
Efficient Card-Based Cryptographic Protocols
for Millionaires’ Problem Utilizing

Private Permutations

Takeshi Nakai1(B), Yuuki Tokushige1, Yuto Misawa2, Mitsugu Iwamoto1,
and Kazuo Ohta1

1 Department of Informatics, The University of Electro-Communications, 1-5-1
Chofugaoka, Chofu, Tokyo 182-8585, Japan

{t-nakai,yuuki.tokushige,mitsugu,kazuo.ohta}@uec.ac.jp
2 Smart Card Systems Department, Toshiba Corporation, 1, Komukai, Toshiba-cho,

Saiwai-ku, Kawasaki 212-8583, Japan
yuto1.misawa@toshiba.co.jp

Abstract. We propose several efficient card-based cryptographic proto-
cols for the millionaires’ problem by introducing a new operation called
Private Permutation (PP) instead of the shuffle used in existing card-
based cryptographic protocols. Shuffles are useful randomization tech-
niques for designing card-based cryptographic protocols for logical gates,
and this approach seems to be almost optimal. This fact, however, implies
that there is room for improvements if we do not use logical gates as
building blocks for secure computing, and we show that such an improve-
ment is actually possible for the millionaires’ problem. Our key technique,
PP, is a natural randomization operation for permuting a set of cards
behind the player’s back, and hence, a shuffle can be decomposed into two
PPs with one communication between them. Thus PP not only allows
us to transform Yao’s seminal protocol into a card-based cryptographic
protocol, but also enables us to propose entirely novel and efficient pro-
tocols by securely updating bitwise comparisons between two numbers.
Furthermore, it is interesting to remark that one of the proposed proto-
cols has a remarkably deep connection to the well-known logical puzzle
known as “The fork in the road”.

1 Introduction

Background. Multiparty computation (MPC) can be realized by using several
cards, and such a special implementation of MPC is known as a card-based cryp-
tographic protocol [2,5]. Much of the research related to card-based cryptographic
protocols has been devoted to secure computation of logical gates such as AND
and XOR1, since any computation can be implemented by their combinations.

Y. Misawa—This work was carried out when he was affiliated to the University of
Electro-Communications.

1 In card-based cryptographic protocols, NOT is easy to implement, and an OR oper-
ation is easily derived from an AND operation.
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The central issue when designing efficient card-based cryptographic protocols
for logical gates is to minimize the number of cards required in the protocol.
For instance, Mizuki–Sone [9] realized AND and XOR operations on two binary
inputs with six and four cards, respectively, and recently, Koch–Walzer–Härtel [7]
reduced the number of cards to five in AND2. On the other hand, randomization
is also important in order to realize secure card-based cryptographic protocols.
In this regard, an operation known as shuffle is considered to be useful for imple-
menting logical gates securely with a smaller number of cards, and the usage of
this operation has been extensively studied thus far.

We note that shuffles in card-based cryptographic protocols are different from
those in ordinary card games in terms of two points: The first difference is that
a shuffle in a card-based cryptographic protocol specifies a certain permutation,
whereas a shuffle in ordinary card games permutes the set of cards in a completely
random manner. The second difference is that the result of a permutation must
not be known to any players (including the player performing the shuffle). For
instance, a random bisection cut [9] is a useful type of shuffles in the following
manner: an even number of cards are divided into two sets consisting of the same
number of cards, and these two sets are permuted (in this case, exchanged) many
times until none of the players can recognize how many times the two sets of
cards are permuted.

Motivation and Our Idea. We observe here that the following two problems exist
in card-based cryptographic protocols based on logical gates and shuffles:

(1) Constructing a protocol by using logical gates is a general technique, but it
can be less efficient than protocols specially developed to perform a certain
function.

(2) From the viewpoint of MPC, a shuffle is not a single operation since it
requires at least two players to communicate with each other3, and hence,
a card-based cryptographic protocol is not efficient if it uses a shuffle as a
building block.

We discuss (1) and (2) in detail before we propose our idea:
(1) In the secure computing of logical gates by card-based cryptographic

protocols, it is known that one bisection cut is necessary and sufficient in state-
of-the-art card-based cryptographic protocols [9]. This fact implies that, when
we compute a certain function, random bisection cuts are necessary at least with
the number of logical gates so as to represent the function. For instance, consider
the case of the millionaires’ problem initiated by Yao’s seminal work [1], which is
a secure two-party computation involving a comparison of two numbers without
making each millionaire’s wealth public. Comparing two numbers less than m ∈
2 We assume in this paper that the results are correctly computed with a probability

1. If a computation error is allowed with small probability, it is shown in [7] that
four cards are sufficient.

3 Although this fact is mentioned in [7], the efficiency of the protocol based on this
fact is not discussed by these authors, and hence, they use shuffles as building blocks.
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N by logical gates can be realized as in Fig. 1, in which logical AND and OR
operations are necessary 2�log m�−1 and 2�log m�−2 times, respectively4. When
executing these logical operations, the COPY operation [9] is also necessary
for ¬ai and bi in each comparison of bits, and hence, 6�log m� − 5 random
bisection cuts are necessary in total in order to implement the millionaires’
problem as shown in Fig. 1. Noticing that a random bisection cut is necessary for
randomization, it seems difficult to reduce this number as long as we implement
the millionaires’ problem based on logical operations as shown in Fig. 1.

We can expect this inefficiency to be resolved if we design a card-based
cryptographic protocol specialized for the function computed in the protocol,
although an improvement such as this has not been studied intensively to date.
Proceeding with this idea, it is natural to recall Yao’s solution to the millionaires’
problem ([1], see Sect. 3.1) since it does not depend on logical gates but special-
izes in comparing two numbers privately. As we will see in Sect. 3.1, for instance,
Yao’s protocol involves public key encryption, which is difficult to implement
by logical gates, but is easy to realize by using face-down cards without pub-
lic/private keys! As a result, it is easy to implement Yao’s protocol by cards if we
do not restrict ourselves to using card-based cryptographic protocols for logical
gates.

When implementing Yao’s protocol by using cards that do not depend on
logical gates, it should become clear that his protocol uses private computation
since it is an MPC protocol. On the other hand, every operation is assumed to be
public in existing card-based cryptographic protocols. Hence, in this paper, we
explicitly allow such a private operation if it is possible to implement by cards.

input: a = (an...a2 a1)2, b = (bn...b2 b1)2 ;
f1 = ā1 ∧ b1 ;
for( i : 2 to n) {

fi = āi ∧ bi ∨ ( āi ∨ bi ) ∧ fi−1 ;
}
output: fn ;

if fn = 0 then a ≥ b
if fn = 1 then a < b

Fig. 1. Comparing protocol constructed by logical gates

(2) In previous work, a shuffle is considered as a building block for random-
ization, but actually, it is not a single operation from the viewpoint of MPC. For
instance, a random bisection cut by Alice can be realized as follows: Alice first
generates a random number rA and permutes bisected cards rA times behind her
back, and sends the permuted cards to the other player, say Bob. Bob privately
generates a random number rB and permutes bisected cards rB times behind

4 Throughout this paper, logarithmic base is 2.
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his back. If rA and rB are kept private by Alice and Bob, respectively, this pro-
tocol shuffles bisected cards rA + rB times, and no one can know the number of
permutations.

Note that such private randomness and private operations ((rA, rB) and per-
mutation in this example, respectively) are often used in MPC. Hence, we call
such a permutation behind someone’s back Private Permutation (PP). The intro-
duction of PPs makes it easy to see that shuffles, including a random bisection
cut, generally consist of at least two PPs and one communication among these
PPs. Note that the number of PPs and communications is considered as com-
putational cost, and the number of cards is considered as memory cost.

Table 1. Comparison of Proposed Card-based Cryptographic Protocols

Protocols # of Comm. # of PP # of cards

Logical gates (Fig. 1) 6�log m� − 5 12�log m� − 10 4�log m� + 2

Proposed protocol I (Yao) 1 2 2m

Proposed protocol II (storage) 2�log m� 2�log m� 4�log m� + 2

Our Contributions. As shown above, the concept of a PP is motivated by (1) and
(2). We propose two protocols corresponding to (1) and (2), denoted as proposed
protocols I and II, respectively. The evaluations of our results presented in this
paper are summarized in Table 1, where we use the number of communications,
PPs, and cards as efficiency measures.

We resolve problem (1) by constructing a card-based cryptographic protocol
for the millionaires’ problem based on Yao’s protocol for two numbers less than
or equal to m (proposed protocol I). Even though this protocol is näıve, only one
communication and two PPs are sufficient, which is a considerable improvement
of card-based cryptographic protocols based on logical gates (6�log m� − 5 and
12�log m� − 10, respectively). On the other hand, the number of cards required
by the protocol is 2m, which is much worse than the card-based millionaires’
problem based on logical gates (4�log m� + 2).

Regarding problem (2), we expect that a more efficient card-based protocol
can be proposed in terms of the number of communications, PPs, and cards.
Actually, we propose an entirely new and efficient card-based cryptographic
protocol specially developed to solve the millionaires’ problem. This protocol
succeeds in reducing the number of communications and PPs to almost 1/3 and
1/6, respectively, compared to the protocol for logical gates, whereas the number
of cards remains the same (see Proposed protocol II in Table 1). The new proto-
col compares two numbers bit by bit, starting from the less significant bit, and
the compared results are recorded on cards, called storage. The results recorded
in storage need to be kept secret from both Alice and Bob, to solve the million-
aires’ problem securely. Hence, we show how to manipulate the storage privately
by using PPs. It is very interesting to note that the technique on which this
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manipulation is based proved to be the same as that of the well-known logical
puzzle “The Fork in the Road5” [6, p. 25]. This observation will be introduced
when explaining the idea of the proposed protocol II in Sect. 4.1.

Organization. The remaining part of this paper is organized as follows: We
introduce several notations, basic operations of cards including PP, and the
security notion for card-based cryptographic protocols in Sect. 2. In Sect. 3, the
card-based cryptographic protocol for the millionaires’ problem based on Yao’s
protocol is presented. Section 4 is devoted to the proposal of a new card-based
cryptographic protocol with storage, which is efficient from the viewpoint of the
number of communications and PPs. We summarize our results in Sect. 5 and
discuss the improvements of the protocol proposed in Sect. 4.

2 Preliminaries

2.1 Notations and Basic Operations

In card-based cryptographic protocols, we normally use two types of cards such
as ♣ and ♥ , which are represented in the following sentences by ♣ and ♥,
respectively. We assume that two cards with the same mark are indistinguishable.
We also assume that all cards have the same design on their reverse sides, and
that they are indistinguishable and represented as ? . The Boolean values 0 and
1 are encoded as ♣♥ and ♥♣, respectively. Note that we regard the sequence of
cards as a vector. In this paper, we use the following fundamental card operations
[8]. Note that these operations are executed publicly.

– Face up: ? �→ ♣ , ? �→ ♥
– Face down: ♣ �→ ? , ♥ �→ ?

– Swap: ? ? (represents x ∈ {0, 1}) �→ ? ? (represents ¬x ∈ {0, 1})

If a pair of face-down cards for the Boolean value x ∈ {0, 1}, it is called
commitment. The term Swap indicates reversal of the left and the right of the
commitment.

5 This problem is summarized as follows: An logician finds himself on an island inhab-
ited by two tribes: liars and truth-tellers. Members of the one tribe always tell the
truth, whereas members of the other tribe always tell lies. The logician reaches a
fork in a road and has to ask a native bystander which branch he should take to
reach the village. He has no way of telling whether the native is a truth-teller or a
liar. The logician only asks one question. From the reply he knows which road to
take. What question does he ask?.



Efficient Card-Based Cryptographic Protocols 505

2.2 Random Bisection Cut and Private Permutation

Random Bisection Cut. This is a key technique to realize efficient card-based
cryptographic protocols for logical gates, e.g., 6-card AND protocol [9], which is
described as follows:

For a positive integer v, suppose that there is a sequence of 2v face-down
cards. Denote the left and right halves by u1 and u2, respectively.

v cards
︷ ︸︸ ︷

? ? · · · ?
︸ ︷︷ ︸

=:u1

v cards
︷ ︸︸ ︷

? ? · · · ?
︸ ︷︷ ︸

=:u2

(1)

Then, u1 and u2 are interchanged or left unchanged with probability 1/2.
Depicting this by using figures, one of either

? ? · · · ?
︸ ︷︷ ︸

u1

? ? · · · ?
︸ ︷︷ ︸

u2

or ? ? · · · ?
︸ ︷︷ ︸

u2

? ? · · · ?
︸ ︷︷ ︸

u1

(2)

is selected with a probability 1/2. If no player knows whether one of the above
is selected, such a shuffle is known as a random bisection cut.

A random bisection cut is known to be a convenient randomization technique
for implementing card-based protocols for logical gates securely. However, it has
two drawbacks.

The first drawback is that it is not known how to use this technique other
than in the card-based cryptographic protocols for logical gates. In other words,
this technique is not useful for implementing Yao’s protocol, for instance, as a
card-based cryptographic protocol because it does not use logical gates.

The second drawback is that it is not possible for one player to realize this
technique. That is, a random bisection cut by Alice can be realized as follows:
Alice first generates a random number rA and permutes the bisected cards rA
times behind her back, and sends the permuted cards to the other player, say
Bob. Bob privately generates a random number rB and permutes the bisected
cards rB times behind his back. If rA and rB are kept private by Alice and Bob,
respectively, this protocol permutes the bisected cards rA + rB times, and no
one can know the number of permutations. As long as we implement card-based
cryptographic protocols based on logical gates, at least one shuffle such as a
random bisection cut is necessary for every logical gate, which would have a
highly adverse impact on the efficiency of the protocols.

Private Permutation. We resolve the above-mentioned drawbacks by decompos-
ing the shuffle operation into the private permutations behind the player’s back
and the communication between them. Hence, we introduce a new randomization
operation called Private Permutation (PP), which can be formalized as follows:

For a positive integer t, let c ∈ {♣,♥}t be a vector consisting of t face-down
cards. For a set Pt of all permutations over6 [t] := {1, 2, . . . , t}, let Rt ⊂ Pt

6 In this paper, we define [n] := {1, 2, . . . , n} for an integer n ∈ N.
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be a set of possible permutations. We also define Rt = {π0, π1, . . . , π|Rt|−1}.
Then, for a positive integer t and a set of possible permutations Rt, the private
permutation is formalized as follows:

PP
[t]
Rt

(c, s) := πs(c), s = 0, 1, . . . , |Rt| − 1.

Note that the same function was introduced by others [7,8] although we
impose an additional assumption on this function. Namely, we assume that the
player executing PP

[t]
Rt

keeps s secret, whereas he/she makes the other parameters
public, which is easy to realize by permuting the cards behind the player’s back.
This requirement is firstly introduced in this paper explicitly by considering that
shuffle implicitly assumes the necessity of PPs. Note that, in the existing card-
based cryptographic protocols, every operation other than shuffle is assumed to
be executed in public. Note that, not only the random bisection cut, but also
several different types of shuffles, e.g., [10] can be realized by PPs in a similar
manner by specifying Rt appropriately.

For instance, consider the set of permutations capable of randomly inter-
changing the first and the latter halves of a vector as follows: For a positive
integer v, Ric

2v := {π0, π1} ⊂ P2v where

π0 := (1, . . . , v, v + 1, . . . , 2v), and π1 := (v + 1, . . . , 2v, 1, . . . , v), (3)

which means that π0(c) = (u1,u2) and π1(c) = (u2,u1) for c := (u1,u2)
given by (1). Then, the random bisection cut for 2v cards is represented as
PP

[2v]

Ric
2v

(c, s) = πs(c) where s is chosen from {0, 1} uniformly at random and it
is known only by the player executing this operation. In executing the random
bisection cut, for the sequence of cards c, Alice executes PP

[2v]

Ric
2v

(c, rA) =: c′

by using her private randomness rA ∈ {0, 1}, and c′ is sent to Bob. Bob also
executes PP

[2v]

Ric
2v

(c′, rB) by using his private randomness rB ∈ {0, 1}.

Efficiency Measures. Most of the previous work, e.g., [8,11], considers the num-
ber of shuffles as the computational complexity since shuffle is the most time-
consuming operation. On the other hand, in this paper we consider that the
computational complexity is evaluated by the number of PPs and communica-
tions since such measures are suitable for MPC. In this paper, successive PPs
executed by one player without communication and/or face up is counted as one
PP since the composition of permutations is also regarded as a permutation and
the subsequent private permutation can be executed at once behind the player’s
back.

2.3 Security Notion

Throughout this paper, we assume that both Alice and Bob are semi-honest
players. Following [4], we introduce the security notion (perfect secrecy) of card-
based cryptographic protocols for the millionaires’ problem.
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In defining the security of card-based cryptographic protocols, view plays a
key role. View is roughly defined to be a vector of random variables7 correspond-
ing to the data that each player can obtain in the protocol. More precisely, view
is a vector which consists of random variables corresponding to the input of the
player, the output of the protocol, public information all players can gain, and
random values which are used when the player makes a random choice.

For a fixed integer m ∈ N, let a ∈ [m] and b ∈ [m] be positive integers
representing the wealth of Alice and Bob respectively. In this case, the inputs
by Alice and Bob for the protocol are a and b, respectively. The common output
of the millionaires’ problem for Alice and Bob is represented as χge(a, b) where

χge(u, v) :=

{

1 if u ≥ v

0 otherwise,
(4)

for positive integers u, v ∈ [m].
The information obtained by Alice and Bob in the protocol can be classified

into private information denoted by rA and rB , and public information denoted
by λ. Hence, Alice’s (resp. Bob’s) view can be described as the sequence of ran-
dom variables corresponding to her (resp. his) input a (resp. b), output of the
protocol, private information rA (resp., rB) and public information λ. The pri-
vate information rA (resp., rB) is the random number generated by Alice (resp.,
Bob) and used in PPs. The public information is the cards that Alice and Bob
made public by turning them face up. Note that, in ordinary MPC, view includes
information that each player receives via private channel, but in card-based cryp-
tographic protocols, there is no private channel. Only face-up cards can reveal
information, and hence, we can define the face-up cards are included in the view
as public information. Let RA, RB , and Λ be random variables corresponding
to the values rA, rB , and λ, respectively. Then, the views of Alice and Bob are
represented as (A,χge(A,B), RA,Λ) and (B,χge(A,B), RB ,Λ), respectively.

Intuitively, if all Alice’s (resp., Bob’s) private and public information can
be simulated from Alice’s (resp., Bob’s) input and output, we can say that no
information is contained in the private and public information other than Alice’s
(resp., Bob’s) input and output. Hence, we can formulate perfect secrecy of card-
based cryptographic protocols for the millionaires’ problem as follows:

Definition 1 (Perfect secrecy). Consider the millionaires’ problem for Alice
and Bob. We say that the card-based cryptographic protocol for the millionaires’
problem is perfectly secure if there exist polynomial-time simulators SA and SB
such that for all possible inputs a and b, it holds that

SA(a, ca,b)
perf≡ (a, χge(a, b), RA,Λ) and SB(b, ca,b)

perf≡ (b, χge(a, b), RB ,Λ) (5)

7 Throughout the paper, random variables are represented by capital letters. The
probability that a random variable X takes a value x is represented by Pr{X = x}
which is also written as PX(x) for short. Mathematically, random variable is defined
to be a map from probability space to the set of real numbers. However, for simplicity,
we allow the cards ♣, ♥ to be treated as the values of random variables in each view.
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where U
perf≡ V means that the (joint) probability distributions PU and PV corre-

sponding to the random variables U and V , respectively, are perfectly the same.

3 Proposed Protocol I: Card-Based Cryptographic
Protocol for Millionaires’ Problem Based on Yao’s
Solution

3.1 Yao’s Solution and Our Idea Behind the Proposed Protocol I

We propose a card-based cryptographic protocol that resolves the millionaires’
problem by cards based on Yao’s original solution. Before providing our protocol,
we explain Yao’s public key based solution [1] with the following:

Yao’s Solution to the Millionaires’ Problem. For a fixed integer m ∈ N, assume
that Alice and Bob have wealth represented by positive integers a and b, respec-
tively, where a, b ∈ [m]. Let X := [2N −1] be a set of N -bit integers. (EncA,DecA)
is a public-key encryption of Alice. Hence, EncA : X → X is an encryption under
Alice’s public key, and DecA is a decryption under Alice’s private key.

〈1〉 Bob selects a random N -bit integer x ∈ X , and computes c := EncA(x)
privately.

〈2〉 Bob sends Alice the number c − b + 1
〈3〉 For i = 1, 2, . . . ,m, Alice computes privately the values of yi = DecA(c− b+

i).
〈4〉 Alice generates a random prime p of N/2 bits, and computes the values

zi := yi mod p for i = 1, 2, . . . ,m. If |zu − zv| ≥ 2 for all distinct u, v ∈ [m],
then go to next step; otherwise generates another random prime and repeat
the process until all zu differ by at least 2;

〈5〉 Alice makes z′ = (z1, z2, . . . , za, za+1 +1, za+2 +1, . . . , zm +1); each value is
in the mod p sense.

〈6〉 Alice sends Bob p and the vector z′.
〈7〉 Bob looks at the b-th number in z′. If it is equal to x mod p, then a ≥ b,

otherwise a < b.
〈8〉 Bob sends Alice the result.

Our Idea Behind Proposed Protocol I. We first point out that the key steps of
Yao’s protocol are 〈5〉–〈7〉, where Alice privately adds 1 to za+1 to zm in the
m-dimensional vector, and sends the vector to Bob. He privately checks the b-
th value in the vector, and outputs the result. These private operation can be
implemented by PP, which corresponds to the step 〈3〉 in the following proposed
protocol I.

Note that, in Yao’s solution, 〈1〉–〈4〉 are necessary for realizing the key steps
〈5〉–〈7〉 securely, since they prevent the vector z′ in 〈5〉 from leaking Alice’s
wealth a to Bob. However, in a card-based cryptographic protocol, these steps
can be replaced with single step since face down play the role of encryption. Fur-
thermore, the communication in 〈8〉 can be removed in the card-based protocol
since face-up cards on the tabletop can immediately be recognized by both Alice
and Bob.
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3.2 Proposed Protocol I

Based on the ideas discussed in the previous section, we propose a card-based
cryptographic protocol for the millionaires’ problem based on Yao’s solution. We
refer to this protocol proposed protocol I. The definitions of a, b,m are same in
the previous section.

Proposed Protocol I (Card-based Yao’s Solution)

(1) Alice prepares m pairs of ♣♥ and turn them all face down. This
preparation is represented in a vector form as (x1,x2, . . . ,xm) where
x1 = x2 = · · · = xm = ♣♥.

(2) For i = 1, 2, . . . ,m, repeat the operation in which Alice swaps xi if i > a;
otherwise do not. Each swap operation must be executed privately, and
it is described as the following PP with respect to Ric

2 := {π0, π1} which
is given by (3) with v = 1:

PP
[2]

Ric
2
(xi, χ

ge(i − 1, a)), i = 1, 2, . . . , m, (6)

where χge(·, ·) is defined in (4), i.e., χge(i−1, a) = 1 iff i > a. As a result,
Alice privately generates the sequence of cards x′ := (x′

1,x
′
2, . . . ,x

′
m)

where x′
i := PP

[2]

Ric
2
(xi, χ

ge(i − 1, a)).
(3) Alice sends Bob x′.
(4) Bob privately moves x′

b to the first element of x′, which is described as
the following PP:

PP
[2m]

Rmf
2m

(x′, b − 1) = πb−1(x′) (7)

where Rmf
2m := {πi}m−1

i=0 such that πi : x′ �→ (xi+1,x1, . . . ,xi,xi+2,
. . . ,xm).

(5) Bob reveals the left most commitment of PP[2m]

Rmf
2m

(x′, b−1), i.e., x′
b. If the

value represented by x′
b is 0, then a ≥ b, otherwise a < b.

The remaining cards are completely randomized by Alice or Bob in public in
order to discard the information of x′ except for x′

b. We call this operation
“the remaining cards are discarded,” hereafter.

Note that steps (1) and (2) in the proposed protocol correspond to step
〈1〉–〈5〉, and the steps (3) and (4) correspond to steps 〈6〉 and 〈7〉, respectively,
which shows that the step (2) considerably simplifies Yao’s protocol. We omit
the proof of correctness of the proposed protocol since it is almost obvious from
Yao’s protocol.

Note that (EncA,DecA) in Yao’s millionaires’ protocol must be public-key
encryption since a is obtained by Bob in step 〈5〉 if (EncA,DecA) is a private
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key encryption. On the other hand, in the proposed protocol I, such leakage
of a to Bob is prevented by requiring that all cards except x′

b are completely
randomized by Alice or Bob publicly at the end of the protocol.

Efficiency of the proposed protocol I. In the proposed protocol, note that the
constant numbers for PP and communication are sufficient. We use two PPs in
steps (2) and (4), and one communication in step (3), and this outperforms the
protocol based on logical gates (see Fig. 1). We note that the steps (4) and (5)
are necessary so that Bob turns x′

b face up publicly without making b public8.
We can show the perfect secrecy of the proposed protocol in the following

theorem, but we omit the proof since it is almost obvious.

Theorem 1. The proposed protocol I is perfectly secure; it satisfies (5) in Def-
inition 1.

Remark. Thanks to the special operations of card, e.g., face up, face down, and
swap, etc., the proposed protocol I is not only a direct transformation of Yao’s,
but also is superior to the original protocol. For instance, the proposed protocol
I does not use any randomness, whereas randomness is necessary for generating
public/private keys in the original solution by Yao. Furthermore, it is worth
observing that both Alice and Bob can know the output result simultaneously
in the proposed protocol I, whereas Yao’s original protocol, Bob is required to
announce his result to Alice (see step 〈8〉).

4 Proposed Protocol II: Card-Based Cryptographic
Protocol for Millionaires’ Problem with Storage

4.1 Ideas Behind Proposed Protocol II

In order to reduce the number of cards to below 2m, it is natural to repre-
sent the wealth of Alice and Bob as binary numbers with �log m� bits (i.e.,
2�log m� cards). This approach enables us to consider the strategy by compar-
ing the Alice’s and Bob’s wealth bit-by-bit starting from their least significant
bit although our strategy is not based on the use of logical gates.

Let (an, . . . , a1) and (bn, . . . , b1) be the binary representation of the pos-
itive integers a and b, respectively, where n := �log m� and ai, bi ∈ {0, 1},
i = 1, 2, . . . , n. For each i ∈ [n], assume that ai and bi are represented by pairs of
cards αi,lαi,r and βi,lβi,r, respectively, where αi,lαi,r, βi,lβi,r ∈ {♣♥,♥♣}. For
instance, ai = 1 is represented by cards as αi,lαi,r = ♥♣.

Note that, however, such a two-card representation of binary numbers is
redundant in a bit-by-bit comparison since we can represent 0 and 1 by ♣ and
♥, respectively9. In this one-card representation, αi,l and βi,l suffice to represent

8 Private selection of x′
b and making it public are formally realized in this manner.

9 However, we note that a one-card representation cannot express arbitrary binary
numbers. Hence, 4�log m� (i.e., 2�log m� cards for Alice and Bob) cards are at least
necessary when comparing two binary numbers less than m.
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ai and bi, respectively. Further, their negations, ¬ai and ¬bi, are also represented
by αi,r and βi,r, respectively. In the following, we consider a scenario in which
Alice prepares (an, . . . , ai) by using a two-card representation, and then, Alice
and Bob use a one-card representation for comparison.

We compare the bits of Alice and Bob by preparing a device (equipped by
a card) called comparison storage, denoted by cs ∈ {♣,♥}, that records the
bit-by-bit comparison results. Our idea is roughly as follows: We assume that
Bob compares βi,l (i.e., bi) with Alice’s card αi,l (i.e., ai) from i = 1 to n, and
he overwrites cs with βi,l (i.e., bi) if βi,l �= αi,l (i.e., bi �= ai) while cs remains
untouched if this is not the case (i.e., bi = ai). Recalling that Bob overwrites the
comparison storage with his bit, Bob is shown to be richer if the comparison
storage is ♥ (i.e., 1) at the end of the protocol. Similarly, Alice is shown to be
richer if the comparison storage is ♣ (i.e., 0) at the end of the protocol. As is
easily understood, however, this rough idea presents two problems:

(P1) If Bob were to directly compare his bits with those of Alice, such a com-
parison strategy would easily leaks Alice’s bits to Bob.

(P2) The fact of overwriting the comparison result or not leaks Bob’s bits to
Alice.

(P1) can be avoided by considering the following modified randomized strat-
egy: Since Alice prepares (an, . . . , ai) by two-card representations, she sends Bob
αi,l (i.e., ai) or αi,r (i.e., ¬ai) with probability 1/2. Such a randomization is effec-
tive for concealing the value of Alice’s bit from Bob, but we encounter another
problem:

(P3) Since Alice sends αi,w to Bob w ∈ {l, r} with a probability of 1/2, he
cannot tell whether ai �= bi or not.

Problems (P2) and (P3) are simultaneously resolved by introducing another
storage called dummy storage, denoted by ds ∈ {♣,♥}, and communicating the
pair of cs and ds between Alice and Bob. Hereafter, we refer to the pair consisting
of cs and ds as storage.

In order to resolve problem (P2), it suffices for Bob to overwrite cs and ds
corresponding to the results of ai �= bi and ai = bi, respectively, which enables
him to hide his bit from Alice. However, due to (P3), Bob cannot determine
which one of cs and ds should be overwritten. Hence, we focus on how to resolve
problem (P3) hereafter.

Problem (P3) can be rephrased using binary numbers as follows: Let a′
i ∈

{0, 1} be a binary number that Bob receives, but he does not know whether
a′
i = ai (in the case of w = l) or a′

i = ¬ai (in the case of w = r). Our main
object is to find ai �= bi or ai = bi even if either one of a′

i = ai or a′
i = ¬ai is

sent10.
Our basic idea for resolving (P3) is that Bob uses the fact that what he

knows is either αi,w �= βi,l or αi,w = βi,l. Making use of this fact, Alice and Bob
10 This problem is very similar to the well-known logical problem “The Fork in the

Road,” that is remarked upon later.
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treat cs and ds as an ordered pair of face-down cards, and assume that either
(cs, ds) or (ds, cs) is determined by Alice’s private random choice w ∈ {l, r} as
follows:

– If Alice selects w = l and sends Bob αi,l ∈ {♣,♥} (i.e., ai), then she sends
him (cs, ds) with αi,l.

– If Alice selects w = r and sends Bob αi,r ∈ {♣,♥} (i.e., ¬ai), then she sends
him (ds, cs) with αi,r.

We can see that the order of cs and ds is synchronized with w ∈ {l, r} (i.e., ai

and ¬ai) in Alice. Owing to this synchronization, Bob can correctly overwrite cs
only when ai �= bi by implementing the following strategy, even if he does not
know which one of cs and ds should be overwritten. Let (σl, σr) be the storage
Bob receives from Alice.

– If αi,w �= βi,l (i.e., a′
i �= bi) holds, Bob overwrites the left element σl of the

storage (σl, σr) with βi,l (i.e., bi).
– If αi,w = βi,l (i.e., a′

i = bi) holds, Bob overwrites the right element σr of the
storage (σl, σr) with βi,l (i.e., bi).

Let (σ′
l, σ

′
r) be the storage overwritten by Bob, and he returns (σ′

l, σ
′
r) to

Alice. Then, by using w ∈ {l, r} that Alice generated, she privately rearranges
(σ′

l, σ
′
r) so as to place cs and ds on the left and the right, respectively. After

repeating these procedures from i = 1 to n, Bob is shown to be richer if cs = ♥
(i.e., 1) whereas the contrary is true if cs = ♣ (i.e., 0).

Table 2. Synchronization mechanism in the proposed protocol with storage

ai (αi,l) bi (βi,l) (cs, ds), w = l (ds, cs), w = r

a′
i (αi,l) a′

i 
= bi Overwrite a′
i (αi,r) a′

i 
= bi Overwrite

0 (♣) 1 (♥) 0 (♣) True left = cs 1 (♥) False right = cs

1 (♥) 0 (♣) 1 (♥) True left = cs 0 (♣) False right = cs

0 (♣) 0 (♣) 0 (♣) False right = ds 1 (♥) True left = ds

1 (♥) 1 (♥) 1 (♥) False right = ds 0 (♣) True left = ds

It is easy to see from Table 2 that our synchronization strategy for storage
works well. This is best clarified by discussing the proposed protocol by using
binary numbers rather than cards. For instance, consider the case where Alice
compares her bit ai = 1 with Bob’s bit bi = 0 (the second line in Table 2).
If Alice selects w = l, Bob receives a bit ai = 1 and compares it with Bob’s
bit bi = 0. Since a′

i �= bi, the left-hand side element of the storage, i.e., cs, is
overwritten by bi = 0. On the other hand, if Alice selects w = r, Bob receives
a bit a′

i = ¬ai = 0 and compares it with his bit bi = 0. Since a′
i = bi = 0, the

right-hand side element of the storage, i.e., cs, is overwritten by bi = 0. Anyway,
cs is correctly overwritten by bi = 1 (> ai = 0) as expected.
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Remark. It is interesting to note that the logic of the above synchronization
strategy is the same as that of the well-known logical puzzle “The Fork in the
Road,” [6, p. 25] (see footnote 7). Note that the point of the “The Fork in
the Road” is that we need to obtain the correct answer (correct branch) from
“yes-no-questions,” regardless of whether the native bystander tells the truth.
Similarly, in our synchronization strategy, we require the correct compared result
(ai �= bi or ai = bi) from “same-or-different-questions,” regardless of whether
Bob receives αi,l (i.e., ai) or αi,r (i.e., ¬ai).

4.2 Proposed Protocol II

Based on the discussion in the previous section, we propose the card-based cryp-
tographic protocol which uses storage and synchronization between the random
selection w ∈ {l, r} and the order of cs and ds, for the Millionaires’ problem. For
the upper bound m ∈ N of the wealth of Alice and Bob, let n := �log m�.

Proposed Protocol II (Protocol for Millionaires’ Problem with Storage)

(1) Alice prepares a face-down ♣ and a face-down ♥ (This card can be arbi-
trary since it is a dummy card.) as the output storage cs and the dummy
storage ds, respectively. We call the pair consisting of cs and ds storage.
She also prepares a sequence of 2n cards (α1,lα1,r, α2,lα2,r, . . . , αn,lαn,r),
which is a binary representation of her wealth a ∈ [m]. Bob also pre-
pares the sequence of 2n cards (β1,lβ1,r, β2,lβ2,r, . . . , βn,lβn,r), which is
the binary representation of his wealth b ∈ [m].

(2) For i = 1, 2, . . . , n, repeat the following operations (2-i)–(2-v):
(2-i) Alice privately chooses w ∈ {l, r} uniformly at random. Then, execute

the following PP with respect to Ric
2 which is defined in (3) with

v = 1:

(σl, σr) := PP
[2]

Ric
2
((cs, ds), χeq(w, r)) (8)

where χeq(w, r) = 1 if w = r, and χeq(w, r) = 0 otherwise.
(2-ii) Alice sends Bob (σl, σr) in addition to αi,w.
(2-iii) Bob turns αi,w face up, and he compares βi,l with αi,w in his mind.

If they are different, he privately overwrites σl with βi,l, otherwise
he privately overwrites σr with βi,r. This operation can be described
as the following PP with respect to Row1

2 := {π0, π1} where π0 :=
(σl, βi,l, σr) and π1 = (βi,l, σr, σl). :

(σ′
l, σ

′
r, η) := PP

[3]

Row1
2

((σl, σr, βi,l), χeq(βi,l, αi,w)) (9)

where χeq(·, ·) := 1 − χeq(·, ·). The extra card η is discarded without
turning it face up.
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(2-iv) Bob sends Alice (σ′
l, σ

′
r).

(2-v) Alice rearranges the storage cards privately depending on the random
value w chosen in (2-i), i.e., execute the PP such that

PP
[2]

Ric
2
((σ′

l, σ
′
r), χ

eq(w, l)), (10)

which is used for the new storage cards (cs, ds).
(3) Alice turns cs face up to output. If the card is ♣, then a ≥ b. Otherwise,

a < b. After completing the protocol, ds is discarded without revealing.

Example of proposed protocol II. We show a simple example for understand-
ing how the proposed protocol II works correctly. Consider the case where
we compare a = 0 of Alice and b = 2 of Bob, which are represented by
(α1,lα1,r, α2,lα2,r) := (♣♥,♣♥) and (β1,lβ1,r, β2,lβ2,r) := (♥♣,♣♥), respec-
tively, since (a1, a0) = (0, 0) and (b1, b0) = (1, 0). We also set (cs, ds) = (♣,♥).

We first consider the case of i = 1. If Alice chooses w = l in step (2-i),
(8) becomes (σl, σr) = (cs, ds) = (♣,♥) since χeq(w, r) = χeq(l, r) = 0. Then,
she sends Bob (σl, σr) = (♣,♥) and α1,l = ♣ in step (2-ii). In step (2-iii),
Bob compares β1,l = ♣ with α1,l = ♣, which results in χeq(β1,l, α1,l) = 0.
Then, he outputs (σ′

l, σ
′
r) = (σl, β1,l) = (♣,♣) by overwriting the right element

of (σl, σr) = (♣,♥) with β1,l = ♣ privately, since (9) becomes (σ′
l, σ

′
r, η) =

(σl, β1,l, σr) due to χeq(β1,l, α1,l) = 0. Bob discards σr = ♥.
On the other hand, consider the case where Alice chooses w = r in step (2-i);

Then, (8) in step (2-i) becomes (σl, σr) = (ds, cs) = (♥,♣) since χeq(w, r) =
χeq(r, r) = 1. She sends Bob (σl, σr) = (♥,♣) and α1,r = ♥ in step (2-ii). Bob
compares β1,l = ♣ and α1,r = ♥, and outputs (σ′

l, σ
′
r) = (♣,♣) by overwriting

the left element of (σl, σr) = (♥,♣) with β1,l = ♣ privately as a result of (9).
As a result, regardless of the selection of w ∈ {l, r}, storage becomes

(cs, ds) = (♣,♣), which means that the dummy storage is overwritten by the
Bob’s bit since a0 = b0. Then, Bob send it to Alice in step in (2-iv). In step
(2-v), Alice sets (cs, ds) := (♣,♣) due to (10) for the storage sent from Bob.

Next, consider the case of i = 2: If Alice selects w = l in step (2-i), she
generates (σl, σr) = (cs, ds) = (♣,♣) from (8), and sends it with α2,l = ♣ to
Bob in step (2-ii). Then, Bob compares β2,l = ♥ with α2,l = ♣ in step (2-iii).
Since β2,l �= α2,l, he generates (σ′

l, σ
′
r) = (β2,l, σr) = (♥,♣) by overwriting the

left element of (σl, σr) = (♣,♣) with β2,l = ♥ privately according to (9). Bob
sends (σ′

l, σ
′
r) = (♥,♣) to Alice, and she obtains (cs, ds) := (♥,♣) due to (10).

Similar argument holds when Alice selects w = r, which is omitted here.
Finally, the output value correctly becomes cs = ♥ as a < b regardless of

random choices of Alice.

Efficiency of the proposed protocol II. This protocol requires two communications
for every bit therefore it requires 2�log m� communications. We note that the
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sequence of PPs executed in steps (2-iii) and (2-iv) can be regarded as one PP.
Similarly, steps (2-v) and (2-i), when i is incremented, can also be regarded as
one PP. Hence, this protocol requires 2�log m� PPs. The number of cards is
4�log m� + 2.

Theorem 2. The proposed protocol II is perfectly secure; it satisfies (5) in Def-
inition 1.

Proof. First, consider the randomness used by Alice and Bob denoted by RA

and RB , respectively. From step (2-i), the value of RA is the choice of w which is
randomly selected from {l, r} with a probability of 1/2. Hence, RA can obviously
be simulated by SA by using n independent uniform binary numbers. Similar to
proposed protocol I, Bob does not use any randomness, and hence, SA does not
have to simulate RB .

Then, considering the simulation of public information Λ which corresponds
the face-up cards in step (2-iii), it is easy to see that Alice can generate λ by
using a, i.e., her 2n cards, and the selection w. Hence, Λ is easily simulated by
SA. For Bob, αi,w seems to be uniform over {♥,♣} since he does not know the
value of w selected randomly by Alice.

Therefore, simulators SA and SB exist, which completes the proof. ��

5 Concluding Remarks

In this paper, we proposed two efficient card-based cryptographic protocols
(called proposed protocols I and II) for the millionaires’ problem by introducing
a new operation called private permutation (PP). Proposed protocol I is con-
structed based on Yao’s solution. This solution was realized by using public key
encryption instead of logical gates, and hence, it could not be straightforwardly
implemented to card-based cryptographic protocols based on logical gates. How-
ever, we show that Yao’s solution can be easily implemented by using cards if
we do not restrict ourselves by logical gates and use PPs instead. This protocol
could be realized with one communication and two PPs, and is therefore much
more effective than the existing protocol (see Table 1). However, the number of
cards increases. It is worth mentioning that proposed protocol I is not only a
direct transformation of Yao’s protocol, but is also superior to the original pro-
tocol in the sense that randomness and the announcement of the result are not
required as opposed to Yao’s original protocol.

Proposed protocol II is entirely novel. It constitutes the communication of
two types of storage for recording the compared result between two players. This
proposed protocol is superior to the existing protocol based on logical gates with
respect to the number of communications and PPs, whereas the number of cards
is the same as the existing protocol. Furthermore, it is interesting to remark that
proposed protocol II and the well-known logical puzzle known as “The Fork in
the Road,” are deeply related.

In the following, we briefly mention that proposed protocol II can be improved
in two directions. Due to space limitations, the detailed explanation will appear
at in the full version of the paper.
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The first direction of improvement is the following: According to Table 1,
proposed protocol II has not improved in terms of the number of cards. Hence,
the first improvement is that proposed protocol II can be realized with only six
cards. Our idea is that we do not need to represent the input as binary numbers
by using 2�log m� cards, but that it is sufficient to remember the input in the
player’s mind. Then, two cards are sufficient to represent the player’s input since
these two cards can be reused.

The second improvement is as follows: Proposed protocol II cannot be used
for composing the other protocol11 since each player is required to know his/her
inputs. In order to resolve this, we can use an improved technique called selection
and substitution protocols inspired by 6-card AND protocol [9]. Introducing this
idea enables us to propose the card-based millionaires’ problem while concealing
the input and the output where the number of communications and PPs are
almost 1/2 compared to the card-based cryptographic protocol for the million-
aires’ problem based on logical gates.
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5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 27

6. Gardner, M.: Hexaflexagons and Other Mathematical Diversions: The First Scien-
tific American Book of Puzzles and Games. University of Chicago Press, Chicago
(1956)
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