilistic system. Figure 3
shows the sampling distribution of the
mutual information estimate of the joint
distribution in Fig. 1 in Sect. 1. The
graph shows the frequency (on the y
axis) of the mutual information esti-
mates (on the x axis) when performing
the estimation 1000 times. In each esti-
mation we perform precise analysis on
the component T and statistical analysis on S1 and S2 (with a sample size of
5000). As shown in Fig. 3 the estimate after the correction of bias by Theorem 1
is closer to the true value. The estimate is roughly between the lower and upper
bounds of the 95 % confidence interval calculated using Theorem2.

The interval size depends on the sample size in statistical analysis as shown
in Fig. 4a. When the sample size is k times larger, the confidence interval is

√
k

times narrower. The interval size also depends on the amount of precise analysis
as shown in Fig. 4b. If we perform precise analysis on larger components, then
the sampling distribution becomes more centered (with shorter tails) and the
confidence interval becomes narrower.

The hybrid approach produces better estimates than the state of the art in
statistical analysis. Due to the combination with precise analysis, the confidence
interval estimated by our approach is smaller than LeakWatch [20] for the same
sample size.

420 Y. Kawamoto et al.

 0

 20

 40

 60

 80

 100

 120

 140

 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26

Fr
eq

ue
nc

y

Corrected mutual information (bits)

sample = 10000
sample = 5000
sample = 1000

(a) Estimates and sample sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27

Fr
eq

ue
nc

y

Corrected mutual information (bits)

(10,2)-matrix
(10,5)-matrix

(10,10)-matrix

(b) Estimates and the ratio of precise analysis.

Fig. 4. Smaller intervals when increasing the sample size or the ratio of precise analysis.

6.2 Shannon Leakage Benchmarks

We compare the performance of our hybrid method with fully precise/statistical
analysis on Shannon leakage benchmarks. Our implementations of precise and
statistical analyses are variants of the state-of-the art tools QUAIL [6,7] and
LeakWatch [17,20] respectively. They are fully automated except for human-
provided annotations to determine the analysis method for each component. All
experiments are performed on an Intel i7-4960HQ 2.6 GHz quad-core machine
with 8 GB of RAM running Ubuntu 16.04.

1 secret array bit[N] s;
2 observable array bit[K] r;
3 for i=0..K-1 do r[i]=s[i] ;
4 for i=K..N -1 do
5 j = uniform(0..i);
6 if j<K then r[j]=s[i];
7 end

Fig. 5. Reservoir sampling.

Reservoir Sampling. The reservoir sampling
problem [48] consists of selecting K elements ran-
domly from a pool of N > K elements. We quan-
tify the information flow of the commonly-used
Algorithm R [48], presented in Fig. 5, for various
values of N and K = N/2. In the algorithm, the
first K elements are chosen as the sample, then
each other element has a probability to replace
one element in the sample.

1 secret int h = [0, N];
2 observable array bit[N] decl;
3 int lie = (1..N);
4 randomly generated array bit[N] coin;
5 for c in coin do c = (0..1) ;
6 for i=0..N -1 do
7 decl[i]=coin[i] xor coin[(i+1)%N];
8 if h==i+1 then decl[i]=!decl[i];
9 if i==lie then decl[i]=!decl[i];
10 end

Fig. 6. Lying cryptographers.

Multiple Lying Cryptographers
Protocol. We test our hybrid method
to compute the Shannon leakage of
a distributed version of the lying
cryptographers protocol. The lying
cryptographers protocol is a variant
of the dining cryptographer multi-
party computation protocol [15] in
which a randomly-chosen cryptographer
declares the opposite of what they

Hybrid Statistical Estimation of Mutual Information 421

would normally declare, i.e. they lie if they are not the payer, and do not lie if they
are the payer. We consider three simultaneous lying cryptographers implemen-
tation in which 8 cryptographers run the protocol on three separate overlapping
tables A, B and C with 4 cryptographers each. Table A hosts cryptographers 1
to 4, Table B hosts cryptographers 3 to 6, and Table C hosts cryptographers 5
to 8. The identity of the payer is the same in all tables (Fig. 6).

1 secret int sec = [0,N -1];
2 observable int obs;
3 int S = (0,N -W -1);
4 int ws = (1,W);
5 int O = (0,N -W -1);
6 int wo = (1,W);
7 if S ≤ sec ≤ S+ws then
8 obs = (O,O+wo);
9 else
10 obs = (0,N -1);
11 end

Fig. 7. Shifting window.

Shifting Window. In the shifting window
example the secret has N possible values, and
a contiguous sequence of this values (the “win-
dow”) of random size from 1 to W is chosen.
We assume for simplicity that N = 2W . If the
secret is inside the window then another ran-
dom window is chosen in the same way and a
random value from the new window is printed.
Otherwise, a random value from 0 to N − 1 is
printed (Fig. 7).

Results. In Table 2 we show the results of the
benchmarks using fully precise, fully statistical

and hybrid analyses, for a sample size of 100000 executions. Timeout is set
at 10 min. On the reservoir benchmark the precise analysis is faster for small
instances but does not scale, timing out on larger values of N . The hybrid method
is consistently faster than the fully statistical analysis and often has a smaller
error. On the other benchmarks the hybrid method usually outperforms the
others and produces better approximations than the statistical analysis.

Table 2. Shannon leakage benchmark results.

Reservoir Lying crypt Window

N=6 N=8 N=10 N=12 N=20 N=22 N=24

Precise Time(s) 0.7 11.4 timeout timeout 506.4 10.0 16.0 28.3

Error 0 0 - - 0 0 0 0

Statistical Time(s) 21.6 35.2 60.7 91.5 254.3 7.5 7.7 7.1

Error 10−3 10−3 - - 10−3 10−3 10−3 10−4

Hybrid Time(s) 13.4 22.5 34.6 58.4 240.1 6.6 7.1 7.1

Error 10−4 10−3 - - 10−3 10−7 10−4 10−4

The results in Table 2 show the superiority of our hybrid approach compared
to the state of the art. The hybrid analysis scales better than the precise analysis,
since it does not need to analyze every trace of the system. Compared to fully
statistical analysis, our hybrid analysis exploits precise analysis on components
of the system where statistical estimation would be more expensive than precise

422 Y. Kawamoto et al.

analysis. This allows the hybrid analysis to focus the statistical estimation on
components of the system where it converges faster, thus obtaining a smaller
confidence interval in a shorter time.

7 Related Work

The information-theoretical approach to program security dates back to the
work of Denning [27] and Gray [32]. Clark et al. [22,23] presented techniques
to automatically compute mutual information of an imperative language with
loops. For a deterministic program, leakage can be computed from the equiva-
lence relations on the secret induced by the possible outputs, and such relations
can be automatically quantified [2]. Under- and over-approximation of leakage
based on the observation of some traces have been studied for deterministic
programs [42,44]. The combination of static and statistical approaches to quan-
titative information flow is proposed in [39] while our paper is general enough
to deal with probabilistic systems under various prior information conditions.

The statistical approach to quantifying information leakage has been studied
since the seminal work by Chatzikokolakis et al. [13]. Chothia et al. have devel-
oped this approach in tools leakiEst [18,19] and LeakWatch [17,20]. The hybrid
statistical method in this paper can be considered as their extension with the
inclusion of component weighting and adaptive priors inspired by the importance
sampling in statistical model checking [3,24]. To the best of our knowledge, no
prior work has applied weighted statistical analysis to the estimation of mutual
information or any other leakage measures.

Fremont and Seshia [30] have presented a polynomial time algorithm to
approximate the weight of traces of deterministic programs with possible applica-
tion to quantitative information leakage. Progress in statistical program analysis
includes a scalable algorithm for uniform generation of sample from a distrib-
ution defined as constraints [11,12], with applications to constrained-random
program verification.

The algorithms for precise computation of information leakage used in this
paper are based on trace analysis [5], implemented in the QUAIL tool [6,7].
Phan et al. [45,46] developed tools to compute channel capacity of deterministic
programs written in the C or Java languages. McCamant et al. [34] developed
tools implementing dynamic quantitative taint analysis techniques for security.
The recent tool Moped-QLeak [10] is able to efficiently compute information
leakage of programs as long as it can produce a complete symbolic representation
of the program.

8 Conclusions and Future Work

We have proposed a method for estimating mutual information by combining
precise and statistical analyses and for compositionally computing the bias and
confidence interval of the estimate. The results are also used to adaptively find
the optimal sample sizes for different components in the statistical analysis.

Hybrid Statistical Estimation of Mutual Information 423

Moreover, we have shown how to reduce sample sizes by using prior knowledge
about systems, including the abstraction-then-sampling technique with qualita-
tive analysis. To apply our new method to the source codes of systems we have
shown how to decompose the codes into components and determine the analysis
method for each component. We have shown both theoretical and experimental
results to demonstrate that the proposed approach outperforms the state of the
art. To obtain better results we are developing theory and tools that integrate
symbolic abstraction techniques in program analysis into our estimation method.

References

1. Adami, C.: Information theory in molecular biology. Phys. Life Rev. 1(1), 3–22
(2004)

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: 30th IEEE Symposium on Security and Privacy (S&P 2009),
17–20 May 2009, Oakland, California, USA, pp. 141–153. IEEE Computer Society
(2009)

3. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for sta-
tistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 331–346. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5 23

4. Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mech-
anisms. In: Proceedings of CSF, pp. 191–204. IEEE (2011)

5. Biondi, F., Legay, A., Malacaria, P., Wasowski, A.: Quantifying information leakage
of randomized protocols. Theor. Comput. Sci. 597, 62–87 (2015)

6. Biondi, F., Legay, A., Traonouez, L.M., Wasowski, A.: QUAIL. https://project.
inria.fr/quail/

7. Biondi, F., Legay, A., Traonouez, L.-M., W ↪asowski, A.: QUAIL: a quantitative
security analyzer for imperative code. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 49

8. Boreale, M., Paolini, M.: On formally bounding information leakage by statistical
estimation. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC
2014. LNCS, vol. 8783, pp. 216–236. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-13257-0 13

9. Brillinger, D.R.: Some data analysis using mutual information. Braz. J. Probab.
Stat. 18(6), 163–183 (2004)

10. Chadha, R., Mathur, U., Schwoon, S.: Computing information flow using symbolic
model-checking. In: Raman, V., Suresh, S.P. (eds.) FSTTCS 2014. Proceedings.
LIPIcs, vol. 29, pp. 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2014)

11. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generation. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 304–319. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 25

12. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40627-0 18

http://dx.doi.org/10.1007/978-3-642-28756-5_23
https://project.inria.fr/quail/
https://project.inria.fr/quail/
http://dx.doi.org/10.1007/978-3-642-39799-8_49
http://dx.doi.org/10.1007/978-3-642-39799-8_49
http://dx.doi.org/10.1007/978-3-319-13257-0_13
http://dx.doi.org/10.1007/978-3-319-13257-0_13
http://dx.doi.org/10.1007/978-3-662-46681-0_25
http://dx.doi.org/10.1007/978-3-662-46681-0_25
http://dx.doi.org/10.1007/978-3-642-40627-0_18

424 Y. Kawamoto et al.

13. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 33

14. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. Inf. Comp. 206(2–4), 378–401 (2008)

15. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1, 65–75 (1988)

16. Chothia, T., Kawamoto, Y.: Statistical estimation of min-entropy leakage, April
2004. http://www.cs.bham.ac.uk/research/projects/infotools/. (Manuscript)

17. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch. http://www.cs.bham.ac.
uk/research/projects/infotools/leakwatch/

18. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakiEst. http://www.cs.bham.ac.uk/
research/projects/infotools/leakiest/

19. Chothia, T., Kawamoto, Y., Novakovic, C.: A Tool for Estimating Information
Leakage. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 690–
695. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 47

20. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from java programs. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 219–236. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11212-1 13

21. Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic point-to-point
information leakage. In: Proceedings of CSF 2013, pp. 193–205. IEEE (2013)

22. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confi-
dential data. Electr. Notes Theor. Comput. Sci. 59(3), 238–251 (2001)

23. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

24. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24372-1 1

25. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

26. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. A Wiley-
Interscience publication, Wiley, New York (2006)

27. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

28. Escolano, F., Suau, P., Bonev, B.: Information Theory in Computer Vision and Pat-
tern Recognition. Springer, London (2009). http://opac.inria.fr/record=b1130015

29. Espinoza, B., Smith, G.: Min-entropy as a resource. Inf. Comput. 226, 57–75 (2013)
30. Fremont, D.J., Seshia, S.A.: Speeding up SMT-based quantitative program analy-

sis. In: Rümmer, P., Wintersteiger, C.M. (eds.) SMT 2014. Proceedings. CEUR
Workshop Proceedings, vol. 1163, pp. 3–13. CEUR-WS.org (2014)

31. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York
(1968)

32. Gray, J.W.: Toward a mathematical foundation for information flow security. In:
IEEE Symposium on Security and Privacy, pp. 21–35 (1991)

33. Jensen, F.V.: Introduction to Bayesian Networks, 1st edn. Springer, Secaucus
(1996)

34. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint
analysis with targeted control-flow propagation. In: Proceedings of NDSS 2011.
The Internet Society (2011)

http://dx.doi.org/10.1007/978-3-642-12002-2_33
http://www.cs.bham.ac.uk/research/projects/infotools/
http://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/
http://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/
http://www.cs.bham.ac.uk/research/projects/infotools/leakiest/
http://www.cs.bham.ac.uk/research/projects/infotools/leakiest/
http://dx.doi.org/10.1007/978-3-642-39799-8_47
http://dx.doi.org/10.1007/978-3-319-11212-1_13
http://dx.doi.org/10.1007/978-3-319-11212-1_13
http://dx.doi.org/10.1007/978-3-642-24372-1_1
http://opac.inria.fr/record=b1130015

Hybrid Statistical Estimation of Mutual Information 425

35. Kawamoto, Y., Biondi, F., Legay, A.: Hybrid statistical estimation of mutual infor-
mation for quantifying information flow. Research report, INRIA (2016). https://
hal.inria.fr/hal-01241360

36. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: Compositionality results
for quantitative information flow. In: Norman, G., Sanders, W. (eds.) QEST
2014. LNCS, vol. 8657, pp. 368–383. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10696-0 28

37. Kawamoto, Y., Given-Wilson, T.: Quantitative information flow for scheduler-
dependent systems. In: Proceedings of QAPL 2015, vol. 194, pp. 48–62 (2015)

38. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of CCS, pp. 286–296. ACM (2007)

39. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative
information-flow analysis. In: Proceedings CSF 2010, pp. 3–14. IEEE Computer
Society (2010)

40. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

41. MacKay, D.J.C.: Information Theory, Inference & Learning Algorithms. Cambridge
University Press, New York (2002)

42. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-
ity. In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson,
AZ, USA, 7–13 June 2008, pp. 193–205. ACM (2008)

43. Moddemeijer, R.: On estimation of entropy and mutual information of continuous
distributions. Sig. Process. 16, 233–248 (1989)

44. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish
undue influence. In: Chong, S., Naumann, D.A. (eds.) Proceedings of the 2009
Workshop on Programming Languages and Analysis for Security, PLAS 2009,
Dublin, Ireland, 15–21 June 2009, pp. 73–85. ACM (2009)

45. Phan, Q., Malacaria, P.: Abstract model counting: a novel approach for quantifica-
tion of information leaks. In: Moriai, S., Jaeger, T., Sakurai, K. (eds.) Proceedings
of AsiaCCS 2014, pp. 283–292. ACM (2014)

46. Phan, Q., Malacaria, P., Pasareanu, C.S., d’Amorim, M.: Quantifying information
leaks using reliability analysis. In: Rungta, N., Tkachuk, O. (eds.) Proceedings of
SPIN 2014, pp. 105–108. ACM (2014)

47. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00596-1 21

48. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985). http://doi.acm.org/10.1145/3147.3165

49. Wilde, M.M.: Quantum Information Theory, 1st edn. Cambridge University Press,
New York (2013)

50. Yasuoka, H., Terauchi, T.: Quantitative information flow as safety and liveness
hyperproperties. Theor. Comput. Sci. 538, 167–182 (2014)

https://hal.inria.fr/hal-01241360
https://hal.inria.fr/hal-01241360
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://doi.acm.org/10.1145/3147.3165

A Generic Logic for Proving Linearizability

Artem Khyzha1(B), Alexey Gotsman1, and Matthew Parkinson2

1 IMDEA Software Institute, Madrid, Spain
artem.khyzha@imdea.org

2 Microsoft Research Cambridge, Cambridge, UK

Abstract. Linearizability is a commonly accepted notion of correctness
for libraries of concurrent algorithms, and recent years have seen a num-
ber of proposals of program logics for proving it. Although these logics
differ in technical details, they embody similar reasoning principles. To
explicate these principles, we propose a logic for proving linearizability
that is generic: it can be instantiated with different means of compo-
sitional reasoning about concurrency, such as separation logic or rely-
guarantee. To this end, we generalise the Views framework for reasoning
about concurrency to handle relations between programs, required for
proving linearizability. We present sample instantiations of our generic
logic and show that it is powerful enough to handle concurrent algorithms
with challenging features, such as helping.

1 Introduction

To manage the complexity of constructing concurrent software, programmers
package often-used functionality into libraries of concurrent algorithms. These
encapsulate data structures, such as queues and lists, and provide clients
with a set of methods that can be called concurrently to operate on these
(e.g., java.util.concurrent). To maximise performance, concurrent libraries may
use sophisticated non-blocking techniques, allowing multiple threads to operate
on the data structure with minimum synchronisation. Despite this, each library
method is usually expected to behave as though it executes atomically. This
requirement is formalised by the standard notion of correctness for concurrent
libraries, linearizability [14], which establishes a form of a simulation between
the original concrete library and another abstract library, where each method is
implemented atomically.

A common approach to proving linearizability is to find a linearization point
for every method of the concrete library at which it can be thought of taking
effect.1 Given an execution of a concrete library, the matching execution of the
abstract library, required to show the simulation, is constructed by executing
the atomic abstract method at the linearization point of the concrete method. A
difficulty in this approach is that linearization points are often not determined

1 Some algorithms cannot be reasoned about using linearization points, which we
discuss in Sect. 7.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 426–443, 2016.
DOI: 10.1007/978-3-319-48989-6 26

A Generic Logic for Proving Linearizability 427

by a statically chosen point in the method code. For example, in concurrent algo-
rithms with helping [13], a method may execute an operation originally requested
by another method, called in a different thread; then the linearization point of
the latter method is determined by an action of the former.

Recent years have seen a number of program logics for proving linearizabil-
ity (see [6] for a survey). To avoid reasoning about the high number of pos-
sible interleavings between concurrently executing threads, these logics often
use thread-modular reasoning. They establish protocols that threads should fol-
low when operating on the shared data structure and reason separately about
every thread, assuming that the rest follow the protocols. The logics for proving
linearizability, such as [18,26], usually borrow thread-modular reasoning rules
from logics originally designed for proving non-relational properties of concur-
rent programs, such as rely-guarantee [15], separation logic [21] or combinations
thereof [7,26]. Although this leads the logics to differ in technical details, they use
similar methods for reasoning about linearizability, usually based on linearization
points. Despite this similarity, designing a logic for proving linearizability that
uses a particular thread-modular reasoning method currently requires finding
the proof rules and proving their soundness afresh.

To consolidate this design space of linearization-point-based reasoning, we
propose a logic for linearizability that is generic, i.e., can be instantiated with dif-
ferent means of thread-modular reasoning about concurrency, such as separation
logic [21] or rely-guarantee [15]. To this end, we build on the recently-proposed
Views framework [3], which unifies thread-modular logics for concurrency, such
as the above-mentioned ones. Our contribution is to generalise the framework
to reason about relations between programs, required for proving linearizability.
In more detail, assertions in our logic are interpreted over a monoid of relational
views, which describe relationships between the states of the concrete and the
abstract libraries and the protocol that threads should follow in operating on
these. The operation of the monoid, similar to the separating conjunction in
separation logic [21], combines the assertions in different threads while ensuring
that they agree on the protocols of access to the state. The choice of a particular
relational view monoid thus determines the thread-modular reasoning method
used by our logic.

To reason about linearization points, relational views additionally describe
a set of special tokens (as in [2,18,26]), each denoting a one-time permission
to execute a given atomic command on the state of the abstract library. The
place where this permission is used in the proof of a concrete library method
determines its linearization point, with the abstract command recorded by the
token giving its specification. Crucially, reasoning about the tokens is subject to
the protocols established by the underlying thread-modular reasoning method;
in particular, their ownership can be transferred between different threads, which
allows us to deal with helping.

We prove the soundness of our generic logic under certain conditions on
its instantiations (Definition 2, Sect. 3). These conditions represent our key
technical contribution, as they capture the essential requirements for soundly

428 A. Khyzha et al.

Fig. 1. The operational semantics of sequential commands

combining a given thread-modular method for reasoning about concurrency with
the linearization-point method for reasoning about linearizability.

To illustrate the use of our logic, we present its example instantiations where
thread-modular reasoning is done using disjoint concurrent separation logic [20]
and a combination of separation logic and rely-guarantee [26]. We then apply
the latter instantiation to prove the correctness of a sample concurrent algorithm
with helping. We expect that our results will make it possible to systematically
design logics using the plethora of other methods for thread-modular reasoning
that have been shown to be expressible in the Views framework [1,4,20].

2 Methods Syntax and Sequential Semantics

We consider concurrent programs that consist of two components, which we call
libraries and clients. Libraries provide clients with a set of methods, and clients
call them concurrently. We distinguish concrete and abstract libraries, as the
latter serve as specification for the former due to its methods being executed
atomically.

Syntax. Concrete methods are implemented as sequential commands having the
syntax:

C ∈ Com ::= α | C ; C | C + C | C� | skip, where α ∈ PCom

The grammar includes primitive commands α from a set PCom, sequential com-
position C ; C, non-deterministic choice C +C and a finite iteration C� (we are
interested only in terminating executions) and a termination marker skip. We
use + and (·)� instead of conditionals and while loops for theoretical simplicity:
as we show at the end of this section, given appropriate primitive commands the
conditionals and loops can be encoded. We also assume a set APCom of abstract
primitive commands, ranged over by A, with which we represent methods of an
abstract library.

A Generic Logic for Proving Linearizability 429

Semantics. We assume a set State of concrete states of the memory, ranged
over by σ, and abstract states AState, ranged over by Σ. The memory is shared
among N threads with thread identifiers ThreadID = {1, 2, . . . , N}, ranged over
by t.

We assume that semantics of each primitive command α is given by a non-
deterministic state transformer �α�t : State → P(State), where t ∈ ThreadID.
For a state σ, the set of states �α�t(σ) is the set of possible resulting states for
α executed atomically in a state σ and a thread t. State transformers may have
different semantics depending on a thread identifier, which we use to introduce
thread-local memory cells later in the technical development. Analogously, we
assume semantics of abstract primitive commands with state transformers �A�t :
AState → P(AState), all of which update abstract states atomically. We also
assume a primitive command id ∈ PCom with the interpretation �id�t(σ) � {σ},
and its abstract counterpart id ∈ APCom.

The sets of primitive commands PCom and APCom as well as correspond-
ing state transformers are parameters of our framework. In Fig. 1 we give
rules of operational semantics of sequential commands, which are parametrised
by semantics of primitive commands. That is, we define a transition rela-
tion −−� ⊆ (Com × State) × (ThreadID × PCom) × (Com × State), so that

〈C, σ〉 t,α−−−−� 〈C ′, σ′〉 indicates a transition from C to C ′ updating the state
from σ to σ′ with a primitive command α in a thread t. The rules of the opera-
tional semantics are standard.

Let us show how to define traditional control flow primitives, such as an if-
statement and a while-loop, in our programming language. Assuming a language
for arithmetic expressions, ranged over by E, and a function �E�σ that evaluates
expressions in a given state σ, we define a primitive command assume(E) that
acts as a filter on states, choosing only those where E evaluates to non-zero
values.

�assume(E)�t(σ) � if �E�σ �= 0 then {σ} else ∅.

Using assume(E) and the C-style negation !E in expressions, a conditional and
a while-loop can be implemented as the following commands:

if E then C1 else C2 � (assume(E);C1) + (assume(!E);C2)

while E do C � (assume(E);C)�; assume(!E)

3 The Generic Logic

In this section, we present our framework for designing program logics for
linearizability proofs. Given a concrete method and a corresponding abstract
method, we aim to demonstrate that the former has a linearization point either
within its code or in the code of another thread. The idea behind such proofs is
to establish simulation between concrete and abstract methods using lineariza-
tion points to determine when the abstract method has to make a transition to

430 A. Khyzha et al.

match a given execution of the concrete method. To facilitate such simulation-
based proofs, we design our relational logic so that formulas in it denote relations
between concrete states, abstract states and special tokens.

Tokens are our tool for reasoning about linearization points. At the beginning
of its execution in a thread t, each concrete method m is given a token todo(Am)
of the corresponding abstract primitive command Am. The token represents a
one-time permission for the method to take effect, i.e. to perform a primitive
command Am on an abstract machine. When the permission is used, a token
todo(Am) in a thread t is irreversibly replaced with done(Am). Thus, by requiring
that a method start its execution in a thread t with a token todo(Am) and ends
with done(Am), we ensure that it has in its code a linearization point. The tokens
of all threads are described by Δ ∈ Tokens:

Tokens = ThreadID ⇀ ({todo(A) | A ∈ APCom} ∪ {done(A) | A ∈ APCom})

Reasoning about states and tokens in the framework is done with the help
of relational views. We assume a set Views, ranged over by p, q and r, as well as
a reification function
 � : Views → P(State × AState × Tokens) that interprets
views as ternary relations on concrete states, abstract states and indexed sets of
tokens.

Definition 1. A relational view monoid is a commutative monoid (Views, ∗, u),
where Views is an underlying set of relational views, ∗ is a monoid operation and
u is a unit.

The monoid structure of relational views allows treating them as restrictions
on the environment of threads. Intuitively, each thread uses views to declare a
protocol that other threads should follow while operating with concrete states,
abstract states and tokens. Similarly to the separating conjunction from separa-
tion logic, the monoid operation ∗ (view composition) applied to a pair of views
combines protocols of access to the state and ensures that they do not contradict
each other.

Disjoint Concurrent Separation Logic. To give an example of a view
monoid, we demonstrate the structure inspired by Disjoint Concurrent Sepa-
ration logic (DCSL). A distinctive feature of DCSL is that its assertions enforce
a protocol, according to which threads operate on disjoint pieces of memory. We
assume a set of values Val, of which a subset Loc ⊆ Val represents heap addresses.
By letting State = AState = (Loc ⇀fin Val)∪{�} we represent a state as either a
finite partial function from locations to values or an exceptional faulting state �,
which denotes the result of an invalid memory access. We define an operation •
on states, which results in � if either of the operands is �, or the union of partial
functions if their domains are disjoint. Finally, we assume that the set PCom
consists of standard heap-manipulating commands with usual semantics [3,21].

A Generic Logic for Proving Linearizability 431

We consider the view monoid (P((State \ {�}) × (AState \ {�}) ×
Tokens), ∗SL, ([], [], [])): the unit is a triple of nowhere defined functions [],
and the view composition defined as follows:

p ∗SL p′ � {(σ • σ′, Σ • Σ′,Δ
 Δ′) | (σ,Σ,Δ) ∈ p ∧ (σ′, Σ′,Δ′) ∈ p′}.

In this monoid, the composition enforces a protocol of exclusive ownership of
parts of the heap: a pair of views can be composed only if they do not simulta-
neously describe the content of the same heap cell or a token. Since tokens are
exclusively owned in DCSL, they cannot be accessed by other threads, which
makes it impossible to express a helping mechanism with the DCSL views. In
Sect. 5, we present another instance of our framework and reason about helping
in it.

Reasoning about linearization points. We now introduce action judgements,
which formalise linearization-points-based approach to proving linearizability
within our framework.

Let us assume that α is executed in a concrete state σ
with an abstract state Σ and a set of tokens Δ satisfying
a precondition p. According to the action judgement α �t

{p}{q}, for every update σ′ ∈ �α�t(σ) of the concrete state,
the abstract state may be changed to Σ′ ∈ �A�t′(Σ) in
order to satisfy the postcondition q, provided that there is
a token todo(A) in a thread t′. When the abstract state Σ is changed and the
token todo(A) of a thread t′ is used, the concrete state update corresponds to a
linearization point, or to a regular transition otherwise.

Definition 2. The action judgement α �t {p}{q} holds, iff the following is
true:

∀r, σ, σ′, Σ,Δ. (σ,Σ,Δ) ∈
p ∗ r� ∧ σ′ ∈ �α�t(σ) =⇒
∃Σ′,Δ′. LP∗(Σ,Δ,Σ′,Δ′) ∧ (σ′, Σ′,Δ′) ∈
q ∗ r�,

where LP∗ is the transitive closure of the following relation:

LP(Σ, Δ, Σ′, Δ′) � ∃t′, A. Σ′ ∈ �A�t′(Σ) ∧ Δ(t′) = todo(A) ∧ Δ′ = Δ[t′ : done(A)],

and f [x : a] denotes the function such that f [x : a](x) = a and for any y �= x,
f [x : a](y) = f(y).

Note that depending on pre- and postconditions p and q, α �t {p}{q} may
encode a regular transition, a conditional or a standard linearization point. It
is easy to see that the latter is the case only when in all sets of tokens Δ from

p� some thread t′ has a todo-token, and in all Δ′ from
q� it has a done-token.
Additionally, the action judgement may represent a conditional linearization
point of another thread, as the LP relation allows using tokens of other threads.

Action judgements have a closure property that is important for thread-
modular reasoning: when α �t {p}{q} holds, so does α �t {p ∗ r}{q ∗ r} for

432 A. Khyzha et al.

Fig. 2. Satisfaction relation for the assertion language Assn

every view r. That is, execution of α and a corresponding linearization point
preserves every view r that p can be composed with. Consequently, when in
every thread action judgements hold of primitive commands and thread’s views,
all threads together mutually agree on each other’s protocols of the access to
the shared memory encoded in their views. This enables reasoning about every
thread in isolation with the assumption that its environment follows its proto-
col. Thus, the action judgements formalise the requirements that instances of our
framework need to satisfy in order to be sound. In this regard action judgements
are inspired by semantic judgements of the Views Framework [3]. Our technical
contribution is in formulating the essential requirements for thread-modular rea-
soning about linearizability of concurrent libraries with the linearization-point
method and in extending the semantic judgement with them.

We let a repartitioning implication of views p and q, written p � q, denote
∀r.
p ∗ r� ⊆
q ∗ r�. A repartitioning implication p � q ensures that states
satisfying p also satisfy q and additionally requires this property to preserve any
view r.

Program logic. We are now in a position to present our generic logic for lin-
earizability proofs via the linearization-point method. Assuming a view monoid
and reification function as parameters, we define a minimal language Assn for
assertions P and Q denoting sets of views:

P,Q ∈ Assn ::= ρ | P ∗ Q | P ∨ Q | P � Q | ∃X.P | . . .

The grammar includes view assertions ρ, a syntax VAssn of which is a parameter
of the framework. Formulas of Assn may contain the standard connectives from
separation logic, the repartitioning implication and the existential quantification
over logical variables X, ranging over a set LVar.

Let us assume an interpretation of logical variables i ∈ Int = LVar → Val
that maps logical variables from LVar to values from a finite set Val. In Fig. 2,
we define a function �·�· : Assn× Int → Views that we use to interpret assertions.
Interpretation of assertions is parametrised by �·�· : VAssn × Int → Views. In
order to interpret disjunction, we introduce a corresponding operation on views
and require the following properties from it:

p ∨ q� =
p� ∪
q� (p ∨ q) ∗ r = (p ∗ r) ∨ (q ∗ r) (1)

The judgements of the program logic take the form �t {P} C {Q}. In Fig. 3,
we present the proof rules, which are mostly standard. Among them, the Prim
rule is noteworthy, since it encorporates the simulation-based approach to rea-
soning about linearization points introduced by action judgements. The Frame

A Generic Logic for Proving Linearizability 433

(PRIM)
∀i. α �t { i}{ Q i}

�t {P} α {Q} (SEQ)
�t {P} C1 {P ′} �t {P ′} C2 {Q}

�t {P} C1 ; C2 {Q}
(FRAME)

�t {P} C {Q}
�t {P ∗ R} C {Q ∗ R} (DISJ)

�t {P1} C {Q1} �t {P2} C {Q2}
�t {P1 ∨ P2} C {Q1 ∨ Q2}

(EX)
�t {P} C {Q}

�t {∃X. P} C {∃X. Q} (CHOICE)
�t {P} C1 {Q} �t {P} C2 {Q}

�t {P} C1 + C2 {Q}
(ITER)

�t {P} C {P}
�t {P} C� {P} (CONSEQ)

P ′ � P �t {P} C {Q} Q � Q′

�t {P ′} C {Q′}

Fig. 3. Proof rules

rule applies the idea of local reasoning from separation logic [21] to views. The
Conseq enables weakening a precondition or a postcondition in a proof judge-
ment and uses repartitioning implications to ensure the thread-modularity of
the weakened proof judgement.

Semantics of proof judgements. We give semantics to judgements of the
program logic by lifting the requirements of action judgements to sequential
commands.

Definition 3 (Safety Judgement). We define safet as the greatest relation
such that the following holds whenever safet(p,C, q) does:

– if C �= skip, then ∀C ′, α. C
α−−→ C ′ =⇒ ∃p′. α �t {p}{p′} ∧ safet(p′, C ′, q),

– if C = skip, then p � q.

Lemma 4. ∀t,P, C,Q. �t {P} C {Q} =⇒ ∀i. safet(�P�i, C, �Q�i).

We can understand the safety judgement safet(�P�i, C, �Q�i) as an oblig-
ation to create a sequence of views �P�i = p1, p2, . . . , pn+1 = �Q�i for each
finite trace α1, α2, . . . , αn of C to justify each transition with action judgements
α1 �t {p1}{p2}, . . . , αn �t {pn}{pn+1}. Thus, when safet(�P�i, C, �Q�i) holds,
it ensures that every step of the machine correctly preserves a correspondence
between a concrete and abstract execution. Intuitively, the safety judgement lifts
the simulation between concrete and abstract primitive commands established
with action judgements to the implementation and specification of a method.

In Lemma 4, we establish that the proof judgements of the logic imply the
safety judgements. As a part of the proof, we show that each of the proof rules
of the logic holds of safety judgements. Due to space constraints, this and other
proofs are given in the extended version of the paper [17].

4 Soundness

In this section, we formulate linearizability for libraries. We also formulate the
soundness theorem, in which we state proof obligations that are necessary to
conclude linearizability.

434 A. Khyzha et al.

Libraries. We assume a set of method names Method, ranged over by m, and
consider a concrete library � : Method ⇀ ((Val×Val) → Com) that maps method
names to commands from Com, which are parametrised by a pair of values from
Val. For a given method name m ∈ dom(�) and values a, v ∈ Val, a command
�(m,a, v) is an implementation of m, which accepts a as a method argument
and either returns v or does not terminate. Such an unusual way of specifying
method’s arguments and return values significantly simplifies further develop-
ment, since it does not require modelling a call stack.

Along with the library � we consider its specification in the form of an abstract
library L ∈ Method ⇀ ((Val × Val) → APCom) implementing a set of methods
dom(L) atomically as abstract primitive commands {L(m,a, v) | m ∈ dom(L)}
parametrised by an argument a and a return value v. Given a method m ∈
Method, we assume that a parametrised abstract primitive command L(m) is
intended as a specification for �(m).

Linearizability. The linearizability assumes a complete isolation between a
library and its client, with interactions limited to passing values of a given data
type as parameters or return values of library methods. Consequently, we are
not interested in internal steps recorded in library computations, but only in
the interactions of the library with its client. We record such interactions using
histories, which are traces including only events call m(a) and ret m(v) that
indicate an invocation of a method m with a parameter a and returning from m
with a return value v, or formally:

h ::= ε | (t, call m(a)) :: h | (t, ret m(v)) :: h.

Given a library �, we generate all finite histories of � by considering N threads
repeatedly invoking library methods in any order and with any possible argu-
ments. The execution of methods is described by semantics of commands from
Sect. 2.

We define a thread pool τ : ThreadID → (idle
 (Com × Val)) to characterise
progress of methods execution in each thread. The case of τ(t) = idle corresponds
to no method running in a thread t. When τ(t) = (C, v), to finish some method
returning v it remains to execute C.

Definition 5. We let H��, σ� =
⋃

n≥0 Hn��, (λt. idle), σ� denote the set of all
possible histories of a library � that start from a state σ, where for a given thread
pool τ , Hn��, τ, σ� is defined as a set of histories such that H0��, τ, σ� � {ε} and:

Hn��, τ, σ� � {((t, call m(a)) :: h) | a ∈ Val ∧ m ∈ dom(�) ∧ τ(t) = idle ∧
∃v. h ∈ Hn−1��, τ [t : (�(m,a, v), v)], σ�}

∪ {h | ∃t, α, C,C ′, σ′, v. τ(t) = (C, v) ∧ 〈C, σ〉 t,α−−−−� 〈C ′, σ′〉 ∧
h ∈ Hn−1��, τ [t : (C ′, v)], σ′�}

∪ {((t, ret m(v)) :: h) | m ∈ dom(�) ∧ τ(t) = (skip, v) ∧
h ∈ Hn−1��, τ [t : idle], σ�}

Thus, we construct the set of all finite histories inductively with all threads
initially idling. At each step of generation, in any idling thread t any method

A Generic Logic for Proving Linearizability 435

m ∈ dom(�) may be called with any argument a and an expected return value v,
which leads to adding a command �(m,a, v) to the thread pool of a thread t. Also,

any thread t, in which τ(t) = (C, v), may do a transition 〈C, σ〉 t,α−−−−� 〈C ′, σ′〉
changing a command in the thread pool and the concrete state. Finally, any
thread that has finished execution of a method’s command (τ(t) = (skip, v))
may become idle by letting τ(t) = idle.

We define Hn�L, T , Σ� analogously and let the set of all histories of
an abstract library L starting from the initial state Σ be H�L, Σ� =⋃

n≥0 Hn�L, (λt. idle), Σ�.

Definition 6. For libraries � and L such that dom(�) = dom(L), we say that L
linearizes � in the states σ and Σ, written (�, σ) � (L, Σ), if H��, σ� ⊆ H�L, Σ�.

That is, an abstract library L linearizes � in the states σ and Σ, if every history
of � can be reproduced by L. The definition is different from the standard one
[14]: we use the result obtained by Gotsman and Yang [10] stating that the
plain subset inclusion on the sets of histories produced by concrete and abstract
libraries is equivalent to the original definition of linearizability.

Soundness w.r.t. linearizability. We now explain proof obligations that we
need to show for every method m of a concrete library � to conclude its lin-
earizability. Particularly, for every thread t, argument a, return value v, and a
command �(m,a, v) we require that there exist assertions P(t,L(m,a, v)) and
Q(t,L(m,a, v)), for which the following Hoare-style specification holds:

�t {P(t,L(m,a, v))} �(m,a, v) {Q(t,L(m,a, v))} (2)

In the specification of �(m,a, v), P(t,L(m,a, v)) and Q(t,L(m,a, v)) are asser-
tions parametrised by a thread t and an abstract command L(m,a, v). We require
that in a thread t of all states satisfying P(t,L(m,a, v)) and Q(t,L(m,a, v)) there
be only tokens todo(L(m,a, v)) and done(L(m,a, v)) respectively:

∀i, t, σ,Σ,Δ, r. (3)

((σ,Σ,Δ) ∈
�P(t,L(m,a, v))�i ∗ r� =⇒ Δ(t) = todo(L(m,a, v)))
∧ ((σ,Σ,Δ) ∈
�Q(t,L(m,a, v))�i ∗ r� =⇒ Δ(t) = done(L(m,a, v)))

Together, (2) and (3) impose a requirement that a concrete and an abstract
method return the same return value v. We also require that the states satisfying
the assertions only differ by a token of a thread t:

∀i, t,A,A′, r,Δ.(σ,Σ,Δ[t : done(A)]) ∈
�Q(t,A)�i ∗ r� ⇐⇒
(σ,Σ,Δ[t : todo(A′)]) ∈
�P(t,A′)�i ∗ r�. (4)

Theorem 7. For given libraries � and L together with states σ and Σ, (�, σ) �
(L, Σ) holds, if dom(�) = dom(L) and (2), (3) and (4) hold for every method m,
thread t and values a and v.

436 A. Khyzha et al.

5 The RGSep-Based Logic

In this section, we demonstrate an instance of the generic proof system that is
capable of handling algorithms with helping. This instance is based on RGSep
[26], which combines rely-guarantee reasoning [15] with separation logic [21].

The main idea of the logic is to partition the state into several thread-local
parts (which can only be accessed by corresponding threads) and the shared part
(which can be accessed by all threads). The partitioning is defined by proofs in
the logic: an assertion in the code of a thread restricts its local state and the
shared state. In addition, the partitioning is dynamic, meaning that resources,
such as a part of a heap or a token, can be moved from the local state of a thread
into the shared state and vice versa. By transferring a token to the shared state,
a thread gives to its environment a permission to change the abstract state. This
allows us to reason about environment helping that thread.

The RGSep-based view monoid. Similarly to DCSL, we assume that states
represent heaps, i.e. that State = AState = Loc ⇀fin Val
{�}, and we denote all
states but a faulting one with StateH = AStateH = Loc ⇀fin Val. We also assume
a standard set of heap-manipulating primitive commands with usual semantics.

We define views as triples consisting of three components: a predicate P and
binary relations R and G. A predicate P ∈ P((StateH × AStateH × Tokens)2)
is a set of pairs (l, s) of local and shared parts of the state, where each part
consists of concrete state, abstract state and tokens. Guarantee G and rely R are
relations from P((State × AState × Tokens)2), which summarise how individual
primitive commands executed by the method’s thread (in case of G) and the
environment (in case of R) may change the shared state. Together guarantee
and rely establish a protocol that views of the method and its environment
respectively must agree on each other’s transitions, which allows us to reason
about every thread separately without considering local state of other threads,
assuming that they follow the protocol. The agreement is expressed with the
help of a well-formedness condition on views of the RGSep-based monoid that
their predicates must be stable under rely, meaning that their predicates take
into account whatever changes their environment can make:

stable(P,R) � ∀l, s, s′. (l, s) ∈ P ∧ (s, s′) ∈ R =⇒ (l, s′) ∈ P.

A predicate that is stable under rely cannot be invalidated by any state transition
from rely. Stable predicates with rely and guarantee relations form the view
monoid with the underlying set of views ViewsRGsep = {(P,R,G) | stable(P,R)}∪
{⊥}, where ⊥ denotes a special inconsistent view with the empty reification. The
reification of other views simply joins shared and local parts of the state:

(P,R,G)� = {(σl • σs, Σl • Σs,Δl
 Δs) | ((σl, Σl,Δl), (σs, Σs,Δs)) ∈ P}.

Let an operation · be defined on states analogously to DCSL. Given predicates
P and P ′, we let P ∗ P ′ be a predicate denoting the pairs of local and shared
states in which the local state can be divided into two substates such that one

A Generic Logic for Proving Linearizability 437

Fig. 4. Satisfaction relation for a fragment of the assertion language VAssn

of them together with the shared state satisfies P and the other together with
the shared state satisfies P ′:

P∗P ′ � {((σl•σ′
l, Σl•Σ′

l ,Δl
Δ′
l), s) | ((σl, Σl,Δl), s) ∈ P∧((σ′

l, Σ
′
l ,Δ

′
l), s) ∈ P ′}

We now define the monoid operation ∗, which we use to compose views of dif-
ferent threads. When composing views (P,R,G) and (P ′, R′, G′) of the parallel
threads, we require predicates of both to be immune to interference by all other
threads and each other. Otherwise, the result is inconsistent:

(P,R,G)∗ (P ′, R′, G′) � if G ⊆ R′ ∧G′ ⊆ R then (P ∗P ′, R∩R′, G∪G′) else ⊥.

That is, we let the composition of views be consistently defined when the state
transitions allowed in a guarantee of one thread are treated as environment tran-
sitions in the other thread, i.e. G ⊆ R′ and G′ ⊆ R. The rely of the composition
is R∩R′, since the predicate P ∗P ′ is guaranteed to be stable only under environ-
ment transitions described by both R and R′. The guarantee of the composition
is G ∪ G′, since other views need to take into account all state transitions either
from G or from G′.

The RGSep-based program logic. We define the view assertion language
VAssn that is a parameter of the proof system. Each view assertion ρ takes form
of a triple (π,R,G), and the syntax for π is:

E ::= a | X | E + E | . . . , where X ∈ LVar, a ∈ Val
π ::= E = E | E �→ E | E �⇒ E | [todo(A)]t | [done(A)]t | π | π ∗ π | ¬π | . . .

Formula π denotes a predicate of a view as defined by a satisfaction relation
|= in Fig. 4. There E �→ E and E �⇒ E denote a concrete and an abstract state
describing singleton heaps. A non-boxed formula π denotes the view with the
local state satisfying π and shared state unrestricted; π denotes the view with
the empty local state and the shared state satisfying π; π ∗π′ the composition of
predicates corresponding to π and π′. The semantics of the rest of connectives

438 A. Khyzha et al.

Fig. 5. Proof outline for a flat combiner of a concurrent increment. Indentation is used
for grouping commands.

is standard. Additionally, for simplicity of presentation of the syntax, we require
that boxed assertions π be not nested (as opposed to preventing that in the
definition).

The other components R and G of a view assertion are sets of rely/guarantee
actions A with the syntax: A ::= π � π′. An action π � π′ denotes a change of
a part of the shared state that satisfies π into one that satisfies π′, while leaving
the rest of the shared state unchanged. We associate with an action π � π′ all
state transitions from the following set:

�π � π′� = {((σs • σ′′
s , Σs • Σ′′

s ,Δs
 Δ′′
s), (σ′

s • σ′′
s , Σ′

s • Σ′′
s ,Δ′

s
 Δ′′
s)) |

∃i. (([], [], []), (σs, Σs,Δs), i) |= π ∧ (([], [], []), (σ′
s, Σ

′
s,Δ

′
s), i) |= π′ }

We give semantics to view assertions with the function �·�· that is defined as
follows:

�(π,R,G)�i � ({(l, s) | (l, s, i) |= π},
⋃

A∈R�A�,
⋃

A∈G�A�).

A Generic Logic for Proving Linearizability 439

X →
� Y � ∃Y ′. X
→ Y ′ ∗ Y �= Y ′

M(t) � true ∗ (&arg[t]
→ ∗ &res[t] →
� nil)

tasktodo(t, a, r) � &arg[t]
→ a ∗ &res[t]
→ nil ∗ [todo(L(inc, a, r))]t ;

taskdone(t, a, r) � &arg[t]
→ a ∗ &res[t]
→ r ∗ r �= nil ∗ [done(L(inc, a, r))]t ;

kinv(V) � &k
→ V ∗ &K V

LI(i, t, a, r) � true ∗ ((t < i ∧ taskdone(t, a, r)) ∨
(t ≥ i ∧ (tasktodo(t, a, r) ∨ taskdone(t, a, r))))

tinv(i) � &arg[i]
→ ∗ &res[i] ∨ tasktodo(i, ,) ∨ taskdone(i, ,)

global � (&L
→ 0 ∗ kinv() ∨ &L →
� 0) ∗ �j∈ThreadID tinv(j) ,

Fig. 6. Auxiliary predicates. �j∈ThreadID tinv(j) denotes tinv(1) ∗ tinv(2) ∗ · ∗ tinv(N)

6 Example

In this section, we demonstrate how to reason about algorithms with helping
using relational views. We choose a simple library � implementing a concurrent
increment and prove its linearizability with the RGSep-based logic.

The concrete library � has one method inc, which increments the value of
a shared counter k by the argument of the method. The specification of � is
given by an abstract library L. The abstract command, provided by L as an
implementation of inc, operates with an abstract counter K as follows (assuming
that K is initialised by zero):

1 L(inc, a, r): < __kabs := __kabs + a; assume(__kabs == r); >

That is, L(inc, a, r) atomically increments a counter and a command
assume(K == r), which terminates only if the return value r chosen at the
invocation equals to the resulting value of K. This corresponds to how we specify
methods’ return values in Sect. 4.

In Fig. 5, we show the pseudo-code of the implementation of a method inc in
a C-style language along with a proof outline. The method �(inc, a, r) takes one
argument, increments a shared counter k by it and returns the increased value of
the counter. Since k is shared among threads, they follow a protocol regulating
the access to the counter. This protocol is based on flat combining [11], which is a
synchronisation technique enabling a parallel execution of sequential operations.

The protocol is the following. When a thread t executes �(inc, a, r), it first
makes the argument of the method visible to other threads by storing it in an
array arg, and lets res[t] = nil to signal to other threads its intention to execute
an increment with that argument. It then spins in the loop on line 8, trying to
write its thread identifier into a variable L with a compare-and-swap (CAS).
Out of all threads spinning in the loop, the one that succeeds in writing into L
becomes a combiner: it performs the increments requested by all threads with
arguments stored in arg and writes the results into corresponding cells of the
array res. The other threads keep spinning and periodically checking the value

440 A. Khyzha et al.

of their cells in res until a non-nil value appears in it, meaning that a combiner
has performed the operation requested and marked it as finished. The protocol
relies on the assumption that nil is a value that is never returned by the method.
Similarly to the specification of the increment method, the implementation in
Fig. 5 ends with a command assume(res[mytid()] = r).

The proof outline features auxiliary assertions defined in Fig. 6. In the asser-
tions we let denote a value or a logical variable whose name is irrelevant. We
assume that each program variable var has a unique location in the heap and
denote it with &var. Values a, r and t are used in the formulas and the code as
constants.

We prove the following specification for �(inc, a, r):

Rt,Gt �t

{
global ∗ M(t)∗

[todo(L(inc, a, r))]t

}
�(inc, a, r)

{
global ∗ M(t)∗

[done(L(inc, a, r))]t

}

In the specification, M(t) asserts the presence of arg[t] and res[t] in the shared
state, and global is an assertion describing the shared state of all the threads.
Thus, the pre- and postcondition of the specification differ only by the kind of
token given to t.

The main idea of the proof is in allowing a thread t to share the ownership of
its token [todo(L(inc, a, r))]t with the other threads. This enables two possibilities
for t. Firstly, t may become a combiner. Then t has a linearization point on line 17
(when the loop index i equals to t). In this case t also helps other concurrent
threads by performing their linearization points on line 17 (when i �= t). The
alternative possibility is that some other thread becomes a combiner and does
a linearization point of t. Thus, the method has a non-fixed linearization point,
as it may occur in the code of a different thread.

We further explain how the tokens are transferred. On line 6 the method
performs the assignment res[mytid()] := nil, signalling to other threads
about a task this thread is performing. At this step, the method transfers its
token [todo(L(inc, a, r))]t to the shared state, as represented by the assertion
true ∗ tasktodo(t, a, r) . In order to take into consideration other threads inter-

fering with t and possibly helping it, here and further we stabilise the assertion
by adding a disjunct taskdone(t, a, r).

If a thread t gets help from other threads, then taskdone(t, a, r) holds, which
implies that res[t] �= nil and t cannot enter the loop on line 8. Otherwise, if t
becomes a combiner, it transfers kinv() from the shared state to the local state
of t to take over the ownership of the counters k and K and thus ensure that
the access to the counter is governed by the mutual exclusion protocol. At each
iteration i of the forall loop, res[i] = nil implies that tasktodo(i, ,) holds,
meaning that there is a token of a thread i in the shared state. Consequently,
on line 17 a thread t may use it to perform a linearization point of i.

The actions defining the guarantee relation Gt of a thread t′ are the following:

1. &arg[t] �→ ∗ &res[t] ��→ nil � &arg[t] �→ a ∗ &res[t] ��→ nil;
2. &arg[t] �→ a ∗ &res[t] ��→ nil � tasktodo(t, a, r);

A Generic Logic for Proving Linearizability 441

3. &L �→ 0 ∗ kinv() � &L �→ t;
4. &L �→ t ∗ tasktodo(T,A,R) � &L �→ t ∗ taskdone(T,A,R)
5. &L �→ t � &L �→ 0 ∗ kinv()
6. taskdone(t, a, r) � &arg[t] �→ a ∗ &res[t] �→ r

Out of them, conditions 2 and 6 specify transfering the token of a thread t to
and from the shared state, and condition 4 describes using the shared token of a
thread T . The rely relation of a thread t is then defined as the union of all actions
from guarantee relations of other threads and an additional action for each thread
t′ ∈ ThreadID \ {t} allowing the client to prepare a thread t′ for a new method
call by giving it a new token: [done(L(inc, A,R))]t′ � [todo(L(inc, A′, R′))]t′ .

7 Related Work

There has been a significant amount of research on methods for proving lineariz-
ability. Due to space constraints, we do not attempt a comprehensive survey
here (see [6]) and only describe the most closely related work.

The existing logics for linearizability that use linearization points differ in
the thread-modular reasoning method used and, hence, in the range of concur-
rent algorithms that they can handle. Our goal in this paper was to propose a
uniform basis for designing such logics and to formalise the method they use for
reasoning about linearizability in a way independent of the particular thread-
modular reasoning method used. We have only shown instantiations of our logic
based on disjoint concurrent separation logic [20] and RGSep [26]. However, we
expect that our logic can also be instantiated with more complex thread-modular
reasoning methods, such as those based on concurrent abstract predicates [4] or
islands and protocols [25].

Our notion of tokens is based on the idea of treating method specifications
as resources when proving atomicity, which has appeared in various guises in
several logics [2,18,26]. Our contribution is to formalise this method of han-
dling linearization points independently from the underlying thread-modular
reasoning method and to formulate the conditions for soundly combining the
two (Definition 2, Sect. 3).

We have presented a logic that unifies the various logics based on lineariza-
tion points with helping. However, much work still remains as this reasoning
method cannot handle all algorithms. Some logics have introduced speculative
linearization points to increase their applicability [18,25]; our approach to help-
ing is closely related to this, and we hope could be extended to speculation. But
there are still examples beyond this form of reasoning: for instance there are no
proofs of the Herlihy-Wing queue [14] using linearization points (with helping
and/or speculation). This algorithm can be shown linearizable using forwards/
backwards simulation [14] and more recently has been shown to only require a
backwards simulation [22]. But integrating this form of simulation with the more
intrincate notions of interference expressible in the Views framework remains an
open problem.

442 A. Khyzha et al.

Another approach to proving linearizability is the aspect-oriented method.
This gives a series of properties of a queue [12] (or a stack [5]) implementation
which imply that the implementation is linearizable. This method been applied
to algorithms that cannot be handled with standard linearization-point-based
methods. However, the aspect-oriented approach requires a custom theorem per
data structure, which limits its applicability.

In this paper we concentrated on linearizability in its original form [14], which
considers only finite computations and, hence, specifies only safety properties of
the library. Linearizability has since been generalised to also specify liveness
properties [9]. Another direction of future work is to generalise our logic to
handle liveness, possibly building on ideas from [19].

When a library is linearizable, one can use its atomic specification instead of
the actual implementation to reason about its clients [8]. Some logics achieve the
same effect without using linearizability, by expressing library specifications as
judgements in the logic rather than as the code of an abstract library [16,23,24].
It is an interesting direction of future work to determine a precise relationship
between this method of specification and linearizability, and to propose a generic
logic unifying the two.

8 Conclusion

We have presented a logic for proving the linearizability of concurrent libraries
that can be instantiated with different methods for thread-modular reasoning.
To this end, we have extended the Views framework [3] to reason about relations
between programs. Our main technical contribution in this regard was to propose
the requirement for axiom soundness (Definition 2, Sect. 3) that ensures a correct
interaction between the treatment of linearization points and the underlying
thread-modular reasoning. We have shown that our logic is powerful enough to
handle concurrent algorithms with challenging features, such as helping. More
generally, our work marks the first step towards unifying the logics for proving
relational properties of concurrent programs.

References

1. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL (2005)

2. Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44202-9 9

3. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL (2013)

4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

5. Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack. In:
POPL, New York, NY, USA (2015)

http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-642-14107-2_24

A Generic Logic for Proving Linearizability 443

6. Dongol, B., Derrick, J.: Verifying linearizability: a comparative survey. arXiv
CoRR, 1410.6268 (2014)

7. Feng, X.: Local rely-guarantee reasoning. In: POPL (2009)
8. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent

objects. Theor. Comput. Sci. 411, 4379 (2010)
9. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: Aceto, L.,

Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 453–465. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22012-8 36

10. Gotsman, A., Yang, H.: Linearizability with ownership transfer. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 256–271. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32940-1 19

11. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: SPAA (2010)

12. Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability proofs.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp.
242–256. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40184-8 18

13. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming (2008)
14. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. ACM TOPLAS 12, 463 (1990)
15. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress

(1983)
16. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,

D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL (2015)

17. Khyzha, A., Gotsman, A., Parkinson, M.: A generic logic for proving linearizability
(extended version). arXiv CoRR, 1609.01171, 2016

18. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: PLDI (2013)

19. Liang, H., Feng, X., Shao, Z.: Compositional verification of termination-preserving
refinement of concurrent programs. In: LICS (2014)

20. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375, 271 (2007)

21. O’Hearn, P., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

22. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 21

23. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 333–358. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46669-8 14

24. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54833-8 9

25. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: POPL (2013)

26. Vafeiadis, V.: Modular fine-grained concurrency verification: Ph.D. Thesis. Tech-
nical report UCAM-CL-TR-726, University of Cambridge (2008)

http://dx.doi.org/10.1007/978-3-642-22012-8_36
http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://dx.doi.org/10.1007/978-3-642-40184-8_18
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-642-31424-7_21
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1007/978-3-642-54833-8_9

Refactoring Refinement Structure
of Event-B Machines

Tsutomu Kobayashi1(B), Fuyuki Ishikawa2, and Shinichi Honiden1,2

1 The University of Tokyo, Tokyo, Japan
{t-kobayashi,honiden}@nii.ac.jp

2 National Institute of Informatics, Tokyo, Japan
f-ishikawa@nii.ac.jp

Abstract. Refinement in formal specifications has received significant
attention as a method to gradually construct a rigorous model. Although
refactoring methods for formal specifications have been proposed, there
are no methods for refactoring of refinement structures in formal speci-
fications. In this paper, we describe a method to restructure refinements
in specifications of Event-B, a formal specification method with supports
for refinement. The core of our method is decomposition of refinements.
Namely, when an abstract Event-B machine A, a concrete machine C
refining A, and a slicing strategy are provided, our method constructs a
consistent intermediate machine B, which refines A and is refined by C.
We show effectiveness of our methods through two case studies on repre-
sentative usages of our method: decomposition of large-scale refinements
and extraction of reusable parts of specifications.

Keywords: Event-B · Refinement · Abstraction · Refactoring ·
Interpolation

1 Introduction

Formal specification methods with refinement mechanisms have been gaining
much interest, because they help developers to do rigorous modeling while less-
ening the burden of modeling and verification. In particular, Event-B [1], which
has a flexible refinement mechanism including support for horizontal refinement,
mitigates the complexity of modeling and verification by distributing it amidst
multiple steps, which form a refinement chain. In modeling in Event-B, develop-
ers construct specifications with a set of machines. After constructing an abstract
machine, they introduce more aspects of the target system by constructing a
new machine with more details and verifying the consistency between the new
machine and the abstract one.

The refinement mechanism of Event-B enables developers to design structures
composed of refinements. In other words, developers can decide aspects of the tar-
get system that are considered in each refinement step. Thus, the design is impor-

This work is partially supported by JSPS KAKENHI Grant Number 26700005.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 444–459, 2016.
DOI: 10.1007/978-3-319-48989-6 27

Refactoring Refinement Structures of Event-B Machines 445

tant for understandability, ease of verification, maintainability, and reusability.
However, refinement structures have not been a target of refactoring.

In this paper, as a foundation to support refinement restructuring, we pro-
pose a method for decomposing refinements. In particular, for given consistent
(i.e. proved) machines MA and MC such that MC refines MA, our method helps
users to construct an intermediate machine MB such that MC refines MB and
MB refines MA. This enables users to decompose a refinement step into several
substeps. The decomposition method can be combined with merging of refine-
ments, which is simpler than decomposition, to restructure refinements.

We show the usefulness of refinement restructuring through two case stud-
ies. The first shows how decomposing large-scale refinements can improve the
maintainability of existing machines. The second shows how to extract parts
of existing machines and reuse them for constructing new machines of another
system that is different from the original system at the first glance.

The remainder of this paper is organized as follows. First, we provide back-
ground on Event-B in Sect. 2. We then describe our proposal for decomposing
(and merging) refinement in Sect. 3. Next, we show two case studies in Sect. 4.
In Sects. 5 and 6, we discuss application of our method and related work, respec-
tively. Finally, we conclude this study in Sect. 7.

2 Background

A model in Event-B is composed of contexts and machines. The static properties
of the target system are specified in contexts, whereas its dynamic properties
are specified in machines as predicates of invariants and events. Machines can
refer to specifications in contexts. The main part of a specification of events
consists of guards and actions. Guards are predicates of necessary conditions for
executing the state transitions of an event. Actions describe the state transitions
of an event with before-after predicates (BAPs), which are relationships between
the before and after states of variables.

For example, a machine ma (Fig. 1) has specifications of variables a and b,
invariant typ a, and events initialisation and evt a. An action is composed
of the variables that are changed by the action and a BAP. In BAPs, the after
states of variables are expressed using variables with primes, such as a′. In the
figure, event evt a increases the values of a and b by 1 and 2, respectively, and
it can be executed if 0 ≤ a.

In modeling in Event-B, new aspects and details are gradually introduced to
a machine through a refinement mechanism. A machine MC can be defined as
a refinement of another machine MA. Here, MC and MA are called a concrete
machine and an abstract machine, respectively.

We use the symbols VA and VC to denote MA’s variables and MC’s variables,
respectively. The invariants in a concrete machine MC can refer to VA in addition
to VC. Those that refer to both variables in VA and those in VC are called gluing
invariants, because they connect the state spaces of two machines.

446 T. Kobayashi et al.

Fig. 1. Abstract machine ma

VC does not need to be a superset of VA. If VA �⊆ VC, some of the variables in
VA are replaced with some of the variables in VC. In such a replacement, devel-
opers also need to provide gluing invariants that refer to the replaced variables
(in VA) and replacing variables (in VC), in order to prove consistency between
an abstract machine and a concrete machine.

Moreover, events in MC may refine events in MA. Concrete events, which
refine events in the abstract machine (abstract events), need to have guards that
are stronger than the guards of abstract events. Also, the actions of concrete
events should simulate the actions of their abstract events.

For instance, suppose that machine mc (Fig. 2)1 is defined as a refinement of
ma (Fig. 1). In mc, a variable a is inherited from ma, variables c, d, e, and f are
newly introduced, and a variable b, which is specified in ma, has disappeared.
The gluing invariant gluinv c1 describes the relationship among b, c, and d.
Event evt c is defined as a concrete event of evt a of ma.

Fig. 2. Concrete machine mc

The refinement mechanism enables two styles of refinement, namely, grad-
ual addition of concrete elements (horizontal refinement) and transformation of
expressions to make them closer to the implementation (vertical refinement).
1 Assume that a function mod2(n) that returns nmodulo 2 is defined in a context.

Refactoring Refinement Structures of Event-B Machines 447

The consistency of the specified machine is represented in the form of
sequents, called proof obligations (POs), generated from the specification. POs
include sequents of the machine’s self-consistency and its consistency with the
abstract machine. Developers confirm consistency by discharging all POs. When
POs cannot be discharged, developers need to modify the specification.

For instance, one of the primary PO types is invariant preservation (written
as evt/inv/INV), which means an invariant inv holds after an event evt occurs.

The rule of PO evt/inv/INV is as follows:2 I, J,H(evt),T (evt) � inv ′,
where I and J are invariants of an abstract machine and a concrete machine,
respectively, H(evt) and T (evt) are respectively the guards and BAPs of event
evt in the concrete machine, and inv ′ is inv with the before-state variables
replaced by after-state variables.

For example, the PO mc/evt c/inv c1/INV is as shown in Fig. 3.

Fig. 3. Invariant preservation of inv c1 by evt c in mc (provable)

3 Approach

3.1 Method Overview

We assume that we have given consistent (proved) machines MA and MC such
that MC refines MA. The goal of our decomposition method is to construct an
intermediate machine MB such that MC refines MB and MB refines MA by using
as much of the original specifications as possible. For this purpose, users give a
slicing criterion as a set of variables VB0, which actually may be given by select-
ing variables in VC. The first step is to use this criterion for syntactic slicing
from MA and MC to construct the initial base MB0. The actual criterion for
slicing VB is extended from VB0 because of consistency constraints. In general,
the result of this first step MB0 may have POs that are not provable. Thus, the
second step adds complementary predicates to MB0 to make a consistent inter-
mediate machine MB. By handling replacement of variables through refinement
and proof obligations, our decomposition method deals with both horizontal
refinement and vertical refinement. Combined with merging of refinements, the
decomposition method is extended as a restructuring method (Sect. 3.4).

2 Actually static predicates (axioms) and predicates of event parameters are also
included in POs. We will omit them for the sake of simplicity.

448 T. Kobayashi et al.

3.2 Step 1 of Decomposing Refinement: Slicing

Finding Additional Variables. If MC refines MA, then MC inherits variables
VA ∩VC from MA. The remaining variables of MA, that is, VA \VC, are replaced
with some of variables in VC \ VA, as described in Sect. 2.

As shown on the left side of Fig. 4, if VA ∩ VC �⊆ VB, then the variables in
(VA ∩ VC) \ VB (= VABC), which is a subset of VA \ VB, is specified in MC.
The variables in VA \ VB are, however, replaced with other variables in MB.
Thus, selecting such a VB makes the refinement “MC refines MB” inconsistent.
Therefore, VB must satisfy VA ∩ VC ⊆ VB. In addition, to take advantage of
predicates in existing machines to construct MB, VB should satisfy VB ⊆ VA∪VC;
otherwise, a user needs to design new variables (VB \ (VA ∪ VC))(= VABC) and
predicates of them. Thus, VB should be as depicted on the right side of Fig. 4.
Hereinafter, we will use the symbols VABC, VABC, VABC, VABC, and VABC to
represent VA \ VB, VB \ VC, VA ∩ VC, VB \ VA, and VC \ VB, respectively.

VA

VB

VC

VABC

VABC

VABC

VA

VABC

VB

VABC VABC

VC

VABC

Fig. 4. Variables of MB : invalid case (left) and valid case (right)

This method assumes that VB0 = VABC ∪ VABC, which is a subset of VC, is
given as an input. This is because it is easy for a user to select the criterion
from VC, without considering which variables in VA must be replaced. To con-
struct MB, the remaining variables VB \VB0(= VABC) need to be identified. The
remainder of this section describes a heuristic for automatically finding VABC.

To replace abstract variables with concrete ones in a refining machine, a user
needs to provide gluing invariants about the relationships between the two sets
of variables. In the case of constructing MB as a machine that refines MA, the
set of newly introduced variables VABC is a subset of VC \VA. Therefore, some of
the gluing invariants in MC may not be specified in MB. MB’s gluing invariants
can describe the relationship between VABC and VABC, but cannot describe the
relationship between VABC and VABC. Hence, VABC can be obtained as
VABC = {v ∈ VA \ VC|∃i ∈ ginv(MC).v ∈ (var(i) ∩ VA) ∧ (var(i) ∩ VC) ⊆ VABC}
, where ginv(M) represents the gluing invariants in a machine M and var(p)
represents the variables that occur in predicate p.

For example, let us assume that a and e are selected to be specified in mb
(VB0 = VB ∩VC = {a, e}). In mc, a gluing invariant gluinv1: b = c+d describes
replacement of b (of ma) with c and d (of mc). By contrast, in mb, gluinv1 cannot
describe replacement of b, since neither c nor d is selected to be specified in mb.
Therefore, VABC = {b}; namely mb should specify b in addition to a and e.

Refactoring Refinement Structures of Event-B Machines 449

Finding Certain Specifications through Slicing. For a predicate p and a
set of variables V , we say p is expressible by V if and only if var(p) ⊆ V .

Predicates in MA and MC that are expressible by VB are necessary (but not
always sufficient, as described later) in MB, because they certainly express the
properties of VB, which should be consistent with MA and MC. Therefore, in
this step, invariants, guards, and BAPs in MA and MC that are expressible by
VB are specified in MB.3 For example, mb0 (Fig. 5) is constructed by collecting
predicates that are expressible by VB = {a, b, e} from ma and mc.

Fig. 5. Sliced machine mb0

Note that an action mc/evt c/act c5, which assigns a value to e(∈ VB), is
not specified in mb0, because f(∈ VABC) occurs in its BAP.

We implemented this step as a plugin tool of Event-B’s IDE, named Slice-

AndMerge
4. Users of the tool can select VB0 with checkboxes and obtain a

sliced machine MB0. The tool also supports analysis of dependencies between
invariants and variables, and merging of refinements (described in Sect. 3.4).

3.3 Step 2 of Decomposing Refinement: Complementing

Possible Lack of Consistency in MB0. Although all POs of MA and MC are
discharged, MB0, which is constructed from fragments of the machines, is not
ensured to be consistent. For example, some invariants in MB0 (from MA and
MC) may not be preserved by events in MB0, because the specification of MB0’s
events may be only part of the specification of MA and MC’s events.

For instance, the PO shown in Fig. 3 (mc/evt c/inv c1/INV), which has a
succedent specified with the after-states of a and e, is provable because predicates
including grd c2 and act c5 are in the antecedent.

Although the preservation of the same invariant inv c1 by the event evt b
in mb0 (mb0/evt b/inv c1/INV) should also hold, this is not provable because
predicates grd c2 and act c5, which are essential for proving that inv c1 is
preserved, are not included in the antecedent (Fig. 6), as they are predicates
about variable f (∈ VABC).
3 BAPs that are expressible by VB ∪V ′

B are also specified, where V ′
B represents the set

of after-state variables of VB.
4 Available at http://tkoba.jp/software/slice and merge/.

http://tkoba.jp/software/slice_and_merge/

450 T. Kobayashi et al.

Fig. 6. Invariant preservation of inv c1 by evt b in mb0 (unprovable)

Complementary Predicates for Consistency. Since MA and MC are con-
sistent, they have predicates that are essential for the consistency.

When such predicates are expressible by VB, the consistency of MB can be
guaranteed by including them in MB. Obviously in simple cases, this can be
realized by slicing (Sect. 3.2).

However, as described above, sometimes MB0 is inconsistent because MB0,
which is obtained by a syntactic predicate-level slicing, sometimes lacks some of
these predicates. In such cases, predicates that are essential for discharging POs
need to be added to MB0, so that the resulting MB is consistent. Moreover, such
predicates need to be expressible by VB. We call such additional predicates com-
plementary predicates (CPs). Predicates that are essential for the consistency of
original machines can be found from the specifications or the proof of consistency
of MA and MC, and they can be “translated” into VB as CPs. Some CPs may
work as gluing invariants. We discuss how often CPs are required and how hard
finding them is in Sect. 5. The rest of this section describes ways to do this.

Finding CPs Using Rule-based Analysis. In some cases, part of a predicate
is expressible by VB but the remainder of it is not; thus, the predicate cannot
be obtained through predicate-level slicing. Simple heuristics can be used to
find parts of such predicates that are expressible by VB. For instance, a pred-
icate 0 ≤ a can be found by extracting a part that is expressible by VB from
mc/evt c/grd c1 (0 ≤ a ∧ 0 ≤ c). A possible implementation of this is to
convert predicates into CNF and extract clauses that are expressible by VB.

Finding CPs from Existing Proofs. The essence of the consistency of MA

and MC can be found by examining the proof of consistency and making an
inference.

For example, the proof of mc/evt c/inv c1/INV can be summarized in terms
of goals (succedents) as shown on the left side of Fig. 7. The initial goal GLc0:
mod2(a′ + e′) = 0 ⇒ a′ < 1 can be derived because GLc1: mod2(a′ + e′) �= 0
can be derived from hypotheses including a guard grd c2.

A proof with the same root goal is possible using the vocabulary of mb if
the goal GLb1: mod2(a′ + e′) �= 0 can be derived from an event-local predicate
(guard or BAP) p that is expressible by VB. GLb1 can be transformed into GLb3:
mod2(a + e′) = 0 by act c1. We need to find p such that GLb3 can be derived
from p, because there is no predicate about e′ in mb0. A solution is to view GLb3
itself as p and add an action such as act NEW : e :| mod2(a + e′) = 0 to mb0
(the right side of Fig. 7).

Refactoring Refinement Structures of Event-B Machines 451

GLc0: mod2 (a + e)=0 ⇒ a < 1 (modified inv c1)

GLc1: mod2 (a + e) = 0

GLc2: mod2 ((a + 1) + (f + 2)) = 0 (by act c{1,5})

GLc3: mod2 (a + f + 1) = 0

GLc4: mod2 (a + f)=0

GLc5: (by grd c2)

GLb0: mod2 (a + e)=0 ⇒ a < 1 (modified inv c1)

GLb1: mod2 (a + e) = 0

GLb2: mod2 ((a + 1) + e) = 0 (by act c1)

GLb3: mod2 (a + e)=0

GLb4: (by act NEW)

Fig. 7. Proof of mc/evt c/inv c1/INV (left) and mb/evt b/inv c1/INV (right)

Finding CPs as Craig Interpolant. The essence of consistency of MA and
MC as expressed by VB can often be found as a Craig interpolant of the proof
of consistency.

Let φC: AntC � SucC be a sequent of the proof of consistency in MC. A
sequent φ′

C: Ant′
C � Suc′

BC such that V(Suc′
BC) ⊆ VB can be inferred by using

inference rules for sequent calculus such as negation rules, where V(X) denotes
the set of variables in X.

An interpolant of φ′
C I can be obtained. According to the Craig’s interpola-

tion theorem, I � Suc′
BC is provable. Moreover, V(I) ⊆ V(Ant′

C)∩V(Suc′
BC) ⊆

VB. Thus, I ′ corresponds to an embodiment of the essence of φ′
C in VB.

Let φB0: AntB0 � SucB0 be a (unprovable) sequent of consistency in MB0.
If another sequent φ′

B0: Ant′
B0 � Suc′

BC can be inferred from φB0 by using
inference rules, then φB0 becomes provable by adding a predicate I to MB0,
because (I ∧ Ant′

B0) � Suc′
BC.

For example, the sequent shown in Fig. 8 can be inferred from the sequent
of mc/evt c/inv c1/INV (Fig. 3). Variables that occur in the succedent of the
sequent are {a, a′, e′} ⊂ VB∪V ′

B. The predicate mod2(a+e′) = 0 is an interpolant
of the sequent, and it is expressible by VB.

By adding the predicate to mb0 as an action act NEW : e :| mod2(a+e′) = 0,
the sequent mb/evt b/inv c1/INV becomes provable, as shown in Fig. 9 (because
(BAP of act c1) ∧ (BAP of act NEW) ⇒ Modified inv c1).

Note that if an action is obtained from the sequent of mc/evt c/inv c1/INV
(Fig. 3) (i.e. action is obtained without applying inference rules), it becomes
act NEW nondet : a, e :| mod2(a′ + e′) �= 0, which is more non-deterministic
than necessary (act NEW).

Fig. 8. A sequent inferred from mc/evt c/inv c1/INV

452 T. Kobayashi et al.

Fig. 9. Invariant preservation of inv1 by evt b in mb0 with interpolant (provable)

3.4 Restructuring Refinement

We call a sequence of machines [Mn,Mn+1, . . . Mm−1,Mm] refinement chain
(RC) if Mi+1 refines Mi for every natural number i such that n ≤ i < m.

In addition to decomposing, we can merge refinements as follows: When there
is a RC [M0,M1,M2], merging M1 and M2 construct a new machine M12 such
that M12 refines M0. M12’s variables, invariants, and events are composed of the
unions of the variables, invariants, and events of M1 and M2.

Refinements can be restructured by merging and decomposing refinements.
Suppose that a RC [Mn, · · · ,Mm] is given. First, machines (Mi)mi=n+1 are
merged as M ′

m, which directly refines Mn. Then, a RC [Mn,M ′
m] is decom-

posed by constructing new machines (M̃i)li=k+1 that reflect the user’s preference
of aspects in terms of VB0. As a result, the refinement is restructured into a
RC [Mn = M̃k, M̃k+1, . . . , M̃l−1, M̃l = M ′

m]. As a result of restructuring refine-
ments, the understandability of a specification increases because the meaning of
each refinement step can be changed as the user likes. In Sect. 4.2, we describe
an application of restructuring method to extract parts of an existing model for
reuse.

4 Case Studies

4.1 Case Study 1: Decomposing Large Refinement Steps

This case study tried to determine whether we can improve maintainability of
existing machines by decomposing refinements. One of the authors of this paper
decomposed refinements in a large-scale Event-B model with several intermedi-
ate machines by following our method and verified their consistency. The target
model was a specification about an autonomous satellite flight formation sys-
tem [12], and it was constructed by a computer scientist who had over four years
of experience in modeling in Event-B. The target system was a controller for
two spacecraft (leader and follower), which run autonomously while maintaining
two-layered communication, namely a higher-layer mode communication and a
lower-layer phase communication.

The model has a RC of five steps [m0, m1, . . . , m5]. The second refinement
([m1, m2]) and the third refinement ([m2, m3]) were selected to be decomposed,
because they were larger than the other steps. The row of m2 in Table 1a and
the row of m3 in Table 1b show statistics of m2 and m3, respectively. The NV

Refactoring Refinement Structures of Event-B Machines 453

and NI
5 in Table 1 respectively list the numbers of variables and invariants of

the models. In m2, seven variables and 46 invariants were introduced to specify
mode transitions and communications in the spacecraft. In m3, two variables have
disappeared, ten variables were introduced (NV is “−2+10”), and 72 invariants
were introduced to specify the phase transitions in modes of spacecraft.

Table 1. Results of case study 1

We selected slicing criteria VB0 to obtain the sliced machines. After that,
we found CPs with the approach described in Sect. 3.3. Both of the refinements
decomposed with four intermediate machines (m2 1, . . ., m2 4, m3 1, . . ., and
m3 4). Thus, the machines form a RC [m1, m2 1, . . ., m2 4, m3 1, . . ., m3 4]. The
most concrete intermediate machines m2 4 and m3 4 were semantically the same6

as the corresponding original machines m2 and m3. We selected slicing criteria so
that the slicing would distribute aspects in the original machines into small and
meaningful sets of concepts. For example, the properties and behavior regarding
communication failures, the follower’s incoming buffer for mode messages, the
leader’s outgoing buffer, and the acknowledgement message were specified and
verified in m2 1, m2 2, m2 3, and m2 4, respectively.

The results of decomposition are as shown in Table 1. The number of intro-
duced invariants was reduced significantly through the decomposition, and
the intermediate machines were more comprehensible than the originals. The
replacement of the variables in m3 was also split into two steps. In both m3 1 and
m3 2, one variable has disappeared (NV of both machines is “−1+3”).

We needed to add CPs to the intermediate machines except the most concrete
ones. The NCP in the Table 1 list the numbers of added CPs. Similar events in
MB0, such as the events of entering phase 1, phase 2, and phase 3, often had
the same kind of inconsistency and thus required the same kind of CPs. The
numbers of unique CPs (NUCP) show the actual burden of finding CPs.

5 For the sake of simplicity we did not count invariants for typing.
6 There were differences in the actual specifications, because several invariants were

moved in order to abstract the intermediate machines and the refinement structures
of the events were changed.

454 T. Kobayashi et al.

The NPO and NMPO in Table 1 respectively list the numbers of all POs and
the numbers of POs that were manually discharged, including those of POs
related to CPs. Most of POs are usually discharged by automatic provers of
the IDE for Event-B. Thus the number of manually discharged POs (NMPO in
Table 1) corresponds to the actual amount of effort for verification. The results
show that our method decreased the labor of verification. For example, rows of m3
and “sum of m3 *” in Table 1b show that the number of manually discharged POs
decreased from 175 to 147 through decomposition, despite that the number of all
POs increased from 1127 to 1159. This appears to be because direct inclusion of
CPs added lemmas to the set of hypotheses. Our future work includes a detailed
analysis of this effect.

4.2 Case Study 2: Extracting Reusable Parts of Machines

This case study7 tried to determine whether we can extract reusable parts of
existing machines by using restructuring (Sect. 3.4).

We used a model of a “location access controller” (from [1, Chap. 16]) as the
original model MO with a RC [MO1, . . . ,MO5] (Fig. 10). The model is about a
controller of doors between locations according to persons’ permission to enter.

Fig. 10. Aspects introduced in each step of original model MO(Aspects that should be
extracted from MO to construct MN are underlined and those that should be omitted
from MO are slanted.)

We constructed a new model MN by reusing parts of MO. Aspects shown
in Fig. 11 are specified in MN.

First, we constructed a machine Mmrg by merging all the machines of MO.
Next, by slicing Mmrg, we extracted aspects that were common to MO and MN.
Thus, we extracted specifications related to authentication using communication
between card readers and a controller (from MO4 and MO5), persons (from MO1),
locations (from MO1), and red lights (from MO3 and MO5). In other words, we
omitted aspects that would not be included in MN; i.e., we omitted authoriza-
tion of persons to locations (from MO1), physical connection of locations (from
7 Models of this case study are at http://tkoba.jp/publications/fm2016/

http://tkoba.jp/publications/fm2016/

Refactoring Refinement Structures of Event-B Machines 455

Fig. 11. Aspects of new model MN(Aspects that should be extracted from MO to
construct MN are underlined and those that should be omitted from MO are slanted.)

MO2), doors (from MO3), and green lights (from MO3 and MO5), in addition to
movement of persons (from MO1), which is the primary aspect of MO.

As a result, we succeeded in automatically extracting the reusable parts from
Mmrg. In other words, we did not need to add CPs to make the reusable parts
consistent. After that, we successfully augmented the reusable parts with speci-
fications that were unique to MN. We also succeeded in discharging all POs.

Note that not only omitted aspects in MO but also extracted aspects were
scattered over several refinement steps in the original specification. Therefore,
simply copying a single step such as MO3 and modifying it is not an effective
way of reusing such aspects. In contrast, we succeeded in extracting aspects in
a cross-refinement manner by slicing after merging refinement steps.

5 Discussion

5.1 Discussion on Methods

Deriving CPs. All POs originate from specifications. Hypotheses essential to
discharge POs are also inferred from specifications. We call predicates that raise
a PO φ raisers of φ and predicates that provide hypotheses for discharging φ
hypothesis providers of φ.

Suppose that φ is a PO in a concrete machine. If the raisers of φ are express-
ible by VB, the hypotheses required to discharge φ should also be expressible by
VB. However, hypotheses providers are not always specified with vocabulary of
VB. Sometimes, a PO φ that is expressible by VB is discharged with hypotheses
including a hypothesis h that is expressible by VB, and h is implied by hypothe-
ses providers P that are expressible by VC but not expressible by VB. In other
words, h is not directly specified in the machine but rather implicitly specified
by P in this case. In such cases, φ is raised but cannot be discharged in the
intermediate machine since the intermediate machine lacks some of hypotheses
providers for φ. Thus, users need to add CPs that are expressible by VB and able
to imply hypothesis h.

However, developers tend to directly specify hypotheses in practice, because
hypotheses raisers for POs are usually important properties of a target system;
thus, directly specifying hypotheses to discharge the POs is usually a meaningful
way of describing the system. Therefore, users do not need to add CPs frequently.

456 T. Kobayashi et al.

For instance, we did not need to add CPs in the second case study (Sect. 4.2),
because all of the hypotheses providers were specified in VB for all of the POs
that were expressible by VB.

Specifying a hypothesis provider in the form h∧predicate to imply hypothesis
h is another common case. Although users need to add CPs, they can be found
with simple rules. In other cases, CPs can be found by reviewing the proofs for
the original machines, as described in Sect. 3.3. This task is easy for users who
are familiar with Event-B.

Therefore, we conclude that finding CPs is neither frequently required nor
difficult. As a primary part of our future work, however, we are planning to con-
struct systematic and complete methods for deriving CPs so that developers can
easily derive consistent intermediate machines. We will investigate relationships
between CPs and Craig interpolation of the completed proof further.

Selecting Slicing Criteria. Users of our decomposition method can select a
slicing criterion, namely variables that are specified in the intermediate machine.
Users may consider aspects of the intermediate machine and select some of the
variables of the concrete machine, or they may consider properties that should
be verified in the intermediate machine and select some of the invariants of the
concrete machine. In the latter case, the slicing criterion is a set of variables that
are required to specify selected invariants. Users can select an arbitrary VB0 so
long as VA ∩ VC ⊆ VB ⊆ VA ∪ VC.

Adding New Concepts of Abstraction. A user can add new concepts of
abstraction to the machines, by decomposing refinement after adding new spec-
ifications for abstraction to the concrete machine.

One way is adding new variables. For example in Fig. 2, by creating an inter-
mediate machine that have {g} as VB0 after adding a variable g and an invariant
g = a + e and other predicates, a user can construct an intermediate machine
for specification of variables b and g instead of variables b, a and e.

The other way is adding new events. Assume that a concrete machine has sev-
eral events E that have common guards and actions. By selecting variables that
occur in common predicates in E as VB0, a user can construct an intermediate
machine with an abstract event, which is refined by all events of E.

These appear to be useful for restructuring refinement of existing models.

5.2 Discussion on Applications

Improvement of Maintainability by Decomposition. In our first case
study (Sect. 4.1), we decomposed large refinements into smaller ones. The pri-
mary benefit of reducing size of specifications is the support of maintaining
machines. According to a study conducted in industries [11], activities for for-
mal specifications’ maintenance include impact analysis, refactoring identifica-
tion, and validation. Our decomposition method makes such activities easier
because it shrinks the size of the state space and the number of predicates and
reveals implicit properties of concrete machines as CPs. In particular, reducing

Refactoring Refinement Structures of Event-B Machines 457

size of specifications can significantly reduce the cost of verification [9] in mainte-
nance. Thus, our decomposition method improves maintainability of each single
refinement step. Our future work includes evaluation of trade-off between this
and the maintainability of the whole model.

Large Refinement Steps. Large refinement steps such as ones used in our first
case study (Sect. 4.1) are common. Developers design refinements on the basis of
properties that should be verified or subjects that should be considered in each
step. Usually, such properties or subjects are about multiple aspects of the target
system. Therefore, including many aspects in one refinement step may seem
natural for developers when they construct machines and are in fact common,
despite that smaller refinements are easier to comprehend. Thus, we believe our
decomposition method is effective for most existing Event-B machines.

Effectiveness of Systematic Extraction of Reusable Parts. In our second
case study (Sect. 4.2), we automatically extracted reusable parts of an existing
model. Manually extracting such parts is not impossible, namely developers can
extract such parts by examining several machines of the original model and
copy-and-pasting. However, the number of predicates that should be examined
is large. In addition, such predicates are usually scattered over several machines.
Therefore, manual examination is tedious and error-prone. Our method makes
this process more systematic (and sometimes automatic).

Feasibility of Automatic Extraction of Reusable Parts. In our second
case study (Sect. 4.2), we extracted aspects of “authentication using communi-
cation between card readers and a controller” as reusable parts of the original
machines. In the original machines, these aspects were introduced through sev-
eral refinement steps and it seemed that they were dependent on other parts.
However, they were actually independent of other parts, and we succeeded in
extracting them in an automatic manner. We often see this kind of independence
of parts embedded in machines. Our method is an automatic extraction of such
parts. Although users sometimes need to add CPs, most of the predicates can
be found with rules as we described in this section.

6 Related Work

Decomposition of Event-B machines (in “shared variable” style [2] and “shared
event” style [3]) is one of primary mechanisms to deal with complexity of
modeling in Event-B. The aim of these methods is decomposing a large sin-
gle machine into several components. Conversely, our goal is decomposing and
merging refinement structure of multiple machines.

There have been many studies on refactoring software models for the purpose
of organizing and understanding of them. Refactoring rules for UML/OCL [5,8],
ASM [14], Alloy [7], and Object-Z [10,11] have been proposed. Most of these rules
are similar to popular refactoring rules such as move and modification, as well
as rules for parameterization of expressions and introduction of inheritance and
polymorphism. The goal of our work is similar to theirs, but we take a different

458 T. Kobayashi et al.

approach based on refinement, namely by manipulating refinement structures
according to criteria of the vocabulary of a machine.

From the point of view of refactoring of verifications, study by Whiteside [13]
has a similar goal to ours. Their study manipulates proofs in proof assistants
by providing a proof script framework that handles proof trees in a hierarchical
way. One of their primary contributions is refactoring of proof scripts, including
manipulating expressions of proof scripts, changing styles of proof, and gen-
eralizing tactics. Our approach, namely refinement refactoring considering the
vocabulary of a module, is different from theirs.

A number of significant studies on formal methods have used Craig interpo-
lation of logic formulas, which we found to be important for finding CPs. One of
the primary applications of interpolation is counterexample-guided abstraction
refinement [4] in model checking, which constructs a series of interpolants from
the spurious behaviors of an abstract model and uses them to refine the model.
One study [6] used interpolation to automatically construct a behavior model of
a system from its goal model. The approach described therein updates a behav-
ior model by using interpolants of counterexamples and goals. We believe we can
use Craig interpolation in a similar way to systematically find CPs in future.

7 Conclusion and Future Work

We proposed a method to restructure the refinements of Event-B machines
according to refactoring criterion in terms of the vocabulary of a new machine.
Our method finds necessary variables and predicates from the original machines
and helps to find complementary predicates to make the new machine consistent.
It helps users to construct an abstraction of an existing machine that focuses on
certain aspects of the original machine. By using our method, we split up refine-
ments in large-scale Event-B machines and succeeded in constructing small and
consistent machines. Moreover, our methods automatically extracted reusable
parts of an existing model. We conclude that our method can help users to do
refactoring of refinements in Event-B. Our primary future work will be a trial
to enhance our method for finding complementary predicates to guarantee that
generated intermediate machine is consistent with original machines.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

2. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to Event-B. Fundamenta Informaticae 77(1–2), 1–28
(2007)

3. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00255-7 2

http://dx.doi.org/10.1007/978-3-642-00255-7_2
http://dx.doi.org/10.1007/978-3-642-00255-7_2

Refactoring Refinement Structures of Event-B Machines 459

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

5. Correa, A., Werner, C., Barros, M.: An empirical study of the impact of OCL
smells and refactorings on the understandability of OCL specifications. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 76–90. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75209-7 6

6. Degiovanni, R., Alrajeh, D., Aguirre, N., Uchitel, S.: Automated goal operationali-
sation based on interpolation and SAT solving. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering, pp. 129–139. ACM, New York (2014)

7. Gheyi, R., Borba, P.: Refactoring alloy specifications. Electron. Notes Theoret.
Comput. Sci. 95, 227–243 (2004)

8. Marković, S., Baar, T.: Refactoring OCL annotated UML class diagrams. In:
Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 280–294.
Springer, Heidelberg (2005). doi:10.1007/11557432 21

9. Matichuk, D., Murray, T., Andronick, J., Jeffery, R., Klein, G., Staples, M.: Empir-
ical Study Towards a Leading Indicator for Cost of Formal Software Verification.
In: Proceedings of the 37th International Conference on Software Engineering. pp.
722–732. ACM, New York (2015)

10. McComb, T., Smith, G.: A minimal set of refactoring rules for object-Z. In: Barthe,
G., Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 170–184. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-68863-1 11

11. Stepney, S., Polack, F., Toyn, I.: Refactoring in maintenance and development of
Z specifications and proofs. ENTCS 70(3), 50–69 (2002)

12. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T.: The formal derivation
of mode logic for autonomous satellite flight formation. In: Koornneef, F., Gulijk,
C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 29–43. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-24255-2 4

13. Whiteside, I.J.: Refactoring Proofs. Ph.D. thesis, The University of Edinburgh
(2013)

14. Yaghoubi Shahir, H., Farahbod, R., Glässer, U.: Refactoring abstract state machine
models. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves,
S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 345–348. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-30885-7 28

http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-540-75209-7_6
http://dx.doi.org/10.1007/11557432_21
http://dx.doi.org/10.1007/978-3-540-68863-1_11
http://dx.doi.org/10.1007/978-3-319-24255-2_4
http://dx.doi.org/10.1007/978-3-642-30885-7_28

Towards Concolic Testing for Hybrid Systems

Pingfan Kong1(B), Yi Li2, Xiaohong Chen1,3, Jun Sun1(B), Meng Sun2,
and Jingyi Wang1

1 Singapore University of Technology and Design, Singapore, Singapore
{pingfan kong,sunjun}@sutd.edu.sg

2 LMAM & DI, School of Mathematical Sciences, Peking University, Beijing, China
3 University of Illinois at Urbana-Champaign, Champaign, USA

Abstract. Hybrid systems exhibit both continuous and discrete behav-
ior. Analyzing hybrid systems is known to be hard. Inspired by the idea
of concolic testing (of programs), we investigate whether we can com-
bine random sampling and symbolic execution in order to effectively
verify hybrid systems. We identify a sufficient condition under which
such a combination is more effective than random sampling. Further-
more, we analyze different strategies of combining random sampling and
symbolic execution and propose an algorithm which allows us to dynam-
ically switch between them so as to reduce the overall cost. Our method
has been implemented as a web-based checker named HyChecker.
HyChecker has been evaluated with benchmark hybrid systems and
a water treatment system in order to test its effectiveness.

1 Introduction

Hybrid systems are ever more relevant these days with the rapid development
of the so-called cyber-physical systems and Internet of Things. Like traditional
software, hybrid systems rely on carefully crafted software to operate correctly.
Unlike traditional software, the control software in hybrid systems must inter-
act with a continuous environment through sensing and actuating. Analyzing
hybrid systems automatically is highly nontrivial. With a reasonably precise
model of the entire system (e.g., in the form of a hybrid automaton), analyzing
its behaviors (e.g., answering the question whether the system would satisfy a
safety property) is challenging due to multiple reasons. Firstly, the dynamics
of the environment, often composed of ordinary differential equations (ODE),
is hard to reason about. For instance, there may not be closed form mathe-
matical solutions for certain ODE. Secondly, unlike in the setting of traditional
model checking problems, the variables in the hybrid models are often of real
type and the (mode) transitions are often guarded with propositional formu-
las over real variables. There have been theoretical studies on the complexity
of analyzing hybrid systems. For instance, it has been proved that non-trivial
verification and control problems on non-trivial nonlinear hybrid systems are
undecidable [19,22]. As a result, researchers have proposed to either work on
approximate models of hybrid systems [18,23], or adopt approximate methods
and tools on the hybrid system models [5,6,17].
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 460–478, 2016.
DOI: 10.1007/978-3-319-48989-6 28

Towards Concolic Testing for Hybrid Systems 461

One line of research (which we believe is relevant) is on analyzing the
behaviors of hybrid systems through controlled sampling. One example of those
sampling-based methods is [17]. The idea is to approximate the behavior of
a hybrid system probabilistically in the form of discrete time Markov chains
(DTMC). The complex dynamics in hybrid automata model is approximated
using numeric differential equations solvers, and the mode transitions are approx-
imated by probabilistic transition distributions in Markov chains. Afterwards,
methods like hypothesis testing can be applied to the Markov chain to verify,
probabilistically, properties against the original hybrid model.

While sampling-based methods like [17] are typically more scalable, there are
limitations. Arguably, the most important one is that random sampling does not
work well when the system contains rare events, i.e., events which by definition
are unlikely to occur through random sampling. When systems get complicated,
every event becomes rarer in a way. Existing remedies for this problem include
importance sampling [6] and importance splitting [25], which work by essentially
increasing the probability of the rare events. Both approaches are however useful
only in certain limited circumstances.

One potential remedy for the problem is concolic testing, which is a tech-
nique proposed for analyzing programs [15,36]. The idea is: if random sampling
fails to fire certain transitions in certain state (i.e., a potential rare event), we
apply symbolic execution to generate the specific inputs which would trigger the
transition or to show that the transition is infeasible. In this work, we investi-
gate the possibility of applying concolic testing to hybrid systems. In particular,
we study two fundamental questions. One is under what condition combining
random sampling and symbolic execution is beneficial, i.e., given a property, is
it guaranteed to find a counterexample with a smaller number of samples? The
other is, among different strategies of combining random sampling and symbolic
execution (i.e., when and how to apply symbolic execution), how do we define
and identify the more effective strategies? We remark that the latter question is
particularly relevant to the analysis of hybrid systems as symbolic execution for
hybrid automata is often very time consuming and thus a good strategy should
perhaps be: applying symbolic execution as minimum as possible. Based on the
answers, we then design an algorithm which adopts a strategy to dynamically
switch between random sampling and symbolic execution. Intuitively, it works
by continuously estimating whether certain transition is rare or not and applying
symbolic execution only if the transition is estimated to be rarer than certain
threshold. Furthermore, the threshold is calculated according to a cost model
which estimates the cost of symbolic execution using certain constraint solver.
Our method has been implemented as a self-contained web-based checker named
HyChecker and evaluated with benchmark hybrid systems as well as a water
treatment system in order to test its effectiveness.

The remainders of the paper are organized as follows. In Sect. 2, we define
a DTMC interpretation of hybrid system models. In Sect. 3, we view symbolic
execution as a form of importance sampling and establish a sufficient condition
for importance sampling to be beneficial. In Sect. 4, we discuss strategies on

462 P. Kong et al.

combining random sampling and symbolic execution. In Sect. 5, we present our
implementation and evaluate its effectiveness. In Sect. 6, we conclude and review
related work.

2 A Probabilistic View

In this section, we present a probabilistic interpretation of hybrid system models,
which provides the foundation for defining and comparing the effectiveness of
random sampling, symbolic execution or their combinations. In this work, we
assume that hybrid systems are modelled as hybrid automata [20]. The basic
idea of hybrid automata is to model different discrete states in a hybrid system
as different modes and use differential equations to describe how variables in
the system evolve through time in the modes. For simplicity, we assume the
differential equations are in the form of ordinary differential equations (ODEs).

Definition 1. A hybrid automaton is a tuple H = (Q,V, q0, I, {fq}q∈Q,
{g(q,p)}{q,p}⊆Q) such that Q is a finite set of modes; V is a finite set of state
variables; q0 ∈ Q is the initial mode; I ⊆ R

n is a set of initial values of the state
variables; fq for any q ∈ Q is an ODE describing how variables in V evolve
through time at mode q; and g(q,p) for any q, p ∈ Q is a guard condition on
transiting from mode q to mode p.

For simplicity, we often write q
g−→ p to denote g(q,p). For example, the hybrid

automaton shown on the left of Fig. 1 models an underdamped oscillatory sys-
tem [16], such as a spring-mass or a simple pendulum with a detector that
raises an alarm whenever the displacement x exceeds the threshold a. The ini-
tial displacement x(0) = 0, while its tendency to deviate from the equilibrium
x′(0) ∈ [0, 2π]. An alarm is raised when the system enters mode qe, which is
reachable only through the transition q0

x>a−−−→ qe.
Next, we define the semantics of a hybrid automaton in the form of an infinite-

state labeled transition system (LTS).

q0

x(0) = 0
x′(0) ∈ [0, 2π]

qe

x > a

Initialization
0 second

1 second

2 seconds

ε

q0 qe

q0q0 q0qe

p1

1 −
p
1

p2

1 −
p
2

Fig. 1. An oscillatory system: the ODE at q0 is x′′ + x′ + 4π2x = 0 and the one at qe
is x′ = 0

Towards Concolic Testing for Hybrid Systems 463

Definition 2. Let H = (Q,V, q0, I, {fq}q∈Q, {g(p,q)}{p,q}⊆Q) be a hybrid
automaton. The semantics of H, written as sem(H), is an LTS (S, S0, T,→),
where S = {(q, v) | q ∈ Q and v : V → R

n} is the set of all (concrete) states;
S0 = {(q0, v) | v ∈ I} is the set of initial states; T = R+ ∪ {ε} is the set of
transition labels, where ε is a label for all discrete jumps; and →⊆ S × T × S

contains two sets of transitions. One is time transitions, i.e., (q, v) t−→ (q, u) if
there exists a solution ξ to the differential equation dV/dt = fq(V) such that
ξ(0) = v and ξ(t) = u. The other is jumps, i.e., (q, v) ε−→ (p, v) where there exists
a transition q

g−→ p in H such that v satisfies g.

A finite run ρ of H is a finite sequence of transitions of sem(H). Since we
are investigating random sampling and symbolic execution (both of which are
limited to finite runs), we focus on runs of bounded length. For simplicity, we
assume that all finite runs can be extended to an infinite non-Zeno run (such
that time elapses unboundedly [20]). It is straightforward to see that there always
exists a time unit Δt > 0 such that at most one jump (i.e., ε-transition) occurs
with Δt time units. In the following, we simply assume that Δt is defined as one
time unit. As a result, by observing the system mode at the end of every time
unit, we can obtain a trace of H as π = q0q1 . . . qk, i.e., the sequence of modes
observed during the run. We remark that if there is no jump during the time
unit, the same mode is observed.

In the following, we focus on reachability analysis of certain modes [17], i.e.,
certain modes in H are considered negative and we would like to check if any
of them is reachable. We remark that the verification problem of properties
expressed in BLTL formula [27] can be reduced to reachability analysis [17].
For instance, in the example shown in Fig. 1, the safety property is reduced to
whether the negative mode qe is reachable or not (within certain time). A trace is
positive if it contains no negative mode. It is negative (a.k.a. a counterexample)
if it contains at least one negative mode.

Next, we introduce a Markov chain interpretation of H, adopted from [17].
Without loss of generality, we assume a uniform probability distribution on all
initial states. This uniform distribution naturally induces a probability distrib-
ution over the traces of the system. Recall that a transition q

g−→ p of H can be
fired only when g is satisfied. Suppose the system is in the state (q, v) initially
and becomes (q, vt) after a time transition of t. If vt satisfies g, the transition
is enabled. We denote the set of all points in time within (0, 1) when the mode
transition q

g−→ p is enabled as

Tq(v, g) = {t ∈ (0, 1) | θq(v, t) satisfies g}, (1)

where θq(v, ·) is the solution of the ODE at mode q with the initial value v.
If the transition is fired at some time point t ∈ Tq(v, g), the following state is
observed after 1 time unit: (p, θp(vt, 1 − t)) = (p, θp(θq(v, t), 1 − t)). That is,
the new mode is p and the variables evolve according to the ODE at mode q
for t time unit and then according to the ODE at mode p for 1 − t time unit.
For simplicity, we write vq,p(v, t) to denote the variable state reached from state

464 P. Kong et al.

(q, v) by firing transition q
g−→ p at time t, i.e., vq,p(v, t) = θp(θq(v, t), 1 − t).

Furthermore, we write vq,p(v) to denote the set of all variable states reached
from state (q, v) by firing transition q

g−→ p at any time the transition is enabled,
i.e., vq,p(v) = {vq,p(v, t) | t ∈ Tq(v, g)}.

By our assumption on the uniform random sampling, there is a uniform
distribution over Tq(v, g). This uniform distribution, denoted as U(Tq(v, g)),
naturally induces the following probability distribution over vq,p(v)

P(Y) =
∫

t∈Tq(v,g)

[vq,p(v, t) ∈ Y]
‖Tq(v, g)‖ dt (2)

for any Y ⊆ vq,p(v), where [·] is the Iverson bracket [24] and ‖·‖ is the Lebesgue
measure [29]. Intuitively, if initially the system is in the state (q, v), we obtain a
probability distribution over all possible states after taking the transition.

Next, we generalize the result so as to compare the probability of taking
different transitions from different initial states. We assume a probability space
(X,P) where X ⊆ R

n, and the automaton H starts from a state (q, v) with v ∼
P. Let q

gi−→ pi where i ∈ {1, . . . , m} be the transitions from q. Given an initial
state (q, v), the time window in which the transition to pi is enabled is Tq(v, gi).
We assume that the system does not favor certain transitions and the probability
of taking a transition is proportional to the size of the time window in which
that transition is enabled. In other words, the probability of taking the transition
q

gi−→ pi from state (q, v) is defined as pq,pi
(v) = ‖Tq(v, gi)‖/

∑m
j=1 ‖Tq(v, gj)‖.

According to the law of total probability, we have

pq,pi
=

∫

v∈X

‖Tq(v, gi)‖∑m
j=1 ‖Tq(v, gj)‖dP(v). (3)

Furthermore, assume the transition q
gi−→ pi is fired. Given the condition that v

is a fixed v0, we know the conditional probability distribution over vq,p(v0), for
any Y ⊆ vq,p(v0), is defined as:

P(Y | v = v0) =
∫

t∈Tq(v0,g)

[vq,p(v0, t) ∈ Y]
‖Tq(v0, g)‖ dt.

By the law of total probability, for any Y ⊆ vq,p(X), we have

P(Y) =
∫

v∈X

P(Y | v)dP(v)

=
∫

v∈X

∫

t∈Tq(v,g)

[vq,p(v, t) ∈ Y]
‖Tq(v, g)‖ dtdP(v)

=
∫

v∈X

∫ 1

0

[t ∈ Tq(v, g) ∧ vq,p(v, t) ∈ Y]
‖Tq(v, g)‖ dtdP(v). (4)

Equations (3) and (4) effectively identify a discrete-time Markov chain (DTMC).

Towards Concolic Testing for Hybrid Systems 465

Definition 3. Let H = (Q,V, q0, I, {fq}q∈Q, {g(p,q)}{p,q}⊆Q) be a hybrid
automaton, and K be a bound of trace length. The DTMC associated with H
is a tuple MH = (S, u0, P r) where a node in S is of the form (q,X,PX) where
q ∈ Q is a mode, X is the set of values for V and PX is a probability dis-
tribution of the values in X; the root u0 = (q0, I,UI) where UI is the uni-
form distribution over I; and for any (q,X,PX) ∈ S, the transition probability
Pr((q,X,PX), (p, vq,pi

(X),Pi)), where the probability distribution Pi is defined
as in Eq. (4).

We remark that MH abstracts away the complicated ODE in H and replaces
the guarded transitions with probabilistic transitions. A path of MH with non-
zero probability always corresponds to a trace of H [17]. The partition of positive
and negative traces in H naturally induces a partition of positive and negative
paths in MH. Notice that MH is by construction in the form of a tree. The
degree of the tree is bounded by the number of modes in H, and its depth is
bounded by K, i.e., the bound on trace length.

For instance, following the above discussion, we can construct the DTMC
of the oscillatory system shown on the right of Fig. 1. The root node is s0 =
(q0, I,UI) where I = {0} × [0, 2π] and UI is the uniform distribution over I.
There is one outgoing transition q0 → qe at mode q0. Thus s0 has two children
nodes s1 and s2, where s1 represents automaton taking the transition q0 → qe

in the first second, and s2 represents automaton staying in mode q0. For this
simple example, we can analytically compute the transition probability, e.g., p1
and p2 shown in Fig. 1. In general it is difficult.

3 Symbolic Execution as a Form of Importance Sampling

In this section, we analyze the effectiveness of random sampling and symbolic
execution based on the DTMC interpretation of H developed in the previous
section. In particular, we review symbolic execution as a form of importance
sampling [39], which intuitively speaking alters the probability distribution of
MH in certain way so that a negative path is more likely to be sampled. In
the following, we first define a way of measuring the effectiveness of random
sampling, symbolic execution and possibly other sampling methods.

3.1 Bayesian Inference

Recall that traces of H are partitioned into either positive trace, denoted as
Π+, or negative traces, denoted as Π−. The probability of the system exhibit-
ing a negative trace is called the error probability and is denoted as θ = P(Π−).
Intuitively, after observing some sample traces (obtained either through random
sampling or symbolic execution), we gain certain information on θ. Formally, we
investigate the following questions: (1) how do we claim that the error proba-
bility θ is bounded by certain tolerance level δ and (2) how do we measure the
confidence of the claim?

466 P. Kong et al.

We answer the questions based on statistical inference. Intuitively, if we see
many negative trace samples, we conclude with certain confidence that the sys-
tem is likely to have an error probability that is larger than the tolerance level δ.
If we identify few or even no negative traces, we conclude with certain confidence
that the system is likely to have an error probability within the tolerance level
δ. Formally, let random variable X denote whether a sample trace is positive or
negative, i.e., P(X = 1) is the error probability θ. Let B(N, θ) denote the bino-
mial distribution with parameters N ∈ N and θ ∈ [0, 1]. We have X ∼ B(1, θ).
Given N independent and identically distributed sample traces, the number of
negative traces is: m = X1 + X2 + . . . XN ∼ B(N, θ). Initially, before witnessing
any sample trace, we may only estimate the value of θ based on historical data.
We thus assume a prior knowledge of θ in the form of a prior distribution f(θ).
If no historical data are available, we set the prior distribution to be a non-
informative one. In the following, for simplicity, we adopt the non-informative
prior distribution f(θ) ≡ 1 where θ ∈ [0, 1].

According to the Bayesian law, the post distribution of θ after witnessing m
negative samples and n = N − m positive samples is defined as follows.

f(θ | n,m) =
f(θ)f(n,m | θ)

∫ 1

0

f(θ)f(n,m | θ)dθ

=
θm(1 − θ)n

B(m + 1, n + 1)

where B(· , ·) is the Beta function [3]. The confidence we have about the claim
that θ < δ, denoted as c(n,m, δ), can be defined naturally as the probability of
θ < δ conditioned on observing the negative and positive samples. Formally,

c(n,m, δ) =
∫ δ

0

f(θ | n,m)dθ =
B(δ;m + 1, n + 1)
B(m + 1, n + 1)

where B(δ ; · , ·) is the incomplete Beta function [3].
The following proposition shows that our definition of confidence is consistent

with our intuition, i.e., the more positive samples we observe, the more confidence
we have.

Proposition 1. For any tolerance 0 < δ < 1, c(n, 0, δ) → 1 as n → ∞; and for
any m > 0, c(n,m, δ) → 1 as n/m → ∞.

Thus, if we have dominantly sufficient positive samples, we would always be able
to reach a target confidence level. In practice, however, we are always limited
in the budget or time, we thus would like to reach a certain confidence level
at a low cost. For instance, instead of random sampling, we can apply idea
like importance sampling [39] so as to increase the probability of sampling a
negative sample and hope to gain the same confidence level with fewer samples.
Recall that we can view symbolic execution as a particular way of importance
sampling. Compared with random sampling, it essentially alters the probabilistic
distribution of the traces so that more probability is associated with those traces
following a given path. In the following, we investigate the idea of importance

Towards Concolic Testing for Hybrid Systems 467

sampling in our setting and establish a condition which must be satisfied so that
importance sampling (including symbolic execution) must satisfy in order to be
more effective in achieving the same confidence level.

3.2 Importance Sampling

Importance sampling is a widely-used technique in Monte Carlo method in order
to approximate the expectation of a probability distribution. The intuition is
after observing many positive samples, we should have more confidence in the
system’s correctness, if the samples are generated by a method that is more likely
to sample a negative one. We remark that the notion of importance sampling
we adopt here has nothing to do with the expectation approximation [39], but
rather shares the same idea with the importance sampling in the Monte Carlo
method.

Recall that θ is the error probability. The probability of a specific sampling
method finding a negative trace is a function of θ, denoted as ϕ(θ). We refer to
ϕ(θ) as the effectiveness function of the sampling method. Furthermore, ϕ(θ)
is assumed to be continuous and strictly increasing on [0, 1] with ϕ(0) = 0
and ϕ(1) = 1. Given a specific sampling method (e.g., random sampling or
symbolic execution), we may be able to approximate its effectiveness through
empirical study. In certain special cases, we might identify a closed form of the
effectiveness function for a specific sampling method. For instance, in the case of
random sampling, the effectiveness function ϕ(θ) = θ. A sampling method with
effectiveness ϕ(θ) is said to be more effective than another with effectiveness
φ(θ), if ϕ(θ) > φ(θ) for all θ. Two sampling methods are called incomparable if
no one is more effective than the other.

In the following, we show that a more effective sampling method leads to
a higher confidence level. Without loss of generality, we focus on effectiveness
functions which can be expressed in the form of a power function ϕ(θ) = θα

where θ ∈ [0, 1] for 0 < α ≤ 1. The reason for the assumption is that effectiveness
functions in this form can be compared easily.

Following the discussion in Sect. 3.1, suppose that the effectiveness of a
testing method is ϕ(θ) = θα and we have witnessed m negative samples and
n = N − m positive samples. The post distribution can be calculated as follows.

f(θ | n,m) =
θαm(1 − θα)n

∫ 1

0

θαm(1 − θα)ndθ

(5)

Accordingly, the confidence is defined as follows.

cϕ(n,m, δ) =
∫ δ

0

f(θ | n,m)dθ =

∫ δ

0

θαm(1 − θα)ndθ

∫ 1

0

θαm(1 − θα)ndθ

. (6)

468 P. Kong et al.

The following theorem then establishes that a more effective sampling method
would always result in more confidence.

Theorem 1. Let ϕ(θ) = θα and ψ(θ) = θβ be the effectiveness function of two
testing methods. If 1 ≥ α > β > 0, then ϕ(θ) ≤ ψ(θ) for all θ ∈ [0, 1], and
cϕ(n,m, δ) ≤ cψ(n,m, δ) for all n,m ∈ N and δ ∈ (0, 1).
�
The (rather involved) proof is presented in [28]. This theorem endorses our intu-
ition that we should have more confidence in the systems’ correctness when
observing many positive samples, if the samples are generated by a method like
symbolic execution (with a bias on negative samples). In general we cannot com-
pare the confidence of two incomparable sampling methods. We remark that this
result has not been formally proved before and it serves the foundation for the
approach we propose next.

Based on the theorem, in order to apply symbolic execution to achieve better
confidence than applying random sampling, we should apply it such that it is
more likely to sample a negative trace. There are multiple different strategies
on how/when to apply symbolic execution. For instance, we could symbolically
execute a path which ends with a negative mode, or a part of the path (e.g., we
solve for input values which are required to trigger the first few transitions of a
path leading to a negative mode, if we have reasons to believe that only those
transitions are unlikely to be fired through random sampling), or even simply
symbolically execute a path which has not been visited before if all existing sam-
ples are positive. In the next section, we discuss how to compare these different
strategies based on cost and propose a cost-effect algorithm.

4 Sampling Strategies

Recall that our objective is to check whether there is a trace which visits a
negative mode. Theorem 1 certainly does not imply we should abandon random
sampling. The simple reason is that it ignores the issue of time cost. In general,
the cost of obtaining a negative trace through sampling (either random sampling
or symbolic execution) is: c/pr where c is the cost of obtaining one sample and
pr is the probability of the sample being a negative trace. In the case of random
sampling, c is often low and pr is also likely low, especially so if the negative traces
all contain certain rare event. In the case of symbolic execution, c is likely high
since we need to solve a path condition to obtain a sample, whereas pr is likely
high. Thus, in order to choose between random sampling and symbolic execution,
we would like to know their time cost, i.e., c and pr. While knowing the cost
of obtaining one sample through random sampling is relatively straightforward,
knowing the cost c of symbolic execution is highly non-trivial. In this section,
we assume there is a way of estimating that and propose an algorithm based on
the assumption. In Sect. 5, we estimate c empirically and show that even a rough
estimation serves a good basis for choosing the right strategy. We can calculate
pr based on MH. However, constructing MH is infeasible and thus we propose
to approximate MH at runtime.

Towards Concolic Testing for Hybrid Systems 469

4.1 Probability Estimation

Initially, since we have no idea on the probability of obtaining a negative trace,
we apply wishful thinking and start with random sampling, hoping that a neg-
ative trace will be sampled. If a negative trace is indeed sampled, we are done.
Otherwise, the traces that have been sampled effectively identify a subgraph of
MH, denoted as Msub, which contains only modes and transitions visited by the
sample traces. Without any clue on the transition probability between modes
not in Msub, it is infeasible for us to estimate pr (i.e., the probability of reaching
a negative mode). It is clear however that in order to reach a negative mode,
we must sample in a way such that Msub is expanded with unvisited modes.
Thus, in the following, we focus on finding a strategy which is cost-effective in
discovering new modes instead.

For each mode u in Msub where there is an unvisited child mode v, we have
the choice of either trying to reach v from u through more random sampling
or through symbolic execution (i.e., solving the path condition). In theory, the
choice is to be resolved as follows: random sampling if ct/q(u) < cs and symbolic
execution if ct/q(u) ≥ cs, where ct is the cost of generating a random sample;
cs is the cost of applying symbolic execution to generate a sample visiting an
unvisited child of u in Msub; and q(u) is the probability of finding a new mode
from u, i.e., q(u) =

∑
v∈V \V0

puv. Intuitively, for random sampling, the expected
number of samples to find a new mode is 1/q(u) and thus the expected cost
of using random sampling to discover a new mode is ct/q(u). Unfortunately,
knowing q(u) and Msub exactly is expensive. The former is the subject of recent
research on model counting and probabilistic symbolic execution [9,11,12,32],
and the latter has been studied in [4]. Thus, in this work, we develop techniques
to estimate their values.

In our approach, we actively estimate the probability of q(u) (for each u in
Msub) from historical observation through Bayesian inference, by recording how
many times we sampled u. Assume q = q(u) has a prior distribution f(q). Let A
denote the event that an unvisited child v remains unvisited after one sampling,
and Ā denote the event that v becomes visited afterwards. Then,

f(q | A) =
f(q)f(A | q)

∫ 1

0

f(q)f(A | q)dq

=
qf(q)

∫ 1

0

qf(q)dq

∝ qf(q),

and similarly: f(q | Ā) ∝ (1 − q)f(q).
Suppose that mode u has been sampled for N times and for m out of N

times, we end up with a child which has been visited previously. As a result,
n = N − m is the number of times we ended up with an unvisited child. We can
compute the post distribution f(q) ∝ (1− q)mqn and the expectation as follows.

E(q) =

∫ 1

0

q(1 − q)mqndq

∫ 1

0

(1 − q)mqndq

=
n + 1

m + n + 2
.

470 P. Kong et al.

Thus, we estimate q(u) as (n+1)/(m+n+2). Intuitively, the bigger m is, the less
likely that an unvisited mode is going to be sampled through random sampling.

Next, we discuss how to apply symbolic execution in this setting. There are
multiple strategies on how to apply symbolic execution to construct a sample
for visiting v. For instance, we could solve a path condition from an initial mode
to v so that it will surely result in a trace visiting v (if the path condition
is satisfiable). Alternatively, we could take a sample trace which visits u and
apply symbolic execution to see whether the trace can be altered to visit v after
visiting u by letting a different amount of time elapsing at mode u. That is,
assume that (u,X) is a concrete state of sem(H) visited by a sample trace,
where X is a valuation of V . We take the state (u,X) as the starting point
and apply symbolic execution to solve a one-step path condition so that v is
visited from state (u,X). This is meaningful for hybrid automata because, for
every step, by letting a different amount of time elapsing, we may result in firing
a different transition and therefore reaching a different mode. We remark that
if solving the one-step path condition has no solution, it does not necessarily
mean that v is unreachable from u. Nonetheless, we argue that this strategy is
justified as, according to Theorem 1, such a sampling strategy would be more
effective than random sampling. To distinguish these two strategies, we refer to
the former as global concolic sampling and the latter local concolic sampling.
The choice of strategy depends on cs. We estimate cs for particular solvers and
systems in Sect. 5 and choose the right strategy accordingly.

4.2 Concolic Sampling

Based on the theoretical discussion presented above, we then present our sam-
pling algorithm, which we call concolic sampling. The details are shown in
Algorithm 1. The input is a hybrid automaton modeling a hybrid system, where
some modes are identified as negative ones. The aim is to identify a trace which
visits a negative mode or otherwise report that there is certain probabilistic guar-
antee on their absence. We remark that we skip the part on how the probabilistic
guarantee is computed and refer the readers to [17] for details. We rather focus
on our contribution on combining random sampling and symbolic execution for
better counterexample identification in the following.

We maintain the set of sample traces as Π in the algorithm. Based on Π, we
can construct the above-mentioned subgraph Msub of MH systematically. Next,
for each node u in Msub which potentially has unvisited children, we maintain
two numbers m and n as discussed above, in order to estimate the probability
of q(u). If according to our strategy, there is still some u such that it might be
cheaper to discover a new child mode through random sampling, we proceed
by generating a random sample using the algorithm presented in [17], which is
shown as Algorithm 2.

We briefly introduce how Algorithm2 works in the following. In a nutshell,
the algorithm is designed to sample a run π according to an approximation of
the probability distribution of MH. The main idea is to use the Monte Carlo
method to approximate the measure of time windows ‖Tq(v, g)‖. Recall that

Towards Concolic Testing for Hybrid Systems 471

Algorithm 1. Concolic Sampling
1 Let Π be the set of sampled runs, initialized to the empty set;
2 Let Msub be the subgraph of M, initialized to the root node;
3 repeat
4 Set u = arg minu min (ct/E(q(u)), cs);
5 if ct/q(u) < cs then
6 Invoke Random Sampling to generate a run π;

7 else
8 Apply symbolic execution to obtain a sample π visiting a new child of u;

9 if π visits a negative mode then
10 Present π as a counterexample and terminate;

11 if π visits an undiscovered mode then
12 nu := nu + 1;

13 else
14 mu := mu + 1;

15 Add π into Π and add u to Msub;

16 until time out ;

Algorithm 2. Random Sampling
Input: A hybrid automaton H and a state 〈q, v〉
Result: A successive state 〈p, u〉

1 Sample time points t1, · · · , tJ uniformly from [0, 1];

2 foreach outgoing transition q
gi−→ qi do

3 Set Ti := {tj | Φq(tj , v) |= gi},

4 Choose a transition q
gi−→ qi with probability ‖Ti‖/

∑
i ‖Ti‖;

5 Sample a time point t uniformly from Ti;
6 Set u := Φqi(1 − t, Φq(t, v)) and p := qi;
7 Return 〈p, u〉;

Tq(v, g) = {t ∈ (0, 1) | θq(v, t) satisfies g}. Therefore the measure ‖Tq(v, g)‖ is
the mean of [θq(v, τ) |= g], where the random variable τ ∼ U(0, 1). According to
the law of large numbers [30], the sample mean almost surely converges to the
expectation. Thus we have

∑n
i=1[θq(v, τi) |= g]

n

a.s.−−→ ‖Tq(v, gj)‖ as n → ∞,

where τ1, τ2, . . . , τn
i.i.d.∼ τ . To generate a K-step run, Algorithm2 works by

generating one random step at a time. In particular, after each time unit, at line
4, firstly a set of time points are uniformly generated. By testing how often each
transition from the current mode is enabled at these time points, we estimate
the transition probability in MH. At line 7, we sample a transition according to

472 P. Kong et al.

the estimated probability and generate a step. This procedure finishes when a
run which spans K time units is generated.

If random sampling is unlikely to be cost-effective in discovering a new mode
according to our strategy, symbolic execution is employed at line 7 in Algorithm1
to generate a sample to cover a new node in MH. Among all the nodes in Msub,
we identify the one which would require the minimum cost to discover a new
child according to our estimation cs, encode the corresponding path condition
and apply an existing constraint solver that supports ODE (i.e., dReal [14]) to
generate a corresponding run. Once we obtain a new run π at line 8, we check
whether it is a counterexample. If it is, we report and terminate at line 10.
Otherwise, we repeat the same procedure until it times out.

5 Evaluation

We implemented our approach in a self-contained toolkit called HyChecker,
available online at [2]. HyChecker is implemented with 1575 lines of Python
codes (excluding external libraries we used) and is built with a web interface.
HyChecker relies on the dReal constraint solver [14] for symbolic execution.
In the following, we evaluate HyChecker in order to answer the following
research question: does our strategy on combining random sampling and sym-
bolic execution (resulting from our theoretical analysis) allow us to identify rare
counterexamples more efficiently?

Our test subjects include three benchmark hybrid systems which we gather
from previous publications as well as a simplified real-world water treatment
system.

– Thermodynamic system. We first test our method on a room heating system
from [10]. The system has n rooms and m ≤ n heaters which are used to
tune the rooms’ temperature. The temperature of a room is affected by the
environment temperature and also by whether a heater is warming the room.
The system therefore aims to maintain the rooms’ temperature within certain
comfortable range by moving around and turning on and off the heaters. We
consider in the experiment such a system with three rooms and two heaters.
We verify the same property as in [17], i.e., whether the two heaters will be
moved to other rooms in the first five days.

– Navigation system. Our second test subject is the navigation system from [10].
This system contains a grid of cells, where each cell is associated with some
particular velocity. Whenever a floating object moves from one cell to the
other, it changes its acceleration rate according to the velocity in that cell. If
the object leaves the grid, the velocity is the one of the closest cell. We check
whether an object in the grid will leave its initial cell and will not enter a
dangerous cell, within six minutes.

– Traffic system. Our third model is from the long standing research on modeling
traffic and examining causes of traffic jams and car crashes. We use the ODE
in [34] to describe the dynamics of a vehicle. We consider in the experiment a
circular road with n = 5 cars on it. We are interested whether there could be

Towards Concolic Testing for Hybrid Systems 473

a potential traffic accident in the closed system, and whether there could be
a potential traffic jam.

– SWaT system. Lastly, we tested our method on a simplified real-world sys-
tem model. The Secure Water Testbed (SWaT) is a raw water purification
laboratory located at SUTD [38]. SWaT is a complicated system involving a
series of water treatments like ultrafiltration, chemical dosing, dechlorination
through an ultraviolet system. We build a hybrid automaton model of SWaT
based on the control program in the programmable logic control (PLC) in the
system. The modes are defined based on the discrete states of the actuators
(e.g., motorized valves and motorized pumps). These actuators are controlled
by the PLC. There are in total 23 actuators, which results in many modes.
By focusing on the hydraulic process in the system only, we build a hybrid
automaton with 2721 modes. We skip the details of the model due to the lim-
ited space here. The readers are referred to [1] for details. The property we
verify is that the water level in the backwash tank must not be too high or too
low (otherwise, the system needs to be shut down), with some extreme initial
setting (e.g., the water level in the tank is close to be too low) to analyze the
system safety.

Estimating Cost of Symbolic Execution. In order to apply Algorithm1 with the
right strategy, we need to estimate cs. The underlying question is how efficient
a constraint solver can check the satisfiability of a given path condition. We
remark that it is a challenging research problem and perhaps deserves a separate
research project by itself. There are a dozen of various factors that determines
how a solver performs in solving a given constraint, including the number of
variables, the number of operators, the number of differential equations, the
length of witnesses (if there is any), etc. Even on the same problem, different
solvers have different performance due to different search strategies, ways of
pruning and reducing state space, etc. [26,31]. All these facts make a precise
estimation of efficiency of symbolic solvers extremely difficult.

In this work, following previous work on this topic [4], we estimate cs as
follows. First, we construct a sequence of increasingly more complicated random
constraints (composed of constraints on ODE as well as ordinary constraints,
which we obtain from examples in dReal). We then measure the time needed to
solve them using dReal one-by-one. Based on the results, we observe that the
dominant factor is the length of the formula and thus heuristically decide cs to be
a function of the length of constraints. Next, we apply a function fitting method
to obtain a function for predicting cs. The function we obtained is exp(1.73l −
1.65)−1 where l is the length of the formula, which suggests that the solving time
is exponential in the length of the formula. It implies that dReal has problem
solving path conditions containing two or more steps, which in turn means that
our choice of strategy should be the local concolic sampling. We remark that this
is unlikely a precise estimation. Nonetheless, as we show below, even a rough
estimation would be useful in guiding when and how to do symbolic execution.

474 P. Kong et al.

Table 1. Experiments results

Random Dynamic Global Local (our strategy)

Thermodynamic system result ct-eg found pass pass pass ct-eg found

time(s) 340.4 600 600 600 41.25

#samples 13K 22K n/a 134 551

Navigation system result ct-eg found pass pass ct-eg found

time(s) 91.7 600 600 4.33

#samples 354 n/a 4 5

Traffic system result pass pass pass ct-eg found

time(s) 600 600 600 28.86

#samples 1240 n/a 2 2

SWaT system result ct-eg found pass pass ct-eg found

time(s) 102.4 600 600 64.6

#samples 169 n/a 24 68

Experiment Results. Table 1 shows the experiment results. All experiment results
are obtained in Ubuntu Linux 14.04 on a machine with an Intel(R) Core(TM)
i5-4950, running with one 3.30 GHz CPU core (no parallel optimization), 6M
cache and 12 GB RAM. We set a timeout of 10 min for each experiment, i.e., if
no counterexample is identified after 10 min, the property has passed the test.
Each experiment is repeated for 10 times and we report the average time. All
details on the experiments are at [1].

We compare four approaches in order to show the effectiveness of our cho-
sen strategy. The first is the random sampling approach proposed in [17]. The
results are shown in column random. Note that there are two results for the
thermodynamic system. This is because due to the randomness in the approach,
the results are not always consistent (e.g., in one experiment, a counterexample
is found, whereas none is found in another). The second approach is the concolic
testing approach in [36] (i.e., applying random testing once and applying sym-
bolic execution to visit the alternative path in the last branch and so on). The
results are shown in column dynamic. The last two columns report the result
of applying global concolic sampling and local concolic sampling respectively.

We have the following observations based on the results. First, among the
four approaches, local concolic testing is able to spot counterexamples more
efficiently in all cases. Compared with random sampling, the number of samples
explored by local concolic sampling is significantly smaller. This confirms the
result of the theoretical analysis in previous sections. Second, symbolic execution
for hybrid systems are clearly constrained by the limited capability of existing
hybrid constraint solvers like dReal. For all four cases, both concolic testing and
global concolic sampling time out whilst waiting for dReal to solve the first path
condition. This is because the path condition (composed of constraints from
multiple steps) is complex and dReal takes a lot of time trying to solve it. The
only difference is that while concolic testing got stuck after the first sample,
global concolic sampling got stuck after it has randomly sampled a few traces
and switched to symbolic execution. On the contrary, local concolic sampling

Towards Concolic Testing for Hybrid Systems 475

uses dReal to solve a one-step path condition each time and is able to smartly
switch between random sampling and symbolic execution, and eventually found
a counterexample. Third, the experiment results suggest that the formula that
we applied for estimating cs turned out to be an under-approximation, i.e., the
actual time cost is often much larger. If we modify the function to return a much
larger cost for solving a path composed of two or more steps, global concolic
sampling would be equivalent to random sampling as symbolic execution would
never be selected due to its high cost.

6 Conclusion and Related Works

In this work, we investigated the effectiveness of different sampling methods (i.e.,
random sampling and symbolic execution) for hybrid systems. We established
theoretical results on comparing their effectiveness and we developed an app-
roach for combining random sampling and symbolic executions in a way which
is provably cost-effective.

In the following, we discuss the related work, in addition to those discussed
already. This work is inspired by [7], which initialized the discussion on the
efficiency of random testing. Our work aims to combine random sampling and
symbolic execution to identify rare counterexamples efficiently. It is thus closely
related to work on handling rare events in the setting of statistical model check-
ing [5,6,25]. In [5], the authors set up a theoretical framework using coupling
theory and developed an efficient sampling method that guarantees a variance
reduction and provides a confidence interval. In [6] the authors proposed the first
importance sampling method for CTMC to provide a true confidence interval.
In [25] the authors motivated the use of importance splitting to estimate the
probability of a rare property. Our work is different as we complement sampling
with symbolic execution to identify rare events efficiently.

This work borrows idea from work on combining program testing with sym-
bolic execution (a.k.a. dynamic symbolic execution or concolic testing). In [15],
the authors proposed a way of combining program testing with symbolic execu-
tion to achieve better test coverage. Random testing is first applied to explore
program behaviors, after which symbolic execution is used to direct the test
towards different program branches. Similar ideas later have been developed
in [8,33,36,37]. Our work is different in two ways. One is that we target hybrid
systems in work, which has different characteristics from ordinary programs.
One of them is that symbolic execution of hybrid automata is considerable more
expensive, which motivated us to find ways of justifying the use of symbolic
execution. The other is that, based on the probabilistic abstraction of hybrid
models, we are able to formally compare the cost of random sampling against
symbolic execution to develop cost-effective sampling strategies. We remark that
the same idea can be applied to concolic testing of programs as well.

HyChecker is a tool for analyzing hybrid systems and thus it is related to
tools/systems on analyzing hybrid systems. In [35], the authors developed a the-
orem prover for hybrid systems. Users are required to use differential dynamic

476 P. Kong et al.

logic to model hybrid systems. Afterwards, the prover can be used interactively
to find a sound and complete proof of certain properties of the system. It has
been shown that the prover works for safety critical systems like aircrafts [35].
HyChecker is different as it is fully automatic. dReach [13] is a recent tool
developed for verifying hybrid systems. It is based on the SMT solver dReal [14]
developed by the same authors. dReach focuses on bounded δ-complete reacha-
bility analysis. It provides a relatively easy-to-use interface for modeling hybrid
systems and verifies whether a system is δ-safe under given safety demands. We
observe since dReach attempts to solve every path in a hybrid automaton, its
performance suffers when the system becomes more complicated. HyChecker
relies on dReal and tries to improve dReach by combining random sampling
to avoid solving many of the paths. HyTech [21] is one of the earliest tools on
verifying hybrid systems. It is limited to linear hybrid automata.

Acknowledgement. The project is supported by the NRF project IGDSi1305012
in SUTD and by the National Natural Science Foundation of China under grant no.
61532019, 61202069 and 61272160.

References

1. http://sav.sutd.edu.sg/?page id=2803
2. http://sav.sutd.edu.sg/SMC/
3. Abramowitz, M.: Handbook of Mathematical Functions, With Formulas, Graphs,

and Mathematical Tables. Dover Publications, New York (1974). Incorporated
4. Aziz, M.A., Wassal, A.G., Darwish, N.M.: A machine learning technique for hard-

ness estimation of QFBV SMT problems. In: 10th International Workshop on Sat-
isfiability Modulo Theories (SMT), pp. 57–66 (2012)

5. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for sta-
tistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 331–346. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5 23

6. Barbot, B., Haddad, S., Picaronny, C., et al.: Importance sampling for model check-
ing of continuous time markov chains. In: SIMUL, pp. 30–35 (2012)

7. Böhme, M., Paul, S.: On the efficiency of automated testing. In: 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE-22),
pp. 632–642 (2014)

8. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pp. 209–224 (2008)

9. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and
value estimation for probabilistic programs. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 320–334. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 26

10. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24743-2 22

11. Filieri, A., Frias, M.F., Păsăreanu, C.S., Visser, W.: Model counting for complex
data structures. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232,
pp. 222–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23404-5 15

http://sav.sutd.edu.sg/?page_id=2803
http://sav.sutd.edu.sg/SMC/
http://dx.doi.org/10.1007/978-3-642-28756-5_23
http://dx.doi.org/10.1007/978-3-662-46681-0_26
http://dx.doi.org/10.1007/978-3-662-46681-0_26
http://dx.doi.org/10.1007/978-3-540-24743-2_22
http://dx.doi.org/10.1007/978-3-319-23404-5_15

Towards Concolic Testing for Hybrid Systems 477

12. Filieri, A., Pasareanu, C.S., Visser, W., Geldenhuys, J.: Statistical symbolic execu-
tion with informed sampling. In: 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE-22), pp. 437–448 (2014)

13. Gao, S., Kong, S., Chen, W., Clarke, E.: Delta-complete analysis for bounded
reachability of hybrid systems. arXiv preprint arXiv:1404.7171 (2014)

14. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 14

15. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing.
SIGPLAN Not. 40(6), 213–223 (2005)

16. Gordon, J., Serway, R., McGrew, R.: Physics for Scientists and Engineers, vol. 2.
Cengage Learning, Boston (2007)

17. Gyori, B.M., Liu, B., Paul, S., Ramanathan, R., Thiagarajan, P.S.: Approximate
probabilistic verification of hybrid systems. In: Abate, A., Šafránek, D. (eds.) HSB
2015. LNCS (LNBI), vol. 9271, pp. 96–116. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-26916-0 6

18. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des.
43(2), 191–232 (2013)

19. Henzinger, T.A.: The theory of hybrid automata. In: 11th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 278–292 (1996)

20. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000)

21. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997). doi:10.1007/3-540-63166-6 48

22. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

23. Henzinger, T.A., Majumdar, R.: Symbolic model checking for rectangular hybrid
systems. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
142–156. Springer, Heidelberg (2000). doi:10.1007/3-540-46419-0 11

24. Iverson, K.E.: A Programming Language. Wiley, New York (1962)
25. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model

checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 38

26. Jha, S., Limaye, R., Seshia, S.A.: Beaver: engineering an efficient SMT solver for
bit-vector arithmetic. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 668–674. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 53

27. Kamide, N.: Bounded linear-time temporal logic: a proof-theoretic investigation.
Ann. Pure Appl. Logic 163(4), 439–466 (2012)

28. Kong, P., Li, Y., Chen, X., Sun, J., Sun, M., Wang, J.: Towards concolic testing for
hybrid systems. In: Fitzgerald, J., et al. (eds.) FM 2016, LNCS 9995, pp. X–XY.
Springer, Heidelberg (2016)

29. Lebesgue, H.: Intégrale, longueur, aire. Annali di Matematica Pura ed Applicata
7(1), 231–359 (1902)

30. Leon-Garcia, A.: Probability and Random Processes For EE’s, 3rd edn. Prentice-
Hall Inc., Upper Saddle River (2007)

31. Lu, F., Iyer, M.K., Parthasarathy, G., Wang, L.-C., Cheng, K.-T., Chen, K.C.: An
efficient sequential sat solver with improved search strategies. In: The Conference
on Design, Automation and Test in Europe (DATE), 2005, pp. 1102–1107 (2005)

http://arxiv.org/abs/1404.7171
http://dx.doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1007/978-3-319-26916-0_6
http://dx.doi.org/10.1007/978-3-319-26916-0_6
http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1007/3-540-46419-0_11
http://dx.doi.org/10.1007/978-3-642-39799-8_38
http://dx.doi.org/10.1007/978-3-642-02658-4_53

478 P. Kong et al.

32. Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
ACM/IEEE International Conference on Automated Software Engineering (ASE),
pp. 575–586 (2014)

33. Majumdar, R., Sen, K.: Hybrid concolic testing. In: 29th International Conference
on Software Engineering (ICSE 2007), pp. 416–426. IEEE (2007)

34. Orosz, G., Wilson, R.E., Szalai, R., Stépán, G.: Exciting traffic jams: nonlinear
phenomena behind traffic jam formation on highways. Phys. Rev. E. 80, 046205
(2009)

35. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010). Incorporated

36. Sen, K.: Concolic testing. In: 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 571–572. ACM (2007)

37. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). doi:10.1007/11817963 38

38. Swat, S.: A test bed for secure water treatment (2015). http://academics.sutd.edu.
sg/news-events/event/news/media-release-swat-a-test-bed-for-secure-water-
treatment-swat/

39. Veach, E., Guibas, L.J.: Optimally combining sampling techniques for monte carlo
rendering. In: 22nd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 419–428 (1995)

http://dx.doi.org/10.1007/11817963_38
http://academics.sutd.edu.sg/news-events/event/news/media-release-swat-a-test-bed-for-secure-water-treatment-swat/
http://academics.sutd.edu.sg/news-events/event/news/media-release-swat-a-test-bed-for-secure-water-treatment-swat/
http://academics.sutd.edu.sg/news-events/event/news/media-release-swat-a-test-bed-for-secure-water-treatment-swat/

Explaining Relaxed Memory Models
with Program Transformations

Ori Lahav(B) and Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern and Saarbrücken, Germany

orilahav@mpi-sws.org

Abstract. Weak memory models determine the behavior of concurrent
programs. While they are often understood in terms of reorderings that
the hardware or the compiler may perform, their formal definitions are
typically given in a very different style—either axiomatic or operational.
In this paper, we investigate to what extent weak behaviors of exist-
ing memory models can be fully explained in terms of reorderings and
other program transformations. We prove that TSO is equivalent to a set
of two local transformations over sequential consistency, but that non-
multi-copy-atomic models (such as C11, Power and ARM) cannot be
explained in terms of local transformations over sequential consistency.
We then show that transformations over a basic non-multi-copy-atomic
model account for the relaxed behaviors of (a large fragment of) Power,
but that ARM’s relaxed behaviors cannot be explained in a similar way.
Our positive results may be used to simplify correctness of compilation
proofs from a high-level language to TSO or Power.

1 Introduction

In a uniprocessor machine with a non-optimizing compiler, the semantics of a
concurrent program is given by the set of interleavings of the memory accesses of
its constituent threads (also known as sequential consistency). In multiprocessor
machines and/or with optimizing compilers, however, more behaviors are pos-
sible; they are formally described by what is known as a weak memory model.
Typical examples of such “weak” behaviors are in the SB (store buffering) and
LB (load buffering) programs below:

x := 1;
a := y; //0

y := 1;
b := x; //0

a := x; //1
y := 1;

b := y; //1
x := 1;

Assuming all variables are 0 initially, the weak behaviors in question are the
ones in which a and b have the values mentioned in the program comments. In
the SB program on the left this behavior is allowed by all existing weak memory
models, and can be easily explained in terms of reordering: the hardware may
execute the independent store to x and load from y in reverse order. Similarly,
the behavior in the LB program on the right, which is allowed by some models,
can be explained by reordering the load from x and the subsequent store to y.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 479–495, 2016.
DOI: 10.1007/978-3-319-48989-6 29

480 O. Lahav and V. Vafeiadis

This explanation remains the same whether the hardware itself performs out-of-
order execution, or the compiler, as a part of its optimization passes, performs
these transformations, and the hardware actually runs a reordered program.

Formal memory models, however, choose a somewhat more complex expla-
nation. Specifically, axiomatic memory model definitions construct a graph of
memory access events for each program execution and impose various constraints
on which store each load can read from. Similarly, operational definitions intro-
duce concepts such as buffers, where the stores reside for some time before being
propagated to other processors.

In this paper, we try to reconcile the formal model definitions with the more
intuitive explanations in terms of program transformations. We consider the
mainstream implemented memory models of TSO [16], C11’s Release/Acquire
fragment [7], Power [4], and ARM [12], and investigate whether their weak behav-
iors can be fully accounted for in terms of program transformations that are
allowed in these models. In this endeavor, we have both positive and negative
results to report on.

First, in Sect. 3, we show that the TSO memory model of the x86 and SPARC
architectures can be precisely characterized in terms of two transformations over
sequential consistency: write-read reordering and read-after-write elimination.

Second, in Sect. 4, we present examples showing that C11’s Release/Acquire
memory model cannot be defined in terms of a set of transformations over
sequential consistency. This, in fact, holds for any memory model that allows
non-multi-copy-atomic behaviors (where two different threads may observe a
store of a third thread at different times), such as the full C11, Power, ARM,
and Itanium models. Here, besides local instruction reorderings and elimina-
tions we also consider the sequentialization transformation, that explains some
non-multi-copy-atomic behaviors, but fails to account for all of them.

Next, in Sect. 5, we consider the Power memory model of Alglave et al. [4]. We
show that the weak behaviors of this model, restricted to its fragment without
“control fences” (Power’s isync instructions), can be fully explained in terms of
local reorderings over a stronger model that does not allow cycles in the entire
program order together with the reads-from relation. In Sect. 6, we show that
this is not possible for the ARM model: it allows some weak behaviors that
cannot be explained in terms of local transformations over such stronger model.

Finally, in Sect. 7, we outline a possible application of the positive results of
this paper, namely to simplify correctness of compilation proofs from a high-level
language to either TSO or Power.

The proofs of this paper have also been formulated in Coq and are available
at: http://plv.mpi-sws.org/trns/.

1.1 Related Work

Previous papers studied soundness of program transformations under different
memory models (see, e.g., [15,18]), while we are interested in the “completeness”
direction, namely whether program transformations completely characterize a
memory model.

http://plv.mpi-sws.org/trns/

Explaining Relaxed Memory Models with Program Transformations 481

Concerning TSO, it has been assumed that it can be defined in terms of the
two transformations mentioned above (e.g., in [2,9]), but to our knowledge a
formal equivalence to the specification in [16] has not been established before.
In the broader context of proposing a fixed memory model for Java, Demange
et al. [10] prove a very close result, relating a TSO-like machine and local trans-
formations of executions. Nevertheless, one of the transformations of [10] does
not correspond to a local program transformation (as it depends on the write
that was read by each read). We also note that the proofs in [10] are based on
an operational model, while we utilize an equivalent axiomatic presentation of
TSO, that allows us to have simpler arguments.

Alglave et al. [3] provide a method for reducing verification under a weak
memory model to a verification problem under sequential consistency. This app-
roach follows a global program transformation of a completely different nature
than ours, that uses additional data structures to simulate the threads’ buffers.

Finally, assuming a sequentially consistent hardware, Ševč́ık [19] proves that
a large class of compiler transformations respect the DRF guarantee (no weak
behaviors for programs with no data races) and a basic non-thin-air guarantee
(all read values are mentioned in some statement of the program). The results
of the current paper allow the application of Ševč́ık’s theorems for TSO, as
it is fully explained by transformations that are already covered as compiler
optimizations. For the other models, however, our negative results show that
the DRF and non-thin-air guarantees do not follow immediately from Ševč́ık’s
theorems.

2 Preliminaries: Axiomatic Memory Model Definitions

In this section, we present the basic axiomatic way of defining memory models.

Basic Notations. Given a binary relation R, R?, R+, and R∗ respectively denote
its reflexive, transitive, and reflexive-transitive closures. The inverse relation is
denoted by R−1. We denote by R1;R2 the left composition of two relations
R1, R2. A relation R is called acyclic if R+ is irreflexive. When R is a strict
partial order, R|imm denotes the relation consisting of all immediate R-edges,
i.e., pairs 〈a, b〉 ∈ R such that for every c, 〈c, b〉 ∈ R implies 〈c, a〉 ∈ R?, and
〈a, c〉 ∈ R implies 〈b, c〉 ∈ R?. Finally, we denote by [A] the identity relation on
a set A. In particular, [A];R; [B] = R ∩ (A × B).

We assume finite sets Tid, Loc, and Val of thread identifiers, locations, and
values. We use i as a metavariable for thread identifiers, x, y, z for locations,
and v for values. Axiomatic memory models associate a set of graphs (called
executions) to every program. The nodes of these graphs are called events, and
they are related by different kinds of edges.

Events. An event consists of an identifier (natural number), a thread identifier
(or 0 for initialization events), and a type, that can be R (“read”), W (“write”), U
(“atomic update”), or F (“fence”). For memory accesses (R, W, U) the event also

482 O. Lahav and V. Vafeiadis

contains the accessed location, as well as the read and/or written value. Events
in each specific memory model may contain additional information (e.g., fence
type or C11-style access ordering). We use a, b, ... as metavariables for events.
The functions tid, typ, loc, valr and valw respectively return (when applicable)
the thread identifier, type, location, read value, and written value of an event.

Notation 1. Given a relation R on events, R|x denotes the restriction of R
to events accessing location x, and R|loc denotes the restriction of R to events
accessing the same location (i.e., R|x = {〈a, b〉 ∈ R | loc(a) = loc(b) = x} and
R|loc =

⋃
x∈loc R|x).

Executions. An execution G consists of:1

1. a finite set G.E of events with distinct identifiers. This set always contains a
set G.E0 of initialization events, consisting of one write event assigning the
initial value for every location. We assume that all initial values are 0.

2. a binary relation G.po, called program order, which is a disjoint union of rela-
tions {G.poi}i∈{0}∪Tid, such that G.po0 = G.E0 × (G.E \ G.E0), and for every
i ∈ Tid, the relation G.poi is a strict total order on {a ∈ G.E | tid(a) = i}.

3. a binary relation G.rf, called reads-from, which is a set of reads-from edges.
These are pairs 〈a, b〉 ∈ G.E × G.E satisfying a �= b, typ(a) ∈ {W, U}, typ(b) ∈
{R, U}, loc(a) = loc(b), and valw(a) = valr(b). It is required that an event can-
not read from two different events (i.e., if 〈a1, b〉, 〈a2, b〉 ∈ G.rf then a1 = a2).

4. a binary relation G.mo, called modification order, whose properties vary from
one model to another.

We identify an execution G with a set of tagged elements with the tags E,
po, rf, and mo. For example, {E : a, E : b, po : 〈a, b〉} (where a and b are events)
denotes an execution with G.E = {a, b}, G.po = {〈a, b〉}, and G.rf = G.mo = ∅.
Further, for a set E of events, {E : E} denotes the set {E : e | e ∈ E}. A similar
notation is used for the other tags, and it is particularly useful when writing
expressions like G ∪ {rf : rf } (that stand for the extension of an execution G
with a set rf of reads-from edges). In addition, we denote by G.T (T ∈ {R, W, U, F})
the set {e ∈ G.E | typ(e) = T}. We may also concatenate the event sets notations,
and use a subscript to denote the accessed location (e.g., G.RW = G.R∪G.W and
G.Wx denotes all events a ∈ G.W with loc(a) = x). We omit the prefix “G.” when
it is clear from the context.

The exact definition of the set of executions associated with a given pro-
gram depends on the particular programming language and the memory model.
Figure 1 provides an example. Note that in this initial stage the read values are
not restricted whatsoever, and the reads-from relation rf and the modification
order mo are still empty. We refer to such executions as plain executions.

1 Different models may include some additional relations (e.g., a dependency relation
between events is used for Power, see Sect. 5).

Explaining Relaxed Memory Models with Program Transformations 483

Initially, x = y = 0
a := x; //1
y := 1;

b := y; //1
x := b;

Wx0 Wy0

Rx1

Wy1

Ry1

Wx1

Wx0 Wy0

Rx1

Wy1

Ry1

Wx1

rf

rf

Fig. 1. A program together with one of its plain executions, and a complete execution
extending the plain one. Solid arrows denote the transitive reduction of po (i.e., omitting
edges implied by transitivity). The variables a, b are local registers, and these are not
mentioned in executions.

Now, the main part of a memory model is the specification of which of the
executions of a program P are allowed. The first requirement, agreed by all
memory models, is that every read should be justified by some write. Such exe-
cutions will be called complete (formally, G is complete if for every b ∈ RU, we
have 〈a, b〉 ∈ rf for some event a). To filter out disallowed executions among the
complete ones, each memory model M defines a notion of when an execution G
is M-coherent, which is typically defined with the help of a few derived relations,
and places several restrictions on the rf and mo relations. Then, we say that a
plain execution G is M-consistent if there exist relations rf and mo such that
G∪{rf : rf }∪{mo : mo} is a complete and M-coherent execution. The semantics
of a program under M is taken to be the set of its M-consistent executions.

2.1 Sequential Consistency

As a simple instance of this framework, we define sequential consistency (SC).
There are multiple equivalent axiomatic presentations of SC. Here, we choose
one that is specifically tailored for studying the relation to TSO in Sect. 3.

Definition 1. An execution G is SC-coherent if the following hold:

1. mo is a strict total order on WUF.
2. hb is irreflexive.
3. mo; hb is irreflexive.

4. rb; hb is irreflexive.
5. rb; mo is irreflexive.
6. rb; mo; hb is irreflexive.

where:

– hb = (po ∪ rf)+ (happens-before)
– rb = (rf−1; mo|loc)\[E] (reads-before)

Intuitively speaking, mo denotes the order in which stores happen in the memory,
hb represents a causality order between events, and rb says that a read is before
a write to the same location if it reads from a prior write in modification order.
Figure 2 depicts the conditions for SC-coherence. It can be easily seen that the
weak behavior of the SB program in the introduction is disallowed under SC
due to condition 6 (together with conditions 1 and 3), while the one of the LB
program is disallowed under SC due to condition 2.

484 O. Lahav and V. Vafeiadis

R/W/U/F

hb
W/U/F

W/U/F

hbmo

Wx/Ux Wx/Ux

Rx/Ux

rf hb

mo
Wx/Ux Wx/Ux

Ux

rf mo

mo
Wx/Ux Wx/Ux

W/U/FRx/Ux

rf mo
hb

mo

Fig. 2. Illustration of SC’s irreflexivity conditions.

Proposition 1. Our notion of SC-consistency defines sequential consis-
tency [14].

Proof (Outline). The SC-coherence definition above guarantees that (po ∪ rf ∪
mo ∪ rb)+ is a partial order. Following [17], any total order extending this par-
tial order defines an interleaving of the memory accesses, which agrees with po
and ensures that every read/update obtains its value from the last previous
write/update to the same location. For the converse, one can take mo to be the
restriction of the interleaving order to WUF. 	

3 TSO

In this section, we study the TSO (total store ordering) memory model provided
by the x86 and SPARC architectures. Its common presentation is operational: on
top of usual interleaving semantics, each hardware thread has a queue of pending
memory writes (called store buffer), that non-deterministically propagate (in
order) to a main memory [16]. When a thread reads from a location x, it obtains
the value of the last write to x that appears in its buffer, or the value of x in the
memory if no such write exists. Fence instructions flush the whole buffer into the
main memory, and atomic updates perform flush, read, write, and flush again in
one atomic step.

To simplify our formal development, we use an axiomatic definition of TSO
from [13]. By [16, Theorem 3] and [13, Theorem 5], this definition is equivalent
to the operational one.2

Definition 2. An execution G is TSO-coherent if the following hold:

1. mo is a strict total order on WUF.
2. hb is irreflexive.
3. mo; hb is irreflexive.
4. rb; hb is irreflexive.

5. rb; mo is irreflexive.

6. rb; mo; rfe; po is irreflexive.

7. rb; mo; [UF]; po is irreflexive.

where hb and rb are defined as in Definition 1, and:

– rfe = rf\po (external reads-from)

2 Lahav et al. [13] treat fence instructions as syntactic sugar for atomic updates of
a distinguished location. Here, we have fences as primitive instructions that induce
fence events in the program executions.

Explaining Relaxed Memory Models with Program Transformations 485

The first five conditions of the TSO-coherence definition are the same as those
of SC-coherence. Conditions 6 and 7 are relaxations of condition 6 in the SC-
coherence definition (depicted in Fig. 3). Intuitively speaking, mo is the order in
which the writes propagate to the main memory of the TSO-machine, and the
two conditions ensure that a read from the main memory can only read from
the last write (to the same location) that was propagated.

a : Wx/Ux b : Wx/Ux

d : Rx/Ux

c : W/U

e : Ry/Uy

rf

mo

rf \ po

po

mo
a : Wx/Ux b : Wx/Ux

d : Rx/Ux c : U/F

rf mo

po

mo

Fig. 3. Illustration of the alternative irreflexivity conditions of TSO. Requiring an
external reads-from edge or an update/fence (that flush the store buffer) immediately
after the second mo-edge ensures that events a, b and c are in main memory at the
point d is executed and therefore the rf-edge 〈a, d〉 corresponds to reading from the
main memory, rather than from the local buffer.

Next, we present the key lemma that identifies more precisely the difference
between TSO and SC.

Lemma 1. Irreflexivity of the following relation suffices to guarantee that a
TSO-coherent complete execution G is also SC-coherent:

rb; mo; [W]; (po′ ∪ rfi); [R]; po?

where po′ = po|imm\(po|loc ∪ (mo; rf)), and rfi = po|imm ∩ rf.

Now, we turn to our first main positive result, showing that TSO is pre-
cisely characterized by write-read reordering and read-after-write elimination
over sequential consistency. First, we define write-read reordering.

Definition 3 (Write-Read Reordering). For an execution G and events a
and b, ReorderWR(G, a, b) is the execution G′ obtained from G by inverting the
program order from a to b, i.e., it is given by: G′.po = (G.po\{〈a, b〉})∪{〈b, a〉},
and G′.C = G.C for every other component C. ReorderWR(G, a, b) is defined only
when 〈a, b〉 ∈ [W]; po|imm; [R] and loc(a) �= loc(b).

The condition 〈a, b〉 ∈ po|imm guarantees that only adjacent accesses are
reordered. This transformation does not inspect the rf and mo components of G,
and thus also applies to plain executions. This fact ensures that it corresponds to
a program transformation. Note that additional rewriting are sometimes needed
in order to make two adjacent accesses in the program’s execution to be adjacent
instructions in the program. For example, to reorder the store x := 1 and load
a := y in the following program, one can first rewrite the program as follows:

x := 1;
if b then a := y;
else y := 2;

�
x := 1;
if b then a := y;
if ¬b then y := 2;

�
if b then a := y;
x := 1;
if ¬b then y := 2;

486 O. Lahav and V. Vafeiadis

Similarly, reordering of local register assignments and unfolding of loops may
be necessary. To relate reorderings on plain executions to reorderings on (non-
straightline) programs, one should assume that these transformations may be
freely applied.

Remark 1. Demange et al. [10, Definition 5.3] introduce a related write-read-
read reordering, which allows to reorder a read before a write and a sequence of
subsequent reads reading from that write. This reordering does not correspond
to a local program transformation, as it inspects the reads-from relation, that is
not available in plain executions, and cannot be inferred from the program code.

The second transformation we use, called WR-elimination, replaces a read
from some location directly after a write to that location by the value written
by the write (e.g., x := 1; a := x � x := 1; a := 1). Again, we place conditions
to ensure that the execution transformation corresponds to a program one.

Definition 4 (Read-After-Write Elimination). For an execution G and
events a and b, RemoveWR(G, a, b) is the execution G′ obtained by removing
b from G, i.e., G′ is given by: G′.E = G.E\{b}, and G′.C = G.C ∩ (G′.E × G′.E)
for every other component C. RemoveWR(G, a, b) is defined only when 〈a, b〉 ∈
[W]; po|imm; [R], loc(a) = loc(b), and valw(a) = valr(b).

Note that WR-reordering is unsound under SC (the reordered program may
exhibit behaviors that are not possible in the original program). WR-elimination,
however, is sound under SC. Nevertheless, WR-elimination is needed below,
since, by removing a read access, it may create new opportunities for WR-
reordering.

We can now state the main theorem of this section. We write G �TSO G′ if
G′ = ReorderWR(G, a, b) or G′ = RemoveWR(G, a, b) for some a, b.

Theorem 1. A plain execution G is TSO-consistent iff G �∗
TSO G′ for some

SC-consistent execution G′.

The rest of this section is devoted to the proof of Theorem 1. First, the
soundness of the two transformations under TSO is well-known.

Proposition 2. If G �TSO G′ and G′ is TSO-consistent, then so is G.

The converse is not generally true. It does (trivially) hold for eliminations:

Proposition 3. Let G be a complete and TSO-coherent execution. Then,
RemoveWR(G, a, b), if defined, is complete and TSO-coherent.

Proof. Removing a read event from an execution reduces all relations mentioned
in Definition 2, and hence preserves their irreflexivity. 	

Proposition 4. Let G be a complete and TSO-coherent execution. Let a, b such
that ReorderWR(G, a, b) is defined. If 〈a, b〉 �∈ mo; rf, then ReorderWR(G, a, b) is
complete and TSO-coherent.

Explaining Relaxed Memory Models with Program Transformations 487

Proposition 5. Suppose that G is complete and TSO-coherent but not SC-
coherent. Then, G �TSO G′ for some TSO-coherent complete execution G′.

Proof. By Lemma 1, there must exist events a ∈ W and b ∈ R, such that 〈a, b〉 ∈
po′ ∪ rfi , (where po′ and rfi are the relations defined in Lemma 1). Now, if
〈a, b〉 ∈ po′, we can apply WR-reordering, and take G′ = ReorderWR(G, a, b).
By Proposition 4, G′ is complete and TSO-coherent. Otherwise, 〈a, b〉 ∈ rfi . In
this case, we can apply WR-elimination, and take G′ = RemoveWR(G, a, b). By
Proposition 3, G′ is complete and TSO-coherent. 	

We can now prove the main theorem.

Proof (of Theorem 1). The right-to-left direction is easily proven using
Proposition 2, by induction on the number of transformations in the sequence
deriving G′ from G (note that the base case trivially holds as SC-consistency
implies TSO-consistency). We prove the converse. Given two plain executions
G and G′, we write G′ < G if either G′.E ⊂ G.E or (G′.E = G.E and
[W];G′.po; [R] ⊂ G.po). Clearly, < is a well-founded partial order. We prove the
claim by induction on G (using < on the set of all executions). Let G be an
execution, and assume that the claim holds for all G′ < G. Suppose that G is
TSO-consistent. If G is SC-consistent, then we are done. Otherwise, by Proposi-
tion 5, G �TSO G′ for some TSO-consistent execution G′. It is easy to see that we
have G′ < G. By the induction hypothesis, G′ �∗

TSO G′′ for some SC-consistent
execution G′′. Then, we also have G �∗

TSO G′′. 	

4 Release-Acquire

Next, we turn to the non-multi-copy-atomic memory model (i.e., two differ-
ent threads may detect a store by a third thread at different times) of C11’s
Release/Acquire. By RA we refer to the memory model of C11, as defined in [7],
restricted only to programs in which all reads are acquire reads, writes are release
writes, and atomic updates are acquire-release read-modify-writes (RMWs). We
further assume that this model has no fence events. Fence instructions under RA,
as proposed in [13], can be implemented using atomic updates to an otherwise
unused distinguished location.

Definition 5. An execution G is RA-coherent if the following hold:

1. mo is a disjoint union of relations {mox}x∈Loc, such that each relation mox is
a strict total order on WxUx.

2. hb is irreflexive.
3. mo; hb is irreflexive.
4. rb; hb is irreflexive.
5. rb; mo is irreflexive.

where hb and rb are defined as in Definition 1.

488 O. Lahav and V. Vafeiadis

Note that unlike SC and TSO, the relation mo in the RA-coherence definition
relates only events accessing the same location. The following IRIW (independent
reads, independent writes) program shows that RA is more than local program
transformations over SC.

a := x; //1
b := y; //0 x := 1; y := 1; c := y; //1

d := x; //0

The behavior in question is allowed under RA, although RA forbids any reorder-
ings and eliminations in this program. In particular, reordering of reads is
unsound under RA (because RA supports message passing). One may observe
that this behavior can be explained if we add sequentialization to the set of pro-
gram transformations, to allow transformations of the form C1 ‖ C2 � C1;C2

and C1;C ′
1 ‖ C2 � C1;C2;C ′

1. By sequentializing the x := 1 store instruction to
be before its corresponding load we obtain the program on the left:

x := 1;
a := x; //1
b := y; //0

y := 1; c := y; //1
d := x; //0 �

b := y; //0
x := 1;
a := 1; //1

y := 1; c := y; //1
d := x; //0

Now, this behavior is allowed under SC after applying a WR-elimination
followed by a WR-reordering in the first thread (obtaining the program on the
right). At the execution level, sequentialization increases its po component, and
it is sound under RA, simply because it may only increase all the relations
mentioned in Definition 5. Note that, unlike RA and SC, sequentialization is
unsound under TSO: while the weak behavior of the IRIW program is forbidden
under TSO, it is allowed after applying sequentialization. Other examples show
that sequentialization is unsound under Power and ARM as well [1].

Even with sequentialization, however, we cannot reduce RA to SC, as the
following program demonstrates.

y := 1;
x := 1;
a := x; //3
b := z; //0

x := 3;

z := 1;
x := 2;
c := x; //3
d := y; //0

The behavior in question is allowed by RA (by putting the write of 3 to x after the
two other writes to x in mo). In this program, no sound reorderings or eliminations
can explain the weak behavior, and, moreover, any possible sequentialization will
forbid this behavior.

In fact, the above example applies also to SRA, the stronger version of RA
studied in [13], obtained by requiring that mo is a total order on WU (as in
TSO), instead of condition 1 in Definition 5 (but still excluding irreflexivity of
rb; mo; hb that is required for SC-coherence). As RA, SRA forbids thread-local
transformations in this program, but allows its weak behavior.

Explaining Relaxed Memory Models with Program Transformations 489

5 Power

In this section, we study the model provided by the Power architecture, using
the recent axiomatic model by Alglave et al. [4]. Here, our positive result is
somewhat limited:

1. Like RA, the Power model is non-multi-copy-atomic, and thus, it cannot be
explained using transformations over SC. Instead, we explain Power’s weak
behaviors starting from a stronger non-multi-copy-atomic model, that, we
believe, is easier to understand and reason about, than the Power model.

2. Power’s control fence (isync) is used to enforce a stronger ordering on mem-
ory reads. Its special effect cannot be accounted for by program transforma-
tions (see example in [1]). Hence, we only consider here a restricted fragment
of the Power model, that has two types of fence events: sync (“strong fence”)
and lwsync (“lightweight fence”). G.Fsync and G.Flwsync respectively denote
the set of events a ∈ G.E with typ(a) being sync and lwsync.

The Power architecture performs out-of-order and speculative execution, but
respects dependencies between instructions. Accordingly, Power’s axiomatic exe-
cutions keep track of additional relations for data, address and control depen-
dency between events, that are derived directly from the program syntax. For
example, in all executions of a := x; y := a, we will have a data dependency
edge from the read event to the write event, since the load and store use the
same register a. Here, we include all sort of dependencies in one relation between
events, denoted by deps. Note that we always have deps ⊆ po, and that only
read and update events may have outgoing dependency edges.

Based on deps, the Power model employs a relation called preserved program
order, denoted ppo, which is a subset of po that is guaranteed to be preserved.
The exact definition of ppo is somewhat intricate (we refer the reader to [4] for
details). For our purposes, it suffices to use the following properties of ppo:

[RU]; (deps ∪ po|loc)+; [WU] ⊆ ppo (ppo-lower-bound)

ppo ∩ po|imm ⊆ (deps ∪ po|loc)+ (ppo-upper-bound)

Remark 2. Atomic updates are not considered in the text of [4]. In the accompa-
nying herd simulator, they are modeled using pairs of a read and a write events
related by an atomicity relation. Here we follow a different approach, model
atomic updates using a single update event, and adapt herd’s model accordingly.
Thus we are only considering Power programs in which lwarx and stwcx appear
in separate adjacent pairs. These instructions are used to implement locks and
compare-and-swap commands, and they indeed appear only in such pairs when
following the intended mapping of programs to Power [6].

Using the preserved program order, Power-coherence is defined as follows (the
reader is referred to [4] for further explanations and details).

490 O. Lahav and V. Vafeiadis

Definition 6. An execution G is Power-coherent if the following hold:

1. mo is a disjoint union of relations {mox}x∈Loc, such that each relation mox is
a strict total order on WxUx.

2. hb is acyclic. (no-thin-air)
3. po|x ∪ rf ∪ rb ∪ mo is acyclic for every x ∈ Loc. (SC-per-loc)
4. rbe; prop; hb∗ is irreflexive. (observation)
5. mo ∪ prop is acyclic. (propagation)
6. rb; mo is irreflexive. (atomicity)
7. mo; [U]; po; [U] is acyclic.

where rb is defined as in Definition 1, and:

– sync = po; [Fsync]; po and lwsync = po; [Flwsync]; po
– fence = sync ∪ ([RU]; lwsync; [RWU] ∪ ([W]; lwsync; [WU])) (fence order)
– rfe = rf \ po and rbe = rb \ po (external reads-from and reads-before)
– hb = ppo ∪ fence ∪ rfe (happens-before)
– prop1 = [WU]; rfe?; fence; hb∗; [WU]
– prop2 = ((mo ∪ rb) \ po)?; rfe?; (fence; hb∗)?; sync; hb∗

– prop = prop1 ∪ prop2 (propagation relation)

In particular, Power allows the weak behavior in the LB program presented
in the introduction. Indeed, unlike the other models discussed above, the Power
model does not generally forbid (po ∪ rf)-cycles. Thus, Power-consistent exe-
cutions are not “prefix-closed”— it may happen that G is Power-consistent,
but some po-prefix of G is not. This makes reasoning about the Power model
extremely difficult, because it precludes the understanding a program in terms
of its partial executions, and forbids proofs by induction on po-prefixes of an
execution. In the following we show that all weak behaviors of Power can be
explained by starting from a stronger prefix-closed model, and applying vari-
ous reorderings of independent adjacent memory accesses to different locations.
First, we define the stronger model.

Definition 7. An execution G is SPower-coherent if it is Power-coherent and
po ∪ rf is acyclic.

Note that this additional acyclicity condition is a strengthening of the “no-
thin-air” condition in Definition 6. A similar strengthening for the C11 memory
model was suggested in [8], as a straightforward solution to the “out-of-thin-air”
problem (see also [5]). In addition, the same acyclicity condition was assumed
for proving soundness of FSL [11] (a program logic for C11’s relaxed accesses).

Next, we turn to relate Power and SPower using general reorderings of adja-
cent memory accesses.

Definition 8 (Reordering). For an execution G and events a and b,
Reorder(G, a, b) is the execution G′ obtained from G by inverting the program
order from a to b, i.e., it is given by: G′.po = (G.po\{〈a, b〉}) ∪ {〈b, a〉}, and
G′.C = G.C for every other component C. Reorder(G, a, b) is defined only when
a, b �∈ F and 〈a, b〉 ∈ po|imm\deps, and loc(a) �= loc(b).

Explaining Relaxed Memory Models with Program Transformations 491

We write G �Power G
′ if G′ = Reorder(G, a, b) for some a, b.

Proposition 6. Suppose that G �Power G
′. Then, G is Power-coherent iff G′ is

Power-coherent.

The following observation is useful in the proof below.

Proposition 7. The following relation is acyclic in Power-coherent executions:

deps ∪ po|loc ∪ (po; [F]) ∪ ([F]; po) ∪ rfe

Theorem 2. A plain execution G is Power-consistent iff G �∗
Power G

′ for some
SPower-consistent execution G′.

Proof. The right-to-left direction is proven by induction using Proposition 6. We
prove the converse. Let G be a Power-consistent plain execution, and let rf and
mo be relations such that G0 = G ∪ {rf : rf } ∪ {mo : mo} is complete and
Power-coherent. Let S be a total strict order on E extending the relation R
given in Proposition 7. Let G′ be the execution given by G′.po =

⋃
i∈Tid{〈a, b〉 ∈

S | tid(a) = tid(b) = i}∪(E0×E) (where E0 is the set of initialization events in G),
while all other components of G′ are as in G. It is easy to see that G �∗

Power G
′.

Indeed, recall that a list L of elements totally ordered by < can be sorted by
repeatedly swapping adjacent unordered elements li > li+1 (as done in “bubble
sort”). Since R ⊆ S, no reordering step from G to G′ will reorder dependent
events, events accessing the same location, or fence events. Now, Proposition 6
ensures that G′

0 = G′ ∪ {rf : rf } ∪ {mo : mo} is complete and Power-coherent.
To see that it is also SPower-coherent, note that (E\E0); (G′

0.po∪G′
0.rf) ⊆ S. 	

Remark 3. Note that the reordering operation does not affect the dependency
relation. To allow this, and still understand reordering on the program level,
we actually consider a slightly weaker model of Power than the one in [4], that
do not carry control dependencies across branches. For instance, in a program
like a := y; (if a then z := 1);x := 1, which can be a result of reordering of the
stores to x and z in a := y;x := 1; (if a then z := 1), we will not have a control
dependency between the load of y and the store to x.

6 ARM

We now turn to the ARM architecture and show that it cannot be modeled by
any sequence of sound reorderings and eliminations over a basic model satisfying
(po ∪ rf)-acyclicity.

Consider the program in Fig. 4. Note that no reorderings or eliminations can
be applied to this program. In the second and the third threads, reordering
is forbidden because of the dependency between the load and the subsequent
store. On the first thread, there is no dependency, but since the load and the
store access the same location, their reordering is generally unsound, as it allows
the load to read from the (originally subsequent) store. Moreover, this program

492 O. Lahav and V. Vafeiadis

Initially, x = y = 0
a := x; //1
x := 1;

y := x; x := y;

Rx1

Wx1

Rx1

Wy1

Ry1

Wx1

deps deps
rf

rf

rf

Fig. 4. A weak behavior of ARM, that is not explained by program transformations.

cannot return a = 1 under a (po ∪ rf)-acyclic model, because the only instance
of the constant 1 in the program occurs after the load of x in the first thread.
Nevertheless, this behavior is allowed under both the axiomatic ARMv7 model
of Alglave et al. [4] and the ARMv8 Flowing and POP models of Flur et al. [12].

The axiomatic ARMv7 model [4] is the same as the Power model presented in
Sect. 5, with the only difference being the definition of ppo (preserved program
order). In particular, this model does not satisfy (ppo-lower-bound) because
[RU]; po|loc ; [WU] �⊆ ppo. Hence, the first thread’s program order in the example
above is not included in ppo, and there is no happens-before cycle. For the same
reason, our proof for Power does not carry over to ARM.

In the ARMv8 Flowing model [12], consider the topology where the first two
threads share a queue and the third thread is separate. The following execution
is possible: (1) the first thread issues a load request from x and immediately
commits the x := 1 store; (2) the second thread then issues a load request from
x, which gets satisfied by the x := 1 store, and then (3) issues a store to y := 1;
(4) the store to y gets reordered with the x-accesses, and flows to the third
thread; (5) the third thread then loads y = 1, and also issues a store x := 1,
which flows to the memory; (6) the load of x flows to the next level and gets
satisfied by the x := 1 store of the third thread; and (7) finally the x := 1 store
of the first thread also flows to the next level. The POP model is strictly weaker
than the Flowing model, and thus also allows this outcome.

7 Application: Correctness of Compilation

Our theorems can be useful to prove correctness of compilation of a program-
ming language with some memory model (such as C11) for the TSO and Power
architectures. We outline this idea in a more abstract setting.

Let �P �M denote the possible behaviors of a program P under memory model
M. A formal definition of a behavior can be given using a distinguished world
location, whose values are inspected by an external observer. Assume some com-
pilation scheme from a source language C to a target language A (i.e., a mapping
of C instructions to sequences of A ones), and let compile(PC) denote the pro-
gram PA obtained by applying this scheme on a program PC . Further, assume
memory models MC and MA (we do not assume that MC has an axiomatic pre-
sentation; an operational one would work out the same). Correct compilation is
expressed by:

∀PC . �compile(PC)�MA
⊆ �PC�MC

.

Explaining Relaxed Memory Models with Program Transformations 493

Applied on the program level, the (2 ⇒ 1) directions of Theorems 1 and 2 provide
us with the following:

∀PC . �compile(PC)�MA
⊆

⋃
{�P ′

A�SMA
| P ′

A s.t. compile(PC) �∗
MA

P ′
A},

where SMA is a stronger model than MA (SC for TSO and SPower for Power).
Then, correctness of compilation easily follows from the following two conditions.
First, compilation should be correct for the strong model SMA:

∀PC . �compile(PC)�SMA
⊆ �PC�MC

.

Second, there should exist a set of source program transformations, described
by �MC

, that (i) is sound for MC , i.e.,

∀PC , P
′
C . PC �MC

P ′
C =⇒ �P ′

C�MC
⊆ �PC�MC

;

and (ii) captures all target transformations from a compiled program:

∀PC , P
′
A. compile(PC) �MA

P ′
A =⇒ ∃P ′

C . compile(P
′
C) = P ′

A ∧ PC �∗
MC

P ′
C .

For TSO meeting the first condition is trivial, because sequential consistency
is the strongest model. In the case of Power, proving this property for SPower is
easier than for Power. Roughly speaking, to show that behaviors of SPower are
allowed by a model MC would require less “features” of MC , and can be done
by induction on (po ∪ rf)+ in SPower-coherent executions.

Fulfilling the second requirement is typically easy, because the source lan-
guage, its memory model, and the mapping of its statements to processors
are often explicitly designed to enable such transformations. In fact, when one
aims to validate an optimizing compiler, the first part of the second require-
ment should be anyway established. For example, consider the compilation of
C11 to TSO. Here, we need to show that WR-reordering and WR-elimination
on compiled code could be done by C11-sound transformations on correspond-
ing instructions of the source. Indeed, the mapping of C11 accesses to TSO
instructions (see [7]) ensures that any adjacent WR-pair results from adjacent
C11 accesses with access ordering strictly weaker than sc (sequential consistent
accesses). Reordering and eliminations in this case is known to be sound under
the C11 memory model [18].

8 Conclusion

In this paper, we have shown that the TSO memory model and (a substantial
fragment of) the Power memory model can be defined by a set of reorderings and
eliminations starting from a stronger and simpler memory model. Nevertheless,
the counterexamples in Sects. 4 and 6 suggest that there is more to weak memory
consistency than just instruction reorderings and eliminations.

We further sketched a possible application of the alternative characterizations
of TSO and Power: proofs of compilation correctness can be simplified by using

494 O. Lahav and V. Vafeiadis

the soundness of local transformations in the source language. To follow this
approach in a formal proof of correctness of a compiler, however, further work
is required to formulate precisely the syntactic transformations in the target
programming language. In the future, we also plan to investigate the application
of these characterizations for proving soundness of program logics with respect
to TSO and Power.

Acknowledgments. We would like to thank the FM’16 reviewers for their feedback.
This research was supported by an ERC Consolidator Grant for the project “RustBelt”,
funded under Horizon 2020 grant agreement no. 683289.

References

1. Coq development for this paper and further supplementary material. http://plv.
mpi-sws.org/trns/

2. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

3. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 28

4. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

5. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46669-8 12

6. Batty, M., Memarian, K., Owens, S., Sarkar, S., Sewell, P.: Clarifying and compiling
C/C++ concurrency: from C++11 to POWER. In: Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, pp. 509–520. ACM, New York (2012)

7. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL 2011, pp. 55–66. ACM, New
York (2011)

8. Boehm, H.J., Demsky, B.: Outlawing ghosts: avoiding out-of-thin-air results. In:
Proceedings of the Workshop on Memory Systems Performance and Correctness.
MSPC 2014, pp. 7:1–7:6. ACM, New York (2014)

9. Burckhardt, S., Musuvathi, M., Singh, V.: Verifying local transformations on
relaxed memory models. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 104–
123. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11970-5 7

10. Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., Vitek, J.:
Plan B: a buffered memory model for Java. In: Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL 2013, pp. 329–342. ACM, New York (2013)

11. Doko, M., Vafeiadis, V.: A program logic for C11 memory fences. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 413–430. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49122-5 20

http://plv.mpi-sws.org/trns/
http://plv.mpi-sws.org/trns/
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-662-46669-8_12
http://dx.doi.org/10.1007/978-3-662-46669-8_12
http://dx.doi.org/10.1007/978-3-642-11970-5_7
http://dx.doi.org/10.1007/978-3-662-49122-5_20

Explaining Relaxed Memory Models with Program Transformations 495

12. Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: concurrency and ISA.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. POPL 2016, pp. 608–621. ACM, New York
(2016)

13. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. POPL 2016, pp. 649–662. ACM, New York (2016)

14. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

15. Morisset, R., Pawan, P., Zappa Nardelli, F.: Compiler testing via a theory of sound
optimisations in the C11/C++11 memory model. In: Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI 2013, pp. 187–196. ACM, New York (2013)

16. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 391–407. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 27

17. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

18. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL 2015, pp. 209–220.
ACM, New York (2015)

19. Ševč́ık, J.: Safe optimisations for shared-memory concurrent programs. In: Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2011, pp. 306–316. ACM, New York (2011)

http://dx.doi.org/10.1007/978-3-642-03359-9_27

SpecCert: Specifying and Verifying
Hardware-Based Security Enforcement

Thomas Letan1,2(B), Pierre Chifflier1, Guillaume Hiet2, Pierre Néron1,
and Benjamin Morin1

1 French Network Information Security Agency (ANSSI), Paris, France
thomas.letan@ssi.gouv.fr

2 CIDRE – Inria, IRISA, CentraleSupélec, Rennes, France

Abstract. Over time, hardware designs have constantly grown in com-
plexity and modern platforms involve multiple interconnected hardware
components. During the last decade, several vulnerability disclosures
have proven that trust in hardware can be misplaced. In this article, we
give a formal definition of Hardware-based Security Enforcement (HSE)
mechanisms, a class of security enforcement mechanisms such that a soft-
ware component relies on the underlying hardware platform to enforce a
security policy. We then model a subset of a x86-based hardware platform
specifications and we prove the soundness of a realistic HSE mechanism
within this model using Coq, a proof assistant system.

Modern hardware architectures have grown in complexity. They now are made of
numerous devices which expose multiple programmable functions. In this article,
we identify a class of security enforcement mechanisms we call Hardware-based
Security Enforcement (HSE) such that a set of software components configures
the hardware in a way which prevents the other software components to break a
security policy. For instance, when an operating system uses the ring levels and
memory paging features of x86 microprocessors to isolate the userland appli-
cations, it implements a HSE mechanism. A HSE mechanism is sound when it
succeeds in enforcing a security policy. It requires (1) the hardware functions
to provide the expected properties and (2) the software components to make a
correct use of these hardware functions. In practice, both requirements are hard
to meet.

First, hardware architectures comprise multiple interconnected devices which
interact together. From a security perspective, it implies considering the devices
both individually and as a whole. Hardware functions are not immune to secu-
rity vulnerabilities. For instance, early versions of the sinit instruction imple-
mentation of the Intel TXT technology [13] allowed an attacker to perform a
privilege escalation [22]. The legitimate use of a hardware mechanism can also
break the security promised by another. For instance, until 2008, the x86 cache
allowed to circumvent an access control mechanism exposed by the memory con-
troller [18,23]. Secondly, hardware architectures have grown in complexity and,
as a consequence, HSE mechanisms too. To take the example of the x86 architec-
ture, each generation of CPU brings its own new security hardware mechanisms
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 496–512, 2016.
DOI: 10.1007/978-3-319-48989-6 30

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 497

(from the ring levels and the MMU to the new SGX technology). There are many
examples of security vulnerabilities which are the consequence of an incorrect
HSE mechanism implementation [5,9,27].

In this paper, we introduce SpecCert, a framework for specifying and verify-
ing HSE mechanisms against hardware architecture models. SpecCert relies on
a three-step methodology. First, we model the hardware architecture specifica-
tions. Then, we specify the software requirements that must be satisfied by the
trusted software components which implement the HSE mechanism. Finally, we
prove that the HSE mechanism is sound under the assumption that the software
components complies to the specified requirements. This implies the hardware
involved in the HSE mechanism indeed provides the security properties they
promise. We believe this approach to be beneficial to both hardware design-
ers and software developers. The former can verify their hardware mechanism
assumptions and the latter can get a formal specification to implement the HSE
mechanism.

In Sect. 1, we give a formal definition of the SpecCert formalism. In Sect. 2, we
define a model of x86-based hardware architectures to verify HSE mechanisms
targeting software isolation policies using publicly available Intel specifications.
In Sect. 3, we verify the soundness of the HSE mechanism implemented in many
x86 computer firmware codes to isolate the code executed while the CPU is
in System Management Mode (SMM), a highly privileged execution mode of
x86 microprocessors. Our model and proofs have been implemented using Coq,
a proof assistant system and have been released as an open source software1.
We discuss our results in Sect. 4, some related works in Sect. 5 and conclude in
Sect. 6.

1 The SpecCert Formalism

In SpecCert, we model the hardware architecture and its features with a set of
states H, a set of events E and a Computing Platform Σ which defines a seman-
tics of events as state-transformers. Hence, the execution of a set of software
components by a hardware architecture is a sequence of state-transformations
(denoted h

ev−−−→
Σ

h′) in this model. In this paper, we consider exclusively

Execution Monitoring (EM) enforceable security policies [4,25] that are secu-
rity policies which can be enforced by monitoring the software execution. As
a consequence, we model a security policy with a predicate P on sequences
of state-transformations. Finally, we model a HSE mechanism Δ with a set of
requirements on states to characterize safe hardware configurations and a set of
requirements on state-transformations for trusted software components to pre-
serve the state requirements through software execution. A HSE mechanism is
sound when every sequence of state-transformations which satisfies these require-
ments also satisfies the security policy predicate.

1 Which can be found at: https://github.com/lethom/speccert.

https://github.com/lethom/speccert

498 T. Letan et al.

1.1 Computing Platforms

We now dive more deeply into the SpecCert formalism and give a formal def-
inition of the Computing Platform. We model a hardware architecture which
executes several software components using states, events and a semantics of
events as state-transformers.

The state of a hardware architecture models the configuration of its devices
at a given time. This configuration may change over time with respect to the
hardware specifications and comprises any relevant data such as registers values,
inner memory contents, etc. A hardware architecture state update is triggered
by some events. We distinguish two classes of events: the software events which
are direct and forseeable side-effects of the execution of an instruction and the
hardware events which are not. The execution of an instruction can be broken
down into a sequence of software events.

For instance, to execute the x86 instruction2 mov (%ecx),%eax, a x86 CPU:

– reads the content of the register ecx as an address
– reads the main memory at this address
– writes this content into the register eax
– updates the register eip with the address of the next instruction to execute.

We model this sequence of actions as four software events which trigger four
state updates. Note that if the content of the ecx register is not a valid address,
the scenario is different. In such a case, the read access to the main memory
fails and an interrupt is raised. This second scenario is modeled with another
sequence of events which involved a hardware event i.e. the interrupt.

The semantics of events as state-transformers is specified using preconditions
and postconditions. Preconditions specify the state requirements which are nec-
essary for an event to be observed. Postconditions specify the consequences of
an event on the hardware architecture state.

Definition 1 (Computing System). Given H a set of hardware architec-
ture states and E a set of events, a Computing Platform Σ is a pair of
(precondition, postcondition) where precondition is a predicate on H × E and
postcondition is a predicate on H × E × H. Σ defines a semantics of events as
state-transformers such as

precondition(h, ev) postcondition(h, ev, h′)

h
ev−−−→
Σ

h′

h
ev−−−→
Σ

h′ is called a state-transformation of Σ.

2 Written in AT&T syntax here.

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 499

1.2 Security Policies

Given H a set of states of a hardware architecture, E a set of events, Σ a
Computing Platform and S a set of software components being executed by the
hardware architecture, a particular execution of a set of software components is
modeled with a sequence of state-transformations we call a run of Σ.

Definition 2 (Run). A run of the Computing Platform Σ is a sequence of
state-transformations of Σ such that for two consecutive transformations, the
resulting state of the first is the initial state of the next. We denote R(Σ) the
set of runs of the Computing Platform Σ and init(ρ) the initial state of a run ρ.

We consider EM-enforceable security policies [4,25] specified with predicates
on runs. A run is said to be secure according to a security policy when it satisfies
the predicate specifying this policy.

In this paper, we focus on a class of security policies we call software execution
isolation policies. Such a policy prevents a set of untrusted software components
to tamper with the execution of another set of so-called trusted software com-
ponents. We consider that a software component tampers with the execution of
another when it is able to make the latter execute an instruction of its choice.

In practice, a subset of states of the hardware architecture is dedicated to
each software component. For instance, the x86 CPU has a feature called pro-
tection rings where each ring can be seen as an execution mode dedicated to
a software component. Hence, the ring 0 is dedicated to the operating system
whereas the userland applications are executed when the CPU is in ring 3. In
SpecCert, we take advantage of this CPU state mapping to infer which soft-
ware component is currently executed from a hardware architecture state. For
the following definitions, we assume the hardware architecture contains only one
CPU.

Definition 3 (Hardware-Software Mapping). A hardware-software map-
ping context : H → S is a function which takes a hardware state and returns
the software component currently executed.

Dealing with multi-core architectures would require additional efforts and
notations. One possible solution could be to define an identifier per core and to
use this identifier in addition to the current hardware state to deduce the software
component currently executed by the corresponding core. However, this is out
of the scope of this article.

We now introduce the concept of memory location ownership. A memory
location within a hardware architecture is a container which is able to store
data used by a software component e.g. a general-purpose register of a CPU, a
DRAM memory cell, etc. We say that a Computing Platform tracks the mem-
ory location ownership if the hardware architecture states maps each memory
location with a software component called its owner, and the Computing Plat-
form semantics updates this mapping through state-transformations. A software
component becomes the new owner of a memory location when it overrides its

500 T. Letan et al.

content during a state-transformation. By extension, we say a software compo-
nent owns some data when it owns the memory location in which these data are
stored.

With this mapping, it becomes possible to determine the owner of an instruc-
tion fetched by the CPU in order to be decoded and executed.

Definition 4 (Event-Software Mapping). An event-software mapping
fetched : H × E → P(S) is a function which takes an initial hardware state
and an event and returns the set of the fetched instructions owners during this
state-transformation.

Hence, s ∈ fetched(h, ev) means that an instruction owned by a software
component s was fetched during a state-transformation triggered by an event
ev from a state h. With a hardware-software mapping and an event-software
mapping, we give a formal definition of a software execution tampering.

Definition 5 (Software Execution Tampering). Given h the initial state
of a state-transformation triggered by an event ev, context a hardware-software
mapping, fetched an event-software mapping and x, y ∈ S two software compo-
nents, the software component y tampers with the execution of another software
component x if the CPU fetches an instruction owned by y in a state dedicated
to x.

software tampering(context,fetched, h, ev, x, y) �
context(h) =x ∧ y ∈ fetched(h, ev)

Given T ⊆ S a set of trusted software components, the software execution
isolation policy prevents the untrusted components from tampering with the
execution of the trusted components. Such a policy is enforced during a run
if no untrusted component is able to tamper with the execution of a trusted
component.

Definition 6 (Software Execution Isolation). Given context a hardware-
software mapping, fetched an event-software mapping and ρ a run of Σ,

software execution isolation(context, fetched, ρ,T) �
∀h

ev−−−→
Σ

h′ ∈ ρ,∀t ∈ T ,∀u �∈ T ,

¬software tampering(context, fetched, h, ev, t, u)

In this definition, t is a trusted software component and u is an untrusted
—potentially malicious or hijacked— one.

1.3 Hardware-Based Security Enforcement Mechanism

A HSE mechanism is a set of requirements on states to characterize safe hardware
configurations and a set of requirements on state-transformations to preserve the
state requirements through software execution. The software components which
implement a HSE mechanism form the Trusted Computing Base (TCB).

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 501

Definition 7 (HSE Mechanism). Given H a set of states of a hardware
architecture, E a set of events and Σ a Computing Platform, we model a HSE
mechanism Δ with a tuple (inv, behavior, T , context) such as

– inv is a predicate on H to distinguish between safe hardware configurations
and potentially vulnerable ones

– behavior is a predicate on H × ESoft to distinguish between safe software
state-transformations and potentially harmful ones

– T ⊆ S is the set of software components which form the TCB of the HSE
mechanism

– context is a hardware-software mapping to determine when the TCB is exe-
cuted

For instance, in x86-based hardware architectures, the SPI Flash contents
(the code and configuration of the firmware) is protected as follows:

1. By default, the SPI Flash is locked and its content cannot be overriden until
it has been unlocked

2. Some software components can unlock the SPI Flash
3. When they do so, the CPU is forced to start the execution of a special-purpose

software component
4. This software component has to lock the SPI Flash before the end of its

execution

In this example, the special-purpose software component is the TCB. A safe
hardware state (modeled with inv) is either a state wherein the special-purpose
software component is executed or a state wherein the SPI Flash is locked.
This requirement on hardware architecture states is preserved by preventing the
special-purpose software component to end its execution before it has locked the
SPI Flash (modeled with behavior).

For a HSE mechanism to be correctly defined, it must obey a few axioms,
together called the HSE Laws. The first law says that the state requirements
specified by inv are preserved through state-transformations if the software
transformations which do not satisfy behavior are discarded. The second law
says that the behavior predicate specifies state-transformations restrictions for
the TCB only. The software components which are not part of the TCB are
considered untrusted and we make no assumption on their behavior.

Definition 8 (HSE Laws). A HSE mechanism Δ = (inv, behavior,
T , context) has to satisfy the following properties:

1. behavior preserves inv: ∀h
ev−−−→
Σ

h′,

inv(h) ⇒ (ev ∈ ESoft ⇒ behavior(h, ev)) ⇒ inv(h′)

2. behavior only restricts the TCB: ∀x �∈ T ,∀h ∈ H,∀ev ∈ ESoft,

context(h) = x ⇒ behavior(h, ev)

502 T. Letan et al.

A run complies to a HSE mechanism definition if its initial state satisfies
the state requirements and each state-transformation of the run satisfies the
state-transformations requirements. The set of the runs which comply with Δ is
denoted by C(Δ).

Definition 9 (Compliant Runs). Given ρ ∈ R(Σ),

ρ ∈ C(Δ) � inv(init(ρ)) ∧ ∀h
ev−−−→
Σ

h′, ev ∈ ESoft ⇒ behavior(h, ev)

Eventually, we aim to prove that a HSE mechanism is sound —it succeeds
to enforce a security policy— under the assumption that software components
of the TCB always behave according to the HSE mechanism specification.

Definition 10 (Sound HSE Mechanism). A HSE mechanism Δ succeeds
in enforcing a security policy P when each compliant run of Δ is secure. In such
a case, Δ is said to be sound.

sound(Δ,P) � ∀ρ ∈ C(Δ), P (ρ)

2 Minx86: A x86 Model

The SpecCert formalism is the foundation of the SpecCert framework. It com-
prises a set of high-level definitions to specify a HSE mechanism against a hard-
ware architecture model. In its current state, the SpecCert framework contains
a model of x86 called Minx86. Minx86 is intended to be a minimal model for
single core x86-based machines and we have used publicly available Intel docu-
ments [10–12] to define it.

2.1 Model Scope

The hardware architecture we are modeling with Minx86 contains a CPU, a
cache, a memory controller, a DRAM controller and a VGA controller3 which
both expose some memory to the CPU.

Minx86 is meant to be a proof of concept of the SpecCert formalism and
thus is not exhaustive. In its current state of implementation, its scope focuses
on the System Management Mode (SMM) feature of x86 microprocessors.

Hardware Specifications. We consider the CPU can be either in System Manage-
ment Mode (SMM) or in an unprivileged mode. The SMM is “a special-purpose
operating mode provided for handling system-wide functions like power man-
agement, system hardware control, or proprietary OEM-designed code” [12]. It
is the most privileged execution mode of x86 processors. When a CPU receives a
special hardware interrupt called System Management Interrupt (SMI), it halts

3 A VGA controller is a hardware device which on we can connect a screen. It exposes
some memory to the CPU for communication purposes.

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 503

its current execution and reconfigures itself to a specified state from which it
executes the code stored in memory at the address SMBASE + 0x8000. In
practice, the SMBASE value points to the base of a memory region called the
SMRAM. Leaving the SMM is done by executing a special purpose instruction
called rsm (for resume).

The CPU relies on a cache to reduce the Input/Output (I/O, that is a read
or write access to the memory) latency. We model one level of cache which stores
both data and instructions and we consider two cache strategies: uncacheable
(UC) and writeback (WB). With the UC cache strategy, the cache is not used and
all I/O-s are forwarded to the memory controller, whereas with the WB strategy,
the cache is used as much as possible4. To determine which cache strategy to use,
the CPU relies on several configuration registers and mechanisms. One of them
is a pair of registers called the System Management Range Registers (SMRR)
which can only be configured when the CPU is in SMM. They are used to tell the
CPU where the SMRAM is and which cache strategy to use for I/O targeting
the SMRAM when the CPU is in SMM. When it is not in SMM, the CPU
always uses the UC strategy for I/O targeting the SMRAM. SMRR have been
introduced as a countermeasure of the SMRAM cache poisoning attack [18,23]
which allowed an untrusted code to tamper with the copy of the SMRAM stored
in the cache. The memory controller [11] receives all the CPU I/O-s which are not
handled by the cache and dispatches them to the DRAM controller or to the VGA
controller. It exposes a unified view (the memory map) of the system memory
to the CPU. The CPU manipulates this memory map with a set of addresses
called the physical addresses. The memory controller dedicates a special range
of physical addresses to form the SMRAM. The SMRAM is dedicated to store
the code intended to be executed when the CPU is in SMM.

Tracking the Memory Ownership. The Minx86 definition is parameterized
with an hardware-software mapping (see Definition 3). The memory locations of
Minx86 Computing Platforms are either cache lines or memory cells exposed by
the DRAM controller or the VGA controller. The memory ownership is updated
through state-transformations according to three rules:

1. When a cache line gets a copy of a DRAM or VGA cell content, the owner of
this cell becomes the new owner of this cache line.

2. When the content of this cache line is written back to a memory cell, the new
owner of this memory cell is the owner of this cache line.

3. When a state-transformation implies the content of a memory location to be
overriden with a new value, the software currently executed becomes its new
owner.

Given S a set of software components, the set of states of Minx86 Computing
Platform hardware architecture is denoted by ArchiS and the set of Minx86
Computing Platform events is denoted by Event.

4 These cache strategies are explained in [12], Volume 3A, Chap. 11, Sect. 11.3 (page
2316–2317).

504 T. Letan et al.

2.2 Hardware Architecture State

ArchiS is defined as the Cartesian product of the set of states of the CPU, the
CPU’s cache, the memory controller and the hardware memories exposed by
both the DRAM controller and the VGA controller. Each of these sets is defined
in order to model the hardware features we have previously described. We define
PhysAddr � {pai | i ≤ max addr} the set of physical addresses the CPU uses to
perform I/O. The maximal address offset (denoted by max addr here) is specific
to the CPU and may vary in time according to its addressing mode (real mode,
long mode, etc.), therefore we left its value as a parameter of our model. An
in-depth definition of ArchiS is given in the Appendix A.1 of [16].

We model the projection of the SMRAM in the memory map such that
pSmram � {pai | smram base ≤ i ≤ smram end}. The values of smram base
and smram end are specified in the memory controller specifications. It is the
software responsability to set the SMRR accordingly. We assume smram end −
smram base > 0x8000. This way, when the SMBASE contains the address of the
beginning of the SMRAM, the SMM entry point (that is SMBASE + 0x8000)
is in SMRAM.

The hardware architecture states are implemented in the Spec-
Cert.x86.Architecture module (about 1 500 lines of code).

2.3 Events as State-Transformers

The set of events which trigger the state-transformations is denoted by Event.
As we said in Sect. 1.1, we distinguish hardware events denoted by EventHard

and software events denoted by EventSoft.

Table 1. List of software events

Event Parameters Description

Write pa ∈ PhysAddr CPU writes at physical address pa

Read pa ∈ PhysAddr CPU reads at physical address pa

SetCacheStrat pa ∈ PhysAddr

strat ∈ { UC, WB }
Change the cache strategy for pa to strat
(WB: write-back, UC: uncacheable)

UpdateSmrr smrr ∈ Smrr Set the SMRR content to smrr

Rsm – CPU leaves SMM

OpenBitF lip – Flip the d open bit

LockSmramc – Set the d lock bit to 1

NextInstruction pa ∈ PhysAddr Set the program counter register to pa

Table 1 lists the software events we consider in the Minx86 Computing Plat-
forms. We model the CPU I/O-s with Read(pa) and Write(pa), the configuration
of the memory controller with OpenBitF lip and LockSmramc, the configura-
tion of the cache strategy with SetCacheStrat(pa, strat), the configuration of

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 505

Table 2. List of hardware events

Event Description

Fetch A CPU I/O to fetch the instruction stored at the physical
address contained in the program counter register

ReceiveSmi A SMI is raised and the CPU handles it

the SMRR with UpdateSmrr(smrr) the exit of the SMM with Rsm and the
update of the CPU program counter register with NextInstruction(pa).

The other causes of state-transformations are modeled using hardware events.
Table 2 lists the hardware events we consider in the Minx86 Computing Plat-
forms. Fetch models the I/O to fetch the instruction pointed by the program
counter register. ReceiveSmi models a System Management Interrupt being
risen and handled by the CPU.

We define minx86 fetched an event-software mapping for Minx86 Comput-
ing Platforms (see Definition 4). The minx86 fetched function maps a state-
transformation to the set of software components which own an instruction
fetched during this state-transformation. In the case of Minx86, there is only
one event which implies fetching instructions: Fetch. Let o be the owner of the
instruction pointed by the program counter register in the formula

minx86 fetched(h, ev) �
{

{o} if ev = Fetch

∅ otherwise

We can determine o because Minx86 tracks the memory location ownership.
Given context a hardware-software mapping (see Definition 3), we denote the

Computing Platform Minx86 parameterized with context such that

Minx86(context) � (minx86 pre,minx86 post(context))

We give an informal description of the minx86 pre and minx86 post(context)
for each event. These definitions have been implemented in Coq in the module
SpecCert.x86.Transition.

We first give the semantics of software events as state-transformers. A soft-
ware component can always read and write at any physical address. As a con-
sequence, the precondition for Read(pa) and Write(pa) always holds true. The
postcondition for Read(pa) and Write(pa) requires the memory ownership to
be updated according to the memories and cache state updates. The memory
controller enforces a simple access control to protect the SMRAM content in the
DRAM memory by forwarding the related I/O to the VGA controller when the
CPU is not in SMM. To determine the owner of the memory location which sees
its content overriden during a state transformation, the postcondition uses the
hardware-software mapping used to define the Computing Platform.

A software component can always update the cache strategy used for an I/O.
The postcondition for SetCacheStrat(pa, strat) requires only the cache strategy

506 T. Letan et al.

setting for this physical address pa to change. The precondition for UpdateSmrr
requires the CPU to be in SMM. The postcondition requires the SMRR of the
CPU to be updated with the correct value, the rest of the hardware architecture
state being left unchanged.

A software component can jump to any physical address, hence the post-
condition for NextInstruction(pa) always holds true. The postcondition for
NextInstruction(pa) requires the program counter register to be updated
with pa. The OpenBitF lip precondition requires the SMRAMC register to
be unlocked. The postcondition requires the d open bit to be updated. The
LockSmramc precondition requires the d lock bit to be unset. The postcondi-
tion requires the d open bit to be unset and the d lock bit to be unset.

We now describe the semantics of hardware events as state-transformers.
Fetch models the fetching of an instruction by the CPU. The definition of its
precondition and postcondition are the same as Read(pa) with pa being the
program register value. ReceiveSmi precondition requires the CPU not to be in
SMM because SMM is non-reentrant. The postcondition of ReceiveSmi requires
the program counter to be set with the smbase + 0x8000 (where smbase is the
value of the SMBASE register of the CPU) and the CPU is in SMM.

3 System Management Mode HSE

In [12], Intel states “the main benefit of SMM is that it offers a distinct and
easily isolated processor environment that operates transparently to the oper-
ating system or executive and software applications”. For the SMM processor
environment to be isolated, the code executed when the CPU is in SMM needs
to implement a HSE mechanism. In this section, we formalize and verify this
mechanism against the model we have previously introduced.

3.1 Computing Platform and Security Policy

We consider three software components: the boot sequence code, the SMM code
and the OS code. During the boot sequence, only the boot sequence code is
executed and it loads both the OS code and the SMM code into memory. At
the end of the boot sequence, the OS kernel is executed. This OS kernel will
schedule different applications. Because applications are less privileged than the
OS kernel, we will not distinguish them from the kernel code. Thus, in the
following, OS code refers to both OS kernel and application codes.

At runtime, both the OS code and the SMM code can be executed. Our
objective is to evaluate the security provided by the hardware to isolate SMM
code from OS code. Thus, we define

S � {smm, os}

We assume the SMM is dedicated to the SMM code. Let cpu in smm :
ArchiS → { true, false } be the function which returns true if the CPU is in

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 507

SMM and false otherwise. We define smm context a hardware-software map-
ping such that

smm context(h) �
{
smm if cpu in smm(h) = true

os otherwise

Let Smmx86 be the Computing Platform such as

Smmx86 � Minx86(smm context)

We assume that both the OS code and the SMM code have been loaded in
distinct memory regions. In particular, all the SMM code has been loaded in
SMRAM. Our objective is to enforce a security policy which prevents the OS
code to tamper with the SMM code execution. This way, the SMM (which is
the most privileged execution mode of the CPU) cannot be used to perform an
escalation privilege. We define smm security a predicate to model this security
policy such as given ρ ∈ Smmx86,

smm security(ρ) �
software execution isolation(smm context,minx86 execute, ρ, {smm})

3.2 HSE Definition

We define ΔSmm to model the HSE mechanism applied by the SMM code such
that ΔSmm = (invSmm, behaviorSmm, { smm }, smm context) (see Definition 7).

In order to enforce the SMM security policy, we have identified six require-
ments on states.

– When the CPU executes the SMM code, the program counter register value
needs to be an address in SMRAM.

– The SMBASE register was correctly set during the boot sequence to point to
the base of the SMRAM.

– The SMRAM contains only SMM code.
– For a physical address in SMRAM, in case of cache hit, the related cache line

content must be owned by the SMM code.
– In order to protect the content of the SMRAM inside the DRAM memory, the

boot sequence code has locked the SMRAMC controller. This ensures that an
OS cannot set the d open bit any longer and only a CPU in SMM can modify
the content of the SMRAM.

– The range of memory declared with the SMRR needs to overlap with the
SMRAM.

The Appendix A.2 of [16] gives the formal definitions of each requirements
and of invSmm. We now define behaviorSmm. We only define two restrictions.
First, we force the SMM code execution to remain confined within the SMRAM.
The reason is simple: the OS code can tamper with the memory outside the
SMRAM. As a consequence, jumping outside the SMRAM is the best way to fail

508 T. Letan et al.

the security policy. Secondly, we prevent the SMM code to update the SMRR
registers as it is the responsability of the boot sequence code to correctly set
them.

behaviorSmm(h, ev) �
smm context(h) = smm

⇒ ((e = NextInstruction(pa) ⇒ pa ∈ pSmram)
∧ (e �= UpdateSmrr(smrr)))

For ΔSmm to be a HSE mechanism, we need to prove the two HSE Laws (see
Definition 8). The first law states the state requirements modeled with invSmm

are preserved through state-transformations if the transformations which do not
satisfy behaviorSmm are discarded. We prove this by enumeration of ev ∈ Event
and h ∈ ArchiSmm, we check that each requirement described previously is
preserved by ΔSmm. We use those intermediary results to conclude. The sec-
ond law states that the behaviorSmm predicate specifies state-transformation
requirements for the TCB only. In this use case, it means behaviorSmm should
always hold true when the OS code is executed by the hardware architecture.
By definition of behaviorSmm, smm context(h) = smm is an antecedent of the
conditional.

Let smm secure transformation be a predicate which holds true when a
state-transformation does not imply the OS code to tamper with the execution
of SMM code.

smm secure transformation(h, ev) �
¬software tampering(smm context,minx86 execute, h, ev, os, smm)

We prove that this predicate holds true for a state-transformation with
respect to the HSE mechanism. With this result, we can prove the HSE mecha-
nism is sound (see Definition 10).

Lemma 1 (Invariants Enforce Security). ∀h
ev−−−→

Smmx86(ctx)
h′,

invSmm(h)
⇒ (ev ∈ EventSoft ⇒ behaviorSmm(h, ev)

⇒ smm secure transformation(h, ev)

Proof. By enumeration of ev ∈ Event and h ∈ ArchiS .

Theorem 1 (ΔSmm is Sound).

sound(ΔSmm, smm security)

Proof. The “Invariants Enforce Security” lemma applies for one transition and
the first HSE law allows to reason by induction on runs.

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 509

4 Discussion

Our effort has been originally motivated by the disclosure of several vulnera-
bilities targeting multiple x86 HSE mechanisms for the past few years [6,14,18,
23,24]. These attacks do not benefit from a software implementation error but
rather from a flaw in the hardware specifications themselves. The result of our
work is a three-steps methodology for formally specifying and verifying HSE
mechanisms against a hardware architecture model. We believe each aspect is
important.

First, the hardware architecture model can be used as a formal specification.
The main benefit of a formal specification is to avoid any ambiguity such as
the one we have found in [11]. One can read at Sect. 3.8.3.8, page 102 that “the
OPEN bit must be reset before the LOCK bit is set”. At the same page, in
the description of the LOCK bit, one can also read that “when [LOCK] is set
to 1 then [OPEN] is reset to 0”. We had modeled the second statement as the
behavior of the memory controller is not specified if the first statement is true5

Minx86 as a formal specification does not suffer from the same flaw. Minx86
is not complete, as it focuses on SMM-related mechanisms. Therefore, it would
require some effort to use it in another context, but a potential user of SpecCert
would not have to start its x86 hardware model from scratch.

Secondly, a formal specification of a HSE mechanism will help software devel-
opers when the time comes to implement it. For instance, the Chap. 34, Volume
3C of [12] about SMM is about 30 pages long, it gives many details on how the
SMM actually works, yet no section is actually dedicated to security. On the
contrary, our HSE mechanism definition gathers six requirements on hardware
configurations and two requirements on software executions to enforce a well-
defined security property. Even if the proofs only apply to an abstract model,
we believe it is a valuable improvement.

Lastly, the verification process of a HSE mechanism specification against a
hardware architecture model may help to highlight hidden flaws in the hardware
specifications assumptions. We take the example of the SMRAM cache poisoning
attack [18,23], which has motivated the introduction of the SMRR. If an attacker
can set the proper cache strategy (WB) for the SMRAM physical addresses, then
the code inside the SMRAM is loaded into the cache as soon as the CPU in SMM
is executing it. From this point forward —because the access control is enforced
at the memory controller level— nothing prevents the attacker to tamper with
it. The next time the CPU enters in SMM, it executes the code stored in the
cache. With a SMRR-less version of Minx86, we were not able to conclude our
HSE mechanism was sound: such a scenario draws attention of the SpecCert
user who is forced to investigate.

From our point of view, the clear separation between the hardware model,
the security properties and the HSE mechanisms to enforce those properties are

5 If we had to actually implement the HSE mechanism, we would have to assume the
first was the correct one.

510 T. Letan et al.

the main advantage of our approach. This separation minimizes the required
amount of effort to study a new use case against the same hardware model.

5 Related Works

Several formal models of x86 architectures have been defined. For instance, Greg
Morrisett et al. have developed RockSalt [21], a sandboxing policy checker, upon
such a model. Peter Sewell et al. have proposed a model for x86 multiproces-
sors [26] which aims at replacing informal Intel and AMD specifications. Andrew
Kennedy et al. have developed an assembler in Coq [15] which allows a devel-
oper to verify the correctness of a specification for an assembly code. These three
projects have modeled (a subset of) the x86 instruction set against an idealized
hardware. Our approach is different: we model the instructions’ side effects on a
hardware architecture model as close as possible to its specifications.

Our work is inspired by the efforts by Gilles Barthe et al. to formally verify an
idealized model of virtualization [1–3]. In this work, the authors have developed a
model of a hypervisor and have verified that the latter correctly enforces several
security properties among which the guest OSes isolation. From the SpecCert
perspective, a hypervisor relies on HSE mechanisms which could be specified
and verified using SpecCert and a more complete version of the Minx86 model.

To the best of our knowledge, the closest related research project is the work
of Lie et al. They have used a model checker (Murϕ) to model and verify the
eXecute Only Memory (XOM) architecture [17]. The XOM architecture allows
an application to run in a secure compartment wherein its data are protected
against other applications and even a malicious operating system. The main
difference with our approach is that the XOM security properties are enforced
as-is by a secure microprocessor without the need for a software component to
configure anything. On the contrary, we intend to specify ways to use sets of
hardware functions to enforce security policies.

From our point of view, the main limitation of the research previously
described, including SpecCert, is the gap between the model and the concrete
machine. The recent efforts around the Proof Carrying Hardware (PCH) [8,19,
20], inspired by the Proof Carrying Code (PCC), is promising. The main idea
behind PCH is to derive a model from a hardware device implementation written
in a Hardware Description Language (HDL). One of our objective is to investi-
gate the possibility to adapt the SpecCert formalism to the PCH models.

6 Conclusion

In this paper, we have focused on a class of security enforcement mechanism we
called Hardware-based Security Enforcement (HSE). The contribution of this
article is threefold. First, we have proposed a formalism to specify and verify
HSE mechanisms against hardware architecture models. Then, we have defined
a minimalist x86 model called Minx86. Finally, we have specified and verified
the HSE mechanism dedicated to enforce the SMM code execution isolation

SpecCert: Specifying and Verifying Hardware-Based Security Enforcement 511

against this model. Our model and proofs have been implemented in Coq6. The
project is about 4 500 Lines of Code (LoC) including 190 definitions and 150
proofs (theorems and lemmas).

For now, our proofs are built against an abstract model of the hardware
architecture. One of the future work we aim to address is improving the scope of
Minx86 in order to provide to potential SpecCert users a more complete model
to use for verifying and specifying their x86-based HSE mechanisms. Ultimately,
we aim to extend these proofs to a physical hardware platform. Therefore, the
equivalence between the model and the implementation has to be established.
In this perspective, the Proof Carrying Hardware framework [7,8,19,20] is par-
ticularly interesting and we intend to investigate in this direction.

References

1. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In: Butler, M., Schulte, W. (eds.)
FM 2011. LNCS, vol. 6664, pp. 231–245. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21437-0 19

2. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Cache-leakage resilient OS isola-
tion in an idealized model of virtualization. In: 2012 IEEE 25th Computer Security
Foundations Symposium (CSF), pp. 186–197. IEEE (2012)

3. Barthe, G., Betarte, G., Campo, J.D., Luna, C., Pichardie, D.: System-level non-
interference for constant-time cryptography. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1267–1279.
ACM (2014)

4. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revis-
ited. ACM Trans. Inf. Syst. Secur. (TISSEC) 16(1), 3 (2013)

5. Kallenberg, C., Cornwell, S., Kovah, X., Butterworth, J.: Setup for failure: defeat-
ing secure boot. In: The Symposium on Security for Asia Network (SyScan) (April
2014)

6. Domas, C.: The memory sinkhole. In: BlackHat USA, July 2015
7. Drzevitzky, S.: Proof-carrying hardware: runtime formal verification for secure

dynamic reconfiguration. In: 2010 International Conference on Field Programmable
Logic and Applications (FPL), pp. 255–258. IEEE (2010)

8. Guo, X., Dutta, R.G., Mishra, P., Jin, Y.: Scalable SoC trust verification using
integrated theorem proving and model checking. In: IEEE Symposium on Hardware
Oriented Security and Trust, pp. 124–129 (2016)

9. Intel: CHIPSEC: Platform Security Assessment Framework. http://github.com/
chipsec/chipsec

10. Intel: Desktop 4th Generation Intel Core Processor Family, Desktop Intel Pentium
Processor Family, and Desktop Intel Celeron Processor Family

11. Intel: Intel 5100 Memory Controller Hub Chipset
12. Intel: Intel 64 and IA32 Architectures Software Developer Manual
13. Intel: Intel Trusted Execution Technology (Intel TXT), July 2015
14. Kallenberg, C., Wojtczuk, R.: Speed racer: exploiting an Intel flash protection race

condition, 6 January 2015

6 Our implementation is available here: https://github.com/lethom/speccert.

http://dx.doi.org/10.1007/978-3-642-21437-0_19
http://dx.doi.org/10.1007/978-3-642-21437-0_19
http://github.com/chipsec/chipsec
http://github.com/chipsec/chipsec
https://github.com/lethom/speccert

512 T. Letan et al.

15. Kennedy, A., Benton, N., Jensen, J.B., Dagand, P.E.: Coq: the world’s best macro
assembler? In: Proceedings of the 15th Symposium on Principles and Practice of
Declarative Programming, pp. 13–24. ACM (2013)

16. Letan, T., Hiet, G., Chifflier, P., Néron, P., Morin, B.: SpecCert: specifying and
verifying hardware-based security enforcement. Technical report, CentraleSupélec;
Agence Nationale de Sécurité des Systèmes d’Information (2016). https://hal.inria.
fr/hal-01356690

17. Lie, D., Mitchell, J., Thekkath, C., Horowitz, M., et al.: Specifying and verifying
hardware for tamper-resistant software. In: Proceedings of 2003 Symposium on
Security and Privacy, 2003, pp. 166–177. IEEE (2003)

18. Duflot, L., Levillain, O., Morin, B., Grumelard, O.: Getting into the SMRAM:
SMM reloaded CanSecWest (March 2009)

19. Love, E., Jin, Y., Makris, Y.: Proof-carrying hardware intellectual property: a
pathway to trusted module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1),
25–40 (2012)

20. Makris, Y.: Trusted module acquisition through proof-carrying hardware intellec-
tual property. Technical report (2015)

21. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: Rocksalt: better,
faster, stronger SFI for the x86. ACM SIGPLAN Not. 47, 395–404 (2012). ACM

22. Wojtczuk, R., Rutkowska, J.: Attacking intel TXT via SINIT code execution
hijacking. In: Black Hat DC Conference (February 2009)

23. Wojtczuk, R., Rutkowska, J.: Attacking SMM memory via intel CPU cache poi-
soning (March 2009)

24. Rutkowska, J., Wojtczuk, R.: Preventing and detecting Xen hypervisor subversions.
In: Blackhat Briefings USA (2008)

25. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 3(1), 30–50 (2000)

26. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-tso: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

27. Bulygin, Y., Loucaides, J., Furtak, A., Bazhaniuk, O., Matrosov, A.: Summary of
Attacks Against BIOS and Secure Boot, def Con 22 (August 2014)

https://hal.inria.fr/hal-01356690
https://hal.inria.fr/hal-01356690

Automated Verification of Timed Security
Protocols with Clock Drift

Li Li1(B), Jun Sun1, and Jin Song Dong2

1 Singapore University of Technology and Design, Singapore, Singapore
li li@sutd.edu.sg

2 National University of Singapore, Singapore, Singapore

Abstract. Time is frequently used in security protocols to provide bet-
ter security. For instance, critical credentials often have limited lifetime
which improves the security against brute-force attacks. However, it is
challenging to correctly use time in protocol design, due to the existence
of clock drift in practice. In this work, we develop a systematic method
to formally specify as well as automatically verify timed security pro-
tocols with clock drift. We first extend the previously proposed timed
applied π-calculus as a formal specification language for timed protocols
with clock drift. Then, we define its formal semantics based on timed
logic rules, which facilitates efficient verification against various security
properties. Clock drift is encoded as parameters in the rules. The veri-
fication result shows the constraints associated with clock drift that are
required for the security of the protocol, e.g., the maximum drift should
be less than some constant. We evaluate our method with multiple timed
security protocols. We find a time-related security threat in the TESLA
protocol, a complex time-related broadcast protocol for lossy channels,
when the clocks used by different protocol participants do not share the
same clock rate.

1 Introduction

Time is essential in cyber-security, e.g., message transmissions and user authen-
tications are often required to be finished in a timely manner. In order to check
the relevant timing requirements, timestamps are constructed from clocks, sent
through networks and checked by participants in security protocols. For example,
in order to deliver a message m timely, the sender first attaches its current clock
reading ts to m and sends them in a secure way. Then, when the receiver obtains
ts and m, it checks ts against its own clock reading tr with tr − ts ≤ p to ensure
that m is received within a certain timing threshold p. In the above example,
the untimed security (m is not tampered, replayed nor disclosed) and the timed
security (m is delivered in time) are equally important. Given a timed proto-
col, existing literatures [12,16] focus on checking its security when the clocks
of different protocol participants are fully synchronized. However, in practice,

J. Sun—The project is supported by the NRF Project IGDSi1305012 in SUTD.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 513–530, 2016.
DOI: 10.1007/978-3-319-48989-6 31

514 L. Li et al.

timestamps are often generated and checked based on different local clocks with-
out perfect synchronization, which could compromise the security proved based
on the assumption of perfect clock synchronization. Hence, this work studies the
security of timed protocols with the present of the clock drift.

Clock drift commonly exists in practice. For instance, in sensor networks,
cheap sensors usually do not have enough resources to maintain accurate clock
rate and precise clock reading. Hence, small clock drift should be expected and
considered in their applications. Even though the local clocks can be synchro-
nized at runtime over the network, various unavoidable factors, e.g., network
delay, traffic congestion, can lead to a certain level of inaccuracy. Furthermore,
when attackers are present in the network, they may attack the clock synchro-
nization protocol [23]. In such a case, the local clocks under the attack may have
large clock drift. As a result, when the security depends on the clock reading,
the protocol should provide counter-measures for the clock drift.

Clock drift can cause insecurity of timed protocols because the protocol par-
ticipants rely on local clocks in practice, whereas the security protocol is designed
based on the global clock. For instance, in the above message transmission exam-
ple, let t′s and t′r be the readings of the global clock when ts and tr are read from
the local clocks respectively. The receiver deems the message as timely by check-
ing tr − ts ≤ p. However, the security property requires t′r − t′s ≤ p to ensure
a timely message transmission. In order to capture the inconsistency between
local clocks and the (fictional) global clock, we first extend timed applied π-
calculus [16] to formally specify clock drift in protocol models. Then, we define
the semantics of the local clocks in Sect. 4, which captures their relationship to
the global clock. By using this semantics, we can answer the following two secu-
rity questions. First, our work can check whether a protocol is secure with the
presence of clock drift. More importantly, our work can find out how much clock
drift can be tolerated in a timed security protocol. We extend SPA, a verifica-
tion tool we developed in [15,16], with the new calculus and semantics for clock
drift. In this work, we use a corrected version [12] of Wide Mouthed Frog [7]
as a running example to illustrate our specification and verification method. We
apply our method to a number of timed security protocols and successfully find a
security threat in TESLA [21,22] in Sect. 5.2, a complex time-related broadcast
protocol for lossy channels, when the clocks used by different protocol partici-
pants do not share the same clock rate.

2 Specification

In this section, we first introduce CWMF [12], a corrected version of Wide
Mouthed Frog [7] protocol, as a running example. When the local clocks of
the protocol participants in CWMF are assumed to be perfectly synchronized,
CWMF can be verified as secure [12,14] The verification proves that a secret
session key can be established among its participants within a certain time. How-
ever, it is unclear whether clock drift, which is unavoidable in practice, would
compromise the security of CWMF. In the following, we first present CWMF in
details and then demonstrate how timed applied π-calculus, extended with local
clocks, can be used to model such protocols.

Automated Verification of Timed Security Protocols with Clock Drift 515

2.1 Corrected Wide Mouthed Frog

CWMF is designed to establish a timely fresh session key k from an initiator A
to a responder B through a server S. In CWMF, whenever a message is received,
the receiver checks the message freshness before accepting it. To be general, we
use a parameter pm to represent the maximum message lifetime. Additionally,
we consider the minimal network delay as a parameter pn. Since pn is a timing
parameter related to the network environment, it is not directly used in the
protocol specification. Instead, it is a compulsory delay that applies to all of the
network transmissions.

CWMF is a key exchange protocol that involves three participants: an initia-
tor A, a responder B and a server S. By assumption, A and B have registered
their secret long-term keys at the server respectively. The registered key of a
user u is written as key(u), which is used to encrypt all network communica-
tions between the user and the server. Whenever a message m is transmitted
between a user u and the server S, the message m is encrypted by the symmet-
ric encryption function encs written as encs(m, key(u)). CWMF then can be
described as the following three steps.

(1) A generates a random session key k at its local time ta
A → S : 〈A, encs(〈ta, B, k, tag1〉, key(A))〉

(2) S receives the request from A at its local time ts
S checks : ts − ta ≤ pm

S → B : encs(〈ts, A, k, tag2〉, key(B))
(3) B receives the message from S at its local time tb

B checks : tb − ts ≤ pm

B accepts the session key k

First, A generates a fresh key k at its local time ta and initiates the CWMF pro-
tocol with B by sending its name A and the request 〈ta, B, k, tag1〉 encrypted
by key(A) to S. Second, after receiving the request from A at S’s local time ts,
S ensures the message freshness by checking ts − ta ≤ pm. Then, S accepts A’s
request by forwarding the request 〈ts, A, k, tag2〉 encrypted by key(B) to B. It
informs B that S receives a request from A at its local time ts to communicate
with B using the key k. tag1 and tag2 are two constants that are used to distin-
guish these two messages. CWMF uses them to prevent the reflection attack [18]
in the original Wide Mouthed Frog protocol [7]. Third, B checks the message
freshness again and accepts the request from A if the message is received in a
timely fashion. All of the transmitted messages are encrypted under the users’
long-term keys that are pre-registered at S.

2.2 Timed Applied π-calculus

Timed applied π-calculus works as a specification language for timed protocols.
It is essentially the calculus proposed in [2,16] with the extensions of local clocks
and clock drift. Table 1 presents its syntax with the extensions highlighted in the
bold font.

516 L. Li et al.

Table 1. Syntax of timed applied π-calculus

Type Expression

Message (m) f(m1, m2, ..., mn)
A, B, C
n, k
t, t1, ti, tn
x, y, z

(function)
(name)
(nonce)
(timestamp)
(variable)

Parameter (p) p, p1, pj , pm (parameter)

Clock (c) c, c1, ck, cs (clock)

Constraint (B) CS(t1, t2, . . . , tn, p1, p2, . . . , pm) (timing constraint)

Configuration (L) CS(p1, p2, . . . , pm) (parameter relation)

Process (P, Q) 0
P |Q
!P
νn.P
μt.P
μt : c.P
if m1 = m2 then P [else Q]a

if B then P [else Q]
wait μt until B then P
wait μt : c until B then P
let x = f(m1, . . .) then P
in(x).P
out(m).P
check m in db as unique then P
init(m)@t.P
join(m)@t.P
accept(m)@t.P

(null process)
(parallel)
(replication)
(nonce generation)
(global clock reading)
(local clock reading)
(untimed condition)
(timed condition)
(global timing delay)
(local timing delay)
(function application)
(channel input)
(channel output)
(replay checking)
(initialization claim)
(participation claim)
(acceptance claim)

aThe expression with the brackets ‘[E]’ means that E can be omitted.

In timed applied π-calculus, we compose messages using functions,
names, nonces, variables and timestamps. Functions are generally defined as
f(m1,m2, . . . ,mn) ⇒ m @ D, where f is the function name, m1,m2, . . . ,mn

are the input messages, m is the output message and D is the consumed timing
range. When m is exactly the same as f(m1,m2, . . . ,mn), we call the func-
tion a constructor ; otherwise, it is a destructor. For simplicity, we add some
syntactic sugar as follows: (1) when D = [0,∞) which is the largest timing
range of functions, we omit ‘@ D’ in the function definition; (2) for construc-
tors, we omit ‘⇒ m’ in the definition. For instance, the symmetric encryp-
tion function is defined as encs(m, k), and its decryption function is defined
as decs(encs(m, k), k) ⇒ m. Names are globally shared strings. Nonces are
fresh random numbers. Variables are memory locations for holding messages.
Timestamps are clock readings. Additionally, parameters are configurable con-
stants (e.g., the maximum message lifetime pm) and persistent settings (e.g., the
minimal network latency pn).

Automated Verification of Timed Security Protocols with Clock Drift 517

In this work, we extend [16] with local clocks. That is, timestamps can be
read from these local clocks rather than the shared global clock. For instance,
in CWMF, the local clocks of A, S and B can be declared as ca, cs and cb

respectively. The constraint set B = CS(t1, . . . , tn, p1, . . . , pm) represents a set
of linear constraints over timestamps and parameters, which can acts as protocol
checking conditions and environment assumptions in the protocol. For instance,
given the minimal network latency pn, when a message sent at t is received at
t′, we have t′ − t ≥ pn. Additionally, the configuration L = CS(p1, . . . , pm) is a
set of linear constraints over only parameters that should be satisfied globally.
For example, the configuration pn > 0 should be satisfied because the message
transmission delay should stay positive.

As shown in Table 1, processes are defined as follows. ‘0’ is a null process
that does nothing. ‘P |Q’ is a parallel composition of processes P and Q. The
replication ‘!P ’ stands for an infinite parallel composition of process P , which
captures an unbounded number of protocol sessions running in parallel. The
nonce generation process ‘νn.P ’ represents that a fresh nonce n is generated
and bound to process P . The global clock reading process ‘μt.P ’ means that a
timestamp t is read from the global clock and bound to process P . The local
clock reading process ‘μt : c.P ’ similarly means that a timestamp t is read
from a local clock c and bound to process P . The checking condition cond in
the ‘if cond then P else Q’ process has two forms: (1) the untimed condition
m1 = m2 is a symbolic equivalence checking between two messages; (2) the
timed condition CS(t1, t2, . . . , tn, p1, p2, . . . , pm) is a constraint over timestamps
and parameters. When cond evaluates to true, process P is executed; otherwise,
Q is executed. The global timing delay process ‘wait μt until B then P ’ means
that P is executed until the reading t from the global clock satisfies the timing
condition B. Similarly, the local timing delay process ‘wait μt : c until B then
P ’ means that P is executed until the reading t from a local clock c satisfies the
timing condition B. The function application ‘let x = f(m1, . . . ,mn) then P ’
means if the function f is applicable to a sequence of messages m1, . . . ,mn, its
result is bound to the variable x in process P . The channel input ‘in(x).P ’ means
that a message, bound to the variable x, should be received before executing P .
The channel output ‘out(m).P ’ describes that the message m shall be sent out
before executing process P . The uniqueness checking expression ‘check m in db
as unique then P ’ ensures that (1) the value of m does not exist in a database
db before this expression, and (2) m is inserted into db after this expression.
The uniqueness checking is particularly useful for preventing replay attacks in
practice.

Additionally, the init, join and accept events are introduced to specify the
security properties. They represent the initialization, participation and accep-
tance of the protocol participants respectively according to their roles, which are
elaborated in Sect. 3.

Notations and Definitions. For simplicity, tuplen(m1,m2, . . . ,mn) is simply
written as 〈m1,m2, . . . ,mn〉. A variable x is bound to a process P when x is con-
structed by the function application process ‘let x = f(m1, . . .) then P else Q’ or

518 L. Li et al.

the channel input process ‘c(x).P ’ as shown in Table 1. When a variable x appears
in a process P while it is not bound to P , it is a free variable in P . A process is
closed when it does not have any free variable. Notice that all of the processes
considered in this work are closed. When x is a tuple in the function application
process or the channel input process above, we simply write x as 〈x1, x2, . . . , xn〉.
When we only want to check that a variable xi equals to a constant C, we can
replace ‘xi’ with ‘=C’ in the above tuple.

Remarks. We do not need special syntax to specify private channels in timed
applied π-calculus. Private channels can be constructed with public channels and
unbreakable encryptions. For instance, in order to model a message m transmit-
ted in a private channel, we first introduce a secret key ks. Then, we can model
a private channel as out(encs(m, ks)).P |in(x).let m′ = decs(x, ks) then Q.

2.3 CWMF Model

In order to verify CWMF in a hostile environment, we make the following
assumptions. (1) The adversary can ask any protocol participant to join the
protocol, including A, S and B. (2) The adversary controls the protocol par-
ticipation time, e.g., the initialization time of A in CWMF. (3) S provides its
session key exchange service to all of its registered users. (4) The adversary can
register as any user at the server, except for A and B. The precise attacker
model employed in our work is discussed in Sect. 3. In CWMF, because we are
interested in the protocol acceptance between legitimate users, we assume that
B only accepts requests from A. Additionally, a public channel controlled by the
adversary is used in CWMF for network communication.

Before the protocol starts, all of its participants need to register a secret
long-term key at the server. We assume that A and B have already registered
at the server using their names. Hence, the server can generate new keys for any
other user (possibly personated by the adversary), which can be modeled as the
process Pr below.

Pr � in(u).if u 	= A ∧ u 	= B then out(key(u)).0

In CWMF, A takes a role of the initiator as specified by Pa below. It
first starts the protocol by receiving a responder’s name r from c, assuming
that r is specified by the adversary. Then, A generates a session key k and
reads ta from its local clock ca. Then, A emits an init event to indicate the
protocol initialization with the arguments A, r, k at ta. Finally, the message
〈A, encs(〈ta, r, k, tag1〉, key(A))〉 is sent from A to S.

Pa � in(r).νk.μta : ca.init(A, r, k)@ta.out(〈A, encs(〈ta, r, k, tag1〉, key(A))〉).0

As specified by the process Ps, after S receives a user’s request as a tuple
〈i, x〉, it records its local time from cs as ts and decrypts x using key(i). If the
decryption is successful, it obtains the initialization time ti, the responder’s name
r and the session key k. When the freshness checking ts − ti ≤ pm is passed, S

Automated Verification of Timed Security Protocols with Clock Drift 519

then believes that it is participating in a protocol run at time ts and engages
the join event. Later, a new message encrypted by the responder’s key, written
as encs(〈ts, i, k, tag2 〉, key(r)), is sent to the responder over the public channel.

Ps � in(〈i, x〉).μts : cs.let 〈ti, r, k,=tag1〉 = decs(x , key(i)) then
if ts − ti ≤ pm then join(i, r, k)@ts.out(encs(〈ts, i, k, tag2 〉, key(r))).0

Additionally, as shown in the process Pb, when B receives the message from
S, B records its local time as tb and tries to decrypt request as a tuple of the
server’s processing time ts, the initiator’s id i and the session key k. If i = A and
the freshness checking tb − ts ≤ pm is passed, B then believes that the request
is sent from A within 2 ∗ pm and engages the accept event at time tb.

Pb � c(x).μtb : cb.let 〈ts,=A, k,=tag2〉 = decs(x , key(B)) then
if tb − ts ≤ pm then check k in db as unique then accept(A,B, k)@tb.0

Finally, we have a process Pp � c(A).c(B).0 that broadcasts the names A and
B. The overall process P � (!Pr)|(!Pa)|(!Ps)|(!Pb)|(!Pp) is a parallel composition
of the infinite replications of the five processes described above.

3 Timed Security Properties

In this section, we define the timed security properties. Notice that the properties
are defined based on the global clocks, whereas the participants in the protocols
rely on local clocks in practice. In this work, we focus on the authentication
properties, as they can be largely affected by clock drift. We first introduce the
adversary model as follows.

Adversary Model. We assume that an active attacker exists in the network,
whose capabilities are extended from the Dolev-Yao model [13]. The attacker
can intercept all communications, compute new messages, generate new nonces
and send the messages he obtained. Additionally, he can use all the publicly
available functions, e.g., encryption, decryption, concatenation. He can also ask
the genuine protocol participants to take part in the protocol at any time. Com-
paring our attack model with the Dolev-Yao model, reading timestamps from
various clocks, attacking weak cryptographic functions and compromising legit-
imate protocol participants are allowed additionally. A formal definition of the
adversary model is defined as follows.

Definition 1 Adversary Process. The adversary is defined as an arbitrary
closed timed applied π-calculus process K which does not emit the init, join and
accept events.

Timed Authentication. In a protocol, we often have an initiator who starts the
protocol and a responder who accepts the protocol. For instance, in CWMF, A is
the initiator and B is the responder. Additionally, other entities called partners,

520 L. Li et al.

e.g., S in CWMF, can be involved during the protocol execution. In general,
the protocol authentication aims at establishing common knowledge among the
protocol participants when the protocol successfully ends. Specifically, for timed
protocols, the common knowledge contains the information on the participants’
time.

Since different participants take different roles in the protocol, we introduce
the init, accept and join events for the initiator, the responder and the partners
respectively. Whenever a protocol participant believes that it is participating
in a protocol as a certain role, it engages the corresponding event with the
protocol parameters and the correct time. For instance, in CWMF, A engages
init(A, r, k)@ta; S engages join(i, r, k)@ts; and B engages accept(i, B, k)@tb. We
remark that ta, ts and tb in above events should be the correct readings from
the global clock, which could be different from the values used for constructing
messages in the protocol.

Based on the init, join and accept events, the protocol authentication prop-
erties then can be formally specified as event correspondences. The timed non-
injective authentication is satisfied if and only if for every acceptance of the
protocol responder, the protocol initiator indeed initiates the protocol and the
protocol partners indeed join in the protocol, agreeing on the protocol arguments
and timing requirements. We formally define the non-injective timed authenti-
cation as follows.

Definition 2 Non-injective Timed Authentication. The non-injective
timed authentication, denoted as Qn = accept ←[B]− init , join1 , . . . , joinn ,
is satisfied by a closed process P , if and only if, given the adversary process K,
for every occurrence of an accept event in P |K, the corresponding init event and
join events in Qn have occurred before in P |K, agreeing on the arguments and
the timing constraints B.

In CWMF, the non-injective timed authentication can be written as

Qn = accept(i, r, k)@tr ←[ts − ti ≤ §pm

∧ tr − ts ≤ §pm]− init(i, r, k)@ti, join(i, r, k)@ts.

The injective timed authentication additionally requires an injective corre-
spondence between the protocol initialization and acceptance comparing with
the non-injective timed authentication. Hence, the injective timed authentica-
tion, which ensures the infeasibility of replay attack, is strictly stronger than the
non-injective one.

Definition 3 Injective Timed Authentication. The injective timed authen-
tication, denoted as Qi = accept ←[B]→ init , join1 , . . . , joinn , is satisfied by
a closed process P , if and only if, (1) the non-injective timed authentication
Qn = accept ←[B]− init , join1 , . . . , joinn , is satisfied by P ; (2) given the adver-
sary process K, for every init event of Qi occurred in P |K, at most one accept
event can occur in P |K, agreeing on the arguments in the events and the con-
straints B in global time.

Automated Verification of Timed Security Protocols with Clock Drift 521

For simplicity, given a non-injective authentication property Qn = accept ←[
B]− H and its injective version Qi = accept ←[B]→ H, we define two functions
such that inj (Qn) = Qi and non inj (Qi) = Qn. Hence, we can write injective
timed authentication of CWMF as Qi = inj (Qn).

4 Semantics of Clock Drift

In this section, we first briefly introduce the timed logic rules [16] which are
used to capture the semantics of the timed applied π-calculus. We use CWMF to
demonstrate how timed logic rules can be used to capture the semantics of timed
applied π-calculus. Particularly, we capture the semantics of reading timestamps
from local clocks based on two different ways of modeling clock drift. We use
these two different semantics to show that our method can be adopted to handle
different scenarios in practice. We have implemented these two different clock
drift semantics in SPA [16].

Table 2. Syntax of Timed Logic Rules

Type Expression

Message (m) f(m1, m2, ..., mn)
a[], b[], c[], A[], B[], C[]
[n], [k], [N], [K]
t, t1, ti, tn
x, y, z, X, Y, Z

(function)
(name)
(nonce)
(timestamp)
(variable)

Parameter (p) §p (parameter)

Constraint (B) C(t1, t2, . . . , tn, §p1, §p2, . . . , §pm) (timing relation)

Configuration (L) C(§p1, §p2, . . . , §pm) (parameter config)

Event (e) init(�[d], m, t)
join(�[d], m, t)
accept(�[d], m, t)
know(�m, t)
new(�[n], l [])
unique(�u, �l [], m)

(initialization)
(participation)
(acceptance)
(knowledge)
(generation)
(uniqueness)

Rule (R) [G] e1, . . . , en −[B]→ e (rule)

4.1 Timed Logic Rules

In [16], we proposed the timed logic rules to define the semantics of the timed
applied π-calculus in terms of the adversary capabilities, so timed security pro-
tocols can be verified efficiently. In this work, we show how to use them to
capture clock drift. When the semantics of calculus processes are represented
by logic rules, we need additional notations to differentiate the data types
of names, nonces, timestamps, variables and parameters as shown in Table 2.

522 L. Li et al.

(1) The syntax of variables and functions are unchanged. (2) Names are appended
with a pair of square brackets from A to A[]. (3) Nonces are put inside of a pair
of square brackets from n to [n]. (4) Timestamps are written with a blackboard
bold font from t to t. (5) Parameters are prefixed from p to §p.

Generally, each timed logic rule specifies a capability of the adversary in the
form of [G] e1, e2, . . . , en −[B]→ e. G is a set of untimed guards, {e1, e2, . . . , en}
is a set of premise events, B is a set of timing constraints and e is a conclu-
sion event. It means that if the untimed guard condition G, the premise events
{e1, e2, . . . , en} and the timing constraints B are satisfied, the conclusion event
e is ready to occur. When G is empty, we simply omit ‘[G]’ in the rule.

The events represent the things that can occur in the protocol. In this work,
six types of events are essential to the timed protocols with clock drift. Similar to
the timed applied π-calculus, we have event init , join and accept that signal the
authentication claims made by the legitimate protocol participants. In particular,
the init , join events appear in the premise part whereas the accept events appear
in the conclusion part. We amend the events from init(m)@t, join(m)@t and
accept(m)@t to init([d],m, t), join([d],m, t) and accept([d],m, t) respectively.
The additional nonce [d] represents the session id, which is specifically introduced
to check the authentication properties.

Additionally, know(m, t) means that the adversary obtains message m at
time t. Because the adversary intercepts all communications over the public
channel, for every network input in(x) at time t, we add know(x, t′) satisfying
t′ ≤ t to the rule premises, meaning that the adversary need to know x before
time t so as to send it at t; for every network output out(m) at time t, we con-
struct a rule that concludes know(m, t′) and satisfies t′ − t ≥ §pn, representing
m can be intercepted by the adversary after the network delay §pn. Further-
more, given a nonce generated in νn.P , we add new([n], l []) to the rule premises,
denoting the generation of nonce [n] at the process location l [] (we use unique
labels to represent different locations in the process). Lastly, unique(u, db[],m)
means that the message u should have a unique value in a database db[] (any
constant can be a database name). Given the above unique event constructed in
a process, m is an ordered tuple of messages that can be identified by 〈u, db[]〉,
consisting of the network inputs, generated nonces and read timestamps in the
chronological order until the process ends or its sub-process is an infinite repli-
cation process. Unique events and new events are constructed in the following
two cases: (1) when ‘check u in db as unique then P ’ is present in the process,
unique(u, db[],m) is added; (2) given ‘νn.P ’ in the process at the location l ,
new(n, l []) and unique(n, l[],m) are added. The location names are generated by
a special function loc(), which returns a unique name to represent the current
process location. The semantics of timed applied π-calculus is presented in the
full paper version [1].

Since we assume that different nonces must have different values, every rule
can have at most one new event for every single nonce. When two new events
have the same nonce in a rule, we merge them into a single event. Similarly, we
need to merge other events in the following scenarios: know events of the same

Automated Verification of Timed Security Protocols with Clock Drift 523

message; unique events with the same unique value and database; init , join or
accept events with the same session id. In general, each event is associated with
a signature and premise events with the same signatures in a rule should be
merged. As shown in Table 2, event signature can be constructed by concatenat-
ing its event name with a sequence of messages prefixed by ‘�’. For instance, in
the event unique(�u, �l[],m), the unique value u and the location l[] is prefixed
by �, so its signature is ‘unique.u.l []’, where ‘.’ concatenates the strings.

To provide a better understanding of the timed logic rules, we show three
examples without clock drift. Later, we compare them with those rules with
clock drift.

Example 1. Given that the symmetric encryption function encs is public, the
adversary can use it to encrypt messages. In order to use this function, the
adversary first needs to know a message m and a key k. Then, the encryption
function returns the encrypted message encs(m, k). Hence, the encryption can
be represented as the following rule.

know(m, t1), know(k, t2) −[t1 ≤ t ∧ t2 ≤ t]→ know(encs(m, k), t) (1)

Notice that the timing constraints means that encs(m, k) can only be known to
the adversary after m and k are known, following the chronological order. �

Example 2. In CWMF, the server provides its key registration service to the
public as Ps. This service can be captured as follows.

[u 	= A[] ∧ u 	= B[]] know(u, t1) −[t − t1 ≥ §pn]→ know(key(u), t)

It means that anyone can register at the server using any name except A
and B. �

Example 3. In this example, we demonstrate the timed logic rule for Pb in
CWMF, when B reads the timestamps from the global clock rather than its
local clock. B receives a message encs(〈ts, A, k, tag2〉, key(B)) from S, records
its current time as tb and claims acceptance if tb − ts ≤ pm. Since the adversary
can start the protocol at anytime, we assume that tb is specified by the adver-
sary. Then, the timed logic rule of Pb is written as the following rule, where
mb = 〈encs(〈ts, A[], k, tag2[]〉, key(B[])), tb〉.

unique(k, db[],mb),new([nb], lb[]), unique([nb], lb[],mb),
know(tb, tb), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)

−[t1 ≤ tb ∧ tb − ts ≤ §pm]→ accept([nb], 〈A[], B[], k〉, tb) (2)

In Sect. 4.2, we will compare it with the rules explicitly modeling the clock
drift. �

4.2 Semantics of Local Clocks

In this work, we additionally introduce the operation μt : c that reads a
timestamp t from a local clock c. This operation is applicable to the local clock

524 L. Li et al.

reading process and the local timing delay process shown in Table 1. In order
to capture the semantics of timestamps constructed with μt : c in the calcu-
lus, we need to record two timestamps t and tg from the local clock c and the
global clock respectively. The semantics of regular operations in protocol execu-
tion, e.g., message constructions and guard conditions, is defined based on the
local time t because they use the real values read from local clocks. However,
the semantics of the security claims, i.e., init , join and accept events, should
be defined based on the global time tg to indicate the correct timing of event
engagement. In this way, we can correctly specify and distinguish two different
types of timestamps that are (1) used in the protocol execution and (2) captured
by the security properties. Hence, the remaining task is to establish the relation
between t and tg based on the assumptions of the clock drift. In the following,
we show two different ways of modeling clock drift. Notice that, when all of the
timestamps are read from the global clock, the timed logic rules remain the same
as those in [16]. For instance, the timed logic rules in Examples 1 and 2 remain
the same, while the timed logic rule in Example 3 shall be updated to take clock
drift into account. In this work, we consider two different scenarios of clock drift:
(VR) different clocks have different clock rates but concern their maximum drift
bounds; (SR) different clocks share the same clock rate but have different read-
ings. The differences between VR and SR in the following time logic rules are
highlighted in the red font.

Variable Clock Rate (VR). In VR, we assume that the local clock rate can
vary during the protocol execution. That is, local clocks can run faster or slower
than the global clock from time to time. Additionally, we assume that their max-
imum clock drift are bounded, resulting in the following two properties. First,
the timestamps read from the same local clock should always be monotonic. For
example, given a process μt1 : c.μt2 : c.0, we have t1 ≤ t2. However, if t1 and
t2 are read from two different local clocks, e.g., μt1 : c1.μt2 : c2.0, t2 could be
smaller than t1. Second, the differences between a local clock and the global
clock are always bounded by a maximum drift parameter associated with that
local clock. For instance, given a timestamp t read from c at global time t′, we
have |t − t′| ≤ pc, where pc is the maximum drift of c, satisfying pc > 0. If VR is
assumed, the timed logic rule of Pb can be written as the following rule, where
m′

b = 〈encs(〈ts, A[], k, tag2[]〉, key(B[])), 〈tb, t′
b〉〉.

unique(k, db[],m′
b),new([nb], lb[]), unique([nb], lb[],m′

b),
know(tb, t′

b), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)
−[t1 ≤ t′

b ∧ tb − ts ≤ §pm ∧ |t′
b − tb| ≤ §pb]→ accept([nb], 〈A[], B[], k〉, t′

b)

Shared Clock Rate (SR). When the local clocks share the same clock rate of
the (correct) global clock, the differences of the readings from different clocks are
always the same. In this case, we introduce a clock drift parameter dc for each
clock c. Whenever a timestamp t is read from c at the global time t′, we have
t = t′ + dc. Hence, in this case, given the two timestamps extracted from the
same local clock, their difference reflects the exact duration of that time period.

Automated Verification of Timed Security Protocols with Clock Drift 525

For instance, the timed logic rule of Pb can be written the following rule, where
db is the clock drift of cb and m′

b is the same as above.

unique(k, db[],m′
b),new([nb], lb[]), unique([nb], lb[],m′

b),
know(tb, t′

b), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)
−[t1 ≤ t′

b ∧ tb − ts ≤ §pm ∧ tb − t′
b = §db]→ accept([nb], 〈A[], B[], k〉, t′

b)

Comparing VR and SR. The difference between VR and SR can be illustrated
with the calculation of the round-trip delay (RTD) in the Network Time Protocol
(NTP). NTP is designed to synchronize the clocks between a client A and a server
B. In NTP, A first reads its clock ca as ta and then sends an authenticated signal
to B. Once B receives the signal, it reads its clock cb as tb. After B verifies the
signal successfully, B reads its clock cb as t′b and replies another authenticated
signal back to A. Once A receives the reply signal, it reads its clock ca as t′a. If the
reply signal is correctly verified, A calculates the RTD as δ = (t′a − ta)−(t′b − tb).
When SR is assumed, the calculation of δ is accurate even if clock drift exists.
However, when VR is assumed, δ is not accurate because the distance of clock
drift can vary during the protocol execution.

4.3 Verification Overview

After obtaining the initial timed logic rules from the timed applied π-calculus
as shown above, the security properties then can be verified using the method
proposed in [16]. We briefly introduce the method in the following and refer the
readers to [16] for details.

In general, the verification method works by composing all of the existing
timed logic rules into new rules, by unifying the conclusion of one rule with the
premises of other rules. For instance, we can compose Rule (1) to Rule (2) as the
following rule.

unique(k, db[],m′
b),new([nb], lb[]), unique([nb], lb[],m′

b),
know(tb, tb), know(〈ts, A[], k, tag2[]〉, t1), know(key(B[]), t2)

−[t1 ≤ tb ∧ t2 ≤ tb ∧ tb − ts ≤ §pm]→ accept([nb], 〈A[], B[], k〉, tb)

We repeatedly generate new rules until no new rule can be generated. Then,
we use the set of all rules to check the authentication properties, ensuring that
no violating rule exists and every authentication property is satisfied. When the
above two criteria can be met, the result of the verification is a set of configura-
tions (each configuration is a set of constraints over the parameters). We prove
that the protocol is guaranteed to satisfy the security property if its parameters
choose values from the configurations. Due to the limitation of space, we demon-
strate the full verification process of CWMF in the full paper version [1]. Notice
that the verification process is not guaranteed to terminate in general. However,
it has been shown that it often terminates for practical protocols [5,14,15]. After
obtaining the secure configurations, we need to additionally ensure that clock

526 L. Li et al.

Table 3. Experiment results

Protocol �R No clock drift Shared clock rate Variable clock rate

Result Time Result Time Result Time

Corrected WMF [7,16,18] 80 Secure 47.51ms Threat 112.75ms Attack 150.09ms

TESLA [21,22] 343 Secure 3.17 s Threat 3.55 s Threat 4.37 s

Auth Range [6,8] 53 Secure 38.58ms Secure 60.73ms Attack 46.47ms

CCITT X.509 (1c) [3] 135 Secure 162.69ms Secure 231.86ms Secure 224.00ms

CCITT X.509 (3) BAN [7] 198 Secure 791.00ms Secure 1058.05ms Secure 969.97ms

NS PK Time [10,17,20] 173 Secure 170.00ms Threat 205.93ms Threat 353.20ms

drift parameters are not constrained by other protocol parameters. If any clock
drift parameter is constrained by other protocol parameters, we believe that the
protocol has security threat under the clock drift as those constraints must
be checked at runtime in the real application. For instance, given the network
latency pn and the maximum drift pc for a local clock c, if pc < pn is required for
security but it cannot be satisfied in the real application scenario, the protocol
is vulnerable.

5 Evaluations

Our method has been integrated into the tool named Security Protocol Analyzer
(SPA). SPA relies on PPL [4] to check the satisfaction of timing constraints, i.e.,
to tell whether a set of timing constraints is empty or not. We use SPA to check
multiple timed protocols as shown in Table 3. All the experiments are conducted
using a Mac OS X 10.10.5 with 2.3 GHz Intel Core i5 and 16G 1333 MHz
DDR3. In order to clearly demonstrate how clock drift can affect the security of
protocols, all of the protocols evaluated in this section are correct under perfect
synchronization. The evaluated protocols are corrected WMF [7,12], TESLA [21,
22], a distance bounding protocol [6,8], corrected CCITT [3,7,9]. and a timing
commitment version [10,15] of Needham-Schroeder [17,20]. All of the protocols
can be verified or falsified for an unbounded number of protocol sessions. SPA
and the protocol models are available at [1]. Notice that the security (secure
constraints over parameters) is proved based on the satisfaction of all of the
queries, so we do not show the results for different queries separately in the table.
Particularly, we have found a new clock drift related security threat in TESLA.
In the following, we illustrate how SPA works with our running example first
and then other protocols.

5.1 CWMF Protocol

Based on the specification of CWMF in Sect. 2.3, WMF is checked in three
different scenarios of clock drift. Let da, ds and db be the drift distances of ca,
cs and cb respectively.

Automated Verification of Timed Security Protocols with Clock Drift 527

– When all clocks are perfectly synchronized, in order to finish CWMF, SPA
returns that the minimum network latency pn should be smaller than the
maximum message lifetime pm.

– (SR) When the local clocks share the same clock rate, CWMF is correct if
and only if the following constraints are met: (1) 0 ≤ ds − da; (2) 0 ≤ db − ds;
(3) ds − da ≤ pm − pn; (4) db − ds ≤ pm − pn. Constraint (1) and (2) ensure
that the injective authentication is finished within pm. Constraint (3) and (4)
are required to finish the protocol. Since da, ds and db exist in the constraints,
which might not be satisfied in practice, the verification result presents a
security threat of CWMF.

– (VR) When different local clocks have different clock rates, the constraint
returned by SPA is false. It means that SPA cannot find the right parameter
values to make CWMF secure in the case of VR. Intuitively, the authentication
property requires CWMF to be finished within 2 × pm, whereas the protocol
itself can only achieve the timing threshold 2×pm +pa +pb. In order to ensure
2 × pm + pa + pb ≤ 2 × pm, we have pa + pb ≤ 0. Since pa and pb are positives,
SPA cannot find any suitable constraint for these parameters.

5.2 TESLA Protocol

TESLA [21,22] is short for Timed, Efficient, Streaming, Loss-tolerant Authenti-
cation protocol. It can provide efficient authenticated broadcast over lossy chan-
nels. Generally, it consists of many resource constrained receivers and a relatively
powerful sender.

Protocol Description. The security goal of TESLA is to transfer a set of mes-
sages {Mj | j ∈ [0 . . . n]} from a sender S to a receiver R in an authenticated
manner, i.e., every message Mj accepted by R is sent by S previously. Since
R have limited computing power, S cannot adopt signature for authentication
purpose because of the large computing overhead. As a result, S computes hash
values for messages with hash keys and uses these keys for authentication. Specif-
ically, S divides the message transmission time into several continuous intervals.
Each interval has the same length of pd (pd > 0). Then, S sends the messages
with their hash values in different time intervals and reveals the corresponding
hash keys in later time intervals. For example, S sends 〈Mj ,mac(Mj , ki)〉 in
the i-th time interval and reveals the key ki in the next interval. Since only
S knows ki before ki is revealed, when ki is check to be a hash key from S,
〈Mj ,mac(Mj , ki)〉 should be sent from S. In order to check the authenticity of
the hash keys, TESLA requires these keys to form a chain such that ki can be
computed by ki+1 with a one-way function. Hence, when S can authenticate the
first key k0 to R, R can use k0 to authenticate newly received hash keys. Addi-
tionally, using this method, even if some hash key ki is lost, once ki+x (x > 0) is
received by R, ki can be computed from ki+x for authentication. In order to pro-
vide sound security, S in TESLA does not send the hash keys directly. Instead,
it sends the hash key generators {k′

i} and uses the generators to compute the
actual hash keys {ki}.

528 L. Li et al.

Unlike WMF and many other protocols, TESLA does not assume perfect
clock synchronization. It rather requires loose time synchronization between S
and R, where R knows the upper-bound of the local clock drift δ between S and
R. In order to obtain the upper-bound, TESLA adopts the following two-step
protocol. Firstly, R reads its current time as tr, generates a nonce (a random
number) n and sends n to S. Secondly, S reads its current time as ts, sign ts
and n with its private signing key sks and sends the signature back to R. When
R receives the signature from S, R can be sure that δ has an upper-bound of
ts − tr. Thereafter, when R receives a message from S at its local time t′r, he
can claim that the current time of S is upper-bounded by t′r + ts − tr. Due to
the limited space, the modeling details of TESLA are available in the full paper
version [1].

Verification Results. When TESLA is checked with SR or no clock drift, it
is verified as correct with the requirement 2 × pn < pd, i.e., the length of every
interval pd should be larger than twice of the minimal network latency pn. To the
best of our knowledge, this configuration requirement, justified in the following,
has not be reported in any other literature before. According to the verification
result from SPA, this protocol configuration requirement is necessary because of
the over-approximation of S ’s clock at R’s side in TESLA. When a payload is
sent by S at t′s and received by R at t′r based on their local clocks respectively,
the clock synchronization ensures that t′s < tbounds = t′r + ts − tr. Additionally, in
order to receive and check the payload successfully, t′s and tbounds should belong
to the same interval. Hence, given an initial time t0 and an interval index i, we
have t0 + i × pd ≤ t′s < t′r + ts − tr < t0 + (i + 1) × pd, which implies that pd

should be larger than (t′r − tr) − (t′s − ts). That is, 2 × pn < pd.
When TESLA is checked with VR, SPA automatically reports a new security

requirement such that pr + ps ≤ pn, where pr and ps are the maximum clock
drift of R and S respectively. This configuration requirement is necessary because
the clock synchronization alone fails to guarantee the bounding t′s < t′r + ts −
tr

1. Hence, in order to prevent the adversary from using the published keys to
construct legal payloads, the sum of the clock drift values from R and S should
be smaller than the network latency. This new configuration largely limits the
application of TESLA protocol when VR is assumed, which is also unreported
in existing literatures.

6 Related Works and Conclusions

This work builds on our previous works [14,15]. In this work, we extend the
timed applied π-calculus with local clocks and clock drift. In order to verify the
protocols specified in timed applied π-calculus, we define its semantics based
on the timed logic rules [14,15]. We introduce two clock drift scenarios based
on whether the clock rate is shared or not. During the evaluation, we show
that our framework is able to verify timed security protocols with clock drift

1 2 × pn < pd in SR has been updated to 2 × pn < pd + 2 × (ps + pr) in VR.

Automated Verification of Timed Security Protocols with Clock Drift 529

automatically, which is unique comparing with other existing works. The ana-
lyzing framework closest to ours was proposed by Delzanno and Ganty [12] which
applies MSR(L) to specify unbounded crypto protocols by combining first order
multiset rewriting rules and linear constraints. According to [12], the protocol
specification is modified by explicitly encoding an additional timestamp, repre-
senting the initialization time, into some messages. Thus the attack can be found
by comparing the original timestamps with the new one in the messages. How-
ever, it is unclear how to verify timed protocol in general using their approach.
Our method can be applied to verify protocols without any protocol modifica-
tion. Many tools [5,11,19] for verifying untimed security protocols are related.

In this work, we develop a systematic method to formally specify as well as
automatically verify timed security protocols with clock drift. We have integrated
our method into SPA and used it to analyze several timed protocols. In the
experiments, we have found new security threats related to clock drift in TESLA.
Since the problem of verifying security protocols is undecidable in general, we
cannot guarantee the termination of our method. However, similar to existing
works on verifying security protocols [5,14,15], it has been shown that it often
terminates for practical protocols.

References

1. Full paper, SPA tool and experiment models. http://lilissun.github.io/r/drift.html
2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:

POPL, pp. 104–115 (2001)
3. Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic pro-

tocols. IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)
4. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-

hedra and the parma polyhedra library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002). doi:10.1007/
3-540-45789-5 17

5. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
CSFW, pp. 82–96. IEEE CS (2001)

6. Brands, S., Chaum, D.: Distance-Bounding Protocols. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 30

7. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

8. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE J. Sel.
Areas Commun. 24(2), 221–232 (2006)

9. CCITT. The directory authentication framework - Version 7, 1987. Draft Recom-
mendation X.509

10. Chothia, T., Smyth, B., Staite, C.: Automatically checking commitment proto-
cols in proverif without false attacks. In: Focardi, R., Myers, A. (eds.) POST
2015. LNCS, vol. 9036, pp. 137–155. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46666-7 8

11. Cremers, C.J.F.: The Scyther tool: verification, falsification, and analysis of secu-
rity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
414–418. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 38

http://lilissun.github.io/r/drift.html
http://dx.doi.org/10.1007/3-540-45789-5_17
http://dx.doi.org/10.1007/3-540-45789-5_17
http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1007/978-3-662-46666-7_8
http://dx.doi.org/10.1007/978-3-662-46666-7_8
http://dx.doi.org/10.1007/978-3-540-70545-1_38

530 L. Li et al.

12. Delzanno, G., Ganty, P.: Automatic verification of time sensitive cryptographic
protocols. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
342–356. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 27

13. Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

14. Li, L., Sun, J., Liu, Y., Dong, J.S.: TAuth: verifying timed security protocols. In:
Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 300–315. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11737-9 20

15. Li, L., Sun, J., Liu, Y., Dong, J.S.: Verifying parameterized timed security proto-
cols. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 342–359.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-19249-9 22

16. Li, L., Sun, J., Liu, Y., Sun, M., Dong, J.S.: A formal specification and verification
framework for timed security protocols. Technical report, Singapore University of
Technology and Design (2016)

17. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Proces. Lett. 56, 131–133 (1995)

18. Lowe, G.: A family of attacks upon authentication protocols. Technical report,
Department of Mathematics and Computer Science, University of Leicester (1997)

19. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 48

20. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

21. Perrig, A., Canetti, R., Song, D.X., Tygar, J.D.: Efficient and secure source authen-
tication for multicast. In: NDSS (2001)

22. Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Efficient authentication and sign-
ing of multicast streams over lossy channels. In: S&P, pp. 56–73 (2000)

23. Sun, K., Ning, P., Wang, C.: Secure and resilient clock synchronization in wireless
sensor networks. IEEE J. Sel. Areas Commun. 24(2), 395–408 (2006)

http://dx.doi.org/10.1007/978-3-540-24730-2_27
http://dx.doi.org/10.1007/978-3-319-11737-9_20
http://dx.doi.org/10.1007/978-3-319-19249-9_22
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48

Dealing with Incompleteness
in Automata-Based Model Checking

Claudio Menghi1(B), Paola Spoletini2, and Carlo Ghezzi1

1 DEIB, Politecnico di Milano, Milano, Italy
{claudio.menghi,carlo.ghezzi}@polimi.it
2 Kennesaw State University, Marietta, USA

pspoleti@kennesaw.edu

Abstract. A software specification is often the result of an iterative
process that transforms an initial incomplete model through refinement
decisions. A model is incomplete because the implementation of certain
functionalities is postponed to a later development step or is delegated
to third parties. An unspecified functionality may be later replaced by
alternative solutions, which may be evaluated to analyze tradeoffs. Model
checking has been proposed as a technique to verify that a model of the
system under development is compliant with a formal specification of its
requirements. However, most classical model checking approaches assume
that a complete model of the system is given: they do not support incom-
pleteness. A verification-driven design process would instead benefit from
the ability to apply formal verification at any stage, hence also to incom-
plete models. After any change, it is desirable that only the portion affected
by the change, called replacement, is analyzed. To achieve this goal, this
paper extends the classical automata-based model checking procedure to
deal with incompleteness. The proposed model checking approach is able
not only to evaluate whether a property definitely holds, possibly holds
or does not hold in an incomplete model but, when the satisfaction of the
specification depends on the incomplete parts, to compute the constraints
that must be satisfied by their future replacements. Constraints are prop-
erties on the unspecified components that, if satisfied by the replacement,
guarantee the satisfaction of the original specification in the refined model.
Each constraint is verified in isolation on the corresponding replacement.

1 Introduction

The development process of any complex system can be viewed as a sequence
of decisions that make the system evolve from an initial, high-level model into a
fully detailed and verified implementation. Typically, this process is performed
by iteratively decomposing the model of the system into smaller functionalities.
At each stage, the model may be deliberately incomplete, either because devel-
opment of certain functionalities is postponed or because the implementation
will be provided by a third party, as in the case of a component-based or a
service-based system. In the case of a postponed functionality, an implementa-
tion is usually provided at some later stage of the development process, possibly
after exploring alternative solutions to evaluate their tradeoffs. There are also
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 531–550, 2016.
DOI: 10.1007/978-3-319-48989-6 32

532 C. Menghi et al.

cases in which the postponed functionality may become available at run time,
as in the case of dynamically adaptive systems.

The verification community developed several techniques to check if a model
of the system under development satisfies its requirements. In particular, model
checking [3,10,11] has matured to a stage where practical use is now often possi-
ble. Model checking exhaustively analyzes the behavior of the system’s model to
ensure that all its executions satisfy the properties of interest. These techniques
return yes if the model of the system satisfies its requirements, no and a coun-
terexample in the opposite case. Mainstream model checking techniques assume
that the model of the system and the properties against which it should be veri-
fied are completely defined when the verification takes place. This assumption is
not always valid during the software development since, as we discussed earlier,
models are often incomplete.

To support continuous verification, we should be able to verify incomplete
models against given properties. This would allow even initial, incomplete, and
high-level descriptions of the system to be verified against given properties, sup-
porting early error detection. This is exactly the motivation of our work, which
extends traditional automata-based model checking to verify if a model of the
system M satisfies its properties, even when M is incomplete. The technique
we develop assumes that M can contain one or more unspecified states, called
black box states, that represent unspecified functionalities. To describe black box
states, we introduce Incomplete Büchi Automata (IBAs), which extend the well
known Büchi automata (BAs) and support the designer in the iterative, top-
down refinement of a sequential system. Black box states can be (recursively)
refined into other (I)BAs. Due to the presence of black box states, the model
checking procedure is modified to produce three values: yes if the model of the
system definitely satisfies its properties, no plus a counterexample if it does not,
or unknown when the property is possibly satisfied, i.e., its satisfaction depends
on the future refinement of the black box states. In this last case, a constraint
per each black-box is synthesized, i.e., a property that must eventually be sat-
isfied by the automata (replacement) that will replace the black box state in
the refinement process. If, once refined, the replacements satisfy the synthesized
constraints, then M fulfills its properties.

The paper is organized as follows. Section 2 introduces IBAs. Section 3
describes the advantages of using this new formalism on a small example.
Section 4 shows how the classical verification procedure of BAs is modified to
manage incompleteness in the model of the system. Section 5 describes how the
constraint for the unspecified components is computed and used to verify the
replacement of the corresponding black box state. Section 6 provides an experi-
mental assessment of scalability of the approach. Section 7 presents related work
and discusses its relation with our approach. Finally, Sect. 8 concludes the paper.

2 Modeling Formalisms

This section defines an extension of Büchi Automata [6] (BAs), called Incom-
plete Büchi Automata (IBAs), which support incomplete specifications, i.e., they

Dealing with Incompleteness in Automata-Based Model Checking 533

contain some parts left as black boxes that will be later defined. It also describes
how IBAs are refined by replacing the unspecified components.

BAs are widely used models of computation that describe systems through
a finite set of states and transitions. States are snapshots of the system con-
figurations and transitions describe how the state of the system changes over
time. They are labeled with atomic propositions, i.e., statements that are true
when the transitions are performed. IBAs extend BAs by partitioning states into
regular and black box. A black box state, in the following often abbreviated as
(black) box, is a placeholder for a functionality that is currently left unspecified
and will be later refined by another automaton.

Definition 1. Given a set of propositions AP , an incomplete Büchi automaton
M is a tuple 〈Σ,R,B,Q,Δ,Q0, F 〉, where (a) Σ = 2AP is a finite alphabet;
(b) Q is a finite set of states, partitioned into R (the set of regular states) and
B (the set of black box states), such that Q = B ∪ R and B ∩ R = ∅; (c)
Δ ⊆ Q×Σ ×Q is a transition relation; (d) Q0 ⊆ Q is a set of initial states; (e)
F ⊆ Q is a set of accepting states.

Graphically, boxes are filled with black, initial states are marked by an incoming
arrow, and accepting states are double circled.

As BAs, IBAs use their accepting states to recognize infinite words (also
called ω-words), as formally defined in the following. A run of an IBA is defined
as follows:

Definition 2. Given an IBA defined over AP , a set of atomic propositions AP ′,
such that AP ⊆ AP ′, and the alphabet Σω = 2AP ′

, a run ρ : {0, 1, 2, . . .} → Q
over v ∈ Σω is defined as follows: (a) ρ(0) ∈ Q0; (b) for all i ≥ 0, (ρ(i), vi,
ρ(i + 1)) ∈ Δ ∨ ((ρ(i) ∈ B) ∧ (ρ(i) = ρ(i + 1))).

Informally, a character vi of the word v can be recognized by a transition of
the IBA, changing the state of the automaton from ρ(i) to ρ(i + 1), or can be
recognized by a transition of the IBA that will replace the box ρ(i) ∈ B. In the
latter case, the state ρ(i+1) corresponds to ρ(i), since the corresponding transi-
tion is fired inside the automaton that will replace ρ(i). Note that characters in
AP ′ \ AP , since they are not part of the already specified alphabet of the IBA,
need to be recognized inside boxes.

Let inf(ρ) be the states that appear infinitely often in the run ρ. A run ρ of
an IBA M is (a) definitely accepting iff (inf(ρ) ∩ F
= ∅) ∧ (∀i ≥ 0, ρ(i) ∈ R),
i.e., some accepting states appear infinitely often in ρ and all of its states are
regular; (b) possibly accepting iff (inf(ρ) ∩ F
= ∅) ∧ (∃i ≥ 0 | ρ(i) ∈ B), i.e.,
some accepting states appear infinitely often in ρ and at least one of its states
is a box; (c) not accepting otherwise.

An IBA M definitely accepts a word v iff there exists a definitely accepting
run for v. Definitely accepted words describe behaviors the system is going to
exhibit. M possibly accepts v iff it does not definitely accept v and there exists a
possibly accepting run for v. Possibly accepted words describe possible behaviors.
Finally, M does not accept v iff it does not contain any accepting or possibly

534 C. Menghi et al.

accepting run for v. A word is not accepted if it is neither a definitely accepted
nor a possibly accepted behavior. The language L(M) ∈ Σω (Lp(M) ∈ Σω)
of M, consists of all the words definitely accepted (possibly accepted) by M.
L(M) can be defined by considering the BA Mc, called completion, obtained
from M by removing its boxes and their incoming and outgoing transitions.

The refinement relation � allows the iterative elaboration of the model of
the system by replacing boxes with other IBAs, called replacements. The idea
behind the refinement relation is that every behavior of M must be preserved in
its refinement N , and every behavior of N must correspond to a behavior of M.
The final BA is obtained by substituting all the boxes with the corresponding
replacements. A BA N is an implementation of an IBA M if and only if M � N .
The formal definition of refinement, further definitions, lemmas and theorems
together with all the proofs of theorems and lemmas that support this work can
be found in [25].

The refinement relation is both reflexive and transitive, and preserves the
language containment, i.e., a possibly accepted word of M can be definitely
accepted, possibly accepted or not accepted in the refinement N , but every
definitely accepted and not accepted word remains definitely accepted or not
accepted in N .

Consider an IBA M. A refinement step consists of replacing a box with an
(I)BA. Intuitively, a replacement defines an automaton T that refines the box b
and the incoming ΔinR and outgoing transitions ΔoutR which describe how T
is connected with M. Formally, it is defined as follows:

Definition 3. Given an IBA M = 〈ΣM, RM, BM, QM, ΔM, Q0
M, FM〉, a

replacement R of a box b ∈ BM is a triple 〈T ,ΔinR, ΔoutR〉. T = 〈ΣT , RT ,
BT , QT ,ΔT , Q0

T , FT 〉 is an IBA. ΔinR ⊆ {(q′, a, q) | (q′, a, b) ∈ ΔM and
q ∈ QT } and ΔoutR ⊆ {(q, a, q′) | (b, a, q′) ∈ ΔM and q ∈ QT } are its incoming
and outgoing transitions, respectively. R must satisfy the following:

1. if b
∈ Q0
M then Q0

T = ∅;
2. if b
∈ FM then FT = ∅;
3. if (q′, a, b) ∈ ΔM then, there exists (q′, a, q) ∈ ΔinR such that q ∈ QT ;
4. if (b, a, q′) ∈ ΔM then, there exists (q, a, q′) ∈ ΔoutR such that q ∈ QM;
5. if (b, a, b) ∈ ΔM then, there exists (q′, a, q) ∈ ΔT .

Condition 1 (2) forces the replacement of a non-initial (non-accepting) box to not
contain initial (accepting) states. Condition 3 (4) forces each incoming (outgoing)
transition of b to be associated with at least an incoming (outgoing) transition
of the replacement. Finally, Condition 5 states that if there exist a self-loop
over the box b labeled with a, there exist at least a transition labeled with a
in the replacement R. Note that this transition could be not reachable in the
replacement.

Additional definitions, theorems and proofs can be found in [25].

Dealing with Incompleteness in Automata-Based Model Checking 535

3 Motivating Example

To describe how IBAs support iterative refinement, we consider a simple sys-
tem in charge of sending messages, described in [2]. An initial, high level and
incomplete model of the system M is shown in Fig. 1. When the system starts,
it moves from q1 to send1. The state send1 represents a function performing the
first attempt to send the message. If the attempt succeeds, the success state q3
is reached. Otherwise, the function send2, which performs a second attempt, is
activated. If the attempt succeeds, the success state q3 is entered, otherwise the
system enters the abort state q2.

The model M is defined over the alphabet ΣM = {start, ok, fail,
success, abort}. The ω-word v ={start}.{ok}.{success}ω corresponds to two
runs, ρ1 and ρ2. ρ1 is a possibly accepting run such that ρ1(0) = q1, ρ1(1) =
send1, and ∀i ≥ 2, ρ1(i) = q3. ρ2 is a not accepting run such that ρ2(0) = q1
and ∀i ≥ 1, ρ2(i) = send1. Since there exists a possibly accepting run and
no definitely accepting runs are present, M possibly accepts v. The word
v ={start}.{success}ω is instead not accepted since the only run associated
with v is ρ3(0) = q1 and ∀i ≥ 1, ρ3(i) = send1 which is neither definitely accept-
ing nor possibly accepting. The language L(M) of behaviors associated with M
is empty since there are no words accepted by Mc. Mc is obtained by removing
send1 and send2 and their incoming and outgoing transitions.

Figure 2 presents a BA N which is a refinement of the IBA M. The boxes
send1 and send2 are replaced with two instances of the same functionality R,
depicted inside two dashed-dotted frames. R sends a message and waits for
an answer. If a timeout occurs, the sending procedure fails. If an acknowl-
edgement is received, the procedure succeeds or fails depending on the type of

q1

-1-
{start}

send1 send2

-2-
{fail}

q3 q2

-3-
{ok}

-4-
{ok}

-5-
{fail}

-7-
{abort}

-6-
{success}

Fig. 1. The model M.

q1

-1-
{start}

send1 send2

-2-
{fail}

q3 q2

-3-
{ok}

-5-
{fail}

-7-
{abort}

-6-
{success}

Fig. 3. A refinement N ′ of M.

1

send2

q1

q3

q2

success

abortq4 q5

send
q6

wait
q7timeout

q8
ack

start
q9 q10

send
q11

wait

q12timeout

q13
ack

fail

fail

ok ok

fail

fail
send

Fig. 2. A refinement N of M.

536 C. Menghi et al.

acknowledgement. When the sending performed by send1 fails, another attempt
is performed by send2, whose failure leads entering state q2.

Figure 3 shows a hypothetical alternative refinement, which will be used later
to explain our approach, where box send2 is replaced by a component that always
fails.

4 Automata-Based Checking

Given a model M and a property φ, model checking is used to verify whether
M satisfies φ. When incomplete models are considered, the model checking algo-
rithm may return three possible values depending on whether the property is
definitely satisfied (T), possibly satisfied (?) or not satisfied (F).

The inductive (three-valued) semantic function ‖Mφ‖ associates to M and
φ one of the true values true (T), false (F) and unknown (?)

Definition 4. Given an IBA M and an LTL formula φ:

1. ‖Mφ‖ = T ⇔ (∀v ∈ (Lω(M) ∪ Lω
p (M)), v |= φ);

2. ‖Mφ‖ = F ⇔ (∃v ∈ Lω(M) | v
|= φ);
3. ‖Mφ‖ = ? ⇔ ((∀v ∈ Lω(M), v |= φ) ∧ (∃u ∈ Lω

p (M) | u
|= φ)).

Case 1 specifies that φ is true in M iff every word v that is in the language
definitely or possibly accepted by M satisfies φ. Case 2 specifies that φ is false
in M iff a word v that is in the language definitely accepted by the IBA exists
and v does not satisfy φ. Case 3 specifies that φ is possibly satisfied in M iff
there exists a word u that is in the language possibly accepted by the IBA
that does not satisfy φ and all the words v in the language definitely accepted
by M satisfy φ. For example, the property φ = G(send → F (success)) is
possibly satisfied by the model described in Fig. 1 since there exists a word
{start}.{send}.{fail}.{fail}.{abort}ω in the possibly accepted language which
does not satisfy φ and there are no words in the definitely accepted language.
It is possible to specify the satisfaction of an LTL formula φ with respect to M
using the BA Aφ equivalent to φ.

Definition 5. Given an IBA M and a BA Aφ,

1. ‖MAφ‖ = T ⇔ (Lω(M) ∪ Lω
p (M) ⊆ L(Aφ));

2. ‖MAφ‖ = F ⇔ (Lω(M)
⊆ Lω(Aφ));
3. ‖MAφ‖ = ? ⇔ ((Lω(M) ⊆ Lω(Aφ))∧ (Lω

p (M)
⊆ Lω(Aφ))).

Based on Definition 5 the automata-based model checking procedure is com-
posed by the following six steps.

(1) Create the automaton A¬φ: as in the classical approach, first we build the BA
that contains the set of behaviors forbidden by property φ. The complexity
of this step is O(2(|¬φ|)). The BA corresponding to ¬φ is presented in Fig. 4.

Dealing with Incompleteness in Automata-Based Model Checking 537

(2) Extract the completion automaton Mc which contains the definitely accept-
ing behaviors of M. Computing Mc has in the worst case complexity
O(|QM|+ |ΔM|) since it is sufficient to visit all the states of the automaton,
and, for each box s, remove its incoming and outgoing transitions and the
state s itself. In the example, the BA Mc, associated with M contains the
states q1, q2 and q3 and the transitions 6 and 7.

(3) Build the intersection automaton Ic = Mc∩ A¬φ: Ic contains in the worst
case 3 · |RM|· |QA¬φ

| states and describes the behaviors of Mc that violate
the property. The intersection between Mc associated with the model M
described in Fig. 1 and the automaton A¬φ described in Fig. 4 contains all
the behaviors of the sending message system that violate the property.

(4) Check the emptiness of the intersection automaton Ic: if Ic is not empty, the
condition L(M) ∩ L(A¬φ)
= ∅ holds, i.e., the property is not satisfied and
every infinite word in the intersection automaton is a counterexample. If,
instead, Ic is empty, M possibly satisfies or definitely satisfies φ depending
on the results of the next steps of the algorithm. The intersection automaton
Ic of the motivating example is empty. Indeed, both q2 and q3, accepting
states of Mc, are never reachable from q1. Thus, M definitely satisfies or
possibly satisfies φ depending on the next steps of the algorithm.

(5) Compute the intersection I = M ∩ A¬φ of the incomplete model M and
the automaton A¬φ associated with the property φ: to check whether M
definitely satisfies or possibly satisfies φ, it is necessary to verify whether
(L(M) ∪ Lp(M)) ∩ L(A¬φ) = ∅. We propose a new algorithm to compute
I = M ∩ A¬φ when M is incomplete. The intersection automaton I =
M ∩ A¬φ between an IBA M and a BA A¬φ is a BA 〈ΣI , QI , ΔI , Q0

I , FI〉
defined as follows:
– ΣI = ΣM ∪ ΣA¬φ

is the alphabet of I;
– QI = ((RM × RA¬φ

) ∪ (BM × RA¬φ
)) × {0, 1, 2} is the set of states;

– ΔI = Δc
I ∪ Δp

I . Δc
I is the set of transitions (〈qi, q

′
j , x〉, a, 〈qm, q′

n, y〉)
where (qi, a, qm) ∈ ΔM and (q′

j , a, q′
n) ∈ ΔA¬φ

. Δp
I corresponds to the

set of transitions (〈qi, q
′
j , x〉, a, 〈qm, q′

n, y〉) where qi = qm and qi ∈ BM
and (q′

j , a, q′
n) ∈ ΔA¬φ

. Moreover, each transition in ΔI must satisfy the
following conditions:
• if x = 0 and qm ∈ FM, then y = 1.
• if x = 1 and q′

n ∈ FA¬φ
, then y = 2.

• if x = 2 then y = 0.
• otherwise, y = x;

– Q0
I = Q0

M × Q0
A¬φ

× {0} is the set of initial states;
– FI = FM × FA¬φ

× {2} is the set of accepting states.
The intersection I between the model M depicted in Fig. 1 and the BA
A¬φ of Fig. 4 that corresponds to the negation of the property is the BA
described in Fig. 5. The set of states QI is composed by states obtained by
combining states of the automaton associated with the negation of the prop-
erty A¬φ with regular states and boxes of the model M. We define MI =
BM × RA¬φ

× {0, 1, 2} as the set of mixed states (indicated in Fig. 5 with

538 C. Menghi et al.

a stipple border). The portion of the state space that contains mixed states
associated with the states of the model send1 and send2 are surrounded by
a dashed-dotted frame. PRI = RM × RA¬φ

× {0, 1, 2} is the set of purely
regular states. For example, state 1© is obtained by combining states q1 of M
and p1 of A¬φ. This state is initial and purely regular since both q1 and p1
are initial and regular. State 2© is mixed since it is obtained by combining
the box send1 of M and the state p1 of A¬φ. As for classical intersection of
BAs [11], labels 0, 1 and 2 indicate that no accepting state is entered, at least
one accepting state of M is entered, and at least one accepting state of M
and one accepting state of A¬φ are entered, respectively.
The transitions in Δc

I are obtained by the synchronous execution of transi-
tions of M and A¬φ. For example, the transition from 2© to 3© is obtained
combining the transitions -2- of M and -1- of A¬φ. The transitions in Δp

I ,
graphically indicated through dashed lines in Fig. 5, are obtained when a
transition of A¬φ synchronizes with a transition in the replacement of a box
of M. For example, the transition from 2© to 6© is generated when A¬φ

and M perform the transition -2- and a transition inside the box send1,
respectively.
The intersection I contains in the worst case 3 · |QM| · |QA¬φ

| states.
(6) Check the emptiness of the intersection automaton I = M ∩ A¬φ: by

checking the emptiness of the automaton I we verify whether the prop-
erty φ is definitely satisfied or possibly satisfied by M. Since we have
already checked that L(M) ⊆ L(A¬φ), two cases are possible: if I is empty,
Lp(M) ⊆ L(A¬φ) and the property is definitely satisfied whatever refine-
ment is proposed for the boxes of M, otherwise, Lp(M)
⊆ L(A¬φ), meaning
that there exists some refinement of M that violates the property. For exam-
ple, the run start.(send) ∧ (!success).fail.fail.abortω, which is a possible
run of M, violates φ since there exists a path where a send is not followed
by a success. This behavior can be generated by replacing boxes send1 and
send2 with a component that allows paths where a message is sent and no
success is obtained, and an empty component that neither tries to send the
message again nor waits for a success, respectively.

p1

-3-

p2

-2-
(send)

-1-

Fig. 4. A¬φ.

q1,p1,0
1

send1,p1,0 send1,p2,0
2 6

-1-
{start}

q3,p2,1
7

q2,p2,0
11

q2,p2,2
10

send2,p1,0 send2,p2,0
3 8

q3,p1,1
5

q2,p1,1
4

q2,p2,1
11

-2-

-3-
(send)

-5-
{ok}

-6-
{fail}-7-

{ok} -8-
{fail}

-9-
{success}

-11-
{abort}

-14-
{ok}

-10-
{fail}

-12-

-13-
(send)

-15-

-16-
{ok}

-19-
{abort}

-20-
{abort}

-18-
{abort}

-17-
{fail}

send1

send2

Fig. 5. I = M ∩ A¬φ.

Dealing with Incompleteness in Automata-Based Model Checking 539

5 Constraint Computation and Replacement Checking

When a property φ is possibly satisfied, each word v that is recognized by the
intersection automaton I corresponds to a behavior B the system may exhibit
that violates φ. To satisfy φ, the developer must design the replacements of the
boxes to forbid B from occurring. This section shows how to decompose the
global information described by B into local constraints for boxes that become
proof obligations for their replacements. For clarity and reasons of space, the
section will give an informal, but precise, description of the process; all the
formal details can be found in the report published at [25].

A local constraint C for a box b is a pair 〈S, Sp〉, where S and Sp are two sub-
properties encoding the replacements of b that make φ not satisfied or possibly
satisfied, respectively. Hereafter we will first assume that a box constraint only
includes a sub-property S that specifies all behaviors that would lead to violat-
ing φ. This happens, for example, in the case where M contains only one box.
Intuitively the reason is that when there are more boxes, the violating behavior
may be caused by the “collaboration” of multiple boxes of the model. We will
briefly describe the case with multiple boxes at the end of the section.

To compute the constraint C for the box b we need to identify the behaviors
described by I that are recognized by the automaton and traverse the box. To
do that, we first perform a cleaning step that eliminates all states from which an
accepting state that can be entered infinitely many often is not reachable. This
is done with a procedure similar to [7,19]. The resulting automaton will be Icl.

The sub-property S can be computed by first extracting from Icl the fragment
(called P) where states are in the form 〈b,−,−〉 and then decorating the fragment
with additional information, namely:

1. the set ΔinS of incoming transitions that lead to P from the other states of
Icl;

2. the set ΔoutS of outgoing transitions that lead from P to the other states of
Icl;

3. the subset G of the source states of ΔinS that are reachable in Icl from one
of its initial states without traversing any other state in the form 〈b,−,−〉;

4. the subset R of target states of transitions in ΔoutS such that an accepting
state of Icl can be reached without traversing any other state in the form
〈b,−,−〉;

5. a relation K between the target states of ΔoutS and the source states of ΔinS .
A pair 〈s1, s2〉 exists in K iff state s2 is reachable from s1 by a path of Icl

that does not traverse any state in the form 〈b,−,−〉.

For example, the sub-property described in Fig. 7 is derived from the clean
intersection automaton of Fig. 6 resulting from the model in Fig. 3 and the prop-
erty in Fig. 4. The automaton P in Fig. 7 contains the states 2© and 6© and
the transitions -2-, -3- and -4. The transition -1- (-6-) is the incoming (outgo-
ing) transition of S and its source (target) state is also contained in the set G
(R). Because the source and destination states of the incoming and outgoing

540 C. Menghi et al.

q1,p1,0
1

send1,p1,0 send1,p2,0
2 6

-1-
{start}

q2,p2,011

q2,p2,2
10

q2,p2,1
11

-2-

-3-
(send)

-4-

-19-
{abort}

-20-
{abort}

-18-
{abort}send1

send2,p2,0
8

-6-
{fail}

-17-
{fail}

Fig. 6. The intersection Icl.

send1,p1,0 send1,p2,0
2 6-1-

{start}

-2-

-3-
(send)

-4-

send1

-6-
{fail}

q1,p1,0

G
send2,p2,0

R

Fig. 7. The sub-property S.

transitions are states of Icl that do not belong to P, we graphically represent
them with a cloud shape on the outer frame that encloses P (see Fig. 7, where
the source state of -1- is indicated with the triple 〈q1, p1, 0〉). Cloud states are
also marked G or R if they belong to G or R, respectively. Cloud states on the
frame that encloses a replacement are also used to indicate how the replacement
is connected to the states of the embedding IBA (see Fig. 8). Intuitively, every
path of that connects a G-marked cloud state with a R-marked cloud state of the
sub-property is a behavior the replacement of the box send1 should not exhibit.
Such behavior would enable a violation of the original property. In our example
K is empty, since there is no path from 8© to 1©.

Suppose now that the designer proceeds in the top-down decomposition pro-
ducing a replacement R for a box b and wants to check if φ is satisfied by the
new design, e.g., she/he proposes the replacement of Fig. 8. One possible option
would be refinement checking. The refinement checking procedure generates the
refinement N of M by replacing b with R and checks N against φ. By following
this approach, the entire model would be verified at each refinement round. This
also implies that the verification needs to be performed by a party which knows
the whole system and cannot be delegated to a third party which a partial view
of the system. The reason for computing a constraint C for box b has instead the
goal of enabling replacement checking, in which the verification is applied only
on the replacement R (a small fragment of the model) by checking it against the
previously generated constraint C.

To check whether a replacement violates a constraint, we build the intersec-
tion U of the automaton T (of the replacement) and P (of the sub-property).
In doing so we ignore incoming and outgoing transitions. Because we are com-
puting violating behaviors, boxes and their incoming and outgoing transitions
are removed from T . If the replacement contains boxes, the same procedure we
describe is repeated without removing boxes to find possibly violating behaviors.
The intersection U is shown in Fig. 10.

An additional initial state g and an additional accepting state r, with a
self loop, are added to U . States g and r are connected to states of U as fol-
lows. If there is an incoming (outgoing) transition 〈q, l, q′〉 (〈q′′, l, q′′′〉) to (of)
the replacement and an incoming (outgoing) transition 〈〈q, p,−〉, l, 〈b, p′,−〉〉
(〈〈b, p′′,−〉, l, 〈q′′′, p′′′,−〉〉) to (of) the sub-property originating in a state
in G (R), then a transition labeled l is added to U to connect state g

Dealing with Incompleteness in Automata-Based Model Checking 541

(〈q′′, 〈b, p′′,−〉,−〉) to each of the states labeled 〈q′, 〈b, p′,−〉, 0〉 (r). In our exam-
ple, transition -10- is added to U since incoming transitions -1- and -7- are both
labeled start, the source of -1- is in G and it is obtained from the state q1.
Transition -13- is added to U since both outgoing transitions of the replacement
and of the sub-property are labeled fail, the destination of the transition -6- is
in R and it is obtained from the state send2 of the model.

In general, U must be further enriched by relation K to include all the paths
in the intersection automaton which allow reaching the source of an incoming
transition of the constraint from the destination of an outgoing transition. This
does not happen for our example, because the relation is empty. If a tuple exists
in K, a violating run recognized by Icl exits a target state of one of its outgoing
transitions and enters the source state of one of its incoming transitions.

Once the automaton U has been built, we can check whether the replacement
violates the constraint by checking emptiness. If U is not empty, the constraint,
and therefore also the property of interest, is violated. If the constraint is not vio-
lated, the same procedure can check possibly violating behaviors by considering
T without removing boxes. If neither violating nor possibly violating behaviors
are present, the property is definitely satisfied.

When an IBA M has to satisfy the property φ and contains multiple boxes,
the constraint C computed for the box b may have both components: S and Sp.
S specifies the behaviors rendered by R that would violate φ, and Sp specifies
the possibly violating behaviors. S is computed as explained above, but, since
there are multiple boxes, in the computation of G, R and K it is necessary to
not traverse any state in the form 〈bi,−,−〉, where bi is a box of M. In fact,
when violating behaviors are considered, only states of the intersection automata
which are not obtained from boxes can be traversed. For example, when the
model of Fig. 1 and the property φ of Fig. 4 are evaluated, the sub-property S
associated with send1 (extracted from the intersection I presented in Fig. 5)
does not contain any outgoing transition in R. Furthermore, the automaton P
does not contain any accepting state. For this reason, no violating behaviors can
be exhibited by the replacement. Thus, the replacement either definitely satisfies
or possibly satisfies the constraint.

Sp is obtained similarly to S. However, possibly violating behaviors may
also traverse states in the form 〈bi,−,−〉, where bi is a box of M different
from b. Figure 9 shows the sub-property Sp for send1 associated with the model
of Fig. 1 –which contains multiple boxes– and the property φ of Fig. 4. Sp is
extracted from the intersection automaton I presented in Fig. 5. Two types of
possibly accepting runs are present: the ones that cross the component and leave
Sp through the outgoing transition -8-, and behaviors in which a sending activity
is performed and no success is obtained and the component is left by firing -6-.
In the first case, there is no assurance the replacement of send2 will guarantee a
success after any send. In the second case, since the component is left after the
execution of a sending activity, send2 must wait for a success.

The replacement checker detects possibly violating behaviors by considering
the replacement R against the sub-property Sp. In computing the intersection

542 C. Menghi et al.

-1-
{start}

-8-
{send}

send1

-2-
{fail}

q1 send2

q4 q5

Fig. 8. Replacement R.

-10-
{start}

g <q4,<send1,p1,0>,0>

<q5,<send1,p2,0>,0>

-11-
{send}

<q4,<send1,p1,0>,0>

-12-
{send}

r

-13-
{fail}

Fig. 10. Intersection U .

send1,p1,0 send1,p2,0
2 6

-1-
{start}

-2-

-3-
(send)

-4-
send1

-6-
{fail}

q1,p1,0

G

send2,p2,0

R

send2,p1,0

-8-
{fail}

Fig. 9. Sub-property Sp.

automaton, the boxes of the automaton T of R are also considered (if present).
For example, the intersection between the sub-property Sp of Fig. 9 and the
replacement shown in Fig. 8, is presented in Fig. 10. Since the language accepted
by the automaton is not empty, the replacement possibly satisfies the property.
Note that, when multiple boxes are present, a possibly violating behavior may
exist over which the box b has no control (this situation can be verified during
the constraint computation). In this case, even if the intersection between the
replacement and the property is empty, φ is possibly violated. If the sub-property
Sp has no incoming transitions in G and there exists a possibly violating behavior
of the system over which the box b has no control, the replacement checking
procedure returns that the property is possibly satisfied in constant time.

Theorem 1. The constraint computation procedure has a O(|QI |3|) temporal
complexity. The replacement checking complexity is O(|QT | · |QP |+ |ΔT | · |ΔP |+
|ΔinR| · |ΔinS | + |ΔoutR| · |ΔoutS | + (|ΔoutS | · |ΔinS |) · (|ΔoutR| · |ΔinR|))

The time complexity of computing constraints is due to the complexity
of calculating the relation K, which requires computing the reachability rela-
tion between all the pairs of states in the automaton. In the replacement
checking complexity the first part concerns the computation of the intersec-
tion of the replacement T and P (associated with the sub-property), the term
|ΔinR| · |ΔinS | + |ΔoutR| · |ΔoutS | concerns the computation of the transitions
in the intersection automaton generated analyzing the incoming and outgoing
transitions of the replacement and the sub-property, and the last part is due to
the use of K in the replacement checking.

6 Evaluation

The proposed approach is evaluated through an empirical study that aims to
assess its feasibility and scalability, by answering the following questions:

Dealing with Incompleteness in Automata-Based Model Checking 543

RQ1: How feasible is reasoning with IBAs with respect to BAs?
RQ2: How effective is replacement checking with respect to refinement

checking?

To answer RQ1 and RQ2, we set up experiments based on random model
generation, as done in [16,33,34,38]. We considered four tasks:

T1: we check fully refined, complete BAs N against selected LTL properties;
T2: for each BA N of task T1, we generate an IBA M of which it is a refinement.

IBAs are verified against the same LTL properties;
T3: for all IBAs and LTL properties, we consider the IBAs that possibly satisfy

one of the properties. For each IBA M, we consider the replacement R of the
box b that was abstracted into the box b by task T2. We refine M by expanding
box b with the replacement R and verify the resulting IBA against φ;

T4: we evaluate replacements against their (previously computed) constraints.

To answer RQ1, we conducted two experiments: (E1) compares performance and
results of T1 and T2; (E2) given a M obtained from N that possibly satisfies φ,
considers performance and results of T2 and T3. To answer RQ2, we conducted
one experiment: (E3) given a M that possibly satisfies φ and the replacement
R of its box b, compares performance and results of T3 and T4.

The evaluation is based on the CHIA (CHecker for Incomplete Automata)
prototype tool1, a Java 7 stand-alone application. CHIA has been developed as
a proof of concept and does not aim at competing with state of the art model
checking tools.

Experimental inputs. The random generation of IBAs is based on the proce-
dure presented in [34] (also used in [33,38]). BAs are generated over an alphabet
of two propositions. For each proposition, a directed graph with a single initial
state and k transitions is randomly created. The “hardness” of the problem is
changed by controlling: 1. the number of states; (|Q|); 2. the density of the tran-
sitions, i.e., the ratio between the number of transitions per proposition p and
the number of states; 3. the density of accepting states, i.e., the ratio between
the accepting and total state number. To avoid trivial automata, the initial state
is associated with an outgoing transition for each proposition of the alphabet.
The BAs that are generated as explained above are also used to further generate
the IBAs and replacements needed by tasks T2, T3 and T4. This is done by ran-
domly abstracting fragments of the BAs into boxes. The automata fragments and
the corresponding incoming and outgoing transitions are used as replacements
associated with the boxes. The box density is used to compute the number of
boxes to be injected in the IBA. The replacement density specifies the number
of states of the BA to be encapsulated into these boxes. Table 1 presents the
values of the parameters used in the scalability assessment.

The reported experiments used three properties randomly selected from the
Büchi Store [36]: φ1 = F (a → Fb), φ2 = G(a → F (a ∧ Fb)) and φ3 = F (a ∧
X(a∧Xa))∧F (b∧X(b∧Xb)) which have one, three and six temporal operators
and correspond to a BA of size 10, 28 and 41, respectively.
1 https://github.com/claudiomenghi/CHIA.

https://github.com/claudiomenghi/CHIA

544 C. Menghi et al.

Table 1. Parameters values.

Parameter N of states Transition density Accepting density Box density Replacement density

Initial 100 1.0 0.1 0.1 0.1

Increment 100 1.0 0.2 0.2 0.2

Final 1000 3.0 0.5 0.5 0.5

Table 2. E1 and E2 verification results.

E1 E2

T1 T2 φ1 φ2 φ3 T3 φ1 φ2 φ3

C1 T T 42,7 42,8 48,0 T 0 1,8 1,9

C2 T ? 57,3 57,2 52,0 ? 100 98,2 98,1

C3 F F 55,5 55,9 55,6 F 2 1,8 1,8

C4 F ? 44,5 44,1 44,4 ? 98 98,2 98,2

Table 3. E3 and E3b verification result.

E3 E3b

T3 T4 φ1 φ2 φ3 φ1 φ2 φ3

C1 T T 0,1 0 0,1 1,7 1,9 1,8

C2 ? ? 96,3 96,3 96,3 - - -

C3 F F 3,6 3,7 3,6 98,3 98,1 98,2

Each experiment is composed by a set of tests, which randomly generate a
model, select a property, and perform the corresponding verification. The tests
are performed 20 times to reduce biases due to the random generation.

Results. E1. Table 2 reports the results. Lines 1 and 2 (3 and 4) report data
in which T1 returns T (F). The first line shows that both BAs (Column T1)
and IBAs (Columns T2) return T 42,7 %, 42,8 % and 48,0 % of the cases for
properties φ1, φ2 and φ3, respectively. Likewise, line 3 shows that both BAs
and IBAs return a value F in 55,5 %, 55,9 % and 55,6 % of the cases for φ1, φ2

and φ3, respectively. Thus, in almost half of the cases the developer does not
need to wait until the end of the development process to know if the property is
definitely satisfied or violated.

Figure 11a shows the average ratio Tr between the verification time of BAs
(computed by task T1) and the verification time of the corresponding IBAs
(computed by task T2) with respect to the size of the automaton. As expected,
IBA verification performs better when properties are violated both by the BA
and the IBA, and worse in the case that the property is verified by the BA,
while the result is unknown for the corresponding IBA. Performance results are
similar for the other cases.

E2. Table 2 reports the results. Given that T1 has returned T , T3 returns
T in 0 %, 1,8 % and 1,9 % of the cases for φ1, φ2 and φ3, respectively. In this
case the developer does not need to proceed with the refinement to infer that
the property is satisfied. Likewise, when verification for the BA returns F . Task
T3 returns F in 2 %, 1,8 % and 1,8 % of the cases for the properties φ1, φ2 and
φ3, respectively. In these cases, the developer has to fix her/his current design
before proceeding in the refinement.

Figure 11b shows the average ratio Tr between the verification time of the
BAs (computed by task T1) and the verification time of IBAs obtained by task
T3 with respect to the size of the automaton. As expected, verification is faster

Dealing with Incompleteness in Automata-Based Model Checking 545

Fig. 11. Experiments results

for IBAs in case C3, and it is slower in case C2. Performance results are similar
otherwise.

E3. As showed in Table 3, in all the considered cases, T3 and T4 return the
same values, confirming correctness of the approach. The percentage of cases in
which the verification result is unknown is high because the replacement is only
applied to one box out of many others that may still be present in the refinement.

Figure 11c shows the average ratio Tr between the verification of the IBA
after replacement and verification of the replacement against the constraint with
respect to the number of the states of the IBA. In case C2 the ratio grows linearly,
thus indicating that checking the replacement against the constraint is better
that checking the refined IBA. Indeed, as the number of boxes increases, there is
a high chance that the box b whose replacement R is considered, is only reachable
from the initial state by traversing another box, and there exists another possibly
accepting run in the intersection not involving b. Thus, replacement verification
is performed in constant time: whatever replacement the developer proposes for
b the property remains possibly satisfied. However, this is a favorable situation.
For this reason, we refine the experiment (E3b) to consider the case in which
the starting IBA contains only one box and therefore the replacement refines it
to a complete BA.

E3b. In this setting, after a replacement is plugged into the box properties
are either satisfied or not, as shown in Table 3, which summarizes our results.
Figure 11d compares the performance of T3 and T4 with respect to the states
of M. We plot the data for three different values of the replacement density r.
As the number of states in the replacement gets smaller with respect to the

546 C. Menghi et al.

total number of states, verifying the replacement against the constraint performs
better than verifying the refinement.

Conclusions. E1 and E2 demonstrate the advantages of reasoning with IBAs.
There are no remarkable performance differences between the verification of
IBAs and BAs. Furthermore, even if in some cases reasoning with IBAs implies
an overhead, the proposed model checking procedure provides considerable ben-
efits, allowing an earlier detection of design flaws. E3 and E3b show that the
speedup of checking replacements against checking the flattened refinement is
generally considerable. This is in particular true when several boxes remain in
the refinement and when the replacement that makes the refinement complete
is small in size with respect to the complete automaton.

Threats to Validity. The most important threat to validity concerns the ran-
dom generation of experimental inputs (IBAs and replacements). There is no
guarantee that either the random generation procedure or the values of the para-
meters chosen in the generation reflect real-life examples. Furthermore, there is
no assurance about the significance of the formulae, randomly selected from the
Büchi Store [36], over the generated automata. To compensate for these threats,
we have complemented the assessment with an analysis of two real world appli-
cations reported in [24].

7 Related Work

Modeling incompleteness. Many modeling formalisms, such as MTSs [23],
PKSs [4], XKSs [9] and LTS↑ [19], support the specification of incompleteness.
These formalisms can be used in a top-down, hierarchical development process,
but they have not been explicitly proposed with this purpose. MTSs represent
incompleteness/uncertainty using maybe transitions, i.e., transitions that can be
present or not in the final design of the system, while LTS↑ express the behavior
of systems that are executed in an unknown environment. Differently, IBAs rep-
resents unspecified parts by means of black box states, i.e., states that can be
refined in other state machines. In this sense IBAs are similar to HSMs [2] which
have been proposed to model sequential processes when a top-down development
process is used. However, HSMs can only be analyzed at the end of the devel-
opment process when a fully specified model of the system is produced. Other
formalisms, such as [16–18], support uncertainty i.e., they associate incomplete
parts with a set of possible replacements. Finally, models, such as Featured
Transition Systems (FSTs) [13], used in variability modeling, are also related.
In variability modeling the goal is to represent a large family of different sys-
tems efficiently. Differently from IBAs in variability models the replacements (or
variants) are known upfront.

Checking incomplete models. The verification procedure discussed in Sect. 4 is
similar to others proposed in literature in which properties are expressed as LTL
formulae or automata. The procedure was designed considering the three value

Dealing with Incompleteness in Automata-Based Model Checking 547

inductive semantics of LTL. In the three valued semantics, when the property
is possibly satisfied, there is no assurance on the existence of two refinements
such that the first satisfies and the second violates the formula. This differentiate
our work from others that consider the thorough semantics, e.g. [5]. The three
valued semantics has been considered in the context of PKSs [4], MTSs [20,21,
23,37] and XKSs [9]. Differently from these works, our procedure supports the
verification of automata when the behavior of the system inside a set of states
(black boxes) is currently unknown. [19] describes how to verify LTSs (LTS↑)
when they are executed in an unknown environment. [2] proposes a technique
to check HSMs. However, the proposed technique can only be executed when
the whole behavior of the system is specified. Verification of variability-intensive
systems aims at checking whether all the products of a family satisfy a property
of interest. It has been proposed for example in [12,35], where MTSs and FSTs
are considered, respectively.

Constraint computation. The constraint computation problem is similar to other
problems, such as synthesis and supervisory control. In program synthesis [15,28]
the developer usually computes a model of the system that satisfies the properties
of interest. Differently, our goal is to compute sub-properties for the unspecified
parts. In this sense, the addressed problem is more similar to assumption gener-
ation [19]. In [19], the authors, given a model of the system M which contains
a set of controllable actions, compute an assumption for its environment. If the
environment satisfies the assumption, when it is executed in parallel with M
guarantees the satisfaction of the property of interest. Differently, our approach
tries to compute assumptions for the unknown components of the system. The
constraint computation can be interpreted also as a supervisory control prob-
lem [7,26,29,30] in which each box is associated with a set of controllable actions.
The problem is to synthesize a strategy the controller can employ to modify the
behavior of the incomplete model M in its boxes to satisfy the properties of
interest. In this sense, supervisory control is more similar to the assumption gen-
eration problem [19]. Finally, in [37], the authors propose a synthesis technique
that constructs MTSs from a combination of safety properties and scenarios but
without considering the problem of constraining unspecified parts.

Replacement checking. The replacement checking goal is to verify, after a change,
the portion of the state space affected by the change. Thus, problems such
as compositional reasoning, component substitutability and hierarchical model
checking are related to our work. Compositional reasoning [14] reduces the
verification effort by verifying properties on individual components and infer-
ring the properties that hold in the global system without its explicit creation.
For example, in the assume-guarantee paradigm [1,22,27], if M guarantees φ
and M ′ guarantees ψ when it is located in an environment that satisfies φ,
then, when M and M ′ are executed in parallel, they satisfy ψ. In this frame-
work, our constraint can be interpreted as a post-condition that a component
has to guarantee. The replacement checking can be considered as a procedure
used to verify whether the component ensures its post-condition. Component

548 C. Menghi et al.

substitutability [8,32] considers the verification of a system when a component
is removed from the system and replaced by a new one. The checker verifies
whether the new component preserves the behaviors provided by the old one. A
constraint can be interpreted as the “most general” component that ensures the
properties of interest. Incremental verification [31] is a technique to efficiently
verify code by focusing on the differences between the current and the previous
version. Differently from replacement checking, it requires the whole system to
run and, hence, is not tailored for distributed design.

8 Conclusion and Future Work

This paper presented an automata-based model checking algorithm that verifies
whether an incomplete model of the system definitely satisfies, possibly satisfies
or does not satisfy its requirements. If the specification is possibly satisfied,
a constraint on the unspecified parts is computed. Whenever an unspecified
part is refined, i.e., a replacement is proposed, it is verified in isolation against
the previously computed constraint. We provided the theoretical background
behind our framework and evaluated its feasibility and effectiveness using a
set of random generated models. The presented approach is a step toward the
integration of formal verification in modern development processes.

Evaluating the approach on a realistic case study is one of our future goals.
Moreover, we also plan to realize a solid, efficient tool designed upon existing
symbolic model checkers, and integrate it in commonly used IDEs. Finally, we
also aim to analyze the benefits of applying our approach in a distribute devel-
opment environment, where the refinement of some boxes is delegated to third
parties.

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),
7–48 (1999)

2. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst. 23(3), 273–303 (2001)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-

poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). doi:10.1007/3-540-48683-6 25

5. Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state
spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182.
Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4 14

6. Büchi, J.R.: Symposium on decision problems: On a decision method in restricted
second order arithmetic. Stud. Logic Found. Math. 44, 1–11 (1966)

7. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer, New York (2008)

8. Chaki, S., Sharygina, N., Sinha, N.: Verification of evolving software. In: Specifi-
cation and Verification of Component-Based Systems, SAVCBS (2004)

http://dx.doi.org/10.1007/3-540-48683-6_25
http://dx.doi.org/10.1007/3-540-44618-4_14

Dealing with Incompleteness in Automata-Based Model Checking 549

9. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. Trans. Softw. Eng. Methodol. (TOSEM) 12(4), 371–408 (2003)

10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. Trans. Program. Lang. Syst.
(TOPLAS) 8(2), 244–263 (1986)

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

12. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089
(2013)

13. Classen, A., Heymans, P., Schobbens, P., Legay, A., Raskin, J.: Model checking lots
of systems: efficient verification of temporal properties in software product lines.
In: International Conference on Software Engineering, pp. 335–344. ACM (2010)

14. de Roever, W.-P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J., Verification, C.: Introduction to Compositional and Non-compositional
Methods. Cambridge University Press, Cambridge (2012)

15. D’ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesizing non-
anomalous event-based controllers for liveness goals. Trans. Softw. Eng. Method.
(TOSEM) 22(1), 9:1–9:36 (2013). Article no. 9

16. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reason-
ing with uncertainty. In: International Conference on Software Engineering, ICSE,
pp. 573–583. IEEE Computer Society (2012)

17. Famelis, M., Salay, R., Chechik, M.: The semantics of partial model transforma-
tions. In: International Workshop on Modeling in Software Engineering, pp. 64–69.
IEEE Computer Society (2012)

18. Famelis, M., Salay, R., Sandro, A., Chechik, M.: Transformation of models con-
taining uncertainty. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P.
(eds.) MODELS 2013. LNCS, vol. 8107, pp. 673–689. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-41533-3 41

19. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: International Conference on Automated Soft-
ware Engineering, ASE, pp. 3–12. IEEE Computer Society (2002)

20. Huth, M.: Model checking modal transition systems using Kripke structures. In:
Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 302–316. Springer, Heidelberg
(2002). doi:10.1007/3-540-47813-2 21

21. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: a foundation for
three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155–169. Springer, Heidelberg (2001). doi:10.1007/3-540-45309-1 11

22. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. Trans. Program. Lang. Syst. (TOPLAS) 5(4), 596–619 (1983)

23. Larsen, K.G., Thomsen, B.: A modal process logic. In: Third Annual Symposium
on Logic in Computer Science, LICS, pp. 203–210. IEEE Computer Society (1988)

24. Menghi, C.: Dealing with incompleteness in automata based model checking. Ph.D.
thesis, Politecnico di Milano (2015). https://www.politesi.polimi.ithandle/10589/
114509

25. Menghi, C., Spoletini, P., Ghezzi, C.: Modeling, refining and analyzing Incomplete
Büchi Automata. ArXiv e-prints (2016). http://arxiv.org/abs/1609.00610

26. Miremadi, S., Lennartson, B., Åkesson, K.: BDD-based supervisory control on
extended finite automata. In: Conference on Automation Science and Engineering,
CASE, pp. 25–31. IEEE (2011)

http://dx.doi.org/10.1007/978-3-642-41533-3_41
http://dx.doi.org/10.1007/3-540-47813-2_21
http://dx.doi.org/10.1007/3-540-45309-1_11
https://www.politesi.polimi.ithandle/10589/114509
https://www.politesi.polimi.ithandle/10589/114509
http://arxiv.org/abs/1609.00610

550 C. Menghi et al.

27. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI
Series, vol. 13, pp. 123–144. Springer, Heidelberg (1985)

28. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Symposium on
Principles of Programming Languages, pp. 179–190. ACM Press (1989)

29. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

30. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. IEEE
77(1), 81–98 (1989)

31. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with
interpolation-based function summarization. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33386-6 17

32. Sharygina, N., Chaki, S., Clarke, E., Sinha, N.: Dynamic component substitutabil-
ity analysis. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol.
3582, pp. 512–528. Springer, Heidelberg (2005). doi:10.1007/11526841 34

33. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). doi:10.1007/11591191 28

34. Tabakov, D., Vardi, M.Y.: Model checking Büchi specifications. In: International
Conference on Language and Automata Theory and Applications, LATA, pp. 565–
576. Research Group on Mathematical Linguistics, Universitat Rovira i Virgili,
Tarragona (2007)

35. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Math. Program. 85(2), 287–315 (2016)

36. Tsay, Y.-K., Tsai, M.-H., Chang, J.-S., Chang, Y.-W.: Büchi store: an open
repository of Büchi automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 262–266. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19835-9 23

37. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)

38. Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). doi:10.1007/
11817963 5

http://dx.doi.org/10.1007/978-3-642-33386-6_17
http://dx.doi.org/10.1007/11526841_34
http://dx.doi.org/10.1007/11591191_28
http://dx.doi.org/10.1007/978-3-642-19835-9_23
http://dx.doi.org/10.1007/978-3-642-19835-9_23
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/11817963_5

Equivalence Checking of a Floating-Point Unit
Against a High-Level C Model

Rajdeep Mukherjee1(B), Saurabh Joshi2, Andreas Griesmayer3,
Daniel Kroening1, and Tom Melham1

1 University of Oxford, Oxford, UK
{rajdeep.mukherjee,kroening,tom.melham}@cs.ox.ac.uk

2 IIT Hyderabad, Telangana, India
sbjoshi@iith.ac.in

3 ARM Limited, Cambridge, UK
andreas.griesmayer@arm.com

Abstract. Semiconductor companies have increasingly adopted a
methodology that starts with a system-level design specification in
C/C++/SystemC. This model is extensively simulated to ensure correct
functionality and performance. Later, a Register Transfer Level (RTL)
implementation is created in Verilog, either manually by a designer or
automatically by a high-level synthesis tool. It is essential to check that
the C and Verilog programs are consistent. In this paper, we present a
two-step approach, embodied in two equivalence checking tools, Veri-

fOx and hw-cbmc, to validate designs at the software and RTL levels,
respectively. VerifOx is used for equivalence checking of an untimed
software model in C against a high-level reference model in C. hw-

cbmc verifies the equivalence of a Verilog RTL implementation against
an untimed software model in C. To evaluate our tools, we applied them
to a commercial floating-point arithmetic unit (FPU) from ARM and an
open-source dual-path floating-point adder.

1 Introduction

One of the most important tasks in Electronic Design Automation (EDA) is to
check whether the low-level implementation (RTL or gate-level) complies with
the system-level specification. Figure 1 illustrates the role of equivalence checking
(EC) in the design process. In this paper, we present a new EC tool, VerifOx,
that is used for equivalence checking of an untimed software (SW) model against
a high-level reference model. Later, a Register Transfer Level (RTL) model is
implemented, either manually by a hardware designer or automatically by a
synthesis tool. To guarantee that the RTL is consistent with the SW model, we
use an existing tool, hw-cbmc [15], to check the correctness of the synthesized
hardware RTL against a SW model.

In this paper, we address the most general and thus most difficult variant
of EC: the case where the high-level and the low-level design are substantially
different. State-of-the-art tools, such as Hector [14] from Synopsys and slec

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 551–558, 2016.
DOI: 10.1007/978-3-319-48989-6 33

552 R. Mukherjee et al.

C versus C

VERIFOX

C versus RTL

HW−CBMC

IEEE 754 Compliant
Reference Model

Untimed Software
Model of ARM FPU

RTL Model
of ARM FPU

HW−CBMC

VERIFOX

Design FLow Equivalence Checking Tool

System Specification

RTL Design

RTL versus RTL

System Level Model

Power/Performance
Optimized RTL

HW−CBMC

Design FLow Equivalence Checking Tool

Optimization

Manual
Refinement

High−level
Synthesis

Sequential

Refinement
Manual

Manual
Synthesis

Fig. 1. Electronic design automation flow

from Calypto,1 rely on equivalence points [18], and hence they are ineffective in
this scenario. We present an approach based on bounded analysis, embodied in
the tools VerifOx and hw-cbmc, that can handle arbitrary designs.

EC is broadly classified into two separate categories: combinational equiva-
lence checking (CEC) and sequential equivalence checking (SEC). CEC is used
for a pair of models that are cycle accurate and have the same state-holding ele-
ments. SEC is used when the high-level model is not cycle accurate or has a sub-
stantially different set of state-holding elements [1,11]. It is well-known that EC of
floating-point designs is difficult [12,19]. So there is a need for automatic tools that
formally validate floating-point designs at various stages of the synthesis flow, as
illustrated by right side flow of Fig. 1. An extended version of this paper, showing
worked examples and giving further technical details, is available at [17].

2 VERIFOX: A Tool for Equivalence Checking
of C Programs

VerifOx is a path-based symbolic execution tool for equivalence checking of C
programs. The tool architecture is shown on the left side of Fig. 2. VerifOx sup-
ports the C89 and C99 standards. The key feature is symbolic reasoning about
equivalence between FP operations. To this end, VerifOx implements a model
of the core IEEE 754 arithmetic operations—single- and double-precision addi-
tion, subtraction, multiplication, and division—which can be used as reference
designs for equivalence checking. So VerifOx does not require external refer-
ence models for equivalence checking of floating-point designs. This significantly
simplifies the users effort to do equivalence checking at software level. The ref-
erence model in VerifOx is equivalent to the Softfloat model.2 VerifOx also
supports SAT and SMT backends for constraint solving.

1 http://calypto.com/en/products/slec/.
2 http://www.jhauser.us/arithmetic/SoftFloat.html.

http://calypto.com/en/products/slec/
http://www.jhauser.us/arithmetic/SoftFloat.html

Equivalence Checking of a Floating-Point Unit 553

Reference
Model

SAT solving
Infeasible

Path Pruning
Incremental

Verification

Condition

SMT SAT

Word−level Netlist

HW−CBMC

Software Model

Slicing
Property

Driven

Composite Model
(Miter)

Composite Model
 Sliced

VERIFOX

Path-wise Exploration

SAT/SMT Solver

Transition
Unwind

System

SSA
Unwind

loops
C

(Firmware)

Verilog
(HW)

CFG

System
Transition

Bit-level Netlist

Fig. 2. VerifOx and hw-cbmc tool architecture

Program Path Path Path Monolithic
Constraint 1 Constraint 2 Constraint 3 Path Constraint

void t o p (){
i f (r e s e t) {

x =0;
y =0; }

e l s e {
i f (a > b)
x=a+b ;
e l s e
y =(a & 3)<<b ; }}

C1 ≡
reset1 �= 0 ∧
x2 = 0 ∧
y2 = 0

C2 ≡
reset1 = 0 ∧
b1 � a1 ∧
x3 = a1 +b1

C3 ≡
reset1 = 0 ∧
b1 ≥ a1 ∧
y3 = (a1&3)
<< b1

C ⇐⇒ ((guard1 = ¬(reset1 = 0))∧
(x2 = 0)∧ (y2 = 0)∧
(x3 = x1)∧ (y3 = y1)∧
(guard2 = ¬(b1 >= a1))∧
(x4 = a1 +b1)∧ (x5 = x3)∧
(y4 = (a1&3) << b1)∧
(x6 = ite(guard2,x4,x5))∧
(y5 = ite(guard2,y3,y4))∧
(x7 = ite(guard1,0,x6))∧
(y6 = ite(guard1,0,y5)))

Fig. 3. Single-path and monolithic symbolic execution

Given a reference model, an implementation model in C and a set of partition
constraints, VerifOx performs depth-first exploration of program paths with
certain optimizations, such as eager infeasible path pruning and incremental con-
straint solving. This enables automatic decomposition of the verification state-
space into subproblems, by input-space and/or state-space decomposition. The
decomposition is done in tandem in both models, exploiting the structure present
in the high-level model. The approach generates many but simpler SAT/SMT
queries, similar to the technique followed in klee [4]. Figure 3 shows three feasi-
ble path constraints corresponding to the three paths in the program on the left.
In contrast, the last column of Fig. 3 shows a monolithic path-constraint gener-
ated by hw-cbmc. VerifOx is available at http://www.cprover.org/verifox.

Incremental solving in VERIFOX. VerifOx can be run in two different
modes: partial incremental and full incremental. In partial incremental mode,
only one solver instance is maintained while going down a single path. So when
making a feasibility check from one branch b1 to another branch b2 along a sin-
gle path, only the program segment from b1 to b2 is encoded as a constraint
and added to the existing solver instance. Internal solver states and the infor-
mation that the solver gathers during the search remain valid as long as all the
queries that are posed to the solver in succession are monotonically stronger. If
the solver solves a formula φ, then posing φ ∧ψ as a query to the same solver
instance allows one to reuse solver knowledge it has already acquired, because
any assignment that falsifies φ also falsifies φ ∧ψ. Thus the solver need not
revisit the assignments that it has already ruled out. This results in speeding up

http://www.cprover.org/verifox

554 R. Mukherjee et al.

the feasibility check of the symbolic state at b2, as the feasibility check at b1 was
true. A new solver instance is used to explore a different path, after the current
path is detected as infeasible.

In full incremental mode, only one solver instance is maintained throughout
the whole symbolic execution. Let φb1b2 denote the encoding of the path fragment
from b1 to b2. It is added in the solver as Bb1b2 ⇒ φb1b2 . Then, Bb1b2 is added as
a blocking variable3 to enforce constraints specified by φb1b2 . Blocking variables
are treated specially inside the solvers: unlike regular variables or clauses, the
blocking can be removed in subsequent queries without invalidating the solver
instance. When one wants to back-track the symbolic execution, the blocking
Bb1b2 is removed and a unit clause ¬Bb1b2 is added to the solver, thus effectively
removing φb1b2 .

3 HW-CBMC: A Tool for Equivalence Checking of C
and RTL

hw-cbmc is used for bounded equivalence checking of C and Verilog RTL. The
tool architecture is shown on the right side of Fig. 2. hw-cbmc supports IEEE
1364-2005 System Verilog standards and the C89, C99 standards. hw-cbmc

maintains two separate flows for hardware and software. The top flow in Fig. 2
uses synthesis to obtain either a bit-level or a word-level netlist from Verilog
RTL. The bottom flow illustrates the translation of the C program into static
single assignment (SSA) form [9]. These two flows meet only at the solver. Thus,
hw-cbmc generates a monolithic formula from the C and RTL description, which
is then checked with SAT/SMT solvers. hw-cbmc provides specific handshake
primitives such as next timeframe() and set inputs() that direct the tool to
set the inputs to the hardware signals and advance the clock, respectively. The
details of hw-cbmc are available online.4

4 Experimental Results

In this section, we report experimental results for equivalence checking of difficult
floating-point designs. All our experiments were performed on an Intel R© Xeon R©

machine with 3.07 GHz clock speed and 48 GB RAM. All times reported are in
seconds. MiniSAT-2.2.0 [10] was used as underlying SAT solver with VerifOx

0.1 and hw-cbmc 5.4. The timeout for all our experiments was set to 2 h.

Proprietary Floating-point Arithmetic Core: We verified parts of a
floating-point arithmetic unit (FPU) of a next generation ARM R© GPU. The FP
core is primarily composed of single- and double-precision ADD, SUB, FMA and
TBL functional units, the register files, and interface logic. The pipelined com-
putation unit implements FP operations on a 128-bit data-path. In this paper,
3 The SAT community uses the term assumption variables or assumptions, but we will

use the term blocking variable to avoid ambiguity with assumptions in the program.
4 http://www.cprover.org/hardware/sequential-equivalence/.

http://www.cprover.org/hardware/sequential-equivalence/

Equivalence Checking of a Floating-Point Unit 555

we verified the single-precision addition (FP-ADD), rounding (FP-ROUND),
minimum (FP-MIN) and maximum (FP-MAX) operations. The FP-ADD unit
can perform two operations in parallel by using two 64-bit adders over multi-
ple pipeline stages. Each 64-bit unit can also perform operations with smaller
bit widths. The FPU decodes the incoming instruction, applies the input modi-
fiers and provides properly modified input data to the respective sub-unit. The
implementation is around 38000 LOC, generating tens of thousands of gates.
We obtained the SW model (in C) and the Verilog RTL model of the FPU core
from ARM. (Due to proprietary nature of the FPU design, we can not share the
commercial ARM IP.)

Open-source Dual-path Floating-point Adder: We have developed both a
C and a Verilog implementation of an IEEE-754 32-bit single-precision dual-
path floating point adder/subtractor. This floating-point design includes various
modules for packing, unpacking, normalizing, rounding and handling of infinite,
normal, subnormal, zero and NaN (Not-a-Number) cases. We distribute the C
and RTL implementation of the dual-path FP adder at http://www.cprover.org/
verifox.

Reference Model: The IEEE 754 compliant floating-point implementations in
VerifOx are used as the golden reference model for equivalence checking at the
software level. For equivalence checking at the RTL phase, we used the untimed
software model from ARM as the reference model, as shown on the right side of
Fig. 1.

Miters for Equivalence Checking: A miter circuit [3] is built from two given
circuits A and B as follows: identical inputs are fed into A and B, and the
outputs of A and B are compared using a comparator. For equivalence checking
at software level, one of the circuits is a SW program and the other is a high-level
reference model. For the RTL phase, one of the circuits is a SW program treated
as reference model and the other is an RTL implementation.

Case-splitting for Equivalence Checking: Case-splitting is a common prac-
tice to scale up formal verification [12,14,19] and is often performed by user-
specified assumptions. The CPROVER assume(c) statement instructs hw-cbmc

and VerifOx to restrict the analysis to only those paths satisfying a given
condition c. For example, we can limit the analysis to those paths that are exer-
cised by inputs where the rounding mode is nearest-even (RNE) and both input
numbers are NaNs by adding the following line:

CPROVER assume(roundingMode==RNE && uf nan && ug nan);

Discussion of Results: Table 1 reports the run times for equivalence checking
of the ARM FPU and the dual-path FP adder. Column 1 gives the name of
FP design and columns 2–6 show the runtimes for partition modes INF, ZERO,
NaN, SUBNORMAL, and NORMAL respectively. For example, the partition
constraint ‘INF’ means addition of two infinite numbers. Column 7 reports the
total time for equivalence checking without any partitioning.

http://www.cprover.org/verifox
http://www.cprover.org/verifox

556 R. Mukherjee et al.

Table 1. Equivalence checking of ARM FPU and DUAL-PATH Adder (All time in
seconds)

Design Case-splitting No-partition

INF ZERO NaN SUBNORMAL NORMAL Total

Equivalence Checking at Software Level (VerifOx)

FP-ADD 9.56 11.54 9.95 1124.18 77.74 1566.72

FP-ROUND 1.24 1.36 1.32 3.78 1.63 4.71

FP-MIN 9.76 9.85 9.78 28.67 9.86 48.70

FP-MAX 9.80 9.88 9.97 28.70 9.90 35.81

DUAL-PATH ADDER 3.15 3.11 2.14 88.12 55.28 497.67

Equivalence Checking at Register Transfer Level (hw-cbmc)

FP-ADD 18.12 18.02 17.87 18.73 39.60 40.72

FP-ROUND 11.87 12.73 13.44 13.67 14.03 14.11

FP-MIN 13.72 13.62 ERROR 14.10 14.08 14.15

FP-MAX 13.70 13.58 ERROR 14.09 14.06 14.05

DUAL-PATH ADDER 0.88 0.87 0.99 169.49 22.42 668.61

VerifOx successfully proved the equivalence of all FP operations in the SW
implementation of ARM FPU against the built-in reference model. However, a
bug in FP-MIN and FP-MAX (reported as ERROR in Table 1) is detected by
hw-cbmc in the RTL implementation of ARM FPU when checked against the
SW model of ARM FPU for the case when both the input numbers are NaN. This
happens during manual translation of SW model to RTL. Further, we investigate
the reason for higher verification times for subnormal numbers compared to
normal, infinity, NaN’s and zero’s. This is attributed to higher number of paths
in subnormal case compared to INF, NaN’s and zero’s. Closest to our floating-
point symbolic execution technique in VerifOx is the tool KLEE-FP [8]. We
could not, however, run KLEE-FP on the software models because the front-end
of KLEE-FP failed to parse the ARM models.

5 Related Work

The concept of symbolic execution [4,7,13] is prevalent in the software domain
for automated test generation as well as bug finding. Tools such as Dart [13],
Klee [4], EXE [5], Cloud9 [16] employ such a technique for efficient test case
generation and bug finding. By contrast, we used path-wise symbolic execution
for equivalence checking of software models against a reference model. A user-
provided assumption specifies certain testability criteria that render majority of
the design logic irrelevant [12,14,19], thus giving rise to large number of infeasible
paths in the design. Conventional SAT-based bounded model checking [2,6,15]
can not exploit this infeasibility because these techniques create a monolithic
formula by unrolling the entire transition system up to a given bound, which is
then passed to SAT/SMT solver. These tools perform case-splitting at the level

Equivalence Checking of a Floating-Point Unit 557

of solver through the effect of constant propagation. Optimizations such as eager
path pruning combined with incremental encoding enable VerifOx to address
this limitation.

6 Concluding Remarks

In this paper we presented VerifOx, our path-based symbolic execution tool,
which is used for equivalence checking of arbitrary software models in C. The key
feature of VerifOx is symbolic reasoning on the equivalence between floating-
point operations. To this end, VerifOx implements a model of the core IEEE
754 arithmetic operations, which can be used for reference models. Further, to
validate the synthesis of RTL from software model, we used our existing tool, hw-

cbmc, for equivalence checking of RTL designs against the software model used
as reference. We successfully demonstrated the utility of our equivalence checking
tool chain, VerifOx and hw-cbmc, on a large commercial FPU core from ARM
and a dual-path FP adder. Experience suggests that the synthesis of software
models to RTL is often error prone—this emphasizes the need for automated
equivalence checking tools at various stages of EDA flow. In the future, we plan
to investigate various path exploration strategies and path-merging techniques
in VerifOx to further scale equivalence checking to complex data and control
intensive designs.

Acknowledgements. Part of the presented work was conducted during an internship
at ARM. The authors want to thank in particular Luka Dejanovic, Joe Tapply, and
Ian Clifford for their help with setting up the experiments.

References

1. Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable
sequential equivalence checking across arbitrary design transformations. In: ICCD,
pp. 259–266. IEEE (2006)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

3. Brand, D.: Verification of large synthesized designs. In: ICCAD, pp. 534–537 (1993)
4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic genera-

tion of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224.
USENIX (2008)

5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. 12(2), 10:1–10:38
(2008). Article No.10

6. Clarke, E., Kroening, D.: Hardware verification using ANSI-C programs as a ref-
erence. In: Proceedings of the 2003 Asia and South Pacific Design Automation
Conference, ASP-DAC, pp. 308–311. ACM (2003)

7. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Softw. Eng. 2(3), 215–222 (1976)

8. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic crosschecking of floating-
point and SIMD code. In: EuroSys, pp. 315–328 (2011)

558 R. Mukherjee et al.

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient
method of computing static single assignment form. In: POPL, pp. 25–35. ACM
(1989)

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). doi:10.1007/11499107 5

11. van Eijk, C.A.J.: Sequential equivalence checking without state space traversal. In:
DATE, pp. 618–623. IEEE (1998)

12. Fujita, M.: Verification of arithmetic circuits by comparing two similar circuits.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 159–168.
Springer, Heidelberg (1996). doi:10.1007/3-540-61474-5 66

13. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223 (2005)

14. Kölbl, A., Jacoby, R., Jain, H., Pixley, C.: Solver technology for system-level to
RTL equivalence checking. In: DATE, pp. 196–201. IEEE (2009)

15. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: DAC, pp. 368–371 (2003)

16. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: PLDI, pp. 193–204 (2012)

17. Mukherjee, R., Joshi, S., Griesmayer, A., Kroening, D., Melham, T.: Equivalence
checking a floating-point unit against a high-level C model: extended version. Com-
puting Research Repository arXiv:1609.00169 [cs.SE], September 2016

18. Wu, W., Hsiao, M.S.: Mining global constraints for improving bounded sequential
equivalence checking. In: DAC, pp. 743–748. ACM (2006)

19. Xue, B., Chatterjee, P., Shukla, S.K.: Simplification of C-RTL equivalent checking
for fused multiply add unit using intermediate models. In: ASP-DAC, pp. 723–728.
IEEE (2013)

http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/3-540-61474-5_66
http://arxiv.org/abs/1609.00169

Battery-Aware Scheduling in Low Orbit:
The GOMX–3 Case

Morten Bisgaard1, David Gerhardt1, Holger Hermanns2, Jan Krčál2,
Gilles Nies2(B), and Marvin Stenger2

1 GomSpace ApS, Aalborg, Denmark
2 Saarland University – Computer Science, Saarland Informatics Campus,

Saarbrücken, Germany
nies@cs.uni-saarland.de

Abstract. When working with space systems the keyword is resources.
For a satellite in orbit all resources are sparse and the most critical
resource of all is power. It is therefore crucial to have detailed knowl-
edge on how much power is available for an energy harvesting satellite
in orbit at every time – especially when in eclipse, where it draws its
power from onboard batteries. This paper addresses this problem by a
two-step procedure to perform task scheduling for low-earth-orbit (LEO)
satellites exploiting formal methods. It combines cost-optimal reachabil-
ity analyses of priced timed automata networks with a realistic kinetic
battery model capable of capturing capacity limits as well as stochastic
fluctuations. The procedure is in use for the automatic and resource-
optimal day-ahead scheduling of GomX–3, a power-hungry nanosatellite
currently orbiting the earth. We explain how this approach has overcome
existing problems, has led to improved designs, and has provided new
insights.

1 Introduction

The GomX–3 CubeSat is a 3 kg nanosatellite designed, delivered, and oper-
ated by Danish sector leader GomSpace. GomX–3 is the first ever In-Orbit
Demonstration (IOD) CubeSat commissioned by ESA. The GomX–3 system
uses Commercial-off-the-shelf (COTS) base subsystems to reduce cost, enabling
to focus on payload development and testing. GomX–3 was launched from Japan
aboard the HTV–5 on August 19, 2015. It successfully berthed to the ISS a few
days later. GomX–3 was deployed from the ISS on October 5, 2015. Figure 1
shows the satellite and its deployment.

Both GomSpace and ESA are interested in maximizing the functionality
of their nanosatellite missions. As such, GomX–3 has been equipped with a
variety of technical challenging payloads and components, among them: (i) 3-
axis rotation and pointing with a precision of 2◦ or less, (ii) in-flight tracking
of commercial aircrafts, (iii) monitoring signals from geostationary InmarSat

satellites, and (iv) high-speed downlinking to stations in Toulouse (France) or
Kourou (French Guiana).

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 559–576, 2016.
DOI: 10.1007/978-3-319-48989-6 34

560 M. Bisgaard et al.

Fig. 1. The final GomX–3 nanosatellite (left) and its deployment from the ISS (right)
together with AAUSAT5 (picture taken by Astronaut Scott Kelly).

For a satellite in orbit all resources are sparse and the most critical resources
of all is power. Power is required to run the satellite, to communicate, to calcu-
late, to perform experiments and all other operations. Detailed knowledge on the
power budget is thus essential when operating a satellite in orbit. Furthermore,
in a satellite not all power is used as it is generated. The satellite passes into
eclipse each orbit and during those periods it must draw power from its batteries.
This challenge is especially apparent for nanosatellites where not only the actual
satellite but also the resources are very small. An operator of such a spacecraft
is thus faced with a highly complex task when having to manually plan and
command in-orbit operations constantly balancing power and data budgets.

In this paper we report on our joint activities, part of the EU-FP7
SENSATION project, to harvest formal modelling and verification technology,
so as to provide support for commanding in-orbit operations while striving for
an efficient utilization of spacecraft flight time. Concretely, we have developed a
toolchain to automatically derive battery-aware schedules for in-orbit operation.
The heterogeneous timing aspects and the experimental nature of the application
domain make it impossible to use traditional scheduling approaches for periodic
tasks.

The schedules we derive are tailored to maximize payload utilisation while
minimizing the risk of battery depletion. The approach is flexible in the way it
can express intentions of spacecraft engineers with respect to the finer optimi-
sation goals. It comes as an automated two-step procedure, and provides quan-
tifiable error bounds.

For the first step, we have developed a generic model of the GomX–3 problem
characteristics in terms of a network of priced timed automata (PTA) [3]. This
model is subjected to a sequence of analyses with respect to cost-optimal reach-
ability (CORA) with dynamically changing cost and constraint assignments. We
use Uppaal Cora for this step. The latter is a well understood and powerful
tool to find cost optimal paths in PTA networks [4]. This first step takes the bat-
tery state into consideration by means of a linear battery representation (owed
to the fact that nonlinearities are not supportable in CORA). As a result, any
schedule generated in this step has a risk of not being safe when used in-orbit,
running on a real battery and with real payload.

http://sensation-project.eu/

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 561

To account for this problem, a second step validates the generated schedule
on a much more accurate model of the on-board battery, a model that includes
nonlinearities and also accounts for the influence of stochastic perturbations of
load or battery state. For this step, we employ a stochastic enhancement [5] of
the kinetic battery model [10] (KiBaM) with capacity bounds. As a result it
is possible to discriminate between schedules according to their quantified risk
of depleting the battery. Low risk schedules are shipped to orbit and executed
there. The satellite behaviour is tightly monitored and the results gained are
used to improve the model as well as the overall procedure.

The entire toolchain has been developed, rolled out, experimented with, and
tailored for in-the-loop use when operating the GomX–3 satellite. We report on
experiences gained and lessons learned, and highlight the considerable prospect
behind this work, in light of the future development in the space domain.

2 Prerequisites

Priced Timed Automata. The model of Timed Automata (TA) [2] has been
established as a standard modelling formalism for real time systems. A timed
automaton is an extension of finite state machines with non-negative real valued
variables called clocks in order to capture timing constraints. Thus, a timed
automaton is an annotated directed graph over a set of clocks C with vertex
set (called locations) L and edge set E . Edges and locations are decorated with
conjunctions of clock constraints of the form c �� k where c ∈ C, k ∈ N and
�� ∈ {<,≤,=,≥, >}. For edges such constraints are called guards, for locations
they are called invariants. Edges are additionally decorated with reset sets of
clocks. Intuitively, taking an edge causes an instantaneous change of location
and a reset to 0 for each clock in the reset set. However an edge may only be
taken if its guard and the target location’s invariant evaluate to true. If this is
not that case the current location remains active, if it’s invariant permits, and
clocks increase continuously with their assigned rates, thus modelling the passing
of time.

In order to reason about resources, TAs are enriched with non-negative inte-
ger costs and non-negative cost rates in the form of annotations for edges and
locations respectively [3]. The result are priced timed automata (PTA). The
intuition is that cost accumulates continuously in a proportional manner to the
sojourn time of locations and increases discretely upon taking an edge as speci-
fied by the respective annotations.

Definition 1 (Priced Timed Automata). Let C be a set of clocks and B(C)
be the set of all clock constraints as described above. A priced timed automaton is
a tuple 〈L,E, �0, inv, price〉 where L is a set of locations, E ⊆ L×B(C)× 2C ×L
is a set of edges, �0 is the initial location, inv : L → B(C) assigns invariants
to locations, and price : L ∪ E → N assigns costs and cost rates to edges and
locations respectively.

To meet space requirements we omit the formal semantics of PTA, and instead
refer to [3] for a complete development.

562 M. Bisgaard et al.

A common problem to consider in the context of PTA is that of computat-
ing the minimum cost to reach a certain target location in a given PTA. This
so-called cost-optimal reachability analysis (CORA) receives dedicated attention
in the literature [4,8] and is well-known to the community. The CORA is imple-
mented in a number of tools, most prominently Uppaal Cora [1]. As input
Uppaal Cora accepts networks of PTAs extended by discrete variables, and
thus allows for modular formalisation of individual components. The set of goal
states is characterised by formulae over the variables in the network of PTAs.

Kinetic Battery Model. Batteries in-the-wild exhibit two non-linear effects
widely considered to be the most important ones to capture: the rate capacity
effect and the recovery effect. The former refers to the fact that if continuously
discharged, a high discharge rate will cause the battery to provide less energy
before depletion than a lower discharge rate. Thus a battery’s effective capacity
depends on the rate at which it is discharged. The latter effect describes the
battery’s ability to recover to some extent during periods of no or little discharge.
We introduce the kinetic battery model (KiBaM) as the simplest model capturing
these effects. It is known to provide a good approximation of the battery state
of charge (SoC) across various battery types [5]. For a survey on battery models
providing a context for the KiBaM we refer to [6,7].

The KiBaM divides the stored charge into two parts, the available charge
and the bound charge. When the battery is strained only the available charge
is consumed instantly, while the bound charge is slowly converted to available
charge by diffusion. For this reason the KiBaM is often depicted by two wells
holding liquid, interconnected by a pipe, as seen in Fig. 2.

The diffusion between available and bound charge can take place in either
direction depending on the amount of both types of energy stored in the battery.
Both non-linear effects are rooted in the relatively slow conversion of bound
charge into available charge or vice versa. The KiBaM is characterized by two
coupled differential equations:

ȧ(t) = −I(t) + p

(
b(t)
1 − c

− a(t)
c

)
, ḃ(t) = p

(
a(t)
c

− b(t)
1 − c

)
.

p

b(t)
1−c

a(t)
c

I(t)

1 − c c

b(t) a(t)
10 40 551500

5000

9000

a(t)
b(t)
I(t)

−600

0
400

Fig. 2. The two-wells depiction of the KiBaM (left) and a SoC evolution trace over
time under a piecewise constant load (right).

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 563

Here, the functions a(t) and b(t) describe the available and bound charge at
time t respectively, ȧ(t) and ḃ(t) their time derivatives, and I(t) is a load on
the battery. We refer to the parameter p as the diffusion rate between both
wells, while parameter c ∈ [0, 1] corresponds to the width of the available charge
well, and 1 − c is the width of the bound charge well. Intuitively, a(t)/c and
b(t)/(1 − c) are the level of the fluid stored in the available charge well and the
bound charge well, respectively. Figure 2 shows a SoC trace of the KiBaM ODE
system. We shall denote the KiBaM SoC at time t as [at; bt] and consider I(t)
to be piecewise constant.

Adding Randomness and Capacity Limits. The KiBaM model has been extended
with capacity limits (say amax for the available charge and bmax for the bound
charge), as well as means to incorporate stochastic fluctuations in the SoC and
the load imposed on the battery. Both extensions come with their own set of
technical difficulties. For a complete technical development of this we refer to [5].
In this setting SoC distributions may not be absolutely continuous, because
positive probability may accumulate in the areas {[0; b] | 0 < b < bmax} where
the available charge is depleted and {[amax; b] | 0 < b < bmax} where the available
charge is full. Therefore, one works with representations of the SoC distribution
in the form of triples

〈
f, f̄, z

〉
where

– f is a joint density over]0, amax[×]0, bmax[, which represents the distribution
of the SoC in the area within the limits,

– f̄ is a density over {amax}×]0, bmax[and captures the bound charge distribution
while the available charge is at its limit amax,

– z ∈ [0, 1], the cumulative probability of depletion.

It is possible to analytically express an under-approximation of the SoC distri-
bution

〈
fT , f̄T , zT

〉
after powering a task (T, g) when starting with the initial

SoC distribution
〈
f0, f̄0, z0

〉
, where T is a real time duration and g is the prob-

ability density function over loads. We omit the derivation of these expressions
due to their lengthiness. Sequences of tasks can be handled iteratively, by con-
sidering the resulting SoC distribution after powering a task to be the initial
SoC distribution for powering the next task.

Figure 3 displays the SoC distributions while powering an exemplary task
sequence. Each distribution

〈
f, f̄, z

〉
is visualized as three stacked plots: f is

represented in the heatmap (middle), the curve of f̄ in the small box (top), z in
the small box as a colour-coded probability value representing the cumulative
depletion risk (bottom).

3 Modelling the GomX–3 Nanosatellite

GomX–3 is a 3 L (30× 10× 10 cm, 3 kg) nanosatellite launched in October 2015
from the ISS. It’s mission payloads are threefold: Tracking of ADS-B beacons
emitted by commercial airplanes, testing a high-rate X-Band transmitter mod-
ule for in-space adequacy, and monitoring spot-beams of geo-stationary satel-
lites belonging to the InmarSat family, via an L-Band receiver. In addition,

564 M. Bisgaard et al.

Fig. 3. An exemplary battery with amax = bmax = 5 · 106, c = 0.5, p = 0.0003 with
an initially uniform SoC density over the area [0.3, 0.7] amax × [0.3, 0.7] bmax (left), sub-
jected to a task sequence (500,U [3000, 3600]), (600,U [−3300,−3900]) with U denoting
uniform distribution. Roughly 75 % of the SoC density flows into the depletion area
(negative available charge) after powering the first task and is thus accumulated in z
(middle). The remaining 25 % are considered alive and transformed further. Some of it
even reaches the capacity limit amax of the available charge (right).

it features a UHF software defined radio module for downlinking collected data
to – and uplinking new instructions from the GomSpace base station in Aalborg,
Denmark. In the sequel, we refer to the operation of one of these payloads as a
job. Each of these jobs comes with its own set of satellite attitude configurations,
making an advanced 3-axis attitude control system indispensable. This attitude
control uses gyroscopes and magnetorquers to enable the satellite to slew into
any dedicated position with a precision of up to 2◦. It is especially power-hungry.

As an earth-orbiting satellite, GomX–3 naturally enters eclipse. To continue
operation, it draws the necessary power to sustain its operation from an onboard
battery system. These batteries are, in turn, charged by excess energy harvested
during insolation periods by solar panels that cover any non-occupied surface.

Since its launch, GomX’s follows the roughly equatorial orbit of (and below)
the ISS. Therefore, insolation periods as well as operation windows for the dif-
ferent jobs are well predictable over the time horizon of about a week ahead, yet
they are highly irregular. Exploiting the pre-determined attitude configurations
per mode of operation, the net power balance of every job can be predicted by
the in-house GomSpace PowerSim tool. This information is the essence of the
power-relevant behaviour of GomX–3. In order to understand their joint impli-
cations for the energy budget of GomX–3, it is important to accurately model
these power-relevant aspects of the satellite components, and their interplay.

3.1 Objectives

In broad terms, the main mission goal of GomX–3 is to maximize the amount of
jobs carried out without depleting the battery. The concrete objectives spelled

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 565

out by GomSpace engineers changed several times along the mission. This meant
that the models have to have the necessary flexibility needed to reflect the
requirements once they are made formal.

GomX–3 switches to Safe Mode if the battery SoC falls below a given thresh-
old. For GomX–3 this threshold is at 40 % of the battery’s capacity. In Safe
Mode, all non-essential hardware components are switched off, preventing of the
satellite being productive. The primary objective is thus to avoid Safe Mode,
while maximizing secondary objectives. Several such secondary objectives need
to be taken into account.

– Whenever possible the UHF connection to the GomSpace base station must
be scheduled and maintained throughout the entire operation window in order
to enable monitoring the status of GomX–3 and to uplink new instructions
if need be. This is crucial to maintain control over the satellite and thus
considered vital for the success of the mission.

– Independent of the satellite attitude, the ADS-B helix antenna is able to
receive ADS-B beacons. Thus this hardware module will be active at all times,
thereby constantly collecting data of airplane whereabouts.

– The X-Band windows are small, as the downlink connection can only be estab-
lished if the satellite is in line of sight and close enough to the receiving ground
station. The corresponding downlink rate, however, is relatively high.

– L-Band jobs will have job windows as long as an orbit duration but vary a
lot depending the time of the year, and will collect a lot of data if successful.
The variations in window lengths can be observed in Sect. 5, where actual
schedules are visualized.

– L-Band jobs are to become as balanced as possible across the available
InmarSats.

– Jobs filling their entire job window are most valuable. Jobs that have been
aborted early or started late are not considered interesting.

– L-Band and X-Band jobs are mutually exclusive, as they require different
attitudes. UHF jobs may be scheduled regardless of the current attitude, even
when L-Band or X-Band jobs are currently executed.

– Only downlinked data are useful, thus the time spent on data collection pay-
loads (L-Band, ADS-B) and downlink opportunities (X-Band) needs to be
balanced in such a way that only a minimal amount of data needs to be
stored temporarily in the satellite’s memory. This induces the need to weigh
the data collection rate and the downlink speed against each other.

Based on these observations and the expertise of GomSpace engineers, it was
deemed that two fully executed X-Band jobs are enough to downlink the data
of one successful L-Band job together with the ADS-B data collected in the
meanwhile.

3.2 PTA Modelling

As the central modelling formalism PTAs are employed when modelling the
behaviour of GomX–3, with special emphasis being put on flexibility w.r.t. the

566 M. Bisgaard et al.

optimization objective. In order to allow for easy extensibility, the modelling was
purposely kept modular and generic. Notably, the TA formalism is not expressive
enough for the nonlinearities of the kinetic battery model. Therefore we use a
simple linear model (intuitively corresponding to a single well holding liquid)
instead, and account for this discrepancy later. The component models belong
to the following categories.

Background load comprises the energy consumption of modules that are
always active, including the ADS-B module for tracking airplanes, the gyro-
scopes and magnetorquers (even though not at full power) for keeping the
attitude invariant.

Jobs are dealt with in a generic way, so that only the common characteristics
are modelled. A job has a finite time window of when it can be executed,
it may be skipped, it may require an a priori preheating time (to ramp up
the physical modules related to the job) as well as a specific attitude, it may
need to activate a set of related modules inducing piecewise constant loads,
its window may occur in a periodic pattern.

Battery represents a relatively simple linear battery which can support piece-
wise constant loads. It keeps track of its (one-dimensional) state of charge
and updates that based on the (dis)charge rate and the time until the load
changes again. Since the battery is modelled as an automaton, the system
can monitor and take decisions based on the remaining battery charge.

Attitude represents the predetermined attitude requirements of each job and
the worst case slewing time of 5 min.

Insolation is a simple two-state automaton (sun and eclipse) based upon the
predicted insolation times, triggering a constant energy infeed due to the solar
panels.

Fig. 4. The JobProvider automaton (top left), the Job instance automaton (bottom)
and the Battery automaton (top right).

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 567

Among these components, the PTAs modelling the battery and the job
aspects are the most interesting. They are depicted in Fig. 4 and explained in
more detail below.

JobProvider: This automaton provides the interface between multiple arrays
representing the job opportunities as well as their implied preheating times,
and the actual Job automaton. It waits for a job window, discriminating
whether the job needs preheating or not, and broadcasts signals triggering
the actual decision making. In the Idle location, being initial, it waits for the
global clock gc to hit a certain job preheat time event (stored in the array
jobPreheatTime), sets the time variable to the current time, and notifies the
Job automaton to start preheating over a the dedicated preHeat[jid] chan-
nel, where jid uniquely identifies a certain job type. Upon this notification
it switches into the PreHeat location and waits for the actual job to start,
i.e. the global time reaching the expected start time of the job identified by
jid, consequently transitioning into location Available, where, in turn it waits
for completion of the job (gc reaching jobEndTime[jid]), switching into loca-
tion Idle yet again, all the while notifying its environment on the respective
dedicated channels.

Job: This automaton represents the execution or skipping of a job. It starts in
its Idle location, waiting to be notified of impending preheating duties. At
this point the take-or-skip decision is taken, as witnessed by the two outgo-
ing transitions into locations labelled Skip and Align. A job is either skipped
because it is not optimal to take it, or because the attitude requirements
don’t match the current attitude of the satellite because of an already ongo-
ing job. If the job is skipped, cost is accumulated with rate costRate(jid)
over the duration of the job, effectively returning into location Idle. If it is
taken, attitude requirements of the scheduled job are checked via the guard
isAligned(jid), upon which the satellite starts slewing (location Slewing) to
the correct attitude (location Correct Attitude) if need be. Upon notification,
the job is executed (Start → End → Check Attitude) triggering the battery
via channel bUpdate to update its SoC, and finally checks whether it has
to change attitude to minimize atmospheric drag using guards hasToSlew-
Back(jid) to finally return eventually to location Idle.

Battery: This model represents a simple linear battery with capacity that can
be (dis)charged with piecewise constant loads. It is notified of load changes
via channel bUpdate, upon which it computes the length of a constant load
interval via global integer variables new time and old time, and subtracts the
result multiplied by rate from its internal SoC l, upon which it ends up in
location Check. A check is performed whether the SoC fell below a threshold
lb, upon which we either transition into (and stay in) the Depletion location
or return to Idle to power another task.

3.3 Cost Model and Reachability Objectives

In the following we explain how the objectives derived by GomSpace engineers
were turned into constraints and cost parameters of the PTA model.

568 M. Bisgaard et al.

The Safe Mode threshold is kept variable and must be set before scheduling.
It appears as lb (for lower bound) in the automata models. Depending on the
degree of aggressiveness of the intended schedule, it can either be set close to the
real Safe Mode threshold of 40% or it can be set higher, for example to 55%,
thereby adding an implicit safety margin.

Uppaal Cora computes cost-minimal schedules. Therefore, we interpret the
price annotations of PTA transitions as penalties for skipped jobs. Likewise cost
rates in states accumulate penalty per time unit a job window is left unused.
An optimal schedule will then have the property that the minimal portion of
important jobs windows was left unexploited.

An immediate consequence of this setup is that UHF jobs have a high penalty
if skipped, as they are supposed to be scheduled every time they are possible.
For L-Band and X-Band jobs, the number of jobs scheduled should result in an
average ratio of 1/2, according to the GomSpace directives. To arrive there, we
proceed as follows. Let ΔX and ΔL denote the job windows length expectations
of X-Band and L-Band jobs, respectively. Then the cost rate for skipping L-Band
and X-Band window portions is set 2 · ΔX and ΔL, respectively. Likewise, the
L-Band jobs on different InmarSat are internally viewed as different jobs. Their
cost rates for skipping should be set equal.

In order to generate an optimal schedule from the network of PTAs up to a
certain time horizon (treated as an orbiting count), we need to define the goal
set of states to be used in a reachability objective as supported by Uppaal

Cora. To this end, we simply introduce a small automaton that counts the
orbits already scheduled for and manages this number globally, say in a variable
n. A query for a schedule of n orbits can then easily be formulated as ∃♦(n = 20).

3.4 Model Quality Assurance

In light of the high overall significance of the GomX–3 mission, it was from the
start deemed important to assure the adequacy of the formal models used to
represent and to eventually manoeuvre the satellite. For this reason, a series of
dedicated workshops were organized in the context of the SENSATION project,
comprising among others the authors of this paper. On these occasions, presen-
tations of varying technical detail were delivered by both sides, so as to expose
the formal approach, the set of concrete problems, as well as possible solutions
thereof. In later stages, collaborative work was organised via Google docs and
Skype, which indeed provided an effective way to communicate feedback in both
directions. This altogether made it possible to effectively crossfertilize the domain
expertise of the GomSpace engineers with the modelling and verification expe-
rience at Saarland University, so as to assure a high quality model. In the same
vein, the design of the entire scheduling workflow (explained next) was a con-
sensus decision.

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 569

4 The Scheduling Workflow

The scheduling workflow, depicted in Fig. 5, loops through a two-step procedure
of schedule generation and schedule validation. The latter is needed to account
for the inaccuracies of the simple linear battery model, which is used for schedule
generation, relative to real battery kinetics. Therefore any generated schedule is
validated along the stochastically enhanced KiBaM known to be sensitive to such
effects. If the validation does not exhibit good enough guarantees, the current
schedule is discarded and excluded from the generation step, and a new schedule
is computed. Otherwise it will be accepted, upon which we break the loop and
ship the schedule to orbit.

4.1 Schedule Generation

The mission times to be considered for automatic scheduling span between 24
and 72 h. Longer durations are not of interest since orbit predictions are highly
accurate only for a time horizon of a handful of days, and because GomX–3 is
as a whole an experimental satellite, requiring periods of manual intervention.
However, even a 24 h schedule computation constitutes a challenge for plain
CORA, since the number of states grows prohibitively large.

Heuristics. The state-space explosion can, to certain extend, be remedied by
using heuristics, i.e. exclusion of certain schedules at the risk of losing optimality.
Here is a brief overview of heuristics used:

1. Take every job if battery is almost full. Job opportunities will be taken
if the battery is close to being full, since the battery cannot store more energy
anyway. This minimizes the risk of not being able to harvest energy due to a
full battery.

2. Force discard of schedules on depletion. This simple, yet effective heuris-
tic forces the PTA network into a dedicated deadlock location (Depletion)
whenever the battery automaton reaches a non positive SoC, resulting in the
schedule to be dropped.

Fig. 5. Scheduling workflow.

570 M. Bisgaard et al.

The following heuristics are specific to objectives expressed by the engineers.

3. An L-Band job precedes two X-Band jobs. To avoid storage of large
amounts of data on the satellite, we bound the ratio of data collection and
downlink jobs. A ratio rX/rL can be approximated greedily by adding a global
variable r (initially 0) as well as guards to the Job automaton such that X-
Band jobs are scheduled only if r ≥ rL and L-Band jobs are scheduled only
if r < (rX + rL) · rX. Upon scheduling an X-Band and L-Band job, we set
r := r − rL and r := r + rX respectively. With rX := 2 and ry := 1 schedules
never start with an X-Band job and in the long run, the ratio of X-Band and
L-Band jobs stays between 1 and 2/1.

4. Keep L-Band jobs in balance across InmarSats. Similarly to the real-
ization of the above heuristic we bound the difference among L-Band jobs on
the relevant InmarSats to at most 2.

5. Always schedule UHF jobs. Instead of penalizing skipped UHF jobs by
annotations of large costs (to enforce their scheduling), we enforce them on
the automaton level, omitting any cost annotation.

6. Impose upper bound on discharging loads. This heuristic does what it
says.

Especially heuristic 6 proves useful in several ways. First, the KiBaM used
in the validation step yields less energy before depletion if subjected to high
loads due to the rate-capacity effect (that is not captured by the linear battery
model). Second, high loads are reached when UHF jobs are scheduled in addition
to an L- or X-Band job. Such situations seem lucrative to Uppaal Cora, given
that they don’t accumulate much cost. Yet, they often result in schedules that
leave the battery (almost) empty. Third, the bound can be chosen such that
parallel experiments, and thus high loads, occurs only during insolation, but not
in eclipse.

To give some insight into the effect of each heuristic on the computation
with Uppaal Cora, we provide a comparison by means of an example, reported
in the following table. In the example all the above mentioned heuristics were
implemented (first row), except for the one mentioned.

Heuristics used Total CORA time States explored Optimal value computed

All 2.6 172452 262792

All but 1 10.2 700429 262792

All but 2 80.7 5474775 262792

All but 3 8.9 592233 258081

All but 4 3.7 224517 262792

All but 5 2.7 175191 262792

All but 6 86.1 6029126 243269

It becomes apparent that heuristic 2 and 6 are the most effective. Most of the
combinations studied induce the schedule depicted below, where job windows of

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 571

a certain type, i.e. L-Band on different InmarSats (L1, L2), X-Band (X) and
UHF, are displayed as black (grey) bars if they were indeed taken (skipped).

At first sight, dropping heuristics 3 or 6 lead to superior solutions. With-
out heuristic 3 one more X-Band job can indeed be scheduled, explaining why
this schedule is cheaper in terms of accumulated penalty. It is however sched-
uled before the first L-Band job, rendering it useless because there is nothing
to downlink. As expected, without heuristics 6 Uppaal Cora predominately
schedules UHF jobs parallel to X- or L-Band jobs, thereby straining the battery.
The large number of states explored indicates that the state space exploration
in this case is often misguided into eventual battery depletion.

Dynamic Scheduling. Another issue is that Uppaal Cora’s optimization crite-
rion is static, i.e. the prices cannot be updated based on the schedule generated
so far. This is contrasted by the GomSpace engineering intention of having a
dynamic scheduling approach. We take care of this by viewing the PTA network
as being parameterized, i.e. as templates that need to be instantiated by concrete
values. This enables us to divide the scheduling interval into disjoint subinter-
vals that can be scheduled individually, with distinct scheduling objectives and
prices, all the while carrying over resulting quantities as initial values to the
subsequent subinterval to be scheduled. Important quantities that need to be
passed on are the resulting battery state, the number of individual jobs already
scheduled and the state of the PTA network at the end of the previous subin-
terval. This information allows us to adjust the prices and scheduling objective
at the end of each subinterval, depending on the requirements previously fixed.
The subschedules are then conjoined to a schedule for the actual time interval.
This line of action is a trade-off between optimality and being dynamic, as it
implements a greedy heuristics.

Given the back-to-back nature of this approach, it is undesired to start
with an almost empty battery after a scheduling interval. We require the
battery to have a certain minimum charge at the end of the schedule. This
requirement translates directly to a reachability query on the PTA network:
∃♦(n = 20 ∧ l ≥ 75000000), where l is the global variable representing the
battery SoC.

4.2 Schedule Validation

As mentioned, Uppaal Cora’s expressiveness does not allow for direct mod-
elling of the KiBaM as a PTA. Instead the schedule computed is based on the

572 M. Bisgaard et al.

simple linear model, that is known to not capture important effects that can be
observed from measurements of real batteries. In order to validate whether the
computed schedule truly doesn’t violate the constraints we imposed, we need to
validate the schedule along the above mentioned stochastic KiBaM with capac-
ity limits. In fact, such a schedule can be seen as a sequence of tasks (Tj , Ij),
which we can immediately be used as input to the method to bound the cumu-
lative risk of premature battery depletion of the computed schedule. The initial
KiBaM SoC distribution is assumed to be a truncated 2D Gaussian around the
initial battery state given to the PTA network and white noise is added to the
loads of the tasks. If the validation step exhibits a low enough depletion risk, the
computed schedule is accepted, otherwise the schedule is excluded and another
schedule is computed.

4.3 Schedule Shipping

In order to uplink a schedule to GomX–3, several comma separated files (.csv)
are generated. Each file contains a list of job opportunities of a certain type,
for example L-Band (see below), given by two timestamps representing the start
time and the end time of the job window respectively, the implied duration of
the timestamps, as well as a flag that shows whether the opportunity should be
taken. One such file could be read as follows:

Access Start time (UTCG) Stop time (UTCG) Duration (sec) Scheduled

1 17 Nov 2015 00:38:38.922 17 Nov 2015 01:09:42.642 1863.720 1

2 17 Nov 2015 02:16:24.134 17 Nov 2015 02:45:23.914 1739.781 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

15 17 Nov 2015 23:41:20.490 18 Nov 2015 00:12:38.983 1878.493 0

5 Results

A number of successful experiments have been carried out on GomX–3 in-orbit,
so as to evaluate and refine our method, focussing on the determination of sched-
ules to be followed for the days ahead. These in-orbit evaluations have success-
fully demonstrated the principal feasibility and adequacy of the approach, as we
will discuss in this section.

In Figs. 6, 7 and 8 three representative in-orbit experiments are summarized.
The schedules are visualised as three stacked plots of data against a common
time line (left). The bottom ones are Gantt charts showing which jobs are sched-
uled (black bars) and which job windows are skipped (grey bars) respectively.
The plots in the middle display the loads imposed by the jobs as predicted (pur-
ple) and as actually measured (green) on GomX–3. The top plots presents the

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 573

Fig. 6. Schedule November 17, 2015 midnight to November 18, 2015 midnight. (Color
figure online)

Fig. 7. Schedule February 14, 2016 midnight to February 15, 2016 noon. (Color figure
online)

Fig. 8. Schedule March 20, 2016 7 AM to March 22, 2016 7 PM. (Color figure online)

574 M. Bisgaard et al.

battery SoC of the linear battery (blue) as predicted by Uppaal Cora as well
as the actual voltage (red) logged by GomX–3. Voltage and SoC are gener-
ally not comparable. However, both quantities exhibit similar tendencies during
the (dis)charging process. The battery, voltage and load curves have all been
normalized to the interval [0, 1] for comparison reasons.

On the right, the three components of the SoC density resulting from the
validation step are displayed, obtained by running the generated schedule along
the stochastic KiBaM with capacity limits. It is to be interpreted as in Fig. 3. The
most crucial part is at the bottom of the plot, quantifying the risk of entering
Safe Mode as specified by the GomSpace engineers (40%).

The data is summarized in the following table, that reports on the value
chosen as internal depletion threshold to the battery automaton, the initial
SoC provided to Uppaal Cora, the minimal SoC along the schedule generated
by Uppaal Cora, the depletion risk as calculated by the stochastic KiBaM
validation step and how often GomX–3 actually entered Safe Mode.

Experiment
dd.mm.yy hh:mm

Duration
(h)

Initial
SoC (%)

Depletion
threshold (%)

Min.
SoC (%)

Depletion
risk (%)

Safe mode
entered (nr.)

17.11.15 00:00 24 85 40 40.3 20 2

14.02.16 00:00 36 90 55 69 <10−50 0

20.03.16 07:00 60 90 55 55.9 <10−2 0

November 2015. The schedule presented in Fig. 6 spans November 17, 2015. It
is a schedule that optimizes for maximum L-Band payload operations, yielding
4 L-Band operations and 1 X-Band operation together with the 5 UHF ground-
station passes. The battery SoC and the measured battery voltage show a close
correspondence. GomSpace reported that GomX–3 entered Safe Mode twice, if
only for a short period of time.

February 2016. Figure 7 presents a schedule spanning one and a half day, start-
ing on February 14, 2016. It illustrates how optimized scheduling can be utilized
to not only take power limitations into consideration but also handle secondary
constraints like data generation and data downlinking balance via L-Band and
X-Band tasks. There is a noticeable difference in the length of L-Band job win-
dows, relative to the earlier experiment reported, as a consequence of experiences
gained by the engineers in the meanwhile. The initial SoC and the internal deple-
tion threshold were communicated to us as 90% and 55%. The plot exhibits a
drift between battery SoC and measured voltage around 3 PM of the first day,
after initially showing a close correspondence, indicating that the battery is in
a better state relative to our pessimistic predictions. The GomSpace engineers
were able to track down this drift to a mismatch in the net power balance com-
puted as input to the toolchain.

Battery-Aware Scheduling in Low Orbit: The GomX–3 Case 575

March 2016. The third schedule we present (Fig. 8) is the longest in duration,
spanning from March 20 at 7 AM to March 22 at 7 PM. After initial close
correspondence of SoC and voltage, around 18 h into the test run we observe a
slight but continuous drift between predicted battery SoC and measured voltage,
yet not as steep as in the February test run.

6 Discussion and Conclusion

This paper has presented a battery aware scheduling approach for low-earth
orbiting nano satellites. The heterogeneous timing aspects and the experimental
nature of this application domain pose great challenges, making it impossible to
use traditional scheduling approaches for periodic tasks. Our approach harvests
work on schedulability analysis with (priced) timed automata. It is distinguished
by the following features: (i) The TA modelling approach is very flexible, adap-
tive to changing requirements, and particularly well-suited for discussion with
space engineers, since easy-to-grasp. (ii) A dynamic approach to the use of cost
decorations and constraints allows for a splitted scheduling approach optimising
over intervals, at the (acceptable) price of potential sub-optimality of the result-
ing overall schedules. (iii) A linear battery model is employed while scheduling,
but prior to shipping any computed schedule is subjected to a quantitative val-
idation on the vastly more accurate Stochastic KiBaM, and possibly rejected.
This last aspect is very close in spirit to the approach developed in [9], where a
simulation-based analysis of computed schedules is used to validate or refute
CORA schedules, under a model with stochastic breakdowns and repairs of
production machinery. The stochastic KiBaM validation step is not based on
simulation, but exact (or conservative) up to discretisation.

The GomX–3 in-orbit experiments have demonstrated an indeed great fit
between the technology developed and the needs of the LEO satellite sector.
The schedules generated are of unmatched quality: It became apparent that rel-
ative to a comparative manual scheduling approach, better quality schedules with
respect to (i) number of experiments performed, (ii) avoidance of planning mis-
takes, (iii) scheduling workload, and (iv) battery depletion risk are provided. At
the same time, the availability of scheduling tool support flexibilises the satellite
design process considerably, since it allows the GomSpace engineers to obtain
answers to what-if questions, in combination with their in-house PowerSim

tool. This helps shortening development times and thus time-to-orbit.
State of the art technology and very rapid development cycles will continue

to be a crucial part of the nanosatellite market. They are the roots of a steady
stream of novel scientific challenges. In fact, GomSpace will launch a 2 space-
craft constellation (GomX–4 A and B) in 2017 and is actively pursuing several
projects with much larger constellations. Deploying constellations of a large num-
ber of satellites (2 to 1000) brings a new level of complexity to the game, which
in turn asks for a higher level of automation to be used than has previously been
the case in the space industry. The technology investigated here is beneficial in
terms of optimization and planning of satellite operations, so as to allow for more

576 M. Bisgaard et al.

efficient utilization of spacecraft flight time. A spacecraft operator is faced with
a highly complex task when having to plan and command in-orbit operations
constantly balancing power and data budgets. This leads to the fact that for
larger constellations tools for optimization, automation and validation are not
only a benefit, but an absolutely necessity for proper operations.

Acknowledgements. This work has received support from the EU 7th Framework
Programme project 318490 (SENSATION), by the European Space Agency under con-
tract number RFP/NC/IPL-PTE/GLC/as/881.2014, by the ERC Advanced Investiga-
tors Grant 695614 (POWVER), and by the CDZ project 1023 (CAP). We are grateful
to Boudewijn Haverkort and Marijn Jongerden (both from Universiteit Twente), Kim
Larsen, Marius Mikučonis, Erik Ramsgaard Wognsen (all from Aalborg University),
and all further participants of SENSATION as well as experts at GomSpace for very
fruitful discussion and support.

References

1. Uppaal Cora (2005). http://people.cs.aau.dk/∼adavid/cora/introduction.html
2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–

235 (1994)
3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J.,

Vaandrager, F.: Minimum-cost reachability for priced time automata. In:
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001). doi:10.1007/3-540-45351-2 15

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. ACM SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (2005)

5. Hermanns, H., Krčál, J., Nies, G.: Recharging probably keeps batteries alive.
In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 83–98.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25141-7 7

6. Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Softw. 3(6),
445–457 (2009). http://dx.doi.org/10.1049/iet-sen.2009.0001

7. Jongerden, M.R.: Model-based energy analysis of battery powered systems. Ph.D.
thesis, Enschede. http://doc.utwente.nl/75079/

8. Larsen, K., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P.,
Romijn, J.: As cheap as possible: effcient cost-optimal reachability for priced timed
automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 493–505. Springer, Heidelberg (2001). doi:10.1007/3-540-44585-4 47

9. Mader, A., Bohnenkamp, H., Usenko, Y.S., Jansen, D.N., Hurink, J., Hermanns,
H.: Synthesis and stochastic assessment of cost-optimal schedules. Int. J. Softw.
Tools Technol. Transf. 12(5), 305–318 (2010)

10. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy
systems. Solar Energy 50(5), 399–405 (1993)

http://people.cs.aau.dk/~adavid/cora/introduction.html
http://dx.doi.org/10.1007/3-540-45351-2_15
http://dx.doi.org/10.1007/978-3-319-25141-7_7
http://dx.doi.org/10.1049/iet-sen.2009.0001
http://doc.utwente.nl/75079/
http://dx.doi.org/10.1007/3-540-44585-4_47

Discounted Duration Calculus

Heinrich Ody1(B), Martin Fränzle1, and Michael R. Hansen2

1 Department of Computing Science, University of Oldenburg, Oldenburg, Germany
heinrich.ody@uni-oldenburg.de, fraenzle@informatik.uni-oldenburg.de

2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
mire@dtu.dk

Abstract. To formally reason about the temporal quality of systems
discounting was introduced to CTL and LTL. However, these logic are
discrete and they cannot express duration properties. In this work we
introduce discounting for a variant of Duration Calculus. We prove decid-
ability of model checking for a useful fragment of discounted Duration
Calculus formulas on timed automata under mild assumptions. Further,
we provide an extensive example to show the usefulness of the fragment.

Keywords: Duration calculus · Temporal logic · Model checking ·
Timed automata · Discounting

1 Introduction

In economics discounting represents that money earned soon can be reinvested
earlier and hence yields more revenue than money earned later. Discounting
has been introduced into temporal logics to represent that something happening
earlier is more important than similar events happening later [14]. A typical
example is a rail-road crossing. Consider the property “eventually the gates
are open”. While a controller leaving the gates closed an hour after the train
has passed might be safe and alive, it is not useful. We can use discounting to
express that the controller should not wait unnecessarily long before opening the
gates. The discount here is a scalar defining the decrease rate of an exponential
function assigning weights to events based on their (relative) time of occurrence.
In [1,13,14] such weighted evaluation of temporal properties has been described
as quantifying the temporal quality of a system.

Duration Calculus (DC) [12] was introduced to reason about duration prop-
erties of real time systems. In the prominent gas burner case study [24] the

An early version of this work was presented at the Nordic Workshop of Programming
Theory 2015.
H. Ody—This Work is supported by the Deutsche Forschungsgemeinschaft (DFG)
within the Research Training Group DFG GRK 1765 SCARE.
M. Fränzle—This Work was partially supported by Deutsche Forschungsgemein-
schaft within the Transregional Collaborative Research Center SFB/TR 14 AVACS.
M.R. Hansen—This Work was partially supported by the Danish Research Founda-
tion for Basic Research within the IDEA4CPS project.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 577–592, 2016.
DOI: 10.1007/978-3-319-48989-6 35

578 H. Ody et al.

following duration property was proven: “in any time interval of length ≥60 gas
is leaking for at most 5 % of the time”. The great expressiveness of DC however,
makes automated reasoning in most cases undecidable [10,11,15].

So far discounting in logics only has been studied for discrete-time temporal
logics (LTL, CTL*, μ-calculus) [1,13,14,20,21]. Here, we study discounting in
the dense-time logic DC. Our interest in DC arises from its expressiveness, being
able to express properties of accumulated durations instead of just temporal
distances, and the consequential undecidability of most fragments over dense
time. A primary objective of the work reported herein thus is to investigate the
impact of discounting on effective approximability of model checking for DC
formulas.

To this end we define discounted Duration Calculus (DDC), where the truth
value is real-valued in the interval [0, 1], instead of Boolean. A truth value closer
to 1 means higher temporal quality. We point out that we use exponential dis-
counting because this is the most common from of discounting. However, other
discounting mechanisms are possible. With DDC we can express properties such
as ♦ dφ (meaning “soon with discount d the system satisfies φ”), where φ is a
DDC formula and ♦ is the right neighbourhood modality from [9]. To evaluate
the truth value of ♦ dφ on the interval [t0, t1] we search for a neighbouring inter-
val [t1, t2] such that the discounting factor dt2−t1 multiplied with the truth value
of φ on [t1, t2] is maximal.

Our main result is that for the fragment DDC<1, which consists of all DDC
formulas where all discounts are <1, model checking is approximable. This stems
from the fact that the effect of the system behaviour on the satisfaction value
becomes negligible as time advances. Hence, for approximation it suffices to
only consider bounded prefixes of runs, which in turn enables us to use bounded
model checking. Our model-checking method is extended to cope with modalities
of the form GSφ (meaning “whenever S happens φ holds thereon”). We provide
an extensive example illustrating the usefulness of our approach.

Related Work. Discounting in temporal logics was first studied in [14] and
later in [1,13,20,21]. However, in all of these works the logics are discrete and
they cannot express duration properties. In [7] the authors introduce a method to
perform model checking on weighted (or priced) timed automata with weighted
versions of CTL and LTL. A cost in their work essentially corresponds to the
duration of a state variable in our work. However, they do not consider discount-
ing and in their case model checking becomes undecidable for automata with at
least three clocks. For a fragment without duration properties called test formu-
las, which are used to express undesired behaviours, model checking has been
shown decidable [22]. In [17] the authors define a model checking procedure for
a fragment that allows duration properties, but disallows negation of the chop
operator. In [16] the authors give a real-valued interpretation to DC and they
provide an approximative procedure to check satisfiability. However, the authors
do not consider model checking. Further, in none of the works on DC discounting
is considered.

Discounted Duration Calculus 579

2 Discounted Duration Calculus (DDC)

We use an adapted version of Duration Calculus (DC), where the chop operator
is replaced by a right neighbourhood modality. As atomic formulas, we allow
comparison of linear combinations of durations with constants.

Definition 1 (Syntax of DDC). Let d, k0, . . . , kn, c ∈ Q, where d ∈ [0, 1],
�∈ {≥, >} and let P ∈ AP denote arbitrary atomic propositions (or state vari-
ables or just variables). Then the formulas φ of Discounted Duration Calculus
(abbreviated DDC) and state expressions S are defined by the grammar

φ ::= ♦ dφ | ¬φ | φ ∨ φ | Σn
i=0ki

∫
Si � c ,

S ::= P | ¬S | S ∨ S .

We denote the fragment of DDC where all discounts are < 1 as DDC<1.

Let AP be a finite set of atomic propositions. The semantics of DC is defined
in terms of timed words. A timed word is a (possibly infinite) sequence

τ = (σ0, t0)(σ1, t1) · · · (σi, ti) · · ·

where σi ∈ 2AP and t0 = 0 and ti ∈ R≥0. The sequence of time stamps t0, t1, . . .
occurring in τ must be weakly monotonically increasing, that is ti ≤ ti+1. Fur-
thermore, we require progress in infinite timed words τ , that is, for every t ∈ R≥0

there is an i > 0 such that ti > t.
If τ is an infinite sequence, then we say that the time span (or just span)

of τ comprises the non-negative reals and we write span(τ) = R≥0. If τ is a
finite sequence having (σn, tn) as its last element, the span of τ is the bounded
(right-open) interval [0, tn) and we write span(τ) = [0, tn). We shall from now
on restrict our attention to timed words having a non-empty time span.

For a timed word τ = (σ0, t0)(σ1, t1) · · · (σi, ti) · · · and δ ∈ span(τ), where
δ > 0, we define the time-bounded prefix τδ of τ as the timed word:

τδ = (σ0, t0)(σ1, t1) · · · (σi, ti)(σi, δ)

where i is given by ti ≤ δ < ti+1. Note that there is exactly one such i since
δ ∈ span(τ).

A timed word τ = (σ0, t0)(σ1, t1) · · · (σi, ti) · · · induces a function

τ(P) : span(τ) → {0, 1}

for every atomic proposition P , as follows:

τ(P)(t) =
{

1 if P ∈ σi, for some i where ti ≤ t < ti+1,
0 otherwise .

The function τ(P) is also called a trajectory for P . Trajectories are lifted to state
expressions by a point-wise extension in a straightforward manner, for example,

580 H. Ody et al.

τ(S0 ∨S1)(t) = τ(S0)(t)∨ τ(S1)(t). We use the abbreviation Sτ for τ(S). Notice
that the progress requirement for infinite timed words guarantees that for every
variable P , every finite part of Pτ has a finite number of discontinuity points,
i.e. Pτ is of finite variability.

The semantics of a DDC formula φ on the basis of a timed word τ =
(σ0, t0)(σ1, t1) · · · (σi, ti) · · · is a function:

τ(φ) : Intv → [0, 1]

where Intv = {[t, t′] ⊆ span(τ) | t ≤ t′} denotes the set of bounded and closed
real intervals contained in span(τ). The function assigns to τ(φ) [a, b] a satisfac-
tion value in the real interval [0, 1], where closer to 1 means better.

Discounts d occur only in connection with the right neighbourhood modality
♦ dφ, which expresses that an adjacent interval to the right of the current interval
satisfies φ. The discount d is used to decrease the satisfaction value as the length
of the adjacent interval necessary to find a satisfaction of φ increases. The modal
formula ♦ dφ can be understood as “soon φ holds”.

Definition 2 (Semantics of DDC). The semantics of a formula, given a timed
word τ and an interval [t0, t1], is defined as

τ(♦ dφ) [t0, t1] = sup{dt2−t1 · τ(φ) [t1, t2] | t2 ≥ t1 ∧ t2 ∈ span(τ)}

τ(Σn
i=0ki

∫
Si � c) [t0, t1] =

{
1 if Σn

i=0ki

∫ t1
t=t0

τ(Si)(t) dt � c

0 otherwise

τ(¬φ) [t0, t1] = 1 − τ(φ) [t0, t1]
τ(φ0 ∨ φ1) [t0, t1] = max{τ(φ0) [t0, t1], τ(φ1) [t0, t1]}

where �∈ {>,≥}.
If we want to use the standard neighbourhood modalities without discounting
then we use a discount of 1. In this case we do not explicitly write the discount.

We define as abbreviation a modality

� dφ = ¬♦ d¬φ ,

which can be understood as “φ holds for a long time”. For some interval [t0, t1]
the semantics is

τ(� dφ) [t0, t1] = 1 − sup{dt2−t1 · (1 − τ(φ) [t1, t2] | t2 ≥ t1 ∧ t2 ∈ span(τ))} .

We point out that the supremum searches for a small t2 ≥ t1 that makes the
truth value of τ(φ) on [t1, t2] small. Further, the greater the interval [t1, t2] is
chosen, the greater the truth value of � dφ becomes. Note that the truth value
of � dφ increases with the decrease of d, while the truth value of ♦ dφ decreases
with the decrease of d.

Discounted Duration Calculus 581

To express that a state expression S holds throughout an interval, we use
the abbreviation:

	S
 =
∫ ¬S = 0 ∧ � > 0

where � is an abbreviation of
∫

(S′ ∨ ¬S′) for an arbitrary state expression S′.
With ♦♦φ we express that on some right interval, which may or may not

be adjacent to the current interval, φ holds. We shall use the abbreviation FSφ
to denote that there is some future point interval, say [t, t], where S “happens”
and φ holds, that is, φ holds on [t, t] and S changes from 0 to 1 at t and keeps
the value 1 for some nonzero time:

FSφ = ♦♦
(

	¬S
 ∧
(

♦ 	S

∧ ♦ (� = 0 ∧ φ)

))

Let GSφ = ¬FS¬φ. The formula GSφ thus means that for all future time points
t, if S happens at t, then φ holds on [t, t].

Example 1. As an example we consider the three formulas:

φ0 = ♦ 0.8(
∫

P ≥ 3)

φ1 = ♦ 0.9 � 0.8(
∫

P − ∫ ¬P ≤ 3)

φ2 = GQ♦ 0.8(
∫

P ≥ 2)

and the two timed words:

– τ0 = ({P}, 0) ({}, 2) ({P}, 3) ({}, 5) ({P}, 6)
({}, 8) ({P}, 9) ({}, 11) ({P}, 12)({}, 14),

– τ1 = ({}, 0) ({Q}, 1) ({P}, 2) ({Q}, 4) ({P,Q}, 5)
({}, 6) ({P}, 7) ({}, 8) ({Q}, 9) ({}, 10)

({P}, 11) ({}, 12) ({P}, 13) ({}, 14),

which induce the trajectories depicted in Fig. 1.
These above formulas can be explained as follows:

– φ0 reads “soon P has held for at least 3 time units”,
– φ1 reads “soon P should hold no more than 3 time units more than ¬P , for a

long time”, and
– φ2 reads “every time Q changes its value from 0 to 1, then soon P has held

for 2 time units”.

τ0 P
1

0
0 2 3 5 6 8 9 11 12 14

τ1

P
1

0
2 4 5 6 7 8 11 12 13 140 1 9 10

Q
1

0

Fig. 1. Graphical representation of two timed words. The word τ1 contains two atomic
propositions P and Q. We assume that all values remain 0 after time point 14.

582 H. Ody et al.

Evaluate φ0 on τ0: The earliest point when
∫

P ≥ 3 is satisfied is at t = 4. We
calculate:

τ0(♦ 0.8(
∫

P ≥ 3)) [0, 0]
= sup{0.8t · τ0(

∫
P ≥ 3) [0, t] | t ∈ span(τ0)}

= 0.84 � 0.41

Evaluate φ1 on τ0: In φ1 the inner modality is given t0 and chooses the smallest
t1 such that

∫
P − ∫ ¬P ≤ 3 is violated. The outer modality chooses t0 such that

the product of its discount 0.9t0 multiplied with the truth value archived by the
inner modality becomes maximal. We calculate (assuming that t0, t1 ∈ span(τ0)):

τ0(♦ 0.9 � 0.8(
∫

P − ∫ ¬P ≤ 3)) [0, 0]
= supt0≥0{0.9t0 · (1 − supt1≥t0{0.8t1−t0 · (1 − τ0(

∫
P − ∫ ¬P ≤ 3) [t0, t1])})}

= 0.92 · (1 − 0.812−2 · (1 − τ0(
∫

P − ∫ ¬P ≤ 3) [t0, t1])
= 0.92 · (1 − 0.812−2 · (1 − 0)) � 0.72

Evaluate φ2 on τ1: We evaluate ψ = ♦ 0.8(
∫

P ≥ 2) on all point intervals [t, t],
where Q changes its value from 0 to 1. For τ1 these points are 1, 4 and 9.
The truth value is min{τ1(ψ) [1, 1], τ1(ψ) [4, 4], τ1(ψ) [9, 9]}, which evaluates to
min{0.84−1, 0.88−4, 0.814−9} � 0.33.

3 Model Checking

In this section we prove that model checking for a relevent fragment of DDC is
approximable, where the model is given as a timed automaton [2]. To this end
we first show that for approximation it is sufficient to consider only bounded
prefixes of runs. Then we give a reduction to quantified linear real arithmetic.

3.1 The Model

As model we use timed automata that have atomic propositions that hold
in states (denoted by Λ) instead of events on edges. Additionally, our timed
automata have a set of allowed initial clock valuations, where the initial value of
a clock may be different from 0. Further, we assume that our timed automata are
strongly non-Zeno [3]. This is the case, iff there is a non-zero constant c ∈ R>0

such that in every control cycle at least c units of time passes. Formally, for
every path l0

e0−→ . . .
en−1−−−→ ln with l0 = ln there is an edge that resets some

clock x and an edge or a location with a constraint x ≥ c. For ease of exposition
we assume this constant to be a natural number greater than 0.

Definition 3 (Timed Automata). Let X be a finite set of non-negative real-
valued variables, called clocks and let V be the set of all clock valuations. Then
B(X) is the set of all conjunctions of constraints of the form x − y
� c or x
� c
with x, y ∈ X , c ∈ Q,
�∈ {<,>,≥,≤}. Further, let AP be a finite set of atomic
propositions. A timed automaton is a tuple A = (L,E, I, Inv , Λ,X), where L is

Discounted Duration Calculus 583

the set of locations, E ⊆ L × B(X) × 2X × L is the set of edges, I ⊆ L × V

is the set of initial states, Inv : L → B(X) are the invariants per location and
Λ : L → B(AP) assigns a set of atomic propositions which hold in a location.

Note that commonly I is defined as L′ × {0}, where L′ ⊆ L and 0 ∈ V is the
clock valuation where all clocks have value 0.

Let ν be a clock valuation, R a set of clocks and g a guard. We define ν + t
is the clock valuation where the values of all clocks are increased by t. With
ν[R �→ 0] we denote the clock valuation resulting from ν by setting all clock
values in R to 0. And with ν ∈ g we denote that ν satisfies the constraints in g.

Definition 4 (Runs of Timed Automata). Given a timed automaton A =
(L,E, I, Inv , Λ,X) and a possibly infinite timed word τ = (σ0, t0) . . . (σi, ti) . . .
let Δi = ti+1 − ti and let N be the set of integers such that i ∈ N iff there is an
element (σi, ti) in τ . This means that N = N if τ is infinite. A run of A on τ is
a sequence

π = (l0, ν0) . . . (li, νi) . . .

with (l0, ν0) ∈ I, for every j ∈ N we have σj =⇒ Λ(lj) and for every j, j+1 ∈ N
there exists an edge (lj , gj , Rj , lj+1) ∈ E such that ∀t ∈ R.0 ≤ t ≤ Δj =⇒
νj + t ∈ Inv(lj), νj + Δj ∈ g, νj+1 ∈ Inv(lj+1) and νj+1 = (νj + Δj)[Rj �→ 0].

With L(A) we denote the set of all timed words for which there exists a run
on A.

As we work with real-valued truth values, here model checking gives a value
in the interval [0, 1].

Definition 5 (Model Checking Timed Automata). Let A be a timed
automaton and φ be a DDC formula. We define model checking as computing

min
τ∈L(A)

{τ(φ) [0, 0]} .

When the timed automaton has upper bounds for the values of all clocks in
all locations the set of reachable states is computable with a finite representa-
tion. The goal of this constraint is to avoid over approximation introduced by
the normalisation step of reachability algorithms [5]. We use this to reduce com-
puting the satisfaction value of GSφ by A to computing the satisfaction value of
φ by a transformed automaton A′.

Lemma 1. Let φ be a DDC<1 formula, A = (L,E, I, Inv , Λ,X) a timed automa-
ton with ∀l ∈ L, x ∈ X .∃c ∈ Q.x � c ∈ Inv(l),�∈ {<,≤}, and S a state
expression. Then

min
τ∈L(A)

{τ(GSφ) [0, 0]} = min
τ ′∈L(A′)

{τ ′(φ) [0, 0]}

where A′ = (L,E, I ′, Inv , Λ,X) is the timed automaton obtained from A, by
letting the initial states I ′ be those where the state expression S just has become

584 H. Ody et al.

true. Let Reach be the set of reachable states in A, let LS be the set of locations
where S holds and define

I ′ = {(l, ν) | l ∈ LS ∧ (l′, g, R, l) ∈ E ∧ (l′, ν′) ∈ Reach
∧ ν′ ∈ g ∧ ν ∈ Inv(l) ∧ ν′[R �→ 0] = ν ∧ l′ ∈ L \ LS} .

Furthermore, I ′ is computable and has a finite representation using linear arith-
metic [5].

We give our definition of approximate model checking.

Definition 6 (Approximate Model Checking). Let A be a timed automa-
ton, φ be a DDC<1 formula and let ε ∈ (0, 1] be the desired precision. Then
approximate model checking is to compute a truth value v ∈ R with 0 ≤ v ≤ 1
such that

v ∈ min
τ∈L(A)

{τ(φ) [0, 0]} ± ε .

For this we compute the point in time δ = logd ε such that the value of v
is almost not affected by any suffix of the timed word starting at time δ. This
is possible because all modalities in DDC<1 are discounted by less than 1 and
hence the effect of a timed word on the truth value becomes less and less as
time advances. Note that for other discounting functions, e.g. 1

1+d·(t−t′) other
computations are necessary. However, for any computable strictly monotonic
discounting function with limit 0 such a point, after which the effect on the
truth value is ≤ ε, is computable.

Lemma 2. Given a DDC<1 formula φ and an allowed error ε, let dm be the
largest discount constant occurring in φ such that for all other discounts d in φ
we have d ≤ dm and let δ = logdm

ε. Then for any timed word τ we have

|τ(φ) [0, 0] − τδ(φ) [0, 0]| ≤ ε .

We transform the approximate model checking problem for DDC<1 to quan-
tified linear real arithmetic, which we now define.

Definition 7 (Quantified Linear Real Arithmetic (QLRA)). We define
the syntax of quantified linear real arithmetic (QLRA) as

φ ::= ¬φ | φ ∨ φ | term � term | ∃x.φ ,

term ::= a | term + term | a · term | x ,

a ::∈ Q

where �∈ {<,≤} and x is a variable over R.
With linear arithmetic we denote the fragment of QLRA where all quantifiers

are located under an even number of negations.

To check to what extent a timed automaton satisfies a formula we use
bounded reachability checking via linear arithmetic. The following lemma spec-
ifies which variables we use in the bounded reachability checking encoding. The
construction can be found, e.g., in [4,25].

Discounted Duration Calculus 585

Lemma 3 (Bounded Reachability, e.g. [4,25]). Given a timed automaton
A, an initial zone and a step bound l, we can encode the existence of a run of
length ≤l, starting at any state in the initial zone, in linear arithmetic. We shall
assume that this run is described using variables ti, Pi, for 0 ≤ i ≤ l, describing
whether in the interval [ti, ti+1) the propositional variable P holds or not.

3.2 Encoding of the Semantics for Formulas

We encode the semantics of DDC in QLRA. As the semantics of DDC uses expo-
nentials we cannot encode the exact semantics. However, we can approximate
the truth value with finite but arbitrary high precision. We use this encoding to
prove that approximative model checking for strongly non-Zeno timed automata
is computable.

Suppose that F (ȳ) is a formula of QLRA having ȳ as free variables (and
possibly others) and suppose that e(ȳ) is a linear term, then we can express

x = lub{e(ȳ) ∈ R | F (ȳ)}
in QLRA, using the abbreviations:

UB(x, e(ȳ), F (ȳ)) = ∀ȳ.F (ȳ) =⇒ x ≥ e(ȳ)
LUB(x, e(ȳ), F (ȳ)) = UB(x, e(ȳ), F (ȳ)) ∧ ∀z.UB(z, e(ȳ), F (ȳ)) =⇒ z ≥ x

Furthermore, we shall use the following QLRA abbreviation to express that
x = max(e1, e2):

MAX(x, e1, e2) = (e1 < e2 =⇒ x = e2) ∧ (e1 ≥ e2 =⇒ x = e1)

When v, t, d range over a bounded domain we can approximate an exponential
function v ·dt with an arbitrary precision using linear approximations. Below we
will use the abbreviation x isApproxOf v d t to denote that x is an approximation
of v · dt.

The encoding of a formula φ in an interval [t0, t1] is based on a symbolic
first-order formula representation of a bounded model guaranteed by Lemma 3.
We shall now show how the semantics of formulas on bounded runs are encoded
in QLRA, by defining a QLRA formula x isSemOf l φ t0 t1 denoting that x is
(an approximation of) the semantics of φ in the interval [t0, t1]. This formula is
defined by recursion over the structure of φ.

Encoding for τ (Σn
j=0kj

∫
Sj � c) [t0, t1]

We show the encoding of k
∫

S � c. The generalisation to linear combinations of
durations is easily done in QLRA.

For every interval from ti to ti+1 we introduce a variable xi denoting the dura-
tion of S on this interval. To this end we introduce the following abbreviations:

z isOverlapi t0 t1 denotes that z is the length of [t0, t1] ∩ [ti, ti+1] and
y isDuri S t0 t1 denotes that y is the duration of S on [t0, t1] ∩ [ti, ti+1].

where the definitions are provided below.

586 H. Ody et al.

For the formula x isSemOf l k
∫

S � c t0 t1 we define that if the inequality
(k

∫
S � c) holds x = 1, and otherwise x = 0:

(
(∃y0, . . . , yl−1.k · Σl−1

i=0yi � c ∧
l−1∧

i=0

(yi isDuri S t0 t1)) =⇒ x = 1
) ∧

(¬(∃y0, . . . , yl−1.k · Σl−1
i=0yi � c ∧

l−1∧

i=0

(yi isDuri S t0 t1)) =⇒ x = 0
)

It is easy to generalize this to cover linear sums of accumulated durations.
The abbreviation z isOverlapi t0 t1 is as follows:

(t0 ≥ ti+1 ∨ t1 ≤ ti =⇒ z = 0)
∧(t0 ≤ ti ∧ ti+1 ≤ t1 =⇒ z = ti+1 − ti)
∧(ti ≤ t0 ∧ ti+1 ≤ t1 =⇒ z = ti+1 − t0)
∧(t0 ≤ ti ∧ t1 ≤ ti+1 =⇒ z = t1 − ti)
∧(ti ≤ t0 ∧ t1 ≤ ti+1 =⇒ z = t1 − t0)

and the abbreviation y isDuri S t0 t1 is:

(S =⇒ y isOverlapi t0 t1)
∧ (¬S =⇒ y = 0)

where S is the formula obtained from S by replacing every occurrence of a state
variable P with Pi.

Encoding of τ (φ0 ∨ φ1) [t0, t1]

The formula x isSemOf l (φ0 ∨ φ1) t0 t1 is defined by:

∃y0, y1.(y0 isSemOf l φ0 t0 t1) ∧ (y1 isSemOf l φ1 t0 t1) ∧ MAX(x, y0, y1)

Encoding of τ (¬φ) [t0, t1]

The formula x isSemOf l (¬φ) t0 t1 is defined by ∃y. (y isSemOf l φ t0 t1)∧x = 1−y

Encoding of τ (♦ dφ) [t0, t1]

The formula x isSemOf l (♦ dφ) t0 t1 is defined by ∃t2, r.LUB(x, e(y), F (t2, y, r)),
where

e(y) = y

F (t2, y, r) = (r isSemOf lφ t1 t2) ∧ (y isApproxOf r d (t2 − t1))
∧ t2 ≥ t1 ∧ t2 ≤ tl

We use our approximation of the semantics in QLRA and the bounded model
checking approach to prove that approximate model checking is computable.

Discounted Duration Calculus 587

Theorem 1 (Approximate Model Checking). Given a strongly non-Zeno
timed automaton A and a DDC<1 formula φ and a desired precision ε ∈ R>0,
the approximate model-checking problem is effectively computable: There is a
procedure computing v ∈ [0, 1] such that

v ∈ min
τ∈L(A)

{τ(φ) [0, 0]} ± ε .

Proof. Let ε1, ε2 > 0 be such that ε1 + ε2 = ε. According to Lemma 2, we can
bound the time horizon of interest to δ = logdm

ε1 with dm again being the
largest discount constant occurring in φ, thereby obtaining

|τ(φ) [0, 0] − τδ(φ) [0, 0]| ≤ ε1 . (1)

As A is strongly non-Zeno, the number of transitions occurring in A within δ
time units is bounded by a constant l ∈ N, which can be computed as 	Mδ

with M being the length of the longest cycle in the transition graph of A.

Given this bound l on the length of the runs to be considered, we can easily
obtain (Q)LRA encodings of both the runs of A of the appropriate length ≤l
and of the l-bounded DDC semantics: Let

Rj = F j
A(t, P) ,

where F j
A(t, P) is the LRA-encoding of the runs of A of length j according to

Lemma 3, and let
Semj(y) = (y isSemOfj φ 0 0) ,

where y isSemOfj φ 0 0 is the above encoding of the DDC semantics, with the
look-up tables for approximating exponentials being developed to accuracy ε2
over the argument range [0, δ].

We furthermore introduce an abbreviation GLB(x, y, F (y)) for a formula
defining x = glb {y | F (y)} just as we did for the least upper bound. Then the
satisfying valuation of GLB(x, y,

∨l
j=1(Rj ∧Semj(y))), which can be determined

effectively by QLRA solving, satisfies

|x − min
τ∈L(A)

{τδ(φ) [0, 0]}| ≤ ε2

due to the accuracy of approximating the exponentials, which together with
Eq. (1) in turn implies

|x − min
τ∈L(A)

{τ(φ) [0, 0]}| ≤ ε2 + ε1 = ε

⇐⇒ x ∈ min
τ∈L(A)

{τδ(φ) [0, 0]} ± ε .

��

4 Example

To support our claims that we can reason about interesting problems with DDC
we provide an example in this section.

588 H. Ody et al.

4.1 Production Cell

We consider two drilling machines that generate heat while drilling. These
machines independently of each other process work pieces of different sizes, and
the drilling time needed to finish a work piece depends on the size of the piece.
If a machine drills for a long time without interruption the machine becomes too
hot. If the machine is too hot, it will gradually take damage. It is undesirable to
always avoid that the machine becomes too hot, because then production will
be too low. The desired property is that the machine soon cools down, after it
became too hot.

Let i ∈ {0, 1}. We represent that machine i is too hot by a propositional
variable Hi, that the machine is drilling by Di and the durability of the machine
by the discount (here 0.9, where closer to 1 means more durable). Further, there
are coefficients (here 1, 2) representing how quickly the temperature changes over
time in the respective locations and here 5 is the desired cooldown to achieve
after the machine has become too hot. We formalise the desired property as

GH0(♦ 0.9(
∫ ¬D0 − 2

∫
D0 ≥ 5)) ∧ GH1(♦ 0.9(

∫ ¬D1 − 2
∫

D1 ≥ 5)) .

The controllers A0 and A1 of the machines are depicted on the left hand
side of Fig. 2. On the right hand side of Fig. 2 we depict the automaton B that
determines how quickly the working pieces may appear and that assigns the
working pieces nondeterministically to the machines.

freei
xi ≤ 100

dsi
xi ≤ 3
Di

dbi

xi ≤ 8
Di

hoti
xi ≤ 8
Di ∧ Hi

loadSmall i?
xi := 0

loadBig i?
xi := 0

xi ≥ 6

xi ≥ 7

xi ≥ 2

xi := 0

init
xs ≤ 100 ∧
xb ≤ 100

xs ≥ 20/
loadSmall1!
xs := 0

xs ≥ 20/
loadSmall0!
xs := 0

xb ≥ 30/
loadBig0!
xb := 0

xb ≥ 30/
loadBig1!
xb := 0

Fig. 2. On the left hand side we see the controller Ai with i ∈ {0, 1} of a drilling
machine. The upper bounds of 100, serve to make Lemma 1 applicable, the other upper
bounds restrict the maximal drilling time needed for small and big working pieces. The
self loop in freei serves to make the parallel composition A0 ‖ A1 ‖ B deadlock free.
On the right hand side we see B, which controls how quickly work pieces may appear.

Discounted Duration Calculus 589

4.2 Computing the Satisfaction Value

Here we focus on the satisfaction value of the subformula GH0(♦ 0.9(
∫ ¬D0 −

2
∫

D0 ≥ 5)). However, the satisfaction value for the other subformula is equal.
Let C = (A0 ‖ A1 ‖ B) = (L,E, I, Inv , Λ,X) be the parallel composition

of A0, A1 and B. To approximate the satisfaction value of GH0(♦ 0.9(
∫ ¬D0 −

2
∫

D0 ≥ 5)) by C we apply Lemma 1 for the first subformula and create C ′ =
(L,E, I ′, Inv , Λ,X) that has all states as initial states in which the edge from
db0 to hot0 was just taken. The set I ′ is defined as1

I ′ ={((db0, free1, init), ν) | ν ∈ (
7 ≤ x0 ≤ 8 ∧ x0 = xb ∧ xs ≤ 100 ∧

((x1 − xs ≤ −2 ∧ x1 ≤ xb) ∨ (xb − xs ≤ −2 ∧ x1 ≤ 100))
)} ∪

{((db0,ds1, init), ν) | ν ∈ (7 ≤ x0 ≤ 8 ∧ x0 = xb ∧ xs ≤ 3 ∧ x1 = xs)} .

Let the desired precision be ε = 0.1. According to Lemma 2 we have δ =
log0.9 ε, which is less than 22. Let δ = 22 and note that by choosing a larger δ
than necessary we increase the precision of the computation. The approximation
of the satisfaction value is

min
τ∈L(C′)

{sup{0.9t · τ22(
∫ ¬D0 − 2

∫
D0 ≥ 5) [0, t] | 0 ≤ t ≤ 22}} ± ε .

Hence, we are looking for a run π in C ′, such that in the timed word induced by
π the smallest t for which τ22(

∫ ¬D0 − 2
∫

D0 ≥ 5) [0, t] holds, is large.
A run that maximises the time t needed to satisfy

∫ ¬D0 − 2
∫

D0 ≥ 5 is
depicted below. The intuition of the run is that directly after the machine
finished a big working piece, it has to work on a small working piece. The
location of B always is init. Hence, the states in the run have the form
(l0, l1, ν(x0), ν(x1), ν(xs), ν(xb)) where li is a location from Ai with i ∈ {0, 1}
and ν(y) is the value of the clock y under the clock valuation ν:

π =(hot0, free1, 7, 0, 19, 7)(hot0, free1, 8, 1, 20, 8)(free0, free1, 8, 1, 20, 8)
(ds0, free1, 0, 1, 0, 8)(ds0, free1, 3, 4, 3, 11)
(free0, free1, 3, 4, 3, 11)(free0, free1, 16, 17, 16, 24)

The run spends 4 time units in locations where D0 holds (hot0, ds0), and 13 time
units in locations where ¬D0 holds (free0). Hence, it satisfies

∫ ¬D0 − 2
∫

D0 ≥ 5
after t = 17 time units and we have

min
τ∈L(C′)

{τ(♦ 0.9(
∫ ¬D0 − 2

∫
D0 ≥ 5))} ∈ 0.917 ± 0.1 � 0.17 ± 0.1 .

In general, by considering only bounded prefixes of all runs we introduce an error
of at most ε. However, in our example the result 0.917 is exact, because in C ′ all
runs starting from I ′ satisfy

∫ ¬D0 − 2
∫

D0 ≥ 5 in less than δ = 22 time units.

1 We computed the initial states with Uppaal Tiga [8] by computing a winning strategy
for the property control : A[] true with the options -c -w 2 -n 2.

590 H. Ody et al.

We see that the controllers of the drilling machines satisfy our cooldown
property poorly. To fix this we could introduce a scheduler in between the con-
trollers A0, A1 and the spawner of the working pieces B. This scheduler would
then assign the working pieces to machines in a way that avoids assigning two
successive working pieces to the same machine. As the model then would be
quite big, we would need automation to compute the satisfaction value for the
larger example. Fortunately, for strongly non-Zeno timed automata and proper-
ties of the form ♦ dΣn−1

i=0 ki

∫
Si ∼ c and � dΣn−1

i=0 ki

∫
Si ∼ c we can compute the

satisfaction value via optimisation modulo theories [6,23].

5 Conclusion

Discounting has been introduced to temporal logics to formalise reasoning about
temporal quality of systems [1,13], where temporal quality quantifies how soon
events of interest happen, rather than just answering the qualitative question
whether they happen at all. We introduced discounting to Duration Calculus to
be able to analyse the quality of real-time systems w.r.t. duration properties. Our
main result is that, with the fragment DDC<1 consisting of all formulas where
the discounts are <1, we identified a fragment of DDC where model checking for
timed automata is approximable under mild assumptions. While this only allows
us to reason about bounded prefixes of runs, our reduction of approximating
the satisfaction value for formulas GSφ (read: “whenever S happens φ holds
thereon”) to model checking DDC<1 enables us to also reason about infinite
runs. At last, we provided an extensive example to demonstrate the usefulness of
discounting in temporal logics in general and of discounting duration properties
in particular.

For future work it is interesting to see how large the fragment of DDC is, for
which model checking is approximable.

In Sect. 4 we mentioned that for properties of the form ♦ dΣn−1
i=0 ki

∫
Si ∼ c

and � dΣn−1
i=0 ki

∫
Si ∼ c with d < 1 the satisfaction value can be approximated

efficiently via a reduction to optimisation modulo theories [6,23]. Naturally, it
is desirable to find efficient algorithms for larger fragments of DDC.

Further, in [1,13] operators, such as taking the average of two formulas, that
are not available in qualitative logics, were studied. To find or define such oper-
ators and evaluate their usefulness and their effect on computability is another
interesting challenge. One such operator may be φ → ψ = min{1, 1−u+v} from
�Lukasiewicz logics [18], where u, v are the truth values of φ, ψ. This definition of
implication allows for a closer connection between the truth values of φ and ψ
than the definitions we used.

Durations in our setting correspond to costs in the setting of multi-priced
timed automata (MPTA) [19]. In our work we discovered that often we are
interested in the costs of handling a temporal event (as indicated by our use of
GSφ). This could be modelled in MPTA by resetting the cost variable. As this
reset action would not depend on the costs, but only on observable behaviour
these enhanced MPTA might have interesting decidable problems.

Discounted Duration Calculus 591

Acknowledgement. We thank Peter Gjøl Jensen for advice on how to compute the
set of reachable zones with UPPAAL TIGA.

References

1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 424–439. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54862-8 37

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. In: Symposium on System Structure and Control, pp. 469–474 (1998)

4. Badban, B., Lange, M.: Exact incremental analysis of timed automata with an
SMT-Solver. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol.
6919, pp. 177–192. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24310-3 13

5. Bengtsson, J., Yi, W.: On clock difference constraints and termination in reach-
ability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM
2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39893-6 28

6. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

7. Bouyer, P., Larsen, K.G., Markey, N.: Model-checking one-clock priced timed
automata. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 108–122.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71389-0 9

8. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CON-
CUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). doi:10.1007/
11539452 9

9. Chaochen, Z., Hansen, M.R.: An adequate first order interval logic. In: Roever,
W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp.
584–608. Springer, Heidelberg (1998). doi:10.1007/3-540-49213-5 23

10. Chaochen, Z., Hansen, M.R.: Duration Calculus - A Formal Approach to Real-
Time Systems. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2004)

11. Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results
for duration calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS
1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993). doi:10.1007/
3-540-56503-5 8

12. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

13. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model
checking discounted temporal properties. Theoret. Comput. Sci. 345(1), 139–170
(2005)

14. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003). doi:10.
1007/3-540-45061-0 79

15. Fränzle, M.: Model-checking dense-time duration calculus. Formal Aspects Com-
put. 16(2), 121–139 (2004)

http://dx.doi.org/10.1007/978-3-642-54862-8_37
http://dx.doi.org/10.1007/978-3-642-24310-3_13
http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1007/978-3-662-46681-0_14
http://dx.doi.org/10.1007/978-3-540-71389-0_9
http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/3-540-49213-5_23
http://dx.doi.org/10.1007/3-540-56503-5_8
http://dx.doi.org/10.1007/3-540-56503-5_8
http://dx.doi.org/10.1007/3-540-45061-0_79
http://dx.doi.org/10.1007/3-540-45061-0_79

592 H. Ody et al.

16. Fränzle, M., Hansen, M.R.: A robust interpretation of duration calculus. In: Hung,
D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 257–271. Springer,
Heidelberg (2005). doi:10.1007/11560647 17

17. Fränzle, M., Hansen, M.R.: Deciding an interval logic with accumulated durations.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 201–215.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 17

18. Gottwald, S.: Many-valued logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. The Metaphysics Research Lab of Stanford University (2015). http://
plato.stanford.edu/archives/spr2015/entries/logic-manyvalued/

19. Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed
automata. Theoret. Comput. Sci. 390(2–3), 197–213 (2008)

20. Mandrali, E.: Weighted LTL with discounting. In: Moreira, N., Reis, R. (eds.)
CIAA 2012. LNCS, vol. 7381, pp. 353–360. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31606-7 32

21. Mandrali, E., Rahonis, G.: On weighted first-order logics with discounting. Acta
Informatica 51(2), 61–106 (2014)

22. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: a practical approach. Formal Aspects Comput. 20(4–5), 481–505 (2008)

23. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). doi:10.1007/11814948 18

24. Ravn, A.P., Rischel, H., Hansen, K.M.: Specifying and verifying requirements of
real-time systems. IEEE Trans. Softw. Eng. 19(1), 41–55 (1993)

25. Torre, S., Mukhopadhyay, S., Murano, A.: Optimal-reachability and control for
acyclic weighted timed automata. In: Baeza-Yates, R., Montanari, U., Santoro, N.
(eds.) Foundations of Information Technology in the Era of Network and Mobile
Computing. ITIFIP, vol. 96, pp. 485–497. Springer, Heidelberg (2002). doi:10.1007/
978-0-387-35608-2 40

http://dx.doi.org/10.1007/11560647_17
http://dx.doi.org/10.1007/978-3-540-71209-1_17
http://plato.stanford.edu/archives/spr2015/entries/logic-manyvalued/
http://plato.stanford.edu/archives/spr2015/entries/logic-manyvalued/
http://dx.doi.org/10.1007/978-3-642-31606-7_32
http://dx.doi.org/10.1007/978-3-642-31606-7_32
http://dx.doi.org/10.1007/11814948_18
http://dx.doi.org/10.1007/978-0-387-35608-2_40
http://dx.doi.org/10.1007/978-0-387-35608-2_40

Sound and Complete Mutation-Based
Program Repair

Bat-Chen Rothenberg and Orna Grumberg(B)

CS Department, Technion, Haifa, Israel
{batg,orna}@cs.technion.ac.il

Abstract. This work presents a novel approach for automatically
repairing an erroneous program with respect to a given set of assertions.
Programs are repaired using a predefined set of mutations. We refer to
a bounded notion of correctness, even though, for a large enough bound
all returned programs are fully correct. To ensure no changes are made
to the original program unless necessary, if a program can be repaired by
applying a set of mutations Mut, then no superset of Mut is later con-
sidered. Programs are checked in increasing number of mutations, and
every minimal repaired program is returned as soon as found.

We impose no assumptions on the number of erroneous locations in the
program, yet we are able to guarantee soundness and completeness. That
is, we assure that a program is returned iff it is minimal and bounded
correct.

Searching the space of mutated programs is reduced to searching
unsatisfiable sets of constraints, which is performed efficiently using a
sophisticated cooperation between SAT and SMT solvers. Similarities
between mutated programs are exploited in a new way, by using both
the SAT and the SMT solvers incrementally.

We implemented a prototype of our algorithm, compared it with a
state-of-the-art repair tool and got very encouraging results.

1 Introduction

In the process of software production and maintenance, much effort and many
resources are invested in order to ensure that the product is as bug free as
possible. Manual bug repair is time-consuming and requires close acquaintance
with the checked program. Therefore, there is a great need for tools performing
automated program repair. In recent years, there has been much progress in this
field (e.g., [6,12,14,19,22,23]).

In previous work, the presented motivation for the development of program
repair tools is to enable the automatic repair of real-world bugs found in large-
scale software projects. As a result, existing tools for automated repair aim at
being scalable and are targeted for the type of bugs found in deployed software.

We have designed our algorithm with a different goal in mind. In our opinion,
automatic repair can be equally or even more useful when applied in the earlier
stages of development, before any manual effort was invested in debugging at all.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 593–611, 2016.
DOI: 10.1007/978-3-319-48989-6 36

594 B.-C. Rothenberg and O. Grumberg

This is because, in our view, it is precisely the initial debugging work that could
benefit the most from this automation, since it involves relatively simple bugs
being fixed manually by the programmer. For these early development stages,
as well as for millions of independent programmers working on small pieces of
code, even a non-scalable automatic repair method can help save a lot of time
and avoid much frustration.

Our vision is to have a fast, easy-to-use program repair tool, which pro-
grammers can run routinely. Ideally, programmers will run the tool immediately
after making changes to the program, before any manual effort was invested in
debugging at all. Then, if the program contains an assertion violation, the chosen
course of action will be determined by the tool’s result. If the tool returns one
or more possible repairs, those are guaranteed to suppress all assertion viola-
tions and thus may be safely applied to the program. If the tool does not return
any possible repairs, the programmer can be sure that the problem can not be
solved using changes within the search space of the tool. In the later case, though
manual debugging will still be needed, knowing what will not solve the problem
might give the programmer a head start.

In this work, we take a step forward towards accomplishing this vision, pre-
senting a novel algorithm for automatically repairing a program with respect
to a given set of assertions. We use a bounded notion of correctness. That is,
for a given bound b, we consider only bounded computations, along which each
loop in the program is performed at most b times and each recursive call is in-
lined at most b times. We say that a program is repaired if whenever a bounded
computation reaches an assertion, the assertion is evaluated to true. Our repair
method is sound, meaning that every returned program is repaired (i.e., no vio-
lation occurs in it up to the given bound). Just like Bounded Model Checking,
this increases our confidence in the returned program.

Our programs are repaired using a predefined set of mutations, applied to
expressions in conditionals and assignments (e.g. replacing a + operator by a −),
as was shown useful in previous work [4,5,27]. We impose no assumptions on the
number of mutations needed to repair the program and are able to produce repairs
involving multiple buggy locations, possibly co-dependent. To make sure that our
suggested repairs are as close to the original program as possible, the repaired pro-
grams are examined and returned in increasing number of mutations. In addition,
only minimal sets of mutations are taken into account. That is, if a program can
be repaired by applying a set of mutations Mut, then no superset of Mut is later
considered. Intuitively, this is our way to make sure all changes made to the pro-
gram by a certain repair are indeed necessary. Our method is complete in the sense
of returning all minimal sets of mutations that create a repaired program. Specif-
ically, if no repair is found, one can conclude that the given set of mutations is not
enough to repair the program. Furthermore, we show that for large enough bound,
all returned programs are (unbounded) fully correct.

Note that, the choice to use mutations for repair makes the search space
small enough to enable us to have completeness at an affordable cost, yet it is

Sound and Complete Mutation-Based Program Repair 595

expressive enough to repair meaningful bugs (especially those present in earlier
stages of development).

Our algorithm is based on the translation of the program into a set of SMT
constraints which is satisfiable (i.e., the conjunction of constraints in it is satis-
fiable) iff the program contains an assertion violation. This was originally done
for the purpose of bounded model checking in [1]1. Our key observation is that
mutating an expression in the program corresponds to replacing a constraint
in the set of constraints encoding the program. Thus, searching the space of
mutated programs is reduced to searching unsatisfiable sets of constraints. The
latter can be performed efficiently using a sophisticated cooperation between
SAT and SMT solvers, as was done in [16] for the purpose of finding minimal
unsatisfiable cores.

The SAT solver is used to restrict the search space of mutated programs
to only those obtained by a minimal mutation set and the SMT solver verifies
whether a mutated program is indeed correct. Both the SAT solver and the SMT
solver are used incrementally, which means that learned information is passed
between successive calls, resulting in big savings in terms of resources used.
Using an SMT solver incrementally constitutes a novel way to exploit information
learned while checking the correctness of one program for the process of checking
correctness of another program. Note, that if the programs are similar, their
encoding as sets of SMT constraints will also be similar (due to our observation
presented above), resulting in bigger savings when using incremental SMT. This
is another important contribution of this paper.

We implemented a prototype of our algorithm for C programs, compared it
with the methods of [11,12] and got very encouraging results.

To summarize, the main contributions of our work are:

– We propose a novel sound and complete algorithm which returns all minimal
repaired programs.

– The returned programs are proved to be bounded correct. However, we show
that for a large enough bound, all returned programs are fully correct and all
minimal fully correct programs are returned.

– We develop an efficient implementation of the algorithm, based on sophisti-
cated cooperation between SAT and SMT solvers, both used incrementally.

1.1 Related Work

Several repair methods follow a test-based “generate and validate” approach.
They iteratively select a candidate from the repair search space and check its
validity by running all tests in the test suite against it. Examples are Gen-
Prog [13,14], TrpAutoRepair [25], AE [31], RSRepair [26] and the more recent
SPR [19]. PAR [9], Monperrus and Martinez [20] and Prophet [18] suggest to

1 To be precise, [1] first translates the program into a bit-vector formula and then
further translates it into a propositional formula. Here, we only use the first part of
the translation.

596 B.-C. Rothenberg and O. Grumberg

use information learned from successful human repairs to extract and prioritize
repair actions suitable for the suspected location of the error. Similarily, Code-
Phage [28] directly transfers pieces of code from correct donor applications to
buggy recipient ones. AutoFix-E [30] and AutoFix [24] also use location based
repair actions, but require programs to be equipped with contracts.

SemFix [23], DirectFix [21] and Angelix [22] use symbolic execution to infer a
repair constraint and synthesize a repair based on it. Nopol [6] also uses synthesis,
but only deals with buggy if conditions and missing pre conditions. [10] uses
deductive synthesis and is based on pre and post conditions, rather than tests
alone. [8,29] describe systems using automata and use LTL specifications for
repair.

Mutation based program repair (where the term “mutation” has the same
meaning as in this work) was previously done in [5,27]. Both use a test suite as
the only specification and focus their efforts on efficient error localization. We,
on the other hand, use a formal specification and have no use of localization,
since we have to consider all locations in order to guarantee completeness. Also,
we allow the repair of multiple expressions, whereas both methods assume a
single fault ([5] mentions a possible extension to multiple faults, but this is not
a part of the described method).

Finally, the methods of [11,12] are similar to ours in that they work on C
programs equipped with assertions (or test suites) and assume faulty expressions.
The differences are that they use program analysis based on a finite number of
inputs each time, while we use incremental SMT solving that allows reuse of
information. Also, they use templates (e.g. a linear combination of variables)
for repair, while we use mutations and are able to guarantee completeness. We
provide a comparison of performance results between our method and theirs in
Sect. 6.

2 Preliminaries

Program Correctness. For our purposes, a program is a sequential program
composed of standard commands: assignments, conditionals, loops and function
calls. Each command is located at a certain program location li, and all com-
mands are defined over the set of program variables X.

In addition to the standard commands, a program may contain assumptions
and assertions, which are commands that help the user specify the desired behav-
ior. Assumptions (resp., assertions) are commands of the form assume(e) (resp.,
assert(e)), where e is a boolean expression over X. An assertion assert(e) at
location li, specifies that the user expects e to evaluate to true whenever control
reaches li, in all program runs. If e evaluates to true every time control reaches
li during a run r, we say the assertion holds for r. Otherwise, the assertion is
violated. Once an assertion in the program is violated, the program terminates
(this early termination indicates an error has occurred and is usually preceded
by an error message explaining what went wrong). An assumption assume(e) at
location li, specifies that every run reaching li with e evaluated to false is termi-
nated. Unlike before, this early termination is not an indication that something

Sound and Complete Mutation-Based Program Repair 597

went wrong, but simply that the user does not want to consider the rest of this
run when checking correctness. For example, if a function f gets as input an
integer n, but the user assumes it will only be called with n ≥ 2, an assumption
assume(n ≥ 2) can be inserted at the beginning of the function to make sure all
runs in which this function is called inappropriately will be truncated.

Definition 1 (correct program). A program is correct if all assertions in it hold
in all runs.

For a program P and an integer b, a b-run of P is a run of P that goes
through each loop at most b times and has a recursion depth of at most b (i.e.,
the depth of the call stack is at most b during the entire run).

Definition 2 (b-correct program). Let b be an integer. A program is b-correct if
all assertions in it hold in all b-runs.

Our repair method aims at finding programs which are b-correct, therefore
we use the term repaired program as a notation for a b-correct program.

2.1 Incremental SAT and SMT Solving

A SAT solver is a decision procedure for deciding the satisfiability of a proposi-
tional formula. Formulas are usually in conjunction normal form (CNF) and can
also be seen as a set of clauses. Incremental SAT solving is a general name for a
set of techniques aimed at improving the SAT solver’s performance when called
repeatedly for similar formulas (i.e., similar sets of clauses). The basic principal
behind these techniques is to save running time by retaining information learned
by the SAT solver between calls.

An SMT solver (where SMT stands for satisfiability modulo theories), is
another kind of decision procedure of much recent interest. It decides the sat-
isfiability of a formula expressed in first order logic (FOL), where the interpre-
tation of some symbols is constrained by a background theory (for more details
see [3]). Examples of commonly used theories are the theory of linear arithmetic
over integers and the theory of arrays. Just like a CNF formula can be seen as a
set of clauses, an SMT formula can be seen as a set of constraints in the theory
(referred to as SMT constraints).

Similarly to SAT solving, incremental techniques can be applied to SMT
solving as well. For this to be useful, an SMT formula ϕ is usually instrumented
with boolean variables called guard variables. The instrumentation of a formula
ϕ is done as follows: each constraint ci ∈ ϕ is replaced by the constraint xi → ci,
where xi is a fresh boolean variable. As a result, the new constraint can easily
be satisfied by setting xi to false. Guard variables are conjuncted with ϕ and
are used as assumptions, passed to an incremental SMT solver. They have the
effect of canceling out a subset of constraints. For example, if ϕ = c1 ∧ c2,
after instrumentation we get the formula ϕ′ = (x1 → c1) ∧ (x2 → c2). Calling
an incremental SMT solver on ϕ′ with the set of assumptions {x1} causes the
SMT solver to check the satisfiability of ϕ′ ∧ x1, which essentially disables the

598 B.-C. Rothenberg and O. Grumberg

constraint c2. That is, because nothing prevents x2 from being set to false,
and x1 must be set to true, checking satisfiability of ϕ′ is reduced to checking
satisfiability of c1.

Boolean Cardinality Constraints. Boolean cardinality constraints are con-
straints of the form

∑n
i=1 li ≤ k, where li is a literal assigned the value 1 if

true and 0 if false, and k is an integer constant. For readability, we will refer
to these constraints using the notation AtMost({l1, .., ln}, k), also used in [17],
in order to remind the reader of their intuitive meaning: require that at most k
of these literals get the value true. Similarly, the notation AtLeast({l1, .., ln}, k),
denotes the constraint

∑n
i=1 li ≥ k. For our implementation we used Minicard

[15], which is a SAT-solver designed to perform well on instances containing
cardinality constraints.

3 Our Approach

In this section we fix a bound b and refer to repaired programs which are b-
correct. Figure 1 presents an overview of our repair system. It is composed of
three units: the translation unit, the mutation unit and the repair unit.

The initial processing is done in the translation unit. The translation unit
translates the input program into two sets of SMT constraints: Shard, encoding
parts of the program which cannot be changed (e.g. assertions), and Ssoft. Then,
the mutation unit constructs for each constraint ci in Ssoft a set of alternative
constraints Si, by applying mutations to ci. Finally, the repair unit searches for
all sets of constraints encoding minimal repaired programs (where minimality
will be defined with respect to the set of mutations used). In the rest of the
section we explain in detail how each unit works.

3.1 The Translation Unit

The translation unit is the first step of the process. It gets an input program
and an integer bound b and converts the input program into a set of SMT
constraints s.t. the program is b-correct iff the set of constraints is unsatisfiable
(i.e. the conjunction of all constraints in it is unsatisfiable).

Fig. 1. Overview of the repair system

Sound and Complete Mutation-Based Program Repair 599

Fig. 2. Example of program transformations during translation

Before the set of constraints is constructed, the program undergoes three
transformations: simplification, unwinding, and conversion to static single assign-
ment (SSA) form. This transformations are taken from [1], but we present them
here because the details are important in order to understand our method.

To explain the different transformations we will use the example presented
in Fig. 2. Figure 2a presents a C function named sum, which gets as input an

integer n and is supposed to return
n∑
1

i. But, being used to 0-based counting,

the programmer made a mistake in line 3, by initializing i to 0 instead of 1
and checking i < n instead of i <= n. The assertion in line 6 specifies that the
result should always be calculated according to the formula n·(n+1)

2 , which is the
correct sum calculated using the formula for a sum of an arithmetic progression.

600 B.-C. Rothenberg and O. Grumberg

We will now go over each transformation and explain its role shortly, using
the described example.

Simplification. Figure 2b shows the result of applying simplification to the pro-
gram in Fig. 2a. Complex constructs are replaced with simpler ones (for example,
the for loop was replaced with a while loop). More importantly, all conditions
are assigned to auxiliary boolean variables (g in the example). Note that after
this step, all original program expressions are right-hand-sides of assignments.

Unwinding. Figure 2c shows the result of applying unwinding for b = 2 to
the program in Fig. 2b. The loop is unwound b times by duplicating the loop
body b times, where each copy is guarded using an if statement that uses the
same condition as the loop statement (lines 5–15). Inside the innermost copy,
an assume statement is inserted with the negation of the condition (line 13), to
specify we do not want to consider runs going through the loop more than b
times.2 Function calls are inlined, with recursive calls treated similarly to loops
(inserted up to a depth of b).

Conversion to SSA form. The program is converted to SSA form (which
means each variable is assigned only once). Figure 2d shows the result of con-
verting the program in Fig. 2c to SSA form. All variables are replaced with
indexed variables, and whenever a variable appears as the left-hand-side of an
assignment, its index is increased by 1. If a variable x is assigned inside a con-
ditional statement and is used after the statement, an assignment is inserted
straight after the conditional statement to determine which copy of x should
be used. For example, lines 16–17 determine the updated value of sum after the
nested if statements, according to g1 and g2. We refer to this type of assignments
as Φ-assignments.

After the above transformations, conversion to a set of SMT constraints S is
straightforward. An assignment x = e is converted to the constraint x = e, an
assume(e) is converted to the constraint e and an assert(e) is converted to the
constraint ¬e.3 Shortly, we say that a constraint encodes a statement.

In the next step, the mutation unit will apply mutations independently to
every constraint passed to it. The problem is that, due to unwinding, all state-
ments which are part of a loop (as the loop condition or in the loop body)
are encoded using more than one constraint in S. This is of course undesirable,
because we do not want constraints encoding the same statement to be mutated
using different mutations. To avoid this, if a statement s is encoded using the
constraints c1, ..., ct ∈ S (where t > 1), we remove c1, ..., ct from S, and add
instead one complex constraint,

∧t
i=1 ci. Note that this has no effect on the

2 In [1] an assertion was inserted and not an assume. Since we fix the program with
respect to all assertions in it, we need this to be an assume and not an assert, because
we do not want to refer to unbounded runs as bugs.

3 Assertions are negated because we want a satisfying assignment to the set of con-
straints to represent a violation of the assertion. If multiple assertions exist in the
code, the disjunction of their negations is added as a constraint.

Sound and Complete Mutation-Based Program Repair 601

satisfiability of S (which is determined by the conjunction of all constraints in
S anyway).

As a final step, the modified set S is partitioned into two sets: Ssoft, con-
taining all constraints encoding statements subject to repair (i.e. statements con-
taining original program expressions), and Shard, containing the rest (constraints
encoding negated assertions, assumptions and Φ-assignments). Note that since
we made sure all original program expressions are right-hand-sides of assign-
ments using simplification, we can be sure all constraints in Ssoft are of the
form (x = e) (where x is an SSA variable and e is an expression), or of the
form (c1 ∧ c2, ...,∧cn) where each ci is of the form (x = e). Furthermore, we can
be sure all program statements which are subject to repair are encoded using
a single constraint and vice versa, and thus the size of Ssoft will always be the
same as the number of original program expressions (regardless of the bound b).

3.2 The Mutation Unit

We assume the program is incorrect because it contains one or more faulty
expressions, and we try to repair it by applying mutations to program expres-
sions. A mutation can be any function mapping a program expression to another
program expression of the same type. Examples of mutations include replacing
an operator by a similar one (e.g., ≤ by <) and applying constant manipulations
(e.g., replacing a constant by 0). The mutation unit is the component in charge
of applying the mutations. In fact, as described in Fig. 1, the mutations are
not applied directly on the program, but on constraints encoding the program,
received from the translation unit.

As explained in Sect. 3.1, the constraints in the input set, Ssoft, can be single
assignment constraints or multiple assignments constraints. Formally, given a
mutation M , and a single assignment constraint (x = e), M(x = e) is the
constraint (x = M(e)). For a multiple assignment constraint c = (c1∧c2∧...∧ct),
M(c) is the constraint (M(c1) ∧ M(c2) ∧ ... ∧ M(ct)).

The mutation unit maintains a fixed list of possible mutations,
M1,M2, ...,Mm. For each ci ∈ Ssoft (1 ≤ i ≤ n) all the mutations are applied
and the set Si = {ci,M1(ci), ...,Mm(ci)} is created.4 Note that the set Si con-
tains the original constraint ci, so leaving a statement intact is always an option.
Finally, the sets S1, ..., Sn are passed on to the repair unit, which uses them to
search for a repair.

3.3 The Repair Unit

Basic terms and definitions. The input to the repair unit is a set of “hard
constraints”, Shard, encoding the parts of the program which can not be changed,
and n disjoint sets of “soft constraints”, S1, ..., Sn, corresponding to n program

4 This is a simplification made for ease of presentation. In practice, we might not
be able to (or not want to) apply all mutations to all constraints. The choice of
mutations to use may depend on the expression’s type and/or its complexity.

602 B.-C. Rothenberg and O. Grumberg

locations where a possible fault may occur. Every set Si contains one special
constraint, cio, encoding the original statement in line i, referred to as the original
constraint. The rest of the constraints in Si encode possible replacements for line
i, obtained by applying mutations to the expression in the original statement.

Intuitively, the goal of the repair unit is to construct a repaired program by
choosing one constraint from each Si. Formally, we define a selection vector (sv)
[c1, ..., cn] as a vector of constraints where ci is taken from Si for all 1 ≤ i ≤ n.
Recall that constraints in Si encode different statements for line i, therefore
choosing a specific constraint from each Si can be seen as choosing a statement to
appear in each line, i.e. choosing a mutated program. Thus, each selection vector
encodes a program. We are interested in selection vectors encoding repaired or
correct programs. This leads to the following definitions.

Definition 3 (Rsv,Csv). A selection vector is repaired, denoted Rsv, if it
encodes a repaired program. A selection vector is correct, denoted Csv, if it
encodes a correct program.

Though (bounded) correctness is essential for repair, it is not enough. We
would also like for the repair to be “minimal”, in the sense that no changes are
made unless necessary. For example, if a program can be repaired by applying a
certain mutation to line number 2, we are not interested in a repair suggesting
to additionally mutate line number 3, even if it makes the program repaired. To
capture this intuition we define a partial order between constraints and between
selection vectors.

Definition 4 (� partial order between constraints). Let c1i , c
2
i ∈ Si. c1i � c2i if

c1i = cio and c2i �= cio (i.e., only c2i encodes a change to line i), or if c1i = c2i (i.e.,
both encode the same statement for line i).

Definition 5 (� partial order between svs). Let v1 = [c11, ..., c
1
n], v2 = [c21, ..., c

2
n]

be selection vectors. v1 � v2 if for all 1 ≤ i ≤ n c1i � c2i .

Definition 6 (mRsv,mCsv). A repaired selection vector v is minimal repaired,
denoted mRsv, if there is no v′ s.t. v′ �= v, v′ is a repaired selection vector and
v′ � v.

A correct selection vector v is minimal correct, denoted mCsv, if there is no
v′ s.t. v′ �= v, v′ is a correct selection vector and v′ � v.

Finally, it makes sense to prefer repairs involving as few statements as possi-
ble, because those are more likely to satisfy the user. For example, if the program
can be repaired by mutating line 1 and also by mutating lines 2 and 3, the first
repair is preferable. This intuition is formalized using the following definition:

Definition 7 (size). Let v be a selection vector. The size of v, denoted size(v),
is |{i|1 ≤ i ≤ n, v[i] �= cio}|.

In other words, size(v) is the number of mutated lines in the program encoded
by v. Thus, the repair unit should only look for minimal repaired selection vec-
tors, and amongst them prefer those with smaller size. In what follows, we present
an algorithm that computes all minimal repaired selection vectors (mRsvs), and
produces results in increasing size over time.

Sound and Complete Mutation-Based Program Repair 603

4 Algorithm AllRepair for the Repair Unit

4.1 Outline of the Algorithm

Figure 3 presents the general outline of our algorithm. Overall, the algorithm
goes over the search space of all svs, in increasing size order. This order is
enforced using the variable k, which limits the allowed size of the searched svs
(k is initially 1 and grows over time)5. Once the search reaches an sv v, we say
v has been explored (until then, v is unexplored). The algorithm is divided into
two repeating phases:

Phase 1 is responsible for finding the next unexplored sv. First, it looks for
an unexplored sv of size k. If one exists, it is passed on to Phase 2. Otherwise,
it checks if there exist any unexplored svs left at all. If not, the search is over
and the procedure ends. Otherwise, k is repeatedly increased by one until an
unexplored sv v of size k is found (v must be found for some k since we know
an unexplored sv exists). Once found, v is passed on to Phase 2.

Phase 2 gets as input an unexplored sv v. First, it checks if v is repaired,
that is, if v is b-correct. If it is, v is returned as a possible repair. In addition,
if v is repaired, Phase 2 marks not only v as explored, but also every sv v′ s.t.
v � v′. This is done in order to make sure that we will not waste time exploring
v′ in the future, since it is necessarily not minimal. If v is not repaired, then only
v is marked as explored.

4.2 Algorithm AllRepair in Detail

The pseudo-code of algorithm AllRepair is presented in Fig. 4. This algorithm
follows the general outline presented before, where an incremental SAT-solver
with cardinality constraints is used for the implementation of Phase 1, and an
incremental SMT-solver is used for the implementation of Phase 2. Note that,
we are interested in the satisfying assignments returned by the SAT solver and

Fig. 3. Outline of algorithm AllRepair

5 k is not to be confused with the unwinding bound b, which is fixed at this point.

604 B.-C. Rothenberg and O. Grumberg

1: function AllRepair(Input: Shard, S1, ..., Sn, Output: All mRsvs)
2: S′

1, ..., S
′
n, V1, ..., Vn ← AddSelVars(S1, ..., Sn)

3: τ ← true � initialization of SMT formula
4: for c ∈ Shard ∪ S′

1 ∪ ... ∪ S′
n do

5: τ ← τ ∧ c
6: end for
7: ϕ ← true � initialization of boolean formula
8: for 1 ≤ i ≤ n do
9: ϕ ← ϕ∧AtMost(Vi,1) � choose at most one statement per line

10: ϕ ← ϕ∧(
∨

v∈Vi
v) � choose at least one statement per line

11: end for
12: Vo ← GetSelVarsOfOriginal(V1, ..., Vn)
13: k ← 1
14: while true do
15: ϕk ← ϕ ∧ AtLeast(Vo, n − k)
16: satRes, V ← SAT (ϕk)
17: if satRes is unsat then
18: if ¬SAT (ϕ) then � No more svs to explore
19: return
20: end if
21: repeat
22: k ← k + 1
23: ϕk ← ϕ ∧ AtLeast(Vo, n − k)
24: satRes, V ← SAT (ϕk)
25: until satRes is sat
26: end if
27: smtRes ← IncrementalSMT(τ, V) � at this point V has been assigned
28: if smtRes is SAT then
29: ϕBlock ← BlockUnrepairedsv(V)
30: else
31: output Getsv(V, S′

1, ..., S
′
n)

32: ϕBlock ← BlockRepairedsv(V)
33: end if
34: ϕ ← ϕ ∧ ϕBlock � ϕ includes new blocking; k is not changed
35: end while
36: end function

Fig. 4. Algorithm AllRepair for finding all mRsvs

in the unsatisfiable instances returned by the SMT solver. The former represent
svs of desired sizes while the latter represent repaired programs.

The description below is strongly based on the background given in Sect. 2.1.
The first step is to instrument all constraints in S1, . . . , Sn with guard variables.
This is done using a function call in line 2, and the results are the sets of
instrumented constraints, S′

1, . . . , S
′
n (where S′

i = {xj → cj |for everycj ∈ Si})
and the sets of fresh guard variables used to guard the constraints in each set,
V1, . . . , Vn (where Vi contains the variables xj used to guard constraints in Si).

Sound and Complete Mutation-Based Program Repair 605

This instrumentation serves us in building both the SMT formula τ and the
boolean formula ϕ (passed to the SAT-solver).

Next, in lines 3–6, τ is initialized to the conjunction of all constraints in Shard

and all the instrumented constraints. Notice that this will enable us to determine
which of the soft constraints will be considered in each call to the SMT solver,
by using their guard variables as assumptions (while hard constraints will be
considered in all calls, regardless of the assumptions).

The boolean formula ϕ is initialized in lines 7–11. The boolean variables
composing this formula are the guard variables V1, ..., Vn, and therefore every
satisfying assignment of it can be seen as a subset of guard variables (those
assigned true by the assignment). We would like every satisfying assignment to
be not just any subset of guard variables, but one consistent with the definition
of an sv, i.e., a subset that contains exactly one selector variable from each Vi.
Lines 9–10 add to ϕ the necessary constraints to enforce this. From now on, we
will say that satisfying assignments returned by the SAT-solver represent svs.

Next, we would like to be able to add an upper bound on the size of repre-
sented svs. For this purpose, we define an additional formula, ϕk. In order to
construct ϕk, we first need to identify which guard variables guard the original
constraints. This is done in the function call in line 12, and the result is stored
in Vo.

Lines 13–26 essentially implement Phase 1 of the outline in Fig. 3. k is initial-
ized to 1 (line 13) and the iterative repetition of the two phases begins. First, ϕk

is set to the conjunction of ϕ and the clause AtLeast(Vo, n − k) (line 15). That
is, in ϕk we additionally require that at least n − k variables from Vo get the
value true. This essentially means that every satisfying assignment to ϕk now
represents an sv of size at most k.

Next, we check whether there exists an unexplored sv of size at most k by
sending ϕk to the SAT solver (line 16). The satisfiability result (sat/unsat) is
saved into satRes, and if the result is sat, V gets the set of all variables assigned
true by the satisfying assignment. If the result is unsat, we check whether there
exists an unexplored sv (without limitation on size) by sending ϕ to the SAT
solver (line 18). If the result is unsat, the algorithm ends (line 19). Otherwise,
we repeatedly increase k by one and resend ϕk to the SAT solver, until the result
is sat (lines 21–25).

Phase 2 begins in line 27, by calling the function IncrementalSMT(τ, V),
which checks the satisfiability of τ with all variables in V passed as assumptions.
This is in fact equivalent to checking the satisfiabillity of the conjunction of all
constraints in Shard and all soft constraints guarded by variables in V (since all
other constraints can be easily satisfied by setting their guard variables to false).
Note that this formula is unsat iff the sv represented by V (i.e., the constraints
guarded by variables in V) is an Rsv. Therefore, if the result is sat, we create
a blocking clause ϕBlock for the case in which V represents an sv that is not
repaired (line 29). The blocking clause in this case is simply

∨
v∈V ¬v (i.e. only

V is blocked). If the result is unsat, we translate V into the represented sv and
return it as a possible repair (line 31). The blocking clause we add in this case

606 B.-C. Rothenberg and O. Grumberg

(line 32) is
∨

v∈V \Vo
¬v, which requires that the same set of mutations will never

appear as a subset of any future set of mutations. This way we block not only V
but also every V ′ for which v � v′ (where v, v′ are the svs represented by V, V ′,
respectively).

5 Soundness and Completeness of Algorithm AllRepair

In this section we analyze our algorithm. We show that it is sound, that is, every
returned sv is minimal repaired, and that it is complete in the sense that every
minimal repaired sv is eventually returned.

Clearly, the algorithm returns all mRsvs, because we go over all svs and only
mark an sv as explored if it is returned (as repaired), if it is not repaired, or if
it is not minimal. Also, all svs returned by the algorithm are mRsvs, because
every returned sv is repaired (it is explicitly checked), and is minimal repaired
because otherwise it would have been marked as explored by another sv in a
previous iteration. Thus, the following theorem holds:

Theorem 8 (Correctness of AllRepair). Our algorithm is sound and com-
plete. That is, every sv v returned by our algorithm is an mRsv and every
mRsv v is returned by our algorithm at some point.

5.1 Extension to Full Correctness

We now analyze the soundness and completeness of our algorithm with respect
to full (unbounded) correctness. We show that there is a bound B for which the
notion of B-correctness is equivalent to the notion of correctness.

We first notice that since the set of mutations we consider is finite, so is
the set of mutated programs PG. For each P ∈ PG, if it is not correct then
it has a b-run for some b, along which some assertion is violated. Let bP be
the smallest bound for which such a run exists for P . Then, by definition, P is
not b-correct for any b greater than bp. Let max-bound B be defined as follows.
B = 1 + max{bP | P ∈ PG and P is not correct. Clearly, for every program
P in PG, P is B-correct iff P is correct. The following theorem describes this
observation by means of the selection vectors encoding programs in PG.

Theorem 9 (Equivalence of B-correctness and Full correctness). Let B be the
max-bound defined above. Then v is an Rsv for bound B iff v is a Csv. Further,
v is an mRsv for bound B iff v is an mCsv.

Proof. The first part of the theorem is a direct consequence of the definition
of B. The second part of the theorem is a direct consequence of the first part.
This is because, by definition, v is an mRsv for bound B iff v is an Rsv for B
and every v′ s.t. v′ � v and v′ �= v is not an Rsv for B. By the first part, this
happens iff v is a Csv and every v′ s.t. v′ � v and v′ �= v is not a Csv, which
means v is an mCsv. 	

Theorem 9 implies that for a large enough bound, all returned programs are
correct and all minimal correct programs are returned.

Sound and Complete Mutation-Based Program Repair 607

6 Experimental Results

We implemented a prototype of our algorithm on top of two existing tools. The
translation unit and the mutation unit were implemented in C++, by modifying
version 5.2 of the CBMC model checking tool [1]. The repair unit was imple-
mented in Python, by modifying version 1.1 of the MARCO tool [16]. MARCO
uses Z3 [2] as an SMT solver and Minicard [15] as a SAT solver.

Our current implementation works on C programs and uses a basic set of
mutations, which is a subset of the set used in [27]. We define two mutation
levels: level 2 contains all possible mutations and level 1 contains only a subset
of them. Thus level 1 involves easier computation but may fail more often in
finding a repaired program.

Table 1 shows the list of mutations used in every mutation level. For example,
for the sub-category of arithmetic operator replacement, in mutation level 1,
the table specifies two sets: {+,−} and {∗, /,%}. This means that a + can be
replaced with a −, and vice versa, and that the operators ∗, /,% can be replaced
with each other. Constant manipulation mutations apply to a numeric constant
and include increasing its value by 1 (C → C+1), decreasing it by 1 (C → C−1),
setting it to 0 (C→0) and changing its sign (C → −C).

We have evaluated our algorithm on the TCAS benchmarks from the Siemens
suite [7]. The TCAS program implements a traffic collision avoidance system for
aircrafts. It has about 180 lines of code and it comes in 41 faulty versions,
together with a reference implementation (a test suite is also included but we
do not use it).

We compared our results to those obtained by Könighofer and Bloem [11,12].
The results are summarized in Table 2. Each row refers to a different faulty
version of TCAS (we only include versions for which at least one method was
able to produce a repair). The specification used (in both our work and their’s)
is an assertion requiring equivalence with the correct version6. For each method
there are two columns: “Fixed?”, which contains a + if the method was able to
find a repair for that version, and “Time”, which specifies the time (in seconds)

Table 1. Partition of mutations to levels

Level 1 Level 2

Op. replacement Arithmetic {+,−}, {∗, /,%} {+,−, ∗, /,%}
Relational {>,>=}, {<,<=} {>,>=, <,<=}, {==, ! =}
Logical {||,&&}
Bit-wise {>>,<<},{&,|,ˆ}

Constant manipulation C→C+1,C→C−1, C→ −C,C→0

6 This is implemented by inlining the code of the correct version, saving the results of
both versions to variables res1 and res2, and asserting that res1=res2. The code of
the correct version is marked so that it will not be mutated (constraints encoding it
are hard constraints).

608 B.-C. Rothenberg and O. Grumberg

Table 2. Performance results on TCAS versions

Our method

Ver. Method of [11] Method of [12] Mutation level 1 Mutation level 2

Fixed? Time[s] Fixed? Time[s] Fixed? Time[s] Fixed? Time[s]

1 + 65 + 1.392 + 8.879

2 + 26 + 12

3 + 1.725 + 68.651

6 + 55 + 79 + 2.056 + 33.762

7 + 11 + 6

8 + 17 + 38

9 + 41 + 28 + 1.203 + 17.286

10 + 6.429 + 90.666

12 + 2.157 + 77.852

16 + 9 + 6 + 84.711

17 + 12 + 6 + 55.538

18 + 14 + 40

19 + 18 + 37

20 + 85 + 26 + 1.709 + 15.883

25 + 82 + 100 + 2.68 + 16.234

28 + 34 + 35 + 93.678

31 + 1.246 + 4.661

32 + 1.902 + 85.349

35 + 41 + 46 + 92.866

36 + 8 + 6 + 94.599

39 + 82 + 101 + 2.558 + 16.393

40 + 4.829

41 + 4.875

16 (39%) 38 15 (36.6%) 38 11 (26.83%) 2.278 18 (43.9%) 48.151

it took to find a repair (if found). The bottom line specifies for each method the
number of repaired versions along with their percentage from the total 41 faulty
TCAS versions, and the average time it took to find a repair.

From Table 2 it is clear that there is a trade-off between repairability and
runtime when deciding which mutations to use. When using mutation level 1, our
method repairs less faulty versions than [11,12] (11 vs. 15,16), but is significantly
faster (2.3 s vs. 38 s on average). When using mutation level 2, the number of
faulty versions we fix increases to 18, which is better than [11,12], but the average
time to repair increases to 48 s.

For all versions that we can not repair (including those that do not appear
in the table), we are able to say that they can not be fixed using the given set
of mutations. Using mutation level 1 it takes approximately 2 s on average to
reach the conclusion that the program can not be fixed using mutation sets of
size 1, and approximately 7 s to reach that conclusion for sets of size 2 (we did
not collect information about larger sizes though it is possible). Using mutation
level 2 these times increase significantly to 1.5 and 24 min, respectively.

Sound and Complete Mutation-Based Program Repair 609

Note that the runtime of mutation level 1 for version number 10 is excep-
tionally large. This is because this version requires applying two mutations in
two different locations in order to be repaired. Since we inspect programs with
increasing size of mutation sets, we have to first apply all mutation sets of size 1
before inspecting any mutation sets of size 2. Though our method takes longer
to produce this multi-line repair, it succeeds while [11,12] fail.

Since the TCAS program does not contain any loops or recursive calls, all
returned programs are guaranteed to be (fully) correct, and the unwinding bound
is insignificant. Therefore, we also evaluated our algorithm on a set of programs
with loops. This set contains implementations of commonly known algorithms
(e.g., bubble-sort and max-sort) in which we inserted bugs to create different
versions (a total of 10 faulty versions). All bugs can be fixed using mutation
level 1, but some require multi-line repair (up to 3 mutations at a time). In all
the above experiments a correct repair was found for a bound as small as 3.
Furthermore, for a bound of 3, all returned programs were found to be correct
(and not only bounded correct) by a manual inspection. These results suggest
that though our algorithm only guarantees bounded correctness, in many cases
the returned programs are correct, even when using a small bound and even in
the presence of several bugs.

7 Conclusion and Future Work

This work presents a novel approach to program repair. Given an erroneous
program, a set of assertions and a predefined set of mutations, our algorithm
returns all minimal repairs to the program, in increasing number of changes.

Since the number of optional repairs might be huge, it is necessary to prune
the search space whenever possible. Our technique does it by blocking all repairs
that are not minimal: Whenever a successful repair is found, all repairs that use
a superset of its mutations are blocked. Thus, a significant pruning of the search
space is obtained.

Another promising direction is to block sets of mutations that are guaranteed
not to succeed in repairing, based on previously seen unsuccessful once.

References

1. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

2. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

3. Moura, L., Bjørner, N.: Satisfiability modulo theories: an appetizer. In: Oliveira,
M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10452-7 3

http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-10452-7_3

610 B.-C. Rothenberg and O. Grumberg

4. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: Third International Conference on Software Testing, Verification and
Validation (ICST), pp. 65–74. IEEE (2010)

5. Debroy, V., Wong, W.E.: Combining mutation and fault localization for automated
program debugging. Jour. Sys. Soft. 90, 45–60 (2014)

6. DeMarco, F., Xuan, J., Le Berre, D., Monperrus, M.: Automatic repair of buggy if
conditions and missing preconditions with SMT. In: Proceedings of the 6th Inter-
national Workshop on Constraints in Software Testing, Verification, and Analysis,
pp. 30–39. ACM (2014)

7. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empirical Softw.
Eng. 10(4), 405–435 (2005)

8. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005). doi:10.1007/11513988 23

9. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: Proceedings of the International Conference on Soft-
ware Engineering, pp. 802–811. IEEE Press (2013)

10. Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 217–233. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-21668-3 13

11. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: Proceedings of Formal Methods in Computer-Aided Design
(FMCAD), pp. 91–100. IEEE(2011)

12. Könighofer, R., Bloem, R.: Repair with on-the-fly program analysis. In: Biere,
A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 56–71. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39611-3 11

13. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for 8 each. In: 34th Interna-
tional Conference on Software Engineering (ICSE), pp. 3–13. IEEE (2012)

14. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for
automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

15. Liffiton, M.H., Maglalang, J.C.: A cardinality solver: more expressive constraints
for free. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp.
485–486. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8 47

16. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21, 1–28 (2015)

17. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

18. Long, F., Rinard, M.: Prophet: automatic patch generation via learning from suc-
cessful patches (2015)

19. Long, F., Rinard, M.: Staged program repair with condition synthesis. In: Pro-
ceedings of the 10th Joint Meeting on Foundations of Software Engineering, pp.
166–178. ACM (2015)

20. Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the
search space of automated program fixing. Empirical Softw. Eng. 20(1), 176–205
(2015)

21. Mechtaev, S., Yi, J., Roychoudhury, A.: Directfix: looking for simple program
repairs. In: IEEE/ACM 37th IEEE International Conference on Software Engi-
neering (ICSE), vol. 1, pp. 448–458. IEEE (2015)

http://dx.doi.org/10.1007/11513988_23
http://dx.doi.org/10.1007/978-3-319-21668-3_13
http://dx.doi.org/10.1007/978-3-642-39611-3_11
http://dx.doi.org/10.1007/978-3-642-31612-8_47

Sound and Complete Mutation-Based Program Repair 611

22. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: Scalable multiline program patch
synthesis via symbolic analysis. ICSE (2016)

23. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair
via semantic analysis. In: Proceedings of the International Conference on Software
Engineering, pp. 772–781. IEEE Press (2013)

24. Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.: Automated fixing
of programs with contracts. IEEE Trans. Softw. Eng. 40(5), 427–449 (2014)

25. Qi, Y., Mao, X., Lei, Y.: Efficient automated program repair through fault-recorded
testing prioritization. In: IEEE International Conference on Software Maintenance,
pp. 180–189. IEEE (2013)

26. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: Does genetic programming work well on
automated program repair? In: Fifth International Conference on Computational
and Information Sciences (ICCIS), pp. 1875–1878. IEEE (2013)

27. Repinski, U., Hantson, H., Jenihhin, M., Raik, J., Ubar, R., Guglielmo, G.D.,
Pravadelli, G., Fummi, F.: Combining dynamic slicing and mutation operators for
ESL correction. In: 17th IEEE European Test Symposium (ETS), pp. 1–6. IEEE
(2012)

28. Sidiroglou-Douskos, S., Lahtinen, E., Long, F., Rinard, M.: Automatic error elim-
ination by horizontal code transfer across multiple applications. In: Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 43–54. ACM (2015)

29. Von Essen, C., Jobstmann, B.: Program repair without regret. Formal Methods
Syst. Des. 47(1), 26–50 (2015)

30. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Auto-
mated fixing of programs with contracts. In: Proceedings of the 19th international
symposium on Software testing and analysis, pp. 61–72. ACM (2010)

31. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: Models and first results. In: IEEE/ACM 28th International Con-
ference on Automated Software Engineering (ASE), pp. 356–366. IEEE (2013)

An Implementation of Deflate in Coq

Christoph-Simon Senjak(B) and Martin Hofmann

Ludwig-Maximilians-Universität, Munich, Germany
{christoph.senjak,hofmann}@ifi.lmu.de

Abstract. The widely-used compression format “Deflate” is defined in
RFC 1951 and is based on prefix-free codings and backreferences. There
are unclear points about the way these codings are specified, and several
sources for confusion in the standard. We tried to fix this problem by giv-
ing a rigorous mathematical specification, which we formalized in Coq.
We produced a verified implementation in Coq which achieves competi-
tive performance on inputs of several megabytes. In this paper we present
the several parts of our implementation: a fully verified implementation
of canonical prefix-free codings, which can be used in other compression
formats as well, and an elegant formalism for specifying sophisticated
formats, which we used to implement both a compression and decom-
pression algorithm in Coq which we formally prove inverse to each other –
the first time this has been achieved to our knowledge. The compatibility
to other Deflate implementations can be shown empirically. We further-
more discuss some of the difficulties, specifically regarding memory and
runtime requirements, and our approaches to overcome them.

Keywords: Formal verification · Program extraction · Compression ·
Coq

1 Introduction

It is more and more recognized that traditional methods for maintenance of
software security reach their limits, and different approaches become inevitable
[2]. At the same time, formal program verification has reached a state where
it becomes realistic to prove correctness of low-level system components and
combine them to prove the correctness of larger systems. A common pattern is
to have a kernel that isolates parts of software by putting them in sandboxes.
This way, one gets strong security guarantees, while being able to use unverified
parts which might fail, but cannot access memory or resources outside their
permissions. Examples are the L4 verified kernel [18] and the Quark browser [16].

This is an important step towards fully verified software, but it is also desir-
able to verify the low-level middleware. While for these components the adherence
of access restrictions would be assured by an underlying sandbox, functional cor-
rectness becomes the main concern. The CompCert compiler is such a project, and
as [19] points out, a compiler bug can invalidate all guarantees obtained by for-
mal methods. The MiTLS [7] project implements TLS, and verifies cryptographic
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 612–627, 2016.
DOI: 10.1007/978-3-319-48989-6 37

Deflate in Coq 613

security properties. We propose to add to this list a collection of compression for-
mats; in this paper we look specifically at Deflate [10], which is a widely used stan-
dard for lossless general purpose compression. HTTP can make use of it [12], so
does ZIP [22] and with it its several derived formats like Java Archives (JAR)
and Android Application Packages (APK). Source-code-tarballs are usually com-
pressed with GZip, which is a container around a Deflate stream [11]. Finally,
TLS supports Deflate compression [14], though it is now discouraged due to the
BREACH family of exploits [17]. Deflate compression can utilize Huffman cod-
ings and Backreferences as used in Lempel-Ziv-Compression (both defined later),
but none of them are mandatory: The way a given file can be compressed is by
no means unique, making it possible to use different compression algorithms. For
example, the gzip(1) utility has flags -1 through -9, where -9 yields the strongest
but slowest compression, while -1 yields the weakest but fastest compression. Fur-
thermore, there are alternative implementations like Zopfli [13], which gains even
better compression at the cost of speed.

It is desirable to have some guarantees on data integrity, in the sense that the
implementation itself will not produce corrupted output. A common complaint
at this point is that you can get this guarantee by just re-defining your unverified
implementations of compression, say c, and decompression, say d, by

c′x =
{

(�, cx) for d(cx) = x
(⊥, x) otherwise

d′x =
{

dy for x = (�, y)
y for x = (⊥, y)

This works well as long as one only has to work with one computer architecture.
However, for secure long-term-archiving of important data, this is not sufficient:
It is not clear that there will be working processors being able to run our d
implementation in, say, 50 years; but a formal, mathematical, human-readable
specification of the actual data format being used can mitigate against such dig-
ital obsolescence: The language of mathematics is universal. However, of course,
this is a benchmark one should keep in mind. We are currently still far away
from this performance level, but we are sure our work can lead to such a fast
implementation, but not without lots of micro-optimization; for now the per-
formance is acceptable but not fast enough yet, we are working on making it
better.

Of course, one needs some specification. Besides having to rely on some hard-
ware specification, as pointed out in [18], finding the right formal specification
for software is not trivial. In MiTLS [7], an example about “alert fragmentation”
is given, which might give an attacker the possibility to change error codes by
injection of a byte. This is standard compliant, but obviously not intended. A
rigorous formal specification of an informally stated standard must be carefully
crafted, and we consider our mathematical specification of Deflate as a contri-
bution in this direction.

614 C.-S. Senjak and M. Hofmann

1.1 Related Work

To our best knowledge, this is the first verified pair of compression and decom-
pression algorithms, and it is practically usable, not just for toy examples.
However, there have been several projects that are related. A formalization of
Huffman’s algorithm can be found in [8,23]. As we will point out in Sect. 3, the
codings Deflate requires do not need to be Huffman codings, but they need to
satisfy a canonicity condition. From the general topic of data compression, there
is a formalization of Shannon’s theorems in Coq [4].

There are two techniques in Coq that are commonly regarded as “program
extraction”: On the one hand, one can explicitly write functions with Coq, and
prove properties about them, and the extract them to OCaml and Haskell. This
is the method that is usually used. The complexity of the extracted algorithms
can be estimated easily, but reasoning about the algorithms is disconnected from
the algorithms themselves. On the other hand, it is possible to write constructive
existence proofs and extract algorithms from these proofs directly. The advantage
of this approach is that only a proof has to be given, which is usually about as
long as a proof about an explicit algorithm, so the work only has to be done once.
However, the disadvantage is that the complexity of the generated algorithm is
not always obvious, especially in the presence of tactics. We think that this
technique fits well especially for problems in which either the algorithm itself
is complicated, because it usually has lots of invariants and proofs of such an
algorithm require extensive use of the inner structure of the terms, or when the
algorithm is trivial but the proofs are long. The case study [21], albeit on a
different topic (Myhill-Nerode), is an interesting source of inspiration in that it
distills general principles for improving efficiency of extracted programs which
we have integrated where applicable. In particular, these were

– to use expensive statements non-computationally, which we have done in large
parts of the code.

– to use existential quantifiers as memory, which we did, for example, in our
proofs regarding strong decidability (see Sect. 5).

– to calculate values in advance, which we did, for example, for the value
fixed lit code.

– to turn loop invariants into induction statements, which is not directly applica-
ble because Coq does not have imperative loops, but corresponds to Coq’s
induction measures, which give a clue about the computational complexity.

We use both extraction techniques in our code. Besides the use of recursion
operators instead of pattern matching, the extracted code is quite readable.

Our theory of parsers from Sect. 5 follows an idea similar to [6], trying to pro-
duce parsers directly from proofs, as opposed to other approaches, for example
[9], which defines a formal semantic on parser combinators. Most of the algo-
rithms involved in parsing are short, and therefore, as we already said, using the
second kind of program extraction we mentioned was our method of choice for
the largest part.

Deflate in Coq 615

1.2 Overview

In summary, this paper provides a rigorous formal specification of Deflate and
a reference implementation of both a compression and decompression algorithm
which have been formally verified against this specification and tested against
the ZLib.

This paper is organized as follows: In Sect. 2, we give a very brief overview
over several aspects of the Deflate standard. In Sect. 3 we introduce concepts
needed to understand the encoding mechanism of Deflate that is mostly used,
namely Deflate codings, a special kind of prefix-free codings, and prove several
theorems about them. In Sect. 4, we will introduce the concept of backreferences
which is the second compression mechanism besides prefix-free codings that can
be used with Deflate. Section 5 is about our mechanism of specifying and com-
bining encoding relations, and how one can gain programs from these. Section 6
will introduce our current approach for a verified compression algorithm. Finally,
Sect. 7 explains how our software can be obtained, compiled and tested. We pub-
lished a version of this paper with an appendix containing an elaborate example
of the Deflate compression standard, some benchmarks, and some explanatory
tables, on Arxiv.

2 The Encoding Relation

The main problem when verifying an implementation of a standard is that a
specification must be given, and this specification itself is axiomatic and cannot
be formally verified. We address this problem in two ways. First, we try to put
the complexity of the implementation into the proofs, and make the specification
as simple as possible. The correctness of a specification should be “clear” by read-
ing, or at least require only a minimal amount of thinking. This was not always
possible, because the Deflate standard is intricate; in the cases when it was not
possible, we tried to at least put the complexity into few definitions and reuse
them as often as possible. In fact, most of our definitions in EncodingRelation.v
should be easily understandable when knowing the standard. In addition to that,
we give some plausibility checks in the form of little lemmas and examples which
we formally prove. Secondly, we prove a decidability property for our encoding
relation which yields—by program extraction—a reference implementation that
we can apply to examples. This way, the implementation becomes empirically
correct. However, even if there was a pathological example in which our spec-
ification is not compliant with other implementations, it would still describe a
formally proved lossless compression format, and every file that was compressed
with one of our verified compression algorithms could still be decompressed with
every verified decompression algorithm.

On the toplevel, a stream compressed with Deflate is a sequence of blocks,
each of which is a chunk of data compressed with a specific method. There
are three possible types of blocks: uncompressed blocks, which save a small
header and the clear text of the original, statically compressed blocks, which are
compressed with codings defined in the standard, and dynamically compressed

616 C.-S. Senjak and M. Hofmann

blocks, which have codings in their header. Their respective type is indicated
by a two-bit header. Furthermore, a third bit indicates whether the block is the
last block. The bit-level details of the format are not important for this paper,
most of the relational definition can be found in the file EncodingRelation.v.
For clarity, we give an informal illustration of the toplevel format:

Deflate ::= (’0’ Block)* ’1’ Block (’0’ | ’1’)*
Block ::= ’00’ UncompressedBlock |

’01’ DynamicallyCompBl |
’10’ StaticallyCompBl

UncompressedBlock ::= length ~length bytes
StaticallyCompBl ::= CompressedBlock(standard coding)
DynamicallyCompBl ::= header coding CompressedBlock(coding)
CompressedBlock(c) ::= [^256]* 256 (encoded by c)

Compressed blocks can contain backreferences – instructions to copy already
decompressed bytes to the front – which are allowed to point across the borders
of blocks, see Sect. 4. A decompression algorithm for such blocks must, besides
being able to resolve backreferences, be able to decompress the data according
to two codings, where some of the codes have additional suffixes of a number
of bits defined in a table. Additionally, for dynamically compressed blocks, the
codings themselves, which are saved as sequences of numbers (see Sect. 3), are
compressed by a third coding. This makes decompression of such blocks a lot
harder than one would expect, and gives a broad vector for common bugs like
off-by-one-errors or misinterpretations of the standard. For example, notice that
while the first table from the first table in Sect. 3.2.5 from the standard [10]
looks quite “continuous”, the codepoint 284 can only encode 30 code lengths,
which means that the suffixes 01111 and 11111 are illegal (this was actually a
bug in an early version of our specification). Due to the space restrictions, we
will not get deeply into the standard in this paper, and spare the readers the
complicated parts as far as possible. For a deeper understanding, we give an
elaborate example in the Arxiv-version of this paper and otherwise refer to [10].

3 Deflate Codings

Deflate codings are the heart of Deflate. Everything that is compressed in any
way will be encoded by two Deflate codings, even if the coding itself is not used to
save memory (this will usually be the case for statically compressed blocks which
only utilize backreferences). In other literature, Deflate codings are also called
canonical prefix-free codings – “canonical” because of the result shown in
Theorem 1, “prefix-free” will be defined in Definition 1. Sometimes people talk
about “codes” instead of “codings”. However, in our terminology, a “code” is a
sequence of bits from a coding, and a “coding” is a map from an alphabet into
codes. Though we call them Deflate codings, they are also used in many other
compression formats, like BZip2, and this part of our implementation can be
reused.

Deflate in Coq 617

It is well-known [15] that for every string A ∈ A∗ over a finite alphabet
A, there is a Huffman coding h : A → {0, 1}∗, which is a prefix-free cod-
ing such that the concatenation of the characters’ images foldl(++)[](map hA)
has minimal length. In fact, this has already been formally proved [8]. The
standard [10] abuses terminology slightly by calling any not necessarily optimal
prefix-free coding “Huffman coding”. This makes sense because, especially for
statically compressed blocks, fixed, not necessarily optimal encodings are used.
On the other hand, the standard specifies canonical prefix-free codings which
can be uniquely reconstructed from the respective code lengths for each encoded
character. These canonical codings are referred to as Deflate codings. There-
fore, instead of expensively saving a tree structure, it is sufficient to save the
sequence of code lengths for the encoded characters. Optimal Deflate codings
are also known as canonical Huffman codings.

In any practical case, there will be a canonical ordering on A, so from now
on, let us silently assume the alphabet A = {0, . . . , n − 1} for some n ∈ N. We
say a code a is a prefix of b and write a � b, if there is a list c ∈ {0, 1}∗ such
that a++ c = b. Notice that � is reflexive, transitive and decidable. We denote
the standard lexicographical ordering on {0, 1}∗ by �. We have [] � a and
0 :: a � 1 :: b for all a, b and j :: a � j :: b whenever a � b. It is easy to show that
this is a decidable total ordering relation. We can now make prefix-free codings
unique. The code [] is used to denote that the corresponding element of A does
not occur. This is consistent with the standard that uses the code length 0 to
denote this.

Definition 1. A Deflate coding is a coding �·� : A → {0, 1}∗ which satisfies
the following conditions:

1. �·� is prefix-free, except that there may be codes of length zero:

∀a,b.(a
= b ∧ �a�
= []) → �a�
� �b�

2. Shorter codes lexicographically precede longer codes:

∀a,b. len�a� < len�b� → �a� � �b�

3. Codes of the same length are ordered lexicographically according to the order
of the characters they encode:

∀a,b.(len�a� = len�b� ∧ a ≤ b) → �a� � �b�

4. For every code, all lexicographically smaller bit sequences of the same length
are prefixed by some code:

∀a∈A,l∈{0,1}+ .(l � �a� ∧ len l = len�a�) → ∃b.�b�
= [] ∧ �b� � l

These axioms are our proposed formalization of the informal specification in [10],
which states: “The Huffman codes used for each alphabet in the ‘deflate’ format
have two additional rules:

618 C.-S. Senjak and M. Hofmann

– All codes of a given bit length have lexicographically consecutive values, in
the same order as the symbols they represent;

– Shorter codes lexicographically precede longer codes.”

Notice that prefix-codes as given by their code lengths do not necessarily corre-
spond to optimal, i.e. Huffman, codes. For example, the Deflate coding

0 → [0], 1 → [1, 0, 0], 2 → [1, 0, 1], 3 → [1, 1, 0]

is clearly not a Huffman coding, since for every case it would apply to, we could
also use

0 → [0], 1 → [1, 0], 2 → [1, 1, 1], 3 → [1, 1, 0]

which will always be better. Unique recoverability, however, holds true for all
Deflate codings irrespective of optimality.

Axiom 3 is weaker than the first axiom from [10], as it does not postulate
the consecutivity of the values, which is ensured by axiom 4: Assuming you
have characters a < b such that len�a� = len�b�, and there is a l ∈ {0, 1}len�a�

such that �a� � l � �b�, then by axiom 4 there is a d such that �d� � l.
Trivially, �a� � �d�, therefore by axiom 2, it follows that �d� = l. That is, if
there is a code of length len�a� between �a� and �b�, then it is the image of a
character. Therefore, the values of codes of the same length are lexicographically
consecutive.

Furthermore, consider our non-optimal coding from above: It has the lengths
0 → 1, 1 → 3, 2 → 3, 3 → 3, and satisfies our axioms 1–3, and additionally, the
codes of the same length have lexicographically consecutive values. But the same
holds for the coding

0 → [0], 1 → [1, 0, 1], 2 → [1, 1, 0], 3 → [1, 1, 1]

However, in this coding, there is a “gap” between the codes of different lengths,
namely between [0] and [1, 0, 1], and that is why it violates our axiom 4: The list
[1, 0, 0] is lexicographically smaller than [1, 0, 1], but it has no prefix.

We can show that Deflate codings are uniquely determined by their code
lengths:

Theorem 1 (uniqueness). Let �·�, �·� : A → {0, 1}∗ be two Deflate codings,
such that ∀x∈A. len�x� = len�x�. Then ∀x∈A.�x� = �x�.
Proof. Equality of codings is obviously decidable, therefore we can do a proof
by contradiction, without using the law of excluded middle as an axiom. So
assume there were two distinct deflate codings �·� and �·� with len�·� = len�·�.
Then there must exist n,m such that �n� = min�{�x� | �x�
= �x�} and
�m� = min�{�x� | �x�
= �x�}. If len �n� > len �m�, then also len �n� > len �m�,
and by our axiom 2, �m� � �n�. But m was chosen minimally. Symmetric for
len �n� > len �m�. Therefore, len �n� = len �m�. Also, �m�
= [], because other-
wise 0 = len �m� = len �n�, so �n� = [], and so �m� = �m�, which contradicts
our assumption on the choice of m. Analogous, �n�
= []. By totality of �, we

Deflate in Coq 619

know that �n� � �m�∨ �m� � �n�. Both cases are symmetric, so without loss of
generality assume �n� � �m�. Now, by axiom 4, we know that some b exists, such
that �b� � �n�, therefore by axiom 2, �b� � �m�, and thus, by the minimality of
m, either b = m or �b� = �b�. b = m would imply �m� = �m�, which contradicts
our choice of m. But �b� = �b� would imply �b� � �n�, which contradicts our
axiom 1.

This theorem is proved as Lemma uniqueness in DeflateCoding.v. While
uniqueness is a desirable property, it does not give us the guarantee that, for
every configuration of lengths, there actually is a Deflate coding. And in fact,
there isn’t: Trivially, there is no Deflate coding that has three codes of length 1.
It is desirable to have a simple criterion on the list of code lengths, that can be
efficiently checked, before creating the actual coding.

Indeed, the well-known Kraft inequality [20] furnishes such a criterion. It
asserts that a prefix-free coding with code lengths k0, . . . , kN−1 exists iff

N−1∑

i=0

2−ki ≤ 1

Deflate codings may, however, have ki = 0 if the corresponding character does
not occur. Moreover, we want to extract an algorithm from this proof, so we
have to prove it constructively.

Theorem 2 (extended kraft ineq). Let �·� : A → {0, 1}∗ be a Deflate cod-
ing. Then ∑

i∈A
�i�	=[]

2− len�i� ≤ 1

Equality holds if and only if there is some k ∈ A such that �k� ∈ {1}+.
This is formally proven as extended kraft ineq in DeflateCoding.v. The most
important theorem regarding Deflate codings is:

Theorem 3 (existence). Let l : A → N be such that
∑

i∈A
l(i) 	=0

2−l(i) ≤ 1

Then there is a Deflate coding �·� : A → {0, 1}∗ such that lx = len�x�.
For the proof, we introduce the notation [n]k := [n, . . . , n︸ ︷︷ ︸

k×

].

Proof. Let � be the right-to-left lexicographical ordering relation on N,
defined by

∀mqo.q < o → (q,m) � (o,m)

∀m1,m2,n1,n2 .m1 < m2 → (n1,m1) � (n2,m2)

Now let R = L := sortBy(�)(map(λk(k, lk))[0, . . . , n − 1]), S = [], cx = []. We
will do a recursion on tuples (S, c,R), maintaining the following invariants:

620 C.-S. Senjak and M. Hofmann

1. If a pair is not in the list of already processed pairs S, then it is in the list of
remaining pairs R, and the corresponding code is empty

∀q.(q, len(c(q)))
∈ S → (c(q) = [] ∧ (q, l(q)) ∈ R)

2. L contains the elements of S and R

(rev S)++R = L

3. Either S is empty, or the code corresponding to its first element is lexico-
graphically larger than every code in the current coding

S = [] ∨ ∀q.c(q) � c(π1(first S))

Furthermore, c will be a Deflate coding at every step. The decreasing element
will be R, which will become shorter at every step. We first handle the simple
cases:

– For the initial values ([], λx[], L), the invariants are easy to prove.
– For R = [], we have rev S = L by 2 and therefore, either c = λx[] if L = [],

or ∀q.(q, len(c(q))) ∈ L by 1, and therefore, c is the desired coding.
– For R = (q, 0) :: R′, S can only contain elements of the form (, 0). We proceed

with ((q, 0) :: S, λx[], R′). All invariants are trivially preserved.
– For R = (q, 1 + l) :: R′ and S = [] or S = (r, 0) :: S′, we set c′(x) = [0]1+l for

x = q, and c′(x) = [] otherwise. We proceed with ((q, 1 + l) :: S, c′, R′). The
invariants are easy to show. It is easy to show that c′ is a Deflate coding.

The most general case is R = (q, 1 + l) :: R′ and S = (r, 1 + m) :: S′; let the
intermediate Deflate coding c be given. We have

∑

i∈A
c(i) 	=[]

2− len(c(i)) < 2−l−1 +
∑

i∈A
c(i) 	=[]

2− len(c(i)) ≤
∑

i∈A
li 	=0

2−l(i) ≤ 1

By Theorem 2, [1]1+m
∈ img c, and therefore, we can find a fresh code d′ of
length 1 + m. Let d = d′++[0]l−m and set

c′(x) :=
{

d for x = q
c(x) otherwise

We have to show that c′ is a Deflate coding. The axioms 2 and 3 are easy. For
axiom 4, assume x
= [] and x � c′(q). If x � c′(r), the claim follows by axiom
4 for r. Otherwise, by totality c′(r) � x. If x � d′, by the minimality of d′

follows x = c′(r). If d′ � x, trivially, d′ � c′(q). Axiom 4 holds. For axiom 2, it is
sufficient to show that no other non-[] code prefixes d. Consider a code e � d. As
all codes are shorter or of equal length than d′, e � d′. But then, either e � c(r),
or c(r) � e. Contradiction. Therefore, we can proceed with ((q, 1+ l) :: S, c′, r′).

Deflate in Coq 621

This is proved as Lemma existence in DeflateCoding.v. From this, we can
extract an algorithm that calculates a coding from a sequence of lengths. For a
better understanding of the algorithm proposed here, we consider the following
length function as an example:

l : 0 → 2; 1 → 1; 2 → 3; 3 → 3; 4 → 0

We first have to sort the graph of this function according to the � ordering.

[(4, 0), (1, 1), (0, 2), (2, 3), (3, 3)]

Then, the following six steps are necessary to generate the coding.

Step R S c(0) c(1) c(2) c(3) c(4)

0 [(4, 0), (1, 1),
(0, 2), (2, 3),
(3, 3)]

[] [] [] [] [] []

1 [(1, 1), (0, 2),
(2, 3), (3, 3)]

[(4, 0)] [] [] [] [] []

2 [(0, 2), (2, 3),
(3, 3)]

[(1, 1), (4, 0)] [] [0] [] [] []

3 [(2, 3), (3, 3)] [(0, 2), (1, 1),
(4, 0)]

[1,0] [0] [] [] []

4 [(3, 3)] [(2, 3), (0, 2),
(1, 1), (4, 0)]

[1,0] [0] [1,1,0] [] []

5 [] [(3, 3), (2, 3),
(0, 2), (1, 1),
(4, 0)]

[1,0] [0] [1,1,0] [1,1,1] []

The final values of c are, in fact, a Deflate coding. The main difference to the
algorithm in the standard [10] is that we sort the character/length pairs and then
incrementally generate the coding, while their algorithm counts the occurrences
of every non-zero code length first, determines their lexicographically smallest
code, and then increases these codes by one for each occurring character. In our
case, that means that it would first generate the function a : 1 → 1; 2 → 1; 3 → 2
and 0 otherwise, which counts the lengths, and then define

b(m) =
m−1∑

j=0

2ja(j)

which gets the numerical value for the lexicographically smallest code of every
length when viewed as binary number with the most significant bit being the
leftmost bit. In our case, this is 1 → 0; 2 → 2; 3 → 6. Then

c(n) = b(l(n)) + |{r < n | l(r) = l(n)}|

622 C.-S. Senjak and M. Hofmann

meaning c(0) = b(2) = 10(2), c(1) = b(1) = 0(2), c(2) = b(3) = 110(2), c(3) =
b(3) + 1 = 111(2) which is consistent with the algorithm presented here. The
algorithm described in the standard [10] is more desirable for practical purposes,
as it can make use of low-level machine instructions like bit shifting. On the other
hand, notice that our algorithm is purely functional.

4 Backreferences

Files usually contain lots of repetitions. A canonical example are C files which
contain lots of #include statements, or Java files which contain lots of import
statements in the beginning. Deflate can remove these repetitions, as long as they
are not more than 32 KiB1 apart from each other. The mechanism uses backref-
erences, as found in Lempel-Ziv-compression. An extension of the backreference
mechanism also allows for run length encoding (see below). A backreference is
an instruction to copy parts of already decompressed data to the front, so dupli-
cate strings have to be saved only once. They are represented as a pair 〈l, d〉
of a length l and a distance d. The length is the number of bytes to be copied,
the distance is the number of bytes in the backbuffer that has to be skipped
before copying. Similar mechanisms are used in other compression formats, so
our implementation can probably be used for them, too.

The resolution (decompression) of such backreferences in an imperative con-
text is trivial, but uses lots of invariants that make it hard to prove correct. In
a purely functional context, it is non-trivial to find data structures that are fast
enough. We decided to stick with purely functional algorithms, as they can be
verified directly using Coq, and optimization of purely functional programs is
interesting for its own sake. In our current verified implementation, this is the
slowest part. We already have figured out an algorithm with better performance,
but we are not yet done proving it formally correct; we will not get deeper into
this algorithm in this paper.

Assuming we wanted to compress the string

ananas banana batata (1)

we could shorten it with backreferences to

ananas b〈5, 8〉〈3, 7〉tata (2)

An intuitive algorithm to resolve such a backreference uses a loop that decreases
the length and copies one byte from the backbuffer to the front each time (the
example is written in Java; notice that this algorithm, while intuitive, is not
suitable for actual use in a decompression program, because you usually do not
know the length of the output in advance, and hence cannot allocate an array
of the proper length):

1 Kibibyte: 210 Byte.

Deflate in Coq 623

int resolve (int l, int d, int index , byte[] output) {

while (l > 0) {

output[index] = output[index -d];

index = index + 1; l = l - 1; }

return index; }

This intuitive algorithm works when l > d, and results in a repetition of already
written bytes – which is what run length encoding would do. Therefore, Deflate
explicitly allows l > d, allowing us to shorten (2) even further:

an〈3, 2〉s b〈5, 8〉〈3, 7〉t〈3, 2〉 (3)

More directly, the string aaaaaaaargh! can be compressed as a〈7, 1〉rgh!, which
essentially is run length encoding.

As already mentioned, the efficient resolution of backreferences in a purely
functional manner was a lot harder than we expected. An imperative implemen-
tation can utilize the fact that the distances are limited by 32 KiB, and use a
32 KiB ringbuffer in form of an array that is periodically iterated and updated
in parallel to the file-I/O. This uses stateful operations on an array, and has
complicated invariants.

4.1 A Verified Backreference-Resolver

The obvious approach to do this in a purely functional way is using a map-like
structure instead of an array as a ring buffer. The best possible approach we
found uses an exponential list

Inductive ExpList (A : Set) : Set :=

| Enil : ExpList A

| Econs1 : A -> ExpList (A * A) -> ExpList A

| Econs2 : A -> A -> ExpList (A * A) -> ExpList A.

This takes into account that – in our experience – most backreferences tend to be
“near”, that is, have small distances, and such elements can be accessed faster.
We could just save our whole history in one ExpList that we always pass around,
without performance penalty. However, this will take a lot of memory which we
do not need, as backreferences are limited to 32 KiB. We use another technique
which we call Queue of Doom: We save two ExpLists and memorize how
many elements are in them. The front ExpList is filled until it contains 32 KiB.
If a backreference is resolved, and its distance is larger than the amount of bytes
saved in the front ExpList, it is looked up in the back ExpList. Now, if the front
ExpList is 32 KiB large, the front ExpList becomes the new back ExpList, a
new empty front ExpList is allocated, and the former back ExpList will be
doomed to be eaten by the garbage collector. The following is an illustration of
filling such a queue of doom, the ExpLists are denoted as lists, and their size is
– for illustration – only 3:

624 C.-S. Senjak and M. Hofmann

start [] []
push 1 [1] []
push 2 [2; 1] []
push 3 [3; 2; 1] []
push 4 [4] [3; 2; 1] [] →
push 5 [5; 4] [3; 2; 1]
push 6 [6; 5; 4] [3; 2; 1]
push 7 [7] [6; 5; 4] [3; 2; 1] →

The advantage of this algorithm is that we have a fully verified implemen-
tation in EfficientDecompress.v. The disadvantage is that while it does not
perform badly, it still does not have satisfactory performance, taking several
minutes. We are currently working on better algorithms. One such algorithm
which is purely functional can be found in the file NoRBR/BackRefs.hs in the
software directory, see Sect. 7. Another such algorithm which utilizes diffarrays
[1] aka Parray [24], and resembles an imperative resolution procedure, can be
found in the file NoRBR/BackRefWithDiffArray.hs. Both perform well, and we
are currently working on verifying them.

5 Strong Decidability and Strong Uniqueness

So far we showed how we implemented several aspects of the standard. How-
ever, this was a very high-level view: We still need to combine the parts we
implemented in the way specified in [10]. This is a lot less trivial than it might
sound: A compressed block is associated with two codings, a “literal/length”
coding, and a “distance” coding. The “literal/length” coding contains codes for
raw bytes, a code for the end of the block, and “length” codes, which initialize
a backreference, and can have suffixes of several bits. Such length codes and
their suffix must be followed by a “distance” code which can also have a suffix.
Dynamically compressed blocks have an additional header with the code-length
sequences for these two codings (which are sufficient for reconstruction of the
codings, as proved in Sect. 3). However, these sequences are themselves com-
pressed by yet another mechanism that – besides Huffman-coding – allows for
run-length-encoding. Therefore, a third coding must be specified in the header,
the “code-length coding”. Uncompressed blocks, on the other hand, must start
at a byte-boundary, which means that when specifying, we cannot even forget
the underlying byte sequence and just work on a sequence of bits.

We could have written a decompression function as specification, but there
are several possible algorithms to do so, which we would have to prove equiv-
alent. We decided that a relational specification is clearer and easier to use,
and probably also easier to port to other systems (Isabelle, Agda, Minlog) if
desired. We defined two properties that such relations must have to be suitable
for parsing, which we will define in this section.

Deflate in Coq 625

While efficiency in runtime and memory are desirable properties, the most
important property of a lossless compression format is the guarantee that for
any given data d, decompress(compress d) = d, which is what our final imple-
mentation guarantees. While most container formats have some checksum or
error correction code, Deflate itself does not have mechanisms to cope with data
corruption due to hardware failures and transcription errors, therefore a formal
discussion of these is outside the scope of this paper; research in this direction
can be found for example in [3].

We will work with relations of the form OutputType -> InputType ->
Prop. The final relation is called DeflateEncodes.

Left-Uniqueness (“injectivity”) can be formalized as ∀a,b,l.R a l → R b l →
a = b. However, when reading from a stream, it must always be clear when to
“stop” reading, which essentially means that given an input l such that R a l, it
cannot be extended: ∀a,b,l,l′ .R a l → R b (l++l′) → l′ = []. We proved that these
two properties together are equivalent to the following property, which we call
strong uniqueness:

StrongUnique(R) :⇔
∀a,b,la,l′a,lb,l′b .la++l′a = lb++l′b → Rala → Rblb → a = b ∧ la = lb

This is formally proved as StrongUniqueLemma in StrongDec.v. While strong
uniqueness gives us uniqueness of a prefix, provided that it exists, we need an
additional property that states that it is actually decidable whether such a prefix
exists, which we call strong decidability:

StrongDec(R) :⇔ ∀l.(λX .X ∨ ¬X)(∃a,l′,l′′ .l = l′++l′′ ∧ Ral′)

All existences are constructive: If a prefix exists, then we can calculate it. There-
fore, proving strong decidability yields a parser for the respective relation. Con-
versely, if you can write and verify a parser for it, then existence follows.

Strong decidability and strong uniqueness reflect the obvious type of a verified
decoder: If a relation satisfies both properties, it is well-suited for parsing. Indeed,
for R being our formalization of the Deflate standard, we give a formal proof of
StrongDec(R) which is such that the extracted decoding function constitutes a
usable reference implementation in the sense that it can successfully decompress
files of several megabytes. We can combine such relations in a way similar to
parser monads, a bind-like combinator can be defined that first applies the first
relation, and then the second relation:

Q �=c R := μξ(∀bq,br,aq,ar
.Q bq aq → R bq br ar → ξ (c bq br) (aq ++ar))

This combinator preserves strong uniqueness and decidability. More complicated
combinators can be built from it. This makes it is easy to replace parts of strong
decidability proofs and optimize them, and makes the implementation modular.
This way we could benchmark optimizations before verifying them (by using
admit, for example), which made programming much easier.

The definitions can be found in StrongDec.v, most proofs for our encoding
relation can be found in EncodingRelationProperties.v.

626 C.-S. Senjak and M. Hofmann

We think that our overall theory of such grammars and parsers is usable for
many other data formats: It should be usable whenever parsing does not need
to be interactive in the sense that it must produce answers to requests (like in
many bidirectional network protocols). But despite this drawback, it should be
applicable in many practical situations, and is very simple.

6 Compression

Compression is by no means unique, and depends on the desired trade off between
speed and compression ratio. We implemented an algorithm that does not yet uti-
lize optimal Huffman codings, but only searches for possible backreferences, and
saves everything as statically compressed blocks. Especially for ASCII texts this
is usually a disadvantage, and we plan to include this into the algorithm in the
future to gain better compression results. The algorithm calculates a hashsum of
every three read bytes and saves their position in a hash table which has queues
of doom as buckets. This follows a recommendation from [11], adapted to the
purely functional paradigm. The implementation can be found in Compress.v.

7 Conclusion

Our contribution is a complete mathematical formalization of Deflate. We for-
malized the proofs in Coq, such that an implementation of a decompression
algorithm in Haskell can be extracted. We tested this implementation against
some datasets, and observed that it is compatible with other implementations of
Deflate. We implemented a simple compression algorithm and a decompression
algorithm, both fully verified against the specification, with reasonable speed.

The project’s source code can be found under http://www2.tcs.ifi.lmu.de/
∼senjak/fm2016/deflate.tar.gz. For build instructions, see README.txt. It works
under Coq 8.4pl6, and GHC version 7.10.3, but most of the code should be
portable across versions. We also plan to maintain our GitHub-repository at
https://github.com/dasuxullebt/deflate in the future.

We gave a flexible, modular and simple way of specifying grammars and using
these specifications to create stream parsers. Our project shows that program
extraction from proofs and performance are not a contradiction. We already
developed two not-yet verified faster algorithms to resolve backreferences, one of
which is purely functional, which we will formally verify in the future. While we
believe that there is still potential for optimization of our Coq code, we hope to
use our specification to create a verified implementation in C, using the Verified
Software Toolchain [5].

References

1. The diffarray package. https://hackage.haskell.org/package/diffarray
2. High assurance cyber military systems proposers’ day presentation, February 2012.

http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484882

http://www2.tcs.ifi.lmu.de/~senjak/fm2016/deflate.tar.gz
http://www2.tcs.ifi.lmu.de/~senjak/fm2016/deflate.tar.gz
https://github.com/dasuxullebt/deflate
https://hackage.haskell.org/package/diffarray
http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484882

Deflate in Coq 627

3. Affeldt, R., Garrigue, J.: Formalization of error-correcting codes: from hamming
to modern coding theory. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol.
9236, pp. 17–33. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22102-1 2

4. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems.
J. Autom. Reasoning 53(1), 63–103 (2014). doi:10.1007/s10817-013-9298-1

5. Appel, A.W.: Program Logics for Certified Compilers. Cambridge University Press,
New York (2014)

6. Berger, U., Jones, A., Seisenberger, M.: Program extraction applied to monadic
parsing. J. Log. Comput. exv078 (2015). doi:10.1093/logcom/exv078

7. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.: Imple-
menting TLS with verified cryptographic security (2013). http://www.mitls.org/
downloads/miTLS-report.pdf

8. Blanchette, J.C.: Proof pearl: mechanizing the textbook proof of Huffman’s algo-
rithm. J. Autom. Reasoning 43(1), 1–18 (2009). doi:10.1007/s10817-009-9116-y

9. Danielsson, N.A.: Total parser combinators. ACM SIGPLAN Not. 45, 285–296
(2010)

10. Deutsch, P.: DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (Informational), May 1996. http://www.ietf.org/rfc/rfc1951.txt

11. Deutsch, P.: GZIP file format specification version 4.3. RFC 1952 (Informational),
May 1996. http://www.ietf.org/rfc/rfc1952.txt

12. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol - HTTP/1.1. RFC 2616 (Draft Standard),
June 1999. http://www.ietf.org/rfc/rfc2616.txt, obsoleted by RFCs 7230, 7231,
7232, 7233, 7234, 7235, updated by RFCs 2817, 5785, 6266, 6585

13. Google Inc.: Zopfli compression algorithm. https://github.com/google/zopfli
14. Hollenbeck, S.: Transport Layer Security Protocol Compression Methods. RFC

3749 (Proposed Standard), May 2004. http://www.ietf.org/rfc/rfc3749.txt
15. Huffman, D.: A method for the construction of minimum-redundancy codes. Proc.

IRE 40(9), 1098–1101 (1952)
16. Jang, D., Tatlock, Z., Lerner, S.: Establishing browser security guarantees through

formal shim verification. In: Proceedings of the 21st USENIX Conference on Secu-
rity Symposium, p. 8. USENIX Association (2012)

17. Kelsey, J.: Compression and information leakage of plaintext. In: Daemen, J., Rij-
men, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 263–276. Springer, Heidelberg
(2002). doi:10.1007/3-540-45661-9 21

18. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2:1–2:70 (2014)

19. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). http://gallium.inria.fr/∼xleroy/publi/compcert-CACM.pdf

20. McMillan, B.: Two inequalities implied by unique decipherability. IRE Trans. Inf.
Theory 2(4), 115–116 (1956)

21. Nogin, A.: Writing constructive proofs yielding efficient extracted programs
22. PKWARE Inc.: ZIP File Format Specification, September 2012. https://www.

pkware.com/documents/APPNOTE/APPNOTE-6.3.3.TXT
23. Thery, L.: Formalising human’s algorithm. Technical report, Technical report

TRCS 034, Dept. of Informatics, Univ. of L’Aquila (2004)
24. Vafeiadis, V.: Adjustable references. In: Blazy, S., Paulin-Mohring, C., Pichardie,

D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 328–337. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39634-2 24

http://dx.doi.org/10.1007/978-3-319-22102-1_2
http://dx.doi.org/10.1007/s10817-013-9298-1
http://dx.doi.org/10.1093/logcom/exv078
http://www.mitls.org/downloads/miTLS-report.pdf
http://www.mitls.org/downloads/miTLS-report.pdf
http://dx.doi.org/10.1007/s10817-009-9116-y
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc2616.txt
https://github.com/google/zopfli
http://www.ietf.org/rfc/rfc3749.txt
http://dx.doi.org/10.1007/3-540-45661-9_21
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
https://www.pkware.com/documents/APPNOTE/APPNOTE-6.3.3.TXT
https://www.pkware.com/documents/APPNOTE/APPNOTE-6.3.3.TXT
http://dx.doi.org/10.1007/978-3-642-39634-2_24

Decoupling Abstractions of Non-linear Ordinary
Differential Equations

Andrew Sogokon1(B), Khalil Ghorbal2(B), and Taylor T. Johnson3

1 Vanderbilt University, Nashville, TN, USA
andrew.sogokon@vanderbilt.edu
2 Inria, Rennes, Brittany, France

khalil.ghorbal@inria.fr
3 Vanderbilt University, Nashville, TN, USA

taylor.johnson@vanderbilt.edu

Abstract. We investigate decoupling abstractions, by which we seek to
simulate (i.e. abstract) a given system of ordinary differential equations
(ODEs) by another system that features completely independent (i.e.
uncoupled) sub-systems, which can be considered as separate systems in
their own right. Beyond a purely mathematical interest as a tool for the
qualitative analysis of ODEs, decoupling can be applied to verification
problems arising in the fields of control and hybrid systems. Existing ver-
ification technology often scales poorly with dimension. Thus, reducing a
verification problem to a number of independent verification problems for
systems of smaller dimension may enable one to prove properties that are
otherwise seen as too difficult. We show an interesting correspondence
between Darboux polynomials and decoupling simulating abstractions
of systems of polynomial ODEs and give a constructive procedure for
automatically computing the latter.

Keywords: Ordinary differential equations · Darboux polynomials ·
Simulation · Abstraction · Decoupling

1 Introduction

Simulation relations are an important concept in the study of both discrete and
continuous dynamical systems. Informally speaking, a system simulates another
system if it over-approximates its set of possible behaviours. In practice, when ana-
lyzing systems, one often wants to construct simulations of the original system that
are in some sense “simpler” to analyze. Then, by demonstrating some property of
interest in the simulation one may infer the property in the original system.

In [22] Sankaranarayanan investigated an interesting technique for construct-
ing simulations of continuous systems by employing change of basis transforma-
tions. It was shown how linearizing change of basis transformations of non-linear

This work was supported by the Air Force Research Laboratory (AFRL) through
contract number FA8750-15-1-0105 and the Air Force Office of Scientific Research
(AFOSR) under contract numbers FA9550-15-1-0258 and FA9550-16-1-0246.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 628–644, 2016.
DOI: 10.1007/978-3-319-48989-6 38

Decoupling Abstractions of Non-linear Ordinary Differential Equations 629

systems of ODEs can yield simulations in which the dynamics is given by a sys-
tem of linear ODEs. The motivation for considering such transformations is clear,
since linear systems cannot exhibit some of the rich dynamic phenomena found
in their non-linear counterparts and are more amenable to analysis [12]. In this
paper we consider simulations of non-linear ODEs of a different kind: instead of
linear dynamics, we seek to construct simulations that are potentially non-linear,
but whose analysis can be performed in a lower-dimensional space than that of
the original system.

Although our focus in this paper is on analyzing purely continuous systems,
the methods we present are motivated by the broader goal of aiding the task
of automatic verification of hybrid dynamical systems whose continuous modes
are governed by non-linear ODEs. Hybrid systems combine discrete and contin-
uous behaviour; their formal modelling and verification is of increasing interest
and importance to modern engineering, where discrete digital controllers are
used to control continuously evolving physical plants. In recent years, verifica-
tion technology for hybrid systems has seen significant advances and number
of interesting case studies, e.g. verification of train control systems [20,29], air-
craft collision avoidance protocols [1,14], descent guidance control software in a
lunar lander [28] and satellite rendezvous manoeuvres [8], to give a few examples.
However, non-linear ODEs appearing in hybrid system models often present a
serious challenge to verification due to their inherent complexity. In this paper
we seek to overcome some aspects of this hurdle by constructing simulations of
non-linear ODEs with structure that more readily lends itself to analysis.

1.1 Contributions

In this paper we (I) define decoupled simulating abstractions of non-linear ODEs,
discuss their utility and relationship to first integrals [11] and constant-scale
continuous consecutions [23]. (II) We give an algorithm for checking whether a
given set of polynomial abstract basis functions can be used to create a decou-
pled abstraction of a system of polynomial ODEs and then (III) employ the
theory of Darboux polynomials [11] to give sufficient criteria for non-existence of
polynomial abstract basis functions suitable for constructing decoupled polyno-
mial abstractions. Lastly, (IV) we show how Darboux polynomials can be used
to construct the abstract basis functions for decoupled abstractions whenever
they exist. We conclude with a summary of our findings, an overview of related
work and directions for future research.

1.2 Preliminaries

An autonomous n-dimensional system of ODEs has the following form:

ẋ1 = f1(x1, x2, . . . , xn),
...

ẋn = fn(x1, x2, . . . , xn),

630 A. Sogokon et al.

where for i ∈ {1, . . . , n} each fi : Rn → R is a real-valued function (typically C1),
and ẋi denotes the time derivative of xi, i.e. d

dtxi(t). In applications, constraints
are often imposed on the states where the system is allowed to evolve, i.e. the
system may only evolve inside some given set H ⊆ R

n, which is known as the
evolution constraint. We may write this more concisely using vector notation as
ẋ = f(x), x ∈ H. Here ẋ = (ẋ1, . . . , ẋn) and f : Rn → R

n is a vector field
generated by the system, i.e. f(x) = (f1(x), . . . , fn(x)) for all x ∈ R

n. When no
evolution constraint is specified, H is assumed to be R

n.
A solution to the initial value problem for the system of ODEs ẋ = f(x)

with initial value x0 ∈ R
n is a differentiable function ϕt(x0) : (a, b) → R

n

defined for all t within some non-empty extended real interval including zero, i.e.
t ∈ (a, b) ⊆ R∪{∞,−∞}, where a < 0 < b, and such that d

dtϕt(x0) = f(ϕt(x0))
for all t ∈ (a, b). If the solution ϕt(x0) is available in closed-form,1 then one can
answer questions about the temporal behaviour of the system (such as e.g. safety
and liveness) by analyzing the closed-form expression. In practice, however, it
has long been established that explicit closed-form solutions to non-linear ODEs
are highly uncommon [12].

In this paper we will work with systems of ODEs whose right-hand sides
are given by polynomials in the state variables x1, . . . , xn. Formally, we say that
fi ∈ R[X1, . . . , Xn] for all i ∈ {1, . . . , n}, where R[X1, . . . , Xn] denotes the ring of
multivariate polynomials with real coefficients and indeterminates X1, . . . , Xn.
We write fi(x1, . . . , xn) when we wish to make it clear that the polynomial is
treated as a function, with indeterminates replaced by the appropriate variables.
Polynomial systems of ODEs are necessarily locally Lipschitz continuous, which
guarantees existence of unique solutions on some non-trivial time interval for
any initial value x0 ∈ R

n (by the Picard-Lindelöf theorem; see e.g. [27]).

1.3 Coupling

Given a system of ODEs ẋ = f(x), the maximum coupling coefficient (henceforth
mcc) is the size of the largest sub-system with no independent sub-systems. To
define rigorously, we construct a finite coupling graph CG = (V,E), where the
set of vertices is precisely the set of state variables, i.e. V = {x1, . . . , xn}, and
there is an edge from xi to some other vertex xj , i.e. (xi, xj) ∈ E with i �= j, if
and only if ∂fi

∂xj
�= 0. The coupling coefficients cc are a finite multiset of natural

numbers corresponding to the orders (i.e. the numbers of vertices) of all the
weakly connected components in CG. The coefficient mcc is defined to be the
maximum order of the weakly connected components in CG, i.e. mcc ≡ max cc.

Definition 1 (Uncoupled system). A system of ODEs ẋ = f(x) is uncou-
pled if and only if its mcc = 1, i.e. if the rate of change of each state variable is
completely independent of the other variables.

1 By this we understand a finite expression in terms of polynomials and elementary
functions such as sin, cos, exp, ln, etc.

Decoupling Abstractions of Non-linear Ordinary Differential Equations 631

Example 1. Consider the following two planar polynomial systems:

ẋ1 = x2
1x2 + 5x1 − 1, ẋ1 = x3

1 + 5x1 − 10,

ẋ2 = 3x3
2 + 2x1x2 − x1. ẋ2 = 2x2

2 + 3x2 + 1.

The system on the left has mcc = 2 because the vertices {x1, x2} in the coupling
graph have edges connecting them in both directions, since ∂

∂x2
(x2

1x2+5x1−1) =
x2
1 �= 0 and ∂

∂x1
(3x3

2 +2x1x2 −x1) = 2x2 −1 �= 0. On the other hand, the system
on the right has mcc = 1 (i.e. is uncoupled) because ∂

∂x2
(x3

1 + 5x1 − 10) = 0
and ∂

∂x1
(2x2

2 + 3x2 + 1) = 0 and therefore the vertices {x1, x2} in the graph are
disconnected.

Uncoupled systems are appealing first and foremost because their 1-
dimensional sub-systems can be analyzed independently, following a standard
technique for 1-dimensional flows (see e.g. [25, Chap. 2]). For instance, consider
the 1-dimensional system ẋ = x3 + 5x2 + x − 10. This system evolves on the
real line and has fixed points at the real roots of x3 + 5x2 + x − 10, of which
there are three: {−2, 1

2

(−3 − √
29

)
, 1
2

(−3 +
√

29
)}. The direction of the flow is

to the right whenever the graph of ẋ is above zero (i.e. the rate of change of x
is positive) and to the left when it is below (the rate of change is negative), as
shown in Fig. 1.

Fig. 1. Analysis of the 1-dimensional system ẋ = x3 + 5x2 + x − 10.

From inspecting the figure, one can readily see how one can construct the set
of reachable states of any given initial point x0 in a 1-dimensional polynomial
system ẋ = f(x): either the point is a root of the right-hand side, i.e. f(x0) = 0,
in which case x0 remains invariant and the reachable set is simply {x0}, or x0

is not a root, i.e. f(x) �= 0, in which case the reachable set is an interval of the
form [x0, r) or (r, x0], where r ∈ R∪{∞,−∞} is either a real root of f or it is ∞
or −∞, respectively (if there are no real roots in the direction of motion). The
reachable set from any initial point x0 ∈ R

n in a uncoupled system can thus also
be bounded by combining the independent reachable sets in the 1-dimensional
sub-systems.

632 A. Sogokon et al.

Bounded-time reachable set computation using verified integration methods
is also made easier because large systems of non-linear ODEs are typically expen-
sive to integrate using methods that yield tight enclosures [16] (such as Taylor
models [3,17]), whereas in an uncoupled system, no matter how large, each 1-
dimensional sub-system can be integrated separately. An enclosure of the solu-
tion to the whole system at some time t can then be constructed directly from
the enclosures of the solutions to the sub-systems at that time.

2 Decoupled Simulating Abstractions

In what follows, we will adopt the approach described by Sankaranarayanan
in [22] to define simulating abstractions of non-linear ODEs using appropriate
change of basis transformations.

Definition 2 (Simulating abstraction). For a system ẋ = f(x), x ∈ H,
where f : Rn → R

n is locally Lipschitz continuous, equipped with an initial set
of states X0 ⊆ R

n, a system α̇ = G(α), α ∈ Ĥ, where G : Rm → R
m is locally

Lipschitz continuous and equipped with an initial set of states X̂0 ⊆ R
m is a

simulating abstraction if there exists a smooth (i.e. C∞) mapping α : Rn → R
m

such that: (i) α(X0) ⊆ X̂0, (ii) α(H) ⊆ Ĥ, and (iii) for any trajectory (i.e.
solution in non-negative time) ϕτ (x0) : [0, T) → H of the system ẋ = f(x), x ∈
H, the trajectory α ◦ ϕτ (x0) : [0, T) → Ĥ is a trajectory of α̇ = G(α), α ∈ Ĥ.

To ensure that the last condition in the above definition holds, it is sufficient to
show that G(α(x)) = Jα ·f(x), where Jα is the Jacobian of the smooth mapping
α w.r.t. the state variables x1, . . . , xn (see [22, Theorem 2.1]), i.e.

G(α) =

⎛

⎜⎝

∂α1
∂x1

. . . ∂α1
∂xn

...
. . .

...
∂αm

∂x1
. . . ∂αm

∂xn

⎞

⎟⎠ ·

⎛

⎜⎝
f1
...

fn

⎞

⎟⎠ .

Definition 3 (Lie derivative). For a given system of ODEs ẋ = f(x), the
Lie derivative of a smooth function p : Rn → R is given by

Lf (p) = ∇p · f =
n∑

i=1

∂p

∂xi
· fi.

Note that since fi(x) = dxi

dt , Lf (p) =
(∑n

i=1
∂p
∂xi

· dxi

dt

)
= dp

dt i.e. the total deriv-
ative of the function p with respect to time, which we denote by ṗ.

Let us recall that the gradient ∇p gives the vector of all the partial derivatives
of p, i.e. ∇p ≡

(
∂p
∂x1

, ∂p
∂x2

, . . . , ∂p
∂xn

)
, and thus the necessary condition for (iii) in

Definition 2 to be satisfied may be equivalently stated as:

G(α) =

⎛

⎜⎝
∇α1

...
∇αm

⎞

⎟⎠ · f =

⎛

⎜⎝
Lf (α1)

...
Lf (αm)

⎞

⎟⎠ .

Decoupling Abstractions of Non-linear Ordinary Differential Equations 633

Remark 1. It is important to note that, following Definition 2, solutions to sim-
ulating abstractions are guaranteed to exist for at least as long as they do in
the concrete system. This property is crucial to soundness of the abstraction. A
rather different, but in a certain sense more general, concept was explored by
Platzer, who introduced differential ghosts [19], where the original dynamics is
augmented by introducing some fresh variables whose rate of change may fea-
ture the newly introduced variables themselves, but is not restricted in the same
way as in Definition 2. However, extra care needs to be taken to ensure that the
solutions of the newly defined dynamics exist for at least as long as the solutions
to the original system (e.g. see [19, Proof of Theorem 38]).

Definition 4 (Decoupling simulating abstraction). Given a system of
ODEs ẋ = f(x), a simulating abstraction α̇ = G(α) is decoupling if and
only if the equalities Lf (α1) = G1(α1), . . . ,Lf (αm) = Gm(αm) hold, where
(G1, . . . , Gm) = G. Such an abstraction is thus uncoupled:

α̇1 = G1(α1),
...

α̇m = Gm(αm).

In what follows, we will give some examples of how first integrals (see e.g. [11])
and constant-scale continuous consecutions [23] provide the abstract basis func-
tions α which lead to decoupling simulating abstractions.

Example 2 (Algebraically integrable system). The 3-dimensional system

ẋ1 = x1(x3 − x2),
ẋ2 = x2(x1 − x3),
ẋ3 = x3(x2 − x1),

has two independent polynomial conserved quantities, i.e. first integrals, given by
α1 = x1x2x3 and α2 = x1 +x2 +x3 (see [9, Example 75]). If we let α = (α1, α2),
we obtain the decoupling simulating abstraction α̇ = 0, i.e. α̇1 = 0, α̇2 = 0.

Remark 2. A polynomial system ẋ = f(x) of size n is algebraically integrable
if it possesses n − 1 independent polynomial conserved quantities (also known
as first integrals; see [9,11]), i.e. polynomials {α1, . . . , αn−1}, where for all i =
1, . . . , n − 1 one has Lf (αi) ≡ α̇i = 0. Algebraic integrability is a very powerful
property, since it allows one to construct tight approximations of the orbit γ(x0),
i.e. the reachable set from x0 ∈ R

n in positive as well as negative time. That is,
for any given point x0 ∈ R

n, if one evaluates each first integral α1, . . . , αn−1 at
x0, one obtains real constants c1, . . . , cn−1. The orbit through x0 is guaranteed
to satisfy the formula α1 = c1 ∧ · · · ∧ αn−1 = cn−1, which corresponds to a
(real) algebraic subset of Rn given by the common real roots of the polynomials
αi − ci. Every point α0 ∈ R

n−1 in such an abstract system α̇ = 0 is invariant
and corresponds to a real (and invariant) algebraic set containing the orbit of
the system ẋ = f(x).

634 A. Sogokon et al.

Polynomials p such that Lf (p) = λp for some λ ∈ R generalize polynomial
first integrals2 and were investigated by Sankaranarayanan et al. in [23], where
they were used in constant-scale continuous consecution conditions. In general,
if one can find polynomials α1, . . . , αm that satisfy Lf (αi) = λiαi, λi ∈ R for all
i ∈ {1, . . . , m}, then one obtains a decoupling abstraction of the form

α̇1 = λ1α1,

...
α̇m = λmαm.

We generalize this idea to decoupling polynomial abstractions by considering
polynomial functions αi ∈ R[X1, . . . , Xn] such that Lf (αi) = Gi(α), where Gi ∈
R[X], i.e. the derivative of αi may be expressed as a polynomial in αi with real
coefficients.

Example 3 (Decoupling simulating abstraction). Consider the coupled system:

ẋ1 =
1
3
(1 − 3x1 + 2x2

1 − 6x2 + 4x1x2 + 2x2
2),

ẋ2 =
1
3
(−1 − 3x1 + x2

1 + 2x1x2 + x2
2) .

Let α1 = x1 + x2 − 1, α2 = x1 − 2x2. If we consider α = (α1, α2), we arrive at
the following system (left), which can be expressed as an uncoupled system in
the new basis (right):

α̇1 = −2x1 + x2
1 − 2x2 + 2x1x2 + x2

2, α̇1 = α2
1 − 1,

α̇2 = 1 + x1 − 2x2, α̇2 = α2 + 1 .

3 Existence and Generation of Abstraction Polynomials

In what follows, we investigate the existence of polynomials that can be used
to construct decoupling simulating abstractions of a given system. We show in
Sect. 3.1 that their existence (to a given polynomial degree) is decidable and
give a sufficient criterion for their non-existence (to a given degree) based on the
existence of so-called Darboux polynomials (e.g. see [11]). We then explore the
problems of checking and generation. The checking problem is concerned with
determining whether a given candidate polynomial is suitable for constructing a
decoupling simulating abstraction. In Sect. 3.2 we describe a procedure for solv-
ing the checking problem. In Sect. 3.3 we present a technique for generating all
suitable polynomials for the decoupling abstract basis (up to a given polynomial
degree).

2 i.e. p is a first integral if Lf (p) = λp where λ = 0.

Decoupling Abstractions of Non-linear Ordinary Differential Equations 635

3.1 Decidability and Darboux Existence Criterion

For polynomial systems of ODEs ẋ = f(x), the problem of finding a non-
constant polynomial in the state variables, p ∈ R[X1, . . . , Xn], for the decou-
pling abstract basis reduces to searching for those p such that Lf (p) = G(p),
where G ∈ R[X], i.e. G is a univariate polynomial with real coefficients. There
may, however, be no such polynomial. Fortunately, it is decidable to check for
existence of such a p.

Proposition 1 (Existence of decoupling abstract basis polynomials).
Given a positive integer d and a polynomial system ẋ = f(x), it is decidable
to check whether there exists a polynomial p ∈ R[X1, . . . , Xn] of total degree d
such that Lf (p) = G(p), where G ∈ R[X] is a univariate polynomial with real
coefficients.

Proof. The problem can be stated as a sentence in the theory of real arith-
metic which is decidable [26]. Let λ0, . . . , λk denote the unknown coefficients
of the generic polynomial template p of degree d, where k :=

(
n+d

d

) − 1 is the
number of non-constant monomials of degree at most d in n variables. The
Lie derivative Lf (p) can therefore be symbolically computed (Definition 3). Let
κ0, . . . , κm denote the unknown coefficients of the polynomial G ∈ R[X] where
m :=
deg(Lf (p))/d�. The decision problem stated in the proposition is therefore
equivalent to deciding the truth of the following sentence:

∃ (λ0, . . . , λk) ∈ R
k+1. ∃ (κ0, . . . , κm) ∈ R

m+1.

∀(X1, . . . , Xn) ∈ R
n. d > 0 ∧ Lf (p) − (κ0 + κ1p + · · · + κmpm) = 0 .

If λ0 denotes the constant term of the generic polynomial template p, then the
condition d > 0 is equivalent (over the reals) to the inequality

∑
0<i≤k λ2

i > 0,
ensuring that p is non-constant. ��

In practice, there is currently no question of applying existing decision pro-
cedures to formulas constructed in the proof or Proposition 1. The complex-
ity of the most popular procedure for real quantifier elimination (CAD, due to
Collins [4]) is doubly exponential in the number of variables. In Sect. 3.3 we
will pursue a more promising method of searching for decoupling abstract basis
polynomials. First, we shall recall so-called Darboux polynomials, a well-known
tool in the study integrability of dynamical systems (e.g. see [11]), and use them
to give a non-existence criterion for decoupling abstract basis polynomials. We
then explore an interesting relationship between the two concepts.

Definition 5 (Darboux polynomial). A polynomial q ∈ K[X1, . . . , Xn],
where K is a field of characteristic zero (e.g. C,R,Q), is a Darboux polyno-
mial3 for ẋ = f(x) iff Lf (q) = λq, for some λ ∈ K[X1, . . . , Xn].

3 When q is a constant, the Darboux polynomial is trivial [11, Definition 2.14]. In this
paper we will generally be interested in the non-trivial case.

636 A. Sogokon et al.

Proposition 2 (Criterion for non-existence of decoupled abstractions).
If a given system ẋ = f(x) does not admit any Darboux polynomials over C of
degree d, then there is no polynomial p ∈ R[X1, . . . , Xn] of degree d such that
Lf (p) = G(p) for some non-constant G ∈ R[X].

Proof. We prove the contrapositive. Suppose there exists a polynomial p ∈
R[X1, . . . , Xn] such that Lf (p) = G(p), where G ∈ R[X] is non-constant. By
the fundamental theorem of algebra, G must have at least one complex root
c ∈ C. Therefore G = (X − c)H, where H ∈ C[X]. We see that (p − c) is a
Darboux polynomial for the system because

Lf (p − c) = Lf (p) − Lf (c) = Lf (p) = G(p) = (p − c)H(p).

The degree of the Darboux polynomial p − c is equal to the degree of p. ��

3.2 Checking Abstraction Polynomial Candidates

Before proceeding to methods for generating decoupling abstract basis polynomi-
als for polynomial systems ẋ = f(x), we discuss the (easier) problem of checking
if for a given p ∈ R[X1, . . . , Xn] one can write Lf (p) = G(p), where G ∈ R[X].

In general, given any two polynomials P, p ∈ R[X1, . . . , Xn], if deg(P) ≥
deg(p), one may obtain a rewriting P = G(p) by solving a system of linear
equations. One proceeds by first defining the maximum degree of a possible
G to be d =
deg(P)/deg(p)�. If an appropriate rewriting exists, then there
is guaranteed to be a solution (λ0, . . . , λd) ∈ R

d+1 to the equation P = λ0 +
λ1p + λ2p

2 + · · · + λdp
d. By expanding and equating the monomial coefficients

on both sides one arrives at a system of linear equations (of size no larger than
the number of monomials of P) in the real variables λ0, . . . , λd. Thus, in the
worst case, one has to solve a linear system with d + 1 variables and

(
n+deg(P)
deg(P)

)

equational constraints. A solution may be computed using a linear solver and
the rewriting polynomial constructed as G = λ0 + λ1X + · · · + λdX

d. In what
follows, we will refer to the procedure for obtaining the rewriting as Rewrite,
that is Rewrite(P, p) gives G whenever P = G(p).

Remark 3. It is worth remarking that the procedure Rewrite can be imple-
mented by performing successive polynomial reductions, rather than by solving
a linear program. Polynomial reduction extends polynomial division for univari-
ate polynomials to the multivariate case and in general requires the computation
of Gröbner bases. This functionality is available in most modern computer alge-
bra systems.

3.3 Automated Generation of Decoupling Abstractions

A highly efficient method for synthesizing polynomial first integrals for polyno-
mial ODEs was reported by Matringe et al. in [15], where the synthesis problem
is reduced to computing the null space of a matrix with real entries. In [7], the

Decoupling Abstractions of Non-linear Ordinary Differential Equations 637

authors extended the work of Matringe et al. to generate real algebraic invari-
ants of polynomial ODEs, giving a search procedure for the most general class
of invariant sets that can be expressed using polynomial equations. The same
procedure can be used to generate Darboux polynomials over the reals or over
the complexes only by changing the underlying computational field. In general,
there is no known bound for the degree of Darboux polynomials in a given sys-
tem. However, the automatic generation procedure is guaranteed to find all the
independent Darboux polynomials for the system up to a given degree.

In this section, we explore the relationship between polynomials in a decou-
pling abstract basis and Darboux polynomials. This relationship will enable us
to exploit the efficient symbolic generation methods reported in [7,15]. We out-
line a procedure for constructing polynomials p such that Lf (p) = G(p), where
G ∈ R[X], from a list of automatically generated Darboux polynomials (up to
some given degree). The procedure will require two lemmas given below.

We note first that whenever q is a Darboux polynomial, any constant multiple
of q, i.e. aq for some a ∈ R or C, is also Darboux. A similar property holds for
the decoupling abstract basis functions in simulating abstractions.

Lemma 1. If p ∈ R[X1, . . . , Xn] is such that Lf (p) = G(p) where G ∈ R[X],
then s = ap + b for any real numbers a, b, is such that Lf (s) = F (s), where
F ∈ R[X].

Proof. If a = 0 then Lf (s) = Lf (b) = 0 and F is simply the zero polynomial in
R[X]. If a �= 0, by our hypothesis we have Lf (p) = G(p). Let us write p = s−b

a
and note that

Lf (s) = Lf (ap + b) = aLf (p) + Lf (b) = aLf (p) = aG(p) = aG

(
s − b

a

)
.

We see that Lf (s) = aG
(

s−b
a

)
is a polynomial in s with real coefficients. ��

One consequence of Lemma 1 is that whenever we assume the existence of a
polynomial p such that Lf (p) = G(p) for some G ∈ R[X], it always suffices to
assume the existence of a decoupling abstract basis polynomial p−r for any real
number r.

In Proposition 2 we established that the existence of decoupling abstract
basis polynomials p is related to the existence of a special Darboux polynomial
p − c for some complex number c. For any polynomial s, we denote by s∗ the
polynomial obtained by setting the constant term of s to zero. For instance, if
s = x + 1 then, s∗ = x. Thus, for the (Darboux) polynomial p − c, one has
(p − c)∗ = p∗ (by definition of the ∗ operator) and therefore p∗ is a decoupling
abstract basis polynomial by Lemma 1, since it is an offset of the polynomial p
by a real number (the constant term of p). Therefore, if one generates Darboux
polynomials over the complex numbers and finds a Darboux polynomial q such
that q∗ is a polynomial over the reals (i.e. all the coefficients of q∗ are real
numbers), then q∗ is potentially a decoupling abstract basis polynomial, which
can be checked by solving a linear program, i.e. by running Rewrite(Lf (q∗), q∗),
as outlined in Sect. 3.2.

638 A. Sogokon et al.

Nevertheless, generating Darboux polynomials over the complex numbers will
not necessarily return Darboux polynomials q such that q∗ is a polynomial over
the reals even if the latter exist. For instance, if q = x2 + xy + c is a Darboux
polynomial with some complex constant term c, then the procedure may return
ıq instead of q (ı being the imaginary number satisfying ı2 = −1), although
we are rather interested in looking for q. Enforcing such a constraint in the
procedure for generating Darboux polynomials will require solving mixed non-
linear equations where some variables are real and some are complex numbers. To
avoid solving mixed problems, we can easily adapt the generation procedure to
produce monic Darboux polynomials for any variable ordering, for instance the
lexicographic order X1 > · · · > Xn. Recall that monic univariate polynomials are
those polynomials where the leading coefficient (i.e. the coefficient of the leading
monomial) is equal to 1. In the multivariate case, the notion of leading coefficient
additionally requires a monomial ordering. For instance, for the order X1 > X2,
the leading monomial of the polynomial 2X1X2 + X2

1 is X2
1 and therefore the

leading coefficient is 1, whereas the leading monomial in the reverse lexicographic
ordering X2 > X1 is X1X2 and the leading coefficient is 2.

Lemma 2. Given a polynomial q ∈ C[X1, . . . , Xn], let p ∈ C[X1, . . . , Xn] be the
monic polynomial q

LC(q) , where LC(q) is the leading coefficient of q with respect to
some fixed monomial ordering. There exists a non-zero complex number z such
that (zq)∗ ∈ R[X1, . . . , Xn] if and only if p∗ ∈ R[X1, . . . , Xn].

Proof. Suppose there exists such a non-zero complex number z such that (zq)∗ ∈
R[X1, . . . , Xn]. Since zLC(q) = LC(zq) we have that zq

LC(zq) = zq
zLC(q) = q

LC(q) = p,
therefore 1

LC(zq) (zq) = p and 1
LC(zq) (zq)∗ = p∗. Since LC(zq) ∈ R, we have

p∗ ∈ R[X1, . . . , Xn]. Conversely, if p∗ ∈ R[X1, . . . , Xn], take z = 1
LC(q) so that

(zq)∗ = p∗. ��
We now describe a procedure for generating decoupling abstract basis poly-

nomials. Suppose we are given all the independent Darboux polynomials in
C[X1, . . . , Xn] for the system ẋ = f(x) up to some degree d > 0. By
Proposition 2, if there exists a polynomial p ∈ R[X1, . . . , Xn] of degree d′ ≤ d
such that Lf (p) = G(p), where G ∈ R[X] is non-constant, then there necessarily
exists a Darboux polynomial q of degree d′ such that q∗ is a polynomial over the
reals, i.e. q∗ ∈ R[X1, . . . , Xn]. This fact suggests a simple search method. Below
we describe the three main steps in the procedure.

1. For a fixed positive integer d, automatically generate all monic Darboux poly-
nomials for the system up to degree d with coefficients in C.

2. For each generated Darboux polynomial q check if q∗ ∈ R[X1, . . . , Xn] and if
so, store q∗ as a candidate in a list L.

3. For all polynomials q∗ in L, run Rewrite(Lf (q∗), q∗). If q∗ is a decoupling
abstract basis polynomial, the rewriting procedure will return G ∈ R[X] s.t.
Lf (q∗) = G(q∗).

Decoupling Abstractions of Non-linear Ordinary Differential Equations 639

Example 4. Consider the following system

ẋ1 =
1
3
(1 + x1 − 2x2 + 2(1 + (−1 + x1 + x2)2))

ẋ2 =
1
3
(−x1 + 2x2 + (−1 + x1 + x2)2)

The automatic generation procedure for Darboux polynomials over C up to
degree 1 gives us (q1, q2, q3) = (1+x1−2x2, (−1+ı)+x1+x2, (−1−ı)+x1+x2). In
this case, q∗

1 ,q
∗
2 and q∗

3 are all candidates for the short list L. Since q∗
2 = q∗

3 , L =
{x1 − 2x2, x1 + x2}. Running Rewrite(Lf (q∗

1), q
∗
1) and Rewrite(Lf (q∗

2), q
∗
2)

returns 2 − 2X + X2 and 1 + X, respectively. Thus, letting (α1, α2) = (q∗
1 , q

∗
2),

we obtain the decoupled abstraction:

α̇1 = 2 − 2α1 + α2
1,

α̇2 = 1 + α2.

In general, a Darboux polynomial q, with q∗ ∈ R[X1, . . . , Xn], is not nec-
essarily a decoupling abstract basis polynomial. For instance, in the system
ẋ1 = x1x2, ẋ2 = x2, one has x1 as a Darboux polynomial; however x1 is not a
decoupling abstract basis polynomial because Lf (x1) = x1x2 cannot be rewrit-
ten as polynomial in x1 only. The checking procedure Rewrite(Lf (x1), x1) will
thus fail to produce a solution.

It is natural to ask under what extra conditions is a Darboux polynomial q
satisfying q∗ ∈ R[X1, . . . , Xn] also a decoupling abstract basis polynomial. The
following theorem explores this connection.

Theorem 1. Given a system of polynomial ODEs ẋ = f(x), there exists a
polynomial p ∈ R[X1, . . . , Xn] such that Lf (p) = G(p), where G ∈ R[X] is of
degree d > 0, if and only if the system has d Darboux polynomials q1, . . . , qd ∈
C[X1, . . . , Xn] satisfying:

(i) q∗
1 = q∗

2 = · · · = q∗
d ∈ R[X1, . . . , Xn],

(ii) Lf (q1) = Lf (q2) = · · · = Lf (qd) = rq1q2 · · · qd, r ∈ R,
(iii) for all i = 1, . . . , d, either q∗

i − qi ∈ R or there exists j �= i, j = 1, . . . , d,
such that qi = q̄j.

Proof. Suppose there exists a p ∈ R[X1, . . . , Xn] such that Lf (p) = G(p). When
G ∈ R[X] is a non-constant polynomial of degree d, it can be factorized as
r(X − c1) · · · (X − cd), where r ∈ R and the roots ci are either real numbers, or
complex numbers that come in conjugate pairs, i.e. if ci ∈ C is a root of G, then
its complex conjugate c̄i is also a root. In the proof of Proposition 2 we have
seen that for any such factor (X − ci) the polynomial qi = p − ci is a Darboux
polynomial for the system such that Lf (qi) = G(p). The properties (i), (ii) and
(iii) follow immediately.

Conversely, let us assume that there are d Darboux polynomials q1, q2, . . . , qd

satisfying properties (i), (ii) and (iii). Then for any r ∈ R we have

rq1q2 · · · qd = r(q∗
1 − c1)(q∗

2 − c2) · · · (q∗
d − cd),

640 A. Sogokon et al.

where each ci = q∗
i − qi is, by definition, a constant. By property (i) we have

q∗
1 = q∗

2 = · · · = q∗
d ∈ R[X1, . . . , Xn], so let us take p = q∗

1 = q∗
2 = · · · = q∗

d to
obtain r(q∗

1 −c1)(q∗
2 −c2) · · · (q∗

d −cd) = r(p−c1)(p−c2) · · · (p−cd). One can now
write this as r(p − c1)(p − c2) · · · (p − cd) = G(p), where G ∈ R[X] has degree
d. The coefficients of G are real because by (iii) the roots ci come in complex
conjugate pairs. Since qi = q∗

i − (q∗
i − qi) = p− ci, we have Lf (qi) = Lf (p− ci) =

Lf (p)−Lf (ci) = Lf (p) and by (ii) Lf (p) = r(p−c1)(p−c2) · · · (p−cd) = G(p). ��
Notice that Rewrite does not require all of the d Darboux polynomials

in order to construct G. If a family of Darboux polynomials {q1, . . . , qd} as
stated in Theorem 1 exists, it suffices to supply only one element, say q∗

1 , to
Rewrite, which will then find a rewriting of Lf (q∗

1) as G(q∗
1), with G ∈ R[X].

If however, the algorithm fails, then the polynomial supplied was not obtained
from such a family of Darboux polynomials and therefore cannot be used to
obtain a rewriting of its derivative in terms of itself.

Theorem 1 exposes the structure inherent in systems for which one can find
decoupled simulating abstractions. The requirements (i)–(iii) are indeed quite
strong. Observe that when G is a linear polynomial with a real coefficient λ, i.e.
is of the form G(X) = λX and therefore necessarily has one real root, Theorem 1
reduces to the conditions for constant-scale consecution [23].

Remark 4. Theorem 1 relies on generating Darboux polynomials in order to com-
pute a decoupling abstraction of a given system of polynomial ODEs. Nev-
ertheless, polynomials having constant Lie derivatives (that is, those p s.t.
Lf (p) = G(p) where G has degree zero) can also be used for decoupling abstrac-
tions, but are not covered by Theorem1, which requires the degree of G to be
positive. The special case when G has degree zero is also related to Darboux poly-
nomials as follows: (i) when G is the zero polynomial, then the system has a first
integral which is a special Darboux polynomial as discussed in Sect. 2, (ii) when G
is a non-zero constant, then the augmented system (ẋ, ṫ) = (f(x), 1) obtained by
appending the time derivative to the original system has a polynomial first inte-
gral. More precisely, when p ∈ R[X1, . . . , Xn] and the Lf (p) is a real constant, say
r, then in the augmented system L(f,1)(p−rt) = L(f,1)(p)−r = Lf (p)−r = 0 and
p−rt is thus a polynomial first integral of the augmented system. One may thus
handle this case by computing first integrals (e.g. using the approach described
in [15]) before searching for more sophisticated decoupling polynomials where G
has a positive degree.

4 Outlook

Verification problems for systems of ODEs can be soundly translated to verifi-
cation problems for their simulating abstractions. Below we sketch the case of a
standard safety verification problem (Sx, f, Fx), where one wishes to prove that
a given property, encoded as the region Fx ⊂ R

n, is always satisfied if the system
ẋ = f(x) is initialised in x0 ∈ Sx ⊂ R

n. If a decoupling abstraction α̇ = G(α)

Decoupling Abstractions of Non-linear Ordinary Differential Equations 641

exists, one can attempt to solve the simpler abstract safety verification prob-
lem (Sy, G, Fy) where (y1, . . . , ym) = (α1(x), . . . , αm(x)), denoted henceforth by
y = α(x), i.e. ẏ = G(y) is a decoupled simulating abstraction. The initial set
in the new abstract coordinates, Sy ⊂ R

m (resp. Fy), is computed as a projec-
tion of the semialgebraic set Sx ∧ y = α(x), which is a subset of Rn+m (resp.
Fx ∧ y = α(x)), onto R

m. Such a projection can in principle be obtained by
eliminating the existential quantifiers in the following sentence

∃ (x1, . . . , xn) ∈ R
n. Sx ∧ y1 = α1(x1, . . . , xn) ∧ · · · ∧ ym = αm(x1, . . . , xn) .

The soundness of such an abstraction relies essentially on two facts: (i) the sets
Sy and Fy are the exact images through α of the sets Sx and Fx respectively
(although using over-approximations of these sets is also sound) and (ii) the
invariant regions of the decoupled abstract system, when expressed in terms
of the old coordinates, define invariant regions of the original system (i.e. the
abstraction is indeed sound [22, Theorem 2.2]). This means that if the safety
problem holds true in the decoupled abstraction it also holds true in the original
concrete system. If not, however, the abstraction may be too coarse.

Interesting directions for refining the abstraction include searching for more
general simulating abstractions that are not necessarily completely decoupling.
For instance, it is conceivable that a simulating abstraction may possess inde-
pendent sub-systems that are of the form

α̇i = Gi(αi, αj),
α̇j = Gj(αi, αj),

where Gi, Gj ∈ R[X1,X2] and αi, αj ∈ R[X1, . . . , Xn] are the abstract basis
functions. This idea is similar to the so-called algebraizing transformations,
briefly discussed in [22, Definition 2.4]. The analysis of 2-dimensional (i.e. pla-
nar) polynomial ODEs is however vastly more difficult than the 1-dimensional
case. Indeed, qualitative analysis of planar polynomial flows is an active area of
mathematical research (e.g. see [5,6]). However, one hope is this greater general-
ity would make simulating abstractions of this form more “common” in systems
that one might encounter in applications.

Decoupling can help overcome some of the scalability issues in existing
verification methodologies. For instance, in reachability analysis, relational
abstraction [24] seeks to abstract the flow of a differential equation by an over-
approximation of the reachability relation on the states of the system. Mathemat-
ically, a (timeless) relational abstraction of an autonomous system ẋ = f(x) is a
relation R ⊆ R

n ×R
n such that (x,y) ∈ R if y is reachable from x in finite time

by following the flow of the system [24, Definition 4], i.e. if ∃ t ≥ 0. ϕt(x) = y.
Computing timeless relational abstractions for non-linear systems is difficult
because it reduces to searching for positive invariants in the extended system of
ODEs ẏ = f(y), ẋ = 0 with dimension 2n, i.e. with twice the number of state
variables [24, Definition 5, Lemma 1]. When the system is uncoupled, one can
instead work with n extended systems ẏi = fi(yi), ẋi = 0, i = 1, . . . , n, each of
dimension 2.

642 A. Sogokon et al.

5 Related Work

Our work is closest in spirit to that of Sankaranarayanan [22], which studied
simulating abstractions resulting from linearizing change of basis transforma-
tions. Our approach instead focused on simulating abstractions obtained via
decoupling change of basis transformations.

Change of basis transformations are a standard technique for decoupling lin-
ear homogeneous systems of ODEs with constant coefficients, i.e. systems of the
form ẋ = Ax, where A is an n×n real matrix. A common technique applies when
the matrix A has n real distinct eigenvalues and produces a decoupled linear
homogeneous system α̇ = Bα of the same dimension, where α = (α1, . . . , αn)
is made up of linear functions αi : R

n → R in the state variables x1, . . . , xn

(see e.g. [21, Sects. 28.2 and 28.3]); in particular, such a decoupling is always
possible when A is a real symmetric matrix. In our work, we consider more gen-
eral polynomial systems of ODEs and a more general class of polynomials to act
as the new basis; additionally, we do not require the dimension of the result-
ing decoupled system to match that of the original system of coupled ODEs. In
short, our focus is not placed on solving the system, but rather on automatically
discovering simulating abstractions that are more amenable to analysis.

Girard and Pappas explored approximate bisimulation of continuous systems
in [10], and Pappas earlier developed (exact) bisimulations between continuous
linear systems [18]. However, these works employ a different notion of simulation
and do not seek to make the structure of the simulation easier to analyze in the
way that we do with decoupling, and are in practice limited to linear ODEs due
to reliance on solving linear matrix inequalities (LMIs). Han and Krogh have
also explored sound order reduction techniques for verification with reachability
analysis, but their approach is also limited to linear ODEs [13]. In contrast to
all these existing works that employ different techniques as well as different for-
mal development, our decoupled simulating abstractions are applicable to non-
linear polynomial ODEs, and as such, are developed using significantly different
methods.

6 Conclusion

In this paper we explored a technique for constructing decoupling simulating
abstractions of non-linear polynomial ODEs, which can be more easily ana-
lyzed because their 1-dimensional sub-systems may be treated independently.
We employed the theory of Darboux polynomials to give a sufficient criterion
for non-existence of decoupled simulating abstractions (up to a some maximum
degree of the abstract basis polynomials; see Proposition 2). Lastly, we described
how automatically generated Darboux polynomials (up to some given polyno-
mial degree) can be used to construct abstract basis polynomials that can yield
decoupling simulating abstractions. The abstractions developed in this paper are
in essence a form of model transformation, which can be integrated in source
transformation and translation tools such as HyST [2]; we leave this for future
work.

Decoupling Abstractions of Non-linear Ordinary Differential Equations 643

Acknowledgements. The authors would like to thank the anonymous reviewers for
their careful reading and judicious critique and extend their thanks to Dr. André
Platzer at Carnegie Mellon University for his technical questions and helpful insights
into differential ghosts.

References

1. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Ric-
cobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30885-7 13

2. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and trans-
lation tool for hybrid automaton models. In: HSCC, pp. 128–133. ACM (2015)

3. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Comput. 4(4), 361–369
(1998)

4. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). doi:10.1007/3-540-07407-4 17

5. Conti, R., Galeotti, M.: Totally bounded cubic systems in R
2. In: Macki, J.W.,

Zecca, P. (eds.) Dynamical Systems. LNM, vol. 1822, pp. 103–171. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45204-1 2

6. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential
Systems. Springer, Heidelberg (2006)

7. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical
invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 279–294. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 19

8. Giannakopoulou, D., Méry, D. (eds.): FM 2012. LNCS, vol. 7436. Springer,
Heidelberg (2012)

9. Ginoux, J.M.: Differential Geometry Applied to Dynamical Systems. World Scien-
tific Series on Nonlinear Science, vol. 66. World Scientific, Singapore (2009)

10. Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer
science and control theory. Eur. J. Control 17(5–6), 568–578 (2011)

11. Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced
Series in Nonlinear Dynamics. World Scientific, Singapore (2001)

12. Hale, J.K., LaSalle, J.P.: Differential equations: linearity vs. nonlinearity. SIAM
Rev. 5(3), 249–272 (1963)

13. Han, Z., Krogh, B.: Reachability analysis of hybrid control systems using reduced-
order models. In: 2004 American Control Conference, Proceedings of the 2004, vol.
2, pp. 1183–1189, June 2004

14. Jeannin, J.-B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: A formally verified hybrid system for the next-generation airborne
collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 21–36. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 2

15. Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid
systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15769-1 23

http://dx.doi.org/10.1007/978-3-642-30885-7_13
http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/978-3-540-45204-1_2
http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1007/978-3-662-46681-0_2
http://dx.doi.org/10.1007/978-3-642-15769-1_23
http://dx.doi.org/10.1007/978-3-642-15769-1_23

644 A. Sogokon et al.

16. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: 12th GAMM - IMACS
International Symposium on Scientific Computing, Computer Arithmetic and Val-
idated Numerics (SCAN), p. 4, September 2006

17. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of
ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

18. Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
19. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reasoning, 1–47 (2016)
20. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance

maneuvers: a case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 547–562. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 35

21. Robinson, J.C.: An Introduction to Ordinary Differential Equations. Cambridge
University Press, Cambridge (2004)

22. Sankaranarayanan, S.: Change-of-bases abstractions for non-linear hybrid systems.
Nonlinear Anal. Hybrid Syst. 19, 107–133 (2016)

23. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. Formal Methods Syst. Des. 32(1), 25–55 (2008)

24. Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and
hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 686–702. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 56

25. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, New York (1994)
26. Tarski, A.: A decision method for elementary algebra and geometry. In: Bulletin

of the American Mathematical Society, vol. 59 (1951)
27. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate

Studies in Mathematics, vol. 140. American Mathematical Society, Providence
(2012)

28. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of
a descent guidance control program of a lunar lander. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 733–748. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-06410-9 49

29. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese
train control system under a combined scenario by theorem proving. In: Cohen,
E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54108-7 14

http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://dx.doi.org/10.1007/978-3-642-22110-1_56
http://dx.doi.org/10.1007/978-3-319-06410-9_49
http://dx.doi.org/10.1007/978-3-642-54108-7_14

Regression Verification for Unbalanced
Recursive Functions

Ofer Strichman(B) and Maor Veitsman

Information Systems Engineering, IE, Technion, Haifa, Israel
ofers@ie.technion.ac.il, smaorus@gmail.com

Abstract. We address the problem of proving the equivalence of two
recursive functions that have different base-cases and/or are not in lock-
step. None of the existing software equivalence checkers (like rêve, rvt,
Symdiff), or general unbounded software model-checkers (like Seahorn,
HSFC, Automizer) can prove such equivalences. We show a proof rule
for the case of different base cases, based on separating the proof into
two parts—inputs which result in the base case in at least one of the
two compared functions, and all the rest. We also show how unbalanced
unrolling of the functions can solve the case in which the functions are
not in lock-step. In itself this type of unrolling may again introduce the
problem of the different base cases, and we show a new proof rule for
solving it. We implemented these rules in our regression-verification tool
rvt. We conclude by comparing our approach to that of Felsig et al.’s
counterexample-based refinement, which was implemented lately in their
equivalence checker rêve.

1 Introduction

Given two similar programs P1, P2, a mapping mapf between their functions,
and a definition of equivalence, Regression Verification [5] is the problem of iden-
tifying the pairs in mapf that are equivalent to one another. This undecidable
problem can be thought of as a special case of program equivalence. Program
equivalence has been discussed in the literature for over half a century (see,
e.g., [10])—mostly in the ACL2 community—as a challenge and a use case for
theorem proving (e.g., proving that quick-sort has the same output as merge-
sort), but without exploiting the similarity between P1 and P2 that is assumed
in the case of regression verification. This assumed similarity provides many
opportunities for optimizations, and generally leads to a complexity which is
dominated by the magnitude of change rather than by the magnitude of P1 and
P2 themselves.

The classic use-case for regression verification is one in which P1, P2 are
two consecutive versions of the same program, and the goal is to identify the
impact of change. It can be used for checking that refactoring or a performance
optimization has not changed the program in a nonintended way. It can also
be used for verifying that a bug-fix or an added feature affects only the part
intended by the programmer. In somewhat a different direction, it was recently
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 645–658, 2016.
DOI: 10.1007/978-3-319-48989-6 39

646 O. Strichman and M. Veitsman

used for proving that the target code of two consecutive versions of a compiler
are semantically the same [8]. In all these applications the typical definition of
equivalence that is used is called partial equivalence [5]. It means that given
the same inputs, the two functions return equal outputs, unless at least one of
them does not terminate. By ‘inputs’ we mean the function parameters, global
variables that it reads, and the heap; by ‘outputs’ we mean global variables to
which the function writes, the heap and the return value.

There are several methods and tools for regression verification that are avail-
able in the public domain. MS-SymDiff [11,12] is a tool that reads two BPL
(Boogie programming language) [13] files corresponding to P1, P2, and gener-
ates a verification condition in BPL for each pair of mapped functions. It uses
Boogies’s built-in access to Z3 [3] and the invariant generator Duality [14] to
try and prove the equivalence of functions with loops and recursive calls. SymD-

iff supports user-defined specifications, which means that partial equivalence is
just one possible equivalence criterion; the user can alternatively define any pred-
icate over the inputs and outputs of the two compared functions as the proof
obligation, e.g., that the output of f is always smaller or equal to the output of
f ′, for 〈f, f ′〉 ∈ mapf .

The tool Rêve attempts to prove the equivalence of recursive functions (cur-
rently individual functions rather than whole programs), and is based on a direct
translation to Z3’s Horn-clause format. This gives them access to Z3’s PDR
engine [2], which attempts to prove the equivalence between the two functions
by gradually detecting invariants.

The third tool is rvt [1,5]. Improving rvt’s proof method is the focus of
this article. rvt begins by turning all loops into separate recursive functions,
and building a map mapf between the functions. This mapping does not have
to be bijective. It then uses a bottom-up traversal of the call graphs of the two
programs, each time attempting to prove the equivalence of a pair of functions
from mapf . A pair of callees that were already proven to be equal are abstracted
with the same uninterpreted function, and others—unless they are recursive—are
inlined. If a callee is recursive and was not proven to be equal to a function on the
other side, all the ancestors of this function are ‘abandoned’ by the algorithm,
i.e., it does not attempt to prove their equivalence.

To prove the equivalence of two recursive functions rvt uses a proof rule
that essentially applies induction: assume that the two functions are partially
equivalent in the recursive calls, and try to prove that they are partially equiva-
lent also in the current call. This is summarized by the following proof rule, for
two simple recursive functions f and f ′:

partial-equiv(callf, callf ′) � partial-equiv(f body, f ′ body)
partial-equiv(f, f ′)

(part-eq)

(1)
The more general case of mutually recursive functions is discussed in length
in [5].

Regression Verification for Unbalanced Recursive Functions 647

To check the premise, we need to replace the recursive calls in f and in f ′

with an over-approximation of f and f ′, respectively, that satisfies the predicate
‘partial-equiv(callf, callf ′)’. This is easy to do (albeit not necessarily the
best way in terms of the strength of the method) by replacing the recursive calls
with the same uninterpreted function: by definition, two instances of the same
uninterpreted function are partially equivalent. After the replacement we say
that f and f ′ are isolated. The following example, taken from [5], demonstrates
isolation.

Example 1. Consider the two functions in Fig. 1. Let U be the uninterpreted
function such that calls to U replace the recursive calls to gcd1 and gcd2. Figure 2
presents the isolated functions. These are now ‘flat’ functions, i.e., without loops
and recursion, and hence their partial equivalence is decidable. If they are indeed
partially equivalent, then (1) implies that the original functions are partially
equivalent as well. ��

rvt proves the equivalence of a pair of isolated functions f, f ′ by generating a
program of the form appearing in Fig. 3, and invoking CBMC, a bounded model
checker for C programs, to attempt to formally verify it. If it is successful, then
f, f ′ are declared equivalent. The schema shown in the figure is for the simple
case in which the two compared functions do not access the heap and global
variables.

gcd1 (i n t a , i n t b)
{ i n t g ;

i f (! b) g = a ;
e l s e {

a = a%b ;
g = gcd1 (b , a) ; }

re turn g ;
}

gcd2 (i n t x , i n t y)
{ i n t z ;

z = x ;

i f (y > 0)
z = gcd2 (y , z%y) ;

re turn z ;
}

Fig. 1. Two functions to calculate GCD of two nonnegative integers.

gcd1 (i n t a , i n t b)
{ i n t g ;

i f (! b) g = a ;
e l s e {

a = a%b ;
g = U(b , a) ; }

re turn g ;
}

gcd2 (i n t x , i n t y)
{ i n t z ;

z = x ;

i f (y > 0)
z = U(y , z%y) ;

re turn z ;
}

Fig. 2. After isolation of the functions, i.e., replacing their function calls with calls to
the same uninterpreted function U . By definition of uninterpreted functions U enforces
partial equivalence of the recursive calls.

648 O. Strichman and M. Veitsman

in t main (){
i n t n = non det () ;
i n t ret1 , r e t 2 ;
r e t1 = f (n) ;
r e t 2 = f ’ (n) ;
a s s e r t (r e t1 = re t2) ;

}

Fig. 3. RVT Generates such a main function for each pair of isolated functions f, f ′ ∈
mapf that it attempts to prove partially-equivalent. If f, f ′ access global variables and
the heap, then the construction is more involved.

The (part-eq) rule (1) is not, and cannot be, complete, owing to the unde-
cidability of the problem. In this article we will focus on two specific reasons
for the incompleteness of this rule: different base-cases, and unbalanced recur-
sion. The former corresponds to a case in which for the same input, one of the
functions returns on a base-case, and the other does not. The latter corresponds
to a case in which the two recursive functions are not in lock-step. We will also
consider the case in which both cases occur at the same time. The examples
below demonstrates the weakness of (1) when it comes to such cases.

Example 2. The two programs in Fig. 4 are partially equivalent, but (1) fails
to prove it. The reason is the different base cases. After isolating these two
functions, namely replacing their recursive calls with the same uninterpreted
function, say U , they may return different values when n = 1: fact1 returns 1,
whereas fact2 returns 1 ∗ U(0).

Now consider the two partially-equivalent functions in Fig. 5. Their base cases
are in sync, but they are not in lock-step: sum1 computes Σi=1..ni in half the
number of iterations comparing to sum2. After isolation, for equal input n such
that n > 1, the uninterpreted functions are called with different values, which
may lead these two functions to return different values. For example, for n = 3
sum1 returns 3 + 2 + U(1), whereas sum2 returns 3 + U(2). ��

In the next section we will describe our solution strategy.

i n t f a c t 1 (i n t n){
i f (n <= 1) return 1 ;
re turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 2 (i n t n){
i f (n <= 0) return 1 ;
re turn n ∗ f a c t 2 (n−1);

}

Fig. 4. The different base cases prevent (1) from proving the equivalence of these two
functions. After isolation, when n = 1, fact1 returns 1, whereas fact2 returns 1∗U(0),
namely a nondeterministic value.

Regression Verification for Unbalanced Recursive Functions 649

i n t sum1(i n t n){
i f (n <= 1) return n ;
re turn n + n−1 + sum1(n−2);

}

i n t sum2(i n t n){
i f (n <= 1) return n ;
re turn n + sum2(n−1);

}

Fig. 5. These two functions are not in lock-step, which prevents (1) from proving their
partial equivalence. After isolation, for e.g., n = 3, sum1 returns 3 + 2 + U(1) whereas
sum2 returns 3 + U(2), which are not necessarily equal terms.

2 Four Types of Unrolling

Given a recursive function f and a natural unrolling factor i > 0, we define four
types of unrolling of f i times. Figure 6 illustrates the different unrolling types.

1. Syntactic unrolling: Create i copies of the original function: f1, f2, .., fi,
rename them, and rename accordingly their recursive calls. Replace the recur-
sive call in the j-th copy, for 1 ≤ j < i with a call to the j + 1 copy. The
recursive call in the i-th copy remains unchanged. Let unroll(f, i) denote the
syntactically unrolled program.

i n t f a c t 1 (i n t n){
i f (n <= 0) return 1 ;
re turn n ∗ f a c t 1 (n−1);

}

i n t f a c t (i n t n){
i f (n <= 0) return 1 ;
re turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 1 (i n t n){
assume (f a l s e) ;

}

i n t f a c t (i n t n){
i f (n <= 0) return 1 ;
re turn n ∗ f a c t 1 (n−1);

}
Unroll(fact,1) Unroll&Block(fact,1)

i n t f a c t 1 (i n t n){
a s s e r t (f a l s e) ;

}

i n t f a c t (i n t n){
i f (n <= 0) return 1 ;
re turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 1 (i n t n){
re turn u f f a c t 1 (n−1);

}

i n t f a c t (i n t n){
i f (n <= 0) return 1 ;
re turn n ∗ f a c t 1 (n−1);

}
Unroll&check(fact,1) Unroll&UF (fact,1)

Fig. 6. Four types of unrollings.

650 O. Strichman and M. Veitsman

2. Unroll and block: The same as syntactic unrolling, but replace the body
of the i-th copy fi with a single call to assume(false)1. The assume(exp)
statement restricts program traces to those that satisfy the boolean parameter
exp. Hence adding assume(false) to our program ‘blocks’ traces that reach
the location of that assertion. Let unroll&block(f, i) denote this variant of
unrolling.

3. Unroll and check: The same as syntactic unrolling, but replace the body
of the i-th copy fi with a single call to assert(false). This causes the model
checker to fail the proof if there exists a program trace that reaches depth i
in the recursion. Let unroll&check(f, i) denote this variant of unrolling.

4. Unroll and UF: The same as syntactic unrolling, but replace the body of the
i-th copy of f with a single call statement to the an uninterpreted function
Uf that is associated with f . We denote this action by unroll&uf(f, i).

Only the first of these four variants preserves the semantic of the original func-
tion f . unroll&block(f, i) underapproximates f , and unroll&uf(f, i) overap-
proximates it. unroll&check(f, i) is simply a way to check that i is high enough
to capture all the traces of f .

We will use these unrollings variants in our proof rules below.

3 A Proof Rule Based on Domain Partitioning

Recall that when the base cases in recursive functions are not in sync, the proof
rule (part-eq) (1) is not strong enough to prove partial equivalence. We suggest
a new proof rule for this purpose, in which we break the premise into two separate
parts:

base-equiv(f, f ′) step-equiv(f, f ′)
partial-equiv(f, f ′)

(sep-part-eq) (2)

Intuitively base-equiv(f, f ′) is true if f, f ′ are partially equivalent for any input
that invokes the base case in at least one of f, f ′, and step-equiv(f, f ′) is true
if f, f ′ are partially equivalent for all the other inputs.

More formally, let inB(f) denote the set of all inputs for which the resulting
program traces do not reach a recursive call in function f , and inS(f) is the
complement of inB(f). We note that for any f, f ′ with the same signature,
inB(f) ∪ inB(f ′) and inS(f) ∩ inS(f ′) form a partition of the input domain.

We denote by partial-equiv(f, f ′)|s that f and f ′ are partially equivalent
on the set of inputs s. Using this notation, we now define base-case equivalence:

base-equiv(f, f ′) .= partial-equiv(f, f ′)|inB(f)∪inB(f ′) (3)

and similarly step-case equivalence:

step-equiv(f, f ′) .= partial-equiv(f, f ′)|inS(f)∩inS(f ′) (4)

In the next section we will show how we use the various types of unrolling
from Sect. 2 to prove the premise of (2) based on (3) and (4).
1 Most software model checkers support assume statements.

Regression Verification for Unbalanced Recursive Functions 651

f o r i = 1 . . . {
in=non det () ;
r e t1=un r o l l&block (f , 1) (in) ;
r e t 2=un r o l l&check (f ’ , i) (in) ;
a s s e r t (r e t1 = re t2) ;

}

f o r i = 1 . . . {
in=non det () ;
r e t1=un r o l l&block (f ’ , 1) (in) ;
r e t2=un r o l l&check (f , i) (in) ;
a s s e r t (r e t1 = re t2) ;

}
2esahP1esahP

Fig. 7. Pseudocode of the first and second step of the base-case proof. i is increased
until there is no assertion failure in unroll&check.

3.1 Proving Base-Case Equivalence

According to (3), to prove the premise base-equiv(f, f ′), we can create a check
program, similar to the one in Fig. 3, but while limiting the inputs to those that
invoke the base case in either one of f or f ′. To that end, we divide our proof
into two phases:

1. Prove equivalence for inputs that result in a base case in f .
2. Prove equivalence for inputs that result in a base case in f ′.

The pseudocode in Fig. 7 exhibits the programs that we generate for these
two phases. By performing unroll&block on f , we limit any program trace in
the proof that may lead to a recursive call. Because input which results in a
base case in function f may result in an unknown number of recursive iterations
in function f ′, we must create a bound for the amount of possible recursive
iterations in function f ′. We do this by applying unroll&check on f ′, where
the unrolling bound is increased up to the point that f ′ does not make another
recursive call, or a time-out is reached.

3.2 Proving Step-Case Equivalence

To prove step-case equivalence we must limit our proof to program traces that
result in a recursive call on both sides. To that end, we have to limit the inputs to
inS(f) ∩ inS(f ′). Again, we use a program similar to the one in Fig. 3. However,
we add a global variable cnt (initialized to 0), and increment it just before the
call statement to the uninterpreted function (see fact1 in unroll&UF in Fig. 6).
We then change our assertion to assert(cnt < 2 || ret1 = ret2), where as
before ret1 and ret2 are the return values of the two functions. This way, we
check equivalence only for inputs that invoked a recursive call both in f and in
f ′. Figure 8 illustrates the check program created for the step case.

4 A Generalization to Mutually Recursive Functions

We now generalize our proof rule to mutually recursive functions. Mutually recur-
sive functions appear in the call graph as strongly connected components (SCCs)

652 O. Strichman and M. Veitsman

in = non det () ;
r e t 1 = un r o l l&uf (f , 1) (in) ;
r e t 2 = un r o l l&uf (f ’ , 1) (in) ;
a s s e r t (cnt < 2 | | r e t1 = re t2) ;

Fig. 8. Pseudocode of the check program used to prove the step case.

of a size larger than one, and our focus is on maximal SCCs—MSCCs. For sim-
plicity, we consider the case in which the two non-trivial MCSS’s m,m′ do not
have edges outside the MSCC (i.e., functions in m,m′ do not call functions out-
side of m,m′) and that there is a bijective mapping between the functions in
m,m′, which we denote here by mapf . A proof rule for this case was given in [5]
and repeated here:

∀(f, f ′) ∈ mapf .

((∀(g, g′) ∈ mapf .p-equiv(callg, callg
′)) � p-equiv(f body, f ′ body))

∀(f, f ′) ∈ mapf .p-equiv(f, f ′)
(proc-p-eq) (5)

This rule is more intuitive after seeing how its premise can be checked. For
this, [5] defines

fUF .= f [g ← UF (g) | g is called in f] , (6)

or in words, fUF replaces each function call to g in f , with a corresponding call
to an uninterpreted function. Now (5) becomes

∀(f, f ′) ∈ mapf . partial-equiv(fUF , f ′UF)
∀(f, f ′) ∈ mapf . partial-equiv(f, f ′)

(7)

In words, the premise we need to prove is that every pair in mapf has to be
proven equivalent, while replacing the calls to other functions in m,m′ with
uninterpreted functions. We emphasize that the calls to mapped functions in
mapf are replaced with the same uninterpreted function. A sample pair of size-
2-MSCCs and the proof obligations according to (7) appear in Fig. 9.

Our generalization of (2) to mutual recursion, can be thought of as splitting
the input domain in (5) to the base-case and step-case, similarly to what we
have shown in Sect. 3:

∀(f, f ′) ∈ mapf .base-equiv(f, f ′) ∀(f, f ′) ∈ mapf .step-equiv(f, f ′)
∀(f, f ′) ∈ mapf .partial-equiv(f, f ′)

(8)

We now adjust the premise of (8) to support mutually recursive functions.
First we generalize the definitions of inB(f) and inS(f). Let inB(f) denote the
set of all inputs for which the resulting program traces do not reach a call to
another function in the MSCC, and let inS(f) denote the complement of inB(f).
To prove the base we use the inference rule:

∀(f, f ′) ∈ mapf .partial-equiv(f, f ′)|inB(f)∪inB(f ′)

∀(f, f ′) ∈ mapf .base-equiv(f, f ′)
, (9)

Regression Verification for Unbalanced Recursive Functions 653

f2f1 f ′
2f ′

1

f ′
2U1

U2f1 U2f ′
1

f2U1

Side 0 Side 1

Fig. 9. To prove equivalence of mutually recursive functions (top) with (7), we check
separately the equivalence of each pair of functions, while replacing the calls to other
functions with calls to UFs (bottom).

and to prove the step, we use the rule:

∀(f, f ′) ∈ mapf .partial-equiv(f, f ′)|inS(f)∩inS(f ′)

∀(f, f ′) ∈ mapf .step-equiv(f, f ′)
. (10)

Since we are only partitioning the input domain in (7), whose correctness was
already proven in [5], then correctness is implied.

5 Proving Equivalence of Functions Not in Lock-Step

Recall the two versions of the sum function in Fig. 5 which are not in lock-step
and therefore cannot be proven partially equivalent by the rule (part-eq). To
solve this, we unwind sum2: the result is visible in Fig. 10. We can now see that
for n = 3 both sum1 and sum2 return 3 + 2 + U(1).

Now let us look at another example. For n = 2, sum1 returns 2 + 1 + U(0) while
the unrolled function sum2 returns 2 + 1. By performing un-balanced syntactic
unrolling we created base cases that are not in sync. We solve this similarly by
separating the premise of our proof rule into two parts, the base-case proof and the
step-case proof as before. Our proof rule for functions f and f ′ with the respective
unrolling factors of n and m is:

base-equivn,m(f, f ′) step-equivn,m(f, f ′)
partial-equiv(f, f ′)

(sep-part-eq) (11)

654 O. Strichman and M. Veitsman

i n t s u m 2 1 (i n t n){
i f (n <= 1){

re turn n ;
}
re turn n + sum2 1 (n−1);

}

i n t s u m 2 (i n t n){
i f (n <= 1){

re turn n ;
}
re turn n + sum2 1 (n−1);

}

i n t s u m 1 (i n t n){
i f (n <= 1){

re turn n ;
}
re turn n + n − 1 + sum1(n−1);

}

Fig. 10. The function sum2 after being unrolled syntactically once.

The predicate base-equivn,m(f, f ′) is true when f and f ′ are equivalent for each
input that does not involve a recursive call in unroll(f, n) or unroll(f ′,m)). More
formally:

base-equivn,m(f, f ′) .
=

partial-equiv(unroll(f, n), unroll(f ′,m))|inB(unroll(f,n))∪inB(unroll(f ′,m)) (12)

The predicate step-equivn,m(f, f ′) is true when f and f ′ are partially equiv-
alent for all other inputs: those that involve a recursive call on both unroll(f, n),
and unroll(f ′,m) sides, or, more formally:

step-equivn,m(f, f ′) .
=

partial-equiv(unroll(f, n), unroll(f ′,m))|inS(unroll(f,n))∩inS(unroll(f ′,m)) (13)

Next, we show how we verify that these predicates hold true, and thus prove the
premise of 11.

Base Case: Since we limit our input to values in the union of inB(unroll(f, n))
and inB(unroll(f ′,m)), we prove the base case by separating the proof into two

f o r i = 1 . . . {
in=non det () ;
r e t1=un r o l l&block (f , n) (in) ;
r e t 2=un r o l l&check (f ’ , i) (in) ;
a s s e r t (r e t1 = re t2) ;

}

f o r i = 1 . . . {
in=non det () ;
r e t1=un r o l l&check (f ’ ,m) (in) ;
r e t2=un r o l l&block (f , i) (in) ;
a s s e r t (r e t1 = re t2) ;

}
2esahP1esahP

Fig. 11. Pseudocode of the two phases of the base-case proof, for unbalanced recursive
functions.

Regression Verification for Unbalanced Recursive Functions 655

cnt = 0 ;
in = non det () ;
r e t 1 = un r o l l&uf (f , n) (in) ;
r e t 2 = un r o l l&uf (f ’ ,m) (in) ;
a s s e r t (cnt < 2 | | r e t1 = re t2) ;

Fig. 12. Pseudocode of the check program used to prove the step case equivalence for
unrolled functions.

phases, similarly to Sect. 3.1. These phases are illustrated by Fig. 11. Note that
now, in the first step, we unroll and block f with an unrolling factor of n, in
order to capture inputs that result in a program trace that reaches one of the
base cases in one of the first n recursive iterations of f . Similarly, in the second
phase we apply unroll and block m times on f ′.

Step Case: According to (13), we need to limit the proof to program traces
that result in a recursive call on both sides after being unrolled n and m times,
respectively. Similar to the program in Fig. 8, we do this by utilizing the counter
cnt. The program is given in Fig. 12.

This entire process is now automated in rvt via a flag -unroll n m, where
the user only has to replace n and m with constants.

6 Related Work and Competing Tools

We have compared several leading unbounded model checkers that have scored
high on recursive programs in the latest software verification competition. While
they are not designed for program equivalence, Fig. 3 shows us that we can reduce
this problem to a general verification problem over a single program. We have
tested Seahorn [7], HSF(C) [6] and Automizer [9] using the factorial and
sum examples that we presented in previous sections. These model checkers were
not able to prove equivalent the pair of functions in these examples.

rêve [4] is a program equivalence verifier. Specifically for the case of unbal-
anced base-cases, it uses a technique called counterexample-based refinement, by
which counterexamples are checked individually by simulation and then blocked
from the verification condition. For example, for our factorial example, the input
triggering the base case not in sync is n = 1. After the proof failure rêve runs
both programs with the given input to examine whether the counterexample in
fact indicates an in-equivalence between the two programs. If it discovers that
both outputs are equal for n = 1 then the program trace created by this input
is blocked in the next iteration. Once this program input is disregarded then the
proof succeeds. This process is unbounded, similarly to the iterative process in
our base-case proof seen in Fig. 7.

Both tools may perform favourably in different scenarios. For example in pro-
grams where our inputs are from the integer domain and the expression applied

656 O. Strichman and M. Veitsman

on the parameter of the recursive call results in a series of inputs {n1, n2, ..}
which advances at a pace larger than one (ni+1 − ni > 1) then our proof rule
(sep-part-eq) (2) may perform better. Generally speaking, (sep-part-eq) may
perform better when the expression applied on the parameters of the recursive
call causes the series of input values of the recursive calls to be non-sequential
over the input domain. Note how the recursion advances faster over the integer
domain in the two programs in Fig. 13. These are two implementations of the
factorial function, after applying loop unrolling. According to the proof method
in Fig. 4 we prove equivalence for two domains of inputs:

1. For inputs that result in a base-case for fact1 (when n ∈ [1..4]), the proof
will be successful in the first iteration.

2. For inputs that result in a base for fact2 (when n ∈ [1..8]), the proof will be
successful in the second iteration.

On the other hand when using counterexample-based refinement, three coun-
terexamples are created and blocked before the proof succeeds.

Counterexample-based refinement may perform better in other scenarios. In
Fig. 14 we used two identical implementations of the factorial function and added
a base condition for n = 10. In the second iteration, the program trace created
by the input n = 10 will be blocked after one iteration using counterexample-
based refinement and the proof succeeds. However if we try to prove this using
our rule in Fig. 4, only after we apply unroll&check with a factor of 10 will the
proof succeed. In other words, the counterexample-refinement method requires

i n t f a c t 1 (i n t n){
i f (n <= 1) return 1 ;
i f (n == 2) re turn 2 ;
i f (n == 3) re turn 6 ;
i f (n == 4) re turn 24 ;

re turn n ∗ (n−1) ∗ (n−2)
∗ (n−3) ∗ f a c t 1 (n−4);

}

i n t f a c t 2 (i n t n){
i f (n <= 1) return 1 ;
i f (n == 2) re turn 2 ;
i f (n == 3) re turn 6 ;
i f (n == 4) re turn 24 ;
. . . .
i f (n == 8) return 40320 ; //8 !
re turn n ∗ (n−1) ∗ (n−2)

∗ (n−3) ∗ f a c t 1 (n−4);
}

Fig. 13. Unrolled and optimized version of the factorial function.

i n t f a c t 1 (i n t n){
i f (n <= 1) return 1 ;
re turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 2 (i n t n){
i f (n <= 1) return 1 ;
i f (n == 10)

re turn 3628800; //10 !
re turn n ∗ f a c t 1 (n−1);

}

Fig. 14. fact2 contains a special condition.

Regression Verification for Unbalanced Recursive Functions 657

fewer iterations with programs that have base-case conditions that are sporadic
over the input domain.

7 Conclusions

We have presented techniques for proving the equivalence of two recursive func-
tions that have different base-cases and/or are not in lock-step. As we have shown
experimentally, none of the existing software equivalence checkers (like rêve,
rvt, Symdiff), or general unbounded software model-checkers (like Seahorn,
HSFC, Automizer) can prove such equivalences. The proof rule that we pre-
sented for the case of different base cases is based on separating the proof into two
parts—inputs which result in the base case in at least one of the two compared
functions, and all the rest. To prove recursive functions that are not in lock-step,
we showed that unbalanced unrolling does not solve in itself the problem, and
requires a more elaborate solution that involves a variation of the first rule for
different base cases. We implemented these rules in our regression-verification
tool rvt, which now has a web-interface in [1] and is open-source.

References

1. RVT web-interface and sources. http://ie.technion.ac.il/∼ofers/rvt/
2. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for

program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23534-9 2

3. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

4. Felsing, D., Grebing, S., Klebanov, V., Rmmer, P., Ulbrich, M.: Automating regres-
sion verification. In: International Conference on Automated Software Engineering
(2014)

5. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6), 403–439 (2008)

6. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
a software verifier based on horn clauses. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 46

7. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 20

8. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,
Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? Static cross-
version compiler validation. In: Meyer, B., Baresi, L., Mezini, M. (eds.) Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE 2013, August
18–26 2013, Saint Petersburg, Russian Federation, pp. 191–201. ACM (2013)

http://ie.technion.ac.il/~ofers/rvt/
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-28756-5_46
http://dx.doi.org/10.1007/978-3-642-28756-5_46
http://dx.doi.org/10.1007/978-3-319-21690-4_20

658 O. Strichman and M. Veitsman

9. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 2

10. Igarashi, S.: An axiomatic approach to equivalence problems of algorithms with
applications. Ph.D. thesis, U. Tokyo, Rep. Compt. Centre, U. Tokyo 1968, pp.
1–101 (1964)

11. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 54

12. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Meyer, B., Baresi, L., Mezini, M. (eds.) Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE 2013, 18–26 August 2013,
Saint Petersburg, Russian Federation, pp. 345–355. ACM (2013)

13. Goues, C., Leino, K.R.M., Moskal, M.: The boogie verification debugger (tool
paper). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 407–414. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24690-6 28

14. McMillan, K.L.: Lazy annotation revisited. Technical report MSR-TR-2014-65,
MSR (2014)

http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-24690-6_28

Automated Mutual Explicit Induction
Proof in Separation Logic

Quang-Trung Ta(B), Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin

School of Computing, National University of Singapore, Singapore, Singapore
{taqt,chanhle,khoosc,chinwn}@comp.nus.edu.sg

Abstract. We present a sequent-based deductive system for automat-
ically proving entailments in separation logic by using mathematical
induction. Our technique, called mutual explicit induction proof, is an
instance of Noetherian induction. Specifically, we propose a novel induc-
tion principle on a well-founded relation of separation logic model, and
follow the explicit induction methods to implement this principle as infer-
ence rules, so that it can be easily integrated into a deductive system.
We also support mutual induction, a natural feature of implicit induc-
tion, where the goal entailment and other entailments derived during
the proof search can be used as hypotheses to prove each other. We have
implemented a prototype prover and evaluated it on a benchmark of
handcrafted entailments as well as benchmarks from a separation logic
competition.

1 Introduction

Separation logic (SL) [22,30] has been actively used recently to reason about
imperative programs that alter data structures. For example, the static analysis
tool Infer [15] of Facebook has been using SL to discover critical memory safety
bugs in Android and iOS applications. One of the pivotal features making the
success of SL is the separating conjunction operator (∗), which is used to describe
the separation of computer memory. In particular, the assertion p ∗ q denotes a
memory portion which can be decomposed into two disjoint sub-portions held by
p and q, respectively. In addition, SL is also equipped with the ability for users
to define inductive heap predicates [4,16,29]. The combination of the separating
conjunction and inductive heap predicates makes SL expressive enough to model
various types of recursive data structures, such as linked lists and trees.

However, this powerful expressiveness also poses challenges in reasoning
about SL entailments. Considerable researches have been conducted on the SL
entailment proving problem, including the works [4,7,11] related to mathemat-
ical induction. In particular, Brotherston et al. [4,7] propose the cyclic proof,
which allows proof trees to contain cycles, and can be perceived as infinite
derivation trees. Furthermore, during the proof derivation, induction hypothe-
ses are not explicitly identified via applications of induction rules; instead, they
are implicitly obtained via the discovery of valid cycle proofs. Consequently, a

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 659–676, 2016.
DOI: 10.1007/978-3-319-48989-6 40

660 Q.-T. Ta et al.

soundness condition needs to be checked globally on proof trees. On the other
hand, Chu et al. [11] apply structural induction on inductive heap predicates for
proving SL entailments. During proof search, this technique dynamically uses
derived entailments as induction hypotheses. When applying induction hypothe-
ses, it performs a local check to ensure that predicates in the target entail-
ments are substructures of predicates in the entailments captured as hypotheses.
This dynamicity in hypothesis generation enables multiple induction hypotheses
within a single proof path to be exploited; however, it does not admit hypotheses
obtained from different proof paths.

In this work, we develop a sequent-based deductive system for proving SL
entailments by using mathematical induction. Our technique is an instance of
Noetherian induction [8], where we propose a novel induction principle based
on a well-founded relation of SL models. Generally, proof techniques based on
Noetherian induction are often classified into two categories, i.e., explicit and
implicit induction [8], and each of them presents advantages over the other. We
follow the explicit induction methods to implement the induction principle as
inference rules, so that it can be easily integrated into a deductive system, and the
soundness condition can be checked locally in each application of inference rules.
In addition, since the well-founded relation defined in our induction principle
does not depend directly on the substructure relationship, induction hypotheses
gathered in one proof path can be used for hypothesis applications at other proof
paths of the entire proof tree. Thus, our induction principle also favors mutual
induction, a natural feature of implicit induction, in which the goal entailment
and other entailments derived during the proof search can be used as hypotheses
to prove each other. Our proof technique, therefore, does not restrict induction
hypotheses to be collected from only one proof path, but rather from all derived
paths of the proof tree.

Related Work. The entailment proving problem in SL has been actively stud-
ied recently. Various sound and complete techniques have been introduced, but
they deal with only pre-defined inductive heap predicates, whose definitions and
semantics are given in advance [1–3,12,23–26]. Since these techniques are desig-
nated to only certain classes of pre-defined predicates, they are not suitable for
handling general inductive heap predicates.

Iosif et al. [16,17] and Enea et al. [13] aim to prove entailments in more general
SL fragments by translating SL assertions into tree automata. However, these
approaches still have certain restrictions on inductive heap predicates, such as
the predicates must have the bounded tree width property, or they are variants
of linked list structures. Proof techniques proposed by Nguyen et al. [10,20,21]
and by Madhusudan et al. [27] can prove SL entailments with general induc-
tive heap predicates. Nonetheless, these techniques are semi-automated since
users are required to provide supplementing lemmas to assist in handling those
predicates. In [14], Enea et al. develop a mechanism to automatically synthe-
size these supporting lemmas, but solely limited to certain kinds of lemmas, i.e.,
composition lemmas, completion lemmas and stronger lemmas.

Automated Mutual Explicit Induction Proof in Separation Logic 661

Cyclic proof [4,7] and induction proof in [11] are most closely related to
our approach. We recall the aforementioned comments that cyclic proof requires
soundness condition to be checked globally on proof trees, whereas proof tech-
nique in [11] restricts that induction hypotheses collected from one path of proof
tree cannot be used to prove entailments in other paths. Our work differs from
them as we not only allow soundness condition to be checked locally at inference
rule level, but also support mutual induction where entailments from different
proof paths can be used as hypotheses to prove each other.

Contribution. Our contributions in this work are summarized as follows:

– We define a well-founded relation on SL models and use it to construct a novel
mutual induction principle for proving SL entailments.

– We develop a deductive system for proving SL entailments based on the pro-
posed mutual induction principle, and prove soundness of the proof system.

– We implement a prototype prover, named Songbird, and experiment on it with
benchmarks of handcrafted entailments as well as entailments collected from
SL-COMP, an SL competition. Our prover is available for both online use and
download at: http://loris-5.d2.comp.nus.edu.sg/songbird/.

2 Motivating Example

We consider the procedure traverse in Fig. 1, which traverses a linked list in
an unusual way, by randomly jumping either one or two steps at a time. In
order to verify memory safety of this program, automated verification tools such
as [5,9,18] will first formulate the shape of the computer memory manipulated by
traverse. Suppose the initially discovered shape is represented by an inductive
heap predicate tmp(x) in SL, defined as:

tmp(x) � emp ∨∨∨ ∃u.(x�→u ∗ tmp(u)) ∨∨∨ ∃u, v.(x�→u ∗ u �→v ∗ tmp(v))

struct node { struct node ∗ next; }
void traverse (struct node ∗ x) {

if (x == NULL) return;
bool jump = random();
if (jump && x→next != NULL)

traverse(x→next→next);
else traverse(x→next); }

Fig. 1. A linked-list traversal algorithm
with random jump

Intuitively, tmp(x) covers three
possible cases of the shape, which
can be an empty memory emp (when
x == NULL), or be recursively expanded
by a single data structure x�→u (when
traverse jumps one step), or be recur-
sively expanded by two structures
x�→u and u �→v (when traverse jumps
two steps). Note that x�→u and u �→v
are SL predicates modeling the data
structure node. Details about the SL
syntax will be explained in Sect. 3.

Since the derived shape is anomalous, the verifiers or users may want to
examine if it is actually a linked list segment, modeled by the following predicate:

ls(x, y) � (emp ∧ x = y) ∨∨∨ ∃w.(x�→w ∗ ls(w, y))

http://loris{-}5.d2.comp.nus.edu.sg/songbird/

662 Q.-T. Ta et al.

(|−pure): Valid, proved by external provers, e.g. Z3.
true |− ∃y, w. (u=w ∧ t=y)

(∗P): Match and remove predicates ls(u, t) and ls(w, y).
ls(u, t) |− ∃y, w. (ls(w, y) ∧ u=w)

(∗ �→): Match and remove data nodes x�→u and x�→w.
x�→u ∗ ls(u, t) |− ∃y, w. (x�→w ∗ ls(w, y))

(PR): Unfold ls(x, y) by its inductive case.
(E4) x�→u ∗ ls(u, t) |− ∃y. ls(x, y)

(AH): Apply IH E with subst. [u/x], rename y to fresh t.
(E2) x�→u ∗ tmp(u) |− ∃y. ls(x, y)

Fig. 2. Proof tree of E2, using induction hypothesis E

This can be done by checking the validity of the following entailment:

E � tmp(x) |− ∃y. ls(x, y)

In the semantics of SL, the entailment E is said to be valid, if all memory
models satisfying tmp(x) also satisfy ∃y. ls(x, y). To prove it by induction, E is
firstly recorded as an induction hypothesis (IH), then the predicate tmp(x) is
analyzed in each case of its definition, via a method called unfolding, to derive
new entailments E1, E2, E3 as follows.

E1 � emp |− ∃y. ls(x, y) E2 � x�→u ∗ tmp(u) |− ∃y. ls(x, y)
E3 � x�→u ∗ u �→v ∗ tmp(v) |− ∃y. ls(x, y)

The entailment E1 can be easily proved by unfolding the predicate ls(x, y) in the
right side by its base case to obtain a valid entailment emp |− ∃y.(emp∧ x = y).
On the contrary, the entailment E2 can only be proved by using the induction
hypothesis E. Its (simplified) proof tree can be depicted in Fig. 2.

We can also prove E3 by the same method, i.e., applying the IH E, and its
proof tree is shown in Fig. 3.

Using a different strategy, we observe that once E2 is proved, entailments
derived during its proof, i.e., E2 and E4, can be used as hypotheses to prove
E3. In this case, the new proof of E3 is much simpler than the above original

(|−pure): Valid, proved by external prover, e.g. Z3.
true |− ∃y, z, w. (u=z ∧ v=w ∧ t=y)

(∗P): Remove predicates ls(v, t) and ls(w, y).
ls(v, t) |− ∃y, z, w. (ls(w, y) ∧ u=z ∧ v=w)

(∗ �→): Remove data nodes u �→v and z �→w.
u �→v ∗ ls(v, t) |− ∃y, z, w. (z �→w ∗ ls(w, y) ∧ u=z)

(PR): Unfolding ls(z, y) by inductive case.
u �→v ∗ ls(v, t) |− ∃y, z. (ls(z, y) ∧ u=z)

(∗ �→): Remove data nodes x�→u and x�→z.
x�→u ∗ u �→v ∗ ls(v, t) |− ∃y, z. (x�→z ∗ ls(z, y))

(PR): Unfold ls(x, y) by inductive case.
x�→u ∗ u �→v ∗ ls(v, t) |− ∃y. ls(x, y)

(AH):
Apply IH E with substitution [v/x],
and rename y to t(E3) x�→u ∗ u �→v ∗ tmp(v) |− ∃y. ls(x, y)

Fig. 3. Ordinary proof tree of E3, using induction hypothesis E

Automated Mutual Explicit Induction Proof in Separation Logic 663

(|−pure): Valid, proved by external provers, e.g., Z3.
true |− ∃y. y = z

(∗P): Remove predicates ls(x, z) and ls(x, y).
ls(x, z) |− ∃y. ls(x, y)

(AH): Apply E4 with subst. [r/t], and rename y to z.
x�→u ∗ ls(u, r) |− ∃y. ls(x, y)

(AH):
Apply hypothesis E2 with subst. [u/x, v/u],
and rename y to r.(E3) x�→u ∗ u �→v ∗ tmp(v) |− ∃y. ls(x, y)

Fig. 4. New proof tree of E3, using hypotheses E2 and E4

induction proof, as demonstrated in Fig. 4; the proving process, therefore, is more
efficient.

In the new proof tree, the entailment E4 can be directly used as a hypothesis
to prove other entailments since it is already proven valid (see Fig. 2). However,
when E2 is applied to prove E3, thus prove E, it is not straightforward to
conclude about E, since the validity of E2 is still unknown. This is because the
proof of E2 in Fig. 2 also uses E as a hypothesis. Therefore, E and E2 jointly
form a mutual induction proof, in which they can be used to prove each other.
The theoretical principle of this proof technique will be introduced in Sect. 4.

3 Theoretical Background

In this work, we consider the symbolic-heap fragment of separation logic with
arbitrary user-defined inductive heap predicates. We denote this logic fragment
as SLID. It is similar to those introduced in [6,16], but extended with linear
arithmetic (LA) to describe more expressive properties of the data structures,
such as size or sortedness. The syntax and semantics of the SLID assertions and
their entailments are introduced in this section.

3.1 Symbolic-Heap Separation Logic

Syntax. The syntax of our considered separation logic fragment SLID is
described in Fig. 5. In particular, the predicate emp represents an empty memory.
The singleton heap predicate x

ι�−→x1,...,xn models an n-field single data structure
in memory where x points-to; its data type is represented by a unique sort ι1

and values of its fields are captured by x1, ..., xn. The inductive heap predicate
P(x1,...,xn) models a recursively defined data structure, which is formally defined
in Definition 1. These three heap predicates, called spatial atoms, compose the
spatial assertions Σ via the separating conjunction operator ∗. Π denotes pure
assertions in linear arithmetic, which do not contain any spatial atoms.

Definition 1 (Inductive Heap Predicate). A system of k inductive heap
predicates Pi of arity ni and parameters xi

1, ..., x
i
ni

, with i = 1, ..., k, are syntac-

1 Note that for the simplicity of presenting the motivating example, we have removed
the sort ι from the SL singleton heap predicate denoting the data structure node.

664 Q.-T. Ta et al.

c, x, ι,P resp. denote constants, variables, data sorts, and predicate symbols.
e ::= c | x | −e | e1+e2 | e1−e2 Integer expressions
a ::= nil | x Spatial expressions
Π ::= a1 = a2 | a1 �= a2 | e1 = e2 | e1 �= e2 | Pure assertions

e1 > e2 | e1 ≥ e2 | e1 < e2 | e1 ≤ e2 |
¬Π | Π1 ∧Π2 | Π1 ∨Π2 | Π1 ⇒ Π2 | ∀x.Π | ∃x.Π

Σ ::= emp | x
ι→−� x1,...,xn | P(x1,...,xn) | Σ1 ∗ Σ2 Spatial assertions

F ::= Σ | Π | Σ ∧ Π | ∃x.F SLID assertions

Fig. 5. Syntax of assertions in SLID

tically defined as follows:
{
Pi(xi

1, ..., x
i
ni

) � F i
1(x

i
1, ..., x

i
ni

) ∨∨∨ · · · ∨∨∨ F i
mi

(xi
1, ..., x

i
ni

)
}k

i=1

where F i
j (x

i
1, ..., x

i
ni

), with 1≤ j ≤ mi, is a definition case of Pi(xi
1, ..., x

i
ni

). More-
over, F i

j is a base case of Pi, if it does not contain any predicate symbol which
is (mutually) recursively defined with Pi; otherwise, it is an inductive case.

Definition 2 (Syntactic Equivalence). The syntactical equivalence relation
of two spatial assertions Σ1 and Σ2, denoted as Σ1

∼= Σ2, is recursively defined
as follows:

−emp ∼= emp −u
ι�−→v1,...,vn

∼= u
ι�−→v1,...,vn −P(u1,...,un) ∼= P(u1,...,un)

−If Σ1
∼= Σ′

1 andΣ2
∼= Σ′

2, thenΣ1 ∗ Σ2
∼= Σ′

1 ∗ Σ′
2 andΣ1 ∗ Σ2

∼= Σ′
2 ∗ Σ′

1

Semantics. The semantics of SLID assertions are given in Fig. 6. Given a set Var
of variables, Sort of sorts, Val of values and Loc ⊂ Val of memory addresses, a
model of an assertion consists of:

– a stack model s, which is a function s: Var → Val. We write �Π�s to denote
valuation of a pure assertion Π under the stack model s. Note that the constant
nil ∈ Val\Loc denotes dangling memory address.

– a heap model h, which is a partial function h: Loc ⇀fin (Sort → (Val list)).
dom(h) denotes domain of h, and |h| is cardinality of dom(h). We follow
Reynolds’ semantics [28] to consider finite heap models, i.e., |h|<∞. h # h′

indicates that h and h′ have disjoint domains, i.e., dom(h) ∩ dom(h′) = ∅, and
h ◦ h′ is the union of two disjoint heap models h, h′, i.e., h # h′.

3.2 Entailments in SLID

In this section, we formally define the SLID entailments and introduce a new con-
cept of model of entailments, which will be used in the next section to construct
the well-founded relation in our induction principle.

Automated Mutual Explicit Induction Proof in Separation Logic 665

Definition 3 (Entailment). An entailment between two assertions F and G,
denoted as F |− G, is said to be valid (holds), iff s, h |= F implies that s, h |= G,
for all models s, h. Formally,

F |− Gis valid, iff ∀s, h.(s, h |= F → s, h |= G)

Here, F and G are respectively called the antecedent and the consequent of the
entailment. For simplicity, the entailment F |− G can be denoted by just E, i.e.,
E � F |− G.

s, h |= Π iff Π s = true and dom(h) =∅
s, h |= emp iff dom(h) =∅

s, h |= x
ι�−→x1,...,xn iff s(x)∈Loc and dom(h) = {s(x)}

and h(s(x))ι = (s(x1), ..., s(xn))
s, h |= P(x1,...,xn) iff s, h |= Ri(x1,...,xn), with Ri(x1,...,xn) is one of

the definition cases of P(x1,...,xn)
s, h |= Σ1 ∗ Σ2 iff there exist h1, h2 such that: h1 # h2, h1 ◦ h2 = h

and s, h1 |= Σ1 and s, h2 |= Σ2

s, h |= Σ ∧ Π iff s = true and s, h |= Σ

s, h |= ∃x.F iff ∃v ∈ Val . [s|x:v], h |= F

Fig. 6. Semantics of assertions in SLID. [f |x:y] is a function like f except that it returns
y for input x.

Definition 4 (Model and Counter-Model). Given an entailment E � F |−
G. An SL model s, h is called a model of E, iff s, h |= F implies s, h |= G. On
the contrary, s, h is called a counter-model of E, iff s, h |= F and s, h �|= G.

We denote s, h |= (F |− G), or s, h |= E, if s, h is a model of E. Similarly, we
write s, h �|= (F |− G), or s, h �|= E, if s, h is a counter-model of E. Given a list
of n entailments E1, ..., En, we write s, h |= E1, ..., En if s, h is a model of all
E1, ..., En, and s, h �|= E1, ..., En if s, h is a counter-model of some E1, ..., En.

4 Mutual Induction Proof for Separation Logic
Entailment Using Model Order

In this section, we first introduce the general schema of Noetherian induction,
a.k.a. well-founded induction, and then apply it in proving SL entailments.

Noetherian induction [8]. Given a conjecture P(α), with α is a structure of
type τ , the general schema of Noetherian induction on the structure α is

666 Q.-T. Ta et al.

∀α : τ. (∀β : τ. β ≺τ α → P(β)) → P(α))
∀α : τ. P(α)

where ≺τ is a well-founded relation on τ , i.e., there is no infinite descending
chain, like ... ≺τ αn ≺τ ... ≺τ α2 ≺τ α1. Noetherian induction can be applied
for arbitrary type τ , such as data structures or control flow. However, success
in proving a conjecture by induction is highly dependent on the choice of the
induction variable α and the well-founded relation ≺τ .

Proving SL entailments using Noetherian induction. We observe that an
SL entailment E is said to be valid if s, h |= E for all model s, h, given that the
heap domain is finite, i.e., ∀h.|h| ∈ N, according to Reynolds’ semantics [28].
This inspires us to define a well-founded relation among SL models, called model
order, by comparing size of their heap domains. To prove an SL entailment by
Noetherian induction based on this order, we will show that if all the smaller
models satisfying the entailment implies that the bigger model also satisfies the
entailment, then the entailment is satisfied by all models, thus it is valid. The
model order and induction principle are formally described as follows.

Definition 5 (Model Order). The model order, denoted by ≺, of SL models
is a binary relation defined as: s1, h1 ≺ s2, h2, if |h1| < |h2|.
Theorem 1 (Well-Founded Relation). The model order ≺ of SL models is
a well-founded relation.

Proof. By contradiction, suppose that ≺ were not well-founded, then there would
exist an infinite descending chain: ... ≺ sn, hn ≺ ... ≺ s1, h1. It follows that there
would exist an infinite descending chain: ... < |hn| < ... < |h1|. This is impossible
since domain size of heap model is finite, i.e., |h1|, ..., |hn|, ... ∈ N. ��
Theorem 2 (Induction Principle). An entailment E is valid, if for all model
s, h, the following holds: (∀s′, h′. s′, h′≺s, h → s′, h′ |= E) → s, h |= E. Formally:

∀s, h. (∀s′, h′. s′, h′ ≺ s, h → s′, h′ |= E) → s, h |= E

∀s, h. s, h |= E

Since our induction principle is constructed on the SL model order, an induction
hypothesis can be used in the proof of any entailment whenever the decreasing
condition on model order is satisfied. This flexibility allows us to extend the
aforementioned principle to support mutual induction, in which multiple entail-
ments can participate in an induction proof, and each of them can be used as
a hypothesis to prove the other. In the following, we will introduce our mutual
induction principle. Note that the induction principle in Theorem2 is an instance
of this principle, when only one entailment takes part in the induction proof.

Theorem 3 (Mutual Induction Principle). Given n entailments E1, ..., En.
All of them are valid, if for all model s, h, the following holds: (∀s′, h′. s′, h′ ≺
s, h → s′, h′ |= E1, ..., En) → s, h |= E1, ..., En. Formally:

Automated Mutual Explicit Induction Proof in Separation Logic 667

∀s, h. (∀s′, h′. s′, h′ ≺ s, h → s′, h′ |= E1, ..., En) → s, h |= E1, ..., En

∀s, h. s, h |= E1, ..., En

Proof. By contradiction, assume that some of E1, ..., En were invalid. Then, there
would exist some counter-models s, h such that s, h �|= E1, ..., En. Since ≺ is a
well-founded relation, there would exist the least counter-model s1, h1 such that
s1, h1 �|= E1, ..., En, and, s′

1, h
′
1 |= E1, ..., En for all s′

1, h
′
1 ≺ s1, h1. Following the

theorem’s hypothesis ∀s, h. (∀s′, h′. s′, h′ ≺ s, h → s′, h′ |= E1, ..., En) → s, h |=
E1, ..., En, we have s1, h1 |= E1, ..., En. This contradicts with the assumption
that s1, h1 is a counter-model. ��

5 The Proof System

In this section, we introduce a sequent-based deductive system, which comprises
a set of inference rules depicted in Fig. 7 (logical rules) and Fig. 8 (induction
rules), and a proof search procedure in Fig. 10. Each inference rule has zero
or more premises, a conclusion and possibly a side condition. A premise or a
conclusion is described in the same form of H, ρ, F1 |− F2, where (i) F1 |− F2

is an entailment, (ii) H is a set of entailments with validity status, which are
recorded during proof search and can be used as hypotheses to prove F1 |− F2,
and (iii) ρ is a proof trace capturing a chronological list of inference rules applied
by the proof search procedure to reach F1 |− F2.

In addition, the entailment in the conclusion of a rule is called the goal entail-
ment. Rules with zero (empty) premise is called axiom rules. A proof trace ρ
containing n rules R1, . . . , Rn, with n≥ 0, is represented by [(R1), . . . , (Rn)],
where the head (R1) of ρ is the latest rule used by the proof search proce-
dure. In addition, some operations over proof traces are (i) insertion: (R) :: ρ,
(ii) membership checking: (R) ∈ ρ, and (iii) concatenation: ρ1 @ ρ2.

5.1 Logical Rules

Logical rules in Fig. 7 deal with the logical structure of SL entailments. For
brevity, in these rules, we write the complete symbolic-heap assertion ∃
x.(Σ∧Π)
as a standalone F . We define the conjoined assertion F ∗ Σ′ � Σ ∗ Σ′ ∧ Π
and F ∧ Π ′ � Σ ∧ Π ∧ Π ′, given that existential quantifiers does not occur
in the outermost scope of F , i.e., F � Σ ∧ Π. The notation
u =
v means
(u1 = v1)∧ . . . ∧ (un = vn), given that
u = u1, . . . ,un and
v = v1, . . . ,vn are two
lists containing the same number of variables. We also write
x #
y to denote
x
and
y are disjoint, i.e., �u.(u ∈
x ∧∧∧ u ∈
y), and use FV(F) to denote the list of
all free variables of an assertion F . Moreover, F [e/x] is a formula obtained from
F by substituting the expression e for all occurrences of the free variable x in F .

The set of logical rules are explained in details as follows:

– Axiom rules. The rule |−pure proves a pure entailment Π1 |− Π2 by invoking
off-the-shelf provers such as Z3 [19] to check the pure implication Π1 ⇒Π2

668 Q.-T. Ta et al.

(⊥ L1)H, ρ, F1 ∧ u �=u |− F2

(⊥ L2)
H, ρ, F1 ∗ u

ι1�→�v ∗ u
ι2�→�w |− F2

(|−pure) Π1 ⇒ Π2H, ρ, Π1 |− Π2

H, ρ′, F1 |− F2
(empL) H, ρ, F1 ∗ emp |− F2

H, ρ′, F1[u/v] |− F2[u/v]
(=L) H, ρ, F1 ∧ u=v |− F2

H, ρ′, F1 |− ∃�x.F2
(empR) H, ρ, F1 |− ∃�x.(F2 ∗ emp)

H, ρ′, F1 |− ∃�x.F2
(=R) H, ρ, F1 |− ∃�x.(F2 ∧ u=u)

H, ρ′, F1 |− ∃�x.(F2 ∧ u=t ∧ �v=� w)
(→�∗) (u,�v)# �x

H, ρ, F1 ∗ u
ι�→�v |− ∃�x.(F2 ∗ t

ι�→�w)

H, ρ′, F1[u/x] |− F2
(∃ L) u �∈ FV(F2)H, ρ, ∃x.F1 |− F2

H, ρ′, F1 |− ∃�x.(F2 ∧ �u=�v)
(∗P) �u# �xH, ρ, F1 ∗ P(�u) |− ∃�x.(F2 ∗ P(�v))

H, ρ′, F1 |− F2[e/x]
(∃R) H, ρ, F1 |− ∃x.F2

H, ρ′, F1 |− ∃�x.(F2 ∗ F P
i (�u))

(PR)
FP

i (�u) is one of the

definition cases of P(�u)H, ρ, F1 |− ∃�x.(F2 ∗ P(�u))

Fig. 7. Logical rules. Note that for a rule R with trace ρ in its conclusion, the trace in
its premise is ρ′ � (R) :: ρ.

in its side condition. The two rules ⊥ L1 and ⊥ L2 decide an entailment vac-
uously valid if its antecedent is unsatisfiable, i.e., the antecedent contains a
contradiction (u �= u) or overlaid data nodes (u ι1�−→
v ∗ u

ι2�−→
w).
– Normalization rules. These rules simplify their goal entailments by either

eliminating existentially quantified variables (∃ L,∃R), or removing equalities
(=L,=R) or empty heap predicates (empL, empR) from antecedents (left side)
or consequents (right side) of the entailments.

– Frame rules. The two rules ∗ �→ and ∗P applies the frame property of SL [28]
to remove identical spatial atoms from two sides of entailments. Note that the
identical condition is guaranteed by adding equality constraints of these spatial
atoms’ arguments into consequents of the derived entailments.

– Unfolding rules. The rule PR derives a new entailment by unfolding a heap
predicate in the goal entailment’s consequent by its inductive definition. Note
that unfolding a heap predicate in the entailment’s antecedent will be per-
formed by the induction rule Ind, as discussed in the next section.

5.2 Induction Rules

Figure 8 presents inference rules implementing our mutual induction principle.
The induction rule Ind firstly records its goal entailment as an induction hypoth-
esis H, and unfolds an inductive heap predicate in the antecedent of H to derive
new entailments. When H is inserted into the hypothesis vault H, its status is
initially assigned to ? (unknown), indicating that its validity is not known at
the moment. Later, the status of H will be updated to � (valid) once the proof

Automated Mutual Explicit Induction Proof in Separation Logic 669

H ∪ {(H, ?)}, ρ′, F1 ∗ F P
1 (�u) |− F2 . . . H ∪ {(H, ?)}, ρ′, F1 ∗ F P

m(�u) |− F2
(Ind) †(Ind)H, ρ, F1 ∗ P(�u) |− F2

Given H � F1 ∗ P(�u) |− F2, ρ′ = (Ind) :: ρ, and †(Ind): P(�u) � F P
1 (�u) ∨∨∨ . . . ∨∨∨ F P

m(�u)

H ∪ {(H, status)}, (AH) :: ρ, F4θ ∗ Σ′ ∧ Π1 |− F2
(AH)

∃θ,Σ′.(Σ1
∼=Σ3θ∗Σ′ ∧∧∧ Π1⇒Π3θ),

†(AH)H ∪ {(H � Σ3∧Π3|−F4, status)}, ρ, Σ1 ∧ Π1 |− F2

with †(AH): (status=�) ∨∨∨ ∃ι, u, �v, Σ′′.(Σ′ ∼= u
ι�→�v ∗ Σ′′)

∨∨∨ ∃ρ1, ρ2.(ρ = ρ1@[(→�∗)]@ρ2 ∧∧∧ (Ind) �∈ ρ1 ∧∧∧ (Ind) ∈ ρ2).

Fig. 8. Induction rules

search procedure is able to prove it valid. Generally, given an entailment E and
its proof tree T , the proof search procedure concludes that E is valid if (i) every
leaf of T is empty via applications of axiom rules, and (ii) all hypotheses used
by the apply hypothesis rule AH must be derived in T .

Rule AH is the key rule of our mutual induction principle, which applies
an appropriate hypothesis H � Σ3 ∧ Π3 |− F4 in proving its goal entailment
E � Σ1 ∧ Π1 |− F2. The rule firstly unifies the antecedents of H and E by a
substitution θ, i.e., there exists a spatial assertion Σ′ such that Σ1

∼= Σ3θ ∗ Σ′

and Π1 ⇒ Π3θ. If such θ and Σ′ exist, we can weaken the antecedent of E as
follows (Σ1 ∧ Π1) |− (Σ3θ ∗ Σ′ ∧ Π3θ ∧ Π1) |− (F4θ ∗ Σ′ ∧ Π1). Note that we use
Reynolds’s substitution law [28] to obtain Σ3θ ∧Π3θ |− F4θ from the hypothesis
H. The proof system then derives the next goal entailment F4θ ∗ Σ′ ∧ Π1 |− F2

as shown in the premise of rule AH.

E, (AH)
H

I, (Ind)

apply hypo

Fig. 9. Applying hypothesis

The side condition †(AH) of rule AH ensures the
decreasing condition of the mutual induction prin-
ciple. In particular, suppose that the proof search
procedure applies a hypothesis H in H to prove
an entailment E via rule AH. If the status of H
is �, denoted by the first condition in †(AH), then
H is already proved to be valid; thus it can be
freely used to prove other entailments. Otherwise,
the status of H is ?, and H may participate in a (mutual) induction proof with
an entailment I in the proof path of E, as depicted in Fig. 9. Note that the entail-
ment I has been recorded earlier as an induction hypothesis by an application
of the induction rule Ind.

In the latter case, the induction principle requires the decrease of model size
when applying the hypothesis H to prove entailment I. We then show that this
decreasing condition holds if one of the following conditions of †(AH) is satisfied.

(i) ∃ι, u,
v,Σ′′.(Σ′∼=u
ι�→
v∗Σ′′) indicates that the left-over heap part Σ′ after

unifying antecedent of H into that of E contains at least one singleton heap
predicate, or

670 Q.-T. Ta et al.

(ii) ∃ρ1, ρ2.(ρ = ρ1@[(∗ �→)]@ρ2 ∧∧∧ (Ind)�∈ρ1 ∧∧∧ (Ind)∈ρ2) requires that there is a
removal step of a singleton heap predicate by the rule ∗ �→ applied between
this hypothesis application AH and the most recent induction step Ind.

Consider an arbitrary model s, h satisfying I. During the derivation path from
I to E, the model s, h is transformed into a corresponding model se, he of E.
We always have |he| ≤ |h| as the applications of logical rules and rule Ind never
increase heap model size of entailments. Moreover, when applying H to prove E,
the model s′, h′ of H, which corresponds to se, he of E, satisfies |h′| ≤ |he|, due
to the unification step in rule AH. We consider two following cases. If condition
(i) is satisfied, then heap model size of the left-over part Σ′ is at least 1 since Σ′

contains a singleton heap predicate. As a result, |h′| < |he| and it follows that
|h′| < |h|. If condition (ii) is satisfied, then |he| < |h| since there is a singleton
heap predicate, whose size of heap model is 1, is removed when deriving I to
E. This implies that |h′| < |h|. In summary, we obtain that |h′| < |h| for both
cases; thus, s′, h′ ≺ s, h. This concludes our explanation about the rule AH.

Procedure Prove(H, ρ, F |− G)
Input: H, F |− G and ρ are respectively a set of hypotheses, a goal entailment and its
corresponding proof trace.
Output: Validity result (True or False), a set of derived entailments with their validity
statuses, and a set of hypotheses used in proof of F |− G.

1: S ← { Rinst | Rinst = Unify(R, (H, ρ, F |− G)) ∧∧∧ R ∈ R }
2: if S = ∅ then return False,∅,∅ //no rule is selected

3: for each Rinst in S do
4: if GetName(Rinst) ∈ {|−pure, ⊥ L1, ⊥ L2} then // R is an axiom rule
5: return True,∅,∅

6: Hused ← ∅

7: if Rinst = AH with hypothesis E then Hused ← Hused ∪ {E}
8: Hderived ← ∅

9: (Hi, ρi, Fi |− Gi)i=1,...,n ← GetPremises(Rinst) // all premises of Rinst

10: for i = 1 to n do
11: res, Hderived, H′

used ← Prove(Hi ⊕ Hderived, ρi, Fi |− Gi)
12: if res = False then return False,∅,∅

13: Hused ← Hused ∪ H′
used

14: if Hused ⊆ (GetEntailments(Hderived) ∪ {F |− G}) then
15: Hderived ← Hderived ⊕ {(F |− G, �)}
16: elseHderived ← Hderived ⊕ {(F |− G, ?)}
17: return True, Hderived, Hused // all derived premises are proved

18: return False,∅,∅ // all rules fail to prove F |− G

Fig. 10. General proof search procedure, in which R is the set of inference rules given
in Figs. 7 and 8.

Automated Mutual Explicit Induction Proof in Separation Logic 671

5.3 Proof Search Procedure

Our proof search procedure Prove is designed in a self-recursive manner, as pre-
sented in Fig. 10. Its inputs consist of a set of hypotheses, a proof trace, and an
entailment, which are components of an inference rule’s conclusion. To prove a
candidate entailment F |− G, initially the hypothesis set H and the proof trace
are assigned to empty (∅ and []).

Firstly, the procedure Prove finds a set S of suitable rules, whose conclusion
can be unified with the goal entailment F |− G, among all inference rules in R
(line 1). If no suitable rule is found, the procedure immediately returns False,
indicating that it is unable to prove the entailment (line 2). Otherwise, it subse-
quently processes each discovered rule Rinst in S by either (i) returning True to
announce a valid result, if an axiom rule is selected (line 5), or (ii) recursively
searching for proofs of the derived entailments in the premises of Rinst (lines
9–17). In the latter case, the procedure returns False if one of the derived entail-
ments is not proved (line 12), or returns True if all of them are proved (line 17).
Finally, it simply returns False when it cannot prove the goal entailment with
all selected rules (line 18).

The procedure uses a local variable Hused to store all hypotheses used during
the proof search. Hused is updated when the rule AH is applied (line 7) or after
the procedure finishes proving a derived entailment (lines 11 and 13). We also
use another variable Hderived to capture all generated entailments with their
validity statuses. The condition at line 14 checks if all hypotheses used to prove
the entailment F |− G are only introduced during the entailment’s proof. If this
condition is satisfied, then F |− G is updated with a valid status � (line 15).
Otherwise, the entailment may participate in a (mutual) induction proof, thus
its status is assigned to unknown ? (line 16).

At line 11, the procedure uses not only the hypothesis set Hi, introduced
by the selected inference rule, but also the set Hderived containing entailments
derived during proof search to prove a new goal entailment Fi |− Gi. This reflects
our mutual induction principle which allows derived entailments to be used as
hypotheses in other entailments’ proofs. Note that the union and update operator
⊕ used in the algorithm will insert new entailments and their statuses into the
set of hypotheses, or update the existing entailments with their new statuses. In
addition, the auxiliary procedures used in our proof search procedure are named
in a self-explanatory manner. In particular, Unify, GetName and GetPremises
respectively unifies an inference rule with a goal entailment, or returns name
and premises of an inference rule. Finally, GetEntailments returns all entailments
stored in the set of derived entailments Hderived.

Soundness. Soundness of our proof system is stated in Theorem4. Due to page
constraint, we present the detailed proof in the technical report [32].

Theorem 4 (Soundness). Given an entailment E, if the proof search proce-
dure returns True when proving E, then E is valid.

672 Q.-T. Ta et al.

6 Experiment

We have implemented the proposed induction proof technique into a prototype
prover, named Songbird. The proof system and this paper’s artifact are avail-
able for both online use and download at http://loris-5.d2.comp.nus.edu.sg/
songbird/.

Category Slide Spen Sleek Cyclist Songbird
singly-ll (64) 12 3 48 63 63
doubly-ll (37) 14 0 17 24 26
nested-ll (11) 0 11 5 6 11
skip-list (13) 0 12 4 5 7
tree (26) 12 1 14 18 22

Total (151) 38 27 88 116 129

Songbird

sb o sb o sb o sb o

Cyclist 13 0 116 22

Sleek 41 0 88 22

Spen 109 7 20 15

Slide 103 12 26 10

(a) (b)

Fig. 11. Overall evaluation on the benchmark slrd entl of SL-COMP

To evaluate our technique, we compared our system against state-of-the-art
SL provers, including Slide [16,17], Spen [13], Sleek [10] and Cyclist [4,7], which
had participated in the recent SL competition SL-COMP [31]. We are however
unable to make direct comparison with the induction-based proof technique pre-
sented in [11] as their prover was not publicly available. Our evaluation was
performed on an Ubuntu 14.04 machine with CPU Intel E5-2620 (2.4 GHz) and
RAM 64 GB.

Firstly, we conduct the experiment on a set of valid entailments2, collected
from the benchmark slrd entl3 of SL-COMP. These entailments contain general
inductive heap predicates denoting various data structures, such as singly linked
lists (singly-ll), doubly linked lists (doubly-ll), nested lists (nested-ll), skip lists
(skip-list) and trees (tree). We then categorize problems in this benchmark based
on their predicate types. In Fig. 11(a), we report the number of entailments
successfully proved by a prover in each category, with a timeout of 30 s for
proving an entailment. For each category, the total number of problems is put in
parentheses, and the maximum number of entailments that can be proved by the
list of provers are highlighted in bold. As can be seen, Songbird can prove more
entailments than all the other tools. In particular, we are the best in almost
categories, except for skip-list. However, in this category, we are behind only
Spen, which has been specialized for skip lists [13]. Our technique might require
more effective generalization to handle the unproven skip-list examples.

In Fig. 11(b), we make a detailed comparison among Songbird and other
provers. Specifically, the first column (✓sb ✗o) shows the number of entailments

2 We exclude the set of invalid entailments because some evaluated proof techniques,
such as [4,10], aim to only prove validity of entailments.

3 Available at https://github.com/mihasighi/smtcomp14-sl/tree/master/bench.

http://loris{-}5.d2.comp.nus.edu.sg/songbird/
http://loris{-}5.d2.comp.nus.edu.sg/songbird/
https://github.com/mihasighi/smtcomp14-sl/tree/master/bench

Automated Mutual Explicit Induction Proof in Separation Logic 673

that Songbird can prove valid whereas the others cannot. The second column
(✗sb ✓o) reports the number of entailments that can be proved by other tools,
but not by Songbird. The last two columns list the number of entailments that
both Songbird and others can (✓sb ✓o) or cannot (✗sb, ✗o) prove. We would
like to highlight that our prover efficiently proves all entailments proved by
Cyclist (resp. Sleek) in approximately half the time, i.e., 20.92 vs 46.40 s for 116
entailments, in comparison with Cyclist (resp. 8.38 vs 15.50 s for 88 entailments,
in comparison with Sleek). In addition, there are 13 (resp. 41) entailments that
can be proved by our tool, but not by Cyclist (resp. Sleek). Furthermore, our
Songbird outperforms Spen and Slide by more than 65 % of the total entailments,
thanks to the proposed mutual induction proof technique.

Secondly, we would like to highlight the efficiency of mutual induction in our
proof technique via a comparison between Songbird and its variant SongbirdSI,
which exploits only induction hypotheses found within a single proof path. This
mimics the structural induction technique which explores induction hypothe-
ses in the same proof path. For this purpose, we designed a new entailment
benchmark, namely slrd ind, whose problems are more complex than those in
the slrd entl benchmark. For example, our handcrafted benchmark4 contains an
entailment lsEven(x, y)∗y �→z∗lsEven(z, t) |− ∃u. lsEven(x, u)∗u �→t with the pred-
icate lsEven(x, y) denoting list segments with even length. This entailment was
inspired by the entailment lsEven(x, y)∗lsEven(y, z) |− lsEven(x, z) in the problem
11.tst.smt2 of slrd entl, contributed by team Cyclist. Note that entailments in our
benchmark were constructed on the same set of linked list predicates provided in
slrd entl, comprised of regular singly linked lists (ll), linked lists with even or odd
length (ll-even/odd) and linked list segments which are left- or right-recursively
defined (ll-left/right). We also use a new ll2 list segment predicate whose structure
is similar to the predicate tmp in our motivating example. In addition, problems
in the misc. category involve all aforementioned linked list predicates.

As shown in Fig. 12, SongbirdSI is able to prove nearly 70 % of the total
entailments, which is slightly better than Cyclist5, whereas Songbird, with full
capability of mutual induction, can prove the whole set of entailments. This result

Category Cyclist SongbirdSI Songbird

ll/ll2 (24) 18 22 24
ll-even/odd (20) 8 17 20
ll-left/right (20) 12 10 20
misc. (32) 17 16 32
Total (96) 55 65 96

Fig. 12. Comparison on slrd ind benchmark

4 The full benchmark is available at http://loris-5.d2.comp.nus.edu.sg/songbird/.
5 We do not list other provers in Fig. 12 as they cannot prove any problems in slrd ind.

http://loris{-}5.d2.comp.nus.edu.sg/songbird/

674 Q.-T. Ta et al.

is encouraging as it shows the usefulness and essentials of our mutual explicit
induction proof technique in proving SL entailments.

7 Conclusion

We have proposed a novel induction technique and developed a proof system for
automatically proving entailments in a fragment of SL with general inductive
predicates. In essence, we show that induction can be performed on the size of
the heap models of SL entailments. The implication is that, during automatic
proof construction, the goal entailment and entailments derived in the entire
proof tree can be used as hypotheses to prove other derived entailments, and
vice versa. This novel proposal has opened up the feasibility of mutual induction
in automatic proof, leading to shorter proof trees being built. In future, we
would like to develop a verification system on top of the prover Songbird, so that
our mutual explicit induction technique can be effectively used for automated
verification of memory safety in imperative programs.

Acknowledgement. We would like to thank the anonymous reviewers for their valu-
able and helpful feedback. The first author would like to thank Dr. James Brotherston
for the useful discussion about the cyclic proof. This work has been supported by NUS
Research Grant R-252-000-553-112. Ton Chanh and Wei-Ngan are partially supported
by MoE Tier-2 grant MOE2013-T2-2-146.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 9

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005). doi:10.1007/11575467 5

3. Bozga, M., Iosif, R., Perarnau, S.: Quantitative separation logic and programs with
lists. J. Autom. Reason. 45(2), 131–156 (2010)

4. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 12

5. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety and
termination preconditions. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 68–84. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10936-7 5

6. Brotherston, J., Gorogiannis, N., Kanovich, M.I., Rowe, R.: Model checking for
symbolic-heap separation logic with inductive predicates. In: Symposium on Prin-
ciples of Programming Languages (POPL), pp. 84–96 (2016)

7. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 25

http://dx.doi.org/10.1007/978-3-540-30538-5_9
http://dx.doi.org/10.1007/11575467_5
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-319-10936-7_5
http://dx.doi.org/10.1007/978-3-642-35182-2_25

Automated Mutual Explicit Induction Proof in Separation Logic 675

8. Bundy, A.: The automation of proof by mathematical induction. In: Handbook of
Automated Reasoning, vol. 2, pp. 845–911 (2001)

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. In: Symposium on Principles of Programming Lan-
guages (POPL), pp. 289–300 (2009)

10. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. (SCP) 77(9), 1006–1036 (2012)

11. Chu, D., Jaffar, J., Trinh, M.: Automatic induction proofs of data-structures in
imperative programs. In: Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 457–466 (2015)

12. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23217-6 16

13. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment
checking for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS
2014. LNCS, vol. 8858, pp. 314–333. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12736-1 17

14. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separa-
tion logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 80–96. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24953-7 7

15. Infer: A tool to detect bugs in Android and iOS apps before they ship. http://
fbinfer.com/. Accessed 27 May 2016

16. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

17. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive sep-
aration logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 201–218. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11936-6 15

18. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 4

19. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

20. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-70545-1 34

21. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-69738-1 18

22. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

23. Pérez, J.A.N., Rybalchenko, A.: Separation logic + superposition calculus = heap
theorem prover. In: Conference on Programming Language Design and Implemen-
tation (PLDI), pp. 556–566 (2011)

http://dx.doi.org/10.1007/978-3-642-23217-6_16
http://dx.doi.org/10.1007/978-3-642-23217-6_16
http://dx.doi.org/10.1007/978-3-319-12736-1_17
http://dx.doi.org/10.1007/978-3-319-12736-1_17
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://fbinfer.com/
http://fbinfer.com/
http://dx.doi.org/10.1007/978-3-642-38574-2_2
http://dx.doi.org/10.1007/978-3-319-11936-6_15
http://dx.doi.org/10.1007/978-3-319-11936-6_15
http://dx.doi.org/10.1007/978-3-319-08867-9_4
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-70545-1_34
http://dx.doi.org/10.1007/978-3-540-69738-1_18
http://dx.doi.org/10.1007/978-3-540-69738-1_18
http://dx.doi.org/10.1007/3-540-44802-0_1

676 Q.-T. Ta et al.

24. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan,
C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013).
doi:10.1007/978-3-319-03542-0 7

25. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 54

26. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-08867-9 47

27. Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 231–242 (2013)

28. Reynolds, J.C.: An introduction to separation logic - Lecture Notes for the PhD
Fall School on Logics and Semantics of State, Copenhagen (2008). http://www.cs.
cmu.edu/jcr/copenhagen08.pdf. Accessed 20 Jan 2016

29. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In:
Millennial Perspectives in Computer Science, Palgrave, pp. 303–321 (2000)

30. Reynolds, J.C.: Separation Logic: A logic for shared mutable data structures. In:
Symposium on Logic in Computer Science (LICS), pp. 55–74 (2002)

31. Sighireanu, M., Cok, D.R.: Report on SL-COMP 2014. J. Satisf. Boolean Model.
Comput. 9, 173–186 (2016)

32. Ta, Q.T., Le, T.C., Khoo, S.C., Chin, W.N.: Automated mutual explicit induction
proof in separation logic. arXiv:1609.00919 (2016)

http://dx.doi.org/10.1007/978-3-319-03542-0_7
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-319-08867-9_47
http://www.cs.cmu.edu/ jcr/copenhagen08.pdf
http://www.cs.cmu.edu/ jcr/copenhagen08.pdf
http://arxiv.org/abs/1609.00919

Finite Model Finding Using the Logic
of Equality with Uninterpreted Functions

Amirhossein Vakili(B) and Nancy A. Day

Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{avakili,nday}@uwaterloo.ca

Abstract. The problem of finite model finding, finding a satisfying
model for a set of first-order logic formulas for a finite scope, is an impor-
tant step in many verification techniques. In MACE-style solvers, the
problem is mapped directly to a SAT problem. We investigate an alter-
native solution of mapping the problem to the logic of equality with unin-
terpreted functions (EUF), a decidable logic with many well-supported
tools (e.g., SMT solvers). EUF reasoners take advantage of the typed
functional structures found in the formulas to improve performance. The
challenge is that EUF reasoning is not inherently finite scope. We present
an algorithm for mapping a finite model finding problem to an equisatis-
fiable EUF problem. We present results that show our method has better
overall performance than existing tools on a range of problems.

1 Introduction

Finite model finding is the problem of finding a satisfying model of a set of
first-order logic (FOL) formulas for a finite scope. The utility of finite model
finding in verification has been well-established with the popularity of the Alloy
Analyzer [11], a tool for writing declarative models in relational algebra, and
its Kodkod library for finding satisfying instances [22]. Finite scope analysis has
been used in a range of applications, such as code analysis [21], test case genera-
tion [12], repairing invalid HTML code [19], temporal logic model checking [23],
and counterexample generation for higher-order logic [6].

Approaches to finite model finding have followed two main styles: the MACE-
style [14], which reduces the problem to SAT and uses a SAT solver; and the
SEM-style [24], which develops an algorithm (usually a backtracking algorithm)
for searching for a model explicitly. State-of-the-art tools for model finding are:
Kodkod [22], Mace4 [16], and Paradox [8]. Kodkod is a MACE-style solver used
in the Alloy Analyzer. Mace4 is used more in the mathematical community
and is written in the SEM-style (unlike its predecessor Mace2, which is in the
MACE-style). Paradox is a MACE-style solver.

The contribution of our work is the introduction of a new approach to finite
model finding in the MACE-style, based on a reduction to the problem of satis-
fiability in the logic of equality with uninterpreted functions (EUF) [1], and the
use of an SMT (satisfiability modulo theories) solver [4]. EUF is many-sorted
(typed), quantifier-free first-order logic with equality. It is a decidable logic and
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 677–693, 2016.
DOI: 10.1007/978-3-319-48989-6 41

678 A. Vakili and N.A. Day

its complexity is NP-complete [1,13]. EUF has advanced solving implementations
in many SMT solvers. SMT solvers are first-order logic reasoning tools with an
integrated set of decision procedures that use the standard interpretations for
various types. We use the SMT solver Z3 [17].

Reynolds et al. [18] wrote a SEM-style prover for finite model finding on top
of the SMT solver CVC4 [2]. The goal of Reynolds’ approach was to find finite
satisfying solutions that the SMT solver deemed unsolvable. In our approach, we
use the SMT solver directly to solve the whole problem (as in the MACE-style),
in contrast to Reynolds approach, which creates a SEM-style solver integrated
into the SMT architecture.

As pointed out by Kroening and Strichman [13], despite the fact that the
complexity of EUF is the same as propositional logic, there are two reasons to
use EUF rather than propositional logic: (1) convenience in modelling, and (2)
performance. The larger vocabulary provided by EUF, i.e., equality, uninter-
preted functions and types, allows for more concise models. In the approaches
that reduce the finite model finding problem to SAT, the structure of types
and functions is not well preserved in propositional logic. Since we are reducing
the problem to EUF, this structure is retained and exploited in the EUF solving
process, which often results in better performance; moreover, translation to EUF
eliminates some simplification steps such as term flattening.

The challenge, however, is that problems in EUF are not inherently finite,
i.e., the solver does not search only for finite models of a certain scope. To make
our approach work, we add range formulas that force the solver to consider only
instances of a certain finite scope. We re-use many of the techniques found in
MACE-style provers, including symmetry breaking, to reduce the model space
that must be searched.

The contributions of our work are:

1. Introduction of range formulas to force an EUF solver to search for solutions
of an exact scope.

2. A Java library, called Fortress1, for mapping typed FOL problems (including
those specified in the input format TPTP) to SMT-LIB [3] (the standard
input language for SMT solvers) for a finite scope.

3. Demonstration that on benchmark problems, overall, Fortress has better per-
formance than Kodkod, Mace4, Paradox, and Reynolds. We show the most
improvement on problems that include functions.

4. Demonstration that re-modelling some benchmark problems using the more
convenient modelling approach with typed functions results in better perfor-
mance in Fortress.

5. A comparison of the methods of all the tools to discuss in detail why using
an SMT solver is preferable to mapping the problem directly to SAT.

In the next section, we provide some brief background on finite model finding.
In Sect. 3, we show a simple example of how our approach works, and then we

1 Available at: rebrand.ly/fortress.

http://rebrand.ly/fortress

Finite Model Finding Using the Logic of Equality 679

define our translation in Sect. 4. Section 5 briefly overviews Fortress’ implementa-
tion. Our results on benchmarks are presented in Sect. 6. Section 7 demonstrates
the advantages of using typed functions, and it is followed by a detailed com-
parison to related work in Sect. 8. The conclusion and future work are presented
in Sect. 9.

2 Background

In typed2 first-order logic (FOL), a signature Σ is a pair 〈Θ,F 〉 where Θ is a set
of types, and F is a set of typed functional symbols. Every signature contains the
type Bool, which represents the Boolean type. A functional symbol f ∈ F that
takes as input n arguments of types θ1, . . . , θn respectively and produces output
type is θ is denoted as f : θ1 × · · · × θn → θ. A constant c of type θ, denoted by
c : θ, is a functional symbol that has no inputs. In FOL, predicate symbols are
functional symbols whose output type is Bool. For example, a relational symbol
R : A × A → Bool denotes a binary relational symbol over type A. Figure 1
shows the rules for constructing the formulas and terms of FOL. The notation
t : θ denotes that the type of the term t is θ. We use this notation only if the
type of a term is not obvious from the context.

Fig. 1. Syntax of FOL over signature Σ = 〈Θ, F 〉 and set of typed variables V , where
c : θ, p : Bool, R : θ1 × · · · × θn → Bool, and f : θ1 × · · · × θn → θ are in F .

A structure (also called a model or an instance) M over a signature Σ =
〈Θ,F 〉 is a pair 〈U , .M 〉, where U , the universe of M , is a collection of mutually
disjoint non-empty sets, and .M is a mapping with the following properties:

1. for each θ in Θ, θM ∈ U ,
2. for each two distinct θ1 and θ2, θM1 ∩ θM2 = ∅,
3. for each p : Bool in F , pM ∈ {True, False},
4. for each R : θ1 × · · · × θn → Bool, RM is a subset of θM1 × · · · × θMn ,
5. for each c : θ in F , cM ∈ θM ,
6. for each f : θ1 × · · · × θn → θ, fM is a total function from θM1 × · · · × θMn to

θM .

2 We use “type” and “sort” interchangeably in this paper.

680 A. Vakili and N.A. Day

We assume the standard semantics for FOL, and use M |= Φ to denote
that M is a structure that satisfies the formula Φ [10], meaning that Φ is true
in structure M . We also use the notation M |= Γ , where Γ is a set of FOL
formulas, to denote that M satisfies all the formulas in Γ .

Given a set of FOL formulas Γ over signature Σ = 〈Θ,F 〉, and a function
bounds from Θ to natural numbers, the finite model finding problem means
determining if Γ has a satisfying structure M in which for every θ in Θ, the
size of the set assigned to θ by M is the finite number bounds(θ) (i.e., |θM | =
bounds(θ)). For each type θ, bounds(θ) is called the size of the scope or just the
scope. M is finite because the types in M are each of a fixed, finite, known size.
In untyped FOL, there is only one type and therefore only one scope is relevant.

The logic of equality with uninterpreted functions, EUF, is a subset of FOL
without quantifiers and variables, that includes the equality predicate (usually
written in infix form) with its standard interpretation. Checking whether a finite
set of EUF formulas has a satisfying structure is decidable and its complexity is
NP-complete [13].

3 Small Example

In this section, we present a small example to illustrate the challenge in mapping
the finite model finding problem to EUF.

Suppose Σ = 〈{A,B}, {f : A → B}〉 is a signature, and we are given the
following formula:

∀x, y : A • f(x) = f(y) ⇒ x = y (1)

The functional symbol f maps elements of A to B and the formula in Eq. 1
states that every element of A is mapped to a unique element of B; in other
words, no two distinct elements of A are mapped to the same element of B. We
are interested in checking if this formula has a model where the size of A is 3
and the size of B is 2. Equation 1 means that in every finite model, the size of B
must be greater or equal to the size of A; therefore, there is no model with the
scopes proposed. To reduce this problem to checking the satisfiability of a set of
EUF formulas, we introduce three new constant symbols of type A, a1, a2, a3,
two new constant symbols of type B, b1, b2, and generate a set of constraints
stating that these new constants are distinct:

{a1
= a2, a1
= a3, a2
= a3, b1
= b2} (2)

Using the introduced constants, we expand each quantifier by substituting the
new constants for the variables. This step generates a set of EUF formulas:

{f(ai) = f(aj) ⇒ ai = aj | 1 ≤ i, j ≤ 3} (3)

If we pass the formulas in Eqs. 2 and 3 to an EUF solver, such as an SMT solver,
and check for their satisfiability, the solver finds a satisfying model where B has
three elements, rather than B having two elements as required. This example

Finite Model Finding Using the Logic of Equality 681

shows that expanding quantifiers is not sufficient to reduce the finite model
finding problem to EUF satisfiability checking. One might think a remedy to
this problem is by adding a formula that states the only members of B are b1
and b2:

∀b : B • b = b1 ∨ b = b2

This formula has a quantifier, therefore it is not part of EUF and its universal
quantifier needs to be expanded with b1 and b2:

b1 = b1 ∨ b1 = b2, b2 = b1 ∨ b2 = b2

This formula is a tautology and therefore, adding it has no effect.
Our solution to this problem is as follows: instead of adding a constraint

that ensures B has only two elements, we add constraints, which we call range
formulas, that guarantee the “effect” of B having two elements. In this example,
the effect of B having two elements is that for all a : A, f(a) must be either b1
or b2:

∀a : A • f(a) = b1 ∨ f(a) = b2 (4)

Expanding this equation results in the following set of EUF formulas:

{f(ai) = b1 ∨ f(ai) = b2 | 1 ≤ i ≤ 3}
An EUF solver shows that this set of formulas along with the constraints of
Eqs. 2 and 3 are unsatisfiable.

A range formula for a functional symbol ensures that an EUF solver does
not generate an instance that is outside the provided scope:

Definition 1. For a finite type θ = {e1, .., en} and a functional symbol f :
T1 × .. × Tm → θ, the following is the range formula that we add to ensure that
the values assigned to f by an EUF solver are within the specified scope of θ:

∀v1 : T1, .., vm : Tm • f(v1, .., vm) = e1 ∨ .. ∨ f(v1, .., vm) = en

4 Translation to EUF Logic

Suppose Γ is a set of FOL formulas over signature Σ = 〈Θ,F 〉, and bounds is
a function from Θ to natural numbers. The finite model finding problem means
determining if Γ has a finite model M where for each type θ in Θ, the size of
θM is equal to bounds(θ). Our translation to EUF consists of four steps:

1. Normalize each formula in Γ
2. Generate the universe
3. Add range formulas
4. Ground each normalized formula

Step (3) is the main novel contribution of our paper along with the idea of using
EUF solvers in the MACE-style for the finite model finding problem. For the
other steps leading up to EUF, we borrow the best practices from existing solvers
and include their description here for completeness. Next, we explain each step
in detail and illustrate the translation using the following example:

682 A. Vakili and N.A. Day

Example 1. Let Σ = 〈{A}, {f : A → A}〉 be a signature. We want to check if
the following two formulas have a model where the size of A (bounds(A)) is 3
by translating it to an equisatisfiable set of EUF formulas.

1. ∀x, y : A • f(x) = f(y) ⇒ x = y
2. ∃y : A • ∀x : A • f(x)
= y

The first constraint states that f is a one-to-one mapping from A to itself. The
second constraint states that the range of f is a proper subset of A. These two
formulas are only satisfiable by an infinite model since it is not possible to have
a one-to-one mapping from a finite set to one of its proper subsets.

Step 1 - Normalize. The normalization step consists of the following trans-
formations: (1) put each formula in prenex normal form, and (2) skolemize and
remove existential quantifiers. Applying these transformations to the formulas
of Example 1 results in the following two formulas:

1. ∀x, y : A • ¬(f(x) = f(y)) ∨ x = y
2. ∀x : A • f(x)
= sk

In the second formula, sk is a constant of type A that is introduced as the result
of skolemization. After normalization, each formula is either quantifier-free or it
is of the following form ∀x1 : θ1, . . . , xn : θn • Ψ, where Ψ is quantifier-free. The
complexity of this step is linear with respect to the size of the FOL formulas.

Step 2 - Generate Universe. In this step, for each type θ in Θ, we generate
bounds(θ) constants of type θ, and we assert that these constants are mutually
distinct. The generated constants at this step are fresh, do not appear anywhere
in Γ , and constitute the universe. In Step 3 (adding range formulas), the fact
that the introduced constants do not appear in Γ allows us to generate optimized
range formulas based on symmetry breaking.

In Example 1, we declare constants a1, a2, a3 of type A and add a constraint
to ensure that these constants are mutually distinct. The complexity of this step
is linear with respect to the size of the provided bounds3.

Step 3 - Add Range Formulas: EUF solvers check for the satisfiability of a
set of quantifier-free formulas without putting any restrictions on the number
of elements assigned to each type. To ensure that the elements of a type θ in
a model generated by an EUF solver are exactly the ones declared in Step 2,
we add range formulas for constants and functional symbols stating that their
values must be equal to the elements of the universe of that type. As mentioned
in Sect. 3, the range formulas allow us to reduce the finite model finding problem
to EUF solving. The complexity of adding range formulas is exponential with
respect to the arity of the functional symbols.

In Example 1, the following are the range constraints:

sk = a1 ∨ sk = a2 ∨ sk = a3, f(a1) = a1 ∨ f(a1) = a2 ∨ f(a1) = a3,

f(a2) = a1 ∨ f(a2) = a2 ∨ f(a2) = a3, f(a3) = a1 ∨ f(a3) = a2 ∨ f(a3) = a3

3 In SMT-LIB, this constraint is written simply as: (distinct a1 a2 a3).

Finite Model Finding Using the Logic of Equality 683

We use Claessen and Sörensson’s symmetry breaking technique [8] to reduce
the number of range formulas needed. Since the values a1, a2, and a3 do not
appear in the original formulas, one can assume an ordering on them and reduce
the range formulas to the following:

sk = a1,

f(a1) = a1 ∨ f(a1) = a2,

f(a2) = a1 ∨ f(a2) = a2 ∨ f(a2) = a3,

f(a3) = a1 ∨ f(a3) = a2 ∨ f(a3) = a3

where the first term is required to be a certain constant and the subsequent terms
have gradually more freedom in their possible values. Using symmetry breaking
to reduce the number of range formulas does not reduce the complexity of this
step.

Step 4 - Ground Formulas. The last step of our translation is grounding:
instantiating each universally quantified formula with the generated universe of
Step 2. As we substitute different constants for variables that are universally
quantified, we immediately simplify the generated formulas based on literals
that are discovered and the fact that the elements of the universe are mutually
distinct. For example, in the formula ∀x, y : A • f(x)
= f(y) ∨ x = y, when x
and y are substituted with a1, the generated formula f(a1)
= f(a1) ∨ a1 = a1 is
simplified to � and it is discarded. Also, when x is substituted with a3 and y with
a2, the generated formula f(a3)
= f(a2)∨ a3 = a2 is simplified to f(a3)
= f(a2)
since we know that a2
= a3. Moreover, we have a syntactic ordering on formulas
where t = s is considered to be the same as s = t for any two terms. This
ordering allows us to remove some redundant formulas that are generated during
the grounding step. The result of grounding Example 1 is the following set of
formulas:

f(a1)
= f(a2), f(a1)
= f(a3), f(a2)
= f(a3),
f(a1)
= sk, f(a2)
= sk, f(a3)
= sk

The complexity of this step is exponential with respect to the number of nested
universal quantifiers.

We omit the proof that checking the satisfiability of the generated EUF
formulas from Steps 3 and 4 is equivalent to checking if the original FOL formulas
have a finite model where the size of each type θ is bounds(θ) since it is quite
straightforward.

5 Implementation

Fortress is a Java library for creating typed first-order logic formulas and pro-
ducing finite model finding problems in SMT-LIB based on the translation of
Sect. 4. Besides the API, we parse a subset of TPTP. In Fortress, formulas are
represented as typed lambda calculus terms and all type checking is done at

684 A. Vakili and N.A. Day

this level for generality. Once type checked, FOL terms are converted to a more
compact representation suitable for FOL.

There are two types of simplifications/optimizations that can be applied: (1)
simplifications on FOL terms not specific to finite model finding, such as positive
and negative propagations [16], (2) optimizations specific to finite model finding,
such as symmetry breaking constraints [8]. Since SMT solvers do an excellent
job at type 1 above, these are not implemented in Fortress. However, since
SMT solvers do not treat uninterpreted types as finite sets, optimizations of
type 2 are implemented in Fortress. We have flags to enable symmetry breaking
and our experiments have shown that SMT solvers cannot infer symmetries for
finite scope analysis and therefore, they need to be explicitly implemented.

6 Results

We compared our approach to Kodkod (version 2.1 with Minisat), Alloy (version
4.2 with Minisat), Mace4, and Paradox (version 4). We used Z3 (version 4.4.2)
as our backend EUF solver for Fortress. We compared the performance of the
tools on a set of TPTP benchmarks [20] that were originally used by Torlak and
Jackson in [22]. We tested on increased scopes for some benchmarks compared
the results reported in [22]. Fortress accepts TPTP as input. Torlak and Jackson
had manually translated TPTP examples to Kodkod and we used their trans-
lated versions when comparing to Kodkod. Paradox accepts TPTP as input, and
Mace4 comes with a tool (tptp to ladr [15]) that translates TPTP to its input
format. To compare with Alloy, we developed a simple translator from TPTP
to Alloy. We included Alloy in this comparison because it is equivalent to using
Kodkod without special support for partial instances (see Sect. 8).

All of these benchmarks are unsat: they do not have finite models with respect
to the provided scope sizes. Unsatisfiable cases are better for the comparison of
different tools because they are usually much harder than satisfiable ones. These
benchmark problems are all untyped and some contain functions.

Table 1 presents the performance of all tools. For Fortress, the performance
numbers include both the time for translation and the time for solving by Z3.
All our experiments were run on an Intel R©CoreTMi7-3667U machine running
Ubuntu 14.04 64-bit with up to 7.5 GB of user memory. We used the solvers
in their default mode, without any flags or a customized configuration. Entries
marked by “−” indicate the analyses that did not finish within 1800 s (30 min).
The shaded entries show the fastest solver for each benchmark (based on all
scopes considered); where the difference was negligible we shaded the entries for
multiple tools.

The last three rows of Table 1 summarize the performance of the solvers:
Fortress produced the best results more often than any other tool. We also added
up the performance time for all the benchmark problems. In this summation,
we counted timeouts as 1800 s, which is preferential to all the other solvers since

Finite Model Finding Using the Logic of Equality 685

Table 1. Benchmark problems (time in seconds)

Scope Size Fortress Kodkod Alloy Mace4 Paradox

alg195 14 1 0 30 − 5

alg197 21 1 0 20 − 5

num378 21 2 0 − 0 6

infinity

5 0 1 1 0 0
15 0 19 57 0 0
25 0 704 − 0 0

alg212

6 0 5 3 0 0
8 8 207 201 1 5

10 563 − − 6 81

com008

7 4 0 0 − 0
9 48 0 0 − 0

11 335 1 4 − 58

geo091

7 3 2 12 − 7
9 9 29 33 − 279

11 24 745 268 − −

geo158

7 3 1 1 − 80
9 9 28 17 − −

11 24 378 233 − −

med009

7 2 0 0 19 0
9 11 0 0 141 0

11 31 0 0 139 0

num374

5 2 21 20 0 3
6 38 262 358 6 147
7 850 − − 613 −

set943

7 1 4 66 − 55
9 2 − − − −

11 2 − − − −

set948

7 1 0 71 − 62
9 2 0 − − −

11 4 1 − − −

top020

7 2 1 2 0 0
8 13 4 8 0 1
9 509 13 16 0 17

Best out of 13 7 6 1 5 2

Total Time 2504 9637 15821 31525 15211

Total Time X 1X 3.85X 6.32X 12.59X 6.07X

Fortress Kodkod Alloy Mace4 Paradox

Fortress produced results without timing out on all benchmark problems. The
total time for Fortress was 2504 s. The total times for Kodkod, Alloy, Mace4,
and Paradox are respectively 3.85, 6.32, 12.59, and 6.07 times the total time
of Fortress. This shows that, overall, Fortress is significantly better than the
state-of-art solvers.

686 A. Vakili and N.A. Day

Table 2. Comparing SMT solvers (time in seconds)

alg212 com008 geo091 med009 num374 top020

Scope Size 10 9 11 11 6 8

Z3 562 47 6 6 38 11

CVC4 − 69 45 53 − 3

MathSAT5 − 91 7 20 117 3

We also ran the benchmarks using the tool of Reynolds et al. [18], however
since their tool solved only 2 of the 33 benchmark problems within the 30 min
time threshold, its results are not presented in Table 1.

A closer look at the benchmarks show that Fortress excels at solving problems
that have functional symbols, such as geo091 and set943. Also, SMT solvers
are capable of using terms with functions to simplify the reasoning steps by
rewriting equalities, such as those found in alg195 and num378. In some cases,
this rewriting can solve the problem without performing any search.

Next, we compared the performance of multiple SMT solvers as backends for
Fortress. We compared the performance of Z3, CVC4 (version 1.4), and Math-
SAT5 (version 5.3.10) [7] on six of the nontrivial benchmarks. Table 2 presents
the time that it took for each SMT solver to check the satisfiability of the SMT-
LIB models generated by Fortress. Our results show that Z3 is more effective
in solving EUF formulas that are generated as the result of finite model finding
than CVC4 and MathSAT5.

7 Exploiting Functions and Types

Functions vs. Relations. Functions and relations have the same expressive
power: a total function f : A → B can be described as a relation Rf : A × B →
Bool with the following two constraints:

∀a : A • ∃b : B • Rf (a, b), (5)
∀a : A, b, b′ : B • b = b′ ∨ ¬Rf (a, b) ∨ ¬Rf (a, b′) (6)

where Constraint 5, a totality definition, states that every element of A is mapped
to some element of B and Constraint 6, a functional definition, states that every
element of A is not mapped to more than one element of B. Every relation is
also a function: a relation maps every tuple to True or False, depending on if
the tuple is in the relation or not. Kodkod and Paradox consider functions as
relations accompanied by the totality and functional definitions. Since functions
are built into EUF, Fortress does not need to add the totality and functional
definitions, which simplifies the translation.

Another important benefit of functions is that they allow “true” skolemiza-
tion. Skolemization is a technique to remove existential quantifiers by introducing

Finite Model Finding Using the Logic of Equality 687

Fig. 2. Lists: Functions vs. relations Fig. 3. MED009: Partitioning attributes

functions. For example, in the formula ∀a : A, b : B • ∃c : C • P (a, b, c), skolem-
ization results in the introduction of a functional symbol sk : A × B → C and
the formula ∀a : A, b : B • P (a, b, sk(a, b)). In a language where functions are
considered as relations, the skolem function sk needs to be accompanied by the
totality definition ∀a : A, b : B •∃c : C •Rsk(a, b, c), which still has an existential
quantifier.

To see the effect of using functions on the performance of the SMT solvers for
finite model finding, in Fortress we modelled a simple theory of lists presented
in [11] in both the functional and relational styles. Figure 2 compares the per-
formance of Fortress for both approaches on different scopes. As depicted in this
plot, functions improve the performance of Fortress. For the relational approach,
the performance degrades rapidly as the scope size increases. For example, for
the scope size 15, the relational approach takes over 7 min whereas in the func-
tional approach the scope size of 30 is analyzed in less than 10 s (not shown on
the plot).

Types. In an untyped system, all elements are in one set. For example, to model
a database system for a university, Person, Courses, IDs, etc., are entities that
need to be modelled. In an untyped relational world, all these are in one set, and
any mapping from one set to another, such as id : Person → IDs, becomes a rela-
tion that is only defined for people and needs totality and functional definitions.
In typed systems, types partition the universe into subsets. These partitions have
two benefits for finite model finding: (1) functions from one type to another can
be defined succinctly, (2) in the grounding step (Step 4), a universal quantifier
is only expanded for elements of the relevant type.

Together, functions and types can lead to concise modelling of some concepts.
For example, in an untyped, relational language, to state that each Person in
a university is either a student, faculty, or a staff member, three unary
relations over the type Person must be declared. Four FOL constraints are
required to express that these unary relations partition the set Person: every
person belongs to one of the partitions, and three other constraints that ensure
that no one belongs to more than one category. In a language with types

688 A. Vakili and N.A. Day

and functions, the same concept can be modelled by introducing a new type
Role with three elements student, faculty, staff, and introducing a func-
tion attribute : Person → Role. The totality and functional properties of
attribute ensure that at least one role is assigned to each person and no one
is assigned more than one role respectively. We call the values of the type Role
partitioning attributes. In the relational style, the number of FOL formulas that
are required to model partitioning attributes with N values is

(
N
2

)
+ 1, which is

quadratic with respect to the number of values. A functional approach eliminates
the need for these constraints.

To evaluate the effect of using types and functions for partitioning, we man-
ually translated a modified version of med009 and compared the untyped, rela-
tional version to one with partitioning via types and functions, and compared
the results. Figure 3 shows that performance of the functional approach is much
better than the relational approach in Fortress.

8 Comparison with Related Work

In this section, we discuss the question of why our method of using EUF to solve
FOL problems of finite scope has better overall performance than related solvers.
First, we briefly present the method of each related solver and then present a
number of points of comparison. Table 3 summarizes the options and methods
supported by different finite model finders.

8.1 Related Solvers

Kodkod [22] is the MACE-style solver used in the Alloy Analyzer. Its Java
API accepts untyped FOL formulas with relational constructs, such as join and
transitive closure, as input. Functions must be transformed into relations having
functional properties prior to using Kodkod. Once bounds are provided, Kodkod
transforms transitive closure into a finite number of applications of join. Kodkod
translates the finite model finding problem to SAT using the following steps: (1)
detect symmetries in the model and compute symmetry breaking predicates, (2)
allocate Boolean variables to represent relations, (3) expand quantified formulas

Table 3. Comparison of finite model finders

Fortress Kodkod Paradox Mace4 Reynolds

Solver SMT SAT SAT SEM SEM/SMT

Input TPTP, Java API Java API TPTP LADR, TPTP SMT-LIB

Types YES NO NO NO YES

Functions YES NO YES YES YES

Relational Ops NO YES NO NO NO

Symmetry Breaking Static Static Static Dynamic EUF

Partial Instances NO YES NO NO NO

Finite Model Finding Using the Logic of Equality 689

and make them into constraints over the allocated Boolean variables, and (4)
transform the generated Boolean constraints to CNF form. Kodkod represents
relations by sparse matrices of Boolean variables, and some of the relational oper-
ations become matrix operations. To simplify the translated formulas, Kodkod
represents expanded quantified formulas as Compact Boolean Circuits (CBCs).
This representation allows Kodkod to detect sharing structures in the grounded
formulas and as a result, produce a more optimized CNF formula. Kodkod opti-
mizes for explicitly provided partial instances by using this information during
the translation to CNF step.

Paradox [8] is MACE-style prover, whose first step is to allocate a set of
Boolean variables to represent each functional symbol. These Boolean vari-
ables encode each functional symbol as a relation. Then, every formula is
“flattened”: a process that removes nested function applications in a formula.
For example, flattening the formula ∀x • f(g(x)) = x results in the formula
∀x, t • g(x) = t ⇒ f(t) = x. At this point, the quantifiers of the given formulas
are instantiated with all possible values from the universe resulting in a set of
quantifier-free formulas. Each of these quantifier-free formulas are translated to
propositional logic using the allocated Boolean variables. Since functional sym-
bols are encoded as relations, Paradox adds “functional definition” constraints
(every input is mapped to at most one value), and “totality definition” con-
straints (every input is mapped to some value). The result of this translation
is a CNF formula that is passed to a SAT solver. To improve its performance,
Paradox uses three techniques: (1) reduce the number of nested quantifiers by
splitting disjunctions, (2) adding symmetry breaking constraints, and (3) infer-
ring sorts (types) from the formulas to optimize the translation to SAT.

Mace4 [16] is a SEM-style finite model finder: it has its own backtracking
search mechanism to try different assignments. To check if a set of FOL formu-
las has model of size n, Mace4 allocates “cells” that range from 0 to n − 1 for
each functional symbol. By skolemizing, every existential quantifier is removed.
After skolemization, the universal quantifiers are expanded using the elements
of {0, .., n − 1}. The expanded formulas are now constraints over the allocated
cells. The search mechanism assigns values to cells and checks if the assign-
ment contradicts any of the expanded formulas. If a contradiction is detected,
it backtracks; otherwise, the search goes on until either all cells are assigned or
there is no possible assignment left. Mace4 uses the least number heuristic to
detect some symmetries [25]. It also has a propagation mechanism that allows
the search algorithm to prune its search tree.

Reynolds et al. [18] extended CVC4 with finite model finding capabilities so
that for satisfiable instances of undecidable SMT logics a user could get a finite
model and the SMT solver would not report “unknown”. They combined finite
model finding with decision procedures for built-in theories using the DPLL(T)
architecture. Their approach does not introduce constants and can be classified
as a SEM-style technique. According to our results, the method of Reynolds is
not effective in finding finite models of a specific size when SMT theories are not
used and the problem is unsatisfiable.

690 A. Vakili and N.A. Day

8.2 Comparison

Types. Since EUF is typed, in Fortress we benefit from types without requir-
ing any special mechanism to infer sorts as is done in Paradox. In an untyped
language, types can be mimicked by predicates and this is the approach used
to translate problems in the typed Alloy language to Kodkod. Fortress’ direct
use of sorts can reduce the number of constraints generated in the quantifier
expansion step because only elements of the correct sort are substituted into the
formula for the quantified variable.

Functions. Kodkod does not support functions and assumes that functions have
been converted to relations. In Fortress, we do not need to flatten the functional
symbols or add the special functional definition and totality constraints required
by Paradox since we are translating to a logic that includes functional symbols.
As a result, there are fewer constraints in our representation in EUF and in that
of Reynolds. Furthermore, the SMT solver can exploit the structure of these
functions in its reasoning; in particular, terms that contain functional symbols
are used for rewriting and simplification of the input problem. Examples of such
techniques are (near) assignment and (near) elimination simplifications [16].

Relational Operators. The relational operators of Kodkod (e.g., join) do not
increase its expressive power but they ease the modelling task. In FOL, the
meaning of such operators can be represented through logical operations and
quantifiers.

Symmetry Breaking Predicates. In most MACE-style finite model finders,
such as Fortress, Kodkod, and Paradox, symmetry breaking is static: a set of con-
straints are added to the model to prevent the solver from exploring symmetric
instances. Such constraints are called symmetry breaking predicates. Fortress
uses the same symmetry breaking predicates as Paradox. In SEM-style finite
model finding, the symmetry detection is built into the search algorithm and it
is performed dynamically during the model finding stage [24].

Partial Instances. A partial instance for a set of FOL formulas is an explicit
assignments of values to some variables. Kodkod supports explicitly provided
partial instances. The first three case studies, alg195, alg197, and num378 con-
tain partial instances. Fortress and Kodkod outperform other tools on these case
studies. Alloy uses Kodkod as its solver, and yet its performance on the first three
case studies is not comparable to Kodkod because the partial instances are not
explicitly given to Kodkod. In Fortress, we get good performance without any
explicit support for partial instances. Partial instances in EUF are regular con-
straints that happen to be equalities of variables to values. SMT solvers have
sophisticated mechanisms to propagate equalities and reduce the constraint solv-
ing time.

Exact Scopes. Currently, we only support analysis for a fixed scope, whereas in
the Alloy Analyzer, a scope can be specified to include all instances of a certain
size or smaller. Kodkod has this capability and it encodes the whole problem

Finite Model Finding Using the Logic of Equality 691

in one SAT formula. On the other hand, Mace4 has an iterative approach that
solves each fixed scope separately.

Transitive Closure. Because the Alloy language includes the second-order
transitive closure operator, Kodkod supports it and expands its definition using
a brute force method (for a finite scope). Our method and the other solvers do
not currently support transitive closure, but it would be straightforward to add
a step to expand the transitive closure operator as is done in Kodkod.

8.3 Other Related Work

Baumgartner et al. reduce the finite model finding problem to function-free
clause logic [5]. Similar to Kodkod, they represent functions as relations with
functional constraints. As their results show, current function-free clause logic
reasoners are not efficient enough. According to the authors, their results are
“as good as” Paradox. We were not able to access their tool.

Elghazi and Taghdiri [9] translate Alloy to SMT-LIB to provide analysis of
unbounded scopes. Alloy is translated to an undecidable logic, and SMT solvers
are considered as FOL theorem provers that do not necessarily terminate.

9 Conclusion and Future Work

In this paper, we have shown that by reducing the finite model finding problem
to the logic of equality with uninterpreted functions (EUF), we can use an SMT
solver to find instances with better performance than existing approaches based
on translations of the problem to SAT. In our translation, we add range formulas
to force the SMT solver to search only for models of a finite scope. Our results
show that maintaining the structure of problems (in this case, the types and
function structure) can be beneficial in analysis procedures that need to explore
exhaustively a model space (as opposed to flattening the problem before search).
Our results also give credit to the excellent development of tools of the SMT-
solver community.

With respect to modelling constructs, we would like to integrate with Alloy
and extend our method to handle the transitive closure operator and a range of
scopes. We are also considering taking SMT-LIB as input and the specification
of scopes and creating SMT-LIB output. The challenge here is that we do not
support all of SMT-LIB, i.e., all of its built-in types (such as taking a finite
scope for reals).

In the future, we plan to automate the inference of functional patterns, such
as the partitioning attributes in Sect. 7, to improve the performance of Fortress.
Also, our benchmarks show that despite the fact that our technique for finite
model finding is superior to the state-of-the-art, there are some benchmarks that
other tools solve faster than Fortress. We plan to explore a characterization of
the problems that different methods are good at and create a portfolio solver for
finite model finding.

692 A. Vakili and N.A. Day

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North Holland Publishing
Company, Amsterdam (1954)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.5. Tech-
nical report, Department of Computer Science, The University of Iowa (2015)

4. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories,
Frontiers. In: Artificial Intelligence and Applications, vol. 185, chap. 26, pp. 825–
885. IOS Press, Amsterdam (2009)

5. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. J. Appl. Log. 7(1), 58–74 (2009)

6. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 11

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 7

8. Claessen, K., Sörensson, N.: New techniques that improve mace-style finite model
finding. In: Proceedings of the CADE-19 Workshop: Model Computation - Princi-
ples, Algorithms, Applications (2003)

9. El Ghazi, A.A., Taghdiri, M.: Analyzing Alloy constraints using an SMT solver: a
case study. In: International Workshop on Automated Formal Methods (2010)

10. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer,
New York (1990)

11. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

12. Khurshid, S., Marinov, D.: TestEra: specification-based testing of Java programs
using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004)

13. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, Heidelberg (2008)

14. McCune, W.: A Davis-Putnam program and its application to finite first-order
model search: quasigroup existence problem. Technical report, Argonne National
Laboratory (1994)

15. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9

16. McCune, W.: Mace4 reference manual and guide. CoRR cs.SC/0310055 (2003)
17. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,

J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

18. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 42

19. Samimi, H.: Schfer, M., Artzi, S., Millstein, T., Tip, F., Hendren, L: Automated
repair of HTML generation errors in PHP applications using string constraint
solving. In: International Conference on Software Engineering (ICSE), pp. 277–
287 (2012)

http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://www.cs.unm.edu/~mccune/prover9
http://www.cs.unm.edu/~mccune/prover9
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-39799-8_42

Finite Model Finding Using the Logic of Equality 693

20. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

21. Taghdiri, M., Jackson, D.: Inferring specifications to detect errors in code. Autom.
Softw. Eng. 14(1), 87–121 (2007)

22. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 49

23. Vakili, A., Day, N.A.: Temporal logic model checking in alloy. In: Derrick, J.,
Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.)
ABZ 2012. LNCS, vol. 7316, pp. 150–163. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30885-7 11

24. Zhang, H., Zhang, J.: MACE4 and SEM: a comparison of finite model generators.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 101–130. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36675-8 5

25. Zhang, J., Zhang, H.: Sem: A system for enumerating models. In: International
Joint Conference on Artificial Intelligence (IJCAI)

http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/978-3-642-30885-7_11
http://dx.doi.org/10.1007/978-3-642-30885-7_11
http://dx.doi.org/10.1007/978-3-642-36675-8_5
http://dx.doi.org/10.1007/978-3-642-36675-8_5

GPUexplore 2.0: Unleashing GPU Explicit-State
Model Checking

Anton Wijs1, Thomas Neele1,2(B), and Dragan Bošnački1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{a.j.wijs,t.s.neele}@tue.nl

2 University of Twente, Enschede, The Netherlands

Abstract. In earlier work, we were the first to investigate the poten-
tial of using graphics processing units (GPUs) to speed up explicit-state
model checking. Back then, the conclusion was clearly that this potential
exists, having measured speed-ups of around 10 times, compared to state-
of-the-art single-core model checking. In this paper, we present a new
version of our GPU model checker, GPUexplore. Since publication of
our earlier work, we have identified and implemented several approaches
to improve the performance of the model checker considerably. These
include enhanced lock-less hashing of the states and improved thread
synchronizations. We discuss experimental results that show the impact
of both the progress in hardware in the last few years and our proposed
optimisations. The new version of GPUexplore running on state-of-
the-art hardware can be more than 100 times faster than a sequential
implementation for large models and is on average eight times faster than
the previous version of the tool running on the same hardware.

1 Introduction

Explicit-state model checking [1,8] is a push-button technique to formally verify
the functional correctness of hardware and software models. It is performed
by systematically exploring the state space implied by the model. The main
drawback of model checking is the state space explosion problem: a linear growth
of the model tends to lead to an exponential growth of the state space. Although
traditionally, this meant that computer memory was the practical bottleneck,
these days, with large amounts of memory at our disposal, scalability of the
run time is often hindering our ability to reason about models in a reasonable
amount of time.

One way to improve the run time of model checking is by exploiting the
computing power of modern parallel architectures. Graphics processing units
(GPUs) have a lot of potential in this respect: they can run thousands of threads
in parallel and can offer a speed-up of several orders of magnitude. GPUs tend to
have much less memory than modern computer systems, but the current trend is

A. Wijs—We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the GeForce Titan X used for this research.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 694–701, 2016.
DOI: 10.1007/978-3-319-48989-6 42

GPUexplore 2.0: Unleashing GPU Explicit-State Model Checking 695

that this amount doubles every few years. Hence, it is interesting to investigate
to what extent model checking algorithms can be adapted to run on GPUs. In
the last few years, GPUs have been successfully used for several model checking
procedures [2–4,7,10,16,17].

Our tool GPUexplore [14,15] is the first to take an integrated approach:
it runs a complete model checking algorithm on the GPU. Initial results were
promising; speed ups of around 10 times were measured. However, at the time,
two questions remained unanswered: (1) how does the approach scale over time
as new hardware becomes available, and (2) are there still possibilities to further
optimise GPUexplore? In this paper, we present new insights concerning both
these questions. For the same benchmark set of representative models as used
in our previous work [14,15], the new version of GPUexplore executed on
the latest GPU hardware achieves an average speed-up of 119 times. With this
amount of speed-up, we can finally claim that the leash has truly been taken off
GPU model checking.

2 Using the Tool

GPUexplore
1 operates on networks of Labelled Transition Systems

(LTSs) [12], which represent interacting parallel processes. An LTS is a directed
graph in which the nodes represent states and the edges are transitions between
the states. Each transition has an action label representing an event leading from
one state to another. An example network can be found in Fig. 1, where the initial
states are indicated by detached incoming arrows. One producer generates work
and sends it to one of two consumers. This happens by means of synchronisation
of the ‘send’ and ‘rec’ actions. The other actions can be executed independently.
How the process LTSs should be combined using the relevant synchronisation
rules is defined on the right in Fig. 1. The state space of this network consists
of 8 states and 24 transitions. Networks are described in the EXP format and
LTSs in the AUT format (both from CADP [11]).

Fig. 1. Example of LTS network with one producer and two consumers.

Besides reachability analysis, GPUexplore can also check functional prop-
erties on-the-fly. Currently, it can check for deadlocks and safety properties.
Safety properties are expressed by an automaton included in the input network.
1 Available at http://www.win.tue.nl/∼awijs/GPUMC.

http://www.win.tue.nl/~awijs/GPUMC

696 A. Wijs et al.

SM 0 SM N

L1 & L2 cache

texture cache

global memory

(network input)

(global hash table)

shared mem. (cache) shared mem. (cache)

threads (exploration) threads (exploration)

Fig. 2. Schematic overview of the GPU hardware architecture and GPUexplore

3 How GPUexplore Operates

GPU Architecture. CUDA2 is a programming interface developed by NVIDIA
to enable general purpose programming on a GPU. It provides a unified view of
the GPU (‘device’), simplifying the process of developing for multiple devices.
Code to be run on the device (‘kernel’) can be programmed using a subset of
C++.

On the hardware level, a GPU has several streaming multiprocessors (SM)
that contain hundreds of cores. On the programmer side, threads are grouped
into blocks. The GPU schedules thread blocks on the SMs. One SM can run
multiple blocks at the same time, but one block is assigned to a single SM.
Internally, blocks are executed as one or more warps. A warp is a group of 32
threads that move in lock-step through the program instructions. A half-warp is
either the first or second half of a warp.

Another important aspect of the GPU architecture is the memory hierarchy.
Firstly, each block is allocated shared memory that is shared between its threads.
The shared memory is placed on-chip, therefore it has a low latency. Secondly,
there is the global memory that can be accessed by all the threads. It has a high
bandwidth, but also a high latency. The amount of global memory is typically
multiple gigabytes. There are three caches in between: the L1, L2 and the texture
cache. Data in the global memory that is marked as read-only (a ‘texture’) may
be placed in the texture cache. The global memory can be accessed by the CPU
(‘host’), thus it also serves as an interface between the host and the device.
Figure 2 gives a schematic overview of the architecture.

The bandwidth between the SMs and the global memory is used optimally
when a continuous block of 32 integers is fetched by a warp. In that case, those
32 memory transactions are performed in parallel. This is called coalesced access.

GPUexplore. Model checking tends to require many uncoalesced memory
accesses, as it requires combining the behaviour of the processes in the net-
work, and accessing and storing state vectors of the system state space in the

2 https://developer.nvidia.com/cuda-zone.

https://developer.nvidia.com/cuda-zone

GPUexplore 2.0: Unleashing GPU Explicit-State Model Checking 697

global memory. In GPUexplore, this is mitigated by combining relevant net-
work information as much as possible in 32-bit integers, and storing these as
textures, thereby using the texture cache to speed up random accesses.

State vectors are stored in a number of 32-bit integers. Their total size
depends on the number of bits needed for each process in the LTS network.
In the global memory, a hash table is used to store state vectors (Fig. 2). The
hash table has been designed to optimise accesses of entire warps: the space is
partitioned into buckets consisting of 32 integers, precisely enough for one warp
to fetch a bucket with one combined memory access. State vectors are hashed
to buckets, and placed within a bucket in an available slot. If the bucket is full,
another hash function is used to find a new bucket.

To each state vector with n process states, a group of n threads (a vector
group) is assigned to construct its successors using fine-grained parallelism. Each
thread collects the relevant transitions of one specific process LTS. Since access
to the global memory is slow, each block uses a dedicated state cache (Fig. 2). It
serves to collect newly produced state vectors, that are subsequently stored in
the global hash table in batches. With the cache, block-local duplicates can be
detected. The approach allows to work with vectors that require any number of
integers smaller than 32 to be stored.

GPUexplore does not maintain a queue of states that need to be explored.
Instead, it stores all states in the main hash table, and marks unexplored states.
Additionally, a small amount of memory is allocated for each block to store
unexplored states. We call this the work tile. Whenever a block has no unexplored
states in its work tile, it linearly scans through its own slice of the hash table
to gather new states for the work tile. Since each block only gathers work from
its own slice, an unexplored state cannot be gathered more than once. Although
this approach may result in an unbalanced distribution of work during the early
and final stages of exploration, experimental evaluation showed that this does
not impact runtime significantly.

Recently, we added support for partial-order reduction (POR), based on
cluster-based POR [5,6]. This can greatly reduce the amount of memory needed.

4 Improvements

In our initial publications on GPUexplore [14,15], we noted that the mech-
anism to insert state vectors in the global hash table was prone to producing
duplicate entries, leading to additional exploration work and an incorrect report
of the number of reachable states. In GPUexplore 2.0, this problem is fixed.
Also, since the initial publications, we have identified several performance bot-
tlenecks. In this section, we both explain how the hashing mechanism now works,
and discuss those improvements that had the highest impact on the performance.

Improving the Hash Table. For correct, lock-less hashing, it is important
that element insertion can be done atomically. CUDA provides a number of
atomic operations, such as compare-and-swap, but only for reading and writing

698 A. Wijs et al.

Fig. 3. Example of the layout of a bucket for a state vector length of three integers.
Inconsistencies in the old hash table can occur when a slot crosses the half-bucket
boundary (marked in orange). In the new situation, the padding is positioned in such
a way that no element slot crosses the half-bucket boundary. (Color figure online)

individual integers (either 32-bit or 64-bit). This is problematic for GPUex-

plore in those cases where state vectors require more than 64 bits. This is the
main cause for the inaccuracy of the hash table as reported earlier [14,15].

However, we have experimentally determined that whenever a warp is
instructed to perform atomic operations on a continuous part of the memory,
the GPU scheduler tends to schedule these memory requests in half-warps. For
GPUexplore, this means that if two warps execute atomic operations on the
same bucket, the memory transactions will never be interleaved on a finer level
than half-warps. Therefore, we can avoid data races by preventing state slots
from spanning more than one half-bucket. The difference in layout of a bucket
for a state vector length of three integers is displayed in Fig. 3. As an alternative,
we considered the use of spin-locks, but a solution without any form of locking
is always more desirable.

Performance Optimisations. Since the work scanning approach can incur
significant overhead when the hash table is sparsely filled with unexplored
states [15], we have implemented several optimisations in this area:

– The original version of GPUexplore already implemented a technique called
work claiming : once a work tile has been completely processed, i.e. all states
in the tile have been explored, new states are copied directly from the cache to
the work tile, which both reside in shared memory. This reduces the amount
of scanning that needs to be performed. However, once a kernel execution
terminates, the contents of the shared memory are lost. To mitigate this,
GPUexplore 2.0 temporarily stores the tile in global memory between kernel
launches.

– We observed that the work scanning approach is especially inefficient whenever
the hash table slice belonging to some block B contains no work. In that case,
B would completely scan its slice at the beginning of every search iteration,
thereby wasting a lot of time. GPUexplore 2.0 prevents this by keeping
track of the presence of unexplored states in each slice. When some block A
places an unexplored state in the slice belonging to B, A sets B’s work flag
to true. Once B has gathered all the work in its slice, it sets its own flag to
false.

– After a block has completed gathering work from some part of its hash table
slice, it is not likely that this part will contain much new work once the next

GPUexplore 2.0: Unleashing GPU Explicit-State Model Checking 699

work scanning is started. Therefore, in GPUexplore 2.0, blocks keep track
of which part of their hash table slice they last scanned. The next scan can
then continue from the position where the previous one finished.

We also performed several optimisations concerning thread synchronisation. We
modified the thread hierarchy so that vector groups never span more than one
warp. This allows the threads in a group to share information through warp
instructions for register swapping. With these changes, we were able to remove
all calls to the syncthreads CUDA function from the main loop of the kernel.
This greatly improved the speed of successor generation, since now, warps spend
less time waiting for each other.

5 Experimental Results

To show the improvements in runtime of GPUexplore 2.0 (without applying
partial-order reduction), we performed several experiments. We compared GPU-

explore 2.0 with the original version of GPUexplore and with CADP [11].
The sequential experiments were executed on an Intel Xeon E5520 and 1TB
of RAM. We used two different GPUs for running GPUexplore: an NVIDIA
K20m (13 SMs, 5 GB of global memory) and an NVIDIA Titan X (24 SMs,
12 GB of global memory). For the original version of GPUexplore, we ran the
kernel on 3,120 blocks of 512 threads each, and performed ten iterations, consist-
ing of scanning for work and exploring the states in the resulting work tile, per
kernel launch. For GPUexplore 2.0, we ran 6,144 blocks of 512 threads each,
and performed only one iteration per kernel launch. The optimal parameters for
each version of our tool differ slightly due to the changes we made in the work
scanning algorithm.

As benchmarks, we used models from different origins: odp, transit and asyn3
are models from the CADP toolkit. The 1394, acs and wafer stepper models
originate from mCRL2 [9]. The lamport, lann, peterson and szymanski models
come from the BEEM database3. All models are encoded in the EXP format. The
models with a.1-suffix are enlarged versions of the original models [15].

For each model and tool, we measured the total runtime (initialisation and
state space exploration). For the GPU experiments, we took the average of five
runs. The CPU experiments were run a single time. The results can be found in
Table 1. The two columns under ‘speed-up’ indicate the speed-up of GPUex-

plore 2.0 over CADP and GPUexplore on the Titan X, respectively. GPU-

explore 2.0 achieves an average speed-up of 70 times over CADP. It is worth
noting that GPUexplore 2.0 can offer more than two orders of magnitude
speed-up for larger models, when the parallel potential of the GPU is fully used.

On average, the Titan X, released in 2015, yields a speed-up of 5.5 times
compared to the K20m from 2012. The speed-up gained by our optimisations is

3 http://paradise.fi.muni.cz/beem.

http://paradise.fi.muni.cz/beem

700 A. Wijs et al.

Table 1. Runtimes for CADP, the original GPUexplore and GPUexplore 2.0.

CADP GPUexplore GPUexplore 2.0 Speed-up

Model #states #transitions CPU K20m Titan X Titan X Seq. Orig

acs 4,764 14,760 2.25 10.51 2.26 0.33 6.9 6.9

odp 91,394 641,226 2.03 8.63 2.19 0.34 5.9 6.4

1394 198,692 355,338 2.10 23.10 3.85 0.51 4.1 7.6

acs.1 200,317 895,004 3.58 15.06 2.77 0.46 7.8 6.0

transit 3,763,192 39,925,524 37.79 26.20 4.54 1.21 31.3 3.8

wafer stepper.1 3,772,753 19,028,708 22.25 47.25 7.33 1.42 15.7 5.2

odp.1 7,699,456 31,091,554 76.73 29.78 5.78 1.84 41.8 3.1

1394.1 10,138,812 96,553,318 66.33 61.40 8.44 1.90 34.8 4.4

asyn3 15,688,570 86,458,183 352.56 273.41 37.97 3.87 91.2 9.8

lamport8 62,669,317 304,202,665 944.80 221.80 41.30 6.91 136.7 6.0

des 64,498,297 518,438,860 468.51 107.22 25.42 18.64 25.1 1.4

szymanski5 79,518,740 922,428,824 1393.35 512.13 86.17 8.93 156.0 9.6

peterson7 142,471,098 626,952,200 3463.06 4337.41 1004.07 36.42 95.1 27.6

lann6 144,151,629 648,779,852 2377.73 492.70 94.85 12.52 189.9 7.6

lann7 160,025,986 944,322,648 3035.55 877.74 164.90 19.83 153.1 8.3

asyn3.1 190,208,728 876,008,628 4360.00 2703.61 421.87 36.61 119.1 11.5

Average 69.7 7.8

7.8 times. This results in a combined speed-up (hardware and software improve-
ments) of 42.6 times relative to our last publication [15]. We remark that the
speed-up measurement for the smaller models are skewed in favour of the origi-
nal version of GPUexplore, since GPUexplore 2.0 spends most of the time
on initialization when the state space is small. When measuring only the time
required for exploration, our optimisations result in an average speed-up of 11.5
times.

6 Conclusions

We have presented a new version of the GPU explicit-state model checker GPU-

explore, which has been further optimised and supports partial-order reduc-
tion. Furthermore, we discussed the impact of both the optimisations and the
recent improvements in hardware on the average runtime. For future work, we
plan to add support for liveness properties. Recently, this has been investi-
gated [13], but those findings are still to be added to the current stable version.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing fast LTL model checking
algorithms for many-core GPUs. J. Parallel Distrib. Comput. 72(9), 1083–1097
(2012)

GPUexplore 2.0: Unleashing GPU Explicit-State Model Checking 701

3. Barnat, J., Brim, L., Češka, M., Lamr, T.: CUDA accelerated LTL model checking.
In: 15th International Conference on Parallel and Distributed Systems, pp. 34–41.
IEEE (2009)

4. Bartocci, E., Defrancisco, R., Smolka, S.A.: Towards a GPGPU-parallel SPIN
model checker. In: SPIN, pp. 87–96. ACM (2014)

5. Basten, T., Bošnački, D.: Enhancing Partial-Order Reduction via Process Cluster-
ing. In: 16th IEEE International Conference on Automated Software Engineering.
pp. 245–253 (2001)

6. Basten, T., Bošnački, D., Geilen, M.: Cluster-based partial-order reduction. ASE
11(4), 365–402 (2004)

7. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model
checking on general purpose graphics processors. STTT 13(1), 21–35 (2010)

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2001)

9. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., Vink, E.P., Wesselink,
W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

10. Edelkamp, S., Sulewski, D.: Efficient explicit-state model checking on general pur-
pose graphics processors. In: Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349,
pp. 106–123. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16164-3 8

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

12. Lang, F.: Refined interfaces for compositional verification. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 159–174. Springer, Heidelberg (2006). doi:10.1007/11888116 13

13. Wijs, A.: BFS-based model checking of linear-time properties with an application
on GPUs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
472–493. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41540-6 26

14. Wijs, A., Bošnački, D.: GPUexplore: many-core on-the-fly state space exploration
using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 233–247. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 16

15. Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of safety properties
using GPUs. STTT 18(2), 1–17 (2015)

16. Wu, Z., Liu, Y., Liang, Y., Sun, J.: GPU accelerated counterexample generation in
LTL model checking. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 413–429. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11737-9 27

17. Wu, Z., Liu, Y., Sun, J., Shi, J., Qin, S.: GPU accelerated on-the-fly reachability
checking. In: 20th International Conference on Engineering of Complex Computer
Systems, pp. 100–109. IEEE (2015)

http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/978-3-642-16164-3_8
http://dx.doi.org/10.1007/11888116_13
http://dx.doi.org/10.1007/978-3-319-41540-6_26
http://dx.doi.org/10.1007/978-3-642-54862-8_16
http://dx.doi.org/10.1007/978-3-319-11737-9_27

Approximate Bisimulation and Discretization
of Hybrid CSP

Gaogao Yan, Li Jiao, Yangjia Li, Shuling Wang(B), and Naijun Zhan(B)

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{yangg,ljiao,yangjia,wangsl,znj}@ios.ac.cn

Abstract. Hybrid Communicating Sequential Processes (HCSP) is a
powerful formal modeling language for hybrid systems, which is an exten-
sion of CSP by introducing differential equations for modeling continu-
ous evolution and interrupts for modeling interaction between continu-
ous and discrete dynamics. In this paper, we investigate the semantic
foundation for HCSP from an operational point of view by proposing
the notion of approximate bisimulation, which provides an appropriate
criterion to characterize the equivalence between HCSP processes with
continuous and discrete behaviour. We give an algorithm to determine
whether two HCSP processes are approximately bisimilar. In addition,
based on which, we propose an approach on how to discretize HCSP,
i.e., given an HCSP process A, we construct another HCSP process B
which does not contain any continuous dynamics such that A and B are
approximately bisimilar with given precisions. This provides a rigorous
way to transform a verified control model to a correct program model,
which fills the gap in the design of embedded systems.

Keywords: HCSP · Approximately bisimilar · Hybrid systems · Dis-
cretization

1 Introduction

Embedded Systems (ESs) make use of computer units to control physical
processes so that the behavior of the controlled processes meets expected
requirements. They have become ubiquitous in our daily life, e.g., automotive,
aerospace, consumer electronics, communications, medical, manufacturing and
so on. ESs are used to carry out highly complex and often critical functions such
as to monitor and control industrial plants, complex transportation equipments,
communication infrastructure, etc. The development process of ESs is widely
recognized as a highly complex and challenging task. Model-Based Engineering

This work is supported partly by “973 Program” under grant No. 2014CB340701,
by NSFC under grants 91418204 and 61502467, by CDZ project CAP (GZ 1023),
and by the CAS/SAFEA International Partnership Program for Creative Research
Teams.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 702–720, 2016.
DOI: 10.1007/978-3-319-48989-6 43

Approximate Bisimulation and Discretization of Hybrid CSP 703

(MBE) is considered as an effective way of developing correct complex ESs, and
has been successfully applied in industry [16,21]. In the framework of MBE, a
model of the system to be developed is defined at the beginning; then extensive
analysis and verification are conducted based on the model so that errors can be
detected and corrected at early stages of design of the system. Afterwards, model
transformation techniques are applied to transform abstract formal models into
more concrete models, even into source code.

To improve the efficiency and reliability of MBE, it is absolutely necessary
to automate the system design process as much as possible. This requires that
all models at different abstraction levels have a precise mathematical semantics.
Transformation between models at different abstraction levels should preserve
semantics, which can be done automatically with tool support.

Thus, the first challenge in model-based formal design of ESs is to have a
powerful modelling language which can model all kinds of features of ESs such as
communication, synchronization, concurrency, continuous and discrete dynamics
and their interaction, real-time, and so on, in an easy way. To address this issue,
Hybrid Communicating Sequential Processes (HCSP) was proposed in [14,36],
which is an extension of CSP by introducing differential equations for model-
ing continuous evolutions and interrupts for modeling interaction between con-
tinuous and discrete dynamics. Comparing with other formalisms, e.g., hybrid
automata [17], hybrid programs [24], etc., HCSP is more expressive and much
easier to be used, as it provides a rich set of constructors. Through which a com-
plicated ES with different behaviours can be easily modeled in a compositional
way. The semantic foundation of HCSP has been investigated in the literature,
e.g., in He’s original work on HCSP [14], an algebraic semantics of HCSP was
given by defining a set of algebraic laws for the constructors of HCSP. Sub-
sequently, a DC-based semantics for HCSP was presented in [36] due to Zhou
et al. These two original formal semantics of HCSP are very restrictive and
incomplete, for example, it is unclear whether the set of algebraic rules defined
in [14] is complete, and super-dense computation and recursion are not well han-
dled in [36]. In [8,13,22,33,35], the axiomatic, operational, and the DC-based
and UTP-based denotational semantics for HCSP are proposed, and the rela-
tions among them are discussed. However, regarding operational semantics, just
a set of transition rules was proposed in [35]. It is unclear in what sense two
HCSP processes are equivalent from an operational point of view, which is the
cornerstone of operational semantics, also the basis of refinement theory for a
process algebra. So, it absolutely deserves to investigate the semantic foundation
of HCSP from an operational point of view.

Another challenge in the model-based formal design of ESs is how to trans-
form higher level abstract models (control models) to lower level program models
(algorithm models), even to C code, seamlessly in a rigorous way. Although huge
volume of model-based development approaches targeting embedded systems
has been proposed and used in industry and academia, e.g., Simulink/Stateflow
[1,2], SCADE [9], Modelica [31], SysML [3], MARTE [28], Ptolemy [10], hybrid
automata [17], CHARON [5], HCSP [14,36], Differential Dynamic Logic [24],

704 G. Yan et al.

and Hybrid Hoare Logic [22], the gap between higher-level control models and
lower-level algorithm models still remains.

Approximate bisimulation [12] is a popular method for analyzing and ver-
ifying complex hybrid systems. Instead of requiring observational behaviors of
two systems to be exactly identical, it allows errors but requires the “distance”
between two systems remain bounded by some precisions. In [11], with the use
of simulation functions, a characterization of approximate simulation relations
between hybrid systems is developed. A new approximate bisimulation relation
with two parameters as precisions, which is very similar to the notion defined
in this paper, is introduced in [18]. For control systems with inputs, the method
for constructing a symbolic model which is approximately bisimilar with the
original continuous system is studied in [26]. Moreover, [23] discusses the prob-
lem for building an approximately bisimilar symbolic model of a digital control
system. Also, there are some works on building symbolic models for networks of
control systems [27]. But for all the above works, either discrete dynamics is not
considered, or it is assumed to be atomic actions independent of the continuous
variables. In [15,20,32], the abstraction of hybrid automata is considered, but
it is only guaranteed that the abstract system is an approximate simulation of
the original system. In [25], a discretization of hybrid programs is presented for
a proof-theoretical purpose, i.e., it aims to have a sound and complete axiomati-
zation relative to properties of discrete programs. Differently from all the above
works, we aim to have a discretization of HCSP, for which discrete and continu-
ous dynamics, communications, and so on, are entangled with each other tightly,
to guarantee that the discretized process has the approximate equivalence with
the original process.

The main contributions of this paper include:

– First of all, we propose the notion of approximate bisimulation, which provides
a criterion to characterize in what sense two HCSP processes with differential
kinds of behaviours are equivalent from an operational point of view. Based
on which, a refinement theory for HCSP could be developed.

– Then, we show that whether two HCSP processes are approximately bisimilar
or not is decidable if all ordinary differential equations (ODEs) occurring in
them satisfy globally asymptotical stability (GAS) condition (the definition
will be given later). This is achieved by proposing an algorithm to compute
an approximate bisimulation relation for the two HCSP processes.

– Most importantly, we present how to discretize an HCSP process (a control
model) by a discrete HCSP process (an algorithm model), and prove they
are approximately bisimilar, if the original HCSP process satisfies the GAS
condition and is robustly safe with respect to some given precisions.

The rest of this paper is organized as follows: In Sect. 2, we introduce some
preliminary notions on dynamical systems. Sect. 3 defines transition systems and
the approximate bisimulation relation between transition systems. The syntax
and the transition semantics of HCSP, and the approximately bisimilar of HCSP
processes are presented in Sect. 4. The discretization of HCSP is presented in
Sect. 5. Throughout the paper, and in Sect. 6, a case study on the water tank

Approximate Bisimulation and Discretization of Hybrid CSP 705

system [4] is shown to illustrate our method. At the end, Sect. 7 concludes the
paper and discusses the future work. For space limitation, the proofs for all the
lemmas and theorems are omitted, but can be found in [34].

2 Preliminary

In this section, we briefly review some notions in dynamical systems, that can be
found at [19,29]. In what follows, N, R, R+, R+

0 denote the natural, real, positive
and nonnegative real numbers, respectively. Given a vector x ∈ R

n, ‖x‖ denotes
the infinity norm of x ∈ R

n, i.e., ‖x‖ = max{|x1|, |x2|, ..., |xn|}. A continuous
function γ : R+

0 → R
+
0 , is said in class K if it is strictly increasing and γ(0) = 0;

γ is said in class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function
β : R+

0 × R
+
0 → R

+
0 is said in class KL if for each fixed s, the map β(r, s) ∈ K∞

with respect to r and, for each fixed r, β(r, s) is decreasing with respect to s and
β(r, s) → 0 as s → ∞.

A dynamical system is of the following form

ẋ = f(x), x(t0) = x0 (1)

where x ∈ R
n is the state and x(t0) = x0 is the initial condition.

Suppose a < t0 < b. A function X(.) : (a, b) → R
n is said to be a trajectory

(solution) of (1) on (a, b), if X(t0) = x0 and Ẋ(t) = f(X(t)) for all t ≥ t0.
In order to ensure the existence and uniqueness of trajectories, we assume f
satisfying the local Lipschitz condition, i.e., for every compact set S ⊂ R

n, there
exists a constant L > 0 s.t. ‖f(x)− f(y)‖ ≤ L‖x−y‖, for all x,y ∈ S. Then, we
write X(t,x0) to denote the point reached at time t ∈ (a, b) from initial condition
x0, which should be uniquely determined. In addition, we assume (1) is forward
complete [7], i.e., it is solvable on an open interval (a,+∞). An equilibrium point
of (1) is a point x̄ ∈ R

n s.t. f(x̄) = 0.

Definition 1. A dynamical system of form (1) is said to be globally asymptoti-
cally stable (GAS) if there exists a point x0 and a function β of class KL s.t.

∀x ∈ R
n ∀t ≥ 0.‖X(t,x) − x0‖ ≤ β(‖x − x0‖, t).

It is easy to see that the point x0 is actually the unique equilibrium point of the
system. When this point is previously known or can be easily computed, one can
prove the system to be GAS by constructing a corresponding Lyapunov function.
However, x0 cannot be found sometimes, for example, when the dynamics f of
the system depends on external inputs and thus is not completely known. The
concept of δ-GAS would be useful in this case.

Definition 2. A dynamical system of (1) is said to be incrementally globally
asymptotically stable (δ-GAS) if it is forward complete and there is a KL function
β s.t.

∀x ∈ R
n ∀y ∈ R

n ∀t ≥ 0.‖X(t,x) − X(t,y)‖ ≤ β(‖x − y‖, t).

706 G. Yan et al.

In [6], the relationship between GAS and δ-GAS was established, restated by
the following proposition.

Proposition 1. – If (1) is δ-GAS, then it is GAS.
– If there exist two strictly positive reals M and ε, and a differentiable function

V (x,y) with α1(‖x − y‖) ≤ V (x,y) ≤ α2(‖x − y‖) for some α1, α2 and ρ of
class K∞, s.t.

∀x,y ∈ R
n.

(‖x − y‖ ≤ ε ∧ ‖x‖ ≥ M ∧ ‖y‖ ≥ M
⇒ ∂V

∂x f(x) + ∂V
∂y f(y) ≤ −ρ(‖x − y‖)

)
,

then the system (1) is δ-GAS.

A function V (x,y) satisfying the condition in Proposition 1 is called a δ-
GAS Lyapunov function of (1). Proposition 1 tells us that (1) is δ-GAS if and
only if it admits a δ-GAS Lyapunov function. In general, checking the inequality
in Definition 2 is difficult, one may construct δ-GAS Lyapunov functions as an
alternative.

3 Transition Systems and Approximate Bisimulation

In the following, the set of actions, denoted by Act, is assumed to consist of a
set of discrete actions which take no time (written as E), R+

0 the set of delay
actions which just take time delay, and a special internal action τ . Actions are
ranged over l1, . . . , ln,

Definition 3 (Transition system). A labeled transition system with observa-
tions is a tuple T = 〈Q,L,→, Q0, Y,H〉, where Q is a set of states, L ⊆ Act is a
set of labels, Q0 ⊆ Q is a set of initial states, Y is a set of observations, and H
is an observation function H : Q → Y , →⊆ Q × L × Q is a transition relation,
satisfying

1, identity: q
0−→ q always holds;

2, delay determinism: if q
d−→ q′ and q

d−→ q′′, then q′ = q′′; and
3, delay additivity: if q

d1−→ q′ and q′ d2−→ q′′ then q
d1+d2−→ q′′, where d, d1,

d2 ∈ R
+
0 .

A transition system T is said to be symbolic if Q and L ∩ E are finite, and
L ∩ R

+
0 is bounded, and metric if the output set Y is equipped with a metric

d : Y × Y → R
+
0 . In this paper, we regard Y as being equipped with the metric

d(y1,y2) = ‖y1 − y2‖.
A state trajectory of a transition system T is a (possibly infinite) sequence of

transitions q0 l0−→ q1 l1−→ · · · li−1

−−→ qi li−→ · · · , denoted by {qi li−→ qi+1}i∈N, s.t.

q0 ∈ Q0 and for any i, qi li−→ qi+1. An observation trajectory is a (possibly infinite)

sequence y0 l0−→ y1 l1−→ · · · li−1

−−→ yi li−→ · · · , denoted by {yi li−→ yi+1}i∈N, and it

Approximate Bisimulation and Discretization of Hybrid CSP 707

is accepted by T if there exists a corresponding state trajectory of T s.t. yi =
H(qi) for any i ∈ N. The set of observation trajectories accepted by T is called
the language of T , and is denoted by L(T). The reachable set of T is a subset of
Y defined by

Reach(T) = {y ∈ Y |∃{yi li−→ yi+1}i∈N ∈ L(T),∃j ∈ N,yj = y}.

We can verify the safety property of T by computing Reach(T) ∩ YU , in which
YU ⊆ Y is the set of unsafe observations. If it is empty, then T is safe, otherwise,
unsafe.

For a maximum sequence of τ actions qi τ−→ qi+1 τ−→ · · · τ−→ qi+k, we remove the
intermediate states and define the τ -compressed transition qi

τ� qi+k instead. For

unification, for a non-τ transition qi li−→ qi+1 where li �= τ , we define qi
li� qi+1.

In what follows, we will denote 〈Q,L,�, Q0, Y,H〉 the resulting labeled transi-
tion system from 〈Q,L,→, Q0, Y,H〉 by replacing each label transition with its τ -
compressed version. As a common convention in process algebra, we use p l==⇒ p′

to denote the closure of τ transitions, i.e., p(
τ�){0,1} l� (

τ�){0,1}p′, for any l ∈ L
in the sequel.

Given l1, l2 ∈ L ∪ {τ}, we define the distance dis(l1, l2) between them as
follows:

dis(l1, l2)
def
=

⎧
⎨

⎩

0 if both l1 and l2 are in E or are τ
|d − d′| if l1 = d and l2 = d′ are both delay actions, i.e., d, d′ ∈ R

+
0

∞ Otherwise

Definition 4 (Approximate bisimulation). Let Ti = 〈Qi, Li,�i, Q
0
i ,

Yi,Hi〉, (i = 1, 2) be two metric transition systems with the same output set
Y and metric d. Let h and ε be the time and value precision respectively. A rela-
tion Bh,ε ⊆ Q1 × Q2 is called a (h, ε)-approximate bisimulation relation between
T1 and T2, if for all (q1,q2) ∈ Bh,ε,

1. d(H1(q1),H2(q2)) ≤ ε,

2. ∀q1
l�1 q′

1, ∃q2
l′==⇒2 q′

2 s.t. dis(l, l′) ≤ h and (q′
1,q

′
2) ∈ Bh,ε, for l ∈ L1 and

l′ ∈ L2

3. ∀q2
l�2 q′

2, ∃q1
l′==⇒1 q′

1 s.t. dis(l, l′) ≤ h and (q′
1,q

′
2) ∈ Bh,ε, for l ∈ L2 and

l′ ∈ L1.

Definition 5. T1 and T2 are approximately bisimilar with the precision h and
ε (denoted T1

∼=h,ε T2), if there exists a (h, ε)-approximate bisimulation relation
Bh,ε between T1 and T2 s.t. for all q1 ∈ Q0

1, there exists q2 ∈ Q0
2 s.t. (q1,q2) ∈

Bh,ε, and vice versa.

708 G. Yan et al.

The following result ensures that the set of (h, ε)-approximate bisimulation
relations has a maximal element.

Lemma 1. Let{Bi
h,ε}i∈I be a family of (h, ε)-approximate bisimulation relations

between T1 and T2. Then,
⋃

i∈I Bi
h,ε is a (h, ε)-approximate bisimulation relation

between T1 and T2.

By Lemma 1, given the precision parameters h and ε, let {Bi
h,ε}i∈I be the set

of all (h, ε)-approximate bisimulation relations between T1 and T2, then the
maximal (h, ε)-approximate bisimulation relation between T1 and T2 is defined
by Bmax

h,ε =
⋃
i∈I

Bi
h,ε. For two transition systems that are approximately bisimilar,

the reachable sets have the following relationship:

Theorem 1. If T1
∼=h,ε T2, then Reach(T1) ⊆ N(Reach(T2), ε), where N(Y, ε)

denotes the ε neighborhood of Y , i.e. {x | ∃y.y ∈ Y ∧ ‖x − y‖ < ε}.
Thus, if the distance between Reach(T2) and the unsafe set YU is greater than
ε, then the intersection of Reach(T1) and YU is empty and hence T1 is safe,
whenever T1

∼=h,ε T2.

4 Hybrid CSP (HCSP)

In this section, we present a brief introduction to HCSP and define the transition
system of HCSP from an operational point of view. An example is given for
better understanding. Finally, we investigate the approximate bisimilarity for
HCSP processes.

4.1 HCSP

Hybrid Communicating Sequential Process (HCSP) is a formal language for
describing hybrid systems, which extends CSP by introducing differential equa-
tions for modelling continuous evolutions and interrupts for modeling the arbi-
trary interaction between continuous evolutions and discrete jumps. The syntax
of HCSP can be described as follows:

P ::=skip | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P � Q | P ∗

| �i∈I ioi → Pi | 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)
S ::=P | S‖S

where x, s for variables and vectors of variables, respectively, B and e are boolean
and arithmetic expressions, d is a non-negative real constant, ch is the channel
name, ioi stands for a communication event, i.e., either chi?x or chi!e, P,Q,Qi

are sequential process terms, and S stands for an HCSP process term. Given
an HCSP process S, we define Var(S) for the set of variables in S, and Σ(S)
the set of channels occurring in S, respectively. The informal meanings of the
individual constructors are as follows:

Approximate Bisimulation and Discretization of Hybrid CSP 709

– skip, x := e, wait d, ch?x, ch!e, P ;Q, P � Q, and �i∈I ioi → Pi are defined as
usual. B → P behaves as P if B is true, otherwise terminates.

– For repetition P ∗, P executes for an arbitrary finite number of times. We
assume an oracle num, s.t. for a given P ∗ in the context process S, num(P ∗, S)
returns the upper bound of the number of times that P is repeated in the
context.

– 〈F (ṡ, s) = 0&B〉 is the continuous evolution statement. It forces the vector s of
real variables to obey the differential equations F as long as B, which defines
the domain of s, holds, and terminates when B turns false. Without loss of
generality, we assume that the set of B is open, thus the escaping point will
be at the boundary of B. The communication interrupt 〈F (ṡ, s) = 0&B〉 �
�i∈I(ioi → Qi) behaves like 〈F (ṡ, s) = 0&B〉, except that the continuous
evolution is preempted as soon as one of the communications ioi takes place,
which is followed by the respective Qi. These two statements are the main
extension of HCSP for describing continuous behavior.

– S1‖S2 behaves as if S1 and S2 run independently except that all communica-
tions along the common channels connecting S1 and S2 are to be synchronized.
S1 and S2 in parallel can neither share variables, nor input or output channels.

For better understanding of the HCSP syntax, we model the water tank
system [4], for which two components Watertank and Controller, are composed
in parallel. The HCSP model of the system is given by WTS as follows:

WTS def= Watertank‖Controller
Watertank def= v := v0; d := d0;

(v = 1 → 〈ḋ = Qmax − πr2
√

2gd〉 � (wl!d → cv?v);
v = 0 → 〈ḋ = −πr2

√
2gd〉 � (wl!d → cv?v))∗

Controller def= y := v0;x := d0; (wait p;wl?x;x ≥ ub → y := 0;
x ≤ lb → y := 1; cv!y)∗

where Qmax, π, r and g are system parameters, v is the control variable which
takes 1 or 0, depending on whether the valve is open or not, d is the water level
of the Watertank and its dynamics depends on the value of v. v0 and d0 are the
initial values of controller variable and water level, respectively. Two channels,
wl and cv, are used to transfer the water level (d in Watertank) and control
variable (y in Controller) between Watertank and Controller, respectively. The
control value is computed by the Controller with a period of p. When the water
level is less than or equal to lb, the control value is assigned to 1, and when
the water level is greater than or equal to ub, the control value is assigned to
0, otherwise, it keeps unchanged. Basically, based on the current value of v,
Watertank and Controller run independently for p time, then Watertank sends
the current water level to Controller, according to which a new value of the
control variable is generated and sent back to Watertank, after that, a new
period repeats.

710 G. Yan et al.

4.2 Transition System of HCSP

Given an HCSP process S, we can derive a transition system T (S) = 〈Q,L,→,
Q0, Y,H〉 from S by the following procedure:

– the set of states Q = (subp(S) ∪ {ε}) × V (S), where subp(S) is the set
of sub-processes of S, e.g., subp(S) = {S,wait d,B → P} ∪ subp(P) for
S::=wait d;B → P , ε is introduced to represent the terminal process, meaning
that the process has terminated, and V (S) = {v|v ∈ Var(S) → Val} is the set
of evaluations of the variables in S, with Val representing the value space of
variables. Without confusion in the context, we often call an evaluation v a
(process) state. Given a state q ∈ Q, we will use fst(q) and snd(q) to return
the first and second component of q, respectively.

– The label set L corresponds to the actions of HCSP, defined as L = R
+
0 ∪

Σ(S) � {?, !} �R∪ {τ}, where d ∈ R
+
0 stands for the time progress, ch?c, ch!c ∈

Σ(S) � {?, !} � R means that an input along channel ch with value c being
received, an output along ch with value c being sent, respectively. Besides, the
silent action τ represents a discrete non-communication action of HCSP, such
as assignment, evaluation of boolean expressions, and so on.

– Q0 = {(S, v)|v ∈ V (S)}, representing that S has not started to execute, and
v is the initial process state of S.

– Y = Val, represents the set of value vectors corresponding to Var(S).
– Given q ∈ Q, H(q) = vec(snd(q)), where function vec returns the value vector

corresponding to the process state of q.
– → is the transition relation of S, which is given next.

Sequential Processes. A transition relation of a sequential HCSP process
takes the form (P, v) l−→ (P ′, v′), indicating that starting from state v, P executes
to P ′ by performing action l, with the resulting state v′. Here we present the
transition rules for continuous evolution as an illustration. Readers are referred
to [35] for the full details of the transition semantics, for both sequential and
parallel HCSP processes.

∀d > 0.∃S(.) : [0, d] → R
n.(S(0) = v(s) ∧ (∀p ∈ [0, d).(F (Ṡ(p), S(p)) = 0

∧v[s �→ S(p)](B) = true)))

(〈F (ṡ, s) = 0&B〉, v) d−→ (〈F (ṡ, s) = 0&B〉, v[s �→ S(d)])
v(B) = false

(〈F (ṡ, s) = 0&B〉, v) τ−→ (ε, v)

For 〈F (ṡ, s) = 0&B〉, for any d ≥ 0, it evolves for d time units according to
F if B evaluates to true within this period (the right end exclusive). In the rule,
S(·) : [0, d] → R

n defines the trajectory of the ODE F with initial value v(s).
Otherwise, by performing a τ action, the continuous evolution terminates if B
evaluates to false.

Approximate Bisimulation and Discretization of Hybrid CSP 711

Parallel Composition. Given two sequential processes P1, P2 and their tran-
sition systems T (P1) = 〈Q1, L1,→1, Q

0
1, Y1,H1〉 and T (P2) = 〈Q2, L2,→2,

Q0
2, Y2,H2〉, we can define the transition system of P1‖P2 as T (P1‖P2) =

〈Q,L,→, Q, Y,H〉, where:

– Q = ((subp(P1) ∪ {ε})‖(subp(P2) ∪ {ε})) × {v1 � v2|v1 ∈ V (P1), v2 ∈ V (P2)},
where given two sets of processes PS1 and PS2, PS1‖PS2 is defined as
{α‖β|α ∈ PS1 ∧β ∈ PS2}; v1 �v2 represents the disjoint union, i.e. v1 �v2(x)
is v1(x) if x ∈ Var(P1), otherwise v2(x).

– L = L1 ∪ L2.
– Q0 = {(P1‖P2, v

0
1 � v0

2)|(Pi, v
0
i) ∈ Q0

i for i = 1, 2}.
– Y = Y1 × Y2, the observation space of the parallel composition is obviously

the Cartesian product of Y1 and Y2.
– H(q) = H1(q) × H2(q), the observation function is the Cartesian product of

the two component observation functions correspondingly.
– → is defined based on the parallel composition of transitions of L1 and L2.

Suppose two transitions (P1, u) α−→ (P ′
1, u

′) and (P2, v)
β−→ (P ′

2, v
′) occur for

P1 and P2, respectively. The rule for synchronization is given below:

α = chi?c ∧ β = chi!e ∧ c = e

(P1‖P2, u � v) τ−→ (P ′
1‖P ′

2, u
′ � v′)

4.3 Approximate Bisimulation Between HCSP Processes

Let P1 and P2 be two HCSP processes, and h, ε the time and value precisions.
Let v0 be an arbitrary initial state. P1 and P2 are (h, ε)-approximately bisimilar,
denoted by P1

∼=h,ε P2, if T (P1) ∼=h,ε T (P2), in which T (P1) and T (P2) are the
τ -compressed transition systems of P1 and P2 with the same initial state v0,
respectively.

In Algorithm 1, we consider the (h, ε)-approximate bisimilation between P1

and P2 for which all the ODEs occurring in P1 and P2 are GAS. Suppose the set
of ODEs occurring in Pi is {F i

1, · · · , F i
ki}, and the equilibrium points for them are

xi
1, · · · , xi

ki for i = 1, 2 respectively. As a result, for each ODE, there must exist
a sufficiently large time, called equilibrium time, s.t. after the time, the distance
between the trajectory and the equilibrium point is less than ε. We denote the
equilibrium time for each F i

j for j = 1, · · · , ki by T i
j , respectively. Furthermore,

in order to record the execution time of ODEs, for each ODE F i
j , we introduce

an auxiliary time variable tij and add tij := 0; ṫij = 1 to F i
j correspondingly.

Algorithm 1 decides whether P1 and P2 are (h, ε)-approximately bisimilar.
When P1

∼=h,ε P2, it returns true, otherwise, it returns false. Let d be the
discretized time step. The algorithm is then taken in two steps. The first step
(lines 1–6) constructs the transition systems for P1 and P2 with time step d.
For m = 1, 2, T (Pm).Q and T (Pm).T represent the reachable set of states and
transitions of Pm, respectively, which are initialized as empty sets and then
constructed iteratively. At each step i, a new transition can be a d time progress,

712 G. Yan et al.

Algorithm 1. Deciding approximately bisimilar between two HCSP processes
Input: Processes P1, P2, the initial state v0, the time step d, and precisions h and ε;
Initialization:

T (Pm).Q0 = {(Pm, v0)}, T (Pm).T 0 = ∅ for m = 1, 2; i = 0;
1: repeat

2: T (Pm).T i+1 = T (Pm).T i ∪ {q
l� q′|∀q ∈ T (Pm).Qi, if (∃l ∈ {d, τ} ∪

Σ(Pm) � {?, !} � R.q
l� q′) or (∃l = d′.l < d ∧ q

l� q′ ∧ not (q
d′′
�

) for any d′′ in (d′, d]) and snd(q′)(tm
j) < T m

j };
3: T (Pm).Qi+1 = T (Pm).Qi ∪ postState(T (Pm).T i+1);
4: i ← i + 1;
5: until T (Pm).T i = T (Pm).T i−1

6: T (Pm).Q = T (Pm).Qi; T (Pm).T = T (Pm).T i;
7: B0

h,ε = {(q1, q2) ∈ T (P1).Q × T (P2).Q|d(H1(q1), H2(q2)) ≤ ε}; i = 0;
8: repeat

9: Bi+1
h,ε ← {(q1, q2) ∈ Bi

h,ε|∀q1
l�1 q′

1 ∈ T (P1).T , ∃q2
l′

==⇒2 q′
2 ∈ T (P2).T s.t.

(q′
1, q

′
2) ∈ Bi

h,ε and dis(l, l′) ≤ h, and ∀q2
l�2 q′

2 ∈ T (P2).T , ∃q1
l′

==⇒1 q′
1 ∈

T (P1).T s.t. (q′
1, q

′
2) ∈ Bi

h,ε and dis(l, l′) ≤ h};
10: i ← i + 1;
11: until Bi

h,ε = Bi−1
h,ε

12: Bh,ε = Bi
h,ε;

13: if ((P1, v0), (P2, v0)) ∈ Bh,ε then
14: return true;
15: else
16: return false;
17: end if

a τ event, or a communication event. Besides, a transition can be a time progress
less than d, which might be caused by the occurrence of a boundary interrupt
or a communication interrupt during a continuous evolution. The new transition
will be added only when the running time for each ODE Fm

j , denoted by tmj ,
is less than the corresponding equilibrium time. Therefore, for either process
Pm, whenever some ODE runs beyond its equilibrium time, the set of reachable
transitions reaches a fixpoint by allowing precision ε and will not be extended
any more. The set of reachable states can be obtained by collecting the post
states of reachable transitions. Based on Definition 4, the second step (lines 7–
17) decides whether the transition systems for P1 and P2 are approximately
bisimilar with the given precisions.

The first part (lines 1–6) of the algorithm computes the transitions of
processes. For each process Pm, its complexity is O(|T (Pm).T |), which is
O(�Tm

d � + Nm), where Tm represents the execution time of Pm till termination
or reaching the equilibrium time of some ODE, and Nm the number of atomic
statements of Pm. The second part (lines 7–17) checks for P1 and P2 each pair
of the states whose distance is within ε by traversing the outgoing transitions,
to see if they are truly approximate bisimilar, till the fixpoint Bh,ε is reached.

Approximate Bisimulation and Discretization of Hybrid CSP 713

We can compute the time complexity to be O(Q2
1Q

2
2T1T2), where Qm and Tm

represent O(|T (Pm).Q|) and O(|T (Pm).T |) for m = 1, 2 respectively.

Theorem 2 (Correctness). Algorithm1 terminates, and for any v0, P1
∼=h,ε

P2 iff ((P1, v0), (P2, v0)) ∈ Bh,ε.

5 Discretization of HCSP

In this section, we consider the discretization of HCSP processes, by which the
continuous dynamics is represented by discrete approximation. Let P be an
HCSP process and (h, ε) be the precisions, our goal is to construct a discrete
process D from P , s.t. P is (h, ε)-bisimilar with D, i.e., P ∼=h,ε D holds.

5.1 Discretization of Continuous Dynamics

Since most differential equations do not have explicit solutions, the discretization
of the dynamics is normally given by discrete approximation. Consider the ODE
ẋ = f(x) with the initial value x̃0 ∈ R

n, and assume X(t, x̃0) is the trajectory
of the initial value problem along the time interval [t0,∞). In the following
discretization, assume h and ξ represent the time step size and the precision of
the discretization, respectively. Our strategy is as follows:

– First, from the fact that ẋ = f(x) is GAS, there must exist a sufficiently large
T s.t. ‖X(t, x̃0) − x̄‖ < ξ holds when t > T , where x̄ is an equilibrium point.
As a result, after time T , the value of x can be approximated by the equilib-
rium point x̄ and the distance between the actual value of x and x̄ is always
within ξ.

– Then, for the bounded time interval [t0, T], we apply Euler method to dis-
cretize the continuous dynamics.

There are a range of different discretization methods for ODEs [30] and the
Euler method is an effective one among them. According to the Euler method,
the ODE ẋ = f(x) is discretized as

(x := x + hf(x); wait h)N

A sequence of approximate solutions {xi} at time stamps {hi} for i = 1, 2, · · · , N
with N = �T−t0

h � are obtained, satisfying (define x0 = x̃0):

hi = t0 + i ∗ h xi = xi−1 + hf(xi−1).

‖X(hi, x̃0) − xi‖ represents the discretization error at time hi. To estimate the
global error of the approximation, by Theorem 3 in [25], we can prove the fol-
lowing theorem:

714 G. Yan et al.

Theorem 3 (Global error with an initial error). Let X(t, x̃0) be a solution
on [t0, T] of the initial value problem ẋ = f(x),x(t0) = x̃0, and L the Lipschitz
constant s.t. for any compact set S of Rn, ‖f(y1) − f(y2)‖ ≤ L‖y1 − y2‖ for all
y1,y2 ∈ S. Let x0 ∈ R

n satisfy ‖x0 − x̃0‖ ≤ ξ1. Then there exists an h0 > 0,
s.t. for all h satisfying 0 < h ≤ h0, and for all n satisfying nh ≤ (T − t0), the
sequence xn = xn−1 + hf(xn−1) satisfies:

‖X(nh, x̃0) − xn‖ ≤ e(T−t0)Lξ1 +
h

2
max

ζ∈[t0,T]
‖X ′′(ζ, x̃0)‖eL(T−t0) − 1

L

By Theorem 3 and the property of GAS, we can prove the following main
theorem.

Theorem 4 (Approximation of an ODE). Let X(t, x̃0) be a solution on
[t0,∞] of the initial value problem ẋ = f(x),x(t0) = x̃0, and L the Lipschitz
constant. Assume ẋ = f(x) is GAS with the equilibrium point x̄. Then for any
precision ξ > 0, there exist h > 0, T > 0 and ξ1 > 0 s.t. ẋ = f(x),x(t0) = x̃0

and x := x0; (x := x+hf(x);wait h)N ;x := x̄; stop with N = �T−t0
h � are (h, ξ)-

approximately bisimilar, in which ‖x0 − x̃0‖ < ξ1 holds, i.e., there is an error
between the initial values.

5.2 Discretization of HCSP

We continue to consider the discretization of HCSP processes, among which
any arbitrary number of ODEs, the discrete dynamics, and communications are
involved. Below, given an HCSP process P , we use Dh,ε(P) to represent the
discretized process of P , with parameters h and ε to denote the step size and
the precision (i.e. the maximal “distance” between states in P and Dh,ε(P)),
respectively.

Before giving the discretization of HCSP processes, we need to introduce the
notion of readiness variables. In order to express the readiness information of
communication events, for each channel ch, we introduce two boolean variables
ch? and ch!, to represent whether the input and output events along ch are
ready to occur. We will see that in the discretization, the readiness information
of partner events is necessary to specify the behavior of communication interrupt.

Table 1 lists the definition of Dh,ε(P). For each rule, the original process
is listed above the line, while the discretized process is defined below the line.
For skip, x := e and wait d, they are kept unchanged in the discretization. For
input ch?x, it is discretized as itself, and furthermore, before ch?x occurs, ch? is
assigned to 1 to represent that ch?x becomes ready, and in contrary, after ch?x
occurs, ch? is reset to 0. The output ch!e is handled similarly. The compound
constructs, P ;Q, P � Q, P ∗ and P‖Q are discretized inductively according to
their structure. For B → P , B is still approximated to B and P is discretized
inductively. For external choice �i∈I ioi → Pi, the readiness variables ioi for all
i ∈ I are set to 1 at first, and after the choice is taken, all of them are reset to 0

Approximate Bisimulation and Discretization of Hybrid CSP 715

Table 1. The rules for discretization of HCSP

and the corresponding process is discretized. Notice that because I is finite, the
∀ operator is defined as an abbreviation of the conjunction over I.

Given a boolean expression B and a precision ε, we define N(B, ε) to be a
boolean expression which holds in the ε-neighbourhood of B. For instance, if B
is x > 2, then N(B, ε) is x > 2 − ε. For a continuous evolution 〈ẋ = f(x)&B〉,
under the premise that ẋ = f(x) is GAS, there must exists time T such that
when the time is larger than T , the distance between the actual state of x and
the equilibrium point, denoted by x̄, is less than ε. Then according to Theorem 3,
〈ẋ = f(x)&B〉 is discretized as follows: First, it is a repetition of the assignment
to x according to the Euler method for at most �T

h � number of times, and then
followed by the assignment of x to the equilibrium point and stop forever. Both
of them are guarded by the condition N(B, ε). For a communication interrupt
〈ẋ = f(x)&B〉��i∈I(ioi → Qi), suppose T is sufficiently large s.t. when the time
is larger than T , the distance between the actual state of x and the equilibrium
point, denoted by x̄, is less than ε, and furthermore, if the interruption occurs,
it must occur before T , and let ch∗ be the dual of ch∗, e.g., if ch∗ = ch?, then
ch∗ = ch! and vice versa. After all the readiness variables corresponding to {ioi}I

are set to 1 at the beginning, the discretization is taken by the following steps:
first, if N(B, ε) holds and no communication among {ioi}i∈I is ready, it executes
following the discretization of continuous evolution, for at most �T

h � number of
steps; then if N(B, ε) turns false without any communication occurring, the
whole process terminates and meanwhile the readiness variables are reset to 0;
otherwise if some communications get ready, an external choice between these

716 G. Yan et al.

ready communications is taken, and then, the readiness variables are reset to
0 and the corresponding Qi is followed; finally, if the communications never
occur and the continuous evolution never terminates, the continuous variable
is assigned to the equilibrium point and the time progresses forever. It should
be noticed that, the readiness variables of the partner processes will be used
to decide whether a communication is able to occur. They are shared between
parallel processes, but will always be written by one side.

Consider the water tank system introduced in Sect. 4, by using the rules in
Table 1, a discretized system WTSh,ε is obtained as follows:

WTSh,ε
def= Watertankh,ε‖Controllerh,ε

Watertankh,ε
def= v := v0; d := d0; (v = 1 → (wl! := 1;

(wl! ∧ ¬wl? → (d = d + h(Qmax − πr2
√

2gd);wait h;))� T1
h �;

wl! ∧ wl? → (wl!d;wl! := 0; cv? := 1; cv?v; cv? := 0);
wl! ∧ ¬wl? → (d = Q2

max/2gπ2r4; stop));
v = 0 → (wl! := 1;
(wl! ∧ ¬wl? → (d = d + h(−πr2

√
2gd);wait h;))� T2

h �;
wl! ∧ wl? → (wl!d;wl! := 0; cv? := 1; cv?v; cv? := 0);
wl! ∧ ¬wl? → (d = 0; stop)))∗

Controllerh,ε
def= y := v0;x := d0; (wait p;wl? := 1;wl?x;wl? := 0;

x ≥ ub → y := 0;x ≤ lb → y := 1; cv! := 1; cv!y; cv! := 0)∗

5.3 Properties

Before giving the main theorem, we introduce some notations. In order to keep
the consistency between the behavior of an HCSP process and its discretized
process, we introduce the notion of (δ, ε)-robustly safe. First, let φ denote a
formula and ε a precision, define N(φ,−ε) as the set {x|x ∈ φ∧∀y ∈ ¬φ.‖x−y‖ >
ε}. Intuitively, when x ∈ N(φ,−ε), then x is inside φ and moreover the distance
between it and the boundary of φ is greater than ε.

Definition 6 ((δ, ε)-robustly safe). An HCSP process P is (δ, ε)-robustly safe,
for a given initial state v0, a time precision δ > 0 and a value precision ε > 0,
if the following two conditions hold:

– for every continuous evolution 〈ẋ = f(x)&B〉 occurring in P , when P executes
up to 〈ẋ = f(x)&B〉 at time t with state v, if v(B) = false, then there exists
t̂ > t with t̂ − t < δ s.t. for any σ satisfying d(σ, v[x �→ X(t̂, x̃0)]) < ε,
σ ∈ N(¬B,−ε), where X(t, x̃0)]) is the solution of ẋ = f(x) with initial value
x̃0 = v0(x);

– for every alternative process B → P occurring in S, if B depends on con-
tinuous variables of P , then when P executes up to B → P at state v,
v ∈ N(B,−ε) or v ∈ N(¬B,−ε).

Approximate Bisimulation and Discretization of Hybrid CSP 717

As a result, when P is discretized with a time error less than δ and a value error
less than ε, then P and its discretized process have the same control flow. The
main theorem is given below.

Theorem 5. Let P be an HCSP process and v0 is the initial state. Assume P
is (δ, ε)-robustly safe with respect to v0. Let 0 < ε < ε be a precision. If for any
ODE ẋ = f(x) occurring in P , f is Lipschitz continuous and ẋ = f(x) is GAS
with f(x̄) = 0 for some x̄, then there exist h > 0 and the equilibrium time for
each ODE F in P , TF > 0, s.t. P ∼=h,ε Dh,ε(P).

We can compute that, the relation Lδ + Mh ≤ ε holds for some constants
L and M . Especially, L is the maximum value of the first derivative of x with
respect to t. More details can be found in [34].

6 Case Study

In this section, we illustrate our method through the safety verification of the
water tank system, WTS, that is introduced in Sect. 4. The safety property is to
maintain the value of d within [low, high], which needs to compute the reachable
set of WTS. However, it is usually difficult because of the complexity of the
system. Fortunately, the reachable set of the discretized WTSh,ε in Sect. 5 could
be easily obtained. Therefore, we can verify the original system WTS through
the discretized one, WTSh,ε, as follows.

Table 2. The reachable set for different precisions

ε h Reach(WTSh,ε) Reach(WTS)

0.2 0.2 [3.41, 6.5] [3.21, 6.7]

0.1 0.05 [3.42, 6.47] [3.32, 6.57]

0.05 0.01 [3.43, 6.46] [3.38, 6.51]

In order to analyze the system, first of all, we set the values of parameters
to Qmax = 2.0, π = 3.14, r = 0.18, g = 9.8, p = 1, lb = 4.1, ub = 5.9,
low = 3.3, high = 6.6, v0 = 1, and d0 = 4.5 (units are omitted here). Then,
by simulation, we compute the values of δ and ε as 0.5 and 0.24, s.t. WTS is
(δ, ε)-robustly safe. By Theorem 5, for a given ε with 0 < ε < ε, since ḋ and d are
monotonic for both ODEs, we can compute a h > 0 s.t. WTS ∼=h,ε WTSh,ε. For
different values of ε and h, Reach(WTSh,ε) could be computed, and then based
on Theorem 1, we can obtain Reach(WTS). Table 2 shows the results for different
choices of ε and h. As seen from the results, when the values of precisions become
smaller, Reach(WTSh,ε) and Reach(WTS) get closer and tighter. For the smaller
precisions, i.e., (ε = 0.1, h = 0.05) and (ε = 0.05, h = 0.01), the safety property
of the system is proved to be true. However, for (ε = 0.2, h = 0.2), the safety
property of the system can not be promised.

718 G. Yan et al.

7 Conclusion

Approximate bisimulation is a useful notion for analyzing complex dynamic sys-
tems via simpler abstract systems. In this paper, we define the approximate
bisimulation of hybrid systems modelled by HCSP, and present an algorithm
for deciding whether two HCSP processes are approximately bisimilar. We have
proved that if all the ODEs are GAS, then the algorithm terminates in a finite
number of steps. Furthermore, we define the discretization of HCSP processes, by
representing the continuous dynamics by Euler approximation. We have proved
for an HCSP process that, if the process is robustly safe, and if each ODE
occurring in the process is Lipschitz continuous and GAS, then there must exist
a discretization of the original HCSP process such that they are approximate
bisimilar with the given precisions. Thus, the results of analysis performed on the
discrete system can be carried over into the original dynamic system, and vice
versa. At the end, we illustrate our method by presenting the discretization of a
water tank example. Note that GAS and robust safety are very restrictive from
a theoretical point of view, but most of real applications satisfy these conditions
in practice.

Regarding future work, we will focus on the implementation, in particular,
the transformation from HCSP to ANSI-C. Moreover, it could be interesting to
investigate approximate bisimularity with time bounds so that the assumptions
of GAS and robust safety can be dropped. In addition, it deserves to investi-
gate richer refinement theories for HCSP based on the notion of approximately
bisimulation, although itself can be seen as a refinement relation as discussed in
process algebra.

References

1. Simulink User’s Guide (2013). http://www.mathworks.com/help/pdf doc/
simulink/sl using.pdf

2. Stateflow User’s Guide (2013). http://www.mathworks.com/help/pdf doc/
stateflow/sf using.pdf

3. SysML V 1.4 Beta Specification (2013). http://www.omg.org/spec/SysML
4. Ahmad, E., Dong, Y., Wang, S., Zhan, N., Zou, L.: Adding formal mean-

ings to AADL with hybrid annex. In: Lanese, I., Madelaine, E. (eds.) FACS
2014. LNCS, vol. 8997, pp. 228–247. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-15317-9 15

5. Alur, R., Dang, T., Esposito, J., Hur, Y., Ivancic, F., Kumar, V., Mishra, P.,
Pappas, G., Sokolsky, O.: Hierarchical modeling and analysis of embedded systems.
Proc. IEEE 91(1), 11–28 (2003)

6. Angeli, D., et al.: A Lyapunov approach to incremental stability properties. IEEE
Trans. Autom. Control 47(3), 410–421 (2002)

7. Angeli, D., Sontag, E.: Forward completeness, unboundedness observability, and
their Lyapunov characterizations. Syst. Control Lett. 38(4), 209–217 (1999)

8. Chen, M., Ravn, A., Wang, S., Yang, M., Zhan, N.: A two-way path between formal
and informal design of embedded systems. In: UTP 2016. LNCS (2016)

http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_using.pdf
http://www.omg.org/spec/SysML
http://dx.doi.org/10.1007/978-3-319-15317-9_15
http://dx.doi.org/10.1007/978-3-319-15317-9_15

Approximate Bisimulation and Discretization of Hybrid CSP 719

9. Dormoy, F.: Scade 6: a model based solution for safety critical software develop-
ment. ERTS 08, 1–9 (2008)

10. Eker, J., Janneck, J., et al.: Taming heterogeneity - the Ptolemy approach. Proc.
IEEE 91(1), 127–144 (2003)

11. Girard, A., Julius, A., Pappas, G.: Approximate simulation relations for hybrid
systems. Discrete Event Dyn. Syst. 18(2), 163–179 (2008)

12. Girard, A., Pappas, G.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Autom. Control 52(5), 782–798 (2007)

13. Guelev, D., Wang, S., Zhan, N.: Hoare-style reasoning about hybrid CSP in the
duration calculus. Technical report ISCAS-SKLCS-13-01, Institute of Software,
Chinese Academy of Sciences (2013)

14. He, J.: From CSP to hybrid systems. In: A Classical Mind, Essays in Honour of
C.A.R. Hoare, pp. 171–189. Prentice Hall International (UK) Ltd. (1994)

15. Henzinger, T., Ho, P., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid
systems. IEEE Trans. Autom. Control 43(4), 540–554 (1998)

16. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006). doi:10.1007/11813040 1

17. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292 (1996)
18. Julius, A., D’Innocenzo, A., Di Benedetto, M., Pappas, G.: Approximate equiva-

lence and synchronization of metric transition systems. Syst. Control Lett. 58(2),
94–101 (2009)

19. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice Hall, New Jersey
(1996)

20. Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 402–416. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-31954-2 26

21. Lee, E.A.: What’s ahead for embedded software? Computer 33(9), 18–26 (2000)
22. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for

hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17164-2 1

23. Majumdar, R., Zamani, M.: Approximately bisimilar symbolic models for digital
control systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 362–377. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 28

24. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Logic Comput. 20(1), 309–352 (2010)

25. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550.
IEEE (2012)

26. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for
nonlinear control systems. Automatica 44(10), 2508–2516 (2008)

27. Pola, G., Pepe, P., Di Benedetto, M.: Symbolic models for networks of discrete-time
nonlinear control systems. In: ACC, pp. 1787–1792. IEEE (2014)

28. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems
with UML and MARTE: Developing Cyber-Physical Systems. Elsevier, Amsterdam
(2013)

29. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional
Systems, vol. 6. Springer, Heidelberg (2013)

30. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, Hei-
delberg (2013)

31. Tiller, M.: Introduction to Physical Modeling with Modelica, vol. 615. Springer,
Heidelberg (2012)

http://dx.doi.org/10.1007/11813040_1
http://dx.doi.org/10.1007/978-3-540-31954-2_26
http://dx.doi.org/10.1007/978-3-642-17164-2_1
http://dx.doi.org/10.1007/978-3-642-31424-7_28

720 G. Yan et al.

32. Tiwari, A.: Abstractions for hybrid systems. Formal Methods Syst. Des. 32(1),
57–83 (2008)

33. Wang, S., Zhan, N., Guelev, D.: An assume/guarantee based compositional cal-
culus for hybrid CSP. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC
2012. LNCS, vol. 7287, pp. 72–83. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29952-0 13

34. Yan, G., Jiao, L., Li, Y., Wang, S., Zhan, N.: Approximate Bisimulation and Dis-
cretization of Hybrid CSP. CoRR, abs/1609.00091, August 2016

35. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid
systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Program-
ming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207–281. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39721-9 5

36. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). doi:10.1007/BFb0020972

http://dx.doi.org/10.1007/978-3-642-29952-0_13
http://dx.doi.org/10.1007/978-3-642-29952-0_13
http://dx.doi.org/10.1007/978-3-642-39721-9_5
http://dx.doi.org/10.1007/BFb0020972

A Linear Programming Relaxation
Based Approach for Generating

Barrier Certificates of Hybrid Systems

Zhengfeng Yang1, Chao Huang2, Xin Chen2, Wang Lin3(B), and Zhiming Liu4

1 Shanghai Key Lab of Trustworthy Computing,
East China Normal University, Shanghai, China

zfyang@sei.ecnu.edu.cn
2 State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China

{huangchao,chenxin}@nju.edu.cn
3 Key Lab of Mathematics Mechanization, AMSS, CAS, Beijing, China

linwang@wzu.edu.cn
4 Center for Research and Innovation in Software Engineering,

Southwest University, Chongqing, China
zhimingliu88@swu.edu.cn

Abstract. This paper presents a linear programming (LP) relaxation
based approach for generating polynomial barrier certificates for safety
verification of semi-algebraic hybrid systems. The key idea is to introduce
an LP relaxation to encode the set of nonnegativity constraints derived
from the conditions of the associated barrier certificates and then resort
to LP solvers to find the solutions. The most important benefit of the
LP relaxation based approach is that it possesses a much lower com-
putational complexity and hence can be solved very efficiently, which is
demonstrated by the theoretical analysis on complexity as well as the
experiment on a set of examples gathered from the literature. As far as
we know, it is the first method that enables LP relaxation based poly-
nomial barrier certificate generation.

Keywords: Formal verification · Hybrid systems · Barrier certificates ·
Linear programming relaxation

1 Introduction

Safety verification of hybrid systems has attracted much research attention in
recent years [2]. This is mainly due to the requirement of ensuring the safety of
embedded systems whose complex behaviors can be exhibited by hybrid systems
via interacting discrete and continuous dynamics [3,12]. In principle, safety ver-
ification aims to decide that starting from an initial set, whether a system can
evolve to some unsafe region in the state space. A successful verification can give
more confidence in the verified systems.

Barrier certificate based methods are developed to handle the safety veri-
fication problem [13,16,17,27]. A barrier certificate is a function of state that
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 721–738, 2016.
DOI: 10.1007/978-3-319-48989-6 44

722 Z. Yang et al.

divides the state space into two parts. All system trajectories starting from a
given set of initial conditions fall into one side while the unsafe region locates
on the other. Thus, the problem of safety verification is converted to the prob-
lem of barrier certificate generation. Compared with reachable set computation,
when encountering nonlinear systems, a barrier function is much easier to com-
pute. It also gives more exact result when the safety property refers to infinite
horizon [17].

Barrier certificate generation is a computationally intensive task. Usually, a
function of a specific form with unknown coefficients is given as the template,
and then computational methods based on different principles are used to deter-
mine the value of those unknown coefficients so that the conditions of the desired
barrier certificate are satisfied. For barrier certificate based verification, its effec-
tiveness and practicality are decided to a large extent by the efficiency of the
computational methods, therefore the method for effective computation becomes
a key point.

There have been many barrier certificates of different types proposed for
hybrid systems with different features [13,15,21,27,31]. Among them, polyno-
mial barrier certificates for semi-algebraic hybrid systems (i.e. those systems
whose vector fields are polynomials and whose set descriptions are polynomial
equalities or inequalities) receive most attention, as they are more universal.
For barrier certificates generation, methods based on sums of squares (SOS)
relaxation are quite popular, as the associated semidefinite programming (SDP)
has a much lower computational complexity and there are many efficient solvers
available.

The paper focuses on introducing linear programming (LP) relaxation to gen-
erating polynomial barrier certificates with convex condition for semi-algebraic
hybrid systems. Compared with SOS relaxation based approaches, our LP relax-
ation based method offers three main advantages: First, LP has a much lower
computational complexity than SDP does, thus it can be solved more quickly.
Second, LP provides a much higher numerical stability and hence can treat many
cases where SDP generates invalid polynomials due to numerical errors [15,21].
At last, LP gives a new encoding of polynomial positivity quite different from
SDP, and thus has the potential to generate polynomials that SDP is unable
to produce. It is a necessary complement to relaxation based methods as it can
generate barrier certificates uncovered by existing methods.

The proposed method considers a polynomial barrier certificate whose coeffi-
cients must satisfy a set of nonnegativity constraints of multivariate polynomials
over semi-algebraic sets. It employs the theory of Krivine-Vasilescu-Handelman’s
(KVH) Positivstellensatz [14] to construct an LP relaxation of the constraint set
and then relies on LP solvers to find the solution for the coefficients of the bar-
rier certificate. The theoretical analysis demonstrates that for a hybrid system,
the complexity of finding the solution based on the LP solver is approximately
O(n2d+D) while that based on the SDP solver is approximately O(n4D), where
n is the number of system variables, d and D are the degree bounds of the bar-
rier certificate and its nonnegative representation derived from LP relaxation

A Linear Programming Relaxation Based Approach 723

and SOS relaxation, respectively. Our LP relaxation based method is compared
with the SOS relaxation based approach over a set of benchmarks gathered from
the literature, which shows that our method provides much better efficiency. To
the best of our knowledge, it is the first study that enables LP relaxation based
polynomial barrier certificate generation.

We start by defining continuous systems and hybrid systems in Sect. 2. We
then present our approach and give a complexity analysis on both our LP relax-
ation based method and the SOS relaxation based method in Sect. 3. We present
how to use our approach to generate barrier certificate for several nontrivial
examples and compare the efficiency of our method with SOS relaxation based
method over a set of benchmarks in Sect. 4. We compare with related works in
Sect. 5 before concluding.

2 Continuous and Hybrid Systems

Notations. Let R and N be the field of real number and natural num-
ber, respectively; R[x] denotes the polynomial ring with coefficients in R over
x = [x1, x2, · · · , xn]T , and R[x]n denotes the n-dimensional polynomial ring
vector.

A continuous dynamical system is modeled by a finite number of first-order
ordinary differential equations

ẋ = f(x), (1)

where ẋ denotes the derivative of x with respect to the time variable t, and f(x)
is called vector field f(x) = [f1(x), · · · , fn(x)]T defined on an open set Ψ ⊆ R

n.
We assume that f satisfies the local Lipschitz condition, which ensures that given
x(0) = x0, there exists a time T > 0 and a unique function τ : [0, T) �→ R

n such
that τ(t) = x(t). And x(t) is called a solution of (1) that starts at a certain
initial state x0. Namely, x(t) is also called a trajectory of (1) from x0.

Definition 1 (Continuous System). A continuous system over x consists of
a tuple S : 〈Θ, f , Ψ〉, wherein Θ ⊆ R

n is a set of initial states, f is a vector field
over the domain Ψ ⊆ R

n.

Hybrid systems involve both continuous dynamics as well as discrete transi-
tions. To model hybrid systems, we use the notion of hybrid automata [3].

Definition 2 (Hybrid Automata). A hybrid automaton is a system H :
〈L, X, F , Ψ,E,G,R,Θ, �0〉, where
– L, a finite set of locations (or models);
– X ⊆ R

n is the continuous state space. The hybrid state space of the system is
defined by X = L × X and a state is defined by (�,x) ∈ X ;

– F : L → (Rn → R
n), assigns to each location � ∈ L a locally Lipschitz

continuous vector field f�;
– Ψ assigns to each location � ∈ L a location condition (location invari-

ant) Ψ(�) ⊆ R
n;

724 Z. Yang et al.

– E ⊆ L × L is a finite set of discrete transitions;
– G assigns to each transition e ∈ E a switching guard Ge ⊆ R

n;
– R assigns to each transition e ∈ E a reset function Re : Rn → R

n;
– Θ ⊆ R

n, an initial continuous state set;
– �0 ∈ L, the initial location. The initial state space of the system is defined by

�0 × Θ.

A trajectory [31] of H is an infinite sequence of states

(l0,x0), (l1,x1), · · · , (li,xi), (li+1,xi+1), · · ·

such that

– [Initiation] (l0,x0) ∈ �0 × Θ;
Furthermore, for each consecutive pair (li,xi), (li+1,xi+1), one of the two con-
secution conditions holds:

– [Discrete Consecution] e = (li, li+1) ∈ E, xi ∈ Ge and xi+1 = Re(xi); or
– [Continuous Consecution] li = li+1 = �, and there exists a time interval

[0, δ] such that the solution x(xi; t) to ẋ = f� evolves from xi to xi+1, while
satisfying the location invariant Ψ(�). Formally,

• x(xi, δ) = xi+1 and
• ∀t ∈ [0, δ],x(xi, t) ∈ Ψ(�).

A state (�,x) is called a reachable state of a hybrid system H from the initial
state set �0 × Θ if it appears in some trajectory of H. During a continuous
flow, the discrete location �i is maintained and the continuous state variables
x evolve according to the differential equations ẋ = f�i

(x), with x satisfying
the location invariant Ψ(�i). At the state (�i,x), if there is a discrete transition
e = (�i, �j) ∈ E such that x ∈ Ge, the system may undergo a transition to
location �j , and x will take the new value x′, which is determined by the reset
function Re.

In this paper, we focus on continuous systems and hybrid systems whose
elements are represented as polynomial relations (equalities and inequalities)
over the system variables. In what follows, the definition of semi-algebraic hybrid
system is provided. The definition of semi-algebraic continuous system is similar.

Definition 3 (Semi-algebraic Hybrid System). A semi-algebraic hybrid system
is a hybrid system: H : 〈L, X, F , Ψ,E,G,R,Θ, �0〉, where
– the continuous vector field F (�) for each � ∈ L is of the form ẋ = f�(x), where

f�(x) ∈ R[x]n;
– the initial condition Θ, the location invariant Ψ(�) for each � ∈ L, and the

guard condition Ge for each e ∈ E are semi-algebraic sets defined by polyno-
mial inequalities with variables x; Re ∈ R[x]n is the reset function for each
e ∈ E.

A Linear Programming Relaxation Based Approach 725

For ease of presentation, the semi-algebraic sets Θ, Ψ(�) and Ge in
Definition 3 are represented as follows:

Θ : = {x ∈ R
n | θ1(x) ≥ 0, . . . , θq(x) ≥ 0},

Ψ(�) : = {x ∈ R
n |ψ�,1(x) ≥ 0, . . . , ψ�,r(x) ≥ 0},

Ge : = {x ∈ R
n | ge,1(x) ≥ 0, . . . , ge,s(x) ≥ 0},

where � ∈ L, e ∈ E, and θi(x), ψ�,j(x), ge, k(x) are polynomials. In addition,
hereafter we assume that the above semi-algebraic sets are compact.

Given a semi-algebraic hybrid system H with prespecified unsafe state set
Xu = � × Xu, we say that the system H is safe if all trajectories of H starting
from the initial state set �0 × Θ, can not evolve to any state specified by Xu.
Given a semi-algebraic hybrid system H, the problem of verifying the safety
property is to decide that whether H is safe, or, any state specified by Xu is not
reachable. Here we also assume that Xu is a compact semi-algebraic set, defined
by

Xu(�) := {x ∈ R
n | ζ�,1(x) ≥ 0, . . . , ζ�,p(x) ≥ 0, },

where ζ�,i ∈ R[x], 1 ≤ i ≤ p.

3 Computational Method for Barrier Certificates

For safety verification of (continuous or hybrid) dynamical systems, the notion of
barrier certificates [16] plays an important role. A barrier certificate maps all the
states in the reachable set to non-negative reals and all the states in the unsafe
set to negative reals, thus can be employed to prove safety of dynamical systems.
Utilizing barrier certificates has the benefit of avoiding explicit computation of
the exact reachable set which is usually not tractable for nonlinear continuous
and hybrid systems. In other words, a barrier certificate can be regarded as the
over-approximation of the reachable set, and most importantly, is a boundary
between the reachable set and the given unsafe state set. In the sequel, we
propose a new computational method for generating the barrier certificates for
safety verification of dynamical systems.

3.1 Barriers Certificates

As stated in [13], the key point in generating barrier certificates is how to estab-
lish verification conditions that are as less conservative as possible and how to
efficiently compute the barrier certificates satisfying these verification conditions.
Taking them into account, the idea that introduces auxiliary polynomials to offer
relaxed verification conditions for barrier certificates of continuous and hybrid
systems can be applied.

Theorem 1. Let S : 〈Θ, f , Ψ〉 be a semi-algebraic continuous system, and Xu

be the given unsafe state set. Let λ(x) be a given polynomial. If there exists a
polynomial B(x) ∈ R[x], which satisfies the following conditions:

726 Z. Yang et al.

(i) B(x) ≥ 0∀x ∈ Θ,
(ii) Ḃ(x)−λ(x)B(x) > 0 ∀x ∈ Ψ , here Ḃ(x) denotes the Lie-derivative of B(x)

along the vector field f , i.e., Ḃ(x) =
∑n

i=1
∂B
∂xi

· fi(x),
(iii) B(x) < 0∀x ∈ Xu,

then B(x) is a barrier certificate of system S, and the safety of S is guaranteed.

Proof. Condition (ii) indicates that Ḃ(x) > 0 if B(x) = 0. Therefore, by condi-
tion (i) and (ii), B(x) cannot become negative during the continuous evolution
of S. Condition (iii) implies that all trajectories starting from Θ can not enter
Xu. We can conclude B(x) is a barrier certificate of S, which can guarantee the
safety of the system. �

Clearly, the existence of such a barrier certificate in Theorem 1 suffices to
guarantee the safety property of the given semi-algebraic continuous system.
Likewise, Theorem 1 can be generalized to attack safety verification of semi-
algebraic hybrid systems.

Theorem 2. Let H : 〈L, X, F , Ψ,E,G,R,Θ, �0〉 be a semi-algebraic hybrid
system, Xu be the unsafe assertion. Let λ�(x) be given polynomials for all � ∈ L,
and γe(x) be given nonnegative polynomials for all e ∈ E. If there exists a
polynomial B�(x) ∈ R[x] for each location � ∈ L, which satisfies the following
conditions:

(i) B�0(x) ≥ 0∀x ∈ Θ,
(ii) Ḃ�(x) − λ�(x)B�(x) > 0 ∀x ∈ Ψ(�), here Ḃ�(x) denotes the Lie-derivative

of B�(x) along the vector field f�, i.e., Ḃ�(x) =
∑n

i=1
∂B�

∂xi
· f�,i(x),

(iii) B�′(x′) − γe(x)B�(x) ≥ 0∀x′ = Re(x) ∀x ∈ Ge, ∀e = (�, �′) ∈ E,
(iv) B�(x) < 0∀x ∈ Xu(�),

then B�(x) is a barrier certificate at the location �, and the safety of the system
H is guaranteed.

Proof. By condition (i), B�0(x) is nonnegative on Θ. Condition (ii) indicates
that Ḃ�(x) > 0 if B�(x) > 0, thus yielding that B�(x) is always nonnegative
during the continuous flow. Since γe is nonnegative, condition (iii) guarantees
that B�(x) cannot become negative during every discrete transition. Moreover,
condition (iv) shows that all reachable states of H cannot intersect with the
unsafe region Xu. �

Remark 1. Our verification conditions of barrier certificates in Theorems 1 and
2 are also called as the polynomial-scale consecution of the inductive invariants
defined in [23], which is less conservative than the constant-scale consecution
given in [13].

A Linear Programming Relaxation Based Approach 727

3.2 Computation of Barrier Certificates

In this section, we consider how to construct barrier certificates given in
Theorems 1 and 2 for semi-algebraic dynamical systems. Investigating Theo-
rems 1 and 2, it turns out that all verification conditions can be encoded as
nonnegativity constraints for polynomials over the corresponding semi-algebraic
sets. For the given degree bound, one may construct the template of the barrier
polynomial B�(x) whose coefficients are parameters. In this case, our objective
is to find real-valued coefficients of B�(x), satisfying the verification conditions,
which is a typical quantifier elimination with polynomial equalities and inequal-
ities constraints. Some symbolic methods, such as QEPCAD [7] and REDLOG
[10] are available to offer mathematical proofs of the existence of the barrier
certificate, at the cost of high computational complexity. To alleviate this com-
putational intractability, we can apply SOS relaxation based approach [16] to
compute B�(x), which starts with sufficient verification conditions by means of
SOS representations, proceeds by dealing with SDP. Remark that SDP primarily
relies on numerical interior-point SDP solvers running in fixed precision.

These limits may prevent the SOS relaxation based method from yielding
valid B�(x). This paper follows another route: rather than applying SOS repre-
sentations, we offer an alternative one for the nonnegativity of polynomials over
compact semi-algebraic sets, and take advantage of this representation to pro-
pose new sufficient verification conditions for building the barrier certificates of
dynamical systems. Notably, benefited from the above strategy, safety verifica-
tion of dynamical systems can be converted into a tractable linear programming.

Let K be a compact semi-algebraic set defined by:

K = {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0}, (2)

where gj(x) ∈ R[x] for j = 1, · · · ,m. Since K is compact, one may compute
g∗ := max

x∈K

gj(x) for every j = 1, . . . ,m. Let g̃j(x) be the normalized polynomial

of gj(x) with respect to K, namely,

g̃j(x) =
{

gj(x)/g∗, if g∗ > 0,
gj(x), if g∗ = 0.

(3)

For convenience, we introduce the following polynomial vector notation.
Given a compact semi-algebraic set (2) with polynomials g1, . . . , gm, denote by
g̃ the polynomial vector:

g̃ = [g̃1, . . . , g̃m, 1 − g̃1, . . . , 1 − g̃m]T , (4)

and g̃α stands for the polynomial product of the form:

g̃α =
m∏

j=1

g̃
αj

j (1 − g̃j)αm+j , (5)

where α ∈ N
2m.

Now we recap an alternative representation of a nonnegative polynomial on
the compact semi-algebraic set.

728 Z. Yang et al.

Theorem 3 (Krivine-Vasilescu-Handelman’s(KVH) Positivstellensatz)[14]. Let
K be a compact semi-algebraic set as in (2), and let g̃j(x) be the normalized poly-
nomial gj(x) as in (3) for each j. Suppose the family {gj , (1 − gj)}m

j=0 generate
R[x] where g0 ≡ 1. If f(x) ∈ R[x] is strictly positive on K, then f(x) can be
represented as

f(x) =
∑

α∈N2m

cαg̃α (6)

where cα ∈ R≥0.

Remark 2. Following [14], if the polynomials {gj , 1 − gj}m
j=0 cannot generate

R[x], one can augment some linear functions such that the updated set of poly-
nomials can generate R[x]. To be more precise, let xk ≤ min{xk|x ∈ K} for all
k = 1, · · · , n. Then, with x �→ gm+k(x) := xk − xk, the updated K can generate
R[x] by plugging the (redundant) constraints gm+k ≥ 0, k = 1, · · · , n. Consider
K is compact, lower bounds {xk} on xk can be obtained or are known. For more
details, the reader refers to [14].

Assumption 1. For every compact semi-algebraic set K in this paper, the poly-
nomials {gj}m

j=0 can generate R[x], where g1 ≥ 0, . . . , gm ≥ 0 are the inequalities
of K as in (2).

From Theorem 3, the existence of the representation as in (6) provides a suffi-
cient and necessary condition for the strict positiveness of f(x) on the compact
set K. However, the number of the polynomial products in (6) is infinite, which
means that generating its representation is computationally hard. To illustrate
the computational applicability, we turn to selecting partial polynomial products
in the representation (6) by fixing a priori (much smaller) degree bound D, in
the following way. For the given positive integer D ∈ Z>0, we pick α ∈ N

2m such
that deg(g̃α) ≤ D. This strategy gives a sufficient condition for the nonnegativity
of the given polynomial on the compact semi-algebraic set.

Theorem 4. Let K be a compact semi-algebraic set as in (2), and let D be
a positive integer. Let g̃j(x) be the normalized polynomial gj(x) as in (3) for
each j. If f(x) ∈ R[x] can be written as

f(x) =
∑

deg(g̃α)≤D

cα g̃α with cα ≥ 0, (7)

then f(x) is nonnegative on K.

Proof. g̃j(x) is the normalized polynomial with respect to K, which follows that
g̃j(x) and 1 − g̃j(x) are nonnegative on K for each j. The desired result can be
easily obtained from cα ≥ 0. �

The representation (7) ensures that f(x) is nonnegative on K. Observing the
verification conditions in Theorems 1 and 2, we can see that all conditions can
be rewritten as a unified type, namely, the nonnegativity of polynomials on the

A Linear Programming Relaxation Based Approach 729

compact semi-algebraic set. From Theorem 4, the original verification conditions
can be relaxed as more tractable ones by the representations as (7). Let us now
demonstrate by an example on how to convert the verification condition into the
associated nonnegative representation.

Example 1. Consider the first verification condition in Theorem 1, B(x) ≥
0∀x ∈ Θ. Let θ̃j(x) be the normalized polynomial of θj(x) with respect to
Θ for each j, 1 ≤ j ≤ q. Let θ̃ be the normalized polynomial vector

θ̃ = [θ̃1, · · · , θ̃q, 1 − θ̃1, . . . , 1 − θ̃q]T .

Following Theorem 4, B(x) ≥ 0∀x ∈ Θ can be converted into the conservative
one with the given degree bound D ∈ Z>0, namely,

B(x) =
∑

deg(θ̃α)≤D

cαθ̃α, cα ∈ R≥0 =⇒ B(x) ≥ 0∀x ∈ Θ. �

As demonstrated in Example 1, we next provide a more tractable verification
condition for the barrier certificates of continuous systems and hybrid systems.
For notational convenience, throughout the rest of this paper, we will use θ̃, ψ̃,
ζ̃ to denote the normalized polynomial vectors with respect to Θ, Ψ and Xu,
respectively.

Theorem 5. Let S : 〈Θ, f , Ψ〉 be a semi-algebraic continuous system, and Xu be
the given unsafe state set. Let D be a positive integer. If there exist B(x), λ(x) ∈
R[x], which satisfy the following conditions:

1. B(x) =
∑

deg(θ̃α)≤D

cα θ̃α, cα ≥ 0,

2. Ḃ(x) − λ(x)B(x) − ε1 =
∑

deg(ψ̃β)≤D

cβ ψ̃β , cβ ≥ 0, ε1 > 0,

3. −B(x) − ε2 =
∑

deg(ζ̃ω)≤D

cω ζ̃ω, cω ≥ 0, ε2 > 0,

then the safety of the system S is guaranteed.

Proof. Theorem 4 indicates that the conditions (1–3) can imply the conditions
(i–iii) in Theorem 1, respectively. Thus, the safety of the system S is proved. �

Theorem 6. Let H : 〈L, X, F , Ψ,E,G,R,Θ, �0〉 be a semi-algebraic hybrid
system, Xu be the unsafe assertion. Let D be a positive integer. If there exist
B�(x), λ�(x) ∈ R[x] for each � ∈ L, and nonnegative polynomial γe(x) ∈ R[x]
for each e ∈ E, which satisfy

1. B�0(x) =
∑

deg(θ̃
α�0)≤D

cα�0
θ̃α�0 , cα�0

≥ 0 ,

2. Ḃ�(x) − λ�(x)B�(x) − ε�,1 =
∑

deg(ψ̃β�)≤D

cβ�
ψ̃β�

� , cβ�
≥ 0, ε�,1 > 0,

730 Z. Yang et al.

3. B�′(Re(x)) − γe(x)B�(x) =
∑

deg(g̃μe)≤D

cμe
g̃μe

e , cμe
≥ 0,

4. −B�(x) − ε�,2 =
∑

deg(ζ̃ω�)≤D

cω�
ζ̃ω�

� , cω�
≥ 0, ε�,2 > 0,

then the safety of the system H is guaranteed.

Proof. Simiar to the proof of Theorem 5. �
Theorems 5 and 6 produce the sufficient conditions for generating the barrier
certificates of continuous and hybrid systems, respectively. With unknown mul-
tipliers λ(x), λ�(x), γe(x) and unknown barrier certificates B(x), B�(x), some
nonlinear terms that are products of the coefficients of unknown polynomials will
occur in the constraints in Theorems 5 and 6, which yields a non-convex bilinear
matrix inequalities (BMI) problem. To alleviate this computational intractabil-
ity, provided that the multipliers λ�(x) and γe(x) are given in advance, the
problem of generating the above barrier certificates can be transformed into the
linear programming problem. To keep it concise, we only sketch the case of con-
tinuous systems, but the transformation procedure extends to the case of hybrid
systems without much difficulty.

To start with, a key step is to parameterize B(x) and the power products
associated to each expression in the conditions (1–3) of Theorem 5. For the
given degree d of B(x), we first predetermine a template of B(x) by setting
its coefficients as parameters, i.e., B(x) =

∑
α

bιxι, where xι = xι1
1 · · · xιn

n , ι =

(ι1, . . . , ιn) ∈ Z
n
≥0 with

∑n
i=1 ιi ≤ d, and bι’s are unknown coefficients. Let b

be the coefficient vector of B(x). In the sequel, we write B(x) as B(x,b) for
clarity. Denote by cα, cβ , cω the parameter vectors appearing in the conditions
(1-3) of Theorem 5, respectively, and let c = [cT

α , cT
β , cT

ω]T . For the given degree
bound D, it follows from Theorem 5 that generating a barrier certificate can be
transformed into the following optimization problem:

find b
s.t. B(x,b) =

∑

deg(θ̃α)≤D

cα θ̃α,

Ḃ(x,b) − λ(x)B(x,b) − ε1 =
∑

deg(ψ̃β)≤D

cβ ψ̃β ,

−B(x,b) − ε2 =
∑

deg(ζ̃ω)≤D

cω ζ̃ω,

cα, cβ , cω ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where λ(x) is a prespecified polynomial, and ε1, ε2 ∈ R>0 are prespecified small
positive numbers. We can rewrite the equality constraints in (8) as a linear
system with the variables b, c by sorting the coefficients with respect to the
variables x. By doing so, (8) is equivalent to the following linear programming
problem:

find y
s.t. A · y ≥ 0,

}
(9)

A Linear Programming Relaxation Based Approach 731

where y = (bT , cT)T and A is a numerical matrix. Problem (9) can be solved by
using conventional algorithms such as the interior-point method [6]. If (9) is fea-
sible, the result yields a barrier certificate B(x), which suffices to verify the safety
of the continuous system S. Our LP relaxation is based on the predetermined
degree bound D. Once (9) is infeasible, one may improve the relaxation precision
and then increase the possibility to find the barrier certificate by increasing the
degree bound D. Detailed procedures are summarized in Algorithm 1.

Remark 3. Theorem 6 guarantees that λ� can be any constants or polynomials,
and γe can be any nonnegative constants or polynomials. To ease computation,
one prefers to set them as simple as possible. Here we choose λ� from 0,±1,±(1+
x2
1+ · · ·+x2

n), and γe from 0, 1, 1+x2
1+ · · ·+x2

n, respectively. Like computing the
fractional SOS representations of nonnegative polynomials, one may also choose
the denominator as (1 + x2

1 + · · · + x2
n)k for some integer exponent k.

Algorithm 1. Search for polynomial barrier certificates
Input: Semi-algebraic continuous system S, or hybrid system H; the degree

bound d of the barrier certificate; the degree bound D of the
representation (7).

Output: The barrier certificate {B�(x)}.
1 forall the � ∈ L do
2 Parameterized B�(x) by polynomials of degree d

3 Construct the power-products with degree D of the polynomials defining the
semi-algebraic sets in Theorem 2.

4 Set up the linear programming of the form (9) and apply an LP solver to
compute its solutions.

5 if the problem (9) is feasible then
6 return {B�(x)}.

7 else
8 return “we cannot find the barrier certificates with the degree bound d.”

Remark 4. Like SOS relaxation method, our method cannot guarantee that the
polynomial barrier certificates will always be found due to the limitation on
presetting the degree bounds d and D. It is also difficult to predetermine whether
such polynomial barrier certificates exist. Therefore, if our algorithm fails to
yield any barrier certificate, it does not mean that the given hybrid system has
no polynomial barrier certificates with the given degree bound, or that the given
system is unsafe.

3.3 Complexity Analysis

In the section, we analyze the complexity of Algorithm 1, and further com-
pare it with SOS relaxation method. Let n, |L| and |E| be the numbers of

732 Z. Yang et al.

system variables, locations and discrete transitions in the given hybrid system
H, respectively. And let df be the maximal degree of the polynomial vector fields
of H, and let dv be the maximal degree among the polynomial lists, which are
used to define the compact semi-algebraic sets appearing in H. The linear pro-
gramming problem (9) implies the predetermined degree bound D must satisfy
D ≥ d + df . Suppose that the numbers of the polynomials defining the com-
pact semi-algebraic sets in H are bounded by sp. Therefore, the number of the
decision variables, denoted by Vl, of the linear programming problem (9) is

Vl =
(

n + d

d

)
+ (1 + 2|L| + |E|)

(
2sp + D

D

)
, (10)

where the first term is the number of coefficients b, and the second one is the
number of coefficients c. Meanwhile, the number of constraints, denoted by Cl,
in (9) is

Cl =
(

n + D

D

)
+ (1 + 2|L| + |E|)

(
2sp + D

D

)
, (11)

where the first term is the number of equality constraints associated with coeffi-
cients b and c, and the second one is the number of nonnegative constraints of
coefficients c.

As is well known, the complexity of an LP using interior-point algorithms is
approximately O(V2

l Cl) [6]. Taking this together with (10) and (11), we get the
complexity of Algorithm 1 based on the LP solver is approximately O(n2d+D).

We also called the SOS relaxation (cf. (36)–(39) in [16]) to search for the
barrier certificate of the hybrid system H. Similarly, let D be the predetermined
degree bound for all involved SOS polynomial multipliers. Then, the number of
decision variables, denoted by Vs, in the SDP associated with the SOS relax-
ation is

Vs = (sp + 1) (1 + 2|L| + |E|) N(N + 1)
2

, (12)

where N =
(
n+D/2

D/2

)
is the number of monomials in a polynomial of degree D/2.

Meanwhile, the number of constraints, denoted by Cs, in the SDP associated
with the SOS relaxation is

Cs = (1 + 2|L| + |E|)
(

n + D

D

)
. (13)

It is known that the complexity of SDP-solving via interior-point algorithms is
approximately O(C3

s+V3
s Cs+C2

sV2
s) [6]. From (12) and (13), we get the complexity

of calling the SDP solver to search for a barrier certificate is approximately
O(n4D).

4 Experiments

In this section, we first demonstrate the application of our methods by two
examples and then compare our LP relaxation method with the SOS relaxation

A Linear Programming Relaxation Based Approach 733

method with respect to ability and efficiency on 10 examples. We used examples
of high computational complexity from related works in the experiments [4,5,8,
16–19,22,24].

Example 2. Consider the following nonlinear continuous system [22]
⎡

⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−x1 + x3
2 − 3x3x4

−x1 − x3
2

x1x4 − x3

x1x3 − x3
4

⎤

⎥⎥⎦ ,

with the location invariant Ψ = {x ∈ R
4 : −1 ≤ x1, x2, x3, x4 ≤ 1}. We will

verify that all trajectories of the system starting from the initial set Θ = {x ∈
R

4 : 0 ≤ x1, x2, x3, x4 ≤ 0.5}. will never enter the unsafe set Xu = {x ∈ R
4 :

−1 ≤ x1, x2, x3, x4 ≤ −0.5}.
Let the degree bound D of the representation (7) be 8, and λ(x) in Theorem 5

be 1, respectively. Our algorithm succeeds to yield the barrier certificate

B(x) = −12.9713x4
1 − 16.6808x4

2 − 93.4687x4
3 − 0.5426x4

4 + . . . + 779.0477︸ ︷︷ ︸
70 terms

.

Therefore, the safety of the above system is verified. �

Fig. 1. The hybrid automata of the system in Example 3

Example 3. Consider the hybrid automata of the system depicted in Fig. 1,
where

f1(x) =

⎡

⎣
−x2

−x1 + x3

x1 + (2x2 + 3x3)(1 + x2
3)

⎤

⎦ , f2(x) =

⎡

⎣
−x2

−x1 + x3

−x1 − 2x2 − 3x3

⎤

⎦ .

Our task is to verify that the system will never enter the unsafe set

Xu(�2) = {x ∈ R
3 : x1 ≥ 5}.

734 Z. Yang et al.

Let the degree bound D of the representation (7) be 6, and λ�1 = −0.2, λ�2 =
0, and γ(�1,�2) = γ(�2,�1) = 1. Applying Algorithm 1, we obtain the polynomial
barrier certificate with degree 2:

B�1(x) = −48.0832x2
1 − 0.6225x2

2 − 0.0005x2
3 + · · · + 1075.8714︸ ︷︷ ︸

10 terms

,

B�2(x) = −0.8002x1
2 + 0.4692x2

2 + 0.5978x2
3 + · · · + 423.7896︸ ︷︷ ︸

10 terms

.

Meanwhile, we apply the SOS relaxation based method to compute a barrier
certificate with degree < 4. However, the SDP solver cannot return any barrier
certificate. As discussed above, our LP relaxation based approach can find the
barrier certificate that the SOS relaxation based method cannot yield. �

We compared our LP relaxation based method with the SOS relaxation based
one over a set of benchmarks gathered from the related works. Table 1 shows the
result. Here, the LP problems were settled by the linprog command in Matlab
while the SDP problems were solved by the Matlab toolbox SeDuMi [29]. The
experiments were performed on Intel(R) Core(TM) at 2.60 GHz with 8 GB of
memory under Windows 8.

In Table 1, n and |L| denote the number of the system variables and the
number of the locations; df denotes the maximal degree of the polynomials in
the vector fields; dl(B) and ds(B) denote the degrees of the barrier certificates
obtained from LP and SDP solvers, respectively; Dl and Ds are the degree
bounds of the nonnegative representation derived from the LP relaxation and
SOS relaxation, respectively; Vl and Vc denote the numbers of the decision vari-
ables of the LP and SDP, respectively; Tl and Ts represent the entire computation
times in seconds spent by LP and SDP solvers, respectively.

Table 1. Algorithm performance on benchmarks

Examples n |L| df LP SDP

dl(B) Dl Vl Tl(s) ds(B) Ds Vs Ts(s)

Ex.1 from [18] 2 1 2 3 6 164 0.0221 3 6 292 0.1870

Ex.2 from [16] 2 1 3 4 6 328 0.0782 4 8 597 0.1179

Ex.3 from [8] 2 1 3 2 4 91 0.0140 2 6 299 0.1129

Ex.4 from [18] 2 1 1 3 4 129 0.0053 4 6 287 0.1193

Ex.5 from [18] 2 1 2 2 4 56 0.0073 2 4 95 0.1358

Ex.6 from [24] 3 1 2 4 6 917 0.1051 4 6 942 0.2187

Ex.7 from [19] 3 1 3 4 6 1379 0.1444 4 8 2977 0.2421

Ex.8 from [5] 3 1 2 4 6 890 0.0966 1 4 225 0.1815

Ex.9 from [4] 2 3 1 2 2 156 0.0941 2 2 278 0.1820

Ex.10 from [17] 3 2 3 2 4 370 0.0331 4 8 5952 0.8481

A Linear Programming Relaxation Based Approach 735

For 7 of the examples, both LP relaxation and SOS relaxation can successfully
find the barrier certificates of polynomial forms with the same degree. However,
as discussed in the Sect. 3.3, the number of decision variables in LP relaxation is
much smaller than that in SOS relaxation. Plus the more efficiency LP solvers
provide, our LP relaxation based method is much more efficient than the SOS
relaxation method. For Ex.4 and Ex.10, SOS relaxation based method cannot
find polynomial barrier certificates whose degrees are less than 4, whereas our
LP relaxation method can yield two barrier certificates with the degrees 3 and
2, respectively. Ex.8 displays the opposite case where SOS relaxation performs
better.

In fact, LP relaxation and SOS relaxation use different sufficient conditions
for polynomial positivity and give different encodings of barrier certificate gen-
eration. Theoretically, for the given degree bound of the polynomial, there are
cases where the SOS relaxation can find a barrier certificate, however, the LP
relaxation cannot, and vice versa. Even for the cases that can be solved by both
of them, there is no theoretical result predicting which method will produce bar-
rier certificates of lower-degree. Thus, our LP relaxation based method and the
SOS relaxation based method complement each other.

5 Related Work

A barrier certificate is a special kind of inductive invariant, thus research on
safety verification using inductive invariants is related to our work. Sankara-
narayanan et al. presented methods adopting the ideal theory over polynomial
rings and quantifier elimination to automatically generate algebraic invariants
for algebraic hybrid systems [21,23]. Sturm and Tiwari presented the applica-
tion of quantifier elimination to formal verification and synthesis of continu-
ous and switched dynamical systems [30]. Based on Gröbner basis manipula-
tions, Rodŕıguez-Carbonell constructed polynomial invariants (a set of polyno-
mial equations) for linear hybrid systems [20]. Platzer et al. adopted iterative
fixedpoint calculations to find differential invariants, a boolean combination of
multiple polynomial inequalities, to verify semi-algebraic hybrid systems [15].
Gulwani et al. defined a similar invariant with a different inductive condition
and used the Farkas’s theory and SMT solvers to solve it [11]. Sogokon et al.
combined semi-algebraic abstractions with deductive verification method to gen-
erate semi-algebraic invariants for polynomial continuous systems [28].

For barrier certificates with convex conditions, the technique of sum-of-
squares decomposition of semidefinite polynomials provides much better effi-
ciency and thus is quite popular. Prajna et al. generated barrier certificates for
semi-algebraic hybrid systems [16,17]. Kong et al. proposed a method to gener-
ate a barrier certificate defined over an exponential condition for semi-algebraic
hybrid systems by SDP [13]. Dai et al. utilized different weaker conditions flexibly
to synthesize different kinds of barrier certificates with more expressiveness effi-
ciently using SDP [9]. Yang et al. presented a hybrid symbolic-numeric method
to compute the exact inequality invariants of polynomial hybrid systems via

736 Z. Yang et al.

SOS relaxation [31]. Sloth et al. proposed compositional conditions for barrier
certificates to verify the safety property of a group of interconnected hybrid
systems [27].

LP relaxation based techniques have been successfully applied in stability
analysis of nonlinear systems. Ahmadi et al. introduced two different positive
representations: DSOS and SDSOS to take the place of SOS, and combined linear
programming and second order cone programming to solve them [1]. Sankara-
narayanan et al. investigated the stability of continuous systems with polyhedral
domains. They used the Handelman positive representation to synthesize Lya-
punov functions [22,25]. Ben Sassi et al. used polyhedra templates to analyse
the reachability of polynomial systems. They reduced the problem of reachability
analysis to a set of optimization problems involving polynomials over bounded
polyhedra, then adopted the Bernstein expansions of polynomials to build LP
relaxations [26]. In the paper, we treat the more general semi-algebraic hybrid
systems and generate barrier certificates using KVH positivstellensatz. It is the
first attempt to use LP relaxation for computing barrier certificates.

6 Conclusion

We have presented a linear programming (LP) relaxation based approach for gen-
erating barrier certificates of semi-algebraic hybrid systems. The main feature of
this approach is that it uses an LP relaxation to encode the set of nonnegativity
constraints associated with the barrier certificates. Thanks to the low computa-
tional complexity and the high numerical stability of LP, our approach is more
efficient than the popular SOS relaxation based methods when treating barrier
certificates with convex conditions. The conclusion is supported by a theoreti-
cal analysis on complexity and the experiments taken on a set of benchmarks
gathered from the literature.

Acknowledgments. This material is supported in part by Key Basic Research Pro-
gram of China (Grant No. 2014CB340703), the National Natural Science Founda-
tion of China (Grant Nos. 61321064, 61361136002, 11471209, 11571350, 61672435,
61561146394, 91318301 and 61602348), the Innovation Program of Shanghai Munic-
ipal Education Commission (Grant No. 14ZZ046), the project on the Integration of
Industry, Education and Research of Jiangsu Province (Grant No. BY2014126-03), the
project SWU116007 funded by Southwest University. We would like to thank anony-
mous reviewers for their very valuable comments.

References

1. Ahmadi, A.A., Majumdar, A.: Dsos and sdsos optimization: Lp and socp-based
alternatives to sum of squares optimization. In: 2014 48th Annual Conference on
Information Sciences and Systems (CISS), pp. 1–5. IEEE (2014)

2. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the International
Conference on Embedded Software (EMSOFT), pp. 273–278. IEEE (2011)

A Linear Programming Relaxation Based Approach 737

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

4. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embed. Comput. Syst. (TECS) 5(1), 152–199 (2006)

5. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of paramet-
ric barrier functions for dynamical systems using interval analysis. In: 2014 IEEE
53rd Annual Conference on Decision and Control (CDC), pp. 753–758. IEEE (2014)

6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

7. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

8. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of the 2012 IEEE 33rd Real-Time
Systems Symposium (RTSS), pp. 183–192. IEEE (2012)

9. Dai, L., Gan, T., Xia, B., Zhan, N.: Barrier certificates revisited. To appear J.
Symbolic Comput. (2016)

10. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM
Sigsam Bull. 31(2), 2–9 (1997)

11. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Proceedings of the 20th International Conference on Computer Aided Verifica-
tion (CAV), pp. 190–203 (2008)

12. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, pp. 278–292. IEEE Com-
puter Society (1996)

13. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-
based barrier certificate generation for safety verification of hybrid systems. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 17

14. Lasserre, J.B.: Polynomial programming: Lp-relaxations also converge. SIAM J.
Optim. 15(2), 383–393 (2005)

15. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009)

16. Prajna, S., Jadbabaie, A., Pappas, G.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1429 (2007)

17. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2 32

18. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst.
6(1), 573–589 (2007)

19. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of lyapunov-like functions. SIAM J. Control Optim.
48(7), 4377–4394 (2010)

20. Rodŕıguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Proceedings of the 8th ACM International Conference on Hybrid Sys-
tems: Computation and Control, pp. 590–605 (2005)

21. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, pp. 221–230. ACM (2010)

http://dx.doi.org/10.1007/978-3-642-39799-8_17
http://dx.doi.org/10.1007/978-3-540-24743-2_32

738 Z. Yang et al.

22. Sankaranarayanan, S., Chen, X., Abrahám, E.: Lyapunov function synthesis using
handelman representations. In: The 9th IFAC Symposium on Nonlinear Control
Systems, pp. 576–581 (2013)

23. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid
systems. Formal Methods Syst. Des. 32, 25–55 (2008)

24. Sassi, M.A.B., Sankaranarayanan, S.: Stabilization of polynomial dynamical sys-
tems using linear programming based on bernstein polynomials. arXiv preprint
arXiv:1501.04578 (2015)

25. Sassi, M.A.B., Sankaranarayanan, S., Chen, X., Ábrahám, E.: Linear relaxations
of polynomial positivity for polynomial lyapunov function synthesis. IMA J. Math.
Control Inform., 1–34 (2015). doi:10.1093/imamci/dnv003

26. Sassi, M.A.B., Testylier, R., Dang, T., Girard, A.: Reachability analysis of polyno-
mial systems using linear programming relaxations. In: Chakraborty, S., Mukund,
M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 137–151. Springer, Heidelberg (2012)

27. Sloth, C., Pappas, G.J., Wisniewski, R.: Compositional safety analysis using barrier
certificates. In: Proceedings of the 15th ACM International Conference on Hybrid
Systems: Computation and Control, pp. 15–24. ACM (2012)

28. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gener-
ation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49122-5 13

29. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optim. Methods Softw. 11(12), 625–653 (1999)

30. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.
In: Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation, ISSAC, pp. 329–336. ACM Press (2011)

31. Yang, Z., Wu, M., Lin, W.: Exact verification of hybrid systems based on bilinear
SOS representation. ACM Trans. Embed. Comput. Syst. 14(1), 1–19 (2015)

http://arxiv.org/abs/1501.04578
http://dx.doi.org/10.1093/imamci/dnv003
http://dx.doi.org/10.1007/978-3-662-49122-5_13
http://dx.doi.org/10.1007/978-3-662-49122-5_13

Industry Track

Model-Based Design of an Energy-System
Embedded Controller Using TASTE

Roberto Cavada(B), Alessandro Cimatti, Luigi Crema, Mattia Roccabruna,
and Stefano Tonetta

Fondazione Bruno Kessler (FBK), Trento, Italy
{cavada,cimatti,crema,roccabruna,tonettas}@fbk.eu

Abstract. Model-based design has become a standard practice in the
development of control systems. Many solutions provide simulation, code
generation, and other functionalities to minimize the design time and
optimize the resulting control system implementation.

In this paper, we report on the experience of using Taste as the
design environment for the controller of an energy system comprising a
parabolic dish collector and a Stirling engine. Besides standard advan-
tages of model-based design, an appealing feature of Taste is the possi-
bility of specifying the design model with a formal language such as SDL.
The complexity of the designed system stressed the tool’s performances
and usability. Nevertheless, the functionalities provided by Taste were
essential to manage such complexity.

1 Introduction

Model-based design has become a standard practice in the design of embedded
systems. It provides huge benefits in terms of cost and time savings, but also in
high error reductions and higher maturity level of the developed systems. Tools
supporting model-based design typically offer graphical interfaces with different
views, early analysis and validation capabilities, and finally code generation for
the desired target platform.

In this paper, we report on the experience of using Taste [6], a tool set
developed within the European Space Agency (ESA), to apply the model-based
approach in the domain of Energy Systems. The activity has been conducted in
the scope of Contest , aiming at building an efficient Combined Heat and Power
(CHP) system, based on a large solar dish focusing energy on a Stirling engine.

Although there are numerous attempts to produce and validate models of
such complex physical systems [5,9], they are ruled by multiple non-linear dimen-
sions, and have many variables (e.g. the dynamic mechanical distortion of a mov-
ing heavy structures, the complexity of the involved thermal phenomena) that
can dramatically change the response needed by the control system.

In this paper, we focus on the design and implementation of the control
system, detailing aspects such as the tight integration of heterogeneous hardware
and software subsystems, real time operating systems and a clearly characterized

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 741–747, 2016.
DOI: 10.1007/978-3-319-48989-6 45

742 R. Cavada et al.

execution model. In such conditions, model-based design supported by automatic
code generation is mandatory to keep complexity still manageable.

To the best of our knowledge, this is the most complex system managed
by Taste reported in the literature. Differently from similar case studies, the
controlled system is a real-life complex energy system, and it is released open
source.

The paper is structured as follows: Sect. 2 gives an overview of the plant,
Sect. 3 describes the adopted tool and modeling languages, Sect. 4 gives the
details of the case study, Sect. 5 summarizes the lessons learnt, and Sect. 6 draws
some conclusions and directions for future work.

2 The Plant

Stirling Engine. A Stirling [8] is an external-combustion engine that operates in
cyclic compression and expansion of a fluid (typically air, helium or hydrogen),
with a (reversible) conversion of thermal to mechanical energy. Rotation can be
used to generate electricity, and exceeding heat can be used e.g. to warm cold
water for domestic or industrial usage. We use an Alpha type Stirling engine
able to supply 10 KW through an electrical motor, which serves both as starting
engine and alternator. When consuming, the motors rotates at constant RPM,
but, if heated enough, it will push RPM further, producing energy with self-
stabilizing phase and frequency. Regulation is done by increasing and decreasing
helium pressure. Higher efficiency is gained with higher pressure, but this causes
an higher drop of temperature while the engine must operate at high tempera-
ture. The most important safety requirement concerns the low temperature of
the hot side, which may be reached in a few seconds if not supplied with thermal
energy: the engine may freeze and irreparably get wrecked.

Fig. 1. CAD of the Dish with
the Stirling mounted on it

Solar Dish. With a concentration factor of 3 k,
the most important safety hazard is the high
temperature reachable on the focusing area when
tracking the Sun, as it can easily burn the Stir-
ling ceramic shield and melt the supporting steal
body. Related critical requirements concern the
speed of entering and exiting from the hot zone,
and possible dangerous reflections (Fig. 1).

Controller Interface. Overall, we have the fol-
lowing data for sensing and control:

Inputs: 23 thermocouples, 2 pressure sensors, 2
flow meters, 2 sensors for incident radiation, 2
frequency readers, 2 absolute 15 bit encoders, 1 wind direction sensor, 1 wind
speed sensor, about 24 bits for scalar and boolean values, 1 DCF77 receiver
module, 1 electrical power sensor, 1 accelerometer for adjustment of inclination
errors.

Model-Based Design of an Energy-System Embedded Controller 743

Outputs: 10 bits for sending actuation to the plant, and some additional bytes
for their numeric parameters.

3 TASTE

3.1 Language Subset

Taste [6] is an open-source tool chain for the development of embedded con-
trollers using a model-based approach. The modeling language provides a mix-
ture of languages used for different purposes: AADL [10] for the system-level
view of the architecture; ASN.1 [3] for the data abstraction and implementation;
different languages can be used for the behavior specification; in this case study,
we used SDL [2] and C for utilities.

AADL is a language to describe the system architecture in terms of com-
ponent types and implementations. Component types define the input/output
ports, while implementations define the internal structure in terms of subcompo-
nents and connections. Component implementations also contain the deployment
details, specifically the hardware subcomponents (processors, networks, ...) and
their binding with the functional components. Taste provides a graphical inter-
face to specify both the functional architectural decomposition and the deploy-
ment details.

ASN.1 is a standardized notation to specify data types. ASN.1 data types
are automatically converted into data types of the specific languages. Data are
associated with encoding rules that define the concrete representation of the
data values.

SDL is a formal specification language to describe real-time distributed sys-
tems. In Taste, behaviors of AADL components are described with SDL, as
finite-state machines extended with ASN.1 data and timers. Processes run asyn-
chronously and communicate through channels that carry messages/signals. The
signals are queued and consumed in FIFO order. Each process is executed with-
out interrupts, in a run-to-completion fashion, until it stops waiting for a signal
or a real-time delay. Taste restricts the language to ensure compatibility with
embedded systems, mainly to avoid the usage of the heap and to meet real-
time requirements. Moreover, the queues for the communication channels are
bounded.

3.2 Code Generation

Taste generates the code from the model, putting together drivers and commu-
nication means to ensure the specified real-time constraints. The AADL and
ASN.1 specifications are used to create tasks, threads, and glue around the
Ada code generated from SDL models, all layering over Ocarina middleware
[4]. Taste produces the binaries for different targets.

744 R. Cavada et al.

4 The Control System

4.1 Architecture

The system is made of three main blocks: the Hardware Interface (HWI), the
Controller, and the UI & Logging system. Furthermore, a vertical separation
makes the Stirling and the Dish controllers and devices independent. The HWIs
and the UI were developed not using Taste, which was used for the Controller
only. The HWI are implemented with PLCs communicating with sensors and
actuators via EtherCAT industrial RT protocol and hardware. The PLCs can
filter or preprocess data and implement basic safety procedures in case the con-
nection gets lost. Also, the PLC dedicated to the Dish controls the motor move-
ments and implements the Solar Position Algorithm [7] and wind tracking. Both
the PLCs receive and send data from/to the respective controllers, using the
EtherCAT protocol (Fig. 2).

4.2 Controller Details

Fig. 2. Architecture of the controller

The Controller is decomposed in 12 SDL
blocks: 4 for the Stirling, 3 for the Dish,
and 5 to handle system-level functionali-
ties. Five additional C blocks are for I/O
with drivers, utilities, and data logging.
The FSMs overall contain 86 locations
and 175 transitions (not counting self-
loops), and use 12 distinct timers (Fig. 3).
All models are available at https://gitlab.
fbk.eu/ITC4Energy/contest.
Most of the blocks are on/off type, in par-
ticular all high level blocks take decisions
based on information available from the lower levels. The Stirling engine con-
troller implements proportional/derivative control. The current absence of real
experimental data does not allow to predict if some integral action will be needed
to obtain better performances. The parts handling Sun tracking use proportional
control to adjust the Sun position error due to the atmospheric refraction. A
large source of complexity is in the management of faulty conditions which may
happen at plant level.

The SDL models react to both inputs and continuous signals. For better
performances we preferred the former, and when possible, we used single events
carrying data instead of using multiple events (e.g. for sending commands). This
reduced the number of threads generated by Taste, which turned out to be
critical under the target platform (see Sect. 4.3). We made a limited use of all
states symbols, as when overused they break any readability of models, and for
the same reason labels and corresponding gotos were used only locally to each
state. In Taste, multiple fan-out of a signal is not allowed. This limitation makes
models more complex to read and maintain in same cases.

https://gitlab.fbk.eu/ITC4Energy/contest
https://gitlab.fbk.eu/ITC4Energy/contest

Model-Based Design of an Energy-System Embedded Controller 745

Fig. 3. FSM of SunTracker block, as shown in Taste

About sampling times,
PLCs implement differ-
ent periods depending on
the sensors involved, but
at high level the sampling
period is 50 ms, chosen as
it is the maximum safe
period for detecting Stir-
ling engine RPM changes
while maintaining needed
control response time,
and still being divisor
of the minimum period
for timers as imposed by
Taste, which is 100 ms.

In embedded systems
the control loop is typ-
ically made of buffered
sensing of inputs (I), con-
trol of the actuations (C), and output of the buffered actuations (O). To execute
O with a constant frequency, the three phases are often carried out as an O/I/C
sequence each cycle. In Taste there is no explicit notion of delta cycle loop,
so we added a block for enforcing it, by sending event start cycle to each part
of O/I/C in a sequence. Since the Controller is made of multiple asynchronous
FSMs, we needed to assure that C runs to completion each cycle. This is theo-
retically assured if discrete transitions are instantaneous, there are no loops and
eventually each FSM stops waiting either for event start cycle, external events
or a timer expiration, whose time can only be a multiple of the delta cycle
period. Preliminary empirical data show that the cycle time ends within 2 ms,
so a period of 50 ms should be largely safe, but a formal schedulability analysis
is needed to prove it.

4.3 Generated Code

The executable of the Controller and HWIs runs in a single node and partition,
so native encoding was used to communicate among them. The GUI runs in a
different partition, and ACN is used for communication. The hosting platform
is a x86 industrial PC, with Xenomai RTOS [1] in co-kernel configuration with
Linux Debian.

Taste generates 76 threads for the Controller, and performances meet the
expectations with a load of CPU < 2% and about 14 MB of memory usage (when
executing on Linux 32 bit). Once familiar with it, generated code is very readable,
although generality introduces many function hops that could be optimized for
local processes. As for correctness, validation and formal verification have not yet
been done. Preliminary tests have found some bugs both in generated code and
middleware (under Xenomai), which were promptly tracked and fixed. Some

746 R. Cavada et al.

improvements of robustness shall be done, as some function calls miss sanity
checks.

Taste generates python code that can be used to ease the integration of other
parts, or for writing unit tests. So far we have used this feature to cyclically dump
the ASN.1 vector state of the system to a database and to communicate with
the GUI, a python-based web application.

5 Lessons Learnt

Taste has proven to fit in the process of design and implement control systems
for complex embedded systems. However it can hardly be applied to RT systems
that need to control fast phenomena, where micro or nano seconds are involved.
The generalization introduced by Ocarina middleware introduces non-negligible
latencies, functions hops that the compiler cannot optimize, and communication
mechanisms in generated code relying on queues with limited performances. Tar-
geting mid-slow system is also visible in Taste from already mentioned 100 ms
granularity of timers, and time expressed in integer milliseconds. However, even
not considering fast systems a granularity of at least 100µs would be highly
desirable.

Using SDL for modeling the behavior can be very effective, but requires the
designer to rely on good practices and rigorous method, as it is very easy to
mess up the models and break model readability.

As most parts of Taste are open source, we could extend it to make it
generate code for automatic logging of traversed states, with no need to touch
the model. These extensions should be properly integrated.

The size of the Controller’s model can be considered middle/large for Taste,
as performances of the editor and the compiler show some difficulties when deal-
ing with it. In particular, the system editor shows some usage limitations, that
make difficult to work with large models. Since Taste targets embedded sys-
tems, it would be very useful to have a native support for enforcing the delta
loop cycle. Furthermore, the building system needs a speed-up, as it should not
recompile parts uselessly: recompiling without any change takes 2 s less than
scratch compilation, which overall takes about 6’ 20” on a 2.4 Ghz Intel i7 CPU.

6 Conclusion and Future Directions

In this paper, we reported on the experience of a real implementation of the
controller for an innovative complex energy system. Due to the complexity of the
plant, implementing manually the controller’s code for the target platform would
have been impossible for us. Taste provided a powerful model-based solution
to ensure the real-time constraints of the controller. On the other hand, the case
study provided a challenging benchmark that stressed the tool capabilities. To
the best of our knowledge, it is the most complex system managed by Taste
reported in the literature.

Model-Based Design of an Energy-System Embedded Controller 747

We ran successfully the Stirling engine attached to the Controller, but not
with the Dish as the plant is still under construction. Validation of a controller
being designed and implemented with limited support from the real plant was
faced by developing a simulator and its drivers. As simulator’s and real plant’s
drivers offer an identical interface to the IO blocks of the Controller, the simu-
lator can be removed to connect the controller to the real plant when available,
and even a mixed solution is possible.

In the future, we want to exploit the python generated code for a structured
validation through unit testing, and to exploit the formal specification of the
model to apply formal techniques such as model checking, compositional rea-
soning, and failure analysis. Moreover, we would like to explore the usage of
other techniques provided by the Taste tool chain such as schedulability analy-
sis and model interactive simulation at SDL level. Finally, after collecting real
data coming from the field, we would like to formalize the regulation function
of the Stirling engine to optimize it, as it represents the hearth of the energetic
efficiency of the system.

References

1. Linux/Xenomai RTOS. https://xenomai.org/
2. ITU-T: Specification and description language (SDL). ITU-T Recommendation

Z.100 (1999)
3. ITU-T: Information technology Abstract Syntax Notation One (ASN.1): Specifi-

cation of basic notation. ITU-T Recommendation X.680 (2002)
4. Lasnier, G., Zalila, B., Pautet, L., Hugues, J.: Ocarina: an environment for AADL

models analysis and automatic code generation for high integrity applications. In:
Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 237–250.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01924-1 17

5. McFarlane, P., Semperlotti, F., Sen, M.: Mathematical model of an air-filled alpha
stirling refrigerator. J. Appl. Phys. 114(14), 144508–144508 (2013)

6. Perrotin, M., Conquet, E., Delange, J., Schiele, A., Tsiodras, T.: TASTE: a real-
time software engineering tool-chain overview, status, and future. In: Ober, I.,
Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 26–37. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25264-8 4

7. Reda, I., Andreas, A.: Solar position algorithm for solar radiation applications. Sol.
Energy 76(5), 577–589 (2008)

8. Ross, A.: Stirling cycle engines. Sol. Engines (1977)
9. Ruelas, J., Velzquez, N., Cerezo, J.: A mathematical model to develop a scheffler-

type solar concentrator coupled with a stirling engine. Appl. Energy 101, 253–260
(2013)

10. SAE Standards: Architecture Analysis & Design Language (AADL). no AS5506B,
September 2012

https://xenomai.org/
http://dx.doi.org/10.1007/978-3-642-01924-1_17
http://dx.doi.org/10.1007/978-3-642-25264-8_4

Simulink to UPPAAL Statistical Model Checker:
Analyzing Automotive Industrial Systems

Predrag Filipovikj1(B), Nesredin Mahmud1, Raluca Marinescu1,
Cristina Seceleanu1, Oscar Ljungkrantz2, and Henrik Lönn2

1 Mälardalen University, Väster̊as, Sweden
{predrag.filipovikj,nesredin.mahmud,raluca.marinescu,

cristina.seceleanu}@mdh.se
2 Volvo Group Trucks Technology, Gothenburg, Sweden

{oscar.ljungkrantz,henrik.lonn}@volvo.com

Abstract. The advanced technology used for developing modern
automotive systems increases their complexity, making their correct-
ness assurance very tedious. To enable analysis by simulation, but
also enhance understanding and communication, engineers use MAT-
LAB/Simulink modeling during system development. In this paper,
we provide further analysis means to industrial Simulink models by
proposing a pattern-based, execution-order preserving transformation of
Simulink blocks into the input language of UPPAAL Statistical Model
checker, that is, timed (or hybrid) automata with stochastic semantics.
The approach leads to being able to analyze complex Simulink models
of automotive systems, and we report our experience with two vehicular
systems, the Brake-by-Wire and the Adjustable Speed Limiter.

1 Introduction

Features for automating driving tasks, such as the Adjustable Speed Limiter
(ASL) that enables drivers to set a maximum speed in order to reduce the risk
of over speeding, as well as trends like the drive-by-wire technology, in which
standard vehicle operations such as braking are carried out by electronic com-
ponents rather than mechanical ones, make the assurance of a modern vehicle’s
correct operation extremely challenging.

Model-based design enables industry to create executable specifications in
the form of MATLAB/Simulink [1] models that can be simulated and formally
analyzed [2] to detect hidden design errors and requirements violations.

In this paper, we introduce a pattern-based approach (Sect. 3) that captures
formally the behaviors of a large set of Simulink blocks, as networks of stochastic
timed/hybrid automata, and report our experience with analyzing two industrial
systems from Volvo Group Trucks Technology, the Brake-by-Wire (BBW) proto-
type and the operational Adjustable Speed Limiter (ASL), with UPPAAL SMC
(Statistical Model Checker) [3] (Sect. 4). The crux of our method is twofold:

The original version of this chapter was revised: Figure 1a and 1b was corrected.
The erratum to this chapter is available at DOI: 10.1007/978-3-319-48989-6 51

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 748–756, 2016.
DOI: 10.1007/978-3-319-48989-6 46

http://dx.doi.org/10.1007/978-3-319-48989-6_51

Simulink to UPPAAL Statistical Model Checker 749

(i) using patterns in the transformation, which eases the modeling process while
preserving the execution semantics of Simulink blocks, and (ii) verifying the
encodings of the Simulink blocks behaviors as C routines in UPPAAL, with the
program verifier Dafny [4].

Our endeavor is justified by the industrial needs of ensuring correctness
with respect to both functional and timing behaviors of automotive embedded
systems. Moreover, an initial investigation of verifying ASL’s Simulink models
with the Simulink Design Verifier (SDV) shows limitations in terms of verify-
ing large models, and that a substantial part of the requirements cannot be
directly concluded due to, for instance, translation problems and boundaries not
being defined. The application of our approach to BBW and ASL (specifically
ASL’s Engine Manager) shows improved scalability in the sense of being able
to functionally analyze via statistical model checking the complete transformed
Simulink models, but it also reveals limitations in tackling timing requirements,
due to using only information from Simulink models.

Related work. Several works have already tackled the formal analysis of
Simulink models. Barnat et al. [5] and Meenakshi et al. [6] propose transfor-
mations that target only Simulink blocks with discrete-time behavior. The work
of Agrawal et al. [7] focuses on the transformation of Simulink into networks of
automata, without providing concrete means for formal verification. Miller [8]
investigates how translating Simulink to Lustre enables formal verification with
a constellation of model checkers and provers. Manamcheri et al. [9] and Jiang
et al. [10] propose transformation frameworks for Stateflow diagrams, into timed
and hybrid automata, respectively, yet not considering other types of Simulink
blocks. Compared to these frameworks, our approach covers both continuous-
and discrete-time blocks, and we show how our transformation leads to the
formal analysis of industrial automotive systems models, against a wide set of
requirements. This is an endeavor not really carried out before. One other solu-
tion is the use of PLASMA Lab [2], a tool that is able to take as input different
Simulink simulations and provide statistical model checking results. Compared
to this approach, we generate a formal model that can be extended further (e.g.,
with extra-functional information) to provide additional verification results.

2 Preliminaries

In this section, we present the tools used in our framework: (i) Simulink, which
is used to model the automotive systems, and (ii) UPPAAL SMC, which is used
to analyze the models.

Simulink. Simulink [1] is a graphical programming environment for modeling,
simulation and code generation targeting multi-domain dynamic systems. The
tool provides a set of libraries with predefined blocks that can be combined to
create hierarchical diagrams of systems. A block represents an atomic dynamic
module that computes an equation or another modeling concept to produce an
output, either continuously (continuous-time block), or at specific points in time
(discrete-time block). Besides these atomic blocks, Simulink supports the defi-
nition of custom blocks via Stateflow diagrams or user-defined functions called

750 P. Filipovikj et al.

S-Functions written in MATLAB, C, C++, or Fortran. A hierarchical diagram
is achieved through the implementation of subsystem blocks, each containing
sets of atomic blocks and possibly other subsystem blocks. Such subsystems can
be virtual (blocks are evaluated according to the overall model), or non virtual
(blocks are executed as a single unit, respectively). A non-virtual subsystem can
also be conditionally executed based on a predefined triggering function. During
simulation, Simulink determines the order in which to invoke the blocks. This
block invocation order is done based on a predefined sorted order. In Simulink,
the dynamic models can be simulated and the results can be displayed as simu-
lation runs.

UPPAAL SMC. The UPPAAL SMC [11] tool provides statistical model check-
ing for stochastic hybrid systems. A hybrid automaton (HA) is defined as a tuple:

HA = 〈L, l0,X,Σ,E, F, I〉 (1)

where L is a finite set of locations, l0 ∈ L is the initial location, X is a finite set
of continuous variables, Σ = Σi � Σo is a finite set of actions partitioned into
inputs (Σi) and outputs (Σ0), E is a finite set of edges of the form (l, g, a, ϕ, l′),
where l and l′ are locations, g is a predicate on R

X , a ∈ Σ is an action label,
and ϕ is a binary relation on R

X , F (l) a delay function for the location l ∈ L,
and I assigns an invariant predicate I(l) to any location l. With this definition,
UPPAAL SMC extends the timed automata (TA) tuple used by UPPAAL [12]
with the delay function F that allows the continuous variables to evolve accord-
ing to ordinary differential equations. In UPPAAL SMC, the automata have a
stochastic interpretation based on: (i) the probabilistic choices between multiple
enabled transitions, and (ii) the non-deterministic time delays that can be refined
based on probability distributions, either uniform distributions for time-bounded
delays or user-defined exponential distributions for unbounded delays.

A model in UPPAAL SMC consists of a network of interacting stochastic
HA that communicate through broadcast channels and shared variables. In the
network, the automata repeatedly race against each other, that is, they inde-
pendently and stochastically decide how much to delay before delivering the
output, and what output to broadcast at that moment, with the “winner” being
the component that chooses the minimum delay.

UPPAAL SMC uses an extension of weighted metric temporal logic (WMTL)
[13] to provide probability evaluation (Pr(∗x≤Cφ)), where the symbol ∗ stands
for ♦(eventually) or �(always), which calculates the probability that φ is satis-
fied within cost x ≤ C, but also hypothesis testing and probability comparison.

3 Simulink to UPPAAL SMC: Transformation Approach

There are two major aspects of transforming Simulink models into networks of
stochastic timed/hybrid automata: (1) transforming the individual blocks, and
(2) synchronizing their execution to preserve the behavior of the model. In this
section we present how we transform Simulink models into networks of TA with
stochastic semantics, suitable for statistical model checking with UPPAAL SMC.

Simulink to UPPAAL Statistical Model Checker 751

A discrete-time block executes its computational routine at a predefined
observable time interval called sample time, whereas a continuous-time one exe-
cutes the routine over infinitely small time intervals. The same classification
applies for the S-Functions that are masked, preserving only the specification of
their input-output relation. For a subsystem block, the transformation is reduced
to a flattening procedure that eliminates the subsystem block from the model
and replaces it with its inner content, with preserved atomicity of execution. The
details and algorithm for flattening are given later in the section. The flattening
procedure, however, does not apply for the Referenced models that are given as
executables only, as in these cases no Simulink models are available. Such blocks
are treated as atomic, and our transformation relies on their documentation.

In the following, we propose a formal definition of a Simulink block, as a
tuple, as well as patterns for transforming both discrete- and continuous-time
blocks into TA with stochastic semantics.

Any atomic Simulink block can be formally defined as a tuple:

B = 〈Vin, Vout, VD, ts, Init, blockRoutine〉 (2)

where: Vin, Vout and VD denote the set of input, output, and data variables,
respectively, ts denotes the sample time, Init is the initialization function,
whereas the blockRoutine is a function that maps inputs and state variables onto
output values. Our transformation is basically a semantic anchoring of tuple B
of Eq. (2) onto the HA tuple given by Eq. (1).

The automata patterns corresponding to the discrete and continuous cate-
gories are given in Fig. 1a and b, respectively. Each of them has three locations,
namely Start, Offset and Operate, with Start being the initial one. The Offset
location is used to model the delay of the block execution. The last location
is Operate, in which the automaton produces output either at predefined time
intervals, or continuously. A local clock t is used to model the delay of the execu-
tion in both cases, and also to trigger the periodic behavior of the discrete blocks,
whereas the continuous behavior is modeled via assigning exponential rates on
the Operate location. The exponential rate is a mechanism used to specify the
probability of the automaton to leave a location, according to an exponential
distribution [3]. Simulation time is represented via the global clock gtime, which
is used as part of the synchronization mechanism. The input parameters relevant
for the pattern and its instantiation on a particular Simulink block are passed
as the array called param. The start time of the automaton is calculated as a

Fig. 1. Our used TA patterns

752 P. Filipovikj et al.

Algorithm 1. Flattening algorithm for slist.
function flatten(String currentBlockId, String currentBlockOrderNo, String parentBlockO-
rderNo)

orderedList ← emptyList � Ordered list containing blocks IDs.
if isAtomicBlock(currentBlockId) then � The current block is atomic.

orderedList.append(parentBlockOrderNo.concat(currentBlockOrderNo))
else � The current block is a subsystem.

currentChildren ← getChildren(currentBlockId)
concatenatedParentId ← parentBlockOrderNo.concat(currentBlockOrderNo)
for all child in currentChildren do

orderedList.append(flatten(child.id, child.orderNo, concatenatedParentId))

return orderedList

combination of the block’s execution order (sn), and the inter-arrival time of the
block’s input signal (IAT).

Preserving Block Execution Order. The execution order (sorted order) of
the Simulink model blocks is generated by calling the “slist” function, while
Simulink is in debug mode. Simulink uses the assigned execution order to invoke
blocks during simulation, with a smaller execution order number denoting higher
priority. We perform the flattening of the sorted order automatically, using
Algorithm 1, which parses the “slist” output and assigns execution order num-
bers to atomic blocks that are nested at an arbitrary depth, inside a subsystem.

We use this execution order to release the discrete and continuous time
blocks during initialization in the UPPAAL model, and to arbiter their exe-
cution at times when two or more blocks are ready to execute. Also, to ensure
data integrity and predictability in the model, we also provide transformations
for the RateTransition blocks that connect faster- to slower-rate blocks, and
vice-versa.

Verifying UPPAAL Simulink Block Routines With Dafny. We use Dafny
[4], a language and program verifier, to prove the functional correctness of the
block routines that we encode as C functions in UPPAAL. Below we present an
example that shows the verification of a simple block routine using Dafny.

Rounding is one of the fundamental operations in Simulink, with several
variants including rounding to floor, ceiling, fix, etc. In this example, we consider
the floor variation of the function for non-negative real numbers. Due to space
limitation, we omit the encoding of the function and present only the assertions
that are used for proving the correctness. By using Dafny, we establish the
correctness of the function by checking the following pre- and postconditions,
denoted as requires and ensures claims, respectively: “requires input ≥ 0.0”, “ensures
0.0≤ (input - output) < 1.0”, where output ∈ Z≥0. We use the same approach
to verify the correctness of all Simulink block behaviors that we encode as C
functions in UPPAAL.

4 Application on Industrial Use Cases: Results

The proposed transformation has been validated on two industrial use cases,
namely the Brake-by-Wire (BBW) prototype, and the Engine Manager of the

Simulink to UPPAAL Statistical Model Checker 753

Adjustable Speed Limiter operational system. In this section, we provide a brief
overview of our results.

The BBW Use Case. The BBW system is a braking system equipped with
an ABS function, and without any mechanical connection between the brake
pedal and the brake actuators. A sensor reads the pedal’s position, which is
used to compute the desired brake torque. At each wheel, the ABS algorithm
decides whether to apply the brake torque based on the slip rate. When the slip
rate increases above 0.2 (this can actually be a model parameter), the friction
coefficient of the wheel starts decreasing. For this reason, if the slip rate is greater
than 0.2 the brake actuator is released and no brake is applied, otherwise the
requested brake torque is used. The BBW system has a set of 13 functional
and 4 timing requirements that need to be analyzed. Here, we present two such
requirements, in natural language:

R1BBW(End-to-end deadline): The time needed for a brake request to prop-
agate from the brake pedal sensor to the wheel actuator should not exceed
200 ms.

R2BBW(Functional requirement): If the slip rate exceeds 0.2, then the
applied brake torque shall be set to 0.

Transformation. The hierarchical Simulink model for the BBW system consists
of 320 blocks, out of which only 174 are computational blocks. The remaining 146
blocks define the structure of the model (e.g., Subsystem, Inport, Outport, From,
Goto, Reference) and they are removed during the flattening. Consequently, the
transformation provides a network of 174 TA. In this network, only 10 automata
have continuous-time behavior; the rest compute their output only at sample
times.

Verification. In order to verify the system properties mentioned above, we have
implemented a Monitor automaton that follows the propagation of data through-
out the system, from sensors to actuators. It relies on the definition of an array
of broadcast channels trigg[N], with N ∈ [1, 174]. Each TA in the network broadcasts
the message trigg[own id]! when it performs a new computation blockRutine(), and the
Monitor receives these messages in a predefined order. For own id we have used the
predefined sorted number, since it is unique for each TA. Figure 2 presents an excerpt
of the Monitor implemented for requirements R1BBW and R2BBW.

Fig. 2. BBW’s monitor automaton.

754 P. Filipovikj et al.

Table 1. Overall results of statistical model checking.

Req. Query Result Runs

R1BBW Pr[Monitor.x <= 200](<> Monitor.End) Probability ∈ [0.902606, 1]
with confidence 0.95

36

R2BBW Pr[Monitor.x <= 200]([] Monitor.Wheel
and Monitor.slipRate > 0.2 and
Monitor.torque == 0)

Probability ∈ [0.900924, 1]
with confidence 0.975

42

For the BBW system we have statistically verified all functional and timing require-
ments. In Table 1, we provide concrete SMC results for requirements R1BBW and
R2BBW.

The ASL Use Case. ASL is used to limit the truck speed to not exceed a maxi-
mum speed set by the driver. The driver normally enables and disables the function
using control buttons located on the dashboard, and the freewheel. However, ASL
can also be disabled when the accelerator pedal is pressed beyond a hard point, or
the truck is subjected to overspeed, for instance, in downhill, or becomes faulty dur-
ing operation. ASL implements around 300 requirements, and is modeled using 4845
Simulink blocks, of which 2835 are non-virtual blocks. We limit our analysis to the
ASL Engine Manager (ASL-EM), which is a logical component, and an interface to the
power train of the truck’s engine. It enables several functions of the truck, e.g., engine
start and stop, climate control, fuel economy strategy, and road speed limitation. In
our case study, we have transformed 94 non-virtual Simulink blocks, and analyzed
all their functional and timing requirements. Examples of ASL-EM requirements are:
(i) R1ASL(Min. speed limit): The ASL-EM controller shall be able to handle road
speed limit requests down to 5 km/h, (ii) R2ASL(Lowest speed limit): When several
road speed limit sources are active at the same time, ASL-EM shall use the lowest
speed limit value, (iii) R3ASL(Max. latency): The maximum latency of the ASL-EM
block shall be 20ms.

5 Discussion and Conclusions

In this paper, we have introduced a pattern-based transformation of discrete- and
continuous-time Simulink blocks into networks of stochastic timed automata. The
approach is motivated by the industry’s need of increasing the assurance of vehicu-
lar systems developed using Simulink, and the possibly limited requirements coverage
obtained by employing the SDV for verification. Applying our approach on the BBW
and ASL-EM systems has provided improved scalability for verification, that is, we
have analyzed statistically their complete Simulink models, at the expense of concrete
challenges and limitations:

1. The formal model needs to obey the same execution order as the Simulink one. For
this, we have enforced the sorted order as generated by Simulink, which is usually
respected during execution, except for block methods (blocks operating at the same
rate and in the same task). These exceptions need to also be taken into account
during the transformation.

Simulink to UPPAAL Statistical Model Checker 755

2. Simulink allows for the integration of code in the model by using S-function. In our
transformation, we do not provide direct means to verify this code. We view such
components as “black boxes”, modeled based on their defined mask and not the
code itself.

3. Simulink lacks the possibility of modeling the timing behavior of the system (beyond
the sample time), thus limiting the formal verification of extra-functional require-
ments. By pairing the Simulink model with an architectural model that allows for
the representation of a wide set of extra-functional properties (such as timing and
possibly resource usage), the transformation and the verification could provide a
deeper insight to the engineers. Moreover, in the current version of our transforma-
tion, we have not exploited the full power of UPPAAL SMC. We have used TA with
stochastic behavior, rather than stochastic HA. This is due to the fact that for more
complex blocks (e.g., Derivative, Integrator) we have chosen to use the numerical
approximation performed by Simulink, instead of implementing the function directly
in UPPAAL SMC. This modeling decision will be further investigated.

Acknowledgement. This work has been funded by the Swedish Governmental
Agency for Innovation Systems (VINNOVA) under the VeriSpec project 2013-01299.

References

1. Dabney, J.B., Harman, T.L.: Mastering Simulink. Pearson/Prentice Hall, Upper
Saddle River (2004)

2. Legay, A., Traonouez, L.-M.: Statistical model checking of Simulink models with
Plasma Lab. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp.
259–264. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29510-7 15

3. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: UPPAAL SMC
tutorial. STTT J. 17(4), 397–415 (2015)

4. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

5. Barnat, J., Beran, J., Brim, L., Kratochv́ıla, T., Ročkai, P.: Tool chain to sup-
port automated formal verification of avionics Simulink designs. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 78–92. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32469-7 6

6. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating Simulink models into
input language of a model checker. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 606–620. Springer, Heidelberg (2006). doi:10.1007/11901433 33

7. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of Simulink/Stateflow
models to hybrid automata using graph transformations. ENTCS J. 109, 43–56
(2004)

8. Miller, S.P.: Bridging the gap between model-based development and model check-
ing. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
443–453. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2 36

9. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification and
synthesis from Simulink/Stateflow models. In: HSCC 2011, pp. 317–318. ACM
(2011)

10. Jiang, Y., Yang, Y., Liu, H., Kong, H., Gu, M., Sun, J., Sha, L.: From Stateflow
simulation to verified implementation: a verification approach and a real-time train
controller design. In: RTAS 2016, pp. 1–11, April 2016

http://dx.doi.org/10.1007/978-3-319-29510-7_15
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-32469-7_6
http://dx.doi.org/10.1007/11901433_33
http://dx.doi.org/10.1007/978-3-642-00768-2_36

756 P. Filipovikj et al.

11. David, A., Du, D., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.,
Sedwards, S.: Statistical model checking for stochastic hybrid systems. arXiv
preprint arXiv:1208.3856 (2012)

12. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT J. 1(1), 134–
152 (1997)

13. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-
based statistical model checking of WMTL. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 260–275. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 25

http://arxiv.org/abs/1208.3856
http://dx.doi.org/10.1007/978-3-642-35632-2_25
http://dx.doi.org/10.1007/978-3-642-35632-2_25

Safety-Assured Formal Model-Driven Design
of the Multifunction Vehicle Bus Controller

Yu Jiang1(B), Han Liu1, Houbing Song2, Hui Kong3, Ming Gu1,
Jiaguang Sun1, and Lui Sha4

1 TNLIST, KLISS, School of Software, Tsinghua University, Beijing, China
jiangyu198964@gmail.com

2 Department of Electrical and Computer Engineering, West Virginia University,
Morgantown, USA

3 Institute of Science and Technology Austria, Klosterneuburg, Austria
4 Department of Computer Science, UIUC, Champaign, USA

Abstract. In this paper, we present a formal model-driven engineering
approach to establishing a safety-assured implementation of Multifunc-
tion vehicle bus controller (MVBC) based on the generic reference models
and requirements described in the International Electrotechnical Com-
mission (IEC) standard IEC-61375. First, the generic models described
in IEC-61375 are translated into a network of timed automata, and some
safety requirements tested in IEC-61375 are formalized as timed compu-
tation tree logic (TCTL) formulas. With the help of Uppaal, we check
and debug whether the timed automata satisfy the formulas or not.
Within this step, several logic inconsistencies in the original standard
are detected and corrected. Then, we apply the tool Times to generate
C code from the verified model, which was later synthesized into a real
MVBC chip. Finally, the runtime verification tool RMOR is applied to
verify some safety requirements at the implementation level. We set up
a real platform with worldwide mostly used MVBC D113, and verify
the correctness and the scalability of the synthesized MVBC chip more
comprehensively. The errors in the standard has been confirmed and the
resulted MVBC has been deployed in real train communication network.

1 Introduction

The train communication network (TCN) enabling secure and fast data transmis-
sion in the entire rail vehicle has been standardized by the international railroad
union and the International Electrical Commission, as presented in the inter-
national standard IEC-61375 [3]. Within the network, the multifunction vehicle
bus controller (MVBC) is defined as a typical embedded software used mostly
for the control of data transmission among the equipment (the traction con-
trol unit, air brake electronic control unit and door control unit etc.) onboard of
each individual vehicle. Detail functions of the MVBC are based on the real-time
protocol (RTP), which defines the rules (master-slave communication principle,
data frame format and timing requirements, etc.) for process data and message
data transmission.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 757–763, 2016.
DOI: 10.1007/978-3-319-48989-6 47

758 Y. Jiang et al.

Traditionally, from the perspective of industrial practice, most companies
such as Siemens and Duagon develop their MVBCs by directly writing under-
lying C and VHDL code manually according to the description of IEC-61375,
accompanied with the complex system and physical testing to avoid defects.
Increasingly developed modern railroad vehicles increased the functional com-
plexity, and are more difficult to ensure the correctness through testing. For
example, even the most widely used D113 MVBC of Duagon company contains
some dead logic in the C code for process data communication. From the per-
spective of academia, there are many existing works for the design of MVBC,
but mainly focusing on the novel implementation hardware architecture [5]. In
[5], they propose to use materialization of slave nodes for MVBC in a single
chip by using reconfigurable logic. In [11], they propose to use BeagleBone and
some existing tools such as Simulink to implement the MVBC, which is start-
ing from model construction and ending in programming according to the vali-
dated model. Most of them focus on the functional implementation and do not
pay attention on safety assurance under dynamic physical environment. Besides,
there are also some works about verifying the real time communication protocol
of TCN [6], they do not cope with the implementation issue neither, they focus
on the logic correctness of train communication protocol only. Little research
has been conducted to address the safety issue of MVBC, and some failures of
the communication function have been reported to result in the accidents of the
railway and trains [12], and some cases with serious injuries of human.

In this paper, we collaborate with the researchers from China Railway Rolling
Stock Corporation (CRRC), and use formal model-driven development approach
to establishing a safety-assured implementation of an MVBC prototype based on

Uppaal
Model

Uppaal
Verification

Times Code
Generation

Uppaal
Model

Revision

No
Generated

Code

Yes

IEC-61375-1

IEC-61375-2

Model
Verifiable

Requirement

Implementation
Verifiable

Requirement

Runtime
Verifier

System
Integration

Executable
System

Handwrite
Glue Code

Safety-A
ssured

D
esign

Fig. 1. Safety-assured design of MVBC. We may also replace these tools with similar
functional tools such as SPIN and RV-Monitor. If we use SPIN to replace Uppaal, we
need to build the SPIN Promela model instead of Uppaal timed automata model.

Safety-Assured Formal Model-Driven Design 759

the standard IEC-61375, which consists of two parts: IEC-61375-1 describing the
architecture and functional behaviors of MVBC, and IEC-61375-2 describing the
conformance testing requirements. The overall procedure is presented in Fig. 1,
where we leverage the formal modeling and verification technique as follows (1)
the generic models and requirements in the standard are formalized as Uppaal
timed automata and TCTL expressions [2] respectively, (2) formally verify the
requirements and debug the models with Uppaal until the timed automata sat-
isfies the TCTL expressions, (3) generate C code from the verified model with
Times [1], which can be compiled and synthesized into a real MVBC chip with
some auxiliary code developed to interface with hardware, and (4) use runtime
verification to formally verify some implementation level safety requirements and
test the consistency between the execution of the integrated system and the sim-
ulation of the verified model with RMOR [4]. Then, we set up a real platform,
connecting the synthesized MVBC prototype for safety assured communication
demonstration. During the practice, the errors detected in the standard has
been confirmed and the synthesized prototype has been in productization and
deployed in real train system control.

2 Safety-Assured Approach

Model construction and verification: First, we build a network of timed
automata for the MVBC according to the architecture and functional descrip-
tion, such as the generic automata model, the function and action table, and
the SDL (Specification and Description Language) diagram of IEC-611375-1.
All these heterogeneous information are unified translated and encoded into the
network of timed automata manually. Currently, it is not easy to automatically
abstract the timed automata model from the text-based standard, and the whole
construction procedure is manually accomplished and validated with the help of
engineers from CRRC with the following modeling guidance rules.

Let us see the translation of generic automata and the accompanied function
table. Each state in the generic automata is mapped to an ordinary location in
Uppaal with the same name. For the packets of sending and receiving events with
actual parameters specified for the control fields, we use the synchronous channel
of Uppaal timed automata to simulate the communication. Because there are lots
of none interrupt actions and packets associated with a single generic state while
only one synchronous action is allowed to be attached in a single transition of
Uppaal timed automata, we need to create a set of committed locations, where
none interrupt actions are sequentially encoded into the transitions among those
committed locations. Then, the attached actions described in the function table
of the standard, they are translated into the accompanied actions of the Uppaal
timed automata transition.

For the translation of SDL diagram, each state in the diagram is mapped to
an ordinary location of Uppaal. Some plain C codes in the diagram are translated
into the action attached on the transition of two locations. The event signal of
SDL diagram is modeled by the synchronous channel of timed automata, where

760 Y. Jiang et al.

receiving an event is denoted as Rcv Channel Name? and sending an event
is denoted as Send Channel Name!. In case of situations with more than two
signals between two states, we need to add some intermediate locations of timed
automata. Note that, for the clock signal, it is issued by itself. Hence, we do not
need to translate it into a synchronous channel.

Safety Requirements Formalization: The MVBC safety requirements are
mainly derived from the descriptions of the MVBC conformance testing require-
ment of IEC-61375-2. We divide the testing requirement into two groups: model
verifiable safety requirement and implementation verifiable safety requirement.

Those requirements that are related to general functions of control logic
and independent of platform are categorized as model verifiable safety require-
ments. We formalize them as timed computation tree logic formulas defined
on the formal timed automata, and verify them in Uppaal. For example,
the requirement that there is at most one regular master MVBC contained
in the train communication network, is a typical model verifiable safety
requirements, and can be formalized as A[]not(MVBC(1).Regular Master
&&MVBC(2).Regular Master).

Those requirements related with dynamic runtime situation and uncertain
environment are categorized as implementation verifiable safety requirements.
They are not easy to be defined in the abstract timed automata level, because
it is not easy to model dynamic transmission delay of data on MVBC bus and
dynamic processing delay of hardware platform, even with a preliminary chan-
nel model and clock variable in Uppaal timed automata. We formalize these
safety requirements as the runtime verification property of RMOR. We define
some events based on the variables of the generated C code of Times, which are
configured to I/O pins of the real hardware platform and will be continuously
loaded by accompanied C functions. Then, the property and the accompanied
C functions are transformed and input to RMOR to get the instrumented code,
which can be made as an integral part of the target generated system, verify-
ing and guiding its execution within the dynamic environment. For example,
the requirement that he suggested time constraint on a master MVBC between
the finish of a master frame sending and the start of a response slave frame
receiving should be less than 42.7us is a typical implementation verifiable safety
requirements, and can be formalized as below:

DataCenter Monitor TimeConstraints (){
event TimeoutResponse =
((T Master Send − T Slav Rece ive)<42.7)

event Tr igger = TimeoutResponse ;
s t a t e s a f e {When Tr igger −> e r r o r ;}

}
Listing 1.1. Runtime Property Definition for the Time Interval.

Code synthesis and verifier integration: For the code synthesis, automati-
cal code generation tools such as Times can be applied to reduce the hard work

Safety-Assured Formal Model-Driven Design 761

efforts of manual implementation, which is also more human error prone. For
example, the engineers from the industrial sources (the Duagon company, the
China CR corporation) report that their MVBC is developed by directly writing
underlying C or VHDL code manually, where there are still some bugs such as
dead logic or dead code. Besides, the automatical code generation also facilitate
the traceability between the model and implementation, which results in better
documentations and easier maintains.

Before applying the code generation algorithm, we need to do some changes on
the formalmodel.More specifically, we construct and initialize the timed automata
template for two or more MVBCs for comprehensive verification, and now need to
isolate the timed automata of a single MVBC for code synthesis. One way for iso-
lation is to build a general environment model, which is ready to receive any out-
put synchronization action from the isolated MVBC and send input synchroniza-
tion action to the isolated MVBC. Then, we can generate execution code for both
MVBC and the general environment, and manually separate the generated code.
Another way for isolation is to do some reverse engineering, where the synchroniza-
tion channels denoting the packets of sending and receiving events are reversed to
the general variable. For example, a synchronization channel rcv connect req? can
be replaced by a declaration of boolean variable rcv connect req. Meanwhile, an
evaluation expression rcv connect req == true should be added to the guard seg-
ment, and an assignment expression rcv connect req := true should be added to
the action segment. We use the second way, because it can be automatically accom-
plishedbyparsing andupdating theXMLfile of the timedautomatamodel, and the
second isolation way is more closed to the real operation scenario where the send-
ing and receiving packets from the physical bus is asynchronous. Besides, because
the generated code is tightly coupled, the manually separation is more error prone.

After that, we also need to add some glue code, which is mainly used for
two functionalities, the interface between the software and hardware platform,
and timing implementation of the generated code on the hardware platform. For
interface, we just need to initialize some configure mapping files, mapping the
variable of software to the GPIO of the hardware platform. Accompanied type
conversion functions may be needed. For clocks, let sc be a global system clock.
For each clock x in the timed automata, let xreset be an integer variable holding
the system time of the last clock reset. The value of the clock is then (sc−xreset),
and a reset can be performed as xreset := sc.

Finally, based on the generated code and the handwriting glue code, we input
the formalized implementation verifiable safety requirement and the integrated
code to RMOR to generate the runtime verifier, and the system integration
is instrumented with the verifier for the runtime verification. The integrated
verifier keeps verifying the safety requirements on the running executable system.
To improve the safety confidence, we can also formalize some model verifiable
requirement into verifier, but will increasing the storage overhead of the system.

762 Y. Jiang et al.

Table 1. Resource utilization C compilation for MVBC, and the verification efficiency.

C compilation Safety-Assured BeagleBone

Binary File Size KB 302 683

Bug in IEC Standard Detected 6(verification) 1(Simulink Design Verifier)

Injected Division by Zero Detected 10/10(verification) 4/10(Simulink Design Verifier)

3 Experiment Results

To evaluate the effectiveness of the proposed approach, we apply it to the design
of MVBC and compare it with BeagleBone [11], which is the most recently
available design framework for MVBC based on Simulink. More specifically, we
formalize 92 critical model verifiable safety requirements and 29 critical imple-
mentation verifiable safety requirements. During the verification process of the
proposed approach, 11 requirement violates in the model or the implementation
level. After discussion with the engineers from CRRC, 5 requirements are vio-
lated because of the error brought by our modeling behavior, and 6 requirements
are violated because of the error of the control logic described in the standard.
While in the verification process of BeagleBone, only one violation is detected
due to the limited specification and verification of Simulink Design Verifier. For
the second type of violation, we need to revise the timed automata model as well
as the back end IEC standard according to analysis results of counter examples.
Besides, these violations are consistent to existing works [7–10] and have already
been confirmed and would be revised in the new version of IEC standard 61375.
After revision, both the model level verification and the runtime verification
reports no violation (Table 1).

Then, the generated code according to the revised model and the integrated
executable system with the eCos (Embedded Configurable Operation System)
is synthesized. Then, the synthesized binary files for the integrated C code can
be loaded and run on ARM7-STM32F407IGH6 processor. The binary file is
302 kb and 683 kb for the code generated by Times and BeagleBone respectively.
The difference is mainly derived from the fact that BeagleBone use Simulink C
code generator to generate many extra configuration files and introduces many
libraries for scalability. To test the reliability of the system as well as some
requirements that can not be formalized, we connect the widely-used industrial
product MVBC card D113 with our synthesized MVBC for real-time communi-
cation. We use the application running on the industrial computer to monitor
communication, and read the message data from memory. It shows that the
communications confirm to the requirements defined in the part two of standard
IEC 61375.

4 Conclusion

In this paper, we present a formal model-driven engineering approach to
establishing a safety-assured implementation of MVBC based on the generic

Safety-Assured Formal Model-Driven Design 763

reference models and requirements described in the International Electrotech-
nical Commission (IEC) standard 61375. The design part mainly includes for-
mal model construction, code generation and integration, and the safety-assured
part mainly includes model level verification and implementation level verifica-
tion. During the engineering practice, several logic inconsistencies in the original
standard are detected and corrected.

Acknowledgements. This research is sponsored in part by NSFC Program
(No. 91218302, No. 61527812), National Science and Technology Major Project
(No. 2016ZX01038101), Tsinghua University Initiative Scientific Research Program
(20131089331), MIIT IT funds (Research and application of TCN key technologies)
of China, and the National Key Technology R&D Program (No. 2015BAG14B01-02),
Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23.

References

1. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES b— A tool
for modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002).
doi:10.1007/3-540-46002-0 32

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

3. International Electrotechnical Commission et al.: IEC 61375-1, Train Communica-
tion Network (2011)

4. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68524-1 3

5. Iturbe, X., Zuloaga, A., Jiménez, J., Lázaro, J., Mart́ın, J.L.: A novel SoC archi-
tecture for a MVB slave node. In: IECON 2008. IEEE (2008)

6. Jiang, Y., Gu, M., Sun, J.: Verification and implementation of the protocol stan-
dard in train control system. In: IEEE 37th Annual Computer Software and Appli-
cations Conference (COMPSAC), pp. 549–558 (2014)

7. Song, H., et al.: Data-centered runtime verification of wireless medical cyber-
physical system. IEEE Transactions on Industry Informatics (2016)

8. Yang, Y., et al.: From stateflow simulation to verified implementation: a verification
approach and a real-time train controller design. In: 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS) (2016)

9. Zhang, H., et al.: Design and optimization of multi-clocked embedded systems
using formal technique. IEEE Trans. Ind. Electron. 62(2), 1270–1278 (2014)

10. Jiang, Y., et al.: Design of mixed synchronous/asynchronous systems with multiple
clocks. IEEE Trans. Parallel Distrib. Syst. 26, 2220–2232 (2014)

11. Aarthipriya, R., Chitrapreyanka, S.: FPGA implementation of multifunction vehi-
cle bus controller with class 2 interface and verification using Beaglebone Black
(2015)

12. Yunxiao, F., Zhi, L., Jingjing, P., Hongyu, L., Jiang, S.: Applying systems thinking
approach to accident analysis in China: case study of “7.23” Yong-Tai-Wen high-
speed train accident. Saf. Sci. 76, 190–201 (2015)

http://dx.doi.org/10.1007/3-540-46002-0_32
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-540-68524-1_3

Taming Interrupts for Verifying Industrial
Multifunction Vehicle Bus Controllers

Han Liu1,2,3(B), Yu Jiang1,2,3, Huafeng Zhang1,2,3, Ming Gu1,2,3,4,
and Jiaguang Sun1,2,3

1 Key Laboratory for Information System Security,
Ministry of Education, Beijing, China

2 Tsinghua National Laboratory for Information Science and Technology,
Beijing, China

3 School of Software, Tsinghua University, Beijing, China
liuhan0518@gmail.com

4 China Railway Rolling Stock Corporation (CRRC), Beijing, China

Abstract. Multifunction Vehicle Bus controllers (MVBC) are safety-
critical sub-systems in the industrial train communication network. As
an interrupt-driven system, MVBC is practically hard to verify. The rea-
sons are twofold. First, MVBC introduces the concurrency semantics of
deferred interrupt handlers and communication via hardware registers,
making existing formalism infeasible. Second, verifying MVBC requires
considering the environmental features (i.e., interrupt ordering), which
is hard to model and reason. To overcome these limitations, we pro-
posed a novel framework for formal verification on MVBC. First, we
formalized the concurrency semantics of MVBC and described a sequen-
tialization technique so that well-designed sequential analyses can be
performed. Moreover, we introduced the happen-before interrupt graph
to model interrupt dependency and further eliminate false alarms. The
framework scaled well on an industrial MVBC product from CRRC Inc.
and found 3 severe software bugs, which were all confirmed by engineers.

1 Introduction

Multifunction Vehicle Bus controllers (MVBC) are an essential sub-system in the
industrial train communication network (TCN). Unfortunately, as an interrupt-
driven system with software and hardware, MVBC is highly error-prone. Even
worse, employing formal verification on MVBC is practically challenging. The
reasons are twofold. First, MVBC incurs concurrency from random arrival of
interrupts, asynchronous handlers and software-hardware communication via
registers. Such concurrency is little clearly investigated and can fail existing
analyses. Second, MVBC is reactive to environmental inputs (i.e., interrupts),
but their dependency, i.e., in what order interrupts occur, is hard to reason.

Our Solution. We proposed a novel framework to verify MVBC in practice. We
first formalized its concurrency semantics and described a sequentialization tech-
nique, considering asynchronous deferral and hardware register communication.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 764–771, 2016.
DOI: 10.1007/978-3-319-48989-6 48

Taming Interrupts for Verifying Industrial Multifunction Vehicle 765

The sequentialized programs can be then verified using existing sequential veri-
fiers. Second, we introduced the happen-before interrupt graph to model interrupt
dependency and further prune false alarms.

Contribution. Main contributions are summarized below.

– We formalized the interrupt-driven concurrency model of MVBC-like systems.
– We proposed a sequentialization based framework to practically verify MVBC.
– We have applied the framework on a real-world industrial MVBC product and

found 3 severe previously unknown bugs, which were all confirmed.

2 Multifunction Vehicle Bus Controller

MVBC is used to control the communication between the train bus and devices
[5,6]. As an interrupt-driven concurrent system, MVBC consists of both software
and hardware. While the classical concurrency semantics are widely discussed [3,
7,8], MVBC-like systems are relatively little studied. We first introduce two
highly-relevant concurrency features.

Asynchronous Deferral. To service an interrupt request, an Interrupt Ser-
vice Routine (ISR) will be invoked. ISR is prioritized and preemptive. It can
asynchronously post a deferral into a global FIFO queue for delayed execution.
Deferrals cannot preempt each other but can be preempted by other ISRs.

Hardware Registers. The communication between software and hardware
of MVBC is realized via shared hardware registers. The code below defines 2
macros for register writing and reading. Particularly, strict memory consistency
may be violated in this type of communication, e.g., a HAL IO INPUT after
HAL IO OUTPUT cannot guarantee to access the same value.

/∗ Write to hardware registers ∗/ /∗ Load from hardware registers ∗/
HAL IO OUTPUT(IO RESET | content); HAL IO INPUT(content);

Table 1. T: types. N: priority. V ar: variables. i: input. r: return value. e: expression.
b: basic statement. c: predicate. λ: empty rule. a: address for a register.

Formulation. First, we present an abstract language for MVBC as in Table 1.
We consider a collection of ISRs and deferral with shared variables. Supported
operations include basic control flow and post a deferral, (un)mask certain
ISR, write to and read from hardware registers. Then, we formalize the

766 H. Liu et al.

concurrency semantics as transitions on configurations. Each configuration is
〈P,M,R, S,Q〉 where P = ISR ∪ DF . M = P �→ {Idle,Run, Pend} denotes
the handler state. R = ISR �→ {true,false} × {true,false} identifies the
arrival and masking of interrupts. S is a stack for ISR with operations push, pop
and get the top. Q is a queue for deferral with operations enqueue, dequeue
and get the head.

The formal concurrency semantics is shown in Table 2. The Dispatch rule
models a preemption behavior of a ISR. Mask rule disables specific ISR. Without
arrival of interrupts, we Execute the top of the stack, or head of the queue.
Return semantics differs in ISR and deferral. The former leads to a pop while
the latter causes a dequeue. The Post of a deferral amounts to an enqueue.

Table 2. Semantics of MVBC. i, m, n ∈ ISR df ∈ DF p ∈ P . � is a wildcard.

3 Approach

In this section, we describe a general framework for verifying MVBC. The work-
flow of the framework is shown in Fig. 1. Given the MVBC programs, we first
employ a sequentialization via inserting schedule functions (Sect. 3.1). Then
based on the IEC 61375 and specifications, we model the interrupt depen-
dency using the happen-before interrupt graph (Sect. 3.2). The graph is lever-
aged to reduce the sequential programs. Next, we use an existing verifier (e.g.,
CBMC [2]) to verify the reduced sequential programs on safety-critical properties
of MVBC.

+

Fig. 1. The general framework for MVBC verification.

Taming Interrupts for Verifying Industrial Multifunction Vehicle 767

3.1 Sequentialization

The sequentialization of MVBC is realized via inserting the schedule functions,
which can simulate the concurrency through non-deterministic function calls. For
ISR, we adopt the similar sequentialization as [14] in left of Fig. 2. For deferral,
we propose the schedule df in right of Fig. 2 to run the FIFO queue. Further-
more, we use the schedule reg below to sequentialize the communication via
hardware registers. It non-deterministically modifies the register values.

Fig. 2. Schedule an ISR (Left) and a deferral (Right)

void scheduler_reg(int addr) { if(nondet()) update_reg(addr); }

Fig. 3. An example code before (Left) and after (Right) the sequentialization

Idea of Sequentialization. The insertion of schedule isr() is described
in [14]. schedule df() is inserted when deferral is posted. schedule reg()
is inserted after a write and before a read of hardware registers. An example
is shown in Fig. 3. In the right, schedule isr() is inserted after an write to
global variable in isr 1() (line 2) and df 2() (line 11). Because isr 2() has
higher priority than isr 1(), no insertions are in isr 2(). schedule df() is
inserted at line 8 and 12 to run the deferral queue. schedule reg() is inserted
at line 4 to capture possible communication between line 8 and 9 in the left.

768 H. Liu et al.

3.2 Happen-Before Interrupt Graph

Verification on MVBC requires reasoning the interrupt dependency. However,
such dependency lacks formulation. For example, IEC 61375 specifies that:

“After processing a main frame, a slave device will send a slave frame.”

We can conclude that no preemption occurs between interrupt handlers of main
and slave frames. However, transferring this kind of knowledge into a practical
use case is commonly time-consuming and error-prone. To mitigate this complex-
ity, we proposed the happen-before interrupt graph (HBIG) to capture domain
knowledge and automatically integrate with the verification.

The happen-before relation is denoted as ≺⊆ ISR× ISR. a ≺ b implies that
isr a is prior to and cannot be preempted by isr b. A HBIG G = (V, E),
where V is a set of interrupts and E denotes a set of happen-before relations.
HBIG can be considered as a directed graph. a ≺ b indicates a path from a to b
in the graph. On the contrary, two interrupts are unordered if no path connects
them. In the verification, a path suggests an infeasible interleaving between two
interrupts. Taking the code in left of Fig. 3 as an example, if isr 1 ≺ isr 2,
the schedule isr at line 2 of right of Fig. 3 can be reduced. To integrate
HBIG with the sequentialization, we add the following code before line 4 in
schedule isr of Fig. 2 to filter out infeasible interleaving.

/* hb(a,b) checks the path existence between a and b. */
if(hb(id, i) || hb(i, id)) continue;

4 Evaluation

Target System. We selected TiMVB, an industrial MVBC product from CRRC
Inc., as shown in left of Fig. 4. The ARM processor runs C programs on the
eCos1 operating system, and communicates with an FPGA via general-purpose
input output (GPIO) pins, which are hardware registers as in Sect. 2.

Fig. 4. TiMVB; HBIG; Int: interrupt, Reg: register communications.

TiMVB contains 4923 lines of C code and handles 7 types of interrupts, as
in right of Fig. 4 Except NT, other interrupts all communicate with FPGA via
1 http://ecos.sourceware.org/.

http://ecos.sourceware.org/.

Taming Interrupts for Verifying Industrial Multifunction Vehicle 769

registers. 5 priorities are set (0 is the highest), indicating a large state space.
Based on IEC 61375 and discussions with domain experts, we developed an
HBIG as in middle of Fig. 4. In specific, SPV happen-before all interrupts since
it can reach any other nodes. MF and SF happen-before other less-prioritized
interrupts except SYN, which implies that SYN interrupt can arrive in arbitrary
orders.

Verification Results. In the verification, we focused on two kinds of safety-
critical properties: (1) Data Validity (DV), Device state data must hold valid
values. (2) Frame Consistency (FC), Frame data must match frame types.

Fig. 5. Verification results. NoHB: without HBIG.
HB: with HBIG. OOM: Out of memory. Framed cell:
False alarm.

The verification results
are shown in Fig. 5. We
have exposed 1 bug on data
validity property (ID=2) and
2 bugs on frame consis-
tency property (ID=6,7). We
compared two verification
strategies: with and without
an HBIG. Based on Fig. 5,
HBIG helped improve the
time efficiency from 18.84 %
to 67.35 %. In particular, it
successfully scaled on a com-
plex verification when non-
HBIG strategy failed due to
memory limitation (ID=4). Moreover, the non-HBIG strategy reported a false
positive (ID=3) due to infeasible interleaving. HBIG based strategy, which
sequentialized the programs with well-formalized concurrency semantics, gen-
erated no false alarms.

1 void syncprocess_handle():
2 if (sync_checkbit == HAL_IO_ENUM_SYNC_STATUS):
3 mvb_arm_receive_sync(mvb_device_status_16);
4 mvb_device_status = *((MVB_DEVICE_STATUS*) & mvb_device_status_16);

1 #define mvb_arm_send_main_frame(content)
2 ba_mf = content; HAL_IO_OUTPUT(IO_RESET | content); \
3 HAL_IO_FRAME_WRITE_SIGNAL_PULSE; HAL_IO_SEND_MAIN_FRAME;

Two uncovered bugs are shown above (upper ID=2, lower ID=7). The upper
bug occurs when the ISR of SYN interrupt is preempted by MF or SF between
line 3 and 4. In that case, a write-write-read data race is triggered to taint the
global variable mvb device status 16. As for the lower bug, content of a main
frame is set (line 2) and then the frame type is set (line 3). A frame inconsistency
manifests when the sending operation of the hardware is performed in between,
causing a slave frame sent with the main frame content.

770 H. Liu et al.

5 Lessons Learned

i. Software correctness is not system reliability. Verification of embedded
software should reason their interactions with hardware, including the interaction
semantics and how it is implemented. In our case, without considering hardware
registers in TiMVB, the frame consistency bugs cannot be uncovered.

ii. “Interfaces” of formal methods are desired. One way to facilitate the
practical application of formal methods is a convenient interface to the practice.
In our case study, engineers used to hard-code the interrupt dependency, which
is imprecise and error-prone. From this point, the HBIG is practically useful by
encapsulating the implementation and offering high-level abstractions.

6 Related Work

Program Sequentialization. The original idea of sequentialization was to
transform a program within bounded context switches [8,10]. Later attempts
have considered balancing efficiency and accuracy [4,13], and handling asyn-
chrony [3,7,14]. We extended the sequentialization by modeling deferral into a
FIFO queue and leveraging HBIG for further reduction.

Analyses on Interrupts. Interrupt-driven software has been widely discussed
[1,9,14]. Schwarz et al. provided static analyses on prioritized tasks under
dynamical scheduling [12]. Schlich et al. proposed to reduce non-nested inter-
rupts [11]. Our insight is to formalize and analyze more real-world interrupt
semantics, including deferral and communication via hardware registers, which
have long been ignored.

7 Conclusion

In this paper, we introduced a verification framework for MVBC systems. The
framework is based on the formal semantics of MVBC to sequentialize interrupt
handlers and model their dependency. On an industrial product TiMVB, the
framework helped find two types of previously unknown defects, which were
confirmed by engineers. Our future plan includes verifying extensive real-world
systems and building industry-friendly tools.

Acknowledgement. This research is sponsored by NSFC Program (No.91218 302,
No.61527812), National Science and Technology Major Project (N0.16ZX010 38101),
MIIT IT funds (Research and application of TCN key technologies) of China, and
National Key Technology R&D Program (No.2015BAG14B01-02).

Taming Interrupts for Verifying Industrial Multifunction Vehicle 771

References

1. Brylow, D., Damgaard, N., Palsberg, J.: Static checking of interrupt-driven soft-
ware. In: ICSE 2001, pp. 47–56 (2001)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

3. Emmi, M., Lal, A., Qadeer, S.: Asynchronous programs with prioritized task-
buffers. In: FSE 2012, pp. 48:1–48:11. ACM, New York (2012)

4. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg
(2014)

5. Jiang, Y., et al.: Design and optimization of multiclocked embedded systems using
formal techniques. TIE 62, 1270–1278 (2015)

6. Jiang, Y., et al.: Design of mixed synchronous/asynchronous systems with multiple
clocks. TPDS 26, 2220–2232 (2015)

7. Kidd, N., Jagannathan, S., Vitek, J.: One stack to run them all: reducing concur-
rent analysis to sequential analysis under priority scheduling. In: Pol, J., Weber,
M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 245–261. Springer, Heidelberg (2010)

8. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. FMSD 35(1), 73–97 (2009)

9. Liu, H., et al.: idola: bridge modeling to verification and implementation of
interrupt-driven systems. In: TASE, pp. 193–200 (2014)

10. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI 2004, pp. 14–24
(2004)

11. Schlich, B., Noll, T., Brauer, J., Brutschy, L.: Reduction of interrupt handler exe-
cutions for model checking embedded software. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 5–20. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19237-1 5

12. Schwarz, D., et al.: Static analysis of interrupt-driven programs synchronized via
the priority ceiling protocol. In: POPL, pp. 93–104 (2011)

13. Tomasco, E., Inverso, O., Fischer, B., Torre, S., Parlato, G.: Verifying concur-
rent programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 551–565. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 52

14. Wu, X., Chen, L., Mine, A., Dong, W., Wang, J.: Numerical static analysis of
interrupt-driven programs via sequentialization. In: EMSOFT 2015, pp. 55–64
(2015)

http://dx.doi.org/10.1007/978-3-642-19237-1_5
http://dx.doi.org/10.1007/978-3-642-19237-1_5
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-46681-0_52

Rule-Based Incremental Verification Tools
Applied to Railway Designs and Regulations

Bjørnar Luteberget1(B), Christian Johansen2, Claus Feyling1,
and Martin Steffen2

1 RailComplete AS, Sandvika, Norway
{bjlut,clfey}@railcomplete.no

2 Department of Informatics, University of Oslo, Oslo, Norway
{cristi,msteffen}@ifi.uio.no

Abstract. When designing railway infrastructure (tracks, signalling
systems, etc.), railway engineers need to keep in mind numerous reg-
ulations for ensuring safety. Many of these regulations are simple, but
demonstrably conforming with them often involves tedious manual work.
We have worked on automating the verification of regulations against
CAD designs, and integrated a verification tool and methodology into
the tool chain of railway engineers. Automatically generating a model
from the railway designs and running the verification tool on it is a valu-
able step forward, compared to manually reviewing the design for com-
pliance and consistency. To seamlessly integrate the consistency checking
into the CAD work-flow of the design engineers, however, requires a fast,
on-the-fly mechanism, similar to real-time compilation done in standard
programming tools.

In consequence, in this paper we turn to incremental verification
and investigate existing rule-based tools, looking at various aspects rele-
vant for engineering railway designs. We discuss existing state-of-the-art
methods for incremental verification in the setting of rule-based mod-
elling. We survey and compare relevant tools (ca. 30) and discuss if/how
they could be integrated in a railway design environment, such as CAD
software. We examine and compare four promising tools: XSB Prolog, a
standard tool in the Datalog community, RDFox from the semantic web
community, Dyna from the AI community, and LogicBlox, a proprietary
solution.

1 Introduction

Verification of railway systems using formal methods often focuses on interlock-
ing and dynamic safety of the implementation. Often overlooked, however, is
the early-stage planning process for railway systems where the design decisions
are made. The design process is concerned with producing a specification of the

Part of this research has been supported by the Norwegian Research Council project
RailCons (Automated Methods and Tools for Ensuring Consistency of Railway
Designs).

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 772–778, 2016.
DOI: 10.1007/978-3-319-48989-6 49

http://www.mn.uio.no/ifi/english/research/projects/railcons

Rule-Based Incremental Verification Tools Applied to Railway Designs 773

200m

Fig. 1. Home signal layout rule example (Property 1).

railway infrastructure, which we call the design, with documented safety and
performance requirements. During that phase, it is important to efficiently han-
dle changes in track layouts, component capabilities, performance requirements,
etc. Tool support for this process is practically unavailable. Such tools would
be concerned with verification of the railway infrastructure w.r.t. technical reg-
ulations, typically expressing static properties concerned with object properties,
topology, geometry, and interlocking specifications.

As an example of a regulation to be verified, we consider the home signal
rule (Property 1 below, see also Fig. 1). Ensuring that a design is compliant with
a large set such regulations could give significant productivity and quality gains,
especially if the compliance information could be immediately available after
making changes to the design.

Property 1 (Home Signal Layout Rule). A home main signal shall be placed
at least 200m in front of the first controlled, facing switch in the entry train path.

Section 2 shortly describes the current state of our tool for checking con-
sistency of industrial railway designs, introducing the practical problem of on-
the-fly verification. Sect. 3 then describes the existing techniques for incremental
verification for rule-based modelling. We then survey in Sect. 4 existing tools
related to Datalog and focus on those supporting incremental verification. We
are particularly interested in industry-ready tools. We end in Sect. 5 by compar-
ing efficiency gains due to incremental evaluation when applied to the industrial
case study of the Arna station reconstruction, and suggesting how existing tools
could be improved to help make our incremental verification production-ready.

2 Integrating Verification Tools into Railway
Engineering Tools

In [8], we presented and demonstrated a verification tool for static infrastructure
properties based on evaluation of Datalog rules. The tool is integrated into the
RailCOMPLETE� software, a professional railway CAD program for producing
and editing railML representations of railway infrastructure. The railML for-
mat [11] is an international standard for describing railway infrastructure, time
tables, and rolling stock information. The railML description is transformed into
a logical model for verification.

The modelling and verification has the following characteristics: it (1) uses
Datalog (many properties depend on graph reachability encoded as transitive

774 B. Luteberget et al.

Fig. 2. Structured comments attached to a rule expressing violation of a regulation.

Fig. 3. Counter-example presentation within the RailCOMPLETE� CAD tool.

closures), and uses (2) negation with negation-as-failure semantics (stratified
negation). Finally, and going beyond pure Datalog, it uses (3) arithmetic, to
model aspects such as distances.

Our prototype implementation uses XSB Prolog which does conventional
top-down Prolog search, combined with tabling of recursive predicates, ensuring
the Datalog properties of termination and polynomial running time. Figure 2
shows an example rule input corresponding to a railway property, whereas Fig. 3
shows the graphical representation indicating to the engineer which regulation
is violated. The tight integration into the CAD program and, as such, into the
engineer’s design process, creates the demand for fast re-evaluation of all con-
clusions upon small changes to the railway designs. The performance studies of
[8] show that the current implementation is well acceptable for “one-shot” vali-
dation even for realistic designs with running times in the range of seconds (the
tool is applied to a real train station currently under construction). However, it
is not fast enough to smoothly and transparently be integrated such that it can
automatically rerun the complete verification for each small change.

3 Incremental Verification for On-the-Fly Performance

An alternative approach that promises to be more efficient is incremental verifi-
cation: instead of solving logic programs from scratch for each verification run,
it tries to materialize all consequences of the base facts and then maintains this
view under fact updates. The existing literature on incremental materialization
of Datalog programs gives various strategies for doing this efficiently. We briefly

Rule-Based Incremental Verification Tools Applied to Railway Designs 775

survey methods for incremental evaluation of Datalog programs, also known
in the deductive database literature as the view maintenance problem [5] [1,
Chap. 22]. We also survey relevant tools and compare their features (e.g., avail-
ability, industry-quality, performance) in the context of our verification tool. A
more thorough evaluation appears in a long version of this work [9].

Datalog systems use rules to derive a set of consequences (intensional facts),
from a given set of base facts (extensional facts). Typically, Datalog systems
use a bottom-up (or forward-chaining) evaluation strategy, where all possible
consequences are materialized [15, Chap. 3] [1, Chap. 13]. This simplifies query
answering to simply looking up values in the materialization tables. Any change
to the base facts, however, will invalidate the materialization. Several approaches
have been suggested to reduce the work required to find a new materialization
after changing the base facts.

First, if considering only addition of facts to positive Datalog programs,
i.e. without negation, then the standard semi-naive algorithm [15, Chap. 3] [1,
Chap. 13] is already an efficient approach. The real challenge are non-monotonic
changes, i.e., removing facts appearing positively in rules or adding facts appear-
ing negatively in rules. Non-monotonicity is essential in our railway infrastruc-
ture verification rules. Graph reachability is prominent in many of the regula-
tions for railway signalling, so efficiently maintaining rules involving transitivity
is also essential. Some algorithms, such as truth maintenance systems [3], work
by storing more information (in addition to the logical consequences) about the
supporting facts for derived facts, so that removal of supporting facts may or may
not remove a derived fact. This allows efficient removal of facts, at the cost of
requiring more time and memory for normal derivations. Another class of algo-
rithms, working without additional “bookkeeping”, can be more efficient if the
re-evaluation of sets of facts is relatively easy compared to re-materializing all
facts. The Propagation-Filtering algorithm [7] works on each removed fact sep-
arately, propagating it through to all rules which depend on it. In contrast, the
Delete-Rederive (DRed) algorithm [6] is rule-oriented and works on sets of facts,
first over-approximating all possible deletions that may result from a change
in base facts, then re-deriving any still-supported facts from the over-deleted
state before finally continuing semi-naive materialization on newly added facts.
Recently, the Forward/Backward/Forward (FBF) algorithm [10] used in RDFox
improved the DRed algorithm in most cases by searching for alternative support
(and caching the results) for each potentially deleted fact before proceeding to
the next fact. Notably, this method performs better on rules involving transitiv-
ity, as deletions do not propagate further than necessary.

4 Datalog Tools for Incremental Verification

Our procedure uses rule-based modelling and verification techniques in the style
of Datalog. In consequence, we perform a survey of Datalog-based and related
tools. The logic programs for our verification make use of recursive predicates,
stratified negation, and arithmetic. Therefore, we pay particular attention to
tools that at least satisfy these needs. In addition, we are looking for high per-
formance on relatively small (in-memory) data sets, so light-weight library-style

776 B. Luteberget et al.

logic engines are preferred. High-performance distributed “big data” type of tools
have less value in this context.

XSB Prolog continuously developed since 1990, has constantly been pushing
the state of the art in high-performance Prolog. XSB is especially known for
its tabling support [14], which allows fast Datalog-like evaluation of logic pro-
grams without restricting ISO Prolog. The tabling support was extended to
allow incremental evaluation [12], and these features have been under con-
tinued development and seem to have reached a mature state [13]. For some
applications, however, the additional memory usage for incremental tabling
can lead to a significant increase in the total memory needed.

RDFox is a multicore-scalable in-memory RDF triple store with Datalog rea-
soning. It reads semantic web formats (RDF/OWL) and stores RDF triples,
but also includes a Datalog-like input language which can describe SWRL
rules. This rule language has been extended to include stratified negation
and arithmetic. The RDFox system also implements a new algorithm called
FBF for incremental evaluation [10].
RDFox stores internally only triples as in RDF, which, in Datalog, corre-
sponds to only using unary and binary predicates. A method of reifying the
rules for higher-arity Datalog predicates into binary predicates allows RDFox
to calculate any-arity Datalog programs. However, this requires separate rules
for each component of the predicate, and when doing incremental evaluation,
the FBF algorithm’s backward chaining step then examines all combinations
of components potentially involved. Because of this problem, using RDFox
incrementally did not improve running times in our case study.

LogicBlox is a programming platform [2] for combining transactions with ana-
lytics in enterprise application areas including web-based retail planning and
insurance. It uses a typed, Datalog-based custom language LogiQL and has a
comprehensive development framework. It claims support for incremental ver-
ification, but we could not evaluate it on our railway example due to absence
of freely downloadable distributions.

Dyna is a promising new Datalog-like language for modern statistical AI sys-
tems [4]. It has currently not matured sufficiently for our application, but its
techniques are promising, and we hope to see it more fully developed in the
future.

Many other Datalog tools are available (around 30), few of them supporting
incremental evaluation. An overview and our brief evaluation of them can be
found in the technical report [9]. We hope to include these findings also in the
Wikipedia page for Datalog.1

5 Efficiency Gains, Shortcomings, and Possible
Ways Forward

Table 1 compares the running time and memory usage for the verification on
Arna station used as a reference station in RailCOMPLETE. The railway
1 https://en.wikipedia.org/wiki/Datalog#Systems implementing Datalog.

https://en.wikipedia.org/wiki/Datalog#Systems_implementing_Datalog

Rule-Based Incremental Verification Tools Applied to Railway Designs 777

Table 1. Case study size and running times on a standard laptop.

Testing Arna Arna
station phase A phase B

Relevant components 15 152 231

Interlocking routes 2 23 42

Datalog input facts 85 8283 9159

XSB:

Non-incrementalverif.: Running time (s) 0.015 2.31 4.59

Memory (MB) 20 104 190

Incremental verif. baseline: Running time (s) 0.016 5.87 12.25

Memory (MB) 21 1110 2195

Incr. single object update: Running time (s) 0.014 0.54 0.61

Memory (MB) 22 1165 2267

signalling design project for this station is currently in progress by Norconsult
AS. The extra bookkeeping required in XSB to prepare for incremental evalu-
ation requires more time and memory than non-incremental evaluation, so we
include both non-incremental and from-scratch incremental evaluation in the
table for comparison. We show how updates can be calculated faster than from-
scratch evaluation by moving a single object (an axle counter) in and out of
a disallowed area near another object (regulations require at least 21.0 m sep-
aration between train detectors). Without using abstraction methods, the case
study verification uses over 2 GB of memory. So, for any hope of handling larger
stations on a standard laptop or workstation, this must be reduced. We were not
able to reduce memory usage in this case study using the abstraction methods
in XSB (version 3.6.0).

While currently none of the tools seem to satisfy all conditions we hoped for
in our integration, notably efficiency, but also maturity and stability, it should
also be noted that the need for incremental evaluation has been identified by the
community not only as theoretically interesting, but also as of practical impor-
tance. The RDFox developers aim to support incremental updates of higher-arity
predicates in a later version. The XSB project has made efforts to improve its
abstraction mechanisms, so future versions might become feasible for our use. If
reducing the memory usage would require adapting a Datalog algorithm (such
as DRed), then XSB’s unrestricted Prolog might be a challenge. A different app-
roach would be to extend another efficient Datalog tool, such as Soufflé, to do
incremental evaluation, which could require a significant effort.

778 B. Luteberget et al.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases, 1st edn.
Addison-Wesley Longman Publishing Co., Boston (1995)

2. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E.,
Veldhuizen, T.L., Washburn, G.: Design and implementation of the LogicBlox sys-
tem. In: SIGMOD International Conference on Management of Data, pp. 1371–
1382. ACM (2015)

3. Doyle, J.: A truth maintenance system. Artif. Intell. 12(3), 231–272 (1979)
4. Eisner, J., Filardo, N.W.: Dyna: extending datalog for modern AI. In: Moor, O.,

Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp.
181–220. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24206-9 11

5. Gupta, A., Mumick, I.S., et al.: Maintenance of materialized views: problems, tech-
niques, and applications. IEEE Data Eng. Bull. 18(2), 3–18 (1995)

6. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
In: SIGMOD International Conference on Management of Data, pp. 157–166. ACM
(1993)

7. Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive
database: an update propagation approach. In: Workshop on Deductive Databases,
pp. 56–65 (1992)

8. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking
of railway infrastructure designs. In: Ábrahám, E., Huisman, M. (eds.) IFM
2016. LNCS, vol. 9681, pp. 491–507. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-33693-0 31

9. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of rail-
way infrastructure designs (long version). Technical report 450, University of Oslo
(IFI) (2016)

10. Motik, B., Nenov, Y., Piro, R.E.F., Horrocks, I.: Incremental update of datalog
materialisation: the backward/forward algorithm. In: Proceedings of AAAI 2015.
AAAI Press (2015)

11. Nash, A., Huerlimann, D., Schütte, J., Krauss, V.P.: RailML – a standard data
interface for railroad applications, pp. 233–240. WIT Press (2004)

12. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled logic programs.
In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 392–406. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-24599-5 27

13. Swift, T.: Incremental tabling in support of knowledge representation and reason-
ing. Theory Pract. Log. Program. 14(4–5), 553–567 (2014)

14. Swift, T., Warren, D.S.: XSB: extending Prolog with tabled logic programming.
Theory Pract. Log. Program. 12(1–2), 157–187 (2012)

15. Ullman, J.D.: Principles of Database and Knowledge-base systems, vol. I & II.
Computer Society Press (1988)

http://dx.doi.org/10.1007/978-3-642-24206-9_11
http://dx.doi.org/10.1007/978-3-319-33693-0_31
http://dx.doi.org/10.1007/978-3-319-33693-0_31
http://dx.doi.org/10.1007/978-3-540-24599-5_27

RIVER: A Binary Analysis Framework
Using Symbolic Execution and
Reversible x86 Instructions

Teodor Stoenescu1, Alin Stefanescu2(B), Sorina Predut2, and Florentin Ipate2

1 Bitdefender, Bucharest, Romania
2 University of Bucharest, Bucharest, Romania

alin@fmi.unibuc.ro

Abstract. We present a binary analysis framework based on symbolic
execution with the distinguishing capability to execute stepwise forward
and also backward through the execution tree. It was developed inter-
nally at Bitdefender and code-named RIVER. The framework provides
components such as a taint engine, a dynamic symbolic execution engine,
and integration with Z3 for constraint solving.

1 Introduction

Given the nowadays extreme interconnectivity between multiple systems, net-
works and (big) data pools, the field of cybersecurity is a vitally important
aspect, for which concentrated efforts and resources are invested. To mention
only two recent examples in this direction, European Union just launched a
new public-private partnership on cybersecurity which is expected to trigger a
e1.8 billion of investment by 2020 [1] in advanced research and cooperation to
improve the defence against the myriad of security attacks, and US currently
organises, through DARPA, a cybersecurity grand challenge (CGC) [2], where
successful teams compete to analyse and fix a benchmark of binary files using a
combination of dynamic and static analysis, concolic, and fuzz testing.

Almost all the tools on the security market which aim to detect vulnerabil-
ities of source or binary code employ static analysis or, more rarely, dynamic
analysis through random values, a technique called fuzz testing. This may be
more efficient than the alternative of symbolic execution that we explore here,
but can miss many deeper or more insidious security issues. Symbolic execution
is a promising approach whose foundational principles were laid thirty years
ago [3], but which only recently started to regain attention from the research
community due to advancement in constraint solving, various combinations of
concrete and symbolic execution, and more computing power to fight the usual
state explosion problem [4]. The basic idea of symbolic execution is to mark
(some of) the program variables as symbolic rather than concrete and execute
the program symbolically by accumulating constraints on those variables along
the different paths explored in the execution tree.

c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 779–785, 2016.
DOI: 10.1007/978-3-319-48989-6 50

780 T. Stoenescu et al.

Most of the symbolic execution tools work on source code or bytecode [5–7]
rather than binary code [8–10]. However, binary code analysis is a very difficult
task due to its complexity and lower level constructs. On the other hand, it is
better to run the analysis directly at binary level, because this is the code which
is executed by the operating system. Moreover, in cybersecurity, usually only
the binary file is available, so recent research efforts are invested into dynamic
analysis of binary files [2] with companies such as Bitdefender joining the trend.

Bitdefender is a Romanian software security company and the creator of one
of the world’s fastest and most effective lines of internationally certified secu-
rity software and award-winning protection since 2001 [11]. Today, Bitdefender
secures the digital experience of 500 million home and corporate users across the
globe and, for that, Bitdefender is constantly performing research activities in
the software security area. The RIVER framework is an example of such internal
research effort with 2 person-years invested in the project until now.

Contributions: The main differentiator of RIVER is the design and imple-
mentation of a set of extended reversible x86 instructions, which allows an effi-
cient control of the execution and their integration into a symbolic execution
framework. For that, the following artifacts were created: RIVER intermediate
representation, which adds necessary and sufficient information to the x86 set
of instructions in order to efficiently “undo” the operations when needed or to
track certain variables as tainted; dedicated taint analysis and symbolic execu-
tion engines based on the above; and, as a byproduct, a debugger at binary level
with forward and backward step execution capabilities.

A technical report on RIVER is online at: http://tinyurl.com/river-tr-2016

2 Description of the Framework

This section details the overall design of the RIVER framework, which is shown
in Fig. 1. RIVER (spelled backwards) stands for the “REVersible Intermediate
Representation”. RIVER has a fixed length extended x86 instruction set and was
designed to be efficiently translated to and from x86 normal (“forward”) instruc-
tions. Its main novelty is the introduction of reverse (“backward”) instructions.
Also, specific tracking instructions were added to enable the taint analysis. This
intermediate representation is depicted in the left hand side of Fig. 1. The RIVER
code is obtained from an input as x86 native binary code (see bottom-left corner
of Fig. 1) through the dynamic binary instrumentation component, by means
of disassembly. Then, modified code is used by the components for on-the-fly
reversible execution and taint analysis. All these are used by the symbolic exe-
cution engine which also uses a state-of-the-art SMT solver, Z3 [12], for dealing
with the constraints for the symbolic variables (see top of Fig. 1) but also on-
demand snapshots to save certain memory states. All these and various other
aspects are discussed in this section.

RIVER Intermediate Language. Now we describe RIVER intermediate lan-
guage (IL) by presenting a couple of design choices. More details and an example
is given in the RIVER technical report mentioned above. First of all, RIVER

http://tinyurl.com/river-tr-2016

RIVER: A Binary Analysis Framework Using Symbolic Execution 781

Fig. 1. RIVER architecture.

code is obtained automatically from the input native x86 through the dynamic
binary instrumentation component (DBI) which is plugged in the reversible exe-
cution component (see bottom-left corner of Fig. 1). Thus, RIVER augments
translated code in order to make it reversible. It uses a shadow stack in order to
save instruction operands that are about to be destroyed. The original instruc-
tions are prefixed with operand saving ones. DBI also generates code for revers-
ing the execution so that the destroyed values can be restored from the shadow
stack. The RIVER instructions include modifiers, specifiers, operator codes and
types as well as flags and a special field for the family of the instruction. These
additional information is used to identify the prefixes and operand types and
registers of the original instructions and help the data flow analysis.

RIVER DBI component also contains its own disassembler, which augments
the code with the following properties: (a) implicit operands: some instructions
implicitly modify registers and memory locations. These are added to the instruc-
tion as implicit operands; (b) register versioning: in order to simplify data flow
analysis, the disassembler versions every register use; (c) meta operations: since
the x86 instruction set is not orthogonal, some instructions may be split into sev-
eral sub-operations, and (d) absolute jump addresses: relative jump operations
are augmented with an additional operand containing the original instruction
address. This makes it easier to compute the jump destination.

Reversible Execution Component. The reversible execution engine (see mid-
dle of Fig. 1) enables the forward and backward control of RIVER IL code that
was translated from the native x86 code through the DBI component. It oper-
ates at the basic block level, i.e., a sequence of instructions terminated by a

782 T. Stoenescu et al.

jump, by replacing the jump instruction in order to maintain the execution con-
trol. To implement reversibility, the RIVER translator inserts RIVER-specific
instructions in the translated code. Then, the RIVER translator generates a
second basic block for reversing the effects of the first block.

Based on the above, we developed a forward and backward binary debugger
(see bottom-right of Fig. 1). We created it to be used by the software developers
and security experts at Bitdefender, who need to examine dynamically certain
behaviours of binary files with a fine-grained control. It operates at basic block
level and it has a web front-end using JavaScript bindings for RIVER. Moreover,
it offers the possibility to set breakpoints, but also so-called “waypoints”, which
are similar to breakpoints but referring to points in the past of the execution.

Taint Analysis Component. This component records the spread of taint
through a program which uses tainted values. We implement classic taint spread-
ing algorithms, but we adapt them to our RIVER IL to take into account also the
reversibility feature. Technically, we added tracking instructions in RIVER IL
which are used by DBI to enable determining locations (both memory and reg-
isters) that have been directly influenced by the input values. Initially all input
locations are marked as tainted and everything else is untainted. At runtime, any
instruction having a tainted operand produces tainted results (with some excep-
tions). There are two ways of tracking locations: using simple boolean values or
binding custom values to memory locations (pointers to symbolic expressions).
We use the former for simple taint analysis (if used as standalone) and the latter
for symbolic execution.

Symbolic Execution Engine. In order to perform various types of analysis and
testing using dynamic symbolic execution, the program has to exercise a large
set of paths through its execution tree. The more paths are explored, the higher
the coverage of examined behaviours. However, since the enumeration of paths is
computationally expensive, several approaches have been proposed to minimize
its footprint [4]. Our symbolic execution engine (see right of Fig. 1) aims to tackle
the path explosion problem through its distinctive feature of reversibility. More
precisely, instead of re-executing paths from the beginning each time, we generate
them through backtracking (using, e.g., a depth first search strategy) and use the
reversibility to keep the memory usage low for the backtracking steps. Moreover,
we keep only the current path in memory rather than a whole set of paths and
snapshots. Thus, we try to exploit the temporal and spatial data locality, since
most execution paths have a lot of common subsequences. We do the above by
keeping track of two things in parallel: a concrete stack for the current path plus,
only when needed, snapshots. We optimise the latter during reverse execution
using many implicit micro-snapshots as opposed to (expensive) macro-snapshots
usually used by the current symbolic execution approaches. The micro-snapshots
keep only the modified memory locations, so we can easily restore the previous
snapshot at each program point.

It is a high priority for us to keep the snapshots at a minimum, and use it
only on demand, i.e., when we cannot reverse the execution of specific instruc-
tions, such as system calls, processor exceptions, or interrupts (e.g., “0x2e”).

RIVER: A Binary Analysis Framework Using Symbolic Execution 783

The fact that they are quite uncommon also helps our performance. Further-
more, we try to avoid also the snapshots associated to system calls: we have
started a detailed analysis of the reversibility of these problematic functions,
by systematically examining Windows Native API (NTDLL) and implementing
their inverse functions, whenever possible.

Regarding the symbolic execution engine, we do not implement “pure” sym-
bolic execution, but use concolic execution, i.e., mixing concrete and symbolic
execution at the binary level. Thus, instead of being only symbolic, the inputs
have a concrete value which is a representative of the symbolic domain. Besides,
the taint analysis component tracks the symbolic values.

Other Technical Aspects. RIVER framework is written in C++, having 14
KLOC in the current stable version, but is still under further development, with
more components, optimisation and types of analyses to be added soon.

RIVER IL currently covers about 87 % of the integer x86 instruction set,
which is the core of x86. This percentage is high enough to run most binary
programs in RIVER reversible mode (including specific debugging) and for taint
analysis. However, we cannot compare yet the performance of RIVER with other
frameworks using symbolic execution on binaries, because the SMT solver inte-
gration does not have a high enough coverage to run on existing benchmarks.

Also, the symbolic execution engine implements only a straightforward depth-
first exploration of paths using the C APIs of the RIVER components in the
middle of Fig. 1, but we are now adapting several advanced features available in
other state of the art symbolic execution frameworks [2,3,6,9,10,13,14]. There
is great advancement in the dynamic symbolic execution research community,
which was increasingly active over the last decade [3,4].

Moreover, we now develop an integration of our concolic execution with a
parallel fuzz testing module, in order to increase the path coverage. We designed
a distributed processing framework based on Apache Spark and Hadoop to apply
fuzz testing on several parallel machines and obtain a first test suite with a
good coverage. Then, we apply symbolic execution by tweaking certain paths to
increase coverage, as done also by others [15,16]. This is still work in progress.

Also, RIVER IL increases sixfold the size of original x86 code. To lower this
overhead, we are currently implementing some classic code optimisation methods
such as instruction reordering. After first experiments, we estimate to reduce the
size of RIVER code to only double the size of the original code, which should
be an acceptable trade-off.

3 Conclusions

In this paper, we presented RIVER, a new binary analysis framework built from
scratch with the idea of reversible basic block at its core. RIVER has all the
components needed to perform dynamic symbolic execution, including: dynamic
binary instrumentation and reversible execution, which enabled the construction
of a dedicated debugger, and also, taint analysis and SMT solver integration,

784 T. Stoenescu et al.

which enabled a lightweight symbolic execution engine with minimized footprint.
This architecture was based on a novel intermediate representation, RIVER IL.

We plan to use RIVER internally at Bitdefender in order to both extensively
test our commercial products, but also to find security vulnerabilities in external
binary files, which is Bitdefender’s core business. To reach this level, we need to
implement several improvements mentioned before and then tune the framework
for certain types of vulnerabilities. This will be our focus for the next months.
Moreover, we want to experiment with idea cross-pollination between RIVER
and related tools in both directions, i.e., to implement in RIVER heuristics that
proved efficient in other frameworks, but also vice versa, to investigate if our
concept of reversibility may improve the performance of existing tools (see how
KLEE benefited from such a transfer of optimization ideas in [14]).

Acknowledgements. We thank Sorin Baltateanu and Traian Serbanuta for fruitful
discussions and acknowledge partial support from MuVeT and MEASURE projects
(PN-II-ID-PCE-2011-3-0688 and PN-III-P3-3.5-EUK-2016-0020).

References

1. European-Commission: Commission signs agreement with industry on cyber-
security and steps up efforts to tackle cyber-threats. http://europa.eu/rapid/
press-release IP-16-2321 en.htm. Accessed July 2016

2. DARPA-US: Cyber grand challenge (2016). http://cgc.darpa.mil
3. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.

Commun. ACM 56(2), 82–90 (2013)
4. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for

software testing and analysis. STTT 11(4), 339–353 (2009)
5. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:

Proceedings of ESEC/FSE, pp. 263–272. ACM (2005)
6. Cadar, C., et al.: KLEE: unassisted and automatic generation of high-coverage tests

for complex systems programs. In: Proceedings of OSDI, pp. 209–224. USENIX
(2008)

7. Luckow, K.S., Pasareanu, C.S.: Symbolic PathFinder v7. ACM SIGSOFT Softw.
Eng. Notes 39(1), 1–5 (2014)

8. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89862-7 1

9. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on binary
code. In: Proceedings of SP 2012, pp. 380–394. IEEE (2012)

10. Salwan, J., Saudel, F.: Triton: a dynamic symbolic execution framework. In: Pro-
ceedings of SSTIC, pp. 31–54 (2015). http://triton.quarkslab.com

11. Bitdefender (2016). http://www.bitdefender.com/business/awards.html
12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

13. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, implemen-
tation, and applications. ACM Trans. Comput. Syst. 30(1), 2 (2012)

http://europa.eu/rapid/press-release_IP-16-2321_en.htm
http://europa.eu/rapid/press-release_IP-16-2321_en.htm
http://cgc.darpa.mil
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://triton.quarkslab.com
http://www.bitdefender.com/business/awards.html
http://dx.doi.org/10.1007/978-3-540-78800-3_24

RIVER: A Binary Analysis Framework Using Symbolic Execution 785

14. Rizzi, E.F., et al.: On the techniques we create, the tools we build, and their
misalignments: a study of KLEE. In: Proceedings of ICSE 2016, pp. 132–143.
ACM (2016)

15. Ciortea, L., Zamfir, C., Bucur, S., Chipounov, V., Candea, G.: Cloud9: a software
testing service. Oper. Syst. Rev. 43(4), 5–10 (2009)

16. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: Proceedings of NDSS 2016, pp. 1–16. The Internet Society (2016)

Erratum to: Simulink to UPPAAL Statistical
Model Checker: Analyzing Automotive

Industrial Systems

Predrag Filipovikj1(&), Nesredin Mahmud1, Raluca Marinescu1,
Cristina Seceleanu1, Oscar Ljungkrantz2, and Henrik Lönn2

1 Mälardalen University, Västerås, Sweden
{predrag.filipovikj,nesredin.mahmud,raluca.marinescu,

cristina.seceleanu}@mdh.se
2 Volvo Group Trucks Technology, Gothenburg, Sweden

{oscar.ljungkrantz,henrik.lonn}@volvo.com

Erratum to:
Chapter “Simulink to UPPAAL Statistical Model Checker:
Analyzing Automotive Industrial Systems” in:
J. Fitzgerald et al. (Eds.): FM 2016: Formal Methods, LNCS,
DOI: 10.1007/978-3-319-48989-6_46

The initially published version of Figure 1a and b is incorrect. This is the correct
version.

The updated original online version for this chapter can be found at
DOI: 10.1007/978-3-319-48989-6_46

Fig. 1. Our used TA patterns

© Springer International Publishing AG 2017
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, p. E1, 2016.
DOI: 10.1007/978-3-319-48989-6_51

http://dx.doi.org/10.1007/978-3-319-48989-6_46
http://dx.doi.org/10.1007/978-3-319-48989-6_46

Author Index

Abdulla, Parosh Aziz 25
Antonino, Pedro 43
Aştefănoaei, Lacramioara 60
Atig, Mohamed Faouzi 25

Bardin, Sébastien 235
Becker, Hanno 69
Beneš, Nikola 85
Bensalem, Saddek 60, 199
Biondi, Fabrizio 406
Bisgaard, Morten 559
Böhm, Stanislav 102
Bošnački, Dragan 694
Bozga, Marius 60, 199
Brabrand, Claus 217
Brim, Luboš 85

Cavada, Roberto 741
Chand, Saksham 119
Chen, Mingshuai 137
Chen, Xiaohong 460
Chen, Xin 721
Chen, Yuqi 155
Cheng, Chih-Hong 60
Chifflier, Pierre 496
Chin, Wei-Ngan 659
Cimatti, Alessandro 164, 741
Colvin, Robert J. 352
Combaz, Jacques 199
Crema, Luigi 741
Crespo, Juan Manuel 69

David, Cristina 182
Day, Nancy A. 677
Dellabani, Mahieddine 199
Demko, Martin 85
Diep, Bui Phi 25
Dimovski, Aleksandar S. 217
Djoudi, Adel 235
Dong, Jin Song 513

Feyling, Claus 772
Filipovikj, Predrag 748

Flores-Montoya, Antonio 254
Fränzle, Martin 137, 577

Galowicz, Jacek 69
Gerhardt, David 559
Ghezzi, Carlo 531
Ghorbal, Khalil 628
Giannakopoulou, Dimitra 274
Giantamidis, Georgios 291
Gibson-Robinson, Thomas 43
Gomes, Victor B.F. 310
Gotsman, Alexey 426
Goubault, Éric 235
Griesmayer, Andreas 551
Grov, Gudmund 326
Grumberg, Orna 593
Gu, Ming 757, 764
Guck, Dennis 274

Hansen, Michael R. 577
Hasanagić, Miran 344
Hayes, Ian J. 352
Hensel, Ulrich 69
Hermanns, Holger 559
Hiet, Guillaume 496
Hirai, Yoichi 69
Hoa, Koh Chuen 388
Hofmann, Martin 612
Holzer, Andreas 370
Honiden, Shinichi 444
Hou, Zhe 388
Huang, Chao 721
Huang, Wen-ling 3

Ipate, Florentin 779
Ishikawa, Fuyuki 444

Jančar, Petr 102
Jiang, Yu 757, 764
Jiao, Li 702
Johansen, Christian 772
Johnson, Taylor T. 628
Joshi, Saurabh 551

Kawamoto, Yusuke 406
Kesseli, Pascal 182
Khoo, Siau-Cheng 659
Khyzha, Artem 426
Kobayashi, Tsutomu 444
Kong, Hui 757
Kong, Pingfan 460
Krčál, Jan 559
Kroening, Daniel 182, 551
Kunz, César 69

Lahav, Ori 479
Larsen, Peter Gorm 344
Lausdahl, Kenneth 344
Le, Ton Chanh 659
Legay, Axel 406
Letan, Thomas 496
Lewis, Matt 182
Li, Li 513
Li, Yangjia 137, 702
Li, Yi 460
Lin, Wang 721
Lin, Yuhui 326
Liu, Han 757, 764
Liu, Yang 388
Liu, Yanhong A. 119
Liu, Zhiming 721
Ljungkrantz, Oscar 748
Lönn, Henrik 748
Luteberget, Bjørnar 772

Mahmud, Nesredin 748
Marinescu, Raluca 748
Meca, Ondřej 102
Meinicke, Larissa A. 352
Melham, Tom 551
Menghi, Claudio 531
Morin, Benjamin 496
Mosaad, Peter N. 137
Mover, Sergio 164
Mukherjee, Rajdeep 551

Nakata, Keiko 69
Neele, Thomas 694
Néron, Pierre 496
Nies, Gilles 559

Ody, Heinrich 577

Parkinson, Matthew 426
Pastva, Samuel 85

Peleska, Jan 3
Poskitt, Christopher M. 155
Predut, Sorina 779

Roccabruna, Mattia 741
Roscoe, A.W. 43
Rothenberg, Bat-Chen 593
Ruess, Harald 60

Sacchini, Jorge Luis 69
Šafránek, David 85
Sanan, David 388
Schumann, Johann 274
Schwartz-Narbonne, Daniel 370
Seceleanu, Cristina 748
Senjak, Christoph-Simon 612
Sessa, Mirko 164
Sha, Lui 757
Sogokon, Andrew 628
Song, Houbing 757
Spoletini, Paola 531
Stefanescu, Alin 779
Steffen, Martin 772
Stenger, Marvin 559
Stoenescu, Teodor 779
Stoller, Scott D. 119
Strichman, Ofer 645
Struth, Georg 310
Sun, Jiaguang 757, 764
Sun, Jun 155, 460, 513
Sun, Meng 460

Ta, Quang-Trung 659
Tabaei Befrouei, Mitra 370
Tews, Hendrik 69
Tiu, Alwen 388
Tonetta, Stefano 741
Tran-Jørgensen, Peter W.V. 344
Tripakis, Stavros 291
Tuerk, Thomas 69
Tumas, Vytautas 326

Vafeiadis, Viktor 479
Vakili, Amirhossein 677
Veitsman, Maor 645
Velykis, Andrius 352

Wang, Jingyi 460
Wang, Shuling 702

788 Author Index

Wąsowski, Andrzej 217
Weissenbacher, Georg 370
Wies, Thomas 370
Wijs, Anton 694
Winter, Kirsten 352

Yan, Gaogao 702
Yang, Zhengfeng 721

Zhan, Naijun 137, 702
Zhang, Huafeng 764

Author Index 789

	Preface
	Organization
	Abstracts of Invited Talks
	A Logical Approach to Systems Engineering Artifacts: Semantic Relationships and Dependencies beyond Traceability - From Requirements to Functional and Architectural Views
	Moving Fast with Program Verification Technology
	Industrial-Strength Model-Based Testing of Safety-Critical Systems
	Contents
	Invited Presentations
	Industrial-Strength Model-Based Testing of Safety-Critical Systems
	1 Introduction
	2 Conventional Testing Workflow vs. MBT Workflow
	3 SysML Test Models
	4 Requirements Tracing
	5 MBT Strategies with Guaranteed Test Strength
	5.1 Problem Statement
	5.2 Failure Models and Complete Testing Strategies
	5.3 Transformation-Independent Equivalence Classes
	5.4 Output Equivalence Class Testing

	6 Requirements-Driven, Model-Driven, and Property-Driven Testing
	7 Conclusion
	References

	Research Track
	Counter-Example Guided Program Verification
	1 Introduction
	2 Motivating Example
	3 Concurrent Programs
	4 Counter-Example Guided Program Verification
	4.1 The Abstraction
	4.2 The Reconstruction
	4.3 The Refinement

	5 Optimizations
	6 Experiment Results
	References

	Tighter Reachability Criteria for Deadlock-Freedom Analysis
	1 Introduction
	2 Background
	3 Related Work
	4 Imprecise Reachability Using Local Static Analysis
	4.1 Ordering of Rules Occurrences Consistency
	4.2 Number of Rules Occurrences Consistency
	4.3 Abstraction
	4.4 Discussion

	5 Combining Reachability Tests with Local Analysis
	5.1 Implementation

	6 Practical Evaluation
	7 Conclusion
	References

	Compositional Parameter Synthesis
	1 Introduction
	2 Parametric Timed Systems and Properties
	3 Compositional Parameter Synthesis
	4 Experiments and Extensions
	References

	Combining Mechanized Proofs and Model-Based Testing in the Formal Analysis of a Hypervisor
	1 Introduction
	2 Overview of the Methodology
	3 A Primer on the NOVA Micro Hypervisor
	3.1 Kernel Objects
	3.2 Hypercalls

	4 Coq Model
	4.1 Hypervisor State
	4.2 Semantics

	5 Security Properties
	5.1 Authority Confinement
	5.2 Memory Confinement

	6 Conformance Testing
	7 Related Work
	8 Conclusions
	References

	A Model Checking Approach to Discrete Bifurcation Analysis
	1 Introduction
	2 Preliminaries
	3 Parameter Synthesis Algorithm
	4 Discrete Bifurcation Analysis
	5 Application to Biological Case
	6 Conclusion
	References

	State-Space Reduction of Non-deterministically Synchronizing Systems Applicable to Deadlock Detection in MPI
	1 Introduction
	2 Explanation of the Main Algorithm in a Formal Context
	3 Optimization Ideas
	4 Usage of the Reduction in MPI
	5 Experimental Evaluation
	References

	Formal Verification of Multi-Paxos for Distributed Consensus
	1 Introduction
	2 Distributed Consensus and Paxos
	3 Specification of Multi-Paxos
	4 Verification of Multi-Paxos
	5 Multi-Paxos with Preemption
	6 Results of TLAPS-checked Proof
	7 Related Work and Conclusion
	References

	Validated Simulation-Based Verification of Delayed Differential Dynamics
	1 Introduction
	2 Problem Formulation
	3 Verification of Delayed Dynamical Systems via Simulation
	4 Validated Simulation
	5 Implementation and Experimental Results
	6 Conclusion and Future Work
	References

	Towards Learning and Verifying Invariants of Cyber-Physical Systems by Code Mutation
	1 Introduction
	2 SWaT Testbed and Cyber-Physical System Invariants
	3 Learning with Mutants
	4 Correctness of Invariants
	5 Conclusion and Next Steps
	References

	From Electrical Switched Networks to Hybrid Automata
	1 Introduction
	2 Background
	3 Problem Definition
	4 Network Validation
	5 Network Reformulation to Hybrid Automaton
	5.1 Reformulation Algorithm
	5.2 All and Single Variables Partitioning

	6 Related Work
	7 Experimental Evaluation
	8 Conclusion
	References

	Danger Invariants
	1 Introduction
	2 Illustration
	3 Danger Invariants
	4 Generating Second-Order Verification Conditions
	5 Generating Danger Invariants Using Synthesis
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Discussion of Results
	6.3 Manually Solving a Danger Constraint

	7 Related Work
	8 Conclusions
	References

	Local Planning of Multiparty Interactions with Bounded Horizons
	1 Introduction
	2 Timed Systems and Properties
	2.1 Global State Semantics
	2.2 Weak Planning Semantics
	2.3 Relation Between Global and Weak Planning Semantics

	3 Deadlock-Free Planning
	4 Using Knowledge to Enhance Deadlock-Free Planning
	5 Implementation and Experiments
	6 Conclusion and Future Work
	References

	Finding Suitable Variability Abstractions for Family-Based Analysis
	1 Introduction
	2 Motivating Example
	3 A Language for Program Families
	4 Parametric (Abstract) Variability-Aware Analysis
	5 Pre-analysis for Finding
	6 Evaluation
	7 Related Work and Conclusion
	References

	Recovering High-Level Conditions from Binary Programs
	1 Introduction
	2 Motivation
	2.1 The Issue of Low-Level Conditions in Binary-Level Program Analysis
	2.2 Standard Solutions and Drawbacks

	3 Background
	4 Template-Based Recovery
	4.1 Principles
	4.2 Formalization
	4.3 Optimizations

	5 Other Issues Related to the Precise Handling of Conditions
	5.1 Ubiquitous Data Moves Between Memory and Registers
	5.2 Widening Point Positioning

	6 Implementation
	7 Experiments
	7.1 Recovery Ability (RQ1) and Efficiency (RQ2)
	7.2 Practical Impact (RQ3)

	8 Related Works
	9 Conclusion
	References

	Upper and Lower Amortized Cost Bounds of Programs Expressed as Cost Relations
	1 Introduction
	2 Preliminaries
	2.1 Cost Relation Refinement
	2.2 Refined Cost Relation Semantics

	3 Cost Structures
	4 Cost Structures of Cost Equations and Chains
	5 Cost Structures of Phases
	5.1 Transforming Non-final Constraints
	5.2 Transforming Final Constraints

	6 Soundness
	7 Related Work and Experiments
	References

	Exploring Model Quality for ACAS X
	1 Introduction
	2 Background and Motivation
	3 The ACAS X Model
	4 Model Conformance
	4.1 Conformance Framework Set Up
	4.2 Conformance Relations

	5 Analyzing Conformance Issues
	6 Automatic Generation of Non-conformance Encounters
	6.1 The Scenario Generation Environment
	6.2 The Reward Function
	6.3 Analysis of Generated Non-conformance Encounters

	7 Related Work
	8 Conclusions
	References

	Learning Moore Machines from Input-Output Traces
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Finite State Machines and Automata
	3.2 Input-Output Traces and Examples
	3.3 Prefix Tree Acceptors and Prefix Tree Acceptor Products

	4 Characteristic Samples
	4.1 Characteristic Samples for Moore Machines
	4.2 Computation, Minimality, Size, and Other Properties of Characteristic Samples

	5 Learning Moore Machines from Input-Output Traces
	5.1 Problem Definition
	5.2 Algorithms to Solve the LMoMIO Problem
	5.3 Properties of the Algorithms
	5.4 Complexity Analysis

	6 Implementation and Experiments
	6.1 Experimental Comparison
	6.2 Comparison with OSTIA

	7 Conclusion and Future Work
	References

	Modal Kleene Algebra Applied to Program Correctness
	1 Introduction
	2 Modal Kleene Algebra
	3 Laws for Weakest Preconditions
	4 Relational Program Semantics
	5 Verification Component Using Weakest Preconditions
	6 Verification Component Using Strongest Postconditions
	7 Components for Hoare Logic and Refinement
	8 A Meta-Equational while-Rule
	9 Domain Quantales and Components for Recursion
	10 Extensions and Variations
	11 Conclusion
	References

	Mechanised Verification Patterns for Dafny
	1 Introduction
	2 Background on Dafny and Tacny
	3 Verification Patterns for Dafny
	3.1 Patterns as Macros
	3.2 Proof by Cases and Induction
	3.3 Proof by Contradiction
	3.4 Loop Invariants

	4 Tactics for Dafny (Tacny)
	5 Verification Patterns Implemented as Dafny Tactics
	5.1 Tactics as Macro Expansions
	5.2 Proof by Cases and Induction
	5.3 Proof by Contradiction
	5.4 Loop Patterns
	5.5 Summary and Results

	6 Related Work, Conclusion and Future Work
	A Summary of New Tacny Features
	References

	Formalising and Validating the Interface Description in the FMI Standard
	1 Introduction
	2 Static Semantics and Validation Using VDM
	3 Software Tool Integration
	4 Concluding Remarks
	References

	An Algebra of Synchronous Atomic Steps
	1 Introduction
	2 Concurrent Refinement Algebra
	3 The Boolean Sub-algebra of Tests
	4 Abstract Atomic Steps
	4.1 Canonical Representation of Commands
	4.2 Properties of Iterations of Atomic Steps

	5 Relational Atomic Steps
	6 Relies and Guarantees
	6.1 The Guarantee Command
	6.2 The Rely Command
	6.3 Rely/Guarantee Logic

	7 Abstract Communication in Process Algebras
	7.1 Communication in CCS
	7.2 Communication in CSP
	7.3 Communication in SCCS

	8 Related Work
	9 Conclusion
	References

	Error Invariants for Concurrent Traces
	1 Introduction
	2 Preliminaries
	3 Error Explanation
	3.1 Interpolation-Based Slicing for Sequential Traces
	3.2 Interpolation-Based Slicing for Concurrent Traces
	3.3 Fine-Tuning Explanations

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	An Executable Formalisation of the SPARCv8 Instruction Set Architecture: A Case Study for the LEON3 Processor
	1 Introduction
	2 Background
	2.1 Overview of SPARCv8 ISA
	2.2 Monads in Operational Semantics

	3 Isabelle/HOL Specification for the SPARCv8 ISA
	4 Model Execution
	5 Validation
	5.1 Random Single Instruction Testing
	5.2 Program Execution Testing
	5.3 Limitations and Implementation-Dependent Specifications for LEON3

	6 Formal Verification of Security Properties
	6.1 Single Step Theorem
	6.2 Privilege Safety Theorem
	6.3 Non-interference Theorem

	7 Conclusion
	References

	Hybrid Statistical Estimation of Mutual Information for Quantifying Information Flow
	1 Introduction
	1.1 Contributions

	2 Information Theory and Quantification of Information
	2.1 Channels
	2.2 Mutual Information
	2.3 Precise Analysis vs. Statistical Analysis

	3 Hybrid Statistical Estimation of Mutual Information
	3.1 Computation of Probability Distributions
	3.2 Estimation of Mutual Information and Its Confidence Interval
	3.3 Adaptive Optimization of Sample Sizes

	4 Estimation Using Prior Knowledge About Systems
	4.1 Approximate Estimation Using Knowledge of Prior Distributions
	4.2 Our Estimation Using Knowledge of Prior Distributions
	4.3 Abstraction-Then-Sampling Using Partial Knowledge of Components

	5 Estimation via Program Decomposition
	6 Evaluation
	6.1 On the Tradeoff Between the Cost and Quality of Estimation
	6.2 Shannon Leakage Benchmarks

	7 Related Work
	8 Conclusions and Future Work
	References

	A Generic Logic for Proving Linearizability
	1 Introduction
	2 Methods Syntax and Sequential Semantics
	3 The Generic Logic
	4 Soundness
	5 The RGSep-Based Logic
	6 Example
	7 Related Work
	8 Conclusion
	References

	Refactoring Refinement Structure of Event-B Machines
	1 Introduction
	2 Background
	3 Approach
	3.1 Method Overview
	3.2 Step 1 of Decomposing Refinement: Slicing
	3.3 Step 2 of Decomposing Refinement: Complementing
	3.4 Restructuring Refinement

	4 Case Studies
	4.1 Case Study 1: Decomposing Large Refinement Steps
	4.2 Case Study 2: Extracting Reusable Parts of Machines

	5 Discussion
	5.1 Discussion on Methods
	5.2 Discussion on Applications

	6 Related Work
	7 Conclusion and Future Work
	References

	Towards Concolic Testing for Hybrid Systems
	1 Introduction
	2 A Probabilistic View
	3 Symbolic Execution as a Form of Importance Sampling
	3.1 Bayesian Inference
	3.2 Importance Sampling

	4 Sampling Strategies
	4.1 Probability Estimation
	4.2 Concolic Sampling

	5 Evaluation
	6 Conclusion and Related Works
	References

	Explaining Relaxed Memory Models with Program Transformations
	1 Introduction
	1.1 Related Work

	2 Preliminaries: Axiomatic Memory Model Definitions
	2.1 Sequential Consistency

	3 TSO
	4 Release-Acquire
	5 Power
	6 ARM
	7 Application: Correctness of Compilation
	8 Conclusion
	References

	SpecCert: Specifying and Verifying Hardware-Based Security Enforcement
	1 The SpecCert Formalism
	1.1 Computing Platforms
	1.2 Security Policies
	1.3 Hardware-Based Security Enforcement Mechanism

	2 Minx86: A x86 Model
	2.1 Model Scope
	2.2 Hardware Architecture State
	2.3 Events as State-Transformers

	3 System Management Mode HSE
	3.1 Computing Platform and Security Policy
	3.2 HSE Definition

	4 Discussion
	5 Related Works
	6 Conclusion
	References

	Automated Verification of Timed Security Protocols with Clock Drift
	1 Introduction
	2 Specification
	2.1 Corrected Wide Mouthed Frog
	2.2 Timed Applied -calculus
	2.3 CWMF Model

	3 Timed Security Properties
	4 Semantics of Clock Drift
	4.1 Timed Logic Rules
	4.2 Semantics of Local Clocks
	4.3 Verification Overview

	5 Evaluations
	5.1 CWMF Protocol
	5.2 TESLA Protocol

	6 Related Works and Conclusions
	References

	Dealing with Incompleteness in Automata-Based Model Checking
	1 Introduction
	2 Modeling Formalisms
	3 Motivating Example
	4 Automata-Based Checking
	5 Constraint Computation and Replacement Checking
	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Equivalence Checking of a Floating-Point Unit Against a High-Level C Model
	1 Introduction
	2 VERIFOX: A Tool for Equivalence Checking of C Programs
	3 HW-CBMC: A Tool for Equivalence Checking of C and RTL
	4 Experimental Results
	5 Related Work
	6 Concluding Remarks
	References

	Battery-Aware Scheduling in Low Orbit: The GOMX--3 Case
	1 Introduction
	2 Prerequisites
	3 Modelling the GomX--3 Nanosatellite
	3.1 Objectives
	3.2 PTA Modelling
	3.3 Cost Model and Reachability Objectives
	3.4 Model Quality Assurance

	4 The Scheduling Workflow
	4.1 Schedule Generation
	4.2 Schedule Validation
	4.3 Schedule Shipping

	5 Results
	6 Discussion and Conclusion
	References

	Discounted Duration Calculus
	1 Introduction
	2 Discounted Duration Calculus (DDC)
	3 Model Checking
	3.1 The Model
	3.2 Encoding of the Semantics for Formulas

	4 Example
	4.1 Production Cell
	4.2 Computing the Satisfaction Value

	5 Conclusion
	References

	Sound and Complete Mutation-Based Program Repair
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Incremental SAT and SMT Solving

	3 Our Approach
	3.1 The Translation Unit
	3.2 The Mutation Unit
	3.3 The Repair Unit

	4 Algorithm AllRepair for the Repair Unit
	4.1 Outline of the Algorithm
	4.2 Algorithm AllRepair in Detail

	5 Soundness and Completeness of Algorithm AllRepair
	5.1 Extension to Full Correctness

	6 Experimental Results
	7 Conclusion and Future Work
	References

	An Implementation of Deflate in Coq
	1 Introduction
	1.1 Related Work
	1.2 Overview

	2 The Encoding Relation
	3 Deflate Codings
	4 Backreferences
	4.1 A Verified Backreference-Resolver

	5 Strong Decidability and Strong Uniqueness
	6 Compression
	7 Conclusion
	References

	Decoupling Abstractions of Non-linear Ordinary Differential Equations
	1 Introduction
	1.1 Contributions
	1.2 Preliminaries
	1.3 Coupling

	2 Decoupled Simulating Abstractions
	3 Existence and Generation of Abstraction Polynomials
	3.1 Decidability and Darboux Existence Criterion
	3.2 Checking Abstraction Polynomial Candidates
	3.3 Automated Generation of Decoupling Abstractions

	4 Outlook
	5 Related Work
	6 Conclusion
	References

	Regression Verification for Unbalanced Recursive Functions
	1 Introduction
	2 Four Types of Unrolling
	3 A Proof Rule Based on Domain Partitioning
	3.1 Proving Base-Case Equivalence
	3.2 Proving Step-Case Equivalence

	4 A Generalization to Mutually Recursive Functions
	5 Proving Equivalence of Functions Not in Lock-Step
	6 Related Work and Competing Tools
	7 Conclusions
	References

	Automated Mutual Explicit Induction Proof in Separation Logic
	1 Introduction
	2 Motivating Example
	3 Theoretical Background
	3.1 Symbolic-Heap Separation Logic
	3.2 Entailments in SLID

	4 Mutual Induction Proof for Separation Logic Entailment Using Model Order
	5 The Proof System
	5.1 Logical Rules
	5.2 Induction Rules
	5.3 Proof Search Procedure

	6 Experiment
	7 Conclusion
	References

	Finite Model Finding Using the Logic of Equality with Uninterpreted Functions
	1 Introduction
	2 Background
	3 Small Example
	4 Translation to EUF Logic
	5 Implementation
	6 Results
	7 Exploiting Functions and Types
	8 Comparison with Related Work
	8.1 Related Solvers
	8.2 Comparison
	8.3 Other Related Work

	9 Conclusion and Future Work
	References

	GPUexplore 2.0: Unleashing GPU Explicit-State Model Checking
	1 Introduction
	2 Using the Tool
	3 How GPUexplore Operates
	4 Improvements
	5 Experimental Results
	6 Conclusions
	References

	Approximate Bisimulation and Discretization of Hybrid CSP
	1 Introduction
	2 Preliminary
	3 Transition Systems and Approximate Bisimulation
	4 Hybrid CSP (HCSP)
	4.1 HCSP
	4.2 Transition System of HCSP
	4.3 Approximate Bisimulation Between HCSP Processes

	5 Discretization of HCSP
	5.1 Discretization of Continuous Dynamics
	5.2 Discretization of HCSP
	5.3 Properties

	6 Case Study
	7 Conclusion
	References

	A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems
	1 Introduction
	2 Continuous and Hybrid Systems
	3 Computational Method for Barrier Certificates
	3.1 Barriers Certificates
	3.2 Computation of Barrier Certificates
	3.3 Complexity Analysis

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Industry Track
	Model-Based Design of an Energy-System Embedded Controller Using TASTE
	1 Introduction
	2 The Plant
	3 TASTE
	3.1 Language Subset
	3.2 Code Generation

	4 The Control System
	4.1 Architecture
	4.2 Controller Details
	4.3 Generated Code

	5 Lessons Learnt
	6 Conclusion and Future Directions
	References

	Simulink to UPPAAL Statistical Model Checker: Analyzing Automotive Industrial Systems
	1 Introduction
	2 Preliminaries
	3 Simulink to UPPAAL SMC: Transformation Approach
	4 Application on Industrial Use Cases: Results
	5 Discussion and Conclusions
	References

	Safety-Assured Formal Model-Driven Design of the Multifunction Vehicle Bus Controller
	1 Introduction
	2 Safety-Assured Approach
	3 Experiment Results
	4 Conclusion
	References

	Taming Interrupts for Verifying Industrial Multifunction Vehicle Bus Controllers
	1 Introduction
	2 Multifunction Vehicle Bus Controller
	3 Approach
	3.1 Sequentialization
	3.2 Happen-Before Interrupt Graph

	4 Evaluation
	5 Lessons Learned
	6 Related Work
	7 Conclusion
	References

	Rule-Based Incremental Verification Tools Applied to Railway Designs and Regulations
	1 Introduction
	2 Integrating Verification Tools into Railway Engineering Tools
	3 Incremental Verification for On-the-Fly Performance
	4 Datalog Tools for Incremental Verification
	5 Efficiency Gains, Shortcomings, and Possible Ways Forward
	References

	RIVER: A Binary Analysis Framework Using Symbolic Execution and Reversible x86 Instructions
	1 Introduction
	2 Description of the Framework
	3 Conclusions
	References

	Erratum to: Simulink to UPPAAL Statistical Model Checker: Analyzing Automotive Industrial Systems
	Erratum to: Chapter “Simulink to UPPAAL Statistical Model Checker: Analyzing Automotive Industrial Systems” in: J. Fitzgerald et al. (Eds.): FM 2016: Formal Methods, LNCS, DOI: 10.1007/978-3-319-48989-6_46

	Author Index

