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Abstract. The Number Theoretic Transform (NTT) provides efficient
algorithms for cyclic and nega-cyclic convolutions, which have many
applications in computer arithmetic, e.g., for multiplying large integers
and large degree polynomials. It is commonly used in cryptographic
schemes that are based on the hardness of the Ring Learning With Errors
(R-LWE) problem to efficiently implement modular polynomial multipli-
cation.

We present a new modular reduction technique that is tailored for
the special moduli required by the NTT. Based on this reduction, we
speed up the NTT and propose faster, multi-purpose algorithms. We
present two implementations of these algorithms: a portable C imple-
mentation and a high-speed implementation using assembly with AVX2
instructions. To demonstrate the improved efficiency in an application
example, we benchmarked the algorithms in the context of the R-LWE
key exchange protocol that has recently been proposed by Alkim, Ducas,
Poppelmann and Schwabe. In this case, our C and assembly imple-
mentations compute the full key exchange 1.44 and 1.21 times faster,
respectively. These results are achieved with full protection against tim-
ing attacks.

Keywords: Post-quantum cryptography - Number Theoretic Trans-
form (NTT) - Ring Learning With Errors (R-LWE) - Fast modular
reduction - Efficient implementation

1 Introduction

Fast Fourier Transform (FFT) algorithms to compute the Discrete Fourier Trans-
form (DFT) have countless applications ranging from digital signal processing
to the fast multiplication of large integers. The cyclic convolution of two integer
sequences of length n can be computed by applying an FFT algorithm to both,
then multiplying the resulting DFT sequences of length n coefficient-wise and
transforming the result back via an inverse FFT. This operation corresponds to
the product of the corresponding polynomials modulo X™ — 1, and for large n,
a computation via FFTs as above was suggested to be used in the ring-based
encryption scheme NTRUEncrypt in [15].
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When the sequence (or polynomial) coefficients are specialized to come from
a finite field, the DFT is called the Number Theoretic Transform (NTT) [§]
and can be computed with FFT algorithms that work over this specific finite
field. Polynomial multiplication over a finite field is one of the fundamental
operations required in cryptographic schemes based on the Ring Learning With
Errors (R-LWE) problem, and the NTT has shown to be a powerful tool that
enables this operation to be computed in quasi-polynomial complexity.

R-LWE-Based Cryptography. Since its introduction by Regev [28], the
Learning With Errors (LWE) problem has been used as the foundation for many
new lattice-based constructions with a variety of cryptographic functionalities.
It is currently believed to be sufficiently hard, even for attackers running a large
scale quantum computer. Hence cryptographic schemes with security based on
the hardness of the LWE problem are promising candidates for post-quantum
(or quantum-safe) cryptography.

The Ring LWE (R-LWE) problem, introduced by Lyubashevsky, Peikert and
Regev [20], is a special instance of the LWE problem that is essentially obtained
by adding a ring structure to the underlying lattice. R-LWE-based schemes have
been proposed for public-key encryption [20,24,31], digital signatures [11,19],
and key exchange [2,5,10,24,32]. Furthermore, the most efficient proposals for
(fully) homomorphic encryption are also based on R-LWE, e.g., [6].

The advantage of R-LWE over LWE is a significant increase in efficiency.
When working with vectors of dimension n, it allows a factor n space reduc-
tion and the possibility of using FFT algorithms to compute polynomial prod-
ucts instead of matrix-vector or matrix-matrix operations; this leads to an
improvement from roughly n? base ring multiplications to roughly nlogn such
multiplications.

One particularly efficient parameter instantiation in the context of R-LWE
is such that the dimension n is a power of 2 and polynomial products are taken
modulo the 2n-th cyclotomic polynomial X™ + 1 with coefficients modulo a
prime q. Here, the polynomial product corresponds to a nega-cyclic convolution
of the coefficient sequences. In this setting, the NTT is usually computed with
a special type of FFT algorithm that can be used efficiently when ¢ is a prime
that satisfies the congruence condition ¢ = 1 mod 2n (cf. [21, Sect. 2.1]), which
in turn means that the underlying finite field contains primitive 2n-th roots of
unity. Many state-of-the-art instantiations of R-LWE-based cryptography choose
n and ¢ as above in order to harness the efficiency of the NTT; for example, the
BLISS signature implementations (I-IV) set n = 512 and ¢ = 12289 [11] and the
fastest R-LWE-based key exchange implementation to date sets n = 1024 and
q = 12289 [2].

Our Contributions. We present a new modular reduction algorithm for the
special moduli that are required to invoke the NTT. While this new routine can
be used to replace existing modular reduction algorithms and give standalone
performance improvements, we further show that calling it inside a modified
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NTT algorithm can give rise to additional speedups. We illustrate these improve-
ments by providing and benchmarking both our portable C and AVX2 assembly
implementations (see Sect. 5 for complete details). Our software is publicly avail-
able as part of the LatticeCrypto library [18].

Given the ubiquity of the NTT in (both the existing and foreseeable) high-
speed instantiations of R-LWE-based primitives, we emphasize that an improved
NTT simultaneously improves a large portion of all lattice-based cryptographic
proposals. While our algorithm will give a solid speedup to signature schemes like
Lyubashevsky’s [19] and BLISS [11], it will give a more drastic overall improve-
ment in common encryption and key exchange schemes. In these scenarios, there
are different ways of removing the need for obtaining high-precision samples
from a Gaussian distribution [22], for example, the number of R-LWE samples
per secret can be bounded, or one can use the Kullback-Leibler or Renyi diver-
gences [3]. Subsequently, the cost of sampling the error distribution decreases
dramatically, and the NTT becomes the bottleneck of the overall computation.

To highlight the practical benefits of the new approach in an example of a
cryptographic protocol, we implemented the recent key exchange instantiation
due to Alkim, Ducas, Péppelmann and Schwabe [2], and show that the overall
key exchange is approximately 1.44 times faster (portable C implementation) and
1.21 times faster (AVX2 assembly implementation) using our improved NTT.

Beyond the faster modular reduction itself, the specific improvements over
the approach in [2] that have led to this speedup are as follows:

— The new modular reduction algorithm allows coefficients to grow up to 32 bits
in size, which eliminates the need for modular reductions after any addition
during the NTT. As a consequence, reductions are only carried out after mul-
tiplications.

— The new modular reduction is very flexible and enables efficient implemen-
tations using either integer arithmetic or floating point arithmetic. Since it
minimizes the use of multiplications, using the higher throughput of float-
ing point instructions on the latest Intel processors does not have as big an
impact as for more multiplication-heavy methods like Montgomery reduction.
Hence, the method is especially attractive for implementations with a focus
on simplicity, particularly in plain C.

— Related to the previous point, our implementation uses signed integer arith-
metic in the NTT. This allows for signed integers to represent error polynomi-
als and secret keys, which saves conversions from negative to positive integers
(e.g., this reduces the number of additions during error sampling and before
modular reductions in the NTT).

— We show how to merge the scaling by n~! with our conversion from redundant
to standard integer representation at the end of the inverse NTT. In addition,
by pulling this conversion into the last stage of the inverse NTT, we eliminate
n/2 multiplications and reductions, all at the cost of precomputing only two
integers.
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Organization. Section2 gives the background on R-LWE and the NTT.
Section 3 contains our two main contributions: the improved modular reduction
and NTT algorithms. Section 4 revises the details in the R-LWE key exchange
scheme from [2], which is used as a case study to give a practical instance where
our improved NTT gives rise to faster cryptography. Finally, Sect.5 provides a
performance analysis and benchmarks.

2 Preliminaries

This section provides details about the ring structure in the R-LWE setting,
the NTT, and the FFT algorithm to compute the NTT and its inverse. The
original proposal of R-LWE [20] restricts to cyclotomic rings, i.e. rings generated
over the integers by primitive roots of unity. We immediately focus on 2-power
cyclotomic rings as this is the most commonly used case and seems to provide
the most efficient arithmetic.

2.1 The Ring Learning with Errors (R-LWE) Setting

Let N = 29 d > 1 be a power of two and let n = p(N) = 2=t = N/2.
Then the N-th cyclotomic polynomial is given by @n(X) = X™ + 1. Let R be
the ring of cyclotomic integers, i.e. R = Z[X]/(®n(X)) = Z[X]/(X™ + 1). Any
clement a € R can be written as a = Y1 a;X?, a; € Z. Furthermore, let
q € Z be a positive integer modulus such that ¢ = 1 (mod N). The quotient
ring R/(g) is isomorphic to Ry, = Z4[X]/(X™ + 1) and for any ¢ € Ry, we
write a = Z?:_Ol a; X%, a; € Z, We use the same symbol a to also denote
both the coefficient vector a = (ag,a1,...,a,-1) € Zy and the sequence a =
(al0],al1],...,aln —1]) € Z7.

2.2 The Number Theoretic Transform (NTT)

The NTT is a specialized version of the discrete Fourier transform, in which the
coefficient ring is taken to be a finite field (or ring) containing the right roots of
unity. It can be viewed as an exact version of the complex DFT, avoiding round-
off errors for exact convolutions of integer sequences. While Gauss apparently
used similar techniques already in [12], laying the ground work for modern FFT
algorithms to compute the DFT and therefore the NTT is usually attributed to
Cooley and Tukey’s seminal paper [8].

Notation and Background. With parameters as above, i.e. n being a power
of 2 and g a prime with ¢ = 1 (mod 2n), let a = (a[0], ...,a[n—1]) € Z, and let w
be a primitive n-th root of unity in Z,, which means that w™ =1 (mod g). The
forward transformation a = NTT(a) is defined as afi] = Z;:OI aljlw mod ¢
for i = 0,1,...,n — 1. The inverse transformation is given by b = INTT(a),
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where bfi] = n™! Z;:OI a[jlw=% mod ¢ for i = 0,1,..,n — 1, and we have

INTT(NTT(a)) = a.

As mentioned above, the NTT can be used directly to perform the main
operation in R-LWE-based cryptography, that is, polynomial multiplication in
R, =Z,X]/(X™+1). However, since applying the NTT transform as described
above provides a cyclic convolution, computing ¢ = a - b mod (X" + 1) with two
polynomials @ and b would require applying the NTT of length 2n and thus
n zeros to be appended to each input; this effectively doubles the length of the
inputs and also requires the computation of an explicit reduction modulo X" +1.
To avoid these issues, one can exploit the negative wrapped convolution [21]: let
¢ be a primitive 2n-th root of unity in Z, such that ¢? = w, and let a =
(al0], ...,aln — 1]), b = (b[0], ..., b[n — 1]) € Zy be two vectors. Also, define a =
(a[0],a[1]...," ta[n — 1]) and b = (b[0], ¥b[1]..., " 1b[n — 1]). The negative
wrapped convolution of a and b is defined as ¢ = (1,9~ 1,42, ...,9~ (D)o
INTT(NTT(a) o NTT(b)), where o denotes component-wise multiplication. This
operation satisfies c =a - b in R,.

Previous Optimizations. Some additional optimizations are available to the
NTT-based polynomial multiplication. Previous works explain how to merge
multiplications by the powers of w with the powers of ¥ and ™! inside the
NTT. Consequently, important savings can be achieved by precomputing and
storing in memory the values related to these parameters. In particular, Roy
et al. [29] showed how to merge the powers of ¢ with the powers of w in the
forward transformation. This merging did not pose any difficulty in the case of
the well-known decimation-in-time NTT, which is based on the Cooley-Tukey
butterfly [8] that was used in the first implementations of R-LWE-based schemes.
Similarly, Péppelmann et al. [26] showed how to merge the powers of ¢~ with
the powers of w in the inverse transformation. In this case, however, it was
necessary to switch from a decimation-in-time NTT to a decimation-in-frequency
NTT [13], which is based on the Gentleman-Sande (GS) butterfly. In this work
we exploit the combination of both transformations for optimal performance.

Other optimizations focus on the NTT’s butterfly computation. Relevant
examples are the use of precomputed quotients, as exploited in Shoup’s but-
terfly algorithm [30], and the use of redundant representations that enable the
elimination of several conditional modular corrections, as shown by Harvey [14].
In particular, Harvey showed how to apply the latter technique on Shoup’s but-
terfly and on a butterfly variant based on Montgomery arithmetic. In Sect. 5, we
compare our improved NTT algorithms with the approaches by Melchor et al. [1]
and Alkim et al. [2], both of which adopted and specialized Harvey’s butterfly
algorithms.

Several works in the literature (e.g., [2,17,25,29]) have applied a relatively
expensive reordering or bit-reversal step before or after the NTT computation.
This is due to the restrictive nature of certain forward and inverse algorithms
that only accept inputs in standard ordering and produce results in bit-reversed
ordering. However, Chu and George [7] showed how to also derive forward and
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inverse FFT algorithms working for the reversed case, i.e., accepting inputs in
bit-reversed ordering and producing outputs in standard ordering. Accordingly,
[26] adapted and suitably combined the algorithms in the context of NTTs in
order to eliminate the need of the bit-reversal step.

From hereon, we denote by NTT := NTTcr,g,,, an algorithm that computes
the forward transformation based on the Cooley-Tukey butterfly that absorbs
the powers of ¢ in bit-reversed ordering. This function receives the inputs in
standard ordering and produces a result in bit-reversed ordering. Similarly, we
denote by INTT := INTTGS’%_E_& an algorithm computing the inverse transforma-
tion based on the Gentleman-Sande butterfly that absorbs the powers of 1!
in the bit-reversed ordering. This function receives the inputs in bit-reversed
ordering and produces an output in standard ordering. Following Poppelmann
et al. [26], the combination of these two functions eliminates any need for a
bit-reversal step. Optimized algorithms for the forward and inverse NTT are
presented in Algorithms 1 and 2, respectively. These algorithms are based on the
ones detailed in [26, Appendix A.1]. Note that we have applied a few modifica-
tions and corrected some typos.

Poéppelmann et al. [26] avoid the final scaling by n~! during the inverse NT'T
by shifting the computation to a polynomial transformation that is (in their
target application of BLISS signatures) assumedly performed offline. In general,
however, that assumption does not necessarily hold; for example, in [2], all of the
polynomials to be multiplied are generated fresh per key exchange connection.
Accordingly, Algorithm 2 includes scaling by n~!.

Algorithm 1. Function NTT based on the Cooley-Tukey (CT) butterfly.
Input: A vector a = (a[0],a[l],...,a[n — 1]) € Z; in standard ordering, where g is
a prime such that ¢ = 1 mod 2n and n is a power of two, and a precomputed table
Urew € Zy storing powers of 4 in bit-reversed order.

Output: a < NTT(a) in bit-reversed ordering.

lit=n

2: for (m =1; m <n; m =2m) do
3: t=1t/2

4: for (i =0; i <m; i++) do

5: =20t

6: jo=j14t—1

7 S = Wrew[m + 1]

8: for (j = j1; j < j2; j++) do
9: U = a[j]

10: V=alj+t]-5

11: alj] =U + V mod ¢q
12: alj+t]=U -V mod ¢q

13: return a
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Algorithm 2. Function INTT based on the Gentleman-Sande (GS) butterfly.
Input: A vector a = (a[0],a[l],...,a[n — 1]) € Zy in bit-reversed ordering, where ¢ is
a prime such that ¢ = 1 mod 2n and n is a power of two, and a precomputed table
Ul e Zg storing powers of ™! in bit-reversed order.

Output: a <« INTT(a) in standard ordering.

1: t=1

2: for (m=n; m > 1; m=m/2) do
3 j1=0

4: h=m/2

5: for (i =0; i < h; i++) do

6: Jo=j1+t—1

7 S =W t[h+1]

8: for (j = j1; j < jo; j++) do
9: U = alj]

10: V =alj + 1]

11: alj] =U + V mod g

12: alj+t]= U -V)-Smodq
13: Ji= 1+ 2t

14: t=2t

15: for (j =0; j <mn; j++) do
16: a[j] = alj] - n~ ! mod ¢
17: return a

3 Modular Reduction and Speeding up the NTT

Most FFT algorithms to compute the NTT over a finite field or ring need certain
roots of unity. In the specific setting discussed in the previous section, one needs
primitive 2n-th roots of unity to exist' modulo g, which imposes a congruence
condition on ¢, namely ¢ = 1 (mod 2n). The parameters for R-LWE-based cryp-
tosystems tend to have relatively large dimension n and relatively small moduli
@, which means that moduli satisfying the congruence have the form ¢ = k-2 41,
where 2n | 2™ and k > 3 is a very small integer.

Modular Reduction. In this section, we introduce a new modular reduction
method for moduli of this special shape. We note that it works similarly for any
modulus of the form k- 2™ £ [, where k and [ are small positive integers such
that £ > 3 and [ > 1. However, for ease of exposition and to focus on the case
most relevant in the context of the NTT, we only treat the case ¢ = k- 2™ + 1.
When £ is odd and 2™ > k, these numbers are known as Proth numbers [27],
and a general algorithm for reduction modulo such integers is discussed in
[9, Section9.2.3].

Let 0 < a,b < g be two integers modulo ¢ and let C' = a - b be their integer
product. Then 0 < C < ¢® = k222" 4+ k2™ +1. The goal is to reduce C modulo

! For an algorithm that does not require such roots, but has the disadvantage of
needing to pad the inputs to double length to compute nega-cyclic convolutions, see
Nussbaumers algorithm ([23] and [16, Exercise 4.6.4.59]).
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q using the special shape of ¢, namely using the fact that k2™ = —1 (mod q).
Write C' = Cy 4+ 2™C4, where 0 < Cp < 2™. Then 0 < Cy = (C — Cp)/2™ <
k22m + 2k +1/2™ = kq+ k +1/2™. We have that kC = kCy — C; (mod q), and
given the above bounds for Cy and C, it follows that the integer kCy — C has
absolute value bounded by |kCy — C1| < (k 4+ 1/2™)q. As k is a small integer,
the value kCy — Cy can be brought into the range [0, ¢) by adding or subtracting
a small multiple of ¢. The maximal value for C is (¢ — 1)? = £%2?™_ in which
case Cyp = 0 and C; = k?2™ = k(g — 1), meaning that (k— 1)g must be added to
kCy—C1 to fully reduce the result. In our application to the NTT, however, we do
not intend to perform this final reduction into [0, ¢) throughout the computation,
but rather only at the very end of the algorithm. We are therefore content with
the output of the function K-RED defined as follows:
function K-RED(C)

Cy «— C mod 2™

C,—C/2m

return kCy — C;
The function K-RED can take any integer C' as input. It then returns an integer
D such that D = kC (mod ¢) and |D| < ¢ + |C|/2™. Although this function
alone does not properly reduce the value C' modulo g, we still call it a reduction
because it brings D close to the desired range; note that for |C| > (2™/(2™—1))q,
we have |D| < |[K-RED(C)|, i.e. it reduces the size of C. As a specific example,
take ¢ = 12289 = 3 -2'2 4+ 1. Then k = 3 and K-RED returns 3Cy — C; = 3C
(mod q) using the equivalence 3 - 2'2 = —1 (mod q).

In the context of a specific, longer computation, and depending on the para-
meter n and the target platform, we note that additional reductions might need
to be applied to a limited number of intermediate values, for which overflow may
occur. In this case, as an optimization, two successive reductions can be merged
as follows. Let the input operand C be decomposed as C = Cy+ C} - 2™ + C52%™
with 0 < Cp, C; < 2™. Then we can reduce C via the following function K-RED-2x.

function K-RED-2x(C)
Cp <+ C mod 2™
Cy «— C/2™ mod 2™
02 - 0/22m
return k2Cy — kC; + Cs

Speeding up the NTT. In the context of the NTT algorithm, we use a redun-
dant representation of integers modulo ¢ by allowing them to grow up to 32 bits
and, when necessary, apply the reduction function K-RED to reduce the sizes
of coefficients. We keep track of the factors of k that are implicitly multiplied
to the result by an invocation of K-RED. For the sake of illustration, consider
Algorithm 1. The main idea is to apply the function K-RED only after multipli-
cations, i.e., one reduction per iteration in the inner loop, letting intermediate
coefficient values grow such that the final coefficient values become congruent
to K - a[-] mod ¢ for a fixed factor K. This factor can then be used at the end
of the NTT-based polynomial multiplication to correct the result to the desired
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value. Next, we specify the details of the method for n € {256,512,1024} for the
prime ¢ = 12289. We limit the analysis to platforms with native 32 (or higher)-
bit multipliers, but note that the presented algorithms can be easily modified to
cover other settings.

The case g = 12289. The modified NTT algorithms using K-RED and K-RED-2x
are shown in Algorithm 3 and Algorithm4 for the modulus ¢ = 12289, which
in practice is used with n = 512 (for BLISS signatures [11]) or 1024 (for key
exchange [2]). In Steps 7 of Algorithm3 and Step 7 of Algorithm4, we are
using the precomputed values scaled by k~!, i.e. we use precomputed tables

Gyop 1 [] = k71 Wy [J and @[] = k71 - @ L[]. We denote these mod-
; : K ._ K K ._ K

ified algorithms by NTT* := NTTCT%.”JF1 and INTT® := INTTGS’W;;,F17
respectively.

Algorithm 3. Modified function NTT® using K-RED and K-RED-2x for reduction
modulo ¢ = 12289 (32 or 64-bit platform).

Input: A vector a = (a[0],a[l],...,a[n — 1]) € Zy in standard ordering, where n €
{256, 512,1024}, and a precomputed table ¥, ;-1 € Zq of scaled powers of 1 in bit-
reversed order.

Output: a < NTT™ (a) in bit-reversed ordering.

lit=n

2: for (m=1; m <n; m=2m) do
3: t=1t/2

4: for (i =0; i <m; i++) do
5: =20t

6: j2 = j1 +t—1

7: S=U, ., p-1[m+1]

8: for (j = ji; j < j2; j++) do
9: U = alj]
10: V=alj+t-S
11: if m = 128 then
12: U = K-RED(U)
13: V = K-RED-2x(V)
14: else
15: V = K-RED(V)
16: aljl=U+V
17: aj+=U-V

18: return a

Given two input vectors a and b, let ¢ = INTT(NTT(a) o NTT(b)) be computed
using Algorithms1 and 2. It is easy to see that the resulting coefficients after
applying Algorithms 3 and 4, i.e., after computing INTTX (NTTX (a) o NTTX (b)),
are congruent to K - ¢[] modulo ¢ for a certain fixed integer K = k* and an
integer s. Note that by scaling the precomputed twiddle factors by k~! mod ¢,
we can limit the growth of the power of k introduced by the reduction steps.
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Algorithm 4. Modified function INTT¥ using K-RED and K-RED-2x for reduction
modulo ¢ = 12289 (32 or 64-bit platform).

Input: A vector a = (a[0],a[l],...,a[n — 1]) € Zy in bit-reversed ordering, where
n € {256,512,1024}, a precomputed table %T_e;k,l € Zy of scaled powers of ¥~ in
bit-reversed order, and constants nf}l =n 1.k, ng =n 1.1 ~Ll7;e;k,1 [1] € Zq,
where k£ = 3.

Output: a « INTTX (@) in standard ordering.

1:t=1

2: for (m =n; m > 2; m =m/2) do

3: 71=0

4 h=m/2

5 for (i =0; ¢ < h; i++) do

6: Je=71+t—1

7 S=w_  [h+i]

8: for (j = j1; j < jo; j++) do

9: U = alj]

10: V =alj + 1]

11: aljl=U+V

12: alj+tj=U-V)-S

13: if m = 32 then

14: a[j] = K-RED(alj])

15: alj +t] = K-RED-2x(a[j + t])

16: else

17: alj + t] = K-RED(a[j + t])

18: jl = jl + 2t

19: t=2t

20: for (=0; j <t; j++) do

21: U = alj]

22: V =alj+1

23: alj] = K-RED((U + V) - ng')

24:  alj+t =KRED((U - V) -¥g")
25: return a

For example in Line 7 of Algorithm3 the value S carries a factor k~! which
then cancels with the factor k introduced by K-RED in Step 15. Only additional
reductions such as those in Steps 12 and 13 increase the power of k in the final
result.

At the end of the computation, the final results can be converted back to
the standard representation by multiplying with the inverse of the factor K.
Moreover, this conversion can be obtained for free if the computation is merged
with the scaling by n~! during the inverse transformation, that is, if scaling is
performed by multiplying the resulting vector with the value n='- K ~'. However,
we can do even better: by merging the second entry of the table ¥,., -1 with
the fixed value n=! - K1, we eliminate an additional n/2 multiplications and
modular reductions. This is shown in Steps 21-24 of Algorithm 4.
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4 Case Study: R-LWE Key Exchange

This section explains how we apply our new modular reduction and the improved
NTT algorithms, together with a simplified message encoding, to the key
exchange implementation that was proposed by Alkim, Ducas, Péppelmann and
Schwabe in [2]; the protocol is depicted in Fig. 1. Accordingly, from hereon we fix
n = 1024 and ¢ = 12289 and the error distribution is defined to be the centered
binomial distribution 12, from which one samples by computing Z;&(bi —
b;), where the b;,b, € {0,1} are uniform independent bits. The functions
HelpRec and Rec are modified instantiations of Peikert’s reconciliation functions
[24, Sect.3] that essentially turn approximate key agreement into ezact key
agreement — see [2]. The function SHAKE-128 is the extended output function
(XOF) based on Keccak [4], which is also used to derive the 256-bit shared
secret key in both Alice and Bob’s final steps. Following [2], the random value a
is generated directly in the NTT domain.

Public parameters
n = 1024, ¢ = 12289, error distribution 12
Alice (server) Bob (client)

seed < {0,1}2%

a +— SHAKE-128(seed)

876(11/}?2 5/76/76// ‘il/)ﬁ

m 4 =(b,seed)
—

b—as+e a < SHAKE-128(seed)
u<«—as +¢
vebs +e’
’ mp=(u,r) $
v — us — r < HelpRec(v)
v < Rec(v', ) v < Rec(v, )
W — SHA3-256(v) 1 — SHA3-256(v)

Fig. 1. The key exchange instantiation from [2].

Viewing Fig. 1, we identify the following NTT-based computations:

Alice Bob
b aoNTT(s) + NTT(e) | u+« aoNTT(s") + NTT(e')
v/« INTT (0o NTT(s)) |v« INTT (boNTT(s") + NTT(e"))

The sequence of NTT and INTT operations above are used to determine the
value of K that results from our target parameters; note that ¢ = 3 - 22 + 1
and thus k = 3. For determining K, Alice’s and Bob’s NTT/INTT computations
can be seen as two polynomial operations: (1) the first operation begins with the
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computation of b on Alice’s side, who then transmits it in the NTT domain to
Bob for computing v and giving the result back in the standard domain; and
similarly (2) the second operation consists of the computation of u on Bob’s side
followed by the computation of v’ on Alice’s side.

We first point out that if we include two extra reductions at stage m = 128
and m = 32 of the NTT and INTT algorithms, respectively, then intermedi-
ate values never grow beyond 32 bits during a full NTT or INTT computa-
tion (see steps 11-13 of Algorithm 3 and steps 13-15 of Algorithm 4). Following
Sect. 3, the factor k introduced by every invocation of K-RED is canceled out by
the corresponding multiplication with an entry from the ¥, ;-1 and &I/r;i p—1
tables. Hence, only the extra reductions above introduce a factor k to the inter-
mediate results of the NTT and INTT.

Secondly, we point out that after performing component-wise multiplications
of polynomials in the NTT domain, the individual factors get compounded. The
results after these multiplications require two additional reductions and a condi-
tional subtraction per coefficient to fully reduce them modulo ¢ (this is required
to avoid overflows and, when applicable, to transmit messages and derive shared
keys in fully reduced form). It is important to keep track of these factors and
to (i) ensure that they are balanced (i.e., the same) before, e.g., adding two
summands that are the result of different NTT operations, and (ii) ensure that
they are corrected at the end of the computation. Careful analysis of the above
sequence of NTT operations reveals that the final factor is K = k19 = 310 for
the two full polynomial operations mentioned before.

Message Encoding and Decoding. Internally, polynomials are encoded as
1024-element little-endian arrays, where each element or coeflicient is represented
either by a 32-bit signed integer (for secret keys and error polynomials) or a
32-bit unsigned integer (for everything else). Each coefficient that is part of a
message is fully reduced modulo ¢ before transmission and therefore only uses
a fraction of the integer size (i.e., 14 bits). We simply encode messages in little
endian format as a concatenation of these 1024 14-bit coefficients (for b and wu;
see Fig. 1) immediately followed by the 256-bit seed in Alice’s message and the
1024 2-bit array r in Bob’s message. Accordingly, m4 and mp consist of 1824
and 2048 bytes, respectively.

5 Implementation Results

In this section, we present implementation results showcasing the performance
of the new NTT algorithms and, in particular, benchmark them in the context
of the Ring-LWE key exchange by Alkim et al. [2].

5.1 Performance Benchmarks

To ease the comparison with the state-of-the-art NTT implementation, we fol-
lowed [2] and implemented two versions of the proposed NTT algorithms [18]:
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a portable and compact implementation written in the C language, and a high-
speed implementation written in x64 assembly and exploiting AVX2 instructions.
For the AVX2 implementation we decided to use vector integer instructions,
which are easier to work with and, according to our theoretical analysis, are
expected to provide similar performance to a version using vector floating-point
instructions.

The benchmarking results of our implementations are shown at the top
of Table 1. These results were obtained by running the implementations on a
3.4 GHz Intel Core i7-4770 Haswell processor with TurboBoost disabled. For
compilation we used gcc v4.9.2 for the C implementation and clang v3.8.0 for
the AVX2 implementation.

As one can see, for the C version, the new forward and inverse NTT imple-
mentations are 1.84 and 1.88 times faster than the corresponding implementa-
tions from Alkim et al. [2]. In contrast, for the AVX2 version, the new algorithms
appear to be slightly slower. However, this direct comparison does not account
for the additional benefits of our technique that are not observable at the NTT
level. This includes the efficient use of signed arithmetic and the elimination
of costly conversion routines required by the Montgomery arithmetic (as used
in [2]) that are performed outside of the NTT. As we show below, our algo-
rithms perform significantly better in practice when all this additional overhead
is considered in the cost.

Table 1. Benchmarking results (in terms of 10® cycles) of our C and AVX2 implemen-
tations of the NTT and the key-exchange instantiation proposed by Alkim et al. [2] on
a 3.4 GHz Intel Core i7-4770 Haswell processor with TurboBoost disabled. Results are
compared with Alkim et al.’s implementation results. At the bottom of the table, we
show the total cost of a key-exchange, including Alice’s and Bob’s computations.

C implementation AVX2 implementation
ADPS [2] | This work | ADPS [2] | This work
NTT 55.4 30.1 8.4 9.1
INTT 59.9 31.8 9.5 9.7
Generating a 43.6 39.5 36.9 37.8
Error sampling 32.7 31.4 5.9 4.8
HelpRec 14.6 12.9 3.4 2.4
Rec 10.1 7.2 2.8 1.2
Key gen (server) 259.0 170.9 89.1 70.4
Key gen + shared key (client) | 385.1 287.6 111.2 95.2
Shared key (server) 86.3 48.8 19.4 15.7
Total (key exchange) 730.4 507.3 219.7 181.3
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To illustrate the overall performance benefits of the new reduction and NTT
algorithms, we implemented the full key-exchange instantiation proposed by
Alkim et al. [2]. To ease the comparison, we reuse the same implementations of
ChaCha20 and SHAKE-128 used in Alkim et al.’s software for the seed expansion
during the generation of a and for the polynomial error sampling, respectively.

Our results for the key exchange are summarized in Table 1. The C and AVX2
implementations are roughly 1.44x and 1.21x faster, respectively, than the cor-
responding C and AVX2 implementations by Alkim et al. These improvements
are mostly due to the new NTT algorithms which exhibit a faster reduction and
avoid the costly conversions that are required when working with Montgomery
arithmetic. The new reduction also motivates the use of signed arithmetic, which
makes computations more efficient because corrections from negative to positive
values are not required in several of the key exchange routines. In particular, the
effect of using signed arithmetic can be observed in the performance improvement
for the generation of a, HelpRec and Rec. We remark that these performance
improvements are obtained with significantly simpler integer arithmetic.

A different Ring-LWE based key-exchange implementation has been recently
reported by Aguilar-Melchor et al. [1]. Direct comparisons with this work are
especially difficult because they use different parameters and the most recent
version of their implementation appears not to be protected against timing and
cache attacks. As a point of reference, we mention that [1, Table 2] reports that
their NTT implementation using n = 512 and a 30-bit modulus runs in 13K
cycles on a 2.9 GHz Intel Haswell machine (scaled from 4.5ps). This is more
than 1.4x slower than our NTT using n = 1024 and a 14-bit modulus.

6 Conclusion

We describe a new modular reduction technique and improved FFT algorithms to
compute the NTT. The improved NTT algorithms were applied to a recent key
exchange proposal and showed significant improvements in performance using
both a plain C implementation and a vectorized implementation that does not
require floating-point arithmetic.

Although both the modular reduction and the improved NTT were motivated
by (and are somewhat tailored towards) applications in R-LWE cryptography
that use power-of-2 cyclotomic fields, our improvements should be of independent
interest and might be applicable to other scenarios. Our method offers flexibility
for implementations with different design goals without sacrificing performance.

Likewise, we expect that the new algorithms offer similar performance
improvements on platforms such as microcontrollers and ARM processors. We
leave this as future work, as well as the evaluation of the proposed NTT algo-
rithms in the implementation and optimization of R-LWE signature schemes
such as BLISS.
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