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Preface

These proceedings contain the papers selected for presentation at the 15th International
Conference on Cryptology and Network Security (CANS 2016), held in Milan, Italy,
on November 14–16, 2016. The conference was held in cooperation with the Inter-
national Association of Cryptologic Research and focuses on technical aspects of
cryptology and of data, network, and computer security. These proceedings contain 30
full papers (with an acceptance rate of 25.86 %) and 18 short papers selected by the
Program Committee from 116 submissions. The proceedings also contain an extended
abstract for the 8 posters presented at the conference.

The many high-quality submissions made it easy to build a strong program but also
required rejecting good papers. Each submission was judged by at least three reviewers
and the whole selection process included about six weeks of reading and discussion in
the Program Committee.

The credit for the success of an event like CANS 2016 belongs to a number of
people, who devoted their time and energy to put together the conference and who
deserve acknowledgment. There is a long list of people who volunteered their time and
energy to organize the conference, and who deserve special thanks. We would like to
thank all the members of the Program Committee and all the external reviewers, for all
their hard work in evaluating all the papers during the summer. We are grateful to
CANS Steering Committee for their support. Thanks to Giovanni Livraga, for taking
care of publicity and chairing local organization. We are very grateful to the local
organizers for their support in the conference organization and logistics. We would like
to thank the keynote speakers for accepting our invitation to deliver a talk at the
conference.

Special thanks are due to the Università degli Studi di Milano for its support and for
hosting the event, and to the Italian Association for Information Processing (AICA) for
support in the secretarial and registration process.

Last but certainly not least, our thanks go to all the authors who submitted papers
and posters and to all the conference’s attendees. We hope you find the program of
CANS 2016 interesting, stimulating, and inspiring for your future research.

November 2016 Sara Foresti
Pino Persiano

Pierangela Samarati
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Abstract. The past ten years have seen tremendous progress in the
uptake of side channel analysis in various applications. Among them,
Side Channel Analysis for Reverse Engineering (SCARE) is an espe-
cially fruitful area. Taking the side channel leakage into account,
SCARE efficiently recovers secret ciphers in a non-destructive and non-
intrusive manner. Unfortunately, most previous works focus on customiz-
ing SCARE for a certain type of ciphers or implementations. In this
paper, we ask whether the attacker can loosen these restrictions and
reverse secret block ciphers in a more general manner. To this end, we
propose a SCARE based on Linear Regression Attack (LRA), which
simultaneously detects and analyzes the power leakages of the secret
encryption process. Compared with the previous SCAREs, our approach
uses less a priori knowledge, covers more block cipher instances in a com-
pletely non-profiled manner. Moreover, we further present a complete
SCARE flow with realistic power measurements of an unprotected soft-
ware implementation. From traces that can barely recognize the encryp-
tion rounds, our experiments demonstrate how the underlying cipher can
be recovered step-by-step. Although our approach still has some limita-
tions, we believe it can serve as an alternative tool for reverse engineering
in the future.

Keywords: Linear Regression Attack · SCARE · F-test

1 Introduction

Over the past decades, Side Channel Attacks (SCA) posed a major threat
for many cryptographic implementations. As a powerful tool, SCA also shows
great potential in many non-key-recovery applications, including Side Chan-
nel Analysis for Reverse Engineering (SCARE). In general, reversing a secret
cipher through cryptanalysis is quite difficult. With side channel leakage, things
become much easier. Successful SCAREs have been proposed for many block

c© Springer International Publishing AG 2016
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ciphers, including DES-like ciphers [1–3], AES-like ciphers [4] and general SPN
ciphers [5].

Despite the tremendous progress in the literature, getting SCARE out of the
lab is not an easy task. Most previous SCARE techniques, explicitly stated or
not, have a few limitations on their target ciphers or implementations. Guilley
et al.’s Sbox recovery is the only SCARE that has been verified with realistic
measurements [3]. As their attack implicitly assumes the diffusion layer is a
known bit-permutation, it only applies to DES-like ciphers. Other attacks rely
on theoretical simulations [4,6,7] or measurement-aided simulations [5], which
makes it hard to predict their actual performances in practice. In addition, most
attacks rely on “collision-detection” technique, which suggests the attacker has
to find the leakages of the same Sbox computation (preferably in the first round)
to build templates. This requirement imposes further restrictions on the target
cipher as well as implementation.

Our Contribution. In this paper, we aim to extend the previous SCARE tech-
niques with Linear Regression Attack (LRA) [8]. Compared with other power
analyses, the advantage of LRA lies in its flexibility in the regression model.
With the full basis, LRA detects any relevant power leakage, just like NICV [9].
Meanwhile, LRA can also perform regressions with different models, verifying
various conjectures about the secret cipher. It is well known that the commonly
used evaluation measure in LRA—coefficient of determination (R2)— increases
with the number of regressors [10]. In this paper, we suggest using F-test to fairly
compare different models and reveal some inherent cryptographic operations. In
SCARE, such attack further recovers the secret linear components, as well as
the inputs of the Sboxes. Compared with the previous SCAREs, our approach
has three advantages: first, it works in a general framework which covers many
common structures (SPN, Feistel, generalized Feistel, etc.). Second, our attack
takes less a priori knowledge about the target cipher or its implementation. In
our attack, the attacker does not have to know things like the size of the Sboxes,
the accurate location of each Sbox computation on the trace or the order of
the permutation computation in advance. Last but not least, our approach is
completely non-profiled. This means our attack works even if all the Sboxes in
the encryption process are completely different, whereas all previous collision-
based SCAREs fail due to lack of valid templates. We have verified our attack
with power leakages from an unprotected software implementation of DES. Our
experiments present the complete SCARE flow in details, demonstrating how
our LRA-based SCARE helps to determine the secret cipher step-by-step.

2 Preliminaries

2.1 Previous SCARE Techniques

So far, most SCARE studies focus on block ciphers. As modern block ciphers
usually contain non-linear (confusion) layers and linear (diffusion) layers, in the
following, we discuss these two cases separately.
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Sbox Recovery. Confusion layers often consist of several small components, called
Substitution Boxes (Sboxes). For Sbox recovery, two types of SCAREs exist:

– Collision-based SCARE [4–6]. As a prevalent tool in SCARE [4–6], collision
attack exploits the similarity between the leakages from sequential computa-
tions of the same Sbox. Although marked as a non-profiled attack, collision
attacks share exactly the same routine as Template Attack (TA) [11]. The
only difference lies in the profiling stage, where collision attacks use other
sequentially-implemented Sbox computations as the profiling trace set [12].
Since the leakages of the exact same Sbox computation are not always avail-
able, this “online profiling” stage imposes restrictions on the implementations
as well as the target ciphers. For instance, if the target cipher is DES, the
attacker cannot build templates with the first round’s Sboxes, due to the
secret expansion transformation E. As DES uses 8 different Sboxes, finding
collision within the first round [5] is also impossible. Besides, collision attacks
usually requires the accurate points of interest to build effective templates.
Without any a priori knowledge, finding the accurate points of interest is
not an easy task in practice. As a result, none of the previous collision-based
SCAREs validated their attack with realistic experiments.

– Guilley et al.’s Sbox Recovery [3]. In 2010. Guilley et al. proposed an
Sbox recovery technique based on 1 bit CPA. As a nominal distinguisher, 1-
bit CPA does not require a priori knowledge about the leakage model or the
accurate points of interest. To our knowledge, this is the only SCARE that
verified with realistic hardware implementations (DPAContest v1). However,
in order to focus on one single output bit, the authors use an “output mask”.
Technically speaking, this means the attacker needs to find which bit in the
right register should store the guessed bit, as well as the last value of this
register (according to the Hamming Distance (HD) model). In other words,
these masks implicitly assume the attacker already know the diffusion layer is
a bit-permutation and the underlying cipher uses Feistel structure.

Linear Component Recovery. To our knowledge, Daudigny et al. ’s DES recov-
ery is the only SCARE devoted to the diffusion layer. Unfortunately, their work
relies heavily on the specific implementation [1]. Specifically, in the permuta-
tion recovery, the authors assume the corresponding state is computed from the
most to the least significant bit, and use the time order of all bits as the per-
mutation table. If the implementation uses any other order, their SCARE fails.
Other attacks recover linear components from the Sboxes’ power consumption.
In collision-based SCAREs, the linear part is treated as a secret matrix, which
can be determined from a lot of collision equations [5]. In this case, recovering
the linear components shares the same preconditions, as long as the unknown
linear part does not hinder the Sbox recovery.

2.2 Linear Regression Attack

In 2005, Schindler et al. proposed the Stochastic Attack [13] as an efficient
alternative for Template Attack [11]. With coefficient of determination (R2),
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Doget et al. further developed a non-profiled key-recovery attack [8]. In some
papers [8,14], this extension is noted as “Linear Regression Attack” (LRA).

A typical LRA works as follows: if the attacker wishes to recover a secret key
byte k, he can measure the power consumptions of some key-related operations
in the encryption process. Denote the n-bit intermediate state as x, the data-
dependent power leakage can be written as L(x), where L stands for the leakage
function. Since the encryption algorithm is given, with any key guess k̂, the
attacker can compute the corresponding intermediate state xk̂. As the leakage
L(x) only relates to the correct intermediate state xk, comparing L(x) with all
xk̂ gives a clue for the correct key. Specifically, the attacker chooses a t-length

regression basis Gb =
(
xb1 , xb2 , ..., xbt

)�, where bi ∈ F2n and xu =
n∏

i=1

xi
ui (xi

is the i-th bit of x and ui is the i-th bit of u). With N times measurements l and
a key guess k̂, the leakage function can be estimated as L̂(xk̂) = β0 + β1x

b1
k̂

+
β2x

b2
k̂

+ ... + βtx
bt
k̂

, where

Ak̂ =

⎛

⎜
⎜
⎝

xb1
k̂

(1) . . . xbt
k̂

(1)
...

. . .
...

xb1
k̂

(N) · · · xbt
k̂

(N)

⎞

⎟
⎟
⎠

βk̂ =
(
A�

k̂
Ak̂

)−1

A�
k̂

(l(1), ...., l(N))�

l(i) is the i-th measurement and x(i) is the corresponding intermediate state. If
the attacker uses a valid assumption about L(x) (i.e. chooses a valid Gb), only
the correct key guess gives a valid regression. Thus, the attacker can use the
coefficient of determination (R2) as a distinguisher [8]

R2
k̂

= 1 −

N∑

i=1

(
l(i) − L̂k̂ (x(i))

)2

N∑

i=1

(
l(i) − l̄

)2

k = arg max
k̂

(
R2

k̂

)

Theoretically speaking, R2 provides a measure of how well the observed out-
comes are replicated by the model, as the proportion of total variation of out-
comes explained by the model [10]. Since the regression with the wrong interme-
diate state cannot effectively explain the variance, key guesses with higher R2

are more likely to be correct.

3 LRA with F-test: A Useful Tool

Although LRA is a powerful key-recovery attack, directly applying it in SCARE
gives poor results. Unlike SCA, SCARE usually needs to compare different
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models. Unfortunately, R2 is not suitable for this task. In this section, we per-
form F-test to compare LRA results from different regression models. Although
not explicitly stated, Whitnall’s stepwise regression uses the same technique [14].
In this section, we take one step further and discuss how F-test can help us in
the field of reverse engineering.

3.1 Motivation

In regression, R2 is a statistical measure of how well the regression approximates
the real data points. However, R2 alone cannot be used as a meaningful com-
parison of models with different numbers of independent variables. As a matter
of fact, R2 spuriously increases when extra explanatory variables are added to
the model. In this case, it is hard to tell whether the new model is more effective
than the old one. This problem seldom affects LRA in a key-recovery scenario:
in most block ciphers, the secret key only affects the value of the explanatory
variables. Since all the key guesses share the same regression model, the highest
R2 indicates the best regression. In SCARE, the story is completely different: as
SCARE’s target involves the regression model itself, using LRA in SCARE will
inevitably face the problem of comparing different regression models.

3.2 F-test with Nested Model

A well-known solution for this problem would be introducing F-test between two
models [15]. In statistics, two models are “nested” if one model (the full model
M2) contains all the terms of the other (the restricted model M1), and at least
one additional term. To determine whether the restricted model is adequate, we
can test the following hypothesis

H0: the restricted model is adequate
H1: the full model is better

with F statistic

RSS1 − RSS2

RSS2

N − p2 + 1
p2 − p1

∼ F (p2 − p1, N − p2 + 1)

where p1 (p2) stands for the number of explanatory variables in M1 (M2), RSS1

(RSS2) represents the residual sum of squares, and N is the number of mea-
surements. Following the notations in Sect. 2, the residual sum of squares (RSS)
is defined as

RSSj =
∑

i

(
l(i) − L̂j(x(i))

)2

The null hypothesis is rejected if this statistic is greater than the critical value
of the F-distribution for some desired false-rejection probability α.
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3.3 Applications in SCARE

In SCAREs, LRA with F-test can help us verify various conjectures. For instance,
considering the case where we wish to decide whether a regression model can
explain the variance of the power measurements. Given a false-rejection prob-
ability α, F-test determines whether the regression is valid, considering both
the sample size N and the number of explanatory variables. Specifically, let M0

denote the model that contains only the constant term (the restricted model),
while M1 is the tested regression model (the full model). If the F-test above
rejects H0 with high confidence, the power measurements are somehow related
to the model M1. This test helps us distinguish whether the resultant R2 rep-
resents a valid regression or the consequence of random noises. In the following,
this test is denoted as the ValidTest.

Another interesting application is to separate parallel signals from signals
that actually “mix” together in the cryptographic computations. Suppose we
have some intermediate state x and the corresponding power leakage l, and wish
to determine whether l comes from x itself or some cryptographic computations
of x. Throughout this paper, we assume the majority of the power leakage follows
the weighted Hamming Weight model, where L(x) = β0+β1x1+ ...+βnxn. Take
the two-bit x = {x0, x1} as a toy example, following the weighted Hamming
Weight model, the power leakage can be written as L(x) = β0 + β1x0 + β2x1. If
some cryptographic computations (e.g. XOR) occur, the expression of L(x) also
contains β3x0x1. Thus, the following hypothesis test applies:

H0: M0 with regression basis {1, x0, x1} is adequate
H1: M1 with regression basis {1, x0, x1, x0x1} is better
If the F-test accepts H0 with high confidence, we can conclude that x0 and

x1 are simply parallel implemented. Otherwise, it suggests there might be some
cryptographic operations performed with both x0 and x1. Similarly, for a d-bit
group {x1, x2, ..., xd}, if we wish to test whether the i-th bit of x (xi) mixes with
other bits, we can use the following hypothesis test:

H0: M0 with regression basis G0 = {xu|u ∈ F2d ∧ ui = 0} ∪ {xi} is adequate
H1: M1 with regression basis G1 = {xu|u ∈ F2d} is better
As this test aims to prune irrelevant bits, in the following sections, we denote

this test as the PruningTest.

4 A Realistic LRA-Based SCARE

This section further explains how our LRA with F-test helps to reveal the secret
cryptographic components. For this purpose, we chose an unprotected software
implementation of DES as our target. The power consumptions were measured
with a LeCroy WaveRunner 610Zi oscilloscope at a sampling rate of 20 MSa/s.
The entire trace set contains 20 000 traces, with 80 000 samples covering the first
3 rounds. As the power consumption of unprotected software implementation
can be easily exploited, in our experiments, we only use the first 2 000 traces.
Throughout this section, we assume the attacker does not know the underlying
cipher (DES) or the specific implementation.
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4.1 Generalized Structure of the Target Cipher

In order to formally define a general flow for SCARE, we start our discussion
by proposing a generalized structure that covers most common block ciphers.
Many previous SCAREs assume their target ciphers use either the Substitution-
Permutation Network (SPN) or the standard Feistel structure. Although those
choices are quite popular, with LRA, we can do better.

Fig. 1. Structure overview

In Fig. 1(a), P0 and P1 represent linear operations, while S stands for the
non-linear operation. It is not hard to see that the standard SPN (Fig. 1(b)) and
Feistel structure (Fig. 1(c)) can be regarded as special cases of this generalized
scheme. Many other schemes, including the generalized Feistel structure, can
also be expressed by the generalized structure in Fig. 1(a) similarly. It is worth
mentioning that in a few cases, Fig. 1(a) may not correspond to a full encryption
round: if the round function uses more than one confusion layers, it should be
expressed as multiple rounds in Fig. 1(a). As we can see in Fig. 1(d), our target
cipher DES fits this scheme perfectly.

Secret key in SCARE. In most SCAREs, the secret key is simply regarded as
a part of the secret cipher. Specifically, if the secret key k is added before an
Sbox S, SCARE can only recover an equivalent Sbox S′ where S′(x) = S(x⊕k).
Similar equivalence holds if k is added to other positions. In the following, we
simply ignore the secret key and recover it as a part of the secret Sboxes.
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4.2 Preparation

Before any reverse engineering, the attacker firstly observes the measured traces
and tries to learn some basic facts about the secret encryption procedure. In
our experiments, the attacker can easily identify three repetitive patterns on the
trace, which correspond to the first three encryption rounds. However, locating
each cryptographic operation on the trace is much harder. Indeed, without any
a priori knowledge, the attacker cannot even infer the number of Sbox with
confidence. Due to the length limit, we omit the measured trace figures here:
interested reader can find these figures in the full version of this paper.

4.3 Step 1: Recovering P0

Let n denote the block length. Assume P0 has m0 bits independent outputs, the
operation of P0 can be written as (y1, y2, ..., ym0)

� = P0(x1, x2, ..., xn)�, where
P0 is a binary matrix. Our goal is to determine each yq, which can be written
as a linear combination of {x1, x2, ..., xn}. Apparently, we can also remove all xi

with coefficient 0 and simply write

yq = ⊕
j

(
xq

j

)

where xq =
{

xq1
, xq2

, ..., xq
d

}
represents the d input bits with coefficient 1.

Thus, recovering P0 equals to finding xq from {x1, x2, ..., xn}. Given an input
bit group guess x̃q, we can fit the leakage from the Sboxes’ input (P0’s output)
with full basis LRA. With some false-rejection probability α, the ValidTest
shows whether there is a connection between the power leakage and x̃q. If there
is, x̃q can express some yq. Meanwhile, x̃q may still involve some irrelevant
input bits. The PruningTest finds the input bits that do not appear in the
expression of yq. If both tests reject H0, we can conclude that x̃q is the exact
relevant input for some yq. The detailed procedure is presented in Algorithm
1. Noted the LRA in the ValidTest uses the constant basis G0 = {1} and the
full basis G1 =

{
x̃u
q |u ∈ F2d

}
, while the LRA in the i-th PruningTest uses

G2 =
{
x̃u
q |u ∈ F2d ∧ ui = 0

} ∪ {xqi} and the full basis G1 =
{
x̃u
q |u ∈ F2d

}
.

Theoretically, Algorithm 1 only succeeds when the target state yq is related
to every single bit in x̃q. According to our discussion above, XORing all bits in
x̃q together gives us a candidate for yq. Thus, the attacker can perform one last
ValidTest with this candidate bit: if this bit does lead to a valid regression,
we have found some yq. This test blocks out many undesirable cases, such as
non-linear leakages or x̃q expresses more than one yq.

With Algorithm 1 identifying the correct input bits, all output bits can be
found by simply enumerating all possible input guesses x̃q. Considering the
implementation cost, designers tend to choose a lightweight matrix as the dif-
fusion layer. Thus, the size of the correlated bit group (d) is more likely to be
a small number. To this end, the enumeration starts with the smaller group
guesses (smaller d) and moves towards the larger ones (larger d). As m0 cannot
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Algorithm 1. LRA based SCARE test
1: procedure SCAREtest(x̃q)
2: [pr1, R

2]=ValidTest(x̃q) � Test whether x̃q can explain the power variance
3: if pr1 > 1 − α then
4: for i = 1 to d do
5: pr2[i]=PruningTest(i,x̃q) � Test if xqi is relevant
6: if pr2[i] < 1 − α then
7: return “Error 2” � x̃q contains irrelevant bit xqi

8: return min(pr2[1..d])R2

9: else
10: return “Error 1” � x̃q cannot explain the power variance

be efficiently determined in advance, the attacker must abort the enumeration
whenever he believes he has found enough yq. Assuming yq contains at most d
bits of x, the enumerations above takes Cd

n times LRA to find P0. For d � 8,
this approach becomes too expensive.

Optimization. Clearly, Algorithm 1 returns two types of errors: with Error 2, it
suggests that x̃q contains an irrelevant bit xqi . Otherwise, x̃q cannot form a valid
regression. As the first case limits the expression of yq to a smaller range, we can
build a more efficient version of this attack. Suppose we choose a dg-bit group
guess where dg > d, Algorithm 1 verifies whether it causes a valid regression with
the ValidTest. If it does, as the PruningTest gives clues about which bit is
irrelevant, finding the exact input should be easy. In this case, we wish to find the
minimal dg-bit groups that covers all possible d-bit groups. This problem equals
to finding the covering set of a hypergraph. According to Rödl’s conclusion [16],
as n → ∞,

M(n, dg, d) → Cd
n

Cd
dg

Thus, if the attacker estimates the expressions of all yq contain at most d input
bits, enumerating all dg group guesses above gives all yq. Dan Gordon’s web
site provides some known covering sets [17]. Note that this trick should only
be applied when d is large, as the covering problem of a hypergraph is quite
complicated itself. For clarity, we present the pseudo-code of this optimization
in Algorithm 2.

Experiments. Considering P0 is the first cryptographic operation in Fig. 1(a), in
our experiments, we have tested our attack with the first half of the first round’s
trace. With α = 0.01%, only 32 bits pass our ValidTest. Since P0’s output
involves half of the plaintext bits, an experienced attacker may guess that P0

is a bit permutation. Table 1 lists our P0’s recovery with various numbers of
traces. According to the IP transformation in DES, our P0’s recovery gives 100 %
accurate result with 2000 traces. With 500 traces, our recovery gives one Type
II error (“false negative”), which means one of P0’s output bit is filtered out.
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Algorithm 2. Linear Component Recovery: the optimized approach
Require: n-bit input list x = {x1, x2, ..., xn}, guessed length d and a parameter dg > d
1: procedure LinearRecovery
2: List=φ
3: for each dg-bit group x̃q ⊂ x in the covering set do
4: result=SCARETEST(x̃q) � Test if x̃q is the expression of some yi

5: if result=“Error 1” then
6: continue
7: else
8: Remove the extra bits using the PruningTest

9: candidate=⊕
j

(
xq

j

)

10: if candidate passes SCARETEST then � Make sure ⊕
j

(
xq

j

)
is valid

11: List=List ∪ x̃q � Add candidate as a output bit
12: return List

Interestingly, our recovery did not report any Type I error (“false positive”),
which means there was no incorrect bit in the recovered P0’s output.

Table 1. Recovering P0 in the first round

α Number of Recovered Correct Type I Type II

traces bits bits error error

0.01 % 500 31 31 0 1

0.01 % 2000 32 32 0 0

Since the power measurements do not contain any information about the bit
order of P0, here we can only retrieve P0 up to its bit-permutation equivalent.
This sets stage for our next step.

4.4 Step 2: Recovering S1

As mentioned before, after the first step, we do not have the inputs of each
Sbox. In order to further recover the secret Sboxes, we have to find the actual
input of each Sbox first. We can perform a similar attack to obtain the Sboxes’
inputs. The only difference lies in our leakage choice: here we choose the leakage
of the Sboxes’ outputs instead. Typically, if an Sbox is cryptographically strong,
LRA should not predict its output, unless the guessed input group x̃q contains
all of its input. To this end, the attack procedure is exactly the same as Step 1,
except for the last “XOR test”. Although the trivial enumeration works for most
popular Sbox sizes, it is worth mentioning there is a trick that can significantly
speed up this process.
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Property 1. Let y = S(x) denote the Sbox computation and l(x) denote the
corresponding power leakage. Suppose the l(x) follows the weighted Hamming
Weight model of y, as the sample size N → ∞, LRA with full basis of x satisfies

lim
N→∞

R2
f =

1
1 + 1

SNR

where SNR is the Signal-to-Noise Ratio. For most commonly used S, if one bit
xi is removed from the regression basis, LRA with the partial basis of x satisfies

lim
N→∞

R2
p ≈ 1

2
1

1 + 1
SNR

Proof sketch. Without loss of generality, we first limit the output of S(x) to 1
bit. In this case, the leakage can be written as l(x) = β1S(x) + β0 + n, where
n represents the independent Gaussian noise with mean 0 and variance σ2. It is
not hard to see that

lim
N→∞

R2
f = 1 − σ2

SNRσ2 + σ2
=

1
1 + 1

SNR

Let x′ = {x1, x2, ..., xn} \ {xi}, any S(x) can be written as S0(x′)(1 − xi) +
S1(x′)xi. If the target Sbox is cryptographic strong, without too much bias, we
can assume S0(x′) and S1(x′) are nearly independent from one another1. Since
LRA with x′ combines the point of x|xi = 0 and x|xi = 1, according to the Least
Square Regression, the resultant point l(x′) ≈ 0.5β1(S0(x′) + S1(x′)). Thus,

lim
N→∞

R2
p ≈ 1 −

1
2β1

2∑
x′(S0(x′) − S1(x′))2 + Nσ2

N( 14β1
2 + σ2)

=
1
2

1
1 + 1

SNR

As the output bits of an Sbox should be independent from one another, such
proof sketch can easily extend to the multi-bit case. 
�

Optimization. This property suggests if a whole Sbox’s R2 is high enough, part
of its input has a smaller, yet still significant R2. Suppose an Sbox involves s
input bits, most of its partial inputs (proper subsets) have a larger R2 than other
irrelevant guesses. To this end, we can add some constraints in the enumeration,
especially for s − 1 and s − 2-bit groups. For instance, if the ValidTest and
PruningTest of a whole Sbox use significance level α = 0.01%, we can loosen
the restriction on the partial inputs with lower significance levels. In our exper-
iments, the significance level α is set to {1%, 0.1%, 0.01%} for input length
{s − 2, s − 1, s}, respectively. Such constraints efficiently filter out many unnec-
essary guesses, improves the overall performance significantly. For clarity, we
present the pseudo-code of this optimization in Algorithm 3.
1 If xi only appears in the linear terms or does not appear at all, the R2 above might

be biased. However, considering the other output bits, the overall bias should be
small. For a cryptographic strong Sbox, xi should appears in the non-linear terms
in at least one output bit.
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Algorithm 3. Sbox Recovery: the optimized approach
Require: n-bit input list x = {x1, x2, ..., xn}, guessed length s
1: procedure SboxRecovery
2: List=all possible groups with length s − 3
3: for s′ = s − 2 to s do
4: for each s′ − 1 bit group x̃q ∈ List do
5: Remove x̃q from List
6: Add a new bit into x̃q � Generate new input groups with length s′

7: result=SCARETEST(x̃q) with significance level c[s′]
8: if result �= “Error” then
9: List=List ∪ x̃q � Add all possible subsets with length s′

10: for each s-bit group x̃q ∈ List do � Test the left groups in List
11: SuperSet=all s + 1 bit supersets of x̃q

12: if a superset passes SCARETEST then � x̃q is a proper subset
13: Remove x̃q from List
14: return List

Determine the size of the Sbox. If the size of the Sbox (s) is not given in advance,
the attacker needs to find it through a few trail-and-error procedures. Specifically,
let s′ denote the size of the guessed input group x̃q. If s′ > s, the PruningTest
tells us there are irrelevant bits in x̃q. On the other hand, if s′ < s, according
to Property 1, x̃q should be a valid group with lower significance level. To make
sure x̃q is a proper subset, we can test all the supersets of x̃q with size s′ + 1.
If one superset is also a valid group with higher significance level, we know for
sure that x̃q is a proper subset of the Sbox’s input and s′ < s.

Experiments. One major advantage of our approach, is that it does not require
the actual points of interest. In theory, as our analysis only considers the power
consumption of each Sbox’s output, our Sbox recovery should only uses the
power leakages of the Sbox’s output. However, considering our PruningTest
removes the valid regressions caused by “parallel effect”, the power consumption
of the Sboxes’ inputs (or P0’s output) should be automatically discarded. For this
reason, in our experiments, our test runs 100 times with all samples points in the
first round. Since we do not know the order of P0’s output, each attempt uses a
random order and returns a list of corresponding input bits. Table 2 demonstrates
all the correct Sbox input groups with their success rates, as well as the incorrect
group that our attack returned. With 2000 traces, our LRA-based SCARE always
returns the correct Sbox input with 100 % accuracy, except for S5. The left 5
cases returned a result list containing only 7 correct Sbox inputs. This is caused
by our constraints on the enumeration procedure: with certain orders of P0’s
output, our constraints may filter out the correct partial input group of S5. If
the attacker uses only 500 traces, as our discussion in Sect. 4.3, one of the output
bit of P0 is missing. As a consequence, our attack in this section cannot find the
corresponding Sbox inputs (S5). Meanwhile, with such limited trace set, our
attack also returns some incorrect groups.
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Table 2. Recovering the input of S

No Success rate (N=500) Success rate (N=2000)

S0 100/100 100/100

S1 100/100 100/100

S2 90/100 100/100

S3 100/100 100/100

S4 65/100 100/100

S5 0/100 95/100

S6 86/100 100/100

S7 30/100 100/100

Incorrect Group 17 0

Unlike the linear case, for Sboxes, we cannot determine the actual expres-
sion through the input bits. As our attack already finds each Sbox’s input, the
attacker can pick several points of interest using NICV (with the recovered Sbox
inputs, rather than the plaintexts). Since both the Sbox inputs and the accurate
points of interest are already recovered, collision attacks can further recover this
Sbox. The details of the collision attacks are out of the scope of this paper.
Interested readers can find this part in Rivain et al.’s paper [5].

4.5 Step 3: Recovering P1

As a linear transformation, P1’s recovery follows exactly the same routine as P0.
The input bits include the n-bit plaintext as well as all the output bits of S.
Our target leakage comes from the Sboxes’ input (or P0’s output) in the second
round. In our experiments, our test directly runs through all the sample points
in the second round. With α = 0.01% and N = 2000, our attack returns a list
of 32 valid 2-bit candidates, whose XOR forms one of P1’s output bit. As we can
see in Table 3, smaller trace set increases both Type I errors and Type II errors.

Table 3. Recovering P1 with different numbers of traces

α Number of Candidates Correct Type I Type II

traces bits bits error error

0.01 % 500 36 31 5 1

0.01 % 2000 32 32 0 0

4.6 The Complete Attack

Although presented step by step, we would like to stress that this attack still
needs manual intervention. Considering the enormous space of all possible secret
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block ciphers, the information that power traces provides is not enough to deter-
mine all the details. As a result, all SCAREs require some empirical intervention,
whether by guessing the structure or guessing the input size of certain compo-
nents (e.g. Sboxes). Our attack here is no exception: in both Step 1 and Step 3,
the attacker needs to decide whether he has find all the output bits. Noted this
does not suggest our attack is inferior to the previous SCAREs: most previous
works directly assume the attacker already knows those parameters (e.g. the
cryptographic structure, the size of the Sbox, the output size of the permuta-
tion, etc.). Indeed, most SCAs today still requires some manual interventions in
the preparation stage, whether by identifying the encryption rounds or removing
some outlier traces. We believe our SCARE should be regarded as a handy tool
for experienced attackers, rather than an automatic attack. In addition, we did
not bother to cover all possible block ciphers with our SCARE. Considering the
enormous space of all possible secret block ciphers, we believe it make more sense
to focus on the most common designs: arbitrary algorithms with exotic features
usually require ad-hoc solutions, which is out of the scope of this paper.

5 Discussion

In the last section, we propose a general LRA-based SCARE and verify it with
realistic power leakages. Specifically, our analysis uses a quite general structure,
which covers most common block ciphers. Unlike the collision attacks [5], the
8 different Sboxes and the Expansion E in DES do not hinder our SCARE. In
addition, in our analysis, the attacker does not have to accurately locate each
Sbox on the leakage trace.

Leakage model. The major limitation of our approach, is that it only works with
linear leakage in theory. This is indeed an inherent drawback: in LRA, the secret
recovery relies on the fact that the attacker can decide whether the correspond-
ing regression function looks like the correct leakage function. If the leakage
function contains non-linear terms, the attacker cannot decide whether the non-
linear terms come from the leakage function or the cryptographic operation.
Collision attacks do not face this problem, since they use an “online profiling”
stage to characterize the leakage function [5]. This is actually an inevitable trade-
off: without any assumption on the leakage function, non-profiled SCA cannot
successfully attack any bijective cryptographic operation [14]. Nonetheless, our
LRA-based SCARE still works when the leakage function can be approximated
as a linear function. As LRA with linear basis always gives good regression,
adding non-linear terms cannot provide a significant better regression.

The significance level α. The significance level α plays an important role in
our LRA-based SCARE. α helps to decide whether increment of R2 should be
regarded as the consequence of a better regression model or negligible noise. In
our paper, we simply choose a common significance level (α = 0.01%) in the
hypothesis testing. This α works well in our experiments in Sect. 4. For other
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implementations, α = 0.01% may not always be a good choice. As α depends
on the specific leakage features, the attacker may have to test several common
values and estimate which recovery is more likely to be correct.

Parallel or Hardware Implementations. Theoretically, as our PruningTest
automatically removes the “parallel effect”, our LRA-based SCARE should
also work for parallel implementations. However, in our experience, LRA-based
SCARE can learn some information from parallel implementations, although the
result is far from satisfying. Indeed, most previous SCAREs explicitly assume
the underlying implementation is sequential. In addition, it might be interest-
ing to ask whether our attack can be extended to hardware implementations,
with the Hamming Distance (HD) model. The problem of the HD model is, it
involves the state of the last round. For SCARE, learning the last state means
the attacker has to learn the specific implementation code as well as the under-
lying data-path. Considering the context of SCARE, we believe it makes more
sense to avoid such assumption: however, if the last state is already given, our
attack works exactly the same way.

6 Conclusion

Despite various SCARE techniques in literature, recovering a secret cipher in
practice, is not an easy task. In fact, most previous SCAREs have some lim-
itations on their target ciphers or implementations. In this paper, we propose
a new SCARE technique based on Linear Regression Attack (LRA). Specifi-
cally, in order to fairly compare different regression models, we perform F-test
against the regression results. LRA with F-test helps us successfully recover lin-
ear components as well as the Sboxes’ inputs, without much a priori knowledge
about the underlying cipher or its implementation. Compared with the previous
SCAREs, our approach uses less a priori knowledge, covers more block cipher
instances in a completely non-profiled manner. We have verified our attack with
real-life measurements from an unprotected software implementation of DES.
Experiments confirm that our attack works well with realistic measurements,
extracting valuable information for experienced attackers. Although our app-
roach still has some limitations, we believe it can serve as an alternative tool for
reverse engineering in the future.
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Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

12. Gérard, B., Standaert, F.X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Crypt. Eng. 3(1),
45–58 (2013)

13. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

14. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA. . .and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04852-9 10

15. Allen, M.P.: Understanding Regression Analysis. Springer Science & Business
Media, New York (1997)
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Abstract. The division property, which is a new method to find inte-
gral characteristics, was proposed at Eurocrypt 2015. Thereafter, some
applications and improvements have been proposed. The bit-based divi-
sion property is also one of such improvements, and the accurate inte-
gral characteristic of Simon32 is theoretically proved. In this paper, we
propose the compact representation for the bit-based division property.
The disadvantage of the bit-based division property is that it cannot
be applied to block ciphers whose block length is over 32 because of
high time and memory complexity. The compact representation partially
solves this problem, and we apply this technique to 64-bit block cipher
PRESENT to illustrate our method. We can accurately evaluate the
propagation characteristic of the bit-based division property thanks to
the compact representation. As a result, we find 9-round integral charac-
teristics, and the characteristic is improved by two rounds than previous
best characteristic. Moreover, we attack 12-round PRESENT-80 and 13-
round PRESENT-128 by using this new characteristic.

Keywords: Integral cryptanalysis · Division property · Compact rep-
resentation · PRESENT

1 Introduction

The concept of an integral cryptanalysis was first introduced as the dedicated
attack against block cipher Square [4], and Knudsen and Wagner then formal-
ized the dedicated attack as the integral attack [6]. The integral cryptanalysis is
applied to many ciphers, and this is nowadays one of the most powerful crypt-
analyses [6,8,16,17]. The integral cryptanalysis mainly consists of two parts: a
search for integral characteristics and key recovery. The propagation of the inte-
gral property [6] and the degree estimation1 [5,7] have been used as well-known
methods to find integral characteristics.

At Eurocrypt 2015, the division property, which is a novel technique to find
integral characteristics, was proposed [12]. This technique is the generalization
of the integral property that can also exploit the algebraic degree at the same
time. After the proposal, the new understanding of the division property and
new applications have been proposed [2,10,11,14,18].
1 This method is often called the higher-order differential attack [5,7].
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At FSE 2016, the bit-based division property, which is a new variant of the
division property, was proposed [14]2. To analyze n-bit block ciphers with m
�-bit S-boxes, the conventional division property decomposes n-bit value into m
�-bit values, and the division property D�m

K
is used. For convenience, we call this-

type division property an integer-based division property. On the other hand,
the bit-based division property decomposes n-bit value into n 1-bit values, i.e.,
D1n

K
is used. The bit-based division property can find more accurate integral

characteristics than the integer-based division property. Actually, the bit-based
division property proves the 15-round integral characteristic of Simon32, and it
is tight [14].

Our Contribution. In this paper, we propose a compact representation for
the bit-based division property against S-box-based ciphers. A disadvantage of
the bit-based division property is that it requires about 2n time and memory
complexity to evaluate n-bit block ciphers. Therefore, the application is lim-
ited to block ciphers with small block length like Simon32 in [14]. Moreover,
at CRYPTO 2016, Boura and Canteaut introduced the parity set, which is the
so-called bit-based division property for an S-box [2], but the application is also
limited to the low-data distinguisher for a few rounds of PRESENT [1]. The com-
pact representation partially solves this problem, and we can get high-data dis-
tinguishers by reducing time and memory complexity. To demonstrate the advan-
tage of the compact representation, we apply our new technique to PRESENT.
As a result, we find new 9-round integral characteristics. Since the previous
best characteristic is 7-round one [15], our new characteristic is improved by two
rounds. Moreover, we attack 12-round PRESENT-80 and 13-round PRESENT-
128 by using the new integral characteristic. Zhang et al. discussed the security of
PRESENT against the integral attack in [19] and attacked 10-round PRESENT-
80 and 11-round PRESENT-128 by using the match-through-the-S-box (MTTS)
technique. Therefore, our new attack is also improved by two rounds.

2 Preliminaries

2.1 Notations

We make the distinction between the addition of F
n
2 and addition of Z, and we

use ⊕ and + as the addition of F
n
2 and addition of Z, respectively. For any a ∈ F

n
2 ,

the ith element is expressed in a[i], and the Hamming weight w(a) is calculated
as w(a) =

∑n
i=1 a[i]. For any a ∈ (Fn1

2 ×F
n2
2 ×· · ·×F

nm
2 ), the vectorial Hamming

weight of a is defined as W (a) = (w(a1), w(a2), . . . , w(am)) ∈ Z
m. Moreover,

for any k ∈ Z
m and k′ ∈ Z

m, we define k � k′ if ki ≥ k′
i for all i (1 ≤ i ≤ m).

Otherwise, k � k′. Let K be the set of k, and |K| denotes the number of elements
in K.
2 In [14], they proposed two variants of the bit-based division property: the conven-

tional bit-based division property and the bit-based division property using three
subsets. In this paper, we focus on the conventional bit-based division property.
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2.2 Integral Attack

The integral attack was first introduced by Daemen et al. to evaluate the secu-
rity of Square [4], and then it was formalized by Knudsen and Wagner [6].
Attackers first prepare N chosen plaintexts and encrypt them R rounds. If the
XOR of all encrypted texts becomes 0, we say that the cipher has an R-round
integral characteristic with N chosen plaintexts. Finally, we analyze the entire
cipher by using the integral characteristic. There are two classical approaches
to find integral characteristics. The first one is the propagation of the integral
property [6] and another is based on the degree estimation [5,7].

2.3 Division Property

The division property proposed in [12] is a new method to find integral charac-
teristics. This section briefly shows the definition and propagation rules. Please
refer to [12] in detail.

Bit Product Function. The division property of a multiset is evaluated by
using the bit product function defined as follows. Let πu : F

n
2 → F2 be a bit

product function for any u ∈ F
n
2 . Let x ∈ F

n
2 be the input and πu(x) be the

AND of x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=
n∏

i=1

x[i]u[i].

Notice that x[i]1 = x[i] and x[i]0 = 1. Let πu : (Fn1
2 × F

n2
2 × · · · × F

nm
2 ) → F2

be a bit product function for any u ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ). Let x ∈ (Fn1

2 ×
F

n2
2 × · · · × F

nm
2 ) be the input and πu(x) be defined as

πu(x) :=
m∏

i=1

πui
(xi).

The bit product function also appears in the Algebraic Normal Form (ANF)
of a Boolean function. The ANF of a Boolean function f is represented as

f(x) =
⊕

u∈F
n
2

af
u

(
n∏

i=1

x[i]u[i]
)

=
⊕

u∈F
n
2

af
uπu(x),

where af
u ∈ F2 is a constant value depending on f and u.

Definition of Division Property.

Definition 1 (Division Property [12]). Let X be a multiset whose elements
take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ). When the multiset X has the division
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property Dn1,n2,...,nm

K
, where K denotes a set of m-dimensional vectors whose ith

element takes a value between 0 and ni, it fulfills the following conditions:

⊕

x∈X

πu(x) =

{
unknown if there arek ∈ K s.t.W (u) � k,

0 otherwise.

See [12] to better understand the concept in detail, and [10] and [11] help readers
understand the division property. In this paper, the division property for (Fn

2 )m

is referred to as Dnm

K
for the simplicity3. If there are k ∈ K and k′ ∈ K satisfying

k � k′ in the division property Dn1,n2,...,nm

K
, k can be removed from K because

the vector k is redundant.
Some propagation rules for the division property are proven in [12], and the

rules are summarized in [11]. We omit the description of the propagation rules
in this paper because it is not always necessary to understand this paper.

2.4 Bit-Based Division Property

The bit-based division property was introduced in [14]. They showed two bit-
based division properties: the conventional bit-based division property and the
bit-based division property using three subsets. In this paper, we only focus on
the conventional bit-based division property. To analyze n-bit block ciphers, the
conventional division property uses D�1,�2,...,�m

K
, where �i and m are chosen by

attackers in the range of n =
∑m

i=1 �i. This paper focuses on the conventional
bit-based division property, i.e., D1n

K
. Note that it is not against the definition

of the conventional division property.

Propagation Characteristic for S-Box. Let us consider the propagation
characteristic of the bit-based division property for an S-box. Similar observation
was shown by Boura and Canteaut in [2], and they introduced a new concept
called the parity set as follows.

Definition 2 (Parity Set). Let X be a set whose elements take a value of F
n
2 .

Its parity set is defined as

U(X) =

{

u ∈ F
n
2 |

⊕

x∈X

πu(x) = 1

}

.

Assuming X has the division property Dn
k ,

U(X) ⊆ {u ∈ F
n
2 : w(u) ≥ k}.

Let X and S(X) denote the input set and output set of the S-box, respectively.
Then, the parity set of S(X) fulfills

U(S(X)) ⊆ ∪u∈U(X)Vs(u),
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Table 1. Sets VS(u) for all u ∈ F
4
2 for the PRESENT S-box. All four-bit values are

represented in hexadecimal notation. The rightmost bit of the word corresponds to the
least significant bit.

VS(u)

0x0 0x1 0x2 0x4 0x8 0x3 0x5 0x9 0x6 0xA 0xC 0x7 0xB 0xD 0xE 0xF

u = 0x0 x x x x

u = 0x1 x x x x

u = 0x2 x x x x

u = 0x4 x x x x

u = 0x8 x x x x x x

u = 0x3 x x x x x x x x

u = 0x5 x x x

u = 0x9 x x x x x x

u = 0x6 x x x x x x

u = 0xA x x x x x x x x x x

u = 0xC x x x x

u = 0x7 x x x x x x x

u = 0xB x x x x x x x x x x

u = 0xD x x x x x x x

u = 0xE x x x x x x

u = 0xF x

where
Vs(u) = {v ∈ F

n
2 | ANF of (πv ◦ S) contains πu(x)}.

The definition of the parity set trivially derives the following proposition.

Proposition 1. Let X be a multiset whose elements take a value of F
n
2 . When

the multiset X has the bit-based division property D1n

K
, the parity set of X fulfills

U(X) ⊆ {u ∈ F
n
2 : there are k ∈ K satisfying u � k}.

Moreover, assuming U(X) ⊆ K
′, the set X has the bit-based division property

D1n

K′ .

Proposition 1 shows that the bit-based division property of S(X) can be evaluated
from that of X via the parity set.

Case of PRESENT S-Box. As an example, let us consider the case of the
PRESENT S-box. Let (x4, x3, x2, x1) and (y4, y3, y2, y1) be the input and output

3 In [12], the division property was referred to as Dn,m
K

.
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Table 2. Propagation of the bit-based division property for PRESENT S-box. Vectors
on F

4
2 are represented an hexadecimal notation.

k of input D14

k K of output D14

K k of input D14

k K of output D14

K

0x0 {0x0} 0x8 {0x1, 0x2, 0x4, 0x8}
0x1 {0x1, 0x2, 0x4, 0x8} 0x9 {0x2, 0x4, 0x8}
0x2 {0x1, 0x2, 0x4, 0x8} 0xA {0x2, 0x4, 0x8}
0x3 {0x2, 0x4, 0x8} 0xB {0x2, 0x4, 0x8}
0x4 {0x1, 0x2, 0x4, 0x8} 0xC {0x2, 0x4, 0x8}
0x5 {0x2, 0x4, 0x8} 0xD {0x2, 0x4, 0x8}
0x6 {0x1, 0x2, 0x8} 0xE {0x5, 0xB, 0xE}
0x7 {0x2, 0x8} 0xF {0xF}

of the S-box, respectively, and the algebraic normal form of the PRESENT S-box
is described as

y4 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3 + x1 + x2 + x4 + 1,
y3 = x1x2x4 + x1x3x4 + x1x2 + x1x4 + x2x4 + x3 + x4 + 1,
y2 = x1x2x3 + x1x2x4 + x1x3x4 + x2x4 + x3x4 + x2 + x4,

y1 = x2x3 + x1 + x3 + x4.

Table 1 shows sets of VS(u) for all u ∈ F
4
2 for the PRESENT S-box. Assuming

that X fulfills D14

k , let D14

K′ be the bit-based division property of S(X) and K
′ is

K
′ = ∪u∈U(X)Vs(u), U(X) ⊆ {u ∈ F

n
2 : u � k}

from Proposition 1. We compute K
′ for any k ∈ F

4
2 and then remove redundant

vectors. Table 2 shows the propagation characteristic of the bit-based division
property for the PRESENT S-box.

3 Compact Representation for Division Property

3.1 Motivation

We can find more accurate integral characteristics by using the bit-based divi-
sion property than the integer-based division property. However, this evaluation
requires about 2n time and memory complexity for n-bit block ciphers. There-
fore, the bit-based division property is applied to small block-length ciphers like
Simon32 in [14]. Moreover, the application of the parity set is limited to the low-
data distinguisher for a few rounds of PRESENT [2]. It is an open problem to
apply the bit-based division property to high-data distinguishers for non small
block-length cipher.
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3.2 General Idea

The compact representation for the bit-based division property partially solves
this problem. We focus on the fact that different division properties cause the
same division property through an S-box. Then, we regard the different proper-
ties as the same property, and it helps us to evaluate the propagation character-
istic efficiently.

Compact Representation for PRESENT S-box. The focus is that there
are some input division properties whose output division property is the same.
For example, the output division property from D14

{0x1} is D14

{0x1,0x2,0x4,0x8}, which

is the same as that from D14

{0x2}. In the compact representation, we regard their
input properties as the same input property. Table 3 shows the compact repre-
sentation for PRESENT S-box. While sixteen values are used to represent the
bit-based division property, only seven values {0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄} are used in the
compact representation. For simplicity, let Sc be

Sc = {0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄}.

Table 3. Compact representation for PRESENT S-box.

Compact Real property Output property Redundant

0̄ {0x0} {0x0} 0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄

1̄ {0x1, 0x2, 0x4, 0x8} {0x1, 0x2, 0x4, 0x8} 1̄, 3̄, 6̄, 7̄, Ē, F̄

3̄ {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD} {0x2, 0x4, 0x8} 3̄, 7̄, Ē, F̄

6̄ {0x6} {0x1, 0x2, 0x8} 6̄, 7̄, Ē, F̄

7̄ {0x7} {0x2, 0x8} 7̄, F̄

Ē {0xE} {0x5, 0xB, 0xE} Ē, F̄

F̄ {0xF} {0xF} F̄

Note that we have to check the original vectors when we remove redundant
vectors. Assuming that the division property is D{3̄,6̄,Ē}, each original vectors are
represented as

3̄ → {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD}, 6̄ → {0x6}, Ē → {0xE}.

Therefore, Ē is redundant because 0xE � 0xA. On the other hand, there is not
a vector k satisfying 0x6 � k in k ∈ {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD}. As a
result, after remove redundant vectors, the division property becomes D{3̄,6̄}.
The right-end column in Table 3 shows redundant vectors by the compact rep-
resentation.
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3.3 Toy Cipher Using PRESENT S-box

We apply the compact representation to the input division property of S-boxes,
and the propagated output division property is not represented by the compact
representation. We need to carefully apply the compact representation to the
output division property, which depends on the structure of a target cipher. For
simplicity, let us consider a key-alternating cipher underlying PRESENT S-box,
where the block length is 4 bits, and Fig. 1 shows the 2-round cipher. Let p and
c be the plaintext and ciphertext, and xi and yi denote the input and output of
the ith S-box, respectively. Note that the division property does not change for
constant addition. Then, our aim is to evaluate the division property of c, and
it is enough to manage only the compact representation of the division property
in x2. Our next aim is to evaluate the compact representation in x2. Then, it
is enough to manage only the compact representation in x1 and the following
propagation characteristic is applied.

{0̄} → {0x0} → {0̄},

{1̄} → {0x1, 0x2, 0x4, 0x8} → {1̄},

{3̄} → {0x2, 0x4, 0x8} → {1̄},

{6̄} → {0x1, 0x2, 0x8} → {1̄},

{7̄} → {0x2, 0x8} → {1̄},

{Ē} → {0x5, 0xB, 0xE} → {3̄, (Ē)},

{F̄} → {0xF} → {F̄}.

Note that the property Ē derives 3̄ and Ē, but Ē is redundant.

S S
x1

p c
x2y1 y2

Fig. 1. Key-alternating cipher underlying PRESENT S-box.

Example 1. Assuming the division property of p is {Ē}, the division property
of x1 is also {Ē} because the division property is independent of the constant
XORing. Applying the first S-box, the division property of y1 is {3̄, Ē}, and Ē is
redundant. Since the division property is independent of the constant XORing,
the division property of x2 is {3̄}. Applying the second S-box, the bit-based
division property of y2 is D14

{0x2,0x4,0x8}, and the bit-based division property of c

is also D14

{0x2,0x4,0x8}. Therefore, the least significant bit of c is balanced.

3.4 Core Function of PRESENT

PRESENT does not have simple key-alternating structure like Fig. 1. There is a
bit permutation in the diffusion part of the round function, and we can decom-
pose the round function of PRESENT into four subfunctions. Figure 2 shows the
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round key

Fig. 2. Equivalent circuit of round function of PRESENT.

Algorithm 1. Generate propagation characteristic table for the sub function
1: procedure evalSubFunction(k ∈ (Sc)

4)
2: Ki is the set of the propagated division property from ki through the S-box.
3: K

′ is an empty set.
4: for all (x, y, z, w) ∈ (K4 × K3 × K2 × K1) do
5: k′

4 ⇐ compact(x4‖y4‖z4‖w4)
6: k′

3 ⇐ compact(x3‖y3‖z3‖w3)
7: k′

2 ⇐ compact(x2‖y2‖z2‖w2)
8: k′

1 ⇐ compact(x1‖y1‖z1‖w1)
9: K

′ = K
′ ∪ {k′}

10: end for
11: remove redundant vectors from K

′

12: return K
′

13: end procedure

equivalent circuit of the round function of PRESENT. The input and output of
every sub function are four four-bit values, and the position of each four-bit
value then moves. Since this equivalent circuit does not have bit-oriented per-
mutation except the interior of sub functions, we first generate the propagation
characteristic table of sub functions under the compact representation. Then, we
evaluate the propagation characteristic of round functions from the table under
the compact representation.

Propagation Characteristic for Sub Function. Let k = (k4, k3, k2, k1) ∈
(Sc)4 be the input division property of the sub function. Then, the output divi-
sion property K is the set whose elements are vectors in (Sc)4. Algorithm 1 shows
the algorithm to generate the propagation characteristic table under the compact
representation for the sub function. Here, compact is a function that converts
from the bit-based division property to the compact representation.

Example 2 (Propagation characteristic from (3̄, 6̄, 7̄, F̄)). The output bit-based
division property of each S-box is evaluated from the corresponding compact
representation as
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Algorithm 2. Generate propagation characteristic table for the sub function
1: procedure evalRoundFunction(k ∈ (Sc)

16)
2: Ki ⇐ evalSubFunction([k4∗i+4, k4∗i+3, k4∗i+2, k4∗i+1])
3: for all (x,y, z,w) ∈ (K4 × K3 × K2 × K1) do
4: k′

16 = x4, k
′
12 = x3, k

′
8 = x2, k

′
4 = x1

5: k′
15 = y4, k

′
11 = y3, k

′
7 = y2, k

′
3 = y1

6: k′
14 = z4, k

′
10 = z3, k

′
6 = z2, k

′
2 = z1

7: k′
13 = w4, k

′
9 = w3, k

′
5 = w2, k

′
1 = w1

8: K
′ = K

′ ∪ {k′}
9: end for

10: remove redundant vectors from K
′

11: return K
′

12: end procedure

3̄ → {0x2, 0x4, 0x8}, 6̄ → {0x1, 0x2, 0x8}, 7̄ → {0x2, 0x8}, F̄ → {0xF}.

Then, let D14

K′ be the output bit-based division property, and K
′ is represented

as 18(= 3 × 3 × 2 × 1) vectors

(0x11B5), (0x3195), (0x11F1), (0x31D1), (0x51B1), (0x7191),
(0x1935), (0x3915), (0x1971), (0x3951), (0x5931), (0x7911),
(0x9135), (0xB115), (0x9171), (0xB151), (0xD131), (0xF111).

Then, the compact representation of 18 vectors is

(1̄1̄3̄3̄), (3̄1̄3̄3̄), (1̄1̄F̄1̄), (3̄1̄3̄1̄), (3̄1̄3̄1̄), (7̄1̄3̄1̄), (1̄3̄3̄3̄), (3̄3̄1̄3̄), (1̄3̄7̄1̄),
(3̄3̄3̄1̄), (3̄3̄3̄1̄), (7̄3̄1̄1̄), (3̄1̄3̄3̄), (3̄1̄1̄3̄), (3̄1̄7̄1̄), (3̄1̄3̄1̄), (3̄1̄3̄1̄), (F̄1̄1̄1̄).

After remove redundant vectors, the output division property is represented as

(1̄1̄3̄3̄), (1̄1̄F̄1̄), (3̄1̄3̄1̄), (1̄3̄7̄1̄), (7̄3̄1̄1̄), (3̄1̄1̄3̄), (F̄1̄1̄1̄)

by the compact representation.

4 Improved Integral Attack on PRESENT

4.1 New Algorithm to Find Integral Characteristics

We show a new algorithm to find integral characteristics of PRESENT by using
the compact representation of the division property. Note that the given integral
characteristic is the same as that given by the accurate propagation characteristic
of the bit-based division property.

The input of the algorithm is the bit-based division property of the plaintext
set. The algorithm first converts from this bit-based division property to the
corresponding compact representation. In every round function, the algorithm
evaluates the propagation characteristic for four sub functions independently and
the relocation of 16 four-bit values. Algorithm2 shows the algorithm to evaluate
the propagation characteristic for round functions. This evaluation is repeated
until there is no integral characteristic in the output of the round function.
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7-Round Integral Characteristic Revisited. We first revisit the 16th order
integral characteristic [15], where the lsb in the output of the 7-round PRESENT
is balanced when the least sixteen bits are active and the others are constant.
The bit-based division property of the plaintext set is D164

0x00000000000000FF, and the
compact representation is

0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄F̄F̄.

Ciphertexts encrypted one round have the following compact representation

0̄0̄0̄F̄0̄0̄0̄F̄0̄0̄0̄F̄0̄0̄0̄F̄.

Moreover, ciphertexts encrypted two rounds have the following compact repre-
sentation

1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄.

Table 4 shows the propagation characteristic, where we perfectly remove redun-
dant vectors. After six rounds, we get 70 elements in the compact representation.
We finally apply additional one-round function, and the propagated bit-based
division property does not include 0x0000000000000001. Therefore, the lsb in
the output of the 7-round PRESENT is balanced.

Table 4. Propagation from D164

0x00000000000000FF

#rounds 0 1 2 3 4 5 6 7a

|K| 1 1 1 707281 349316 1450 70 63
aWe do not use the compact representation in the
final round.

New 9-Round Integral Characteristic. We next search for integral charac-
teristics exploiting more number of active bits. Let us recall Table 3. Then, the
propagated characteristic from Ē is {0x5, 0xB, 0xE}, and the output bit-based
division property is most far from unknown property except for F̄.

Table 5. Propagation from D164

0xFFFFFFFFFFFFFFF0

#rounds 0 1 2 3 4 5 6 7 8 9a

|K| 1 1 81 8277 136421 2497368 343121 1393 70 63
aWe do not use the compact representation in the final round.

We prepare the plaintext set that the least significant four bits are passive
and the others are active, and the compact representation is

F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄0̄.
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Table 6. Propagation from D164

0xFFFFFFFFFFFFFFFE

#rounds 0 1 2 3 4 5 6 7 8 9a

|K| 1 1 15 174 1053 96251 444174 19749 188 376
aWe do not use the compact representation in the final round.

Ciphertexts encrypted one round have the following compact representation

F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Moreover, the compact representation of ciphertexts encrypted two rounds
consists of 81 elements, where all representations are represented by only Ē and
F̄. After eight rounds, we get 70 elements in the compact representation. We
finally apply additional one-round function, and the propagated bit-based divi-
sion property does not include 0x0000000000000001. Therefore, the lsb in the
output of the 9-round PRESENT is balanced. Table 5 shows the propagation
characteristic, where we perfectly remove redundant vectors.

The number of rounds that integral characteristics cover is clearly maximized
when the number of active bits is 63. Therefore, we moreover search for integral
characteristics exploiting 263 chosen plaintexts. Then, we prepare the plaintext
set that the least significant bit is passive and the others are active, and the
compact representation is

F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Ciphertexts encrypted one round have the following compact representation

F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Moreover, the compact representation of ciphertexts encrypted two rounds con-
sists of 15 elements, where all compact representations are represented by only
Ē and F̄. After eight rounds, we get 188 elements in the compact representation.
We finally apply additional one-round function, and the integral property is

0xEEE0EEE0EEE0EEE0,

where E means that the 1st bit is balanced, and 0 means that all bits are balanced,
i.e., 28 bits are balanced. Table 6 shows the propagation characteristic, where we
perfectly remove redundant vectors.

4.2 Key Recovery with MTTS Technique and FFT Key Recovery

We attack 12-round PRESENT-80 and 13-round PRESENT-128 by using new
9-round integral characteristics. Our attack uses the match-through-the-S-box
(MTTS) technique [19] and FFT key recovery [13]. We briefly explain their pre-
vious techniques.
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Match-through-the-S-box (MTTS) Technique [19]. The MTTS technique was
proposed by Zhang et al., and it is the extension of the meet-in-the-middle
technique [9]. Let x = (x4, x3, x2, x1) and y = (y4, y3, y2, y1) be the input and
output of the PRESENT S-box. Assuming that x1 is balanced over a chosen
plaintext set Λ, the aim is to recover round keys such that

⊕
Λ x1 = 0. Then,

x1 = y4y2 ⊕ y3 ⊕ y1 ⊕ 1 from the ANF of S−1, and
⊕

Λ y4y2 =
⊕

Λ y3 ⊕ y1
because

⊕
Λ x1 = 0. Therefore, we independently evaluate the XOR of y4y2 and

that of y3 ⊕ y1, and we then search for round keys that two XORs take the
same value. In [19], Zhang et al. attacked 10-round PRESENT-80 and 11-round
PRESENT-128 by using the MTTS technique.

Fast Fourier Transform (FFT) Key Recovery Technique [13]. The FFT key
recovery was proposed by Todo and Aoki, and it was originally used for the
linear cryptanalysis in [3]. We now evaluate the XOR

⊕

Λ

fk1(c ⊕ k2),

where fk1 is a Boolean function depending on a round key k1. Moreover, κ1

and κ2 are bit lengths of k1 and k2, respectively. Then, we can evaluate XORs
over all (k1, k2) with 3κ22κ1+κ2 time complexity. Note that the time complexity
does not depend on the number of chosen plaintexts. Therefore, we can easily
evaluate the time complexity by only counting the bit length of involved round
keys.

Integral Attack Against 12-Round PRESENT-80. Let Xi be the input
of the (i + 1)th round function, and Y i is computed as Y i = Xi ⊕ Ki, where
Ki denotes the round key. Moreover, Xi[j], Y i[j], and Ki[j] denote the jth bit
of Xi, Y i, and Ki from the right hand, respectively. Here, X0 is plaintexts, and
Y i is ciphertexts in i-round PRESENT. Figure 3 shows the 3-round key recovery
for PRESENT.

In the first step, we choose 260-plaintext sets (denoted by Λ) and get cor-
responding ciphertexts after 12-round encryption. We store frequencies of two
32-bit values

YE = (Y 12[0], Y 12[2], . . . , Y 12[62]) YO = (Y 12[1], Y 12[3], . . . , Y 12[63])

into voting tables.
In the second step, we compute the XOR of (X10[16] × X10[48]) from YE by

guessing involved round keys. The XOR is computed as
⊕

Λ

(X10[16] × X10[48]) = fK10[16,48], K11[0,8,...,56](YE ⊕ K12
E ),

where K12
E = (K12[0], K12[2], . . . , K12[62]). The FFT key recovery can evaluate

the XOR with the time complexity 3×32×22+8+32 = 3×247. Note that this time
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Fig. 3. 3-Round key recovery for PRESENT.

complexity is negligible because we already use 260 time complexity to prepare
chosen plaintexts.

In the third step, we compute the XOR of (X10[0] ⊕ X10[32]) from YO by
guessing involved round keys. The XOR is computed as

⊕

Λ

(X10[0] ⊕ X10[32]) = f ′
K11[4,12,...,60](YO ⊕ K12

O ).

where K12
O = (K12[1],K12[3], . . . , K12[63]). Note that we do not need to guess

K10[0] and K10[32] because they relate to
⊕

Λ(X10[0]⊕X10[32]) linearly. Then,
the XOR is evaluated with the time complexity 3 × 32 × 28+32 = 3 × 245, and it
is also negligible.

S

61

S

61

K 10

K 11

K 11

K 12

K 12

guessed as

guessed as

Fig. 4. Involved round keys of PRESENT-80.

In the fourth step, we search for round keys satisfying
⊕

Λ

(X10[16]X10[48]) =
⊕

Λ

(X10[0] ⊕ X10[32]).
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Since involved round keys are 42 bits and 40 bits, the total is over 80 bits.
However, from the key scheduling algorithm, the total bit length of involved
round keys reduces to 68 bits (see Fig. 4). Therefore, by repeating this procedure
N times, we can reduce the key space to 268−N .

Finally, we exhaustively search remaining keys, and the time complexity is
280−N . Therefore, the data complexity is N × 260, and the time complexity is
(N × 260 + 280−N ) for N ∈ {1, 2, . . . , 16}.

Integral Attack Against 13-Round PRESENT-128. We attack 13-round
PRESENT-128 by using the similar strategy as the 12-round attack. We do not
write the procedure in detail because of the page limitation.

S

61
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61

S

S
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S

61
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K 11

K 12

K 13

K 13

K 12

K 11

guessed as

guessed as
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Fig. 5. Involved round keys of PRESENT-128.

As a result, the FFT key recovery can evaluate the XOR of (X10[16] ×
X10[48]) with the time complexity 3 × 64 × 22+8+32+64 = 3 × 2112. Moreover,
the FFT key recovery can evaluate the XOR of (X10[0]⊕X10[32]) with the time
complexity 3 × 64 × 28+32+64 = 3 × 2110. While involved round keys are 112
bits and 110 bits, the total bit length of involved round keys reduces to 126
bits because of the key scheduling algorithm (see Fig. 5). Therefore, by repeat-
ing the procedure N times, we can reduce the key space to 2126−N . Finally, we
exhaustively search remaining keys. The time complexity is 2128−N , and it is the
dominant complexity. Therefore, the data complexity is N × 260, and the time
complexity is 2128−N for N ∈ {1, 2, . . . , 16}.

5 Conclusion

We proposed the compact representation for the bit-based division property in
this paper. It is difficult to apply the bit-based division property to block ciphers
whose block length is over 32 because of high time and memory complexity. The
compact representation partially solves this problem. To demonstrate the advan-
tage of our method, we applied this technique to 64-bit block cipher PRESENT.
As a result, we attacked 12-round PRESENT-80 and 13-round PRESENT-128
by using new 9-round integral characteristic, and they are improved by two
rounds than the previous best integral attacks.
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Abstract. Automatically recognising valid decryptions as a result of
ciphertext only cryptanalysis of simple ciphers is not an easy issue and
still considered as a taxing problem. In this paper, we present a new
universal compression-based approach to the automatic cryptanalysis of
transposition ciphers. In particular, we show how a Prediction by Par-
tial Matching (PPM) compression model, a scheme that performs well at
many language modelling tasks, can be used to automatically recognise
the valid decrypt with a 100% success rate. We also show how it signifi-
cantly outperforms another compression scheme, Gzip. In this paper, we
propose a full mechanism for the automatic cryptanalysis of transposition
ciphers which also automatically adds spaces to decrypted texts, again
using a compression-based approach, in order to achieve readability.

Keywords: Cryptanalysis · Transposition ciphers · Plaintext recogni-
tion · Compression · PPM · Word segmentation

1 Introduction

Text compression is the method of deleting redundant information in some text
in order to reduce space that is needed to store it, thereby minimising the time
which is also needed to transmit this information without losing any information
from the original text. Practically, there are two major ways of constructing
text compression models: dictionary and statistical approaches [1]. Prediction by
Partial Matching (or PPM) is a finite-context statistical based approach while
Gzip is an example of a dictionary based approach (which uses the Lempel-Ziv
algorithm [9]). PPM models perform well on English text compared to other
models and they emulate human predictive ability [25].

There are variety of approaches and algorithms used for cryptanalysis. Using
compression schemes as one way to tackle the plaintext recognition problem is
still a relatively new approach with few publications. In essence, we investigate
how to devise better solutions to the plaintext recognition problem by using
transposition ciphers as a test bed. In this paper, we propose a novel compression-
based approach for the automatic cryptanalysis of transposition ciphers with
c© Springer International Publishing AG 2016
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no need for any human intervention. Furthermore, we propose further methods
also based on using compression to automatically insert spaces back into the
decrypted texts in order to achieve readability (as we perform our experiments
on English alphabetic characters).

The paper is organised as follows. The next section gives a brief description
of most of the previous research into the cryptanalysis of transposition ciphers.
Section 3 motivates the use of our compression-based approach as a method of
tackling the plaintext recognition problem and reviews the calculations of the
codelength metric used by our method which is based on the PPM and Gzip
compression schemes. Transposition ciphers are described in Sect. 4. The full
description of our method and the pseudo-code is illustrated in Sect. 5. Our
experimental results are discussed in Sect. 6.

2 Previous Work

Various cryptanalysis methods have been used to break transposition ciphers,
starting with traditional attacks such as exhaustive search and anagramming,
and then leading to genetic algorithm based methods. Anagramming is a well-
known traditional cryptanalysis method. It is the method of repositioning dis-
arranged letters into their correct and original positions [10,20,22]. Although,
the traditional attacks are more successful and easy to implement, but automat-
ing these types of attack is not an easy issue. It requires an experienced and
trained cryptanalyst. Mathematical techniques have been used in these attacks
but the main role tends to be on the human expert. The final decision is made
by the human cryptanalyst with regards to which algorithm is used in attack.

Many researchers have been interested in developing and automating crypt-
analysis against transposition ciphers. One of the earliest papers was published
by Matthews in 1993 [17]. He presented an attack on transposition ciphers using
a genetic algorithm known as GENALYST. The fitness function was based on
the frequency of the common English digrams and trigrams that appear in the
deciphered text. This attack was only successful at key size of 7, with no successes
at key length of 9 and 11. It achieved average success rates of 2–4 %.

Clark [5] published three algorithms that used simulated annealing, genetic
algorithm and tabu search in the cryptanalysis of transposition ciphers. The fit-
ness function used also depended on the frequencies of digrams and trigrams.
By using a genetic algorithm, the success rates of block sizes of 4 and 6 ranged
from 5 to 91 %. Tabu search was faster than the other algorithms while simu-
lated annealing was the slowest but with a high performance of solving cipher-
texts especially with large periods. It was able to correctly recover 26 of the
key elements, for a transposition cryptosystem of period 30 [4]. Dimovsk and
Gligoroski [8] came to similar conclusions presented in Clark’s publication. The
fitness function that was used in their paper was based on bigrams statistics due
to the expensive task of calculating trigrams statistics.

Toemeh and Arumugam [26] used a genetic algorithm to break transposition
ciphers. They used a slightly modified list of the most common bigram and
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trigrams than were used in Clark paper. Three additional trigrams EEE, AND
and ING were included with the Clark table. They concluded that when the
ciphertext size is larger, the number of breakable keys increases.

In 2003, a genetic algorithm was presented by Grundlingh and Van
Vuuren [12], which resulted in a 6–7 % success rate. The fitness function they
used in their research was based on the discrepancies between the expected num-
ber of occurrences of a digram in a natural language text (per N characters), and
the observed count of this digram in a ciphertext of length N . For this attack,
no convergence of fitness function values had been found. They concluded that
genetic algorithmic attacks were not effective against columnar transposition
ciphers since this cipher is more robust than substitution ciphers. This attack
was only successful at a key size of 7.

A permutation-based genetic algorithm was used by Bergmann, Scheidler
and Jacob [2]. Two fitness functions were used in this research. The first function
was based on calculating the redundancy of the decrypted text, then comparing
it to the expected redundancy of the same sized English text and the same
sized random text. The second function was based on the use of known text
appearing in a message. Hamming Distance was used to check the presence
of this supplied piece of known text in the decrypted text at a predetermined
position. A transposition cipher with a key size of up to 12 and 500 characters
in length was able to be deciphered correctly using this algorithm.

Giddy and Safavi-Naini [11] used a simulated annealing approach. The algo-
rithm was not able to decrypt the cipher correctly, if the length of this ciphertext
was short (100 characters or less). They noted that this is the supposed behaviour
of all cryptanalysis schemes. Ciphertexts that have dummy characters added to
them were decrypted poorly as well. The cost function here was based in terms
of bigram frequencies.

As mentioned above, many of the research methods applied genetic algo-
rithms to the automatic cryptanalysis of transposition ciphers. They used differ-
ent key lengths ranging from 2 to 30 with different ciphertext lengths. None of
these algorithms were able to correctly recover all the plaintext and achieve full
success. In fact, Delman [7] concluded that the genetic algorithm-based approach
did not deserve further effort. He stated that further investigation in traditional
cryptanalysis techniques was warranted rather than for genetic algorithms.

Two heuristics were adopted by Russell, Clark and Stepeny [19]. They used
the Ant Colony System algorithm which used a dictionary to recognise the plain-
text, and bigrams to indicate adjacent columns. This attack was able to decipher
shorter cryptograms (300 characters) by a factor of about a half compared to
other previous meta-heuristic methods. Chen and Rosenthal [3] used a Markov
chain Monte Carlo method to break transposition ciphers. Bigram statistics was
used as a base to calculate the score function. This method presented a good
performance with key length 20 and 2000 characters ciphertext. Wulandari, Ris-
mawan and Saadah [27] presented another attack against transposition ciphers
by using a differential evolution algorithm. The fitness function was based on
bigram and trigram statistics. This algorithm was able to decrypt the ciphertext
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correctly, with key lengths up to 9; with key length equal to 10, it was able to
find half of the correct answers.

Irvine [15] has been the only researcher to date to have used a compression
algorithm to break a cipher system—in this case, substitution ciphers. He used
a compression algorithm (PPM model) combined with simulated annealing app-
roach to perform an automated cryptanalysis of substitution ciphers. He was
able to achieve a success rate of 83 %. However, a similar approach has yet to
have been applied to other ciphers systems, including transposition ciphers.

In this paper, we will propose a novel compression-based approach for the auto-
matic recognition of the plaintext of transposition ciphers with a 100 % success
rate. We will use different key lengths (ranging from 2 to 12) and different cipher-
text lengths, even very short messages with only 12 characters while the shortest
messages used in the previous research was not less than 100 characters. In our
paper, we will present both a method for automatically decrypting transposition
ciphertexts and then automatically achieving readability subsequently. This will
automatically insert spaces into the decrypted text, while most of the previous
works did not address or refer to this fundamental aspect of the cryptanalysis.

3 Compression as a Cryptanalysis Method

The ciphertext only attack (cryptanalysis) of simple ciphers is not a trivial issue
as evidenced by the wide range of literature in the previous section. It heav-
ily depends on the source language and its statistical features. Particularly in
ciphertext only attack, it is difficult to recognise the right decrypt quickly. Many
of the published cryptanalysis techniques can not run without human interven-
tion, or they assume that at least the plaintext is known, in order to be able to
detect the proper decryption quickly.

Having a computer model that is able to predict and model natural language as
well as a human is critical for cryptology [24]. Teahan showed that PPM compres-
sion models had the ability to predict text with performance levels close to expert
humans [25]. The basic idea of our approach depends on using the PPM model as a
method for computing the compression ‘codelength’ of each possible permutation
which is a measure of the information [15] contained in each. Permutations with
shorter codelengths help to reveal better decrypts. We show how to use this to eas-
ily and automatically recognise the true decrypt in a ciphertext only attack against
transposition ciphers. In this paper,we also try another compressionmethod,Gzip,
as a basis for calculating the codelength metric in order to determine which is the
most effective compression method to use to recognise the valid decryptions, but
with significantly less success compared to the PPM-based method.

3.1 PPM Compression Code Length Metric

Prediction by Partial Matching, or PPM, is a finite-context statistical based
approach. This technique was first described in 1984 by Cleary and Witten [6].
The major concept of this modelling is dependent on using previous symbols
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(called the context of order k, where k represents the number of prior symbols)
to predict the next or upcoming symbol. The number of symbols used in the
context defines the maximum order of the context model.

For each context model, prediction probabilities can be calculated from the
observation of all symbols or characters that have succeeded every length-k sub-
sequence, as well as from the frequencies of occurrence for each character. A dif-
ferent predicted probability distribution is gained from each model; as a result,
the probabilities of each character or symbol that has followed the previous k
characters (the previous time) are used to estimate the next character. PPM
models have been shown to be very effective at compressing English and have
comparable performance to human experts’ predictive ability [25].

Several PPM variations have been devised depending on the methods that
have been suggested for computing the probabilities of each symbol. PPMD is
one of these variants first developed by Howard [13]. Experiments show that in
most cases, PPMD performs better than the other variants PPMA, PPMB and
PPMC. It is similar to PPMC with the exception that the probability estimation
of a new symbol or character is different. The treatment of the new symbols
becomes more consistent [14] through adding 1

2 to the count of the new symbol
and to the escape count as well:

e =
t

2n
and p(s) =

2c(s) − 1
2n

where e denotes the escape probability, p(s) is the probability of symbol s, c(s)
is the number of times that the symbol s followed the context, n denotes the
number of tokens that have followed and t refers to the number of types. For
example, if a specific context has occurred three times previously, with three
symbols a, b and c following it one time, then, the probability of each one of
them is equal to 1

6 and escape symbol probability is 3
6 .

The essential idea of our approach depends on using a PPMD compression
model to compute codelength values of each possible permutation. From a com-
pression point of view, the ‘codelength’ of a permutation for a cryptogram is
simply the absolute ratio of the cryptogram length (in bits) when compressed to
the cryptogram length in characters. In particular, the smaller the codelength,
the more likely the cryptogram is close to the language source. By using this
metric for assessing the quality of the solution, it can be used for finding valid
decryptions automatically.

One of the most important steps in our implementation is the step of priming
the compression models using a large set of English training data. This step allow
us to overcome the problem of using an uninitialised compression scheme, where
at the beginning of a message there is not enough and sufficient data to effectively
compress the texts.

3.2 Calculating Codelengths Using the Gzip Compression Method

Gzip or GNU zip is one of the most important compression utilities. It is one
of the most common lossless compression method on the Unix operating system
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and on the Internet. It was written by Jean- Loup Gailly and Mark Adler.
The Gzip compression scheme is a dictionary based approach (using Lempel-Ziv
algorithm [9]) whereas PPM is a statistical context based approach.

The fundamental reason of experimenting with another compression method
(Gzip) in our approach is to determine which is the most effective method,
when applying to the problem of plaintext recognition using a compression-based
approach.

In our paper, we will calculate the codelength values for the Gzip compression
scheme by using a relative entropy technique. As a result, we do not need to re-
implement the Gzip compression scheme itself, we can simply use “off-the-shelf”
software. We calculate the codelength value using the relative entropy method
using the equation ht = hT+t − hT where T is some large training data, h
represents the file size after it has been compressed, and t represents the testing
text. Simply, the basic idea of this method is to calculate the difference (in size)
between the compressed training text with the testing text added to it compared
to the size of the compressed training text by itself.

We also tested our relative entropy method using another well-known com-
pression scheme, Bzip2. This is another lossless compression scheme that uses
a block sorting algorithm. However, due to the algorithm’s nature, some of the
relative entropy calculations ended up being negative, so these could not be used.

4 Transposition Ciphers

In cryptography, a transposition cipher is a method of encryption by which the
content of a message is concealed by rearranging groups of letters, therefore
resulting in a permutation. The concept of transposition is an essential one
and has been used in the design of modern ciphersystems [23]. Originally, the
message was written out into a matrix in row-order and then read out by column-
order [15]. The technique can be expanded to d dimensions, by dividing a message
into blocks or groups of fixed size d (called the period) and perform a permutation
over these blocks. This permutation represents the key. The size of the key is the
same as the length of the block. Generally, if f : Zd → Zd is a permutation over
Zd, Zd = {1, ..., d}, then according to f , blocks of fixed length (d characters) are
encrypted by applying a permutation to the characters [18,21]. For example, if
d = 4 and the plaintext x = 1234 then the encrypted message (ciphertext) f
might have the permutation: f(x): 4213. Here, the first character in the original
message is moved to the third position, the third character in the block to the
fourth position, and the fourth character to the first position. Thus the original
message cryptographydemo is encrypted as:

Position: 1234 1234 1234 1234
Plaintext: cryp togr aphy demo
Ciphertext: prcy rotg ypah oedm

This ciphertext is divided into blocks of four letters and in order to hide the
key size (period), a stream of characters is transmitted continuously. In the case
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of a short block at the end, it would be encrypted by moving the letters to their
relative permutation positions with dummy letters added or just left blank.

In general, transposition ciphers are considered much harder to crack than
other basic cryptosystems such as simple substitution ciphers. Many statisti-
cal tools have been developed aiding automated cryptanalysis of substitution
ciphers while the automatic cryptanalysis of transposition ciphers has proven
more difficult. Generally, cryptanalysis of transpositions is quite interventionist
in that it requires some knowledge of the probable contents of the encrypted
text to give an idea into the rearrangement order that has been used [17].

5 Our Method

In this section, we will give a full description of the new approach for the automatic
cryptanalysis of transposition ciphertext. The basic idea of our approach depends
on using a compression model as a method of computing the ‘codelength’ of each
possible permutation. This compression model and the codelenghth metric repre-
sent the assessment function that can be relied on it to automatically rank alter-
native permutations and recover correct messages. In our method, the PPMD and
Gzip compression methods are used in the experiment.

Our new approach consists of two essential phases. The main idea of the first
phase (Phase I) depends on trying to break a ciphertext automatically using a
transposition of specified size by exhaustively computing all possible transpo-
sitions. The second phase (Phase II) focuses on inserting spaces automatically
(segmenting words) into the decrypted message which is outputted from the first
phase in order to achieve readability (since we remove spaces from the ciphertext
at the beginning of Phase I, as is traditional).

The pseudo-code for our method is presented in Figs. 1, 2 and 3. At the begin-
ning of the first phase (Phase I), we remove all the spaces from the encrypted
message as presented in line 3 in Fig. 1. The approach at this stage uses text
comprising just 26 alphabetic English characters). The text is divided into blocks
with a specified size according to the period (key size) of transposition (see line
6 in Fig. 1). Then, all possible transpositions are generated, and the compression
codelength recomputed at each stage (see line 7 to 10 in the next figure). PPM
and Gzip are used as the means for computing the codelength. As we start to get
permutations with smaller codelength values, this means we are closer to finding
the correct message. In other words, the hope is that the cryptogram that has
the smallest codelength value will represent the valid decrypted message.

As the output of the previous phase are texts without any spaces, the second
phase focuses on inserting spaces into the input text automatically ‘segmenting
words’, in order to achieve readability. We have investigated two alternative ways
of doing this. In the first method, Phase II-A, according to the decrypted message
permutation which is outputted from the previous phase, all further possibilities
are explored where a space is inserted after each character. Underperforming
possibilities which have bad colelength values are pruned from the priority queue
and only the best performing possibilities are returned at the end (see Fig. 2).
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1- READ ciphertext

2- SET maximum-period of transposition to a specified size

3- REMOVE spaces from the ciphertext

4- FOR each period

5- IF ciphertext length divided by period equal to 0 THEN

6- DIVIDE the ciphertext into blocks according to the period

7- FOR each possible permutation

8- CALCULATE codelength value using PPM compression

model or Gzip

9- STORE a permutation that have smaller codelength

value in priority queue

10- ENDFOR

11- ENDIF

12- ENDFOR

13- RETURN priority queue

Fig. 1. Pseudo-code for main decryption phase, Phase I

In the second method, Phase II-B, the Viterbi algorithm is used to search for the
best probable segmentation sequences (see Fig. 3). Compression schemes are used
as a base of measuring codelengths and automatically detecting correct solutions
in both these two alternatives (Phase II-A and Phase II-B). The pseudo code of
the two approaches are shown in Figs. 2 and 3.

In our method, we have used two variants of the PPMD model, one without
update exclusions [24] and the standard PPMD. This was done to investigate

1- SET priority queue Q1 to have the decrypted message from the priority

queue from Phase I

2- REPEAT

3- SET Q2 to empty

4- FOR each message in the priority queue Q1

5- CREATE new message with a single space addad

6- INSERT modified message into Q2

7- CALCULATE codelength value for the new message using PPM

compression model or Gzip method

8- STORE new message that have a smaller codelength value

than those in the priority queue Q2

9- ENDFOR

10- IF there is any improvement in the codelength value THEN

11- REPLACE Q1 with Q2

12- UNTIL there is no improvement in the value of the codelength

13- RETURN front of priority queue Q1

Fig. 2. Pseudo-code for Phase II-A



44 N.R. Al-Kazaz et al.

1- READ message from the priority queue from Phase I

2- USE Viterbi algorithm to search for the best probable segmentation

sequences

3- RETURN Decrypted message which have best segmentations that present

the best encoding sequence

Fig. 3. Pseudo-code for Phase II-B

which is the most effective model when applied to the problem of the automatic
cryptanalysis of transposition ciphers.

In order to clarify and organize our experiments and results, we divide our
different experiments into different variants with a specified label as shown in
the Table 1.

Table 1. Variants used in our experiments

Variants Phase I Phase II-A Phase II-B

Variant A PPMD with no update
exclusions

PPMD with no update
exclusions

Variant B PPMD with no update
exclusions

PPMD with no update
exclusions

Variant C PPMD PPMD

Variant D PPMD PPMD

Variant G Gzip Gzip

According to Table 1, the first variant is called Variant A. In this variant,
PPMD without update exclusions is used to calculate the compression code-
length values. This is used for the main deception phase—Phase I and for Phase
II-A as well. All cryptograms can be solved using an order-4 model. In the sec-
ond variant Variant B, PPMD4 without update exclusions is used in both phases
Phase I and in Phase II-B. The Viterbi algorithm is used in the second phase.

A different version of the PPMD compression model is used in the third vari-
ant, which is named “Variant C”. The standard PPMD4 (with update exclu-
sion) is used as the method for calculating the codelength values for both phases
(Phase I and Phase II-A). Variant D uses the standard order-4 PPMD, as well
in the calculation of the codelength values. For the second phase, Phase II-B,
this compression model is also used as a basis for segmenting the words.

For variant G, we examine the effectiveness of another type of compression
method which is the Gzip compression system. The Gzip algorithm is used in
the main decryption phase and for the second phase “Phase II-A”, as the basis
for computing the codelength metric.
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6 Experimental Results

In our method, the order-4 PPMD models were trained on nineteen novels and
the Brown corpus using 26 and 27 character (including space) English text.
After this training operation, these models remain static during cryptanalysis.
In our experiments, we use a corpus of 90 cryptograms with different lengths
form different resources as testing texts. The lengths of the ciphertexts that
have been examined in our experiments are ranging from 12 letters to over 600
letters. Table 2 presents a sample of decryption.

Table 2. Output sample for the different phases for the ciphertext ‘prcy rotg ypah
oedm’. (Compression codelengths are listed in bits with the lowest 5 results presented
for Phase-II-A.)

Phase I Phase II-A Phase II-B

53.73 cryptographydemo 42.85 cryptography demo Cryptography demo

50.94 cryptographyde mo

59.41 cryptographyd emo

59.68 cryptograph ydemo

67.64 c ryptographydemo

A random key is generated to encipher the original text (plaintext) for each
run. After that, the attack is performed on the ciphertext. Different key sizes
(period or permutation size) and different ciphertexts with different lengths have
been experimented in our method. The results of the first phase Phase I by using
the PPM method showed that all the valid decryptions were recognised and all
the ciphertexts were able to be decrypted successfully with no errors. In our
method, and with different variants, except Variant G, we achieve a success
rate of 100 %. We have used different key size (block sizes) from two to twelve.
We experimented with 90 different standard ciphertexts with different lengths
(including very short) with different key sizes and all can be solved correctly.
In contrast, by using the Gzip algorithm in the last variant (G), we achieved a
success rate of 94 % as result of Phase I.

For each variant, we have performed two types of experiments (except for
Variant G). Since in Phase I we deal with texts without any spaces included,
our first experiment is done by using PPMD models after being trained on 26
English characters (instead of 27) as the basis of calculating codelengths. In the
other experiment, PPMD compression models trained on 27 character English
texts were used. The output result from these two experiments is the same
achieving a 100 % success rate.

The second phase focused on inserting spaces automatically into the decrypted
message that is outputted from the first phase. We used the Levenshtein distance
as a metric of measuring differences between the plaintext and the decrypted text
with spaces. Levenshtein distance metric is a commonly used string metric for
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counting the differences between two strings (such as insertions, deletions or sub-
stitution) [16]. In our approach, in almost all cases the correct (readable) solution
was found. The next table (Table 3) provides example output (with spaces) pro-
duced by the different variants.

Table 3. Example of solved cryptograms with spaces by different variants.

Variants Number of errors Decrypted message (with spaces)

Variant A 2 an excuse is worse and more terrible than

a lief or an excuse is a lie guarded

Variant B 0 an excuse is worse and more terrible than

a lie for an excuse is a lie guarded

Variant C 3 anexcuse is worse and more terrible than

a lief or an excuse is a lie guarded

Variant D 1 anexcuse is worse and more terrible than

a lie for an excuse is a lie guarded

Variant G 14 anexcuseisworse andmoreterrible

thanalieforanexcuseisalieguarded

For variant A, Fig. 4 shows the number of errors for each testing text as a
result of the second phase. Clearly, we can see that most of the space insertion
errors are less than two. The results show that 50 % of texts have correctly
inserted spaces with no errors, and more than 45 % of the cryptograms are
solved with three errors or less. The errors that occurred in some of the solved
cryptograms were minor ones, all involving spaces only. There are just three
examples that showed either 6 or 7 errors, the main reason being that each
of these examples had unusual words on particular topics not occurring in the
training data.

Variant B produces less errors than other variants. The results show that 59 %
of the decrypted texts have correctly added spaces with no errors. Furthermore,
over 36 % of the examples are spaced with just two or one errors, and about 4 %
with three errors. Just two examples had six errors and all of these are shown
in Fig. 5.

Variant C produces slightly worse results, with just 46 % of examples having
successfully inserted spaces without any errors with about 45 % are spaced with
three errors or less. In addition, nine of the solved cryptograms have four errors
or more. Figure 6 shows the results of variant C. On the other hand, variant D
presents very good results, it produces similar results to variant B but with a
few minor differences.

Figure 7 presents the number of errors for variant G as a result of phase two.
Clearly the number of errors for each solved cryptogram is much higher, in this
case with most of the space insertion errors being greater than 15. Moreover,
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Fig. 4. Errors produced from variant A
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Fig. 5. Errors produced from variant B

none of the examples produced no errors and there is just five decrypted texts
that were spaced with less than 10 errors.

Table 4 presents results concerning the average number of space insertion
errors for the 90 texts we experimented with for each of the variants. It is clear
that variant B produces the best results although other variants produce good
results as well. What is interesting is that the PPM method without update
exclusions which usually does slightly worse at the task of compression, does
better here at decryption.

The last column in the table presents the number of average errors for variant
G. The results show that the Gzip algorithm is not a good way for finding the
right solutions with a high average number of errors.
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Fig. 6. Errors produced from variant C
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Fig. 7. Errors produced from variant G

In order to investigate further the accuracy of our spaces insertion algorithms
in segmenting the 90 decrypted texts, we used three further metrics: recall rate,
precision rate and error rate. Recall is calculated by dividing the number of
correctly segmented words (using a compression model) by the total number
of words in our original 90 testing texts. The error rate metric is calculated
by dividing the number of incorrectly segmented words by the total number of
words in the testing texts. Precision is calculated by dividing the number of
correctly segmented words by the total number of words which are correctly and
incorrectly segmented.

According to Table 5, it is clear that the first four variants, which are based
on PPMD compression models, achieve quit high recall rates, which indicates
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Table 4. Average number of errors for the phase two variants.

Variants A B C D G

Average errors 1.02 0.69 1.30 0.81 21.62

Table 5. Recall, precision and error rates for the different variants on segmenting
words.

Variants Recall rate % Precision rate% Error rate %

Variant A 95.08 95.08 4.92

Variant B 96.30 96.38 3.70

Variant C 93.91 94.34 6.09

Variant D 95.71 95.91 4.29

Variant G 3.96 16.11 96.04

high accuracy of segmenting the 90 decrypted texts. All the errors generated,
which are quite low, are those on unusual words not found in the training texts.

The average elapsed time that is required to find the valid decryptions of
the transposition ciphertexts with different lengths for different key size is pre-
sented in Table 6. This table shows the average execution time for decrypting
three ciphertexts of different lengths, for both the main decryption and spaces
insertion phases combined (labelled as ‘Both’ in the table) and just for the main
decryption phase (Phase I). The time which is needed to insert spaces auto-
matically into the decrypted text (the second phase) is based on the execution
of Phase II-A (slightly additional time is needed when using Phase II-B). The
average execution time in seconds for each ciphertext is calculated by running
the program ten times and then calculating the average.

In summary, the results showed that we are able to achieve 100 % success
rate as a result of the first phase (Phase I) either by using standard PPMD
or PPMD with-no update exclusions models. We manage to recognise all the
plaintexts and solve all the cryptograms in this phase without any errors. We
have used different block sizes (periods) ranging from two to twelve.

Table 6. Average required time to automatically cryptanalysis ciphertexts with dif-
ferent lengths for different keys size.

Ciphertext length Key size

(letter)

Time (in seconds)

5 6 7 8 9 10

Both Phase I Both Phase I Both Phase I Both Phase I Both Phase I Both Phase I

40 0.72 0.68 0.73 0.69 0.77 0.75 0.97 0.93 2.40 2.38 12.07 12.06

150 1.12 0.7 1.14 0.73 1.20 0.80 1.77 1.35 13.75 10.06 48.07 47.07

300 3.39 0.71 3.62 0.75 3.71 0.87 4.86 1.97 23.01 20.41 95.32 92.41
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In the second phase, we add spaces to these texts to improve readability by
using two methods. The first method is a slightly faster new method based on a
priority queue while the second method uses Viterbi algorithm to segment words.
Our results show that almost all decrypted texts are segmented correctly. The
maximum average number of errors (due to space insertions in incorrect places),
when using PPMD compression models, is just slightly over one (for Variant C).
This variant depends on the standard PPMD compression model as a basis for
calculating the codelength values in Phase II-A. The results showed that by using
the Viterbi algorithm (Phase II-B), we can gain slightly better results than the
other method (Phase II-A), but it needs slightly more execution time. Variant B
showed the best results. This variant depends on using a PPMD without update
exclusions model using the Viterbi method as the basis for segmenting words.

7 Conclusions

We have introduced another use of the compression-based approach for crypt-
analysis. A novel universal automatic cryptanalysis method for transposition
ciphers and plaintext recognition method have been described in this paper.
Experimental results have shown a 100 % success rate at automatically recog-
nising the true decryptions for a range of different length ciphertexts and using
different key sizes. This effective algorithm completely eliminates any need for
human intervention. The basic idea of our approach depends on using a com-
pression scheme as a base of calculating the ‘codelength’ metric, which is an
accurate way of measuring information in the text. In this paper, we provided
pseudo-code for two main phases: automatically decrypting ciphertexts and then
automatically achieving readability using compression models to automatically
insert spaces into the decrypted texts, as we performed our experiments on
ciphertext in alphabetic English characters, while most previous works did not
address this essential problem.

Two compression schemes have been investigated in our paper which are
Predication by Partial Matching (PPM) and Gzip. The experimental results
showed that PPM notably outperforms the other compression scheme Gzip. We
also found that both PPMD variants were able to recognise all the valid decryp-
tions. Concerning automatically adding spaces (word segmentation) afterwards,
PPMD without update exclusions performs slightly better than the standard
PPMD method (with update exclusions). The algorithm was able to achieve
100 % success rate using the PPM compression model on different amounts of
ciphertext ranging from 12 to 625 characters, and with different key lengths
ranging from 2 to 12. Larger key sizes and longer ciphertext length can be used,
but of course it will require longer execution times to perform the decryptions.
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Abstract. Threshold implementations allow to implement circuits
using secret sharing in a way to thwart side-channel attacks based on
probing or power analysis. It was proven they resist to attacks based on
glitches as well. In this report, we show the limitations of these results.
Concretely, this approach proves security against attacks which use the
average power consumption of an isolated circuit. But there is no security
provided against attacks using a non-linear function of the power traces
(such as the mean of squares or the majority of a threshold function),
and there is no security provided for cascades of circuits, even with the
power mean. We take as an example the threshold implementation of the
AND function by Nikova, Rechberger, and Rijmen with 3 and 4 shares.
We further consider a proposal for higher-order by Bilgin et al.

1 Introduction

Since the late 1990’s, many side-channel attacks based on either power analysis
or probing have been presented. We consider essentially two types of attacks.
In Differential power attacks (DPA), the adversary collects many samples of the
sum of the power used by all gates of the circuit with noise. In Probing attacks,
the adversary gets a few intermediate values of the computation by probing the
circuit. All measures are subject to noise and can be modeled [2]. Duc et al. have
shown that these two attacks are essentially equivalent [4].

One devastating type of attack is based on “glitches”. It takes into account
that electric signals are not necessarily a classical 0/1 signal but a real function
over a clock period which is non constant. For instance, the signal can be inter-
mediate between 0 and 1, or switching several times between 0 and 1 during
the clock period, or a signal with a very short switching peak, etc. The CMOS
technology uses very little power. Signals switching in between clock periods
use power. Essentially, only signal switches use power. So, a glitch induces an
abnormal power consumption which is visible during a clock period [5].

To avoid these attacks, masking is a common method. Essentially, instead
of running the computations based on inputs x and y to obtain a result z, we
first use a secret sharing for x and y to split it into n random shares (x1, . . . , xn)
and (y1, . . . , yn) and run the computation on the shares to obtain a sharing
(z1, . . . , zn) of z. Usually, the secret sharing is the simple (n, n)-scheme in which
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 55–70, 2016.
DOI: 10.1007/978-3-319-48965-0 4
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x = x1 ⊕ · · · ⊕ xn, y = y1 ⊕ · · · ⊕ yn, and z = z1 ⊕ · · · ⊕ zn. Trichina, Korkishko,
and Lee [11] proposed an implementation of an AND gate with n = 2.

In [7], Nikova, Rechberger, and Rijmen proposed the threshold implementa-
tion which transforms a gate (such as an AND gate) into a circuit which resists
to probing attacks with a single probe or DPA based on the average of the power
consumption. One construction uses n = 3 and another one with n = 4 has the
property that output shares are always balanced. In [1], Bilgin et al. extend this
method to higher orders, to make circuits resisting to 2 probes or DPA based
on a 2nd order moment of the power consumption. They propose an imple-
mentation of an AND gate with n = 5 but this implementation requires internal
flip/flop registers, thus induce latencies, just to have a secure AND circuit. These
constructions were recently consolidated in [9].

Our results. As the glitch propagation model highly depends on concrete imple-
mentations, in this paper, we consider several models for accounting glitches
obtained by the XOR of two glitched signals. We do not advertise any model
to be better but rather show how little influence the model has on the security
results. In a first model, the “double-glitch” simply counts as twice a normal
glitch. In this model, the mean power for the construction with n = 2 does not
leak. In a second model, the double-glitch counts as a normal one. In a third
model, the two glitches cancel each other and do not count. In the two latter
models, the construction with n = 2 leaks from the mean power.

In the mentioned constructions using n > 2, we show that two probes leak,
that some non-linear function of the power (such as the mean of squares or
the majority of a threshold function) leak, and that by composing two circuits
implementing two AND gates, one probe leaks.

Finally we show that in the three models, the AND construction using n = 5
(the one resisting 2nd order attacks) does not resist to an attack with two probes
when we do not add internal flip/flop registers.

The security claims coming with these implementations from the literature
are of the form “if [conditions] then we have security”. We do not contradict any
of these results. In this paper, we complement them by showing that when the
conditions are not met, we clearly have insecurity. So, these conditions are not
only sufficient: they are also necessary.

2 The Theory

2.1 The Glitch Algebra

Algebra is “the part of mathematics in which letters and other general symbols
are used to represent numbers and quantities in formulae and equations”. Herein,
we propose to represent glitches as well and to do operations on glitches.

In what follows we use the following conventions: a “signal” is a function
from a clock cycle [0, τ ] to R; we consider real numbers as constant signals,
we consider bits as real numbers in {0, 1}; + and × denote the addition and
multiplication of reals; ⊕, ∨, and ∧ denote the XOR, OR, and AND of signals.
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A signal “represents” a bit. To avoid confusion, from now on we denote
with regular letters a signal and we denote with a bar the bit it is supposed
to represent. We say that a signal x has no glitch if it is constant and equal
to the bit x̄ it represents. The functions ⊕, ∨, and ∧ are defined by the gates
implementing these functions. We only know that they match what we know
about bits: a⊕b = a+b mod 2, a∨b = max(a, b), and a∧b = ab when a and b have
no glitch. Furthermore, we define a function glitch giving the “number of glitches”
in a signal and a function power giving the power consumption of a gate. We
assume that glitch(x) = 0 if x has no glitch. The function glitch applies to a signal
but the function power applies to a gate. Concretely, a gate g = op(a, b) with
output signal c corresponds to power(g) = glitch(c)pop where pop is a constant.
So, power(g) = 0 if op(a, b) has no glitch. Actually, this is an approximation.
Essentially, it is assumed that a stable signal uses very little power while a
glitch induces a high power consumption, like in the CMOS technology [5]. The
assumption on the influence of glitches on the power consumption may be a bit
arbitrary. In the sequel, we take for granted that when y has no glitch, then x⊕y
has the same glitch as x. When y has no glitch and ȳ = 0, we assume that x ∧ y
has no glitch either (due to the AND with 0). When y has no glitch and ȳ = 1,
we assume that x ∧ y has the same glitch as x. So,

glitch(x ∧ y) =
{

0 if glitch(y) = 0 and ȳ = 0
glitch(x) if glitch(y) = 0 and ȳ = 1

glitch(x ⊕ y) = glitch(x) if glitch(y) = 0

We further define Σpower as the sum of power(g) for all gates g in a circuit.
It is not quite clear how to define glitch(x∧y) for two glitched signals x and y

in general. Even for glitch(x⊕y), we may take one of the following assumptions:

glitch(x ⊕ y) = glitch(x) + glitch(y) (1)
glitch(x ⊕ y) = max(glitch(x), glitch(y)) (2)
glitch(x ⊕ y) = glitch(x) ⊕ glitch(y) (3)

These assumptions are quite reasonable in theory. (1) accounts for glitches which
cumulate, for instance because they occur at different time in a clock period. (2)
assumes that a glitch can be hidden by another one. (3) comes from saying that
two perfectly identical glitches should cancel each other in a XOR. However,
reality is more complex and probably a mixture of these three models:

glitch(x ⊕ y) = F (glitch(x), glitch(y))

for some symmetric function F . For simplicity, we will study these simple
assumptions. We will see that nearly all assumptions give the same results. Each
defines some kind of “glitch algebra” on which we can do computations.

In this report, we consider two types of side-channel attacks based on glitches.

– Power analysis: the adversary can see Σpower with noise.
– Probing attack: for a gate g, the adversary can get glitch(g) with some noise.

Duc et al. have shown that these two attacks are equivalent [4].
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2.2 Side-Channel Attack with Noise

In side-channel attack, we measure a quantity S in a discrete domain D but the
measurement comes with noise so we obtain Z = S + noise. We assume that
S follows a distribution PS

b depending on a secret bit b. We want to make a
guess X for b. An algorithm taking some random input and giving X as output
is a distinguisher. The Type I error is α = Pr[X = 1|b = 0]. The Type II
error is β = Pr[X = 0|b = 1]. The error probability is Pe = Pr[X �= b] =
α Pr[b = 0] + β Pr[b = 1] so depends on the distribution of b. The advantage of
the distinguisher is Adv = |Pr[X = 1|b = 0] − Pr[X = 1|b = 1]| = |α + β − 1|.

If PZ
b denotes the obtained distribution for Z. We know that the largest

advantage using one single sample Z is Adv = d(PZ
0 , PZ

1 ) defined by the statis-
tical distance between PZ

0 and PZ
1 .

d(PZ
0 , PZ

1 ) =
1
2

∑

z

|Pr[Z = z|b = 0] − Pr[Z = z|b = 1]|

Theorem 1 (Precision amplification). Given an elementary distinguisher
computing X from Z, with Type I error probability α ≤ 1

2 and Type II error
probability β ≤ 1

2 , for any N we can construct a distinguisher such that from
i.i.d. samples Z1, . . . , ZN we compute X with error probability

P ′
e ≤ e−N( 1

2−min(α,β))2 (4)

Taking N = 2
(
1
2 − min(α, β)

)−2, we obtain P ′
e ≤ e−2 ≈ 13%.

Proof. We use the elementary distinguisher to compute the X1, . . . , XN corre-
sponding to Z1, . . . , ZN . Then, we compute X = majority(X1, . . . , XN ).

Using the Chernoff bound (Lemma 2 below), we obtain a new distinguisher

with errors αN and βN such that αN ≤ e−N( 1
2−α)2 and βN ≤ e−N( 1

2−β)2 . So,
the error probability P ′

e = αN Pr[b = 0] + βN Pr[b = 1] obtained by taking the
majority vote decreases exponentially fast with N . As min(α, β) ≤ α, β ≤ 1

2 , we
obtain the result. �	
Lemma 2 (Chernoff [3]). Let X1,X2, . . . , XN be N independent boolean vari-
ables such that that E(Xi) = p for all i. We define X = majority(X1, . . . , XN ).
For all p < 1

2 , we have

Pr[X �= 0] ≤ e−N( 1
2−p)2

For all p > 1
2 , we have

Pr[X �= 1] ≤ e−N( 1
2−p)2

In what follows, we assume that the noise is Gaussian, centered, independent
from S, and that the ratio of the standard deviation of the noise and of S is a
given value σ. So, noise has a variance of σ2V (S). Hence,

Pr[noise ≤ −x] =
1
2
erfc

(
x

√
2σ2V (S)

)
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Threshold distinguisher. We consider the distinguisher computing X = 1Z≤τ .
In the Gaussian noise model, the Type I error is

α = Pr[X = 1|b = 0] =
∑

s

Pr[S = s|b = 0]Pr[noise ≤ τ − s]

by symmetry of the noise distribution, the Type II error is

β = Pr[X = 0|b = 1] =
∑

s

Pr[S = s|b = 1]Pr[noise ≤ s − τ ]

By adjusting τ so that α = β = Pe, we obtain that N = 2
(
1
2 − Pe

)−2 is enough
to reach P ′

e ≈ 13%.

Case study for S = 1 − b and b uniform. If S = 1 − b and b is uniform, we have
V (S) = 1

4 . We adjust τ = 1
2 and obtain α = β = 1

2erfc
(
0.5
σ

√
2
)
. We obtain from

Theorem 1 that N = 2
(
1
2 − 1

2erfc
(
0.5
σ

√
2
))−2

. For instance, with σ = 1, we have
Pe ≈ 16% and N = 17. With σ = 2, we have Pe ≈ 31% and N = 55. We obtain
that N∼σ→+∞4πσ2 using erfc(t) = 1 − 2t√

π
+ o(t) for t → 0. So, we see that

N = O(σ2) is enough to guess b with error limited to a constant. This is a quite
favorable attack as we can measure b directly.

Attack for n = 1. As an example, given an AND gate z = x∧y (with no threshold
protection, or equivalently n = 1), assuming that y is stable equal to some
secret ȳ and that glitch(x) = 1, we have glitch(z) = ȳ. So, an attack measuring
S = glitch(z) deduces ȳ trivially. We are in the case where S = glitch(z) = ȳ
is binary and balanced. So, the above equation governs the complexity N of
recovering ȳ using no threshold implementation and noise characterized by σ.

Pushing to higher order measures. We can wonder what happens if, for some
reasons, S does not leak but S2 leaks. Then, we should look at Z2 instead of
Z. But Z2 = S2 + noise′ with noise′ = 2Snoise + noise2. By neglecting the
quadratic noise, we have V (noise′) ≈ 4V (S)V (noise) = 4σ2V (S)2. Assuming
V (S2) ≈ V (S)2, we can see that the effect of moving from S to S2 is only in
doubling the value of σ. As we will see, a motivation of threshold cryptography
is to prevent leaks at a lower order S to make the adversary look at higher order.
This actually penalizes a bit the adversary.

3 Implementation with n = 2

Trichina et al. [11] proposed an implementation of the AND gate to compute
z = x ∧ y by using n = 2: 1. (secret sharing for x) pick a ∈U Z2 and compute
x̃ = a ⊕ x; 2. (secret sharing for y) pick b ∈U Z2 and compute ỹ = b ⊕ y; 3.
(secret sharing for z) pick c ∈U Z2; 4. compute

z̃ = (((c ⊕ (a ∧ b)) ⊕ (a ∧ ỹ)) ⊕ (b ∧ x̃)) ⊕ (x̃ ∧ ỹ)



60 S. Vaudenay

by respecting the order of the parentheses; 5. the output (z̃, c) shares z = c ⊕ z̃.
In [7], Nikova, Rechberger, and Rijmen observe that if the input signal x has

a glitch and y is a secret input, then by analyzing the power consumption of the
above gate we can easily deduce y. Indeed, assuming that an AND or XOR gate
uses an abnormal power scheme proportional to the number of “glitch” on their
result, the number of gates using an abnormal power scheme depends on y. So,
we assume that glitch(x) = 1 and glitch({a, b, c, y}) = 0.

We have

glitch(x̃) = 1 glitch(x̃ ∧ ỹ) = ¯̃y = b̄ ⊕ ȳ
glitch(ỹ) = 0 glitch((c ⊕ (a ∧ b) ⊕ (a ∧ ỹ)) ⊕ (b ∧ x̃)) = b̄

glitch(b ∧ x̃) = b̄

so

glitch(z) =

⎧
⎨

⎩

b̄ + ¯̃y with Assumption (1)
b̄ ∨ ¯̃y with Assumption (2)
ȳ with Assumption (3)

Σpower = (b̄ + ¯̃y)pAND +

⎧
⎨

⎩

2b̄ + ¯̃y with Assumption (1)
b̄ + b̄ ∨ ¯̃y with Assumption (2)
b̄ + ȳ with Assumption (3)

⎫
⎬

⎭
.pXOR

If ȳ = 0, we have ¯̃y = b̄ so

Σpower = 2b̄pAND +

⎧
⎨

⎩

3b̄ with Assumption (1)
2b̄ with Assumption (2)
b̄ with Assumption (3)

⎫
⎬

⎭
.pXOR

For ȳ = 1, this is Σpower = pAND + (1 + b̄).pXOR for Assumptions (1, 2, 3). So,

E(Σpower|ȳ = 1) − E(Σpower|ȳ = 0) =

⎧
⎨

⎩

0 with Assumption (1)
1
2 with Assumption (2)
1 with Assumption (3)

⎫
⎬

⎭
.pXOR

It is explicitly said in [8, p. 297] that

“The power consumption caused by the glitch is related to the number
of gates that see the glitch. It is clear [...] that the energy consumption
depends on the values of [b and ỹ]. Since the mean power consumption is
different for y = 0 and y = 1, the power consumption leaks information
on the value y.”

The computation done in [8] to analyze the leakage was based on Assumption (1)
as we can easily check from [8, Table 1]. So, we contradict this claim for
Assumption (1): E(Σpower) is independent from ȳ in this case. However, it
is true that E(Σpower) leaks ȳ for Assumptions (2) and (3). For this implemen-
tation, the choice of the “glitch algebra” gives different conclusions.

Similarly, in attacks based on probing z, we can see that E(glitch(z)) = 1
which is independent from ȳ in Assumption (1). For Assumption (2), we have
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E(glitch(z)) = 1
2 which is also independent from ȳ. For Assumption (3), we have

glitch(z) = ȳ. In the latter case, we can see that E(glitch(z)) leaks ȳ so noisy
samples for glitch(z) leak ȳ using the amplification technique of Eq. (4).

This made [7] propose a “threshold implementation” of an AND gate using
n = 3 or n = 4 shares, the above example being an example using n = 2
shares. They prove that, contrarily to this example, probing a single gate in the
computation leaks no information on any of the input x and y, on average. They
deduce that their implementations resist to the above attacks based on glitches.
We will show the limitations of this result with effective attacks.

4 Implementation with n = 3

Assuming that (x1, x2, x3) shares x, (y1, y2, y3) shares y, and (z1, z2, z3) shares
z, Nikova, Rechberger, and Rijmen [7] propose

z1 = (x2 ∧ y2) ⊕ ((x2 ∧ y3) ⊕ (x3 ∧ y2))
z2 = (x3 ∧ y3) ⊕ ((x1 ∧ y3) ⊕ (x3 ∧ y1))
z3 = (x1 ∧ y1) ⊕ ((x1 ∧ y2) ⊕ (x2 ∧ y1))

This construction satisfies the conditions from Nikova et al. [7]. We quote [7]:

“Theorem 3. [...] the mean power consumption of a circuit implementing
realization [above] is independent of [x̄, ȳ], even in the presence of glitches
or the delayed arrival of some inputs.”

Although we do not contradict the independence of the mean with the input
values, we show that a probing attack can leak ȳ easily. We further show that a
cascade of this construction also leaks with the mean of power consumption.

In the attacks, we will assume that none of the yi variables have a glitch, and
that they are independent from the glitches in the xi variables.

With Assumption (1), we have

glitch(xi ∧ yj) = glitch(xi)ȳj

glitch((xi ∧ yj) ⊕ (xj ∧ yi)) = glitch(xi)ȳj + glitch(xj)ȳi

glitch(z1) = glitch(x2)(ȳ2 + ȳ3) + glitch(x3)ȳ2
glitch(z2) = glitch(x3)(ȳ3 + ȳ1) + glitch(x1)ȳ3
glitch(z3) = glitch(x1)(ȳ1 + ȳ2) + glitch(x2)ȳ1

so

Σpower =
∑

i,j

glitch(xi)ȳjpAND +
∑

i

glitch(xi)(2ȳ1 + 2ȳ2 + 2ȳ3 − ȳi)pXOR

In the glitch value of each gate, we can see that at least one variable ȳi is not
present (indeed, the construction was made for that). Since the ȳi are uniformly
distributed conditioned to ȳ = ȳ1 ⊕ ȳ2 ⊕ ȳ3, no matter the value of ȳ, the two



62 S. Vaudenay

present ȳi variables are uniformly distributed. So, the distribution of any glitch
value is independent from ȳ. Consequently, it is the case for their mean value.
Since Σpower is a linear combination of these values, due to the linearity of the
mean operator, this is also the case for Σpower.

With Assumption (2), by writing max(ȳi, ȳj) = ȳi ∨ ȳj , we have

glitch(xi ∧ yj) = glitch(xi)ȳj

glitch((xi ∧ yj) ⊕ (xj ∧ yi)) = max(glitch(xi)ȳj , glitch(xj)ȳi)
glitch(z1) = max(glitch(x2)(ȳ2 ∨ ȳ3), glitch(x3)ȳ2)
glitch(z2) = max(glitch(x3)(ȳ3 ∨ ȳ1), glitch(x1)ȳ3)
glitch(z3) = max(glitch(x1)(ȳ1 ∨ ȳ2), glitch(x2)ȳ1)

Like above, the mean value of any of these expression is independent from ȳ.
With Assumption (3), we have

glitch(xi ∧ yj) = glitch(xi)ȳj

glitch((xi ∧ yj) ⊕ (xj ∧ yi)) = glitch(xi)ȳj ⊕ glitch(xj)ȳi

glitch(z1) = glitch(x2)(ȳ2 ⊕ ȳ3) ⊕ glitch(x3)ȳ2
glitch(z2) = glitch(x3)(ȳ3 ⊕ ȳ1) ⊕ glitch(x1)ȳ3
glitch(z3) = glitch(x1)(ȳ1 ⊕ ȳ2) ⊕ glitch(x2)ȳ1

so

Σpower =
∑

i,j

glitch(xi)ȳjpAND +

(
∑

i

glitch(xi)((ȳi ⊕ ȳi+1) + ȳi−1)

−
∑

i

glitch(xi)glitch(xi+1)((ȳi ⊕ ȳi+1)ȳi)

)

pXOR

Like above, the mean value of any of these expression is independent from ȳ.

4.1 Power Analysis not Based on the Mean Value (All Assumptions)

We have already seen that no glitch value has a distribution which depends
on ȳ. So let us focus on the distribution of Σpower. With glitch(x1) = 1 and
glitch(x2) = glitch(x3) = 0, we obtain with Assumption (1) that

Σpower = (ȳ1 + ȳ2 + ȳ3)(pAND + 2pXOR) − ȳ1pXOR

With Assumption (2), our previous computations simplify to

glitch(xi ∧ yj) =
{

0 if i �= 1
ȳj if i = 1

glitch((x2 ∧ y3) ⊕ (x3 ∧ y2)) = 0 glitch(z1) = 0
glitch((x3 ∧ y1) ⊕ (x1 ∧ y3)) = ȳ3 glitch(z2) = ȳ3
glitch((x1 ∧ y2) ⊕ (x2 ∧ y1)) = ȳ2 glitch(z3) = ȳ1 ∨ ȳ2
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so
Σpower = (ȳ1 + ȳ2 + ȳ3)pAND + ((ȳ1 ∨ ȳ2) + ȳ2 + 2ȳ3)pXOR

With Assumption (3), we have the same results except glitch(z3) = ȳ1 ⊕ ȳ2. So

Σpower = (ȳ1 + ȳ2 + ȳ3)pAND + ((ȳ1 ⊕ ȳ2) + ȳ2 + 2ȳ3)pXOR

We count the number of gates with a glitched output following the two
assumptions. We also indicate Σpower assuming that pAND = 1 and pXOR = 4.1

The results are on Table 1.

Table 1. Distributions for a glitch in x1 in the threshold implementation

ȳ ȳ1 ȳ2 ȳ3 Assumption (1) Assumption (2) Assumption (3)

#AND #XOR Σpower #AND #XOR Σpower #AND #XOR Σpower

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 2 4 18 2 4 18 2 4 18

0 1 0 1 2 3 14 2 3 14 2 3 14

0 1 1 0 2 3 14 2 2 10 2 1 6

mean 1.5 2.5 11.5 1.5 2.25 10.5 1.5 2 9.5

variance 0.75 2.25 46.75 0.75 2.1875 44.75 0.75 2.5 48.75

1 0 0 1 1 2 9 1 2 9 1 2 9

1 0 1 0 1 2 9 1 2 9 1 2 9

1 1 0 0 1 1 5 1 1 5 1 1 5

1 1 1 1 3 5 23 3 4 19 3 3 15

mean 1.5 2.5 11.5 1.5 2.25 10.5 1.5 2 9.5

variance 0.75 2.25 46.75 0.75 1.1875 26.75 0.75 0.5 4.75

stat. dist. 1 1 1 1 0.5 1 1 0.5 1

Clearly, the distributions of Σpower|ȳ = 0 and Σpower|ȳ = 1 are very differ-
ent. For instance, the parity of #AND is always equal to ȳ. The supports of the
distributions #XOR|ȳ = 0 and #XOR|ȳ = 1 are disjoint with Assumption (1).
So, we can distinguish them with one sample with advantage 1. With
Assumptions (2) or (3), the statistical distance of the distributions #XOR|ȳ = 0
and #XOR|ȳ = 1 is 1

2 . So, a trivial statistic with a couple of samples would
recover ȳ assuming no noise.

We consider several types of distinguishers base on measuring #XOR. As the
impact of the glitched XORs on Σpower is bigger, we can assume we measure it
this way. We could also consider other side channel attacks which can separate
the XORs from and ANDs.

1 We took pXOR = 4pAND as an example, which justifies by assuming that we use 4
NAND gates to make a XOR gate. But this must only be taken as an example. Note
that an AND requires two NAND gates but the second one which is used as a NOT
gate can often cancel with subsequent gates.
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Best Distinguisher. With Assumption (1) and #XOR, the best distinguisher
returns 0 if #XOR ∈ {0, 3, 4} and it returns 1 if #XOR ∈ {1, 2, 5}. A statistical
distance of 1 means that we can guess ȳ with an error probability 0. A statistical
distance of 0.5 means that we can guess ȳ with an error probability 1

4 .
In practice, measuring #XOR may give a noisy value making it hard to

implement this distinguisher. I.e., 0 and 1 may be too close to be distinguishable,
as well as 2 and 3, and 4 and 5.

Threshold Distinguisher. We consider the distinguisher giving 1#XOR+noise≤τ ,
i.e. 1 if #XOR (rather its noisy value from a side channel) is below a given
threshold τ . Assuming that noise follows an independent normal distribution
with mean 0 (w.l.o.g. by adjusting τ) and variance σ2V (#XOR), we have

Pr[noise ≤ −x] =
1
2
erfc

(
x

√
2σ2V (#XOR)

)

so the Type I error in guessing ȳ is

α =
1
2

∑

i

erfc

(
i − τ

√
2σ2V (#XOR)

)

Pr[#XOR = i|ȳ = 0]

The Type II error is

β = 1 − 1
2

∑

i

erfc

(
i − τ

√
2σ2V (#XOR)

)

Pr[#XOR = i|ȳ = 1]

For Assumption (1), we have V (#XOR) = 9
4 and

α =
1
2

5∑

i=0

erfc

(
i − τ
3σ
2

√
2

)

Pr[#XOR = i|ȳ = 0]

=
1
8

(

erfc

(
−τ

3σ
2

√
2

)

+ 2erfc

(
3 − τ
3σ
2

√
2

)

+ erfc

(
4 − τ
3σ
2

√
2

))

For τ = 2.5, using erfc(−x) = 2 − erfc(x), we obtain

α =
1
4

+
1
8

(

−erfc

(
2.5

3σ
2

√
2

)

+ 2erfc

(
0.5

3σ
2

√
2

)

+ erfc

(
1.5

3σ
2

√
2

))

Similarly, we have β = α. So, we have Pe = α = β and

Pe =
1
4

+
1
8

(

−erfc

(
2.5

3σ
2

√
2

)

+ erfc

(
1.5

3σ
2

√
2

)

+ 2erfc

(
0.5

3σ
2

√
2

))

=
1
2

−Ω(σ−3)

As σ goes from 0 to infinity, Pe grows from 1
4 to 1

2 . For instance, for σ = 1
2 , we

have Pe ≈ 38%. For σ = 1, we have Pe ≈ 46%. For σ = 2, we have Pe ≈ 49.35%.
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So, even with a big noise, we can recover ȳ with an interesting advantage with
only one sample.

Of course, we can amplify this advantage by using several samples. Since we
have α = β = Pe, by using (4) we obtain a new error probability of P ′

e = e−2 ≈
13% with N = 2

(
1
2 − Pe

)−2 = O(σ6). We obtain the following table:

σ: 0.5 1 1.5 2 2.5 3 3.5 4

N : 143 1 417 9 979 46 765 163 627 465 879 1 141 284 2 495 478

So, measuring the number of XORs (a number between 0 and 5) with a big noise
of standard deviation twice what we want to measure still allows to deduce ȳ
with less than 50 000 samples with Assumption (1).

Moment Distinguisher. Instead of computing the average of Σpower, we
compute the moment E((Σpower)d) of order d, just like in Moradi [6,10].

With Assumption (1), we have

E(Σpower|y = 0) = E(Σpower|y = 1) =
3
2
pAND +

5
2
pXOR

V (Σpower|y = 0) = V (Σpower|y = 1) =
3
4
p2AND +

5
2
pANDpXOR +

9
4
p2XOR

but the moments of order d = 3 differ. So (Σpower)3 leaks ȳ.
With Assumption (2), we have

E(Σpower|y = 0) = E(Σpower|y = 1) =
3
2
pAND +

9
4
pXOR

V (Σpower|y = 0) =
3
4
p2AND +

9
4
pANDpXOR +

35
16

p2XOR

V (Σpower|y = 1) =
3
4
p2AND +

7
4
pANDpXOR +

19
16

p2XOR

V (Σpower|y = 0) − V (Σpower|y = 1) =
1
2
pANDpXOR + p2XOR

With Assumption (3), we have

V (Σpower|y = 0) =
3
4
p2AND + 2pANDpXOR +

5
2
p2XOR

V (Σpower|y = 1) =
3
4
p2AND +

1
2
pANDpXOR +

1
2
p2XOR

V (Σpower|y = 0) − V (Σpower|y = 1) =
3
2
pANDpXOR + 2p2XOR

Clearly, the mean of (Σpower)2 (i.e., d = 2) leaks ȳ with Assumptions (2)
and (3). For Assumption (1), the same holds with (Σpower)3.
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If E(Σpower) is known and we measure Z = S + noise with S = Σpower −
E(Σpower) and a centered Gaussian noise of variance σ2V (Σpower), we can
compute Z ′ = S2 + noise′ with noise′ = 2Snoise + noise2 − σ2V (Σpower). So,
it is as if we measured S2 with noise noise′. The variance of noise′ is roughly
4σ2V (S2), so the attack works as if we just doubled σ. For instance, our previous
computation shows that by doubling σ we roughly multiply N by 50. With this
approach, threshold implementation penalizes the precision of the measurement.

4.2 Probing Attack with Two Probes Based on the Mean Value
(All Assumptions)

We can further see what probing can yield.
With Assumptions (1, 3), we have glitch(z2) = ȳ3 and glitch(z3) = ȳ1 ⊕ ȳ2.

So, probing both z2 and z3 is enough to recover ȳ.
With Assumption (2), this leaks (ȳ3, ȳ1 ∨ ȳ2). For ȳ = 0, the distribution

of this couple is Pr[(0, 0)] = 1
4 , Pr[(0, 1)] = 1

4 , Pr[(1, 1)] = 1
2 . For ȳ = 1, the

distribution of this couple is Pr[(0, 1)] = 1
2 , Pr[(1, 0)] = 1

4 , Pr[(1, 1)] = 1
4 . So, the

statistical distance is 1
2 and the probability of error for guessing ȳ is 1

4 .
As an example, with Assumption (1) we compute S = glitch(z2)+glitch(z3)−

glitch(z2)glitch(z3). Assuming that both glitch(z2) and glitch(z3) are subject to
some noise with same parameter σ, the value we obtain for S is similar to a
noisy value with the parameter σ multiplied by a constant factor less than 3. In
our table, this results in a complexity N multiplied by a factor 300.

We recall that [7] claims no security when probing two values.

4.3 Power Analysis and Probing Attack on Two ANDs Based on
the Mean Value (Assumptions (2) or (3))

We use two consecutive threshold AND gates to compute the AND between z
and another shared bit u to obtain v = x ∧ y ∧ u. We assume no glitch on the y
and u variables. We assume that only x1 has a glitch. We have

z1 = (x2 ∧ y2) ⊕ ((x2 ∧ y3) ⊕ (x3 ∧ y2)) v1 = (z2 ∧ u2) ⊕ ((z2 ∧ u3) ⊕ (z3 ∧ u2))
z2 = (x3 ∧ y3) ⊕ ((x1 ∧ y3) ⊕ (x3 ∧ y1)) v2 = (z3 ∧ u3) ⊕ ((z1 ∧ u3) ⊕ (z3 ∧ u1))
z3 = (x1 ∧ y1) ⊕ ((x1 ∧ y2) ⊕ (x2 ∧ y1)) v3 = (z1 ∧ u1) ⊕ ((z1 ∧ u2) ⊕ (z2 ∧ u1))

With Assumption (1), the linearity of the equations make sure that the expected
value of the glitch variables are independent from ȳ.

Now, under Assumption (2), we have

glitch(z1) = 0 glitch(v1) = max(glitch(z2)(ū2 ∨ ū3), glitch(z3)ū2)
glitch(z2) = ȳ3 = max(ȳ3(ū2 ∨ ū3), (ȳ1 ∨ ȳ2)ū2)
glitch(z3) = ȳ1 ∨ ȳ2

so we can now try to probe v1. We have the 3 following cases:

– ū2 = ū3 = 0 (probability 1
4 ): we have v1 = 0, no glitch and nothing leaks.
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– ū2 = 0 and ū3 = 1 (probability 1
4 ): v1 has a glitch if and only if ȳ3 = 1.

– ū2 = 1 (probability 1
2 ): v1 has a glitch when ȳ1 ∨ ȳ2 ∨ ȳ3 = 1. For ȳ = 1, there

is always a glitch. For ȳ = 0, there is a glitch with probability 3
4 .

So, if ȳ = 0, we observe a glitch in v1 with probability 1
4 ×0+ 1

4 × 1
2 + 1

2 × 3
4 = 1

2 .
If ȳ = 1, the probability becomes 1

4 × 0 + 1
4 × 1

2 + 1
2 × 1 = 5

8 . Hence, the mean
value reveals ȳ. A single sample gives an error probability of 7

17 .
Now, under Assumption (3), we have

glitch(z1) = 0 glitch(z3) = ȳ1 ⊕ ȳ2
glitch(z2) = ȳ3 glitch(v1) = ȳ3(ū2 ⊕ ū3) ⊕ (ȳ1 ⊕ ȳ2)ū2

so we can try to probe v1 again. With probability 1
4 , we have ū2 ⊕ ū3 = ū2 = 1

so glitch(v1) = ȳ. Otherwise, glitch(v1) is uniformly distributed. So, for ȳ = 0,
E(glitch(v1)) = 3

8 and for ȳ = 1, E(glitch(v1)) = 5
8 . Again, ȳ leaks from the

mean value. A single sample gives an error probability of 3
8 .

The attack with noisy values is hardly more complicated than for n = 1.
Note that [7] does not claim any security on the composition of two AND

gates. But this attacks clearly shows the limitation of this approach.

5 Implementation with n = 4

Assuming that (x1, x2, x3, x4) shares x, (y1, y2, y3, y4) shares y, and (z1, z2, z3, z4)
shares z, Nikova, Rechberger, and Rijmen [7] propose

z1 = ((x3 ⊕ x4) ∧ (y2 ⊕ y3)) ⊕ y2 ⊕ y3 ⊕ y4 ⊕ x2 ⊕ x3 ⊕ x4

z2 = ((x1 ⊕ x3) ∧ (y1 ⊕ y4)) ⊕ y1 ⊕ y3 ⊕ y4 ⊕ x1 ⊕ x3 ⊕ x4

z3 = ((x2 ⊕ x4) ∧ (y1 ⊕ y4)) ⊕ y2 ⊕ x2

z4 = ((x1 ⊕ x2) ∧ (y2 ⊕ y3)) ⊕ y1 ⊕ x1

It was proposed as an improvement to the n = 3 scheme as it makes all zi

shares balanced. This property is called uniformity in [8]. It was used to address
composition. So, we look again at the composition of two AND circuits.

Again, we assume glitch(x1) = 1, glitch(x2) = glitch(x3) = glitch(x4) = glitch
(yi) = 0 for i = 1, . . . , 4 and glitch(x1) = 1. So, glitch(z1) = 0, glitch(z2) = (ȳ1⊕ȳ4)
+ 1, glitch(z3) = 0, and glitch(z4) = (ȳ2 ⊕ ȳ3) + 1 with Assumption (1).

We compute v = z∧u = (x∧y)∧u using the threshold implementation with

v1 = ((z3 ⊕ z4) ∧ (u2 ⊕ u3)) ⊕ u2 ⊕ u3 ⊕ u4 ⊕ z2 ⊕ z3 ⊕ z4

v2 = ((z1 ⊕ z3) ∧ (u1 ⊕ u4)) ⊕ u1 ⊕ u3 ⊕ u4 ⊕ z1 ⊕ z3 ⊕ z4

v3 = ((z2 ⊕ z4) ∧ (u1 ⊕ u4)) ⊕ u2 ⊕ z2

v4 = ((z1 ⊕ z2) ∧ (u2 ⊕ u3)) ⊕ u1 ⊕ z1

So, we have
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glitch(v1) = (ȳ2 ⊕ ȳ3 + 1)(ū2 ⊕ ū3) + (ȳ1 ⊕ ȳ4) + (ȳ2 ⊕ ȳ3) + 2
glitch(v2) = ȳ2 ⊕ ȳ3 + 1
glitch(v3) = ((ȳ1 ⊕ ȳ4) + (ȳ2 ⊕ ȳ3) + 2)(ū1 ⊕ ū4) + ȳ1 ⊕ ȳ4 + 1
glitch(v4) = ((ȳ1 ⊕ ȳ4) + 1)(ū2 ⊕ ū3)

Hence, we can just probe v1 and see if it has a glitch. With probability 1
2 , we

have ū2 = ū3 so glitch(v1) = 2(ȳ2 ⊕ ȳ3) + (ȳ1 ⊕ ȳ4) + 3. In other cases, we have
glitch(v1) = (ȳ1 ⊕ ȳ4) + (ȳ2 ⊕ ȳ3) + 2 which is uniformly distributed. So, by
repeating enough times, the majority of glitch(v1) is ȳ with high probability.

The attack with noisy values is hardly more complicated than for n = 1.
Computations with Assumptions (2) or (3) are similar.
Note that [7] does not claim any security on the composition of two AND

gates. However, the n = 4 implementation was made to produce a balanced
sharing of the output to address composability through pipelining, meaning by
adding a layer of registers between the circuits we want to compose. Here, we
consider the composition of two AND gates without pipelining. Indeed, we cer-
tainly do not want to add registers in between two single gates! But our attacks
shows that the entire layer of circuit that we want to compose through pipelining
must be analyzed as a whole, since single gates clearly do not compose well.

6 Higher-Order Threshold Implementation with n = 5

In [1], Bilgin et al. propose an example of higher-order threshold implementation.
Equation (1) in [1] implements ȳ = 1 ⊕ ā ⊕ b̄c̄. To obtain the implementation of
an AND gate, we just remove the 1 and the a terms and obtain

y1 = (b2 ∧ c2) ⊕ (b1 ∧ c2) ⊕ (b2 ∧ c1) y6 = (b2 ∧ c4) ⊕ (b4 ∧ c2)
y2 = (b3 ∧ c3) ⊕ (b1 ∧ c3) ⊕ (b3 ∧ c1) y7 = (b5 ∧ c5) ⊕ (b2 ∧ c5) ⊕ (b5 ∧ c2)
y3 = (b4 ∧ c4) ⊕ (b1 ∧ c4) ⊕ (b4 ∧ c1) y8 = (b3 ∧ c4) ⊕ (b4 ∧ c3)
y4 = (b1 ∧ c1) ⊕ (b1 ∧ c5) ⊕ (b5 ∧ c1) y9 = (b3 ∧ c5) ⊕ (b5 ∧ c3)
y5 = (b2 ∧ c3) ⊕ (b3 ∧ c2) y10 = (b4 ∧ c5) ⊕ (b5 ∧ c4)

Then, Eq. (2) in [1] decreases the number of shares to 5 by

z1 = (b2 ∧ c2) ⊕ (b1 ∧ c2) ⊕ (b2 ∧ c1) z5 = (b2 ∧ c3) ⊕ (b3 ∧ c2) ⊕ (b2 ∧ c4)⊕
z2 = (b3 ∧ c3) ⊕ (b1 ∧ c3) ⊕ (b3 ∧ c1) = (b4 ∧ c2) ⊕ (b5 ∧ c5) ⊕ (b2 ∧ c5)⊕
z3 = (b4 ∧ c4) ⊕ (b1 ∧ c4) ⊕ (b4 ∧ c1) = (b5 ∧ c2) ⊕ (b3 ∧ c4) ⊕ (b4 ∧ c3)⊕
z4 = (b1 ∧ c1) ⊕ (b1 ∧ c5) ⊕ (b5 ∧ c1) (b3 ∧ c5) ⊕ (b5 ∧ c3) ⊕ (b4 ∧ c5)⊕

(b5 ∧ c4)

This 2nd order implementation is supposed to resist to probing attacks with two
probes. Normally, the transform of (y1, . . . , y10) to (z1, . . . , z5) by zi = yi for
i < 5 and z5 = y5 ⊕ · · · ⊕ y10 must be done with intermediate registers to avoid
the propagation of glitches. We wonder what happens without these registers.

Let consider an attack probing z4 and z5. If there is a glitch in b5 and no
other input share, we have glitch(z4) = c̄1 and
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Table 2. Distribution of (glitch(z4), glitch(z5)) for a glitch in b5 in the 2nd order thresh-
old implementation

c̄ c̄1c̄2c̄3c̄4c̄5 A. (1) A. (2) A. (3)

0 0 0 0 0 0 (0, 0) (0, 0) (0, 0)
0 0 0 0 1 1 (0, 2) (0, 1) (0, 0)
0 0 0 1 0 1 (0, 2) (0, 1) (0, 0)
0 0 1 0 0 1 (0, 2) (0, 1) (0, 0)
0 0 0 1 1 0 (0, 2) (0, 1) (0, 0)
0 0 1 0 1 0 (0, 2) (0, 1) (0, 0)
0 0 1 1 0 0 (0, 2) (0, 1) (0, 0)
0 0 1 1 1 1 (0, 4) (0, 1) (0, 0)
0 1 0 0 0 1 (1, 1) (1, 1) (1, 1)
0 1 0 0 1 0 (1, 1) (1, 1) (1, 1)
0 1 0 1 0 0 (1, 1) (1, 1) (1, 1)
0 1 1 0 0 0 (1, 1) (1, 1) (1, 1)
0 1 0 1 1 1 (1, 3) (1, 1) (1, 1)
0 1 1 0 1 1 (1, 3) (1, 1) (1, 1)
0 1 1 1 0 1 (1, 3) (1, 1) (1, 1)
0 1 1 1 1 0 (1, 3) (1, 1) (1, 1)

mean ( 1
2
, 2) ( 1

2
, 15
16

) ( 1
2
, 1
2
)

variance ( 1
4
, 1) ( 1

2
, 15
256

) ( 1
2
, 1
4
)

c̄ c̄1c̄2c̄3c̄4c̄5 A. (1) A. (2) A. (3)

1 0 0 0 0 1 (0, 1) (0, 1) (0, 1)
1 0 0 0 1 0 (0, 1) (0, 1) (0, 1)
1 0 0 1 0 0 (0, 1) (0, 1) (0, 1)
1 0 1 0 0 0 (0, 1) (0, 1) (0, 1)
1 0 0 1 1 1 (0, 3) (0, 1) (0, 1)
1 0 1 0 1 1 (0, 3) (0, 1) (0, 1)
1 0 1 1 0 1 (0, 3) (0, 1) (0, 1)
1 0 1 1 1 0 (0, 3) (0, 1) (0, 1)
1 1 0 0 0 0 (1, 0) (1, 0) (1, 0)
1 1 0 0 1 1 (1, 2) (1, 1) (1, 0)
1 1 0 1 0 1 (1, 2) (1, 1) (1, 0)
1 1 1 0 0 1 (1, 2) (1, 1) (1, 0)
1 1 0 1 1 0 (1, 2) (1, 1) (1, 0)
1 1 1 0 1 0 (1, 2) (1, 1) (1, 0)
1 1 1 1 0 0 (1, 2) (1, 1) (1, 0)
1 1 1 1 1 1 (1, 4) (1, 1) (1, 0)

mean ( 1
2
, 2) ( 1

2
, 15
16

) ( 1
2
, 1
2
)

variance ( 1
4
, 1) ( 1

2
, 15
256

) ( 1
2
, 1
4
)

glitch(z5) = glitch((b5 ∧ c2) ⊕ (b5 ∧ c3) ⊕ (b5 ∧ c4) ⊕ (b5 ∧ c5))

With Assumption (1), this is glitch(z5) = c̄2+ c̄3+ c̄4+ c̄5. With Assumption (2),
this is glitch(z5) = max(c̄2, c̄3, c̄4, c̄5). With Assumption (3), this is glitch(z5) =
c̄2⊕ c̄3⊕ c̄4⊕ c̄5. So, we obtain the distributions for (glitch(z4), glitch(z5)) which is
on Table 2. As we can see, the mean and the variance do not leak (as intended).
However, the distributions are quite far apart.

Indeed, for Assumption (3), we have c̄ = glitch(z4) ⊕ glitch(z5) so it is clear
that c̄ leaks. For Assumption (1), we have c̄ = glitch(z4) ⊕ (glitch(z5) mod 2) so
it is clear that c̄ leaks as well. For Assumption (2), the distributions are

Distribution (0, 0) (0, 1) (1, 0) (1, 1)

(glitch(z4), glitch(z5))|c̄ = 0 1/16 7/16 0/16 8/16

(glitch(z4), glitch(z5))|c̄ = 1 0/16 8/16 1/16 7/16

so the statistical distance is 1
8 . This means that from a single value we can

deduce c̄ with an error probability of Pe = 1
2 − 1

16 . Of course, this amplifies like
in (4) using more samples. Hence, two probes leak quite a lot. So, we clearly see
that avoiding the extra registers needed to avoid the number of shares to inflate
makes the implementation from [1] insecure.
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7 Conclusion

We have shown that the threshold implementations are quite weak against many
simple attacks: distinguishers based on non-linear functions on the power traces
(as simple as a threshold function or a power function), multiple probes, and
linear distinguishers for a cascade of circuits. Although they do not contradict the
results by their authors, these attacks show severe limitations on this approach.

We have seen that compared to the attack on the AND gate with no protec-
tion, the threshold implementation proposals only have the effect to amplify the
noise of the side-channel attack by a constant factor. Therefore, we believe that
there is no satisfactory protection for attacks based on glitches.
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Abstract. The winner of the Advanced Encryption Standard (AES)
competition, Rijndael, strongly resists mathematical cryptanalysis. How-
ever, side channel attacks such as differential power analysis and template
attacks break many AES implementations.

We propose a cheap and effective countermeasure that exploits the
diversity of algorithms consistent with Rijndael’s general design philoso-
phy. The secrecy of the algorithm settings acts as a second key that the
adversary must learn to mount popular side channel attacks. Further-
more, because they satisfy Rijndael’s security arguments, these algo-
rithms resist cryptanalytic attacks.

Concretely, we design a 72-bit space of SubBytes variants and a 36-bit
space of ShiftRows variants. We investigate the mathematical strength
provided by these variants, generate them in SageMath, and study their
impact on differential power analysis and template attacks against field-
programmable gate arrays (FPGAs) by analyzing power traces from the
DPA Contest v2 public dataset.

Keywords: Side channel attack · Side channel countermeasure · Guess-
ing entropy · Differential power analysis · Template attack · Hamming
weight · Advanced Encryption Standard · Rijndael · FPGA

1 Introduction

Differential power analysis (DPA) [1] and template attacks [2] can quickly
break secure, correctly implemented cryptographic algorithms [3]. They harness
information leaked by the physical implementation of a cryptosystem—outside
the scope of cryptographic models, provable security claims, and mathemati-
cal cryptanalysis. Researchers have proposed countermeasures to side channel
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attacks ranging from isolating the device to masking the signal [4,5]. However,
these approaches have drawbacks, especially for lightweight and mobile security.

We leverage work from the Advanced Encryption Standard (AES) [6] process
to argue cryptanalytic security, while deriving side channel resilience from diver-
sity available within the design principles of the winner Rijndael. NIST’s bur-
densome competition only certified a single algorithm for standardization, even
though Rijndael’s security arguments cover a range of settings.

We explore the space of Rijndael variants that stay within these security
arguments to maintain optimal cryptanalytic security. These “tunable knobs”
increase resistance to DPA and template attacks by introducing a second source
of entropy. Additionally, as with Clavier et al. [7], our method complements
masking and shuffling techniques.

1.1 Prior Work

Barkan and Biham explored dual ciphers of AES [8], which are variant ciphers
whose plaintexts, ciphertexts, and keys can be mapped to those of AES via
invertible transformations. Initial works showed 240 duals of AES that arise
from the choice of 30 irreducible polynomials of degree 8 in GF(2)[x] and 8
choices of the primitive root of this polynomial. Rostovtsev and Shemyakina [9]
further propose that each of the 16 SubBytes operations could be different.

Kerckhoffs’s principle notwithstanding, one might hope that choosing a ran-
dom variant on the fly could obfuscate the AES circuitry. Indeed, several works
have designed and implemented modular FPGAs that can choose on the fly
between the 240 duals, either for performance reasons [10] or in hope of improv-
ing security [11]. However, Moradi and Mischke [12] demonstrated that a single,
reconfigurable chip implementing the AES duals (without LUTs) is insecure
because power side channels can leak the variant choice. Moreover, even while
subsequent works have discovered up to 61,200 AES duals [13,14], the space of
duals remains small enough to brute force.

To overcome this limitation, other prior work seeks to design a large corpus of
variants based on Rijndael, without connecting mathematical security to that of
the standard. Jing et al. [15] initiate this line of research by proposing variations
of SubBytes and MixColumns; these results have since been superceded by other
works. Jing et al. [16] extensively analyze the space of SubBytes variants possible
through the use of different affine transformations. Several works propose varying
the 4 row shift offsets in the ShiftRows operation [7,16]. Finally, a few works
find alternate MixColumns matrices with higher multiplicative order [17,18].

1.2 Our Contributions

This paper proposes a moving target defense against a side channel attacker. We
contribute the first work that simultaneously:
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1. Generates variants that maintain both the design and mathematical strength
of AES.

2. Leverages the variation in round function components for improved resistance
to differential power analysis (DPA) and template attacks.

By contrast, prior work either abandons the structure of AES, weakens its crypt-
analytic strength, or fails to justify improved side channel resistance. Jing et al.
claim that variation increases strength against attacks, but fail to specify any
attacks [16]. Furthermore, they allow fixed points in SubBytes, which reduces
cryptanalytic strength. They also fail to identify redundancy between compo-
nents or quantify the security provided.

Section 2 describes the structure of our Rijndael variants and calculates the
number of unique variants. Section 3 determines the implementation cost of
our scheme. Section 4 demonstrates that our variants retain the design prin-
ciples necessary to argue for its resistance to common cryptanalytic attacks;
we also provide open-source SageMath code that automatically produces vari-
ants and tests them against cryptanalytic metrics (https://github.com/mit-ll/
Diversity-Within-Rijndael). Section 5 argues that our variants’ diversity impedes
DPA and template attacks; we augment these claims with analysis of the DPA
Contest v2 dataset [3].

1.3 Envisioned Usage

As side channel resistance depends on usage, this work focuses on Rijndael
variants implemented on field-programmable gate arrays (FPGAs). More con-
cretely, we envision each FPGA being hardcoded with a single variant.1 This
technique is simpler and more performant (in runtime and chip size) than prior
work [11,12,16] that envisioned a single FPGA that can change variants on
the fly.

We stress the compatibility of this approach with Kerckhoffs’s principle. Our
approach treats pieces of the round structure internals as a second component
of the key. While a particular variant is fixed at compilation time, this choice
can be altered by reprogramming the device or obtaining a new one.

In some scenarios, altering an algorithm costs more than altering a key; in
those cases, key evolution [20] could make a better side-channel deterrent. Our
techniques suit an environment where: Varying the algorithm costs no more than
varying the key. Continuous rekeying costs too much, in computation or commu-
nication, or insufficient robustness can harm the availability of communication.
A block cipher must remain robust against side channel attacks for a long time.

One such scenario involves military communication devices that require high
availability, are difficult to adjust in the field, and are reconfigured easily back
at home.

1 For instance, one can modify Manteena’s implementation of AES in VHDL [19,
Appendix D] to produce different, static mappings of byte values in SubBytes, map-
pings of byte locations in ShiftRows, and matrix constants in MixColumns.

https://github.com/mit-ll/Diversity-Within-Rijndael
https://github.com/mit-ll/Diversity-Within-Rijndael
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2 The Design of Our Rijndael Variants

AES [6] operates on a 16-byte state organized into a 4 × 4 matrix of bytes. It
performs several rounds that comprise four algorithms: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. The round function satisfies the two primary
concepts for designing ciphers from Claude Shannon: confusion and diffusion [21].
Confusion states that the effects should be key-dependent and hard to predict.
In AES, AddRoundKey provides key-dependence and SubBytes provides non-
linearity. Diffusion states that a minor change in the input should disperse to
many output locations. In AES, MixColumns provides local diffusion within a
column and ShiftRows spreads the diffusion globally. The synergy between AES
components produces strength beyond Shannon’s original vision: its wide trail
strategy [22] permits strong claims of AES’ resistance to differential and linear
cryptanalytic attacks.

CiphertextIntermediate 
value

AddRoundKeyShiftRows
36 bits

SubBytes
72 bits

Fig. 1. Schema of last round of AES, simplified to four bytes in two columns. SubBytes
and AddRoundKey act on each byte independently, and ShiftRows disperses bytes to
different columns (dashed regions) without altering values.

Figure 1 shows a simplified last round of AES along with our theoretical
estimates of the variety possible within components. First, we describe the four
round function operations in AES and our variants of these operations. Second,
we calculate how the entropies of our variations combine.

2.1 SubBytes

In AES, SubBytes is a fixed nonlinear permutation that independently replaces
each byte of the input with a different value. It provides limited confusion at low
cost. Concretely, SubBytes concatenates three steps:

1. Inversion fp(x) = x−1 over the finite field GF(256) = GF (2)[x]/(p(x)), where
p(x) = x8 + x4 + x3 + x + 1.
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2. Linear transformation g(x) = Ax over the vector space GF(2)8.
3. Addition2 of a constant h(x) = x + b in GF(2)8.

AES’ security relies on three properties of SubBytes. First, the function has high
algebraic complexity when viewed in a single mathematical space [23]. Second,
SubBytes must be highly nonlinear : possessing low linear biases and difference
propagations. Third, SubBytes cannot have any fixed or anti-fixed points.

Our variations follow Jing et al.’s procedure to preserve the first two prop-
erties [16]. In the inversion step, we choose the modulus p from any of the 30
irreducible polynomials of degree 8 over GF(2).3 In the linear transformation,
we pick an invertible matrix A (i.e., having linearly independent rows) from the∏7

i=0(256 − 2i) ≈ 1.16 × 262 such choices.
Unlike Jing et al. [16], our variations also preserve the third property by

restricting b ∈ GF(2)8 to choices that avoid any (anti-)fixed points in the com-
pleted SubBytes permutation. We approximate the fraction of choices that meet
this constraint by replacing f and g with a truly random function R. In this case,
PrR[R(x) + b has no (anti-)fixed points] = (254/256)256 ≈ 0.134. Our empirical
analysis with 50 million randomly-sampled choices shows that the fraction of
valid b is 0.135, close to our theoretical estimate. Hence, there are slightly more
than 5 bits of entropy in the choice of the constant b.

Finally, we observe that the three steps contribute independent sources of
entropy. That is, for all pairs of inverse functions fp and fp′ , linear transforma-
tions g and g′, and constant addition steps h and h′, h ◦ g ◦ fp �= h′ ◦ g′ ◦ fp′

unless the pairs are identical. This statement follows by rearranging the above
inequality to (h′ ◦ g′)−1 ◦ h ◦ g �= fp′ ◦ (fp)−1 and empirically verifying that the
right side is nonaffine for p �= p′ whereas the left side is affine.

In total, our design yields more than 272 variants of SubBytes.4 We will show
in Sect. 4 that the variants retain Rijndael’s resistance toward mathematical
cryptanalysis.

2.2 ShiftRows

AES’ ShiftRows operation transposes the 16 bytes of state by shifting each
row of the state matrix cyclically to the left by a fixed number of bytes.
ShiftRows contributes to the wide trail strategy due to its diffusion optimal-
ity : it maps the 4 bytes within each column of the round state to 4 different

2 Our variants perform XOR, just as AES does. By contrast, Rijmen and Oswald [13]
create variants that preserve AES’ original SubBytes functionality, at the cost of
replacing XOR with a (slower and leakier) table lookup.

3 It is also possible to choose the primitive root of the polynomial used to represent
elements of GF(256) [9]. This yields 3 bits of entropy independent of the affine
transformation. However, SageMath encapsulates its choice of primitive root, so our
work skips this extra flexibility.

4 We remark that Jing et al.’s calculation of this value [16] is inaccurate by a multi-
plicative factor of 7. Coincidentally, this 1/7 error closely matches the omitted 13.5 %
throughput of SubBytes lacking fixed points.
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columns [22, Definition 9.4.1]. We describe three, increasingly large, families of
ShiftRows variants that maintain diffusion optimality.
Cyclic preserving. Permutations in this family maintain AES SubBytes’ cyclic
nature. Previously considered [7,16], these variants choose different cyclic offsets
for each row of ShiftRows. This family contains 4! = 24 variants.

a) Input b) Row preserving d) Our constructionc) Transpose

Fig. 2. Depiction of the action of ShiftRows. The input (a) is colored by column, and
two outputs are displayed for transpositions that are row preserving (b) and not (d).

Row preserving. A higher entropy variation breaks the cyclic property of
ShiftRows, but keeps each byte in its original row. The first row has 4! per-
mutations. In the second row, there are 3 choices for the location of the white
block consistent with diffusion optimality, and 3 locations for the block of the
color above the white block (black, in the case of Fig. 2b). Let E denote the event
that this block is placed directly under the white block of row 1, as is the case
in Fig. 2b. In the third row, there are 2 locations for the white block. Afterward,
there exist 2 choices to complete the ShiftRows variant if event E occurred and
1 choice otherwise. In total, this procedure yields 4! ·3 ·(1 ·4+2 ·2) = 576 = (4!)2

variants.
Our construction. We stress the irrelevance of row preservation to diffusion
optimality. We propose a (4!)8 family of diffusion-optimal byte transpositions
that we construct in three steps.

1. Transpose the 4 × 4 input matrix to satisfy diffusion optimality (Fig. 2c).
2. Independently shuffle the entries within each row (Fig. 2c).
3. Independently shuffle the entries within each column (Fig. 2d).

This construction independently chooses 8 permutations: 4 on the rows in
Step 2 and 4 on the columns in Step 3. All choices are distinct and maintain
diffusion optimality. Hence, our construction yields (4!)8 ≈ 1.60 × 236 variants.

2.3 MixColumns

AES’ MixColumns operation separately multiplies the 4 bytes in each column
of the state by a fixed, invertible, circulant 4 × 4 matrix over the field GF(256)
(using the same representation as described in AES’ SubBytes). Specifically,
the matrix in AES uses the following coefficients in the first column: c0 = 02,
c1 = 01, c2 = 01, and c3 = 03. The last round of AES omits MixColumns.
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The need for the MixColumns matrix to have differential and linear branch
numbers of 5 governs the choice of the constants. Grosek and Zajac [18] deter-
mined the satisfactory choices: For the matrix to be invertible,

∑
ci �= 0. To fol-

low the wide trail strategy, ci �= 0, ci �= ci+2, cici+1 �= ci+2ci+3, and c2i �= ci+1ci−1

for all i, considering indices mod 4. Most settings satisfy these constraints, so
around 32 bits of entropy exist in the design of MixColumns.

2.4 AddRoundKey

AES XORs each state byte with a round key byte, itself a fixed function of the
AES key. This operation concludes each round, and an extra AddRoundKey
precedes the first round. The key schedule’s design provides three important
security properties: round-dependent constants break symmetry to prevent slide
attacks, SubBytes provides confusion to thwart related-key attacks, and a dif-
fusive structure resists partial-key attacks [22]. Furthermore, the simplicity of
AddRoundKey’s XOR operation facilitates the wide trail strategy arguments
that decompose the cryptanalytic strength of AES to a function of the strength
of its parts. Hence, our variants keep AddRoundKey’s structure intact in order
to retain the security properties of AES.

We note that SubBytes’ usage inside key expansion induces a tradeoff. If we
use the standard AES SubBytes inside the key schedule, then our variants require
larger chip area to store two different SubBytes permutations. On the other hand,
using our SubBytes variant inside the key expansion reduces key agility; the
expanded key must be recomputed whenever the SubBytes variant changes. In
this work, we choose to maintain AES’ AddRoundKey entirely. Hence, updating
the key would be identical to AES.

2.5 Total Entropy Provided by Our Variants

Determining the total entropy of our variants requires measuring redundancy
between components. The variations of SubBytes and ShiftRows are independent
by design: one function changes byte values and the other changes byte positions.
Hence, we sum the entropies of SubBytes and ShiftRows to arrive at a total of
more than 2108 variants.

Although we described variations of MixColumns, we exclude them from our
design for two reasons. First, care must be taken to avoid dependences on the
previous variants: for instance, applying a scalar multiplication or cyclic rotation
to the MixColumns matrix is redundant with the variations to SubBytes and
ShiftRows, respectively [16]. Second, varying MixColumns fails to affect many
side channel attacks because the final round omits MixColumns.

Similarly, it may appear tempting to vary the round constants in AddRound-
Key. However, changing the round constants fails to introduce new entropy over
variations of SubBytes’ modulus p, SubBytes’ affine transformation A and b,
and MixColumns’ circulant matrix entries c0 through c3 [8].
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3 Implementation Cost

This section recaps our changes to argue that the cost of implementing a variant
in an FPGA roughly equals AES in energy expended and chip area consumed.
We highlight our envisioned usage (as detailed in Sect. 1.3) where each FPGA
implements a single variant; by contrast, the FPGAs designed in prior work
could switch between variants at higher cost [11,12,16].

First, our SubBytes variants differ from the AES SubBytes. Nevertheless,
as 256-bit mappings, they can be implemented via lookup tables (LUTs), with
size independent of the values. Additionally, because our SubBytes variants also
perform a mathematical inversion in GF(256) (albeit with a different field rep-
resentation), we can employ Paar and Rosner’s efficient inversion of GF(256)
in FPGAs [24]; this technique shrinks LUTs in exchange for a few arithmetic
operations. For maximal resistance to side channel attacks (cf. Sect. 5), we rec-
ommend designing an FPGA to compute all 16 SubBytes operations in a single
round concurrently.

Second, our ShiftRows variants cost roughly equal to AES’ ShiftRows on
FPGAs, 8-bit microcontrollers, 32-bit software, and ASICs; we simply modify
the mapping between input and output bytes. Existing implementations on these
platforms do not require ShiftRows to be cyclic or row-preserving. For example,
OpenSSL’s AES implementation [25] is column-oriented, with the 32-bit integers
s0 through s3 denoting the four columns of AES:
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];

The corresponding code for a variant would reference each column once (as
required by diffusion optimality), and perform the same right-shifts, bitwise-
ands, and table lookups. Only the order of these operations would change (i.e.,
which input column is shifted by which amount and fed into which table), yield-
ing identical runtime.

Third, our MixColumns matches that of AES. In principle, this may incur
some cost because the AES MixColumns performs finite field multiplication with
a different representation of GF(256) than our SubBytes variant. Hence, if we
wanted to compute SubBytes and MixColumns mathematically, we could need
two multiplication routines. We are saved from this expense by following the
common practice of computing MixColumns using LUTs instead.

Fourth, our AddRoundKey matches that of AES. This incurs a cost because
key expansion uses the AES SubBytes. Hence, an FPGA for our variant needs
additional chip size to implement two SubBytes routines. Nevertheless, the
energy expended during encryption is independent of this change. Moreover, we
could reduce the impact on chip size by using a small but slow implementation
of the AES SubBytes since key expansion occurs less frequently than encryption
and decryption [26].

4 Cryptanalytic Attacks

Because we chose our round function components to be consistent with the design
of AES, our variants retain much of AES’ strength against cryptanalysis.
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First, our Rijndael variants retain maximal resistance against differential and
linear cryptanalysis. Analytically, this can be shown by measuring the maximal
linear bias and maximal difference probability of the 30 inversion polynomials fp
and observing that these values are invariant under affine transformations [27].
Empirically, we tested the maximal linear bias and maximal difference probabil-
ity of 3 million SubBytes variants (of 272) using SageMath [28]. For comparison,
we did the same for 3 million uniformly random permutations (of 21684). Figure 3
shows histograms in both settings; it demonstrates that the SubBytes variants
exhibit optimal linear bias (16) and difference propagation (4), a vanishingly
rare occurrence for random permutations. Intuitively, our variants are “as far
from linear as possible,” just like AES. Additionally, ShiftRows remains diffu-
sion optimal and MixColumns remains unchanged. As a result, the wide trail
strategy’s analysis [22, Theorem 9.4.1] still yields a minimum weight of 150 for
any four-round differential trail and a maximum correlation contribution of 2−75

for any four-round linear trail.
In more detail, our SageMath software produces new constants compatible

with the Rijndael design philosophy and embeds them in the algorithm. To gen-
erate SubBytes in SageMath, we randomly select an irreducible modulus poly-
nomial and an invertible affine transformation. We check each result for fixed
and anti-fixed points. Empirically, we find that 13.5 % of our SubBytes variants
lacked (anti-)fixed points; we restrict our attention to these SubBytes. Addition-
ally, we generate random diffusion-optimal ShiftRows transpositions following
the method described in Sect. 2.2.
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Fig. 3. Our approach preserves the cryptanalytic properties of AES SubBytes. Left:
Our approach generates SubBytes variants (green) with the optimal maximal linear
bias of 16, in contrast, random permutations (blue) achieve poor values. Right: Our
SubBytes variants (green) attain the optimal maximal difference probability of 4, while
random permutations (blue) yield worse values. We tested 3 million of each type. (Color
figure online)

Second, our Rijndael variants slightly improve resistance to impossible differ-
ential and saturation (also called square or structural) attacks. Impossible differ-
entials are tuples of byte positions with the following property: if a pair of inputs
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match except for one byte position, then after several AES rounds the outputs
mismatch in all byte positions. These attacks show promise on reduced-round
variants of AES [29]. Crucially, a one-to-one mapping exists from an impossible
differential on AES to one on our variants, with the choice of ShiftRows merely
altering its byte position and the choice of SubBytes having no effect. Hence,
our variants and AES are equally susceptible to impossible differential attacks.
Moreover, the uncertainty provided by ShiftRows’ entropy increases the attack
difficulty with our variants. By a similar argument, our variants also withstand
saturation attacks [30] equivalently to AES.

5 Side Channel Attacks

Side channel attacks harness unintentional leakage (e.g., changes in timing,
acoustics, power) from the physical implementation of a cipher to infer secret
keys. This section focuses on the importance of SubBytes and ShiftRows toward
two prominent power-based side channel attacks: differential power analysis
(DPA) and template attacks. These attacks require knowledge of SubBytes to
calculate intermediate values. An attack with Hamming distance leakage requires
ShiftRows, unlike one with Hamming weight leakage. Conversely, DPA and tem-
plate attacks ignore MixColumns.

5.1 Side Channel Methods

We computed the guessing entropy of the full key for attacking AES with DPA
and template attacks in the DPA Contest v2 public dataset [3]. The public
dataset contains 20,000 power traces, for each of 32 keys, collected from an
FPGA. The guessing entropy assumes an adversary who optimally combines
key byte orderings—the defender’s worst case scenario.

For DPA we place Hamming weights (or distances) of 0 or 1 in one partition
and Hamming weights (or distances) greater than 3 in the other partition. We
restrict our traces to an automatically generated region of interest. We measure
the size of the peak as the sum of the squared difference of means trace.

As with DPA, we measure the guessing entropy of template attacks that use
Hamming weight and distance leakage. We build templates with the 1,000,000
profiling traces from the DPA Contest v2 dataset [3]. Our attack models the
intermediate value of one byte prior to the final round’s S-box: we build 9× 16
templates, one for each Hamming weight (or distance) of each byte’s intermediate
value. We restrict our traces to the same region of interest. We project the traces
onto the 10 principal components and calculate the log-likelihood with the pooled
covariance matrix [31].

Using the same templates (with 100 principal components) we explore
whether an adversary can determine the Hamming weight profile of a SubBytes
variant (motivated in Sect. 5.4). We split traces into sets based on ciphertext
XOR key and evaluate the probability of observing a set of traces given the nine
Hamming weight templates. Then, we calculate how the likelihoods reduce the
attacker’s uncertainty about the SubBytes variant.
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5.2 Side Channel Results

To verify the effect of performing an attack with correct and incorrect SubBytes,
we compute the guessing entropy of the full key for attacking AES with DPA
and template attacks, up to the full 20,000 traces per key. Figure 4 (left) shows
the guessing entropy as a function of the number of traces. The standard attacks
fail when assuming an incorrect SubBytes variant.
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Fig. 4. We measure the full guessing entropy remaining after side channel attacks as
a function of attack dataset size, given optimal combination of key bytes’ values. We
compare two attack types: DPA (dashed lines) and template attacks (solid lines) ±
standard deviation (shaded regions). Left: Impact of employing incorrect SubBytes.
This models Hamming distance leakage from a field-programmable gate array. We
find that otherwise successful attacks (blue lines) will fail when employing the wrong
SubBytes variant (red lines). Right: Impact of unknown ShiftRows forcing attacker
from Hamming distance (HD) to Hamming weight (HW). We find that attacks based
on Hamming distance leakage of an intermediate value (blue lines) outperform those
based on Hamming weight leakage (yellow lines) for both attack types. (Color figure
online)

To show the effect of moving from Hamming distance to Hamming weight
to compensate for incorrect ShiftRows, we compute the guessing entropy for
attacking AES with DPA and template attacks. Figure 4 (right) shows the guess-
ing entropy as a function of the number of traces. For both attacks, Hamming
weight performs much worse than Hamming distance on these FPGA data.

5.3 SubBytes Discussion

Diversity in SubBytes forces the side channel attacker into unattractive options
listed in Table 1. DPA takes a “guess and check” approach: the adversary guesses
a key byte value, deduces an intermediate value on the other side of SubBytes
(see Fig. 1), calculates the physical leakage induced by such a value, and checks
the traces for matching leakage. Here, we catalog how an adversary might mount
a DPA attack with an unknown SubBytes.
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Table 1. Impact of SubBytes variants on DPA and template attacks.

Attack Impact

Guess both a key byte and SubBytes Expands search space from 8 to 80 bits

Attack with SubBytes unknown [32] Profiles both key and SubBytes

Reverse engineer SubBytes with side
channels [7,33]

Expected to fail on hardware [7,33]

Reverse engineer SubBytes’ HW profile
with side channels

Depends on noise level of device

Attack mask reuse NA for concurrent execution of bytes [12]

Attack concurrent processing of mask
and masked data [12]

NA if mask not processed

First, an adversary could adapt DPA to guess both the key byte and Sub-
Bytes. This would expand the search space from 8 to an infeasible 80 bits. The
structure of AES enables the attacker to focus on each key byte independently,
providing an effective “divide and conquer” approach [34]. Having to guess Sub-
Bytes and a key byte simultaneously renders the “divide” ineffective.

Second, an attacker could apply similarity analysis [32] to target key bytes
directly without knowledge of SubBytes. However, similarity analysis requires
operations that depend on few unknown bits. Adapting this to simultaneously
attack SubBytes would lead to the same “divide and conquer” loss.

Third, an attacker could physically inspect a device to discover SubBytes.
The defender would take a systems approach, including hardware protection such
as placing SubBytes in an encrypted FPGA bitstream. As a result, physically
observing SubBytes is equivalent to attacking key storage.

Fourth, an attacker could attempt to reverse engineer SubBytes itself using
side channels. This type of attack is called Side-Channel Analysis for Reverse
Engineering (SCARE). The first work in this direction depended on the attacked
S-box being a compressive function [35], unlike SubBytes. More recent work
assumes that collisions in SubBytes output can be retrieved perfectly [7] to
adapt SCARE to AES variants. Other work has incorporated templates to
address imperfect collision detection [33]. Both evaluate on simulations, say-
ing that because these attacks rely on sequential SubBytes computations they
are more appropriate for software. Clavier et al. state “our attack should not be
feasible on an hardware AES implementation” [7].

Moradi and Mischke apply a correlation collision attack to AES dual
ciphers [12]. The four factors that affect the robustness of their scheme are
mask reuse, concurrent processing of mask and masked data, zero value, and
unbalance. We argue that none of these factors substantively impact our vari-
ants. First, it is possible to implement AES duals such that SubBytes leakages
cannot be separated, preventing a mask reuse attack [12]. Second, concurrent
processing of the mask and masked data and multiplicative masking of zero
arise because Moradi and Mischke designed a single FPGA that switches between
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duals; our approach avoids both problems by providing a LUT. Finally, we tested
unbalance empirically. Our variants exclude (anti-)fixed points, so the distribu-
tion of output values (over the choice of SubBytes variant) for a given input value
should ideally be uniform over 254 entries (i.e., possess 7.99 bits of entropy). We
tested 1 million SubBytes variants and observed distributions close to this ideal
bound: the maximum entropy loss resulting from unbalance (other than fixed
point exclusion) was 0.0002 bits, and the maximum statistical distance between
the ideal and observed distributions was 0.01. Hence, our variants are free from
dual ciphers’ unbalance problem. We investigate reverse engineering SubBytes
from FPGA traces next.

5.4 Template Attack to Discover SubBytes

When making the standard assumption that traces can be modeled as multi-
variate Gaussian, template attacks provide “the strongest form of side channel
attack possible in an information theoretic sense” [2]. Unknown plaintext tem-
plate attacks [36] measure Hamming weights of intermediate values to reduce
uncertainty about the key. In this section, we also measure Hamming weights,
but to reverse engineer an unknown SubBytes variant instead.

Table 2. Entropy of S−1 and � on a single input value, before and after a template
attack on SubBytes. Experiment attacked AES SubBytes in DPA Contest v2 data, and
averaged over 16 bytes.

Entropy Entropy before Entropy after Information

metric template attack template attack gained (bits)

H(S−1) 8 7.986 3.537

H∞(S−1) 8 7.237 —

H(�) 2.544 2.526 4.78

Section 5.1 describes our methods. We execute a final round5 Hamming
weight template attack with a twist: the attacker knows the AES key and thus
the value of x = ctb ⊕ keyb for all bytes b. Hence, instead of predicting the
key, the attacker predicts the intermediate value S−1(x) or its Hamming weight
�(x) = HW(S−1(x)).

Table 2 displays the Shannon entropy and min-entropy in S−1 (or �) for
a single value of x under the uniform (or binomial) distribution before and
after a template attack. Additionally, Table 2 extrapolates the total information
that a template attack reveals about SubBytes as the reduction in entropy (i.e.,
uncertainty) remaining in S−1 or �.

Concretely, we estimate that a template attack reveals at most (8 − 7.986)×
256 = 3.537 bits of information about SubBytes. Hence, even with restricting
5 This analysis generalizes to plaintext attacks.
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SubBytes to our variants, more than 68 bits of uncertainty remain. Similarly, we
estimate that a template attack reveals no more than (2.544−2.526)×256 = 4.78
bits of information about the Hamming weight profile of SubBytes.

These estimates depend on three simplifying heuristics. First, we assume
that the entropy of each of the 256 inputs to S−1 or � contributes independently
to the overall entropy of the function; in reality, the permutation constraint
makes this false, but how to exploit this remains unclear. Second, although the
DPA Contest v2 dataset only includes power traces of the AES SubBytes, we
assume that these data are representative of the leakage of our variants due to
their structural similarity. Third, our metrics postulate that all 16 bytes of state
provide similar information under a template attack.

Given the small amount of information revealed about SubBytes and its
Hamming weight profile, we found the template attack to discover SubBytes
ineffective on FPGA data.

5.5 ShiftRows Discussion

As Fig. 1 shows, ShiftRows changes the physical location of bytes while leaving
their values unchanged. Calculating Hamming distance (the number of changed
bits) requires knowledge of the physical location of a byte. However, Hamming
weight (the number of ones in a value) disregards location.

Table 3. Impact of ShiftRows variants on DPA and template attacks.

Attack Impact

Guess ShiftRows in adapted DPA attack Extra 26–236 computational effort

Use HW or other leakage mode Loses stronger HD leakage mode

We randomly selected a diffusion optimal permutation for ShiftRows. This
makes the attacker choose between the two possible attacks in Table 3. The first
approach guesses ShiftRows for a Hamming distance attack, either partially
or fully. If an attacker can distinguish a correct guess of ShiftRows from an
incorrect one, a divide and conquer approach adds a minimum of 6 bits to the
guessing entropy; in the attacker’s worst case, a brute force attack adds 36 bits.
The second approach applies Hamming weight, but Fig. 4 (right) shows that the
Hamming distance often harnesses leakage better.

6 Conclusion

This research aimed to overcome standard side channel attacks by finding a
large pool of Rijndael variants from which to select. While these variants dif-
fer from AES, they maintain its mathematical security while counterbalancing
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side channel attacks. DPA and template attacks (with a feasible number of tem-
plates) require knowledge of SubBytes; we described how to generate 272 vari-
ants of SubBytes that maintain AES’ cryptanalytic properties. These attacks
require knowledge of ShiftRows to employ a Hamming distance leakage mode;
we describe how to generate 236 variants of ShiftRows that maintain AES’ crypt-
analytic properties. As these variants follow the mathematical structure of Rijn-
dael, this approach can be implemented mathematically on embedded devices,
as well as with lookup tables.

The large variety in the round functions renders the divide and conquer app-
roach of DPA and template attacks infeasible. After losing access to informa-
tion needed to mount a successful attack, the attacker must attempt to reverse
engineer the round function. Based on our experiments with a novel template
attack to recover the lost information, we found insufficient signal-to-noise to
reverse engineer SubBytes from FPGA traces. Indeed, previous work considers
Side-Channel Analysis for Reverse Engineering (SCARE) of SubBytes ineffec-
tive against hardware implementations [7,33]. Also, our variants are balanced,
reducing the effectiveness of a correlation collision attack [12].

Our SageMath software generates variants of AES by changing the round
function (https://github.com/mit-ll/Diversity-Within-Rijndael). As well as ran-
dom SubBytes and ShiftRows, the software can choose a MixColumns consistent
with the wide trail strategy requirements. This code includes functions to gen-
erate variants of AES, test correctness, and test cryptanalytic properties.

Our approach complements masking and shuffling [7]. We believe that our
round functions can be implemented securely in hardware; demonstrating this
remains future work.
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Abstract. We investigate the efficiency of implementing the Jao and De
Feo isogeny-based post-quantum key exchange protocol (from PQCrypto
2011) on ARM-powered embedded platforms. In this work we propose
new primes to speed up constant-time finite field arithmetic and per-
form isogenies quickly. Montgomery multiplication and reduction are
employed to produce a speedup of 3 over the GNU Multiprecision
Library. We analyze the recent projective isogeny formulas presented in
Costello et al. (Crypto 2016) and conclude that affine isogeny formulas
are much faster in ARM devices. We provide fast affine SIDH libraries
over 512, 768, and 1024-bit primes. We provide timing results for emerg-
ing embedded ARM platforms using the ARMv7A architecture for the
85-, 128-, and 170-bit quantum security levels. Our assembly-optimized
arithmetic cuts the computation time for the protocol by 50% in com-
parison to our portable C implementation and performs approximately
3 times faster than the only other ARMv7 results found in the litera-
ture. The goal of this paper is to show that isogeny-based cryptosystems
can be implemented further and be used as an alternative to classical
cryptosystems on embedded devices.

Keywords: Elliptic curve cryptography · Post-quantum cryptography ·
Isogeny-based cryptosystems · ARM embedded processors · Finite-field
arithmetic · Assembly implementation

1 Introduction

Post-quantum cryptography (PQC) refers to research on cryptographic primi-
tives (usually public-key cryptosystems) that are not efficiently breakable using
c© Springer International Publishing AG 2016
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quantum computers. Most notably, Shor’s algorithm [1] can be efficiently imple-
mented on a quantum computer to break standard Elliptic Curve Cryptogra-
phy (ECC) and RSA cryptosystems. There are some alternatives secure against
quantum computing threats, such as the McEliece cryptosystem, lattice-based
cryptosystems, code-based cryptosystems, multivariate public key cryptography,
and others. Recent work such as [2–4] demonstrates efficient implementations of
such quantum-safe cryptosystems on embedded systems. None of these works
consider an approach based on quantum-resistant elliptic curve cryptosystems.
Hence, they introduce and implement new cryptosystems with different security
metrics and performance characteristics.

To avoid quantum computing attacks, Jao and De Feo [5] proposed an elliptic
curve based alternative to Elliptic Curve Diffie-Hellman (ECDH) which is not
susceptible to Shor’s attack, namely the Supersingular Isogeny Diffie-Hellman
(SIDH) key exchange protocol. Isogeny computations constitute an algebraic
map between elliptic curves, which appear to be resistant to quantum attacks.
Thus, this system improves upon traditional ECC and represents a strong can-
didate for quantum-resistant cryptography. Faster isogeny constructions would
speed up such cryptosystems, increase the viability of existing proposals, and
make new designs feasible. Existing results on the implementation of isogeny-
based key exchange include De Feo et al. [5,6] and Costello et al. [7]. However,
implementations on emerging embedded devices have not been fully investigated.
It is expected that mobile devices, such as smartphones, tablets, and emerg-
ing embedded systems, will become more widespread in the coming years for
increasingly sensitive applications. In this work, we investigate the applicability
of advances in theoretical quantum-resistant algorithms on real-world applica-
tions by providing several efficient implementations on emerging embedded sys-
tems. Our goal is to improve the performance of isogeny-based cryptosystems to
the point where deployment is practical.

In a recent announcement at PQC 2016 [8], NIST announced a preliminary
plan to start the gradual transition to quantum-resistant protocols. As such,
there is a tremendous need to discover and implement new proposed methods
that are resistant to both classical computers and quantum computers. NIST will
evaluate these PQC schemes based on security, speed, size, and tunable parame-
ters. Isogeny-based cryptography provides a suitable replacement for standard
ECC or RSA protocols because it provides small key sizes, provides forward
secrecy, and has a Diffie-Hellman-like key exchange available. Furthermore, key
compression schemes have been proposed in [7,9] to aid in the storage and trans-
mission of ephemeral keys. Lastly, isogeny-based cryptography utilizes standard
ECC point multiplication schemes, allowing for re-use of existing ECC libraries
and even hybrid schemes that simultaneously use ECC and isogenies to provide
quantum resistance, such as the hybrid scheme proposed in [7].
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Our contributions:

– We provide efficient libraries1 for the key exchange protocol presented in [5]
using highly optimized C and ASM.

– We present fast and secure prime candidates for 85-bit, 128-bit, and 170-bit
quantum security levels.

– We provide hand-optimized finite field arithmetic computations over various
ARM-powered processors to produce constant-time arithmetic that is 3 times
as fast as GMP.

– We analyze the effectiveness of projective [7] and affine [6] isogeny computation
schemes.

– We provide implementation results for embedded devices running Cortex-A8
and Cortex-A15. For the latter, an entire quantum-resistant key exchange
with 85-bit quantum security operates in approximately a tenth of a second.
Further, our Cortex-A15 assembly optimized results are 3 times faster than
[10], the fastest results available in the literature.

2 SIDH Protocol

This serves as a quick introduction to the Supersingular Isogeny Diffie-Hellman
key exchange. For a full mathematical background of the protocol, we point the
reader to the original works proposing it in [5,6] or [11] for a complete look at
elliptic curve theory.

2.1 Key Exchange Protocol Based on Isogenies

Two parties, Alice and Bob, want to exchange a secret key over an insecure chan-
nel in the presence of malicious third-parties. They agree on a smooth isogeny
prime p of the form �aA�bB · f ± 1 where �A and �B are small primes, a and b
are positive integers, and f is a small cofactor to make the number prime. They
define a supersingular elliptic curve, E0(Fq) where q = p2. Lastly, they agree
on four points on the curve that form two independent bases. Over a start-
ing supersingular curve E0, these are a basis {PA, QA} and {PB , QB} which
generate E0[�eAA ] and E0[�eBB ], respectively, such that 〈PA, QA〉 = E0[�eAA ] and
〈PB , QB〉 = E0[�eBB ].

As first noted in [12], consider a graph of all supersingular elliptic curves
of a fixed isogeny graph under Fp2 . In this graph, the vertices represent each
isomorphism class of supersingular elliptic curves and the edges represent the
degree-� isogenies of a particular isomorphism class. Essentially, each party takes
seemingly random walks in the graph of supersingular isogenies of degree �aA and
�bB to both arrive at supersingular elliptic curves with the same isomorphism
class and j-invariant, similar to a Diffie-Hellman key exchange. In a graph of
supersingular isogenies, the infeasibility to discover a path that connects two
particular vertices provides security for this protocol.
1 Code is available at https://github.com/kozielbrian/NEON-SIDH ARMv7.

https://github.com/kozielbrian/NEON-SIDH_ARMv7
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Alice chooses two private keys mA, nA ∈ Z/�aAZ with the stipulation that
both are not divisible by �aA. On the other side, Bob chooses two private keys
mB , nB ∈ Z/�bBZ, where both private keys are not divisible by �bB . From there,
the key exchange protocol can be broken down into two rounds of the following:

1. Compute R = 〈[m]P + [n]Q〉 for points P,Q.
2. Compute the isogeny φ : E → E/〈R〉 for a supersingular curve E.
3. Compute the images φ(P ) and φ(Q) for the basis of the opposite party for

the first round.

The key exchange protocol proceeds as follows. Alice performs the double point
multiplication with her private keys to obtain a kernel, RA = 〈[mA]P + [nA]Q〉
and computes an isogeny φA : E0 → EA = E0/〈[mA]P + [nA]Q〉. She performs
the large degree isogeny efficiently by performing many small isogenies of degree
�A. She then computes the projection {φA(PB), φA(QB)} ⊂ EA of the basis
{PB , QB} for E0[�bB ] under her secret isogeny φA, which can be done efficiently
by pushing the points PB and QB through each isogeny of degree �A. Over
a public channel, she sends these points and curve EA to Bob. Likewise, Bob
performs his own double-point multiplication and computes his isogeny over the
supersingular curve E with φB : E0 → EB = E0/〈[mB ]P + [nB ]Q〉. He also
computes his projection {φB(PA), φB(QA)} ⊂ EB of the basis {PA, QA} for
E0[�aA] under his secret isogeny φB and sends these points and curve EB to
Alice. For the second round, Alice performs the double point multiplication to
find a second kernel, RAB = 〈[mA]φB(PA) + [nA]φB(QA)〉, to compute a second
isogeny φ′

A : EB → EAB = EB/〈[mA]φB(PA)+[nA]φB(QA)〉. Bob also performs
a double point multiplication and computes a second isogeny φ′

B : EA → EBA =
EA/〈[mB ]φA(PB)+[nB ]φA(QB)〉. Alice and Bob now have isogenous curves and
can use the common j-invariant as a shared secret key.

EAB = φ′
B(φA(E0)) = φ′

A(φB(E0))
= E0/{[mA]PA + [nA]QA, [mB ]PB + [nB ]QB},

j(EAB) ≡ j(EBA).

2.2 Protocol Optimizations

Many optimizations have been proposed in [6,7] for computing isogenies. To
begin with, all arithmetic is performed on Montgomery curves [13] as they have
been shown to have fast scalar point multiplication and fast isogeny formulas.
We refer to the Explicit Formulas Database (EFD) [14] for the fastest operation
counts on elliptic curves. The Kummer representation for Montgomery curves
provides extremely fast curve arithmetic by performing operations on the curve’s
Kummer line [13]. Points are represented as (X : Z), where x = X/Z. Under
this scheme, there is no difference between points P and −P . The EFD provides
explicit formulas for differential addition and point doubling. Note that P and
−P generate the same subgroup of points on the elliptic curve, so isogenies can
be evaluated correctly on the Kummer line. Lastly, the optimal path to compute
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large-degree isogenies involves finding an optimal strategy of point multiplica-
tions and isogeny evaluations. The general trend has been to use isogeny graphs
of base 2 and 3, since fast isogenies between Montgomery curves and fast scalar
point multiplications can be performed over these isogeny graphs.

Our implementation style closely follows the methods of [6]. We use a 3-point
Montgomery differential ladder (also presented in [6]) for a constant set of opera-
tions for double point multiplcations and their “affine” isogeny formulas for com-
puting and evaluating large degree isogenies. We note that [6] does not scale the
Z-coordinates of the inputs to the ladder to 1. This would decrease the cost of a
3-point step by 2 multiplications per step. An alternative approach to the double-
point multiplication is to utilize a uniform double-point multiplication algorithm,
such as those proposed in [15] or [16]. Costello et al. [7] recently proposed “pro-
jective” isogeny formulas that represent the curve coefficients of a Montgomery
curve in projective space (i.e. a numerator and denominator), so that isogeny cal-
culations do not need inversion until the very end of a round of a key exchange.
We also note that [7] proposes sending isogenies evaluated over the points P , Q,
and PQ in Kummer coordinates to the other party in the first round and that
isogenies of degree 4 have been shown to be faster than isogenies of degree 2.

3 Proposed Choice of SIDH-Friendly Primes

The primes used in the key exchange protocol are the foundation of the under-
lying arithmetic. Since supersingular curves are used, it is necessary to generate
primes to allow the curve to have smooth order so that the isogenies can be com-
puted quickly. For this purpose, smooth isogeny primes of the form p = �aA�bB ·f±1
are selected. Within that group of primes, [6,7] specifically chose isogeny-based
cryptosystem parameters of �A = 2 and �B = 3. These isogeny graph bases
provides efficient formulas for isogenies of degree 2 and 3, as shown in [6,7].

Smooth isogeny primes do not feature the distinct shape of a Mersenne prime
(e.g. 2521−1) or pseudo-Mersenne prime, but the choice of �A = 2 does provide for
several optimizations to finite-field arithmetic, covered in more detail in Sect. 4.

The security of the underlying isogeny-based cryptosystem is directly related
to the relative magnitude of �aA and �bB , or rather min(�aA, �bB). Whichever isogeny
graph is spanned by the smaller prime power is easier to attack. Therefore, a
prime should be chosen where these prime powers are approximately equal. As
demonstrated in [6], the classical security of the prime is approximately its size
in bits divided by 4 and quantum security of a prime is approximately its size in
bits divided by 6. Based on this security assessment, the SIDH protocol over a
512-bit, 768-bit, and 1024-bit prime feature approximately 85, 128, and 170 bits
of quantum security, respectively.

3.1 Proposed Prime Search

We searched for primes by setting balanced isogeny orders �aA and �bB for �A = 2
and �B = 3 and searching for factors f that produce a prime ±1. However, using
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+1 in the form of the prime produces a prime where −1 mod p is a quadratic
residue, which is not optimal for performing arithmetic in the extension field Fp2 .
Therefore, we primarily investigated only primes of the form p = 2a3b ·f −1. Our
primes were found by using a Sage script that changes f to find such primes.
We did not search for primes with an f value greater than 100. The primes that
we discovered were compared and selected based on the following parameters:

– Security: The relative security of SIDH over a prime is based on min(�aA, �bB).
Therefore, the prime should have balanced isogeny graphs and a small f term.

– Size: These primes are designed to be used in ARM processors, some that
are limited in memory. These primes should feature a size slightly less than a
power of 2 to allow for some speed optimizations such as lazy reduction and
carry cancelling, while still featuring a high quantum security.

– Speed: These primes efficiently use space to reduce the number of operations
per field arithmetic, but also have nice properties for the field arithmetic.
Notably, all primes of the form p = 2a�bB · f − 1 will have the Montgomery
friendly property [17] because the least significant half of the prime will have
all bits set to ‘1’.

Table 1 contains a list of strong prime candidates for 512, 768, and 1024-bit SIDH
implementations. Each of these primes feature approximately balanced isogeny
graphs. Each prime requires the least number of total bits for a quantum security
level. We provide a prime with the f term to be 1 for each security level, but
that is not a requirement.

Table 1. Proposed smooth isogeny primes

Security level Prime size (bits) p = �aA�bB · f ± 1 min(�aA, �bB) Classical
security

Quantum
security

p512 499 225131555 − 1 3155 123 82

503 22503159 − 1 2250 125 83

510 2252315937 − 1 2252 126 84

p768 751 23723239 − 1 2372 186 124

758 2378323717 − 1 3237 188 125

766 2382323879 − 1 3238 189 126

p1024 980 24933307 − 1 3307 243 162

1004 2499331549 − 1 2499 249 166

1008 2501331641 − 1 3316 250 167

1019 2508331935 − 1 3319 253 168

We provide several primes within each security level to give tunable para-
meters for an SIDH implementation. Costello et al. [7] propose using the prime
23723239 −1 for a 768-bit implementation. This prime is actually 751 bits, allow-
ing for 17 bits of freedom for speed optimizations in systems using 32 or 64-bit
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words. However, as Table 1 shows, the prime 2378323717 − 1 is a 758-bit prime
that gives 1 more bit of quantum security and still has 10 bits of freedom to
allow for speed optimizations. We find it useful to have several strong primes to
work with, which could allow for a variety of speed techniques.

For our design, we chose to implement over the primes:

p512 = 22503159 − 1

p768 = 23723239 − 1

p1024 = 2501331641 − 1

4 Proposed Finite-Field Arithmetic

For any cryptosystem featuring large finite-fields, the finite-field arithmetic lies
at the heart of the computations. This work is no exception. The critical opera-
tions are finite-field addition, squaring, multiplication, and inversion. The abun-
dance of these operations throughout the entire key exchange protocol calls for
numerous optimizations to the arithmetic, even at the assembly level. This work
targets the ARMv7-A architectures. All operations are done in the Montgomery
domain [18] to take advantage of the extremely fast Montgomery reduction for
the primes above.

All arithmetic below is for Fp. Since supersingular curves can be defined over
Fp2 , a reduction modulus must be defined to simplify the multiplication between
elements of Fp2 . With the prime choice of p = 2a�bB ·f −1, -1 is never a quadratic
residue of the prime and x2 +1 can be used as a modulus for the extension field.
We utilized reduced arithmetic in Fp2 based on fast arithmetic in Fp.

4.1 Field Addition

Finite-field addition performs A + B = C, where A,B,C ∈ Fp. Essentially, this
just means that there is a regular addition of elements A and B to produce a
third element C. If C ≥ p, then C = C − p. For ARMv7, this can be efficiently
done by using the ldmia and stmia instructions, which load and store multiple
registers at a time, incrementing the address each time. The operands are loaded
into multiple registers and added with the carry bit. If the resulting value is larger
than the prime for a field, then a subsequent subtraction by the prime occurs.
For a constant-time implementation, the conditional flags are used to alter a
mask that is applied to the prime as the subtraction occurs. In the case that
the value is not larger than the prime, the masked prime becomes 0. Finite-field
subtraction is nearly identical to addition, but subtraction with borrow is used
and if the borrow flag is set at the end of the subtraction, then the prime is
added to the resulting value.

4.2 Field Multiplication and Squaring

Finite-field multiplication performs A×B = C, where A,B,C ∈ Fp. This equates
to a regular multiplication of A and B to produce a third element C. However,
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Fig. 1. Finite-field Multiplication using NEON

if elements A and B are both m-bits, then the result, C, is 2m-bits. A reduction
must be made so that the result is still within the field. Montgomery multi-
plication and reduction [18] was chosen because of its fast reduction method.
Introduced in [7], smooth isogeny primes of the form 2a�bf − 1 feature a fast
reduction based on simplifying the Montgomery reduction formula [18]:

c = (a + (aM ′mod R)p)/R = (a − aM ′mod R)/R + ((p + 1)(aM ′mod R))

where R = 2m is slightly larger than the size of the prime (e.g. R = 2512

for p512), a is a result of a multiplication and less than 2m bits long, M ′ =
−p−1mod R, and c =a mod p. In this equation, p + 1 has many least-signficant
limbs of ’0’, since approximately half of the least-significant limbs of p are all
’1’. Thus, many partial products can be avoided for reduction over this scheme.
An alternative to the above scheme is to leave the Montgomery reduction in
its standard form, but perform the first several partial products as subtractions
since 0xFF×A = A × 28 − A and the least significant limbs are all ‘1’.

The typical scheme for Montgomery multiplication is to use M ′ =
−p−1mod 2w, where w is the word size. We note that the form of the prime
2a�bf − 1 guarantees that M ′ = 1 as long as 2a > 264, for our ARMv7 imple-
mentation. This reduces the complexity of Montgomery reduction from k2 + k
to k2 single-precision multiplication operations, where k is the number of words
of an element within the field that must be multiplied.

We utilize the ARM-NEON vector unit to perform the multiplications
because it can hold many more registers and parallelize the multiplications.
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We adopt the multiplication and squaring scheme of [19] to perform large
multiplications efficiently. This scheme utilizes a transpose of individual reg-
isters within NEON to reduce data dependency stalls. This same technique was
employed in this work to perform the multiplication for 512-bit multiplication
with the Cascade Operand Scanning (COS) method, as shown in Fig. 1. By
using a transposed quad register in NEON, the partial products can be deter-
mined out of order and the carries applied later, reducing data dependencies
in the multiplication sequence. Figure 1 demonstrates an example of a 32 × 256
bit multiplication, which is applied several times to produce a 512 × 512 multi-
plication. A separated reduction scheme was used. A 1024-bit multiplication is
composed of three 512 × 512 multiplications, based on a 1 level additive Karat-
suba multiplication. Squaring can reuse the input operands and several partial
products for multiplication and requires approximately 75 % of the cycles for a
multiplication.

4.3 Field Inversion

Finite-field inversion finds some A−1 such that A · A−1 = 1, where A,A−1 ∈
Fp. There are many schemes to perform this efficiently. Fermat’s little theorem
exponentiates A−1 = Ap−2. This requires many multiplications and squarings,
but is a constant set of operations. The Extended Euclidean Algorithm (EEA)
has a significantly lower time complexity of O(log2n) compared to O(log3n)
for Fermat’s little theorem. EEA uses a greatest common divisor algorithm to
compute the modular inverse of elements a and b with respect to each other, ax+
by = gcd(a, b). Based on the analysis presented in Sect. 5, the EEA was chosen
because it made affine SIDH much faster than projective SIDH. The GMP library
already employs a highly optimized version of EEA for various architectures.
EEA performs an inversion quickly, but does leak some information about the
value being inverted from the timing information. Therefore, to take advantage
of this fast inversion and provide some protections against simple power analysis
and timing attacks, a random value was multiplied to the element before and
after the inversion, effectively obscuring what value was initially being inverted.
This requires two extra multiplications, but the additional defense against timing
and simple power analysis attacks is necessary for a secure key exchange protocol.

5 Affine or Projective Isogenies

Here, we analyze the complexity of utilizing the new “projective” isogeny formu-
las presented by Costello et al. in [7] to the “affine” isogeny formulas presented
by De Feo et al. in [6]. Notably, the projective formulas allow for constant-time
inversion implementations without greatly increasing the total time of the pro-
tocol. However, in terms of non-constant inversion, we will show that the affine
isogeny formulas are still much faster for ARMv7 devices. For cost comparison
between these formulas, let I,M , and S refer to inversion, multiplication, and
squaring in Fp, respectively. A tilde above the letter indicates that the operation
is in Fp2 .
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Table 2. Comparison of I/M ratios for various computer architectures based on GMP
library

Architecture Device I/M ratio

p512 p768 p1024

ARMv7 Cortex-A8 Beagle Board Black 7.0 6.4 6.1

ARMv7 Cortex-A15 Jetson TK1 7.1 6.1 5.9

ARMv8 Cortex-A53 Linaro HiKey 8.2 7.3 6.5

Haswell x86-64 i7-4790k 14.9 14.7 13.8

Table 3. Affine isogeny formulas vs. projective isogenies formulas

Computation Affine cost [6] Projective cost [7]

Point Mult-by-3 7M̃ + 4S̃ 8M̃ + 5S̃

Iso-3 Computation 1Ĩ + 5M̃ + 1S̃ 3M̃ + 3S̃

Iso-3 Evaluation 4M̃ + 2S̃ 6M̃ + 2S̃

Point Mult-by-4 6M̃ + S̃ 8M̃ + 4S̃

Iso-4 Computation 1Ĩ + 3M̃ 5S̃

Iso-4 Evaluation 6M̃ + 4S̃ 9M̃ + 1S̃

We introduce the idea of the inversion/multiplication ratio, or for SIDH over
Fp2 , Ĩ/M̃ , as a metric to compare the relative cost of inversion and multiplication
and decide between the effectiveness of affine or projective formulas. This inver-
sion/multiplication ratio is dependent on the size of elements in Fp, the proces-
sor, as well as the inversion used. For a constant-time inversion using Fermat’s
little theorem, the ratio is most likely several hundred since it requires several
hundred multiplications and squarings for the inversion exponentiation. How-
ever, for non-constant time inversion, such as EEA or Kaliski’s almost
inverse [20], the ratio is much smaller. Table 2 compares the I/M ratio for dif-
ferent computer architectures over the GNU Multiprecision Library (GMP). We
note that with optimized multiplication, this ratio would generally be higher, but
it gives an idea of the relative difference between I/M ratios for ARM archi-
tectures and x86 architectures. As Table 2 shows, the I/M ratio for a PC is
much greater than ARM architectures, by a factor of 2. This shows that ARM
implementations benefit much more from using affine isogeny computations.

In Table 3, we compare the relative computational costs of affine isogeny
formulas presented in [6] and projective isogeny formulas presented in [7] over
isogenies of degree 3 and 4. Point multiplications by � are over Kummer coordi-
nates with affine or projective curve coefficients. Isogeny computations compute
the map between two points and isogeny evaluations push a point through the
mapping, both of these are of degree �. Affine isogeny computations cost more
than their projective counterpart because certain calculations are performed that
are reused across each affine isogeny evaluation.
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Table 4. Relative costs of computing large-degree isogenies based on affine vs. projec-
tive isogeny formulas

Prime #3P #3eval #3comp LargeIso3Cost #4P #4eval #4comp LargeIso4Cost

Affine Isogeny Computations

p512 496 698 159 159Ĩ + 9417M̃ 457 410 124 124Ĩ + 6966M̃

p768 780 1176 239 239Ĩ + 15163M̃ 771 638 185 185Ĩ + 11215M̃

p1024 1123 1568 316 316Ĩ + 21005M̃ 1061 942 250 250Ĩ + 15974M̃

Projective Isogeny Computations

p512 500 691 159 11525M̃ 423 441 124 9182M̃

p768 811 1124 239 18623M̃ 638 771 185 14865M̃

p1024 1129 1558 316 25792M̃ 981 1013 250 21076M̃

From this table, we created optimal strategies for traversing the large-degree
isogeny graphs. The affine and projective optimal strategy differed because the
ratio of point multiplication over isogeny evaluation differed. Similar to the
method proposed by [6] and also implemented in [7], we created an optimal strat-
egy to traverse the graph. We based the cost of traversing the graph with the
relationship S̃ = 0.66M̃ , since there are 2 multiplications in Fp for S̃ and 3 mul-
tiplications in Fp for M̃ . We performed this experiment for our selected primes
in the 512-bit, 768-bit, and 1024-bit categories, shown in Table 4. In Table 4, we
count the total number of point multiplications by � as #�P , the total number
of �−isogeny evaluations as #�eval, and the total number of �−isogeny com-
putations as #�comp. From the cost of these operations in affine or projective
coordinates, shown in Table 3, we calculated the total cost of the large-degree
isogeny in terms of multiplications and inversions in Fp2 under LargeIso�Cost.

We note that the difference in performance is also much greater for the first
round of the SIDH protocol, as the other party’s basis points are pushed through
the isogeny mapping. This includes 3 additional isogeny evaluations per isogeny
computation, as P , Q, and P − Q are pushed through the isogeny. In Table 5,
we compare the break-even points for when the cost of affine and projective
isogenies are the same. If the ratio is smaller than the break-even point, then
the large-degree isogeny computation is faster with affine isogeny formulas. Alice
operates over degree 4 isogenies and Bob operates over degree 3 isogenies. We
utilize Ĩ = I + 3.33M̃ to get the break-even points for operations in Fp since we
used a Karatsuba-based inversion. Thus, I/M = 3(Ĩ/M̃ −3.33). As an example,
the break-even point for Alice’s round 1 isogeny is I = 53M at the 512-bit level.
Thus, even with conservative estimates for the cost of using projective coordi-
nates, affine coordinates trump projective coordinates for small I/M ratios.
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Table 5. Comparison of break-even inversion/multiplication ratios for large-degree
isogenies at different security levels. When the inversion over multiplication ratio is at
the break-even point, affine isogenies require approximately the same cost as projective
isogenies. Ratios smaller than these numbers are faster with affine formulas.

Prime Alice round 1 Iso Bob round 1 Iso Alice round 2 Iso Bob round 2 Iso

p512 Ĩ = 20.87M̃ Ĩ = 19.26M̃ Ĩ = 17.87M̃ Ĩ = 13.26M̃

p768 Ĩ = 22.73M̃ Ĩ = 20.48M̃ Ĩ = 19.73M̃ Ĩ = 14.48M̃

p1024 Ĩ = 23.41M̃ Ĩ = 21.15M̃ Ĩ = 20.41M̃ Ĩ = 15.15M̃

p512 I = 52.62M I = 47.78M I = 43.62M I = 29.78M

p768 I = 58.20M I = 51.44M I = 49.20M I = 33.46M

p1024 I = 60.23M I = 53.46M I = 51.23M I = 35.46M

6 Implementation Results and Discussion

In this section, we review the ARM architectures that were used as testing
platforms, how we optimized the assembly code around them, and present our
results.

6.1 ARM Architectures

As the name Advanced RISC Machines implies, ARM implements architectures
that feature simple instruction execution. The architectures have evolved over
the years, but this work will focus on the ARMv7-A. The ARMv7-A family
employs a 32-bit architecture that uses 16 general-purpose registers, although
registers 13, 14, and 15 are reserved for the stack pointer, link register, and pro-
gram counter, respectively. ARM-NEON is a Single-Instruction Multiple-Data
(SIMD) engine that provides vector instructions for the ARMv7 architecture.
ARMv7’s NEON features 32 registers that are 64-bits wide or alternatively
viewed as 16 registers that are 128-bits wide. NEON provides nice speedups
over standard register approaches by taking advantage of data paralellism in the
large register sizes. This comes in handy primarily in multiplication, squaring,
and reduction.

We benchmarked the following boards running these ARM architectures:

– A BeagleBoard Black running a single ARMv7 Cortex-A8 processor operating
at 1.0 GHz.

– A Jetson TK1 running 4 ARMv7 Cortex-A15 cores operating at 2.3 GHz.

6.2 Testing Methodology

The key exchange was written in the standard C language. We used GMP version
6.1.0. The code was compiled using the standard operating system and devel-
opment environment on the given device. A parameters file defining the agreed
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upon curve, basis points, and strategies for the key exchange was generated
externally using Sage. The strictly C code with GMP is fairly portable and can
be used with primes of any size, as long as it is provided with a valid parameters
file. There are separate versions which include the 512-bit and 1024-bit assembly
optimizations that only work with primes up to these sizes. The protocols are
identical in both the C and ASM implementations. The primes that were used
can be found in Table 3.

6.3 Results and Comparison

The results for this experiment are presented in Tables 6 and 7 for the Beagle-
Board Black and Jetson TK1, respectively. This provides the timings, in clock
cycles, of individual finite field operations in Fp and Fp2 as well as the total
computation time of each party for the protocol. The expected time to run this
protocol is roughly Alice or Bob’s computation time and some transmission cost.

The Beagle Board Black achieved a speedup of 2.27 over the 512-bit primes
and a speedup of 2.00 over 1024-bit primes when using our hand-optimized
assembly code over our generic C code. The Jetson TK1 achieved a speedup of
1.94 for 512-bit primes and a speedup of 1.59 for 1024-bit primes when using
the assembly code. These speedups came as a result of the optimized finite
field arithmetic over Fp. Addition is generally a fraction of the cost. Multiplica-
tion and squaring are almost twice as fast with the ASM. The most significant
improvement is reduction around 3-3.5 times as fast with the ASM. Addition in
Fp2 is approximately 5–7 times faster with assembly because the intermediate
elements were guaranteed to be in the field, only requiring a subtraction with a
mask as a modulus. With the assembly optimizations, the Beagle Board Black
performs one party’s computations in approximately 0.223 s and 1.65 s over 85-
bit and 170-bit quantum security, respectively. The Jetson TK1 performs one
party’s computations in approximately 0.066 s and 0.491 s over 85-bit and 170-bit
quantum security, respectively.

Table 6. Timing results of key exchange on Beagle Board Black ARMv7 device for
different security levels

Beagle Board Black (ARM v7) Cortex-A8 at 1.0GHz using C

Field size Fp [cc] Fp2 [cc] Key Exch. [cc × 103]

A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 115 1866 2295 3429 40100 1241 12229 14896 72400 483,968 514,786

p768 142 3652 4779 6325 71500 1404 23167 28459 135400 1,406,381 1,525,215

p1024 168 5925 8202 10150 111900 1558 38046 46891 211400 3,135,526 3,367,448

Beagle Board Black (ARM v7) Cortex-A8 at 1.0GHz using ASM and NEON

Field size Fp [cc] Fp2 [cc] Key Exch. [cc × 103]

A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 70 718 953 962 40100 279 4445 6736 52756 216,503 229,206

p1024 120 2714 3723 3956 111900 375 15714 23682 150795 1,597,504 1,708,383
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Table 7. Timing results of key exchange on NVIDIA Jetson TK-1 ARMv7 device for
different security levels

Jetson TK-1 Board (ARM v7) Cortex-A15 at 2.3GHz using C

Field size Fp [cc] Fp2 [cc] Key Exch. [cc × 103]

A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 83 926 1152 2271 24302 877 7256 8776 42481 285,026 302,332

p768 99 1679 2403 4024 39100 982 13467 16216 73922 783,303 848,461

p1024 117 2955 4144 6053 59800 1122 21558 26286 115437 1,728,183 1,851,782

Jetson TK-1 Board (ARM v7) Cortex-A15 at 2.3GHz using ASM and NEON

Field size Fp [cc] Fp2 [cc] Key Exch. [cc × 103]

A S M mod I Ã S̃ M̃ Ĩ Alice Bob

p512 39 516 640 732 24302 158 3025 4579 34049 148,003 154,657

p1024 73 1856 2464 2961 59800 273 11273 17007 97594 1,118,644 1,140,626

Our implementation follows the algorithms and formulas of the affine key
exchange protocol given in [6]. Our implementation also includes side-channel
resistance. Our finite-field arithmetic is constant-time, except for inversion which
applies extra multiplications for protection, and we utilize a constant set of oper-
ations that deal with the secret keys. Lastly, our C implementation is portable
because it only requires a C compiler and the GNU library.

The only other portable implementations of SIDH for ARMv7 are [7,10]. Of
these, [7] only operates with projective isogeny formulas over the 751-bit prime,
23723239−1, and uses a generic, constant-time, implementation with Montgomery
reduction. [10] uses the same affine formulas as our implementation, but uses
primes that are not as efficient. Table 8 contains a comparison of these implemen-
tations for ARM Cortex-A15. We note that the assembly optimizations are not
applied for our 768-bit version. Similarly, [7] has generic arithmetic with Mont-
gomery reduction. Our assembly optimized implementation is approximately 3
times faster than the implementation in [10] and the portable C implementa-
tion is about 5 times faster than the projective isogeny implementation in [7].

Table 8. Comparison of affine and projective isogeny implementations on ARM
Cortex-A15 embedded processors. Our work and [7] was done on a Jetson TK1 and
[10] was performed on an Arndale ARM Cortex-A15.

Work Lang Field size

[bits]

PQ Sec.

[bits]

Iso. Eq Timings [cc × 106]

Alice R1 Bob R1 Alice R2 Bob R2 Total

Costello et al. [7]1 C 751 124 Proj. 1,794 2,120 1,665 2,001 7,580

Azarderakhsh et al. [10] C 521 85 Affine N/A N/A N/A N/A 1,069

C 771 128 N/A N/A N/A N/A 3,009

C 1035 170 N/A N/A N/A N/A 6,477

This work ASM 503 83 Affine 83 87 66 68 302

C 751 124 437 474 346 375 1,632

ASM 1008 167 603 657 516 484 2,259

1. Targeted x86-64 architectures, but is portable on ARM. All arithmetic is in generic C.
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Moreover, [10] does not consider side-channel attacks, but [7] is a constant-time
implementation, which is inherently protected against simple power analysis and
timing attacks.

There are several other popular post-quantum cryptosystems that have been
implemented in the literature. The ones that consider embedded system have
typically used FPGA’s or 8-bit microcontrollers, such as the lattice-based system
in [2], code-based system in [4], or McEllice system in [3]. The comparison with
any of these works is difficult because the algorithms are extremely different and
the implementations did not use ARM-powered embedded devices.

7 Conclusion

In this paper, we proved that isogeny-based key exchanges can be implemented
efficiently on emerging ARM embedded devices and represent a new alterna-
tive to classical cryptosystems. Both efficient primes and the impact of pro-
jective isogeny formulas were investigated. Without transmission overhead, a
party can compute their side of the key exchange in fractions of a second. We
hope that the initial investigation of this protocol on embedded devices will
inspire other researchers to continue looking into isogeny-based implementations
as a strong candidate for NIST’s call for post-quantum resistant cryptosystems.
As a future work, we plan to investigate redundant arithmetic schemes with
NEON and apply our assembly optimizations to the projective isogeny formulas
for a constant-time implementation. We note that robust and high-performance
implementations provide critical support for industry adoption of isogeny-based
cryptosystems.

Acknowledgment. The authors would like to thank the reviewers for their construc-
tive comments. This material is based upon work supported by the National Science
Foundation under grant No. CNS-1464118 awarded to Reza Azarderakhsh.
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Abstract. Server-aided revocable identity-based encryption (SR-IBE),
recently proposed by Qin et al. at ESORICS 2015, offers significant
advantages over previous user revocation mechanisms in the scope of
IBE. In this new system model, almost all the workloads on users are
delegated to an untrusted server, and users can compute decryption keys
at any time period without having to communicate with either the key
generation center or the server.

In this paper, inspired by Qin et al.’s work, we design the first SR-
IBE scheme from lattice assumptions. Our scheme is more efficient than
existing constructions of lattice-based revocable IBE. We prove that the
scheme is selectively secure in the standard model, based on the hard-
ness of the Learning with Errors problem. At the heart of our design
is a “double encryption” mechanism that enables smooth interactions
between the message sender and the server, as well as between the server
and the recipient, while ensuring the confidentiality of messages.

1 Introduction

Identity-based encryption (IBE), envisaged by Shamir [33] in 1984, allows to use
arbitrary strings representing users’ identities (e.g., email addresses) as public
keys, and thus, greatly simplifies the burden of key management in traditional
public-key infrastructure (PKI). In an IBE scheme, there is a trusted author-
ity, called the Key Generation Center (KGC), who is in charge of generating a
private key corresponding to each identity and sending it to the user through a
secret channel. Such private key enables the user to recover messages encrypted
under his identity. Shamir’s ideas triggered an exciting search for provably secure
IBE systems, but the first realizations only appeared in 2001, when Boneh and
Franklin [7] and Cocks [12] presented constructions based on pairings and on
the quadratic residual problem, respectively. The third class of IBE, pioneered
by Gentry et al. [15] in 2008, is based on lattice assumptions.

As for many multi-user cryptosystems, an efficient revocation mechanism is
necessary and imperative in the IBE setting. If some identities have been revoked
due to certain reasons (e.g., the user misbehaves or his private key is stolen), the
mechanism should ensure that: (i) the revoked identities no longer possess the
decryption capability; (ii) the workloads of the KGC and the non-revoked users in
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 107–123, 2016.
DOI: 10.1007/978-3-319-48965-0 7
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updating the system are “small”. Designing an IBE scheme supported by efficient
revocation turned out to be a challenging problem. A näıve solution, suggested
by Boneh and Franklin in their seminal work [7], requires users to periodically
renew their private keys by communicating with the KGC per time epoch, via a
secure channel. This solution, while yielding a straightforward revocation method
(i.e., revoked identities are not given new keys), is too impractical to be used
for large-scale system, as the workload of the KGC grows linearly in the number
of users N . Later on, Boldyreva, Goyal and Kumar (BGK) [5] formally defined
the notion of revocable identity-based encryption (RIBE), and employed the
tree-based revocation techniques from [26] to construct the first scalable RIBE
in which the KGC’s workload is only logarithmic in N . In the BGK model,
however, the non-revoked users have to communicate with the KGC regularly to
receive the update keys. Although this key updating process can be done through
a public channel, it is somewhat inconvenient and bandwidth-consuming.

To improve the situation, Qin et al. [29] recently proposed server-aided revo-
cable identity-based encryption (SR-IBE) - a new revocation approach in which
almost all workloads on users are outsourced to a server, and users can compute
decryption keys at any time period without having to communicate with either
the KGC or the server. Moreover, the server can be untrusted (in the sense
that it does not possess any secret information) and should just perform correct
computations. More specifically, an SR-IBE scheme functions as follows. When
setting up the system, the KGC issues a long-term private key to each user.
The update keys are sent only to the server (via a public channel) rather than
to all users. The ciphertexts also go through the server who transforms them
to “partially decrypted ciphertexts” which are forwarded to the intended recip-
ients. The latter then can recover the messages using decryption keys derived
from their long-term keys. This is particularly well-suited for applications such
as secure email systems, where email addresses represent users’ identities and the
(untrusted) email server performs most of the computations. In [29], apart from
introducing this new model, Qin et al. also described a pairing-based instantia-
tion of SR-IBE.

In this work, inspired by the advantages and potentials of SR-IBE, we put it
into the world of lattice-based cryptography, and design the first SR-IBE scheme
from lattice assumptions.
Related Works. The subset cover framework, originally proposed by Naor,
Naor and Lotspiech (NNL) [26] in the context of broadcast encryption, is
arguably the most well-known revocation technique for multi-user systems. It
uses a binary tree, each leaf of which is designated to each user. Non-revoked
users are partitioned into disjoint subsets, and are assigned keys according to
the Complete Subtree (CS) method or the Subset Difference (SD) method. This
framework was first considered in the IBE setting by Boldyreva et al. [5]. Subse-
quently, several pairing-based RIBE schemes [17,23,32] were proposed, providing
various improvements. Among them, the work by Seo and Emura [32] suggested
a strong security notion for RIBE, that takes into account the threat of decryp-
tion key exposure attacks. The NNL framework also found applications in the
context of revocable group signatures [20,21].
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The study of IBE with outsourced revocation was initiated by Li et al. [18],
who introduced a method to outsource the key update workload of the trusted
KGC to a semi-trusted KGC. Indeed, revocation mechanisms with an online
semi-trusted third party (called mediator) had appeared in earlier works [6,
13,22]. However, all these approaches are vulnerable against collusion attacks
between revoked users and the semi-trusted KGC or the mediator.

Lattice-based cryptography has been an exciting research area since the sem-
inal works of Regev [30] and Gentry et al. [15]. Lattices not only allow to build
powerful primitives (e.g., [14,16]) that have no feasible instantiations in conven-
tional number-theoretic cryptography, but they also provide several advantages
over the latter, such as conjectured resistance against quantum adversaries and
faster arithmetic operations. In the scope of lattice-based IBE and hierarchical
IBE (HIBE), numerous schemes have been introduced, in the random oracle
model [2,15] and the standard model [1,9,35,36]. Chen et at. [10] employed
Agrawal et al.’s IBE [1] and the CS method to construct the first revocable IBE
from lattices, which satisfies selective security in the standard model. The second
scheme, proposed by Cheng and Zhang [11], achieves adaptive security, via the
SD method. Both of these works follow the BGK model [5].

Our Results and Techniques. We introduce the first construction of lattice-
based SR-IBE. We inherit the main efficiency advantage of Qin et al.’s model
over the BGK model for RIBE: the system users do not have to communicate
with any party to get update keys, as they are capable of computing decryp-
tion keys for any time period on their own. As for previous lattice-based RIBE
schemes [10,11], our proposal works with one-bit messages, but multi-bit vari-
ants can be achieved with small overhead, using standard techniques [1,15]. The
public parameters and the ciphertexts produced by the scheme have bit-sizes
comparable to those of [10,11]. The long-term private key of each user has size
constant in the number of all users N , but to enable the delegation of decryption
keys, it has to be a trapdoor matrix with relatively large size. The full efficiency
comparison among the schemes from [10,11] and ours is given in Table 1.

As a high level, our design approach is similar to the pairing-based instanti-
ation by Qin et al., in the sense that we also employ an RIBE scheme [10] and
a two-level HIBE scheme [1] as the building blocks. In our setting, the server
simultaneously plays two roles: it is the decryptor in the RIBE block (i.e., it

Table 1. Comparison among known lattice-based revocable IBE schemes. Here, λ is
the security parameter, N is the maximum number of users, r is the number of revoked
users. For the scheme from [11], the number ε is a small constant such that ε < 1/2.
The notation “-” means that such an item does not exist in the corresponding scheme.

Public Params. Size Token Size Private Key Size Update Key Size Ciphertext Size Model

[10] ˜O
(

λ2) − O
(

log N
) · ˜O(λ) r log

N

r
· ˜O(λ) ˜O

(

λ
)

Selective

[11] ˜O
(

λ2+ε) − O
(

log2 N
) · ˜O(λ) (2r − 1) · ˜O(λ) ˜O

(

λ1+ε) Adaptive

Ours Server ˜O
(

λ2) O
(

log N
) · ˜O(λ) − r log

N

r
· ˜O(λ) ˜O

(

λ
)

Selective

User − ˜O
(

λ2) − ˜O
(

λ
)
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receives ciphertexts from senders and performs the decryption mechanism of
RIBE - which is called “partial decryption” here), and at the same time, it is
the sender in the HIBE block. The users (i.e., the message recipients), on the
other hand, only work with the HIBE block. Their identities are placed at the
first level of the hierarchy, while the time periods are put at the second level.
This enables the user with private key for id to delegate a decryption key for an
ordered pair of the form (id, t).

However, looking into the details, it is not straightforward to make the two
building blocks operate together. Qin et al. address this problem by using a
key splitting technique which currently seems not available in the lattice set-
ting. Instead, we adapt a double encryption mechanism, recently employed by
Libert et al. [19] in the context of lattice-based group signatures with message-
dependent opening [31], which works as follows. The sender encrypts the message
under the HIBE to obtain an initial ciphertext of the form (c2, c0), where c0 is
an element of Zq (for some q > 2) and is the ciphertext component carrying the
message information. Next, he encrypts the binary representation of c0, i.e., vec-
tor bin(c0) ∈ {0, 1}�log q�, under the RIBE to obtain (c1, ĉ0). The final ciphertext
is then set as (c1, c2, ĉ0) and is sent to the server. The latter will invert the sec-
ond step of the encryption mechanism to get back to the initial ciphertext (c2, c0).
Receiving (c2, c0) from the server, the user should be able to recover the message.

The security of our SR-IBE scheme relies on that of the two lattice-based
building blocks, i.e., Agrawal et al.’s HIBE [1] and Chen et al.’s RIBE. Both of
them are selectively secure in the standard model, assuming the hardness of the
Learning with Errors (LWE) problem - so is our scheme.

Organization. The rest of this paper is organized as follows. Section 2 provides
definitions of SR-IBE and some background on lattice-based cryptography. Our
construction of lattice-based SR-IBE and its analysis are presented in Sects. 3
and 4, respectively. We summarize our results and discuss open problems in Sect. 5.

2 Background and Definitions

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We
say that a function d : N → R is negligible, if for sufficient large λ ∈ N, |d(λ)| is
smaller than the reciprocal of any polynomial in λ. The statistical distance of two
random variables X and Y over a discrete domain Ω is defined as Δ(X;Y ) �
1
2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. If X(λ) and Y (λ) are ensembles of random

variables, we say that X and Y are statistically close if d(λ) � Δ(X(λ);Y (λ)) is
a negligible function of λ. For a distribution χ, we often write x ←↩ χ to indicate
that we sample x from χ. For a finite set Ω, the notation x

$← Ω means that x
is chosen uniformly at random from Ω.

We use bold upper-case letters (e.g., A,B) to denote matrices and use bold
lower-case letters (e.g., x,y) to denote column vectors. For two matrices A ∈
Z

n×m and B ∈ Z
n×m1 , [A|B] ∈ Z

n×(m+m1) is the concatenation of the columns
of A and B. For a vector x ∈ Z

n, ||x|| denotes the Euclidean norm of x. We
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use Ã to denote the Gram-Schmidt orthogonalization of matrix A, and ||A||
to denote the Euclidean norm of the longest column in A. If n is a positive
integer, [n] denotes the set {1, .., n}. For c ∈ R, let �c� = �c − 1/2� denote the
integer closest to c.

2.1 Server-Aided Revocable Identity-Based Encryption

We first recall the definition and security model of SR-IBE, put forward by Qin
et al. [29]. A server-aided revocable identity-based encryption (SR-IBE) scheme
involves 4 parties: KGC, sender, recipient, and server. Algorithms among the
parties are as follows:

Sys(1λ) is run by the KGC. It takes as input a security parameter λ and outputs
the system parameters params.

Setup(params) is run by the KGC. It takes as input the system parameters
params and outputs public parameters pp, a master secret key msk, a revo-
cation list RL (initially empty), and a state st. We assume that pp is an
implicit input of all other algorithms.

Token(msk, id, st) is run by the KGC. It takes as input the master secret key
msk, an identity id, and state st. It outputs a token τid and an updated state
st. The token τid is sent to the server through a public channel.

UpdKG(msk, t, RL, st) is run by the KGC. It takes as input the master secret
key msk, a time t, the current revocation list RL, and state st. It outputs an
update key ukt, which is sent to the server through a public channel.

TranKG(τid,ukt) is run by the server. It takes as input a token τid and an update
key ukt, and outputs a transformation key tkid, t.

PrivKG(msk, id) is run by the KGC. It takes as input the master key msk and
an identity id, and outputs a private key skid, which is sent to the recipient
through a secret channel.

DecKG(skid, t) is run by the recipient. It takes as input the private key skid and
a time t. It outputs a decryption key dkid, t.

Enc(id, t, M) is run by the sender. It takes as input the recipient’s identity id,
a time t, and a message M . It outputs a ciphertext ctid, t, which is sent to
the server.

Transform(ctid,t, tkid,t) is run by the sever. It takes as input a ciphertext ctid, t,
and a transformation key tkid,t. It outputs a partially decrypted ciphertext
ct’id,t, which is sent to the recipient through a public channel.

Dec(ctid,t, dkid,t) is run by the recipient. On input a partially decrypted cipher-
text ct’id,t and a decryption key dkid,t, this algorithm outputs a message M
or a symbol ⊥.

Revoke(id, t, RL, st) is run by the KGC. It takes as input an identity id to be
revoked, a revocation time t, the current revocation list RL, and a state st.
It outputs an updated revocation list RL.

The correctness requirement for an SR-IBE scheme states that: For any λ ∈
N, all possible state st, and any revocation list RL, if id is not revoked on a time
t, and if all parties follow the prescribed algorithms, then Dec(ctid,t, dkid,t) = M .
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Qin et al. [29] defined semantic security against adaptive-identity chosen
plaintext attacks for SR-IBE. Here, we will consider selective-identity security -
a weaker security notion suggested by Boldyreva et al. [5], in which the adver-
sary announces the challenge identity id∗ and time t∗ before the execution of
algorithm Setup.

Definition 1 (SR-sID-CPA Security). Let O be the set of the following ora-
cles:

1. Token(·): On input an identity id, return τid by running Token(msk, id, st).
2. UpdKG(·): On input a time t, return ukt by running UpdKG(msk, t,

RL, st).
3. PrivKG(·): On input an identity id, return skid by running PrivKG

(msk, id).
4. DecKG(·, ·): On input an identity id and a time t, return dkid,t by running

DecKG(skid, t), where skid is from PrivKG(msk, id).
5. Revoke(·, ·): On input an identity id and a time t, update RL by running

Revoke(id, t, RL, st).

An SR-IBE scheme is SR-sID-CPA secure if any PPT adversary A has neg-
ligible advantage in the following experiment:

Exp SR-sID-CPA
A (λ)

params ← Sys(1λ); id∗, t∗ ← A
(pp,msk, st,RL) ← Setup(params)
M0,M1 ← AO(pp)

r
$← {0, 1}; ctid∗,t∗ ← Enc(id∗, t∗,Mr)

r′ ← AO(ctid∗,t∗); Return 1 if r′ = r and 0 otherwise.

Beyond the conditions that M0,M1 belong to the message space M and they have
the same length, the following restrictions are made:

1. UpdKG(·) and Revoke(·, ·) can only be queried on time that is greater than
or equal to the time of all previous queries.

2. Revoke(·, ·) can not be queried on time t if UpdKG(·) has already been
queried on time t.

3. If PrivKG(·) was queried on the challenge identity id∗, then Rovoke(·, ·)
must be queried on (id∗, t) for some t ≤ t∗.

4. If id∗ is non-revoked at time t∗, then DecKG(·, ·) can not be queried on
(id∗, t∗).

The advantage of A in the experiment is defined as:

AdvSR-sID-CPA
A (λ) =

∣
∣
∣
∣Pr

[
ExpSR-sID-CPA

A (λ) = 1
]

− 1
2

∣
∣
∣
∣ .
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2.2 Background on Lattices

Let n,m, and q ≥ 2 be integers. For matrix A ∈ Z
n×m
q , define the m-dimensional

lattice:
Λ⊥

q (A) =
{
x ∈ Z

m : A · x = 0 mod q
} ⊆ Z

m.

For any u in the image of A, define the coset Λu
q (A) =

{
x ∈ Z

m : A · x =
u mod q

}
.

Trapdoors for Lattices. A fundamental tool of lattice-based cryptography is
an algorithm that generates a matrix A ∈ Z

n×m
q that is statistically close to

uniform, together with a short trapdoor basis for the associated lattice Λ⊥
q (A).

Lemma 1 ([3,4,25]). Let n ≥ 1, q ≥ 2 and m ≥ 2n log q be integers. Then,
there exists a PPT algorithm TrapGen(n, q,m) that outputs a pair (A,TA) such
that A is statistically close to uniform over Z

n×m
q and TA ∈ Z

m×m is a basis
for Λ⊥

q (A) satisfying ‖T̃A‖ ≤ O(
√

n log q) and ‖TA‖ ≤ O(n log q).

Meanwhile, there exist matrices with particular structures, that admit easy-
to-compute short bases. Micciancio and Peikert [25] consider such a matrix G,
which they call primitive matrix.

Lemma 2 ([25,28]). Let q ≥ 2, n ≥ 1 be integers and let k = �log q�. Let
g = (1, 2, · · · , 2k−1) ∈ Z

k and G = In ⊗ g. Then the lattice Λ⊥
q (G) has a known

basis TG ∈ Z
nk×nk with ||T̃G|| ≤ √

5 and ||TG|| ≤ max{√5,
√

k}.
We also define bin : Zq → {0, 1}k as the function mapping w to its binary
decomposition bin(w). Note that, for all w ∈ Zq, we have g · bin(w) = w.

Discrete Gaussians over Lattices. Let Λ be a lattice in Z
m. For any vector

c ∈ R
m and any parameter s ∈ R>0, define ρs,c(x) = exp(−π

‖x − c‖2
s2

) and

ρs,c(Λ) =
∑

x∈Λ ρs,c(x). The discrete Gaussian distribution over Λ with center

c and parameter s is DΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ)

, for ∀y ∈ Λ. If c = 0, we conveniently

use ρs and DΛ,s.

Sampling Algorithms. It was shown in [1,9,15] that, given a lattice Λ⊥
q (A)

equipped with a short basis, one can efficiently sample short pre-images, as
well as delegate an equally short basis for a super-lattice. We will employ algo-
rithms SamplePre, SampleBasisLeft and SampleLeft from those works, defined
below.

SamplePre(A,TA,u, s): On input a full-rank matrix A ∈ Z
n×m
q , a trapdoor TA

of Λ⊥
q (A), a vector u ∈ Z

n
q , and a Gaussian parameter s ≥ ‖T̃A‖·ω(

√
log m),

it outputs a vector e ∈ Z
m sampled from a distribution statistically close

to DΛu
q (A),s.
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SampleBasisLeft (A,M,TA, s) : On input a full-rank matrix A ∈ Z
n×m
q , a matrix

M ∈ Z
n×m1
q , a trapdoor TA of Λ⊥

q (A) and a Gaussian parameter s ≥
‖T̃A‖ · ω(

√
log(m + m1)), it outputs a basis TF of Λ⊥

q (F), where F =

[A |M] ∈ Z
n×(m+m1)
q , while preserving the Gram-Schmidt norm of the basis

(i.e., such that ||T̃F|| = ||T̃A||).
SampleLeft(A,M,TA,U, s) : On input a full-rank matrix A ∈ Z

n×m
q , a matrix

M ∈ Z
n×m1
q , a trapdoor TA of Λ⊥

q (A), a matrix U = [u1| . . . |uk] ∈ Z
n×k
q ,

and a Gaussian parameter s ≥ ‖T̃A‖·ω(
√

log(m + m1)), it outputs a matrix
E = [e1| . . . |ek] ∈ Z

(m+m1)×k, where for each j = 1, . . . , k, the column ej

is sampled from a distribution statistically close to D
Λ

uj
q (F),s

. Here we also

define F = [A |M] ∈ Z
n×(m+m1)
q .

2.3 The LWE Problem and Its Hardness Assumption

The Learning With Errors (LWE) problem, first introduced by Regev [30], plays
the central role in lattice-based cryptography.

Definition 2 (LWE). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribu-

tion on Z. For s ∈ Z
n
q , let As,χ be the distribution obtained by sampling a $← Z

n
q

and e ←↩ χ, and outputting the pair
(
a,a	s + e

) ∈ Z
n
q × Zq. The (n, q, χ)-LWE

problem asks to distinguish m samples chosen according to As,χ (for s $← Z
n
q )

and m samples chosen according to the uniform distribution over Z
n
q × Zq.

If q is a prime power, B ≥ √
n · ω (log n), γ = O (nq/B), then there exists

an efficient sampleable B-bounded distribution χ (i.e., χ outputs samples with
norm at most B with overwhelming probability) such that (n, q, χ)-LWE is as
least as hard as worst-case lattice problem SIVPγ (see [24,25,27,30]).

Since its introduction in 2005, the LWE problem has been used in hundreds
of lattice-based cryptographic constructions. In the following, we will recall 2
such schemes, which are the building blocks of our SR-IBE in Sect. 3.

2.4 The Agrawal-Boneh-Boyen (H)IBE Scheme

In [1], Agrawal, Boneh, and Boyen (ABB) constructed a lattice-based IBE which
is proven secure in the standard model, and then extended to the hierarchical
setting. In their system, the KGC possesses a short basis TB for a public lat-
tice Λ⊥

q (B), generated via algorithm TrapGen. Each identity in the hierarchy is
associated with a super-lattice of Λ⊥

q (B), a short basis of which can be delegated
from TB using algorithm SampleBasisLeft. Given such a trapdoor basis, each
identity can run algorithm SamplePre to compute a short vector that allows to
decrypt ciphertexts generated via a variant of the Dual-Regev cryptosystem [15].

Let n,m, q, s be the scheme parameters and let χ be the LWE error distrib-
ution. The scheme makes use of an efficient encoding function H : Zn

q → Z
n×n
q ,
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that is full-rank differences (FRD). Namely, for all distinct u,w ∈ Z
n
q , the dif-

ference H(u) −H(w) is a full-rank matrix in Z
n×n
q . In this work, we will employ

the two-level variant of the ABB HIBE.

SetupHIBE: Generate (B,TB) ← TrapGen(n, q,m). Pick v $←− Z
n
q and B1,B2

$←−
Z

n×m
q . Output ppHIBE = (B,B1,B2,v) and mskHIBE = TB.

ExtractHIBE: For an identity id ∈ Z
n
q at depth 1, output the private key skid by

running SampleBasisLeft (B,B1 + H(id)G,TB, s) .
DeriveHIBE: For an identity id = (id′, id′′) ∈ Z

n
q × Z

n
q at depth 2, let skid′ be the

private key of id′ and Bid′ =
[
B|B1 + H(id′)G

] ∈ Z
n×2m
q . Output skid by

running SampleBasisLeft
(
Bid′ ,B2 + H(id′′)G, skid′ , s

)
.

EncHIBE: To encrypt a message bit b ∈ {0, 1} under an identity id = (id′, id′′) ∈
Z

n
q × Z

n
q at depth 2, let Bid =

[
B|B1 + H(id′)G|B2 + H(id′′)G

] ∈ Z
n×3m
q .

Choose s $← Z
n
q , x←↩χm, y←↩χ and §1, §2 $← {−1, 1}m×m. Set c1 = B	

ids +
[
x|§	

1 x|§	
2 x

]	 ∈ Z
3m
q and c0 = v	s + y + b · � q

2� ∈ Zq. Output ctid =
(c1, c0) ∈ Z

3m
q × Zq.

DecHIBE: Sample eid ← SamplePre(Bid, skid,v, s). Compute d = c0 − e	
idc1 ∈ Zq

and output � 2
q d� ∈ {0, 1}.

Agrawal, Boneh and Boyen showed that their scheme satisfies the notion
of indistinguishability of ciphertexts under a selective-identity chosen-plaintext
attack (IND-sID-CPA), proposed by Canetti et al. [8]. We restate their result in
Theorem 1.

Theorem 1. (Excerpted from [1]). The ABB HIBE scheme is IND-sID-CPA
secure, provided that the (n, q, χ)-LWE assumption holds.

2.5 Chen et al.’s RIBE Scheme

In [10], Chen et al. proposed the first RIBE scheme from lattice assumptions.
Their revocation mechanism relies on the Complete Subtree (CS) method of
Naor et al. [26], which was first adapted into the context of RIBE by Boldyreva
et al. [5]. We will briefly recall this method.

The CS method makes use of the node selection algorithm KUNode. In the
algorithm, we use the following notation: If θ is a non-leaf node, then θ� and θr

denote the left and right child of θ, respectively. Path(θ) denotes the set of nodes
on the path from θ to root. Each identity id is randomly assigned to a leaf node
νid and (νid, t) ∈ RL if id is revoked at time t. KUNode algorithm takes as input a
binary tree BT, revocation list RL and time t, and outputs a set of nodes Y . The
description of KUNode is given below and an example is illustrated in Fig. 1.

KUNode(BT,RL, t)
X,Y ← ∅
∀(θi, ti) ∈ RL, if ti ≤ t, then add Path(θi) to X

∀θ ∈ X, if θ� �∈ X, then add θ� to Y ; if θr �∈ X, then add θr to Y

Return Y
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Fig. 1. Assuming that id4, id6 and id7 have been revoked at time t, then {θ11, θ13, θ14}
are nodes in RL. We can get KUNode(BT,RL, t) → {θ4, θ10, θ12, θ15}. For identity id2
assigned to node θ9, Path(θ9) = (root = θ1, θ2, θ4, θ9) and has an intersection with
KUNode(BT,RL, t) at node θ4. For the revoked identity id6 at node θ13, Path(θ13) does
not contain any nodes in KUNode(BT,RL, t).

Chen et al.’s RIBE scheme employs two instances of the ABB IBE scheme
to deal with user’s identity and time, respectively. To link identity to time for
each tree node, the syndrome u ∈ Z

n
q , which is part of the public parameter, is

split into two random vectors u1,u2 for each node. We adopt a variant of Chen
et al.’s RIBE scheme, described below, to encrypt k-bit messages instead of
one-bit messages.

SetupRIBE: Generate (A,TA) ← TrapGen(n, q,m). Pick A1,A2
$←− Z

n×m
q and

U $←− Z
n×k
q . Initialize the revocation list RL = ∅ and let st := BT where BT

is a binary tree. Output RL, st, ppRIBE = (A,A1,A2,U) and mskRIBE = TA.
PrivKGRIBE: Randomly issue an identity id ∈ Z

n
q to an unassigned leaf node

νid in BT. For each θ ∈ Path(νid), if U1,θ,U21,θ are undefined, then pick

U1,θ
$← Z

n×k
q and set U2,θ = U − U1,θ. Return skid = (θ,E1,θ)θ∈Path(νid)

where E1,θ ← SampleLeft (A,A1 + H(id)G,TA,U1,θ, s) .
UpdKGRIBE: For θ ∈ KUNodes(BT,RL, t), retrieve U2,θ. Output ukt = (θ,E2,θ)

θ∈KUNodes(BT,RL,t) where E2,θ ← SampleLeft (A,A2 + H(t)G,TA,U2,θ, s).
EncRIBEand DecRIBE are similar as in the ABB HIBE scheme. When encrypting

a k-bit message, one obtains a ciphertext of the form ctid,t = (c′
1, c

′
0) ∈

Z
3m
q ×Z

k
q . A non-revoked identity id at time t can obtain the pair (E1,θ,E2,θ)

at the intersection node θ ∈ Path(νid) ∩ KUNodes(BT,RL, t), which satisfies
[A|A1 + H(id)G] · E1,θ + [A|A2 + H(t)G] · E2,θ = U, and which allows him
to perform decryption.

RevokeRIBE: Add (id, t) to RL for all nodes associated with id and return RL.

In [10], Chen et al. proved that the one-bit version of their scheme satisfies
the IND-sRID-CPA security notion defined in [5], assuming the hardness of the
LWE problem. The security proof can be easily adapted to handle the multi-bit
case, based on the techniques from [1,15]. We thus have the following theorem.

Theorem 2 (Adapted from [10]). The RIBE scheme described above is IND-
sRID-CPA secure, provided that the (n, q, χ)-LWE assumption holds.
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3 Our Lattice-Based SR-IBE Scheme

Our SR-IBE scheme is a combination of the ABB HIBE and Chen et al.’s RIBE
schemes via a double encryption technique. The KGC, holding master secret keys
for both schemes, issues HIBE private keys to users, and gives tokens consisting
of RIBE private keys to the server. At each time period, the KGC sends RIBE
update keys to the server. The encryption algorithm is a two-step procedure:

1. Encrypt the message M under the HIBE, with respect to an ordered pair
(id, t), to obtain an initial ciphertext of the form (c2, c0) ∈ Z

3m
q × Zq.

2. Encrypt the binary representation bin(c0) ∈ {0, 1}k of c0, where k = �log q�,
under the RIBE, with respect to id and t, to obtain (c1, ĉ0) ∈ Z

3m
q ×Z

k
q . The

final ciphertext is defined as ctid,t = (c1, c2, ĉ0) ∈ Z
3m
q × Z

3m
q × Z

k
q .

If id is not revoked at time t, then the server can partially decrypt ctid, t, using
a transformation key which is essentially the RIBE decryption key. Note that
the “partially decrypted ciphertext” is nothing but the initial ciphertext (c2, c0).
Receiving (c2, c0) from the server, the user decrypts it using a decryption key
delegated from his long-term private key.

In the following, we will formally describe the scheme.

Sys(1λ): On input security parameter λ, the KGC works as follows:
1. Set n = O (λ), and choose N = poly(λ) as the maximal number of users

that the system will support.
2. Let q = Õ

(
n4

)
be a prime power, and set k = �log q�,m = 2nk. Note that

parameters n, q, k specify vector g, function bin(·) and primitive matrix
G (see Sect. 2.2).

3. Choose a Gaussian parameter s = Õ (
√

m).
4. Set B = Õ (

√
n) and let χ be a B-bounded distribution.

5. Select an FRD map H : Zn
q → Z

n×n
q (see Sect. 2.4).

6. Let the identity space be I = Z
n
q , the time space be T ⊂ Z

n
q and the

message space be M = {0, 1}.
7. Output params = (n,N, q, k,m, s,B, χ,H, I, T ,M).

Setup(params): On input system parameters params, the KGC works as follows:
1. Use algorithm TrapGen(n, q,m) to get two independent pairs (A,TA)

and (B,TB).

2. Select U $← Z
n×k
q , v $← Z

n
q and A1,A2,B1,B2

$← Z
n×m
q .

3. Initialize the revocation list RL = ∅. Obtain a binary tree BT with at
least N leaf nodes and set the state st = BT.

4. Set pp = (A,A1,A2,U,B,B1,B2,v) and msk = (TA,TB).
5. Output (pp,msk,RL, st).

Token(msk, id, st): On input the master secret key msk, an identity id ∈ I and
state st, the KGC works as follows:
1. Randomly choose an unassigned leaf node νid in BT and assign it to id.
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2. For each θ ∈ Path(νid), if U1,θ,U2,θ are undefined, then pick U1,θ
$←

Z
n×k
q , set U2,θ = U − U1,θ and store the pair (U1,θ,U12,θ) in node

θ. Sample E1,θ ← SampleLeft (A,A1 + H(id)G,TA,U1,θ, s). Let Aid =
[A|A1+H(id)G] ∈ Z

n×2m
q . Note that E1,θ ∈ Z

2m×k and Aid ·E1,θ = U1,θ.
3. Output the updated state st and τid = (θ,E1,θ)θ∈Path(νid).

UpdKG(msk, t, st,RL): On input the master secret key msk, a time t ∈ T , state
st and the revocation list RL, the KGC works as follows:
1. For each θ ∈ KUNodes(BT,RL, t), retrieve U2,θ (pre-defined by algorithm

Token), and sample E2,θ ← SampleLeft (A,A2 + H(t)G,TA,U2,θ, s).
Let At = [A|A2 + H(t)G] ∈ Z

n×2m
q . Note that we have E2,θ ∈ Z

2m×k

and At · E2,θ = U2,θ.
2. Output ukt = (θ,E2,θ)θ∈KUNodes(BT,RL,t).

TranKG(τid, ukt): On input a token τid = (θ,E1,θ)θ∈I and an update key ukt =
(θ,E2,θ)θ∈J for some set of nodes I, J , the server works as follows:
1. If I ∩ J = ∅, output ⊥.
2. Otherwise, choose θ ∈ I ∩ J and output tkid,t = (E1,θ,E2,θ). Note that

Aid · E1,θ + At · E2,θ = U.
PrivKG(msk, id): On input the master secret key msk and an identity id ∈ I,

the KGC works as follows:
1. Sample Tid ← SampleBasisLeft (B,B1 + H(id)G,TB, s).
2. Output skid = Tid ∈ Z

2m×2m.
DecKG(skid, t): On input a private key skid = Tid and a time t ∈ T , the recipient

works as follows:
1. Sample eid,t ← SampleLeft (Bid,B2 + H(t)G,Tid,v, s) where let Bid =

[B|B1 + H(id)G] ∈ Z
n×2m
q .

2. Output dkid,t = eid,t ∈ Z
3m.

Enc(id, t, b): On input an identity id ∈ I, a time t ∈ T and a message M ∈ M,
the sender works as follows:
1. Set Aid,t = [A|A1 + H(id)G|A2 + H(t)G] ∈ Z

n×3m
q and Bid,t = [B|B1 +

H(id)G|B2 + H(t)G]∈ Z
n×3m
q .

2. Sample s, s′ $← Z
n
q , x,x′←↩χm, y←↩χk, and y′←↩χ.

3. Choose R1,R2, §1, §2 $← {−1, 1}m×m.

4. Set c1 = A	
id,ts +

⎡

⎣
x

R	
1 x

R	
2 x

⎤

⎦ ∈ Z
3m
q and c2 = B	

id,ts
′ +

⎡

⎣
x′

§	
1 x′

§	
2 x′

⎤

⎦ ∈ Z
3m
q .

5. Compute c0 = v	s′ + y′ + M · � q
2� ∈ Zq, and then set ĉ0 = U	s + y +

bin(c0) · � q
2� ∈ Z

k
q . (Recall that bin(c0) is the binary decomposition of c0.)

6. Output ctid,t = (c1, c2, ĉ0) ∈ Z
3m
q × Z

3m
q × Z

k
q .

Transform(ctid,t, tkid,t): On input a ciphertext ctid,t = (c1, c2, ĉ0) and a trans-
formation key tkid,t = (E1,E2), the server works as follows:

1. Parse c1 =

⎡

⎣
c1,0

c1,1

c1,2

⎤

⎦ where c1,i ∈ Z
m
q , for i = 0, 1, 2. Compute w = ĉ0 −

E	
1

[
c1,0

c1,1

]
− E	

2

[
c1,0

c1,2

]
∈ Z

k
q .
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2. Compute ĉ′
0 = g · � 2

qw� ∈ Zq. (Recall that g =
(
1, 2, · · · , 2k−1

) ∈ Z
k.)

3. Output ct′id,t = (c2, ĉ′
0) ∈ Z

3m
q × Zq.

Dec(ct′id,t, dkid,t): On input a partially decrypted ciphertext ct′id,t = (c2, ĉ′
0) and

a decryption key dkid,t = eid,t, the recipient works as follows:
1. Compute w′ = ĉ′

0 − e	
id,tc2 ∈ Zq.

2. Output � 2
q w′� ∈ {0, 1}.

Revoke(id, t,RL, st): On input an identity id, a time t, the revocation list RL
and state st = BT, the KGC adds (id, t) to RL for all nodes associated with
identity id and returns RL.

4 Analysis

We now analyze the efficiency, correctness and security of our SR-IBE scheme.
Efficiency. The efficiency aspect of our SR-IBE scheme is as follows:

– The bit-size of the public parameters pp is (6nm + nk + n) log q = Õ
(
λ2

)
.

– The private key skid is a trapdoor matrix of bit-size Õ
(
λ2

)
.

– The bit-size of the token τid is O(log N) · Õ (λ).
– The update key ukt has bit-size O

(
r log N

r

) · Õ (λ).
– The ciphertext ctid, t has bit-size (6m + k) log q = Õ (λ).
– The partially decrypted ciphertext ct′id,t has bit-size (3m + 1) log q = Õ (λ).

Correctness. When the scheme is operated as specified, if recipient id is non-
revoked at time t, then tkid,t = (E1,E2) satisfies that Aid · E1 + At · E2 = U.
During the Transform algorithm performed by the server, one has:

w = ĉ0 − E	
1

[
c1,0

c1,1

]
− E	

2

[
c1,0

c1,2

]

= U	s + y + bin(c0) · �q

2
� − E	

1

(
A	

ids +
[

x
R	

1 x

])
− E	

2

(
A	

t s +
[

x
R	

2 x

])

= bin(c0) · �q

2
� + y − E	

1

[
x

R	
1 x

]
− E	

2

[
x

R	
2 x

]

︸ ︷︷ ︸
error

.

Note that if the error term above is bounded by q/5, i.e., ||error||∞ < q/5, then in
Step 2 of the Transform algorithm, one has that � 2

qw� = bin(c0) which implies
ĉ′
0 = g · � 2

qw� = c0. Then, in the Dec algorithm run by the recipient, one has:

w′ = ĉ′
0 − e	

id,tc2 = v	s′ + y′ + M · �q

2
� − e	

id,t

⎛

⎝B	
id,ts

′ +

⎡

⎣
x′

S	
1 x′

S	
2 x′

⎤

⎦

⎞

⎠

= M · �q

2
� + y′ − e	

id,t

⎡

⎣
x′

S	
1 x′

S	
2 x′

⎤

⎦

︸ ︷︷ ︸
error′

.
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Similarly, if the error term is less than q/5, i.e., |error′| < q/5, then the recipient
should be able to recover the plaintext. As in [1,10], the two error terms above
are both bounded by sm2B ·ω(log n) = Õ

(
n3

)
, which is much smaller than q/5,

as we set q = Õ
(
n4

)
. This implies the correctness of our scheme.

Security. The selective security of our scheme is stated in the following theorem.

Theorem 3. The SR-IBE scheme described in Sect. 3 is SR-sID-CPA secure,
provided that the (n, q, χ)-LWE assumption holds.

In the proof of Theorem 3, we demonstrate that if there is a PPT adversary A
succeeding in breaking the SR-sID-CPA security of our SR-IBE scheme, then we
can use it to construct a PPT algorithm S breaking either the IND-sRID-CPA
security of Chen et al.’s RIBE scheme or the IND-sID-CPA security of the ABB
HIBE scheme. The theorem then follows from the facts that the two building
blocks are both secure under the (n, q, χ)-LWE assumption (see Theorems 1 and
2). The details of the proof are given in the full version.

5 Conclusion and Open Problems

We present the first server-aided RIBE from lattice assumptions. In compari-
son with previous lattice-based realizations [10,11] of RIBE, our scheme has a
noticeable advantage in terms of computation and communication costs on the
user side. The scheme only satisfies the weak notion of selective security. Nev-
ertheless, adaptive security in the standard model can possibly be achieved (at
the cost of efficiency) by replacing the two building blocks by adaptively-secure
lattice-based constructions, e.g., the RIBE from [11] and the HIBE schemes
from [34,36]. One limitation of the scheme is the large size of user’s long-term
secret key: while being independent of the number of users, it is quadratic in the
security parameter λ. Reducing this key size (e.g., making it linear in λ) is left
as an open question.

Another question that we left unsolved is how to construct a lattice-based
scheme secure against decryption key exposure attacks considered by Seo and
Emura [32]. Existing pairing-based RIBE schemes satisfying this strong notion all
employ a randomization technique in the decryption key generation procedure,
that seems hard to adapt into the lattice setting. Finally, it is worth investigating
whether our design approach (i.e., using a double encryption mechanism with an
RIBE and an HIBE that have suitable plaintext/ciphertext spaces) would yield
a generic construction for SR-IBE.
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Abstract. The Number Theoretic Transform (NTT) provides efficient
algorithms for cyclic and nega-cyclic convolutions, which have many
applications in computer arithmetic, e.g., for multiplying large integers
and large degree polynomials. It is commonly used in cryptographic
schemes that are based on the hardness of the Ring Learning With Errors
(R-LWE) problem to efficiently implement modular polynomial multipli-
cation.

We present a new modular reduction technique that is tailored for
the special moduli required by the NTT. Based on this reduction, we
speed up the NTT and propose faster, multi-purpose algorithms. We
present two implementations of these algorithms: a portable C imple-
mentation and a high-speed implementation using assembly with AVX2
instructions. To demonstrate the improved efficiency in an application
example, we benchmarked the algorithms in the context of the R-LWE
key exchange protocol that has recently been proposed by Alkim, Ducas,
Pöppelmann and Schwabe. In this case, our C and assembly imple-
mentations compute the full key exchange 1.44 and 1.21 times faster,
respectively. These results are achieved with full protection against tim-
ing attacks.

Keywords: Post-quantum cryptography · Number Theoretic Trans-
form (NTT) · Ring Learning With Errors (R-LWE) · Fast modular
reduction · Efficient implementation

1 Introduction

Fast Fourier Transform (FFT) algorithms to compute the Discrete Fourier Trans-
form (DFT) have countless applications ranging from digital signal processing
to the fast multiplication of large integers. The cyclic convolution of two integer
sequences of length n can be computed by applying an FFT algorithm to both,
then multiplying the resulting DFT sequences of length n coefficient-wise and
transforming the result back via an inverse FFT. This operation corresponds to
the product of the corresponding polynomials modulo Xn − 1, and for large n,
a computation via FFTs as above was suggested to be used in the ring-based
encryption scheme NTRUEncrypt in [15].

c© Springer International Publishing AG 2016
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When the sequence (or polynomial) coefficients are specialized to come from
a finite field, the DFT is called the Number Theoretic Transform (NTT) [8]
and can be computed with FFT algorithms that work over this specific finite
field. Polynomial multiplication over a finite field is one of the fundamental
operations required in cryptographic schemes based on the Ring Learning With
Errors (R-LWE) problem, and the NTT has shown to be a powerful tool that
enables this operation to be computed in quasi-polynomial complexity.

R-LWE-Based Cryptography. Since its introduction by Regev [28], the
Learning With Errors (LWE) problem has been used as the foundation for many
new lattice-based constructions with a variety of cryptographic functionalities.
It is currently believed to be sufficiently hard, even for attackers running a large
scale quantum computer. Hence cryptographic schemes with security based on
the hardness of the LWE problem are promising candidates for post-quantum
(or quantum-safe) cryptography.

The Ring LWE (R-LWE) problem, introduced by Lyubashevsky, Peikert and
Regev [20], is a special instance of the LWE problem that is essentially obtained
by adding a ring structure to the underlying lattice. R-LWE-based schemes have
been proposed for public-key encryption [20,24,31], digital signatures [11,19],
and key exchange [2,5,10,24,32]. Furthermore, the most efficient proposals for
(fully) homomorphic encryption are also based on R-LWE, e.g., [6].

The advantage of R-LWE over LWE is a significant increase in efficiency.
When working with vectors of dimension n, it allows a factor n space reduc-
tion and the possibility of using FFT algorithms to compute polynomial prod-
ucts instead of matrix-vector or matrix-matrix operations; this leads to an
improvement from roughly n2 base ring multiplications to roughly n log n such
multiplications.

One particularly efficient parameter instantiation in the context of R-LWE
is such that the dimension n is a power of 2 and polynomial products are taken
modulo the 2n-th cyclotomic polynomial Xn + 1 with coefficients modulo a
prime q. Here, the polynomial product corresponds to a nega-cyclic convolution
of the coefficient sequences. In this setting, the NTT is usually computed with
a special type of FFT algorithm that can be used efficiently when q is a prime
that satisfies the congruence condition q ≡ 1 mod 2n (cf. [21, Sect. 2.1]), which
in turn means that the underlying finite field contains primitive 2n-th roots of
unity. Many state-of-the-art instantiations of R-LWE-based cryptography choose
n and q as above in order to harness the efficiency of the NTT; for example, the
BLISS signature implementations (I-IV) set n = 512 and q = 12289 [11] and the
fastest R-LWE-based key exchange implementation to date sets n = 1024 and
q = 12289 [2].

Our Contributions. We present a new modular reduction algorithm for the
special moduli that are required to invoke the NTT. While this new routine can
be used to replace existing modular reduction algorithms and give standalone
performance improvements, we further show that calling it inside a modified
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NTT algorithm can give rise to additional speedups. We illustrate these improve-
ments by providing and benchmarking both our portable C and AVX2 assembly
implementations (see Sect. 5 for complete details). Our software is publicly avail-
able as part of the LatticeCrypto library [18].

Given the ubiquity of the NTT in (both the existing and foreseeable) high-
speed instantiations of R-LWE-based primitives, we emphasize that an improved
NTT simultaneously improves a large portion of all lattice-based cryptographic
proposals. While our algorithm will give a solid speedup to signature schemes like
Lyubashevsky’s [19] and BLISS [11], it will give a more drastic overall improve-
ment in common encryption and key exchange schemes. In these scenarios, there
are different ways of removing the need for obtaining high-precision samples
from a Gaussian distribution [22], for example, the number of R-LWE samples
per secret can be bounded, or one can use the Kullback-Leibler or Renyi diver-
gences [3]. Subsequently, the cost of sampling the error distribution decreases
dramatically, and the NTT becomes the bottleneck of the overall computation.

To highlight the practical benefits of the new approach in an example of a
cryptographic protocol, we implemented the recent key exchange instantiation
due to Alkim, Ducas, Pöppelmann and Schwabe [2], and show that the overall
key exchange is approximately 1.44 times faster (portable C implementation) and
1.21 times faster (AVX2 assembly implementation) using our improved NTT.

Beyond the faster modular reduction itself, the specific improvements over
the approach in [2] that have led to this speedup are as follows:

– The new modular reduction algorithm allows coefficients to grow up to 32 bits
in size, which eliminates the need for modular reductions after any addition
during the NTT. As a consequence, reductions are only carried out after mul-
tiplications.

– The new modular reduction is very flexible and enables efficient implemen-
tations using either integer arithmetic or floating point arithmetic. Since it
minimizes the use of multiplications, using the higher throughput of float-
ing point instructions on the latest Intel processors does not have as big an
impact as for more multiplication-heavy methods like Montgomery reduction.
Hence, the method is especially attractive for implementations with a focus
on simplicity, particularly in plain C.

– Related to the previous point, our implementation uses signed integer arith-
metic in the NTT. This allows for signed integers to represent error polynomi-
als and secret keys, which saves conversions from negative to positive integers
(e.g., this reduces the number of additions during error sampling and before
modular reductions in the NTT).

– We show how to merge the scaling by n−1 with our conversion from redundant
to standard integer representation at the end of the inverse NTT. In addition,
by pulling this conversion into the last stage of the inverse NTT, we eliminate
n/2 multiplications and reductions, all at the cost of precomputing only two
integers.
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Organization. Section 2 gives the background on R-LWE and the NTT.
Section 3 contains our two main contributions: the improved modular reduction
and NTT algorithms. Section 4 revises the details in the R-LWE key exchange
scheme from [2], which is used as a case study to give a practical instance where
our improved NTT gives rise to faster cryptography. Finally, Sect. 5 provides a
performance analysis and benchmarks.

2 Preliminaries

This section provides details about the ring structure in the R-LWE setting,
the NTT, and the FFT algorithm to compute the NTT and its inverse. The
original proposal of R-LWE [20] restricts to cyclotomic rings, i.e. rings generated
over the integers by primitive roots of unity. We immediately focus on 2-power
cyclotomic rings as this is the most commonly used case and seems to provide
the most efficient arithmetic.

2.1 The Ring Learning with Errors (R-LWE) Setting

Let N = 2d, d > 1 be a power of two and let n = ϕ(N) = 2d−1 = N/2.
Then the N -th cyclotomic polynomial is given by ΦN (X) = Xn + 1. Let R be
the ring of cyclotomic integers, i.e. R = Z[X]/(ΦN (X)) = Z[X]/(Xn + 1). Any
element a ∈ R can be written as a =

∑n−1
i=0 aiX

i, ai ∈ Z. Furthermore, let
q ∈ Z be a positive integer modulus such that q ≡ 1 (mod N). The quotient
ring R/(q) is isomorphic to Rq = Zq[X]/(Xn + 1) and for any a ∈ Rq, we
write a =

∑n−1
i=0 aiX

i, ai ∈ Zq. We use the same symbol a to also denote
both the coefficient vector a = (a0, a1, . . . , an−1) ∈ Z

n
q and the sequence a =

(a[0], a[1], . . . , a[n − 1]) ∈ Z
n
q .

2.2 The Number Theoretic Transform (NTT)

The NTT is a specialized version of the discrete Fourier transform, in which the
coefficient ring is taken to be a finite field (or ring) containing the right roots of
unity. It can be viewed as an exact version of the complex DFT, avoiding round-
off errors for exact convolutions of integer sequences. While Gauss apparently
used similar techniques already in [12], laying the ground work for modern FFT
algorithms to compute the DFT and therefore the NTT is usually attributed to
Cooley and Tukey’s seminal paper [8].

Notation and Background. With parameters as above, i.e. n being a power
of 2 and q a prime with q ≡ 1 (mod 2n), let a = (a[0], ..., a[n−1]) ∈ Z

n
q , and let ω

be a primitive n-th root of unity in Zq, which means that ωn ≡ 1 (mod q). The
forward transformation ã = NTT(a) is defined as ã[i] =

∑n−1
j=0 a[j]ωij mod q

for i = 0, 1, ..., n − 1. The inverse transformation is given by b = INTT(ã),
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where b[i] = n−1
∑n−1

j=0 ã[j]ω−ij mod q for i = 0, 1, ..., n − 1, and we have
INTT(NTT(a)) = a.

As mentioned above, the NTT can be used directly to perform the main
operation in R-LWE-based cryptography, that is, polynomial multiplication in
Rq = Zq[X]/(Xn +1). However, since applying the NTT transform as described
above provides a cyclic convolution, computing c = a · b mod (Xn + 1) with two
polynomials a and b would require applying the NTT of length 2n and thus
n zeros to be appended to each input; this effectively doubles the length of the
inputs and also requires the computation of an explicit reduction modulo Xn+1.
To avoid these issues, one can exploit the negative wrapped convolution [21]: let
ψ be a primitive 2n-th root of unity in Zq such that ψ2 = ω, and let a =
(a[0], ..., a[n − 1]), b = (b[0], ..., b[n − 1]) ∈ Z

n
q be two vectors. Also, define â =

(a[0], ψa[1]..., ψn−1a[n − 1]) and b̂ = (b[0], ψb[1]..., ψn−1b[n − 1]). The negative
wrapped convolution of a and b is defined as c = (1, ψ−1, ψ−2, ..., ψ−(n−1)) ◦
INTT(NTT(â) ◦NTT(b̂)), where ◦ denotes component-wise multiplication. This
operation satisfies c = a · b in Rq.

Previous Optimizations. Some additional optimizations are available to the
NTT-based polynomial multiplication. Previous works explain how to merge
multiplications by the powers of ω with the powers of ψ and ψ−1 inside the
NTT. Consequently, important savings can be achieved by precomputing and
storing in memory the values related to these parameters. In particular, Roy
et al. [29] showed how to merge the powers of ψ with the powers of ω in the
forward transformation. This merging did not pose any difficulty in the case of
the well-known decimation-in-time NTT, which is based on the Cooley-Tukey
butterfly [8] that was used in the first implementations of R-LWE-based schemes.
Similarly, Pöppelmann et al. [26] showed how to merge the powers of ψ−1 with
the powers of ω in the inverse transformation. In this case, however, it was
necessary to switch from a decimation-in-time NTT to a decimation-in-frequency
NTT [13], which is based on the Gentleman-Sande (GS) butterfly. In this work
we exploit the combination of both transformations for optimal performance.

Other optimizations focus on the NTT’s butterfly computation. Relevant
examples are the use of precomputed quotients, as exploited in Shoup’s but-
terfly algorithm [30], and the use of redundant representations that enable the
elimination of several conditional modular corrections, as shown by Harvey [14].
In particular, Harvey showed how to apply the latter technique on Shoup’s but-
terfly and on a butterfly variant based on Montgomery arithmetic. In Sect. 5, we
compare our improved NTT algorithms with the approaches by Melchor et al. [1]
and Alkim et al. [2], both of which adopted and specialized Harvey’s butterfly
algorithms.

Several works in the literature (e.g., [2,17,25,29]) have applied a relatively
expensive reordering or bit-reversal step before or after the NTT computation.
This is due to the restrictive nature of certain forward and inverse algorithms
that only accept inputs in standard ordering and produce results in bit-reversed
ordering. However, Chu and George [7] showed how to also derive forward and
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inverse FFT algorithms working for the reversed case, i.e., accepting inputs in
bit-reversed ordering and producing outputs in standard ordering. Accordingly,
[26] adapted and suitably combined the algorithms in the context of NTTs in
order to eliminate the need of the bit-reversal step.

From hereon, we denote by NTT := NTTCT,Ψrev an algorithm that computes
the forward transformation based on the Cooley-Tukey butterfly that absorbs
the powers of ψ in bit-reversed ordering. This function receives the inputs in
standard ordering and produces a result in bit-reversed ordering. Similarly, we
denote by INTT := INTTGS,Ψ−1

rev
an algorithm computing the inverse transforma-

tion based on the Gentleman-Sande butterfly that absorbs the powers of ψ−1

in the bit-reversed ordering. This function receives the inputs in bit-reversed
ordering and produces an output in standard ordering. Following Pöppelmann
et al. [26], the combination of these two functions eliminates any need for a
bit-reversal step. Optimized algorithms for the forward and inverse NTT are
presented in Algorithms 1 and 2, respectively. These algorithms are based on the
ones detailed in [26, Appendix A.1]. Note that we have applied a few modifica-
tions and corrected some typos.

Pöppelmann et al. [26] avoid the final scaling by n−1 during the inverse NTT
by shifting the computation to a polynomial transformation that is (in their
target application of BLISS signatures) assumedly performed offline. In general,
however, that assumption does not necessarily hold; for example, in [2], all of the
polynomials to be multiplied are generated fresh per key exchange connection.
Accordingly, Algorithm 2 includes scaling by n−1.

Algorithm 1. Function NTT based on the Cooley-Tukey (CT) butterfly.
Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Z

n
q in standard ordering, where q is

a prime such that q ≡ 1 mod 2n and n is a power of two, and a precomputed table
Ψrev ∈ Z

n
q storing powers of ψ in bit-reversed order.

Output: a ← NTT(a) in bit-reversed ordering.

1: t = n
2: for (m = 1; m < n; m = 2m) do
3: t = t/2
4: for (i = 0; i < m; i++) do
5: j1 = 2 · i · t
6: j2 = j1 + t − 1
7: S = Ψrev[m + i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t] · S
11: a[j] = U + V mod q
12: a[j + t] = U − V mod q
13: return a
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Algorithm 2. Function INTT based on the Gentleman-Sande (GS) butterfly.
Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Z

n
q in bit-reversed ordering, where q is

a prime such that q ≡ 1 mod 2n and n is a power of two, and a precomputed table
Ψ−1
rev ∈ Z

n
q storing powers of ψ−1 in bit-reversed order.

Output: a ← INTT(a) in standard ordering.

1: t = 1
2: for (m = n; m > 1; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i++) do
6: j2 = j1 + t − 1
7: S = Ψ−1

rev[h + i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t]
11: a[j] = U + V mod q
12: a[j + t] = (U − V ) · S mod q
13: j1 = j1 + 2t
14: t = 2t
15: for (j = 0; j < n; j++) do
16: a[j] = a[j] · n−1 mod q
17: return a

3 Modular Reduction and Speeding up the NTT

Most FFT algorithms to compute the NTT over a finite field or ring need certain
roots of unity. In the specific setting discussed in the previous section, one needs
primitive 2n-th roots of unity to exist1 modulo q, which imposes a congruence
condition on q, namely q ≡ 1 (mod 2n). The parameters for R-LWE-based cryp-
tosystems tend to have relatively large dimension n and relatively small moduli
q, which means that moduli satisfying the congruence have the form q = k·2m+1,
where 2n | 2m and k ≥ 3 is a very small integer.

Modular Reduction. In this section, we introduce a new modular reduction
method for moduli of this special shape. We note that it works similarly for any
modulus of the form k · 2m ± l, where k and l are small positive integers such
that k ≥ 3 and l ≥ 1. However, for ease of exposition and to focus on the case
most relevant in the context of the NTT, we only treat the case q = k · 2m + 1.
When k is odd and 2m > k, these numbers are known as Proth numbers [27],
and a general algorithm for reduction modulo such integers is discussed in
[9, Section 9.2.3].

Let 0 ≤ a, b < q be two integers modulo q and let C = a · b be their integer
product. Then 0 ≤ C < q2 = k222m +k2m+1+1. The goal is to reduce C modulo
1 For an algorithm that does not require such roots, but has the disadvantage of

needing to pad the inputs to double length to compute nega-cyclic convolutions, see
Nussbaumers algorithm ([23] and [16, Exercise 4.6.4.59]).
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q using the special shape of q, namely using the fact that k2m ≡ −1 (mod q).
Write C = C0 + 2mC1, where 0 ≤ C0 < 2m. Then 0 ≤ C1 = (C − C0)/2m <
k22m + 2k + 1/2m = kq + k + 1/2m. We have that kC ≡ kC0 − C1 (mod q), and
given the above bounds for C0 and C1, it follows that the integer kC0 − C1 has
absolute value bounded by |kC0 − C1| < (k + 1/2m)q. As k is a small integer,
the value kC0 −C1 can be brought into the range [0, q) by adding or subtracting
a small multiple of q. The maximal value for C is (q − 1)2 = k222m, in which
case C0 = 0 and C1 = k22m = k(q − 1), meaning that (k − 1)q must be added to
kC0−C1 to fully reduce the result. In our application to the NTT, however, we do
not intend to perform this final reduction into [0, q) throughout the computation,
but rather only at the very end of the algorithm. We are therefore content with
the output of the function K-RED defined as follows:
function K-RED(C)

C0 ← C mod 2m

C1 ← C/2m

return kC0 − C1

The function K-RED can take any integer C as input. It then returns an integer
D such that D ≡ kC (mod q) and |D| < q + |C|/2m. Although this function
alone does not properly reduce the value C modulo q, we still call it a reduction
because it brings D close to the desired range; note that for |C| > (2m/(2m−1))q,
we have |D| < |K-RED(C)|, i.e. it reduces the size of C. As a specific example,
take q = 12289 = 3 · 212 + 1. Then k = 3 and K-RED returns 3C0 − C1 ≡ 3C
(mod q) using the equivalence 3 · 212 ≡ −1 (mod q).

In the context of a specific, longer computation, and depending on the para-
meter n and the target platform, we note that additional reductions might need
to be applied to a limited number of intermediate values, for which overflow may
occur. In this case, as an optimization, two successive reductions can be merged
as follows. Let the input operand C be decomposed as C = C0 +C1 ·2m +C222m

with 0 ≤ C0, C1 < 2m. Then we can reduce C via the following function K-RED-2x.
function K-RED-2x(C)

C0 ← C mod 2m

C1 ← C/2m mod 2m

C2 ← C/22m

return k2C0 − kC1 + C2

Speeding up the NTT. In the context of the NTT algorithm, we use a redun-
dant representation of integers modulo q by allowing them to grow up to 32 bits
and, when necessary, apply the reduction function K-RED to reduce the sizes
of coefficients. We keep track of the factors of k that are implicitly multiplied
to the result by an invocation of K-RED. For the sake of illustration, consider
Algorithm 1. The main idea is to apply the function K-RED only after multipli-
cations, i.e., one reduction per iteration in the inner loop, letting intermediate
coefficient values grow such that the final coefficient values become congruent
to K · a[·] mod q for a fixed factor K. This factor can then be used at the end
of the NTT-based polynomial multiplication to correct the result to the desired



132 P. Longa and M. Naehrig

value. Next, we specify the details of the method for n ∈ {256, 512, 1024} for the
prime q = 12289. We limit the analysis to platforms with native 32 (or higher)-
bit multipliers, but note that the presented algorithms can be easily modified to
cover other settings.

The case q = 12289. The modified NTT algorithms using K-RED and K-RED-2x
are shown in Algorithm 3 and Algorithm 4 for the modulus q = 12289, which
in practice is used with n = 512 (for BLISS signatures [11]) or 1024 (for key
exchange [2]). In Steps 7 of Algorithm3 and Step 7 of Algorithm4, we are
using the precomputed values scaled by k−1, i.e. we use precomputed tables
Ψrev,k−1 [·] = k−1 · Ψrev[·] and Ψ−1

rev,k−1 [·] = k−1 · Ψ−1
rev[·]. We denote these mod-

ified algorithms by NTTK := NTTK
CT,ψrev,k−1

and INTTK := INTTK
GS,Ψ−1

rev,k−1
,

respectively.

Algorithm 3. Modified function NTTK using K-RED and K-RED-2x for reduction
modulo q = 12289 (32 or 64-bit platform).
Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Z

n
q in standard ordering, where n ∈

{256, 512, 1024}, and a precomputed table Ψrev,k−1 ∈ Z
n
q of scaled powers of ψ in bit-

reversed order.
Output: a ← NTTK(a) in bit-reversed ordering.

1: t = n
2: for (m = 1; m < n; m = 2m) do
3: t = t/2
4: for (i = 0; i < m; i++) do
5: j1 = 2 · i · t
6: j2 = j1 + t − 1
7: S = Ψrev,k−1 [m + i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t] · S
11: if m = 128 then
12: U = K-RED(U)
13: V = K-RED-2x(V )
14: else
15: V = K-RED(V )
16: a[j] = U + V
17: a[j + t] = U − V
18: return a

Given two input vectors a and b, let c = INTT(NTT(a) ◦ NTT(b)) be computed
using Algorithms 1 and 2. It is easy to see that the resulting coefficients after
applying Algorithms 3 and 4, i.e., after computing INTTK(NTTK(a) ◦ NTTK(b)),
are congruent to K · c[·] modulo q for a certain fixed integer K = ks and an
integer s. Note that by scaling the precomputed twiddle factors by k−1 mod q,
we can limit the growth of the power of k introduced by the reduction steps.
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Algorithm 4. Modified function INTTK using K-RED and K-RED-2x for reduction
modulo q = 12289 (32 or 64-bit platform).
Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Z

n
q in bit-reversed ordering, where

n ∈ {256, 512, 1024}, a precomputed table Ψ−1
rev,k−1 ∈ Z

n
q of scaled powers of ψ−1 in

bit-reversed order, and constants n−1
K = n−1 ·k−11, Ψ−1

K = n−1 ·k−10 ·Ψ−1
rev,k−1 [1] ∈ Zq,

where k = 3.
Output: a ← INTTK(a) in standard ordering.

1: t = 1
2: for (m = n; m > 2; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i++) do
6: j2 = j1 + t − 1
7: S = Ψ−1

rev,k−1 [h + i]

8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t]
11: a[j] = U + V
12: a[j + t] = (U − V ) · S
13: if m = 32 then
14: a[j] = K-RED(a[j])
15: a[j + t] = K-RED-2x(a[j + t])
16: else
17: a[j + t] = K-RED(a[j + t])
18: j1 = j1 + 2t
19: t = 2t
20: for (j = 0; j < t; j++) do
21: U = a[j]
22: V = a[j + t]
23: a[j] = K-RED((U + V ) · n−1

K )
24: a[j + t] = K-RED((U − V ) · Ψ−1

K )
25: return a

For example in Line 7 of Algorithm3 the value S carries a factor k−1 which
then cancels with the factor k introduced by K-RED in Step 15. Only additional
reductions such as those in Steps 12 and 13 increase the power of k in the final
result.

At the end of the computation, the final results can be converted back to
the standard representation by multiplying with the inverse of the factor K.
Moreover, this conversion can be obtained for free if the computation is merged
with the scaling by n−1 during the inverse transformation, that is, if scaling is
performed by multiplying the resulting vector with the value n−1 ·K−1. However,
we can do even better: by merging the second entry of the table Ψrev,k−1 with
the fixed value n−1 · K−1, we eliminate an additional n/2 multiplications and
modular reductions. This is shown in Steps 21–24 of Algorithm4.
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4 Case Study: R-LWE Key Exchange

This section explains how we apply our new modular reduction and the improved
NTT algorithms, together with a simplified message encoding, to the key
exchange implementation that was proposed by Alkim, Ducas, Pöppelmann and
Schwabe in [2]; the protocol is depicted in Fig. 1. Accordingly, from hereon we fix
n = 1024 and q = 12289 and the error distribution is defined to be the centered
binomial distribution ψ12, from which one samples by computing

∑16
i=1(bi −

b′
i), where the bi, b

′
i ∈ {0, 1} are uniform independent bits. The functions

HelpRec and Rec are modified instantiations of Peikert’s reconciliation functions
[24, Sect. 3] that essentially turn approximate key agreement into exact key
agreement – see [2]. The function SHAKE-128 is the extended output function
(XOF) based on Keccak [4], which is also used to derive the 256-bit shared
secret key in both Alice and Bob’s final steps. Following [2], the random value a
is generated directly in the NTT domain.

Public parameters

n = 1024, q = 12289, error distribution ψ12

)tneilc(boB)revres(ecilA

seed
$← {0, 1}256

a ← SHAKE-128(seed)

s, e
$← ψn

12 s′, e′, e′′ $← ψn
12

b ← as + e
mA=(b,seed)−→ a ← SHAKE-128(seed)

u ← as′ + e′

v ← bs′ + e′′

v′ ← us
mB=(u,r)←− r

$← HelpRec(v)
ν ← Rec(v′, r) ν ← Rec(v, r)

μ ← SHA3-256(ν) μ ← SHA3-256(ν)

Fig. 1. The key exchange instantiation from [2].

Viewing Fig. 1, we identify the following NTT-based computations:

Alice Bob

b ← a ◦ NTT(s) + NTT(e) u ← a ◦ NTT(s′) + NTT(e′)

v′ ← INTT (u ◦ NTT(s)) v ← INTT (b ◦ NTT(s′) + NTT(e′′))

The sequence of NTT and INTT operations above are used to determine the
value of K that results from our target parameters; note that q = 3 · 212 + 1
and thus k = 3. For determining K, Alice’s and Bob’s NTT/INTT computations
can be seen as two polynomial operations: (1) the first operation begins with the
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computation of b on Alice’s side, who then transmits it in the NTT domain to
Bob for computing v and giving the result back in the standard domain; and
similarly (2) the second operation consists of the computation of u on Bob’s side
followed by the computation of v′ on Alice’s side.

We first point out that if we include two extra reductions at stage m = 128
and m = 32 of the NTT and INTT algorithms, respectively, then intermedi-
ate values never grow beyond 32 bits during a full NTT or INTT computa-
tion (see steps 11–13 of Algorithm 3 and steps 13–15 of Algorithm 4). Following
Sect. 3, the factor k introduced by every invocation of K-RED is canceled out by
the corresponding multiplication with an entry from the Ψrev,k−1 and Ψ−1

rev,k−1

tables. Hence, only the extra reductions above introduce a factor k to the inter-
mediate results of the NTT and INTT.

Secondly, we point out that after performing component-wise multiplications
of polynomials in the NTT domain, the individual factors get compounded. The
results after these multiplications require two additional reductions and a condi-
tional subtraction per coefficient to fully reduce them modulo q (this is required
to avoid overflows and, when applicable, to transmit messages and derive shared
keys in fully reduced form). It is important to keep track of these factors and
to (i) ensure that they are balanced (i.e., the same) before, e.g., adding two
summands that are the result of different NTT operations, and (ii) ensure that
they are corrected at the end of the computation. Careful analysis of the above
sequence of NTT operations reveals that the final factor is K = k10 = 310 for
the two full polynomial operations mentioned before.

Message Encoding and Decoding. Internally, polynomials are encoded as
1024-element little-endian arrays, where each element or coefficient is represented
either by a 32-bit signed integer (for secret keys and error polynomials) or a
32-bit unsigned integer (for everything else). Each coefficient that is part of a
message is fully reduced modulo q before transmission and therefore only uses
a fraction of the integer size (i.e., 14 bits). We simply encode messages in little
endian format as a concatenation of these 1024 14-bit coefficients (for b and u;
see Fig. 1) immediately followed by the 256-bit seed in Alice’s message and the
1024 2-bit array r in Bob’s message. Accordingly, mA and mB consist of 1824
and 2048 bytes, respectively.

5 Implementation Results

In this section, we present implementation results showcasing the performance
of the new NTT algorithms and, in particular, benchmark them in the context
of the Ring-LWE key exchange by Alkim et al. [2].

5.1 Performance Benchmarks

To ease the comparison with the state-of-the-art NTT implementation, we fol-
lowed [2] and implemented two versions of the proposed NTT algorithms [18]:
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a portable and compact implementation written in the C language, and a high-
speed implementation written in x64 assembly and exploiting AVX2 instructions.
For the AVX2 implementation we decided to use vector integer instructions,
which are easier to work with and, according to our theoretical analysis, are
expected to provide similar performance to a version using vector floating-point
instructions.

The benchmarking results of our implementations are shown at the top
of Table 1. These results were obtained by running the implementations on a
3.4 GHz Intel Core i7-4770 Haswell processor with TurboBoost disabled. For
compilation we used gcc v4.9.2 for the C implementation and clang v3.8.0 for
the AVX2 implementation.

As one can see, for the C version, the new forward and inverse NTT imple-
mentations are 1.84 and 1.88 times faster than the corresponding implementa-
tions from Alkim et al. [2]. In contrast, for the AVX2 version, the new algorithms
appear to be slightly slower. However, this direct comparison does not account
for the additional benefits of our technique that are not observable at the NTT
level. This includes the efficient use of signed arithmetic and the elimination
of costly conversion routines required by the Montgomery arithmetic (as used
in [2]) that are performed outside of the NTT. As we show below, our algo-
rithms perform significantly better in practice when all this additional overhead
is considered in the cost.

Table 1. Benchmarking results (in terms of 103 cycles) of our C and AVX2 implemen-
tations of the NTT and the key-exchange instantiation proposed by Alkim et al. [2] on
a 3.4 GHz Intel Core i7-4770 Haswell processor with TurboBoost disabled. Results are
compared with Alkim et al.’s implementation results. At the bottom of the table, we
show the total cost of a key-exchange, including Alice’s and Bob’s computations.

C implementation AVX2 implementation

ADPS [2] This work ADPS [2] This work

NTT 55.4 30.1 8.4 9.1

INTT 59.9 31.8 9.5 9.7

Generating a 43.6 39.5 36.9 37.8

Error sampling 32.7 31.4 5.9 4.8

HelpRec 14.6 12.9 3.4 2.4

Rec 10.1 7.2 2.8 1.2

Key gen (server) 259.0 170.9 89.1 70.4

Key gen + shared key (client) 385.1 287.6 111.2 95.2

Shared key (server) 86.3 48.8 19.4 15.7

Total (key exchange) 730.4 507.3 219.7 181.3
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To illustrate the overall performance benefits of the new reduction and NTT
algorithms, we implemented the full key-exchange instantiation proposed by
Alkim et al. [2]. To ease the comparison, we reuse the same implementations of
ChaCha20 and SHAKE-128 used in Alkim et al.’s software for the seed expansion
during the generation of a and for the polynomial error sampling, respectively.

Our results for the key exchange are summarized in Table 1. The C and AVX2
implementations are roughly 1.44x and 1.21x faster, respectively, than the cor-
responding C and AVX2 implementations by Alkim et al. These improvements
are mostly due to the new NTT algorithms which exhibit a faster reduction and
avoid the costly conversions that are required when working with Montgomery
arithmetic. The new reduction also motivates the use of signed arithmetic, which
makes computations more efficient because corrections from negative to positive
values are not required in several of the key exchange routines. In particular, the
effect of using signed arithmetic can be observed in the performance improvement
for the generation of a, HelpRec and Rec. We remark that these performance
improvements are obtained with significantly simpler integer arithmetic.

A different Ring-LWE based key-exchange implementation has been recently
reported by Aguilar-Melchor et al. [1]. Direct comparisons with this work are
especially difficult because they use different parameters and the most recent
version of their implementation appears not to be protected against timing and
cache attacks. As a point of reference, we mention that [1, Table 2] reports that
their NTT implementation using n = 512 and a 30-bit modulus runs in 13 K
cycles on a 2.9 GHz Intel Haswell machine (scaled from 4.5µs). This is more
than 1.4x slower than our NTT using n = 1024 and a 14-bit modulus.

6 Conclusion

We describe a new modular reduction technique and improved FFT algorithms to
compute the NTT. The improved NTT algorithms were applied to a recent key
exchange proposal and showed significant improvements in performance using
both a plain C implementation and a vectorized implementation that does not
require floating-point arithmetic.

Although both the modular reduction and the improved NTT were motivated
by (and are somewhat tailored towards) applications in R-LWE cryptography
that use power-of-2 cyclotomic fields, our improvements should be of independent
interest and might be applicable to other scenarios. Our method offers flexibility
for implementations with different design goals without sacrificing performance.

Likewise, we expect that the new algorithms offer similar performance
improvements on platforms such as microcontrollers and ARM processors. We
leave this as future work, as well as the evaluation of the proposed NTT algo-
rithms in the implementation and optimization of R-LWE signature schemes
such as BLISS.
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Abstract. Multisignature schemes constitute important primitives
when it comes to save the storage and bandwidth costs in presence of mul-
tiple signers. Such constructions are extensively used in financial appli-
cations such as Bitcoins, where more than one key is required in order
to authorize Bitcoin transactions. However, many of the current state-
of-the-art multisignature schemes are based on the RSA or discrete-log
assumptions, which may become insecure in the future, for example due
to the possibility of quantum attacks. In this paper we propose a new
multisignature scheme that is built on top of the intractability of lattice
problems that remain hard to solve even in presence of powerful quantum
computers. The size of a multisignature is quasi optimal and our scheme
can also easily be transformed into a more general aggregate signature
scheme. Finally, we give an efficient implementation of the scheme which
testifies its practicality and competitive capacity.

Keywords: Multisignature scheme · Lattice-based crypto · Post-
quantum

1 Introduction

The security notion of most cryptographic applications changes in the presence
of quantum computers. In the breakthrough work [22] in 1994, Shor pointed
out that cryptographic schemes with security based on the hardness of number
theoretic assumptions can efficiently be attacked by means of quantum com-
puters. Since then, many efforts have been spent on the search for alternatives
in order to face this challenge. Lattice-based cryptography is a promising can-
didate that has the potential to meet the security needs of future business and
private applications. As opposed to the discrete log problem and factoring, lattice
problems are conjectured to withstand quantum attacks. Moreover, its unique
security property to provide worst-case hardness of average-case instances rep-
resents a major cornerstone in cryptography in general as there exist no other
hardness assumptions with the same security guarantees. In the last couples of
years, a number of efficient cryptosystems emerged that base the security on the
hardness of well-studied lattice problems. Unlike classical constructions such as
RSA, there exists up to date no subexponential time attack on lattice problems,
c© Springer International Publishing AG 2016
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that are relevant for practice. All known attacks run in exponential time and
thus provide a solid argument for a transition to lattice-based cryptosystems.

In a multisignature (MS) scheme n parties with public keys pk1, ..., pkn agree
to collectively construct a multisignature on a message m of choice such that
the size of the multisignature is considerably smaller than the size of trivially
bundled signatures while certifying that m has indeed been signed under the
public keys pk1, ..., pkn simultaneously. Such constructions have a great magni-
tude of applications and are utilized whenever storage and bandwidth costs are
subject of minimizations. For instance, wireless sensor networks are character-
ized by constrained resources inherently asking for mechanisms that optimize the
amount of traffic and the memory consumption. Many different multisignature
schemes have been proposed in the past years. They are mainly based on classi-
cal assumptions such as RSA or the discrete-log problem. In [7] a lattice-based
sequential aggregate signature scheme has been proposed, which can trivially be
transformed into a sequential multisignature scheme, where the signers sequen-
tially sign the same message. However, there is no multisignature scheme as
such, to our knowledge, that is based on hardness assumptions that withstand
quantum attacks. In order to allow for a smooth transition into a world sur-
rounded by large scale quantum computers, it is desperately needed to realize
such primitives due to its importance for financial applications such as Bitcoins.

Related Works. The concept of multisignature schemes was first introduced
in [11]. Since then many works have been proposed, however failing to provide
a security proof or even an appropriate adversary model. As a result, the con-
structions introduced in [13,16] were completely broken. In fact, only the works
of Okamoto et al. [20] and Micali et al. [18] meet these requirements for the first
time and present different security models. Nevertheless, the security notion
of [18] is considered to be even stronger, since [20] does not consider attacks in
the key generation phase (e.g. rogue-key attacks). On the other hand, for the
scheme in [18] to be applied the set of signers has to be known beforehand.
Following these works, Bolydreva et al. [6] give a new construction of a mul-
tisignature scheme employing the Gap-Diffie-Hellman problem as the underlying
hardness assumption. In the work [15], Lu et al. remove the need for a random
oracle and propose a multisignature scheme based on bilinear pairings. In 2006
Bellare and Neven propose a new multisignature scheme in the plain public key
model [5]. This scheme gets rid of the drawbacks arising in other schemes such as
the proof of knowledge for the secret key needed in [18]. The only requirement is
that each signer has a certified public key, that is generated individually by each
user. However, it is an interactive protocol, where the users have to collaborate
prior to outputting a multisignature. But there exist also sophisticated concepts
such as identity based multisignature schemes, which make the resulting schemes
even more compact [2,4] in terms of memory consumption as the public keys are
derived from a public and short identity.
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Contribution. In this paper we propose the first lattice-based multisignature
scheme that is provably secure in the random oracle model. We also show that it
can easily be transformed into a lattice-based aggregate signature scheme. Our
construction is built on top of the signature scheme due to Güneysu et al. [8,9]
which represents a key component. In fact, we modify the corresponding scheme
to an interactive multisignature scheme that is simple in terms of operations.
As a result, we obtain a highly efficient scheme that is optimized both in terms
of performance and multisignature size. In particular, the size of the multisig-
nature is essentially as large as a single one (see Fig. 5) while providing security
guarantees, that indeed each user signed the message, based on the hardness
to solve certain lattice problems. We further discuss how our scheme can be
utilized within the scope of Bitcoin/Blockchain transactions. Finally, we give
an thorough implementation and several optimizations, thus moving the scheme
towards practicality.

Organization. This paper is structured as follows. In Sect. 2 we start with
some background notations of our work. In Sect. 3 we introduce our lattice-
based multisignature scheme together with a proof of security. Section 4 contains
a detailed description of our implementation and optimizations. In Sect. 5 we
present the experimental results and an analysis.

2 Preliminaries

2.1 Notation

We will use the polynomial rings R = Z[x]/〈f(x)〉 and Rq = Zq[x]/〈f(x)〉 for a
polynomial f(x) that is monic and irreducible over Z. For any positive integer
k, we denote by Rq

k the set of polynomials in Rq with coefficients in the range
[−k, k]. For the ring-LWE problem we consider the cyclotomic polynomials, such
as f(x) = xn +1 for n being a power of 2. The m-th cyclotomic polynomial with
integer coefficients is the polynomial of degree n = φ(m) whose roots are the
primitive m-th roots of unity. We denote ring elements by boldface lower case
letters e.g. p. By Dn

32 we denote the set of polynomials of degree at most n − 1
with 32 coefficients ±1 and zero coefficients else. Other required ingredients will
be introduced in the respective sections.

Definition 1 (DCKq,n problem, [9]). We define the DCKq,n problem (Deci-
sional Compact Knapsack problem) to be the problem of distinguishing between
the uniform distribution over Rq × Rq and the distribution (a,as1 + s2) where
a is uniformly random in Rq and si are uniformly random in Rq

1.

3 Multisignature Scheme

In the following section we present the first lattice-based multisignature scheme
that is provably secure in the random oracle model. At the core of our security
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proof we make use of the Forking Lemma [5], which allows us to derive a solution
to a Ring-SIS instance. As a key component we deploy the efficient signature
scheme due to Güneysu et al. in order to instantiate the scheme. But we also note,
that other variants (e.g. [17]) are also possible requiring a slight modification in
the security proof. One may also want to base the scheme on standard lattice
problems or module representations of larger rank [12] allowing to hedge against
future weaknesses of currently applied representations.

We start with a description of a formal model for multisignature schemes
and the associated algorithms. A multisignature scheme consists of 3 algorithms
M = (MKeyGen,MSign,MVerify). Let S = {S1, . . . , SN} be the set of N users
agreeing to collectively sign a message M .

• MKeyGen(1n): On input 1n with security parameter n the probabilistic algo-
rithm outputs for each signer a secret key and verification key (ski, pki).

• MSign(L,M): On input a message M and any subgroup of signers L =
{Si1 , . . . , Sik} with indices I = {i1, . . . , ik} the algorithm outputs a multisig-
nature σL, the set of signers L collaborating to construct σL and the message
M .

• MVerify(σL,M,T): On input a multisignature or aggregate signature σL, a
set of signers L, a message M , and the set of verification keys T associated to
the signers in L the deterministic algorithm outputs 1, if the multisignature
is valid and all signers indeed signed the message, otherwise 0.

We note that our interactive MS scheme can be turned into an ordinary
aggregate signature scheme. This can be realized when replacing the message
M by the tuple of messages M1||id1, . . . ,MN ||idN each for a different signer. In
Definition 2 we define the notion of optimality in the context of multisignature
schemes, which is typically not achieved by existing schemes.

Definition 2 (Optimal MS-Schemes, [10] ). In an optimal multisignature
scheme the optimal size of a multisignature is identical to that of a single signa-
ture and the verification time is (almost) identical to that of a single signature.

3.1 Our Construction

In the following section we give a detailed description of our construction and
subsequently present a security proof in an appropriate security model.

Key Generation. At the start of the algorithm, all signers agree on a uniform
random polynomial a ∈ Rq, which is attained, for instance, by interaction,
generated by a trusted source or from a seed. The secret keys ski of each signer Si

are random polynomials (s(1)
i , s(2)

i ) $←− Rq
d×Rq

d, where d is a very small parameter
(such as d ∈ {2, ..., 6} for n = 512 and d = 1 for n = 1024), and the public key
Ti = a · s(1)

i + s(2)
i is derived by use of the secret keys and a. Larger values of

d increase the security against key recovery attacks at the expense of a slower
signing engine. For instance, if d = 1 and q = 8383489 we just obtain the
parameter sets of the standard signature scheme from [8].
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Multisignature Generation. For the security proof, we require two crypto-
graphic hash functions H0 : Rq → Rq and H1 : {0, 1}∗ → Dn

32 modeled as
random oracles (RO). Every signer proceeds as follows in order to obtain a mul-
tisignature on a message M : Similar to the basic signature scheme [8], each
signer i samples y(1)

i and y(2)
i from Rq

k. The parameter k controls the trade-off
between the security and the runtime of our scheme. Subsequently, each signer
computes ri = ay(1)

i + y(2)
i and queries H0 on input ri outputting ti = H0(ri).

This step is crucial for the security proof in order to program the RO. The par-
ties then broadcast ti to the other cosigners, who in turn wait for the reception
of all tj for 1 ≤ j ≤ N before broadcasting the corresponding input values
rj . As a result, each signer is able to check the validity of rj using tj and
computes r =

∑N
j=1 rj ,mod q as one part of the multisignature. Subsequently,

H1(Ti, r,T,M) is queried with T= {T1,. . . ,TN} in order to obtain ci of signer
i. The following two protocol steps 9 and 10 essentially correspond to the sign-
ing steps 3 and 4 of [8] with the minor modification that the whole protocol
is restarted, if one signature fails the validity checks. The probability of not
restarting the protocol is given by

Prob[success] =

(
1 − d · 64

2k + 1

)2Nn

⇔ k(E, N, n) =

⌊
1

2
·
(

d · 64

1 − 2Nn
√

1/E
− 1

)⌋
(1)

yielding E = 1/Prob[success] expected number of trials. If all restrictions are
satisfied the signature parts zi will be shared among the cosigners and the mul-

tisignature (z, r) is output, where z =
N∑

i=1

zi.

We also highlight at this point that the signing engine can further be opti-
mized by outputting (z, {ci}N

i=1) rather than (z, r) in case the bit size of r is
larger than the size of {ci}N

i=1. This happens to occur whenever the inequality
N ·160 < n log q holds, since ci consisting of at most 32 non-zero coefficients can
be recovered from 160 bits ([8]). From the verifier’s point of view, we can choose
both representations, since r can be recovered from {ci}N

i=1 and vice versa.

Multisignature Verification. The verification engine computes all ci ←
H1(Ti, r,T,M) and checks that the conditions z(1), z(2) ∈ Rq

N ·(k−d·32) and

a · z(1) + z(2) = r +
N∑

i=1

Tici are satisfied. If these validity checks are successful,

the algorithm outputs 1, else 0.
This scheme can also be built on top of the scheme presented in [17]. However,

it has to be taken care of how to program the random oracle.

3.2 Security

Our security model is inspired by [5]. In particular, we show that forging a
multisignature is as hard as solving a hard lattice problem assuming the existence
of at least one honest signer in this group. We therefore allow the forger to control
the private keys of all participants except for one honest signer (Fig. 1).



An Efficient Lattice-Based Multisignature Scheme 145

MKeyGen MSign

Signing key ski = Si with Signer i Cosigners

Si = ( s
(1)
i , s

(2)
i )

$←− Rq
d × Rq

d 1: Yi =
(
y
(1)
i ,y

(2)
i

)
$←− Rq

k × Rq
k 1 ≤ j ≤ N , j �= i

Verification key vki = (a,Ti) 2: ri ← ay
(1)
i + y

(2)
i

a
$←− Rq, 3: ti ← H0(ri)

Ti ← a · s(1)i + s
(2)
i 4:

ti−−−−−−−−−−−→
broadcast

Output key pair (ski, vki)
tj←−−−−−−−−−−−

broadcast

5:
ri−−−−−−−−−−−→

broadcast
rj←−−−−−−−−−−−

broadcast

MVerify 6: Check tj
?
= H0(rj) for all i �= j

ci ← H1(Ti, r,T,m) 7: r ← ∑N
j=1 rj mod q

Accept iff 8: ci ← H1(Ti, r,T,M)

z ∈ Rq
N·(k−d·32) × Rq

N·(k−d·32) and 9: zi = (z
(1)
i , z

(2)
i ) ← Sici + Yi

a · z(1) + z(2) = r +
N∑
i=1

Tici 10: if zi /∈ Rq
k−d·32 × Rq

k−d·32 restart protocol

11:
zi−−−−−−−−−−−→

broadcast
zj←−−−−−−−−−−−

broadcast

12: z ←
N∑

j=1

zj

13: Output (z, r)

Fig. 1. Multisignature scheme

We consider the notion of adaptive chosen-message attacks, where A is
allowed to make arbitrary many multisignature queries to the honest signer on
messages of its choice. The advantage AdvMSign∗

A of A is the success probability
in the following experiment.

Experiment. ExpMS−SU−CMA
A,SAS (n)

(S,T) ←− KeyGen(1n),
where T = {T1, . . . ,TN} and S = {S1, . . . ,SN}
(z∗, r∗) ←− AOMSign(S∗,∗,∗)(T,S\S∗,M)
Let T∗ be the challenge public key in T and
M be the message.
Let Σ = ((T,Ml), (zl, rl))

QMS

l=1 be query-response tuples generated in
interaction with OMSign(S∗, ∗, ∗)
Return 1 if MVerify(z∗, r∗,T,M) = valid

and ((T,M), (z∗, r∗)) /∈ Σ

Following this experiment, the adversary is allowed to query the signing oracle
OMSign on messages of its choice and he is also given random oracle access. He
obtains as input all public keys, the secret keys of all parties other than the
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honest user and a message M of choice to be signed by all parties. Eventually,
he outputs a forgery (z∗, r∗) for a message M under public keys T containing the
challenge public key T∗. The adversary is said to be successful in this experiment,
if he efficiently provides a valid multisignature with non-negligible advantage.

Definition 3 (MS-SU-CMA). Let T∗ be the challenge public key of the honest
signer and T = {T1, . . . ,TN} the set of public keys in a multisignature scheme
(MS). The MS is said to be strongly unforgeable under adaptive chosen message
attacks (SU-CMA) if for all PPT algorithms A, there exists a negl. function ε(n)
s.t.

AdvMSignSU−CMA
A (n) = Prob[(z, r, M) ← A | MVerify(z, r,T, M) = valid] ≤ ε(n).

Theorem 1 contains our main security statement of this section.

Theorem 1. Suppose there exists a polynomial-time forger F , who makes at
most h queries to H, initiates at most s signing protocols with the honest signer
involving at most Nmax public keys and succeeds in providing a forgery with
probability δ. Then, there exists an algorithm A with the same time complexity
as F that for a given A = (a, 1) $← Rqn × {1} (in fact any A = (a,v) with
invertible v) finds non-zero u1,u2 ∈ Z

n
q with probability of at least

(
1
2

− 2−100

)
·
(

δ − 2(h + s + 1)2

g

)
·
(

δ − 2(h + s + 1)2/g

t
− 1

|DH1 |
)

≈ δ2

2(h + s)

for g = min{|DH0 |, |DH1 |} such that ‖ui‖∞ ≤ 2Nmax(k−d·32) and au1+u2 = 0.

Proof. Let DH0 = Z
n
q and DH1 = {c : c ∈ {−1, 0, 1}κ, ‖c‖ ≤ κ} denote the

ranges of the random oracles H0 and H1. The core idea of the security model is
to let the forger F control the private keys of all but at least one honest signer.
Thus, the forger is allowed to select the verification keys Ti = ASi of the fake
signers by choosing the private keys Si. Given the forger F consider the algorithm
A, which behaves as follows. On input parameters φ, ψ corresponding to the
random coins of the forger F and the honest signer, random oracle responses
h1, . . . ,ht, target verification keys A = (a,1) ∈ Rqn × {1} and T∗ = AS∗,
where S∗ = (s(1), s(2)) with s(1), s(2) ∈ {−d, . . . , 0, . . . , d}n denotes the secret
key of the honest signer, the algorithm A runs the forger F , who makes at most
t = h + s calls to the random oracle H during the attack. The random oracle is
programmed either by calling it directly or when requesting to see a signature.
At the beginning of the algorithm, A initializes 2 counters ctr1 and ctr2 and 3
associative lists B0[·], B1[·] and B2[·], where B2[·] is used to identify the different
public keys by unique indices 1 ≤ i ≤ h+Nmax · s. List B2 is initially filled with
B2[T∗] ← 0, meaning that the public key of the honest signer is always identified
with the index 0. The algorithm responds to random oracle queries H0(rj) by

selecting a random value bi
$← Z

n
p and setting B0[rj ] = bi, if it has yet not

been defined, and outputs B0[rj ]. In case H1(·) is called on input values Ti,Q,
A checks the content of B2[Ti]. If B2[Ti] is not defined, it increases ctr1 and
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sets B2[Ti] = ctr1. If Q parses as r,T,M , it furthermore ensures that B2[Tj ] is
defined for all Tj ∈ T and 1 ≤ j ≤ N . Let j = B2[Ti] be the unique index of Ti.
In case B1[i,Q] has not yet been set, the algorithm selects random values for all
B1[l,Q], where 1 ≤ l ≤ h+Nmax ·s, and finally sets B0[0,Q] = hctr1 . Whenever
F requests from the honest signer a signature on a message M and verification
keys T, the algorithm proceeds as follows. If T∗ /∈ T, output ⊥, else parse T as
{T1 = T∗,T2, . . . ,TN}. Then, it ensures that all entries B2[Tj ] are defined for
2 ≤ j ≤ N and increments the counter ctr1. Subsequently, it sets c1 ← hctr1 ,
randomly picks z1 ∈ Rq

k−d·32×Rq
k−d·32, computes r1 = Az1−T1c1 and transmits

t0 = H0(r1) to the other cosigners simulated by F . Simultaneously, A looks up
in the list B0 for input vectors ri such that ti = B0[ri], where ti are receivings
from the cosigners 2 ≤ i ≤ N . In case a vector ri corresponding to ti cannot be
found, A sets the flag alert ← true and sends r1 to all cosigners. If B0 contains
more than one value for any ti, the event bad1 occured and A stops the protocol

returning ⊥. In the other case, A computes r =
N∑

i=1

ri and subsequently checks

whether B1[0,Q] is defined for Q parsed as r,T,M . If B1[0,Q] is already set,
bad2 occured and A aborts with output ⊥. Otherwise it samples B1[0,Q] ← c1

and B1[l,Q] $← DH0 for 1 ≤ l ≤ h+N ·s. Finally it broadcasts r1, while receiving
ri from the other participants. A stops the protocol returning ⊥ if there exists
a vector ri such that H0(ri) �= ti or in case H0(ri) = ti for all 1 ≤ i ≤ N and
alert = true. In the latter case the event bad3 occured. Otherwise, it broadcasts
z1 to the participants while receiving zi from the cosigners. Finally, A computes

z =
N∑

i=1

zi mod p and outputs (r, z) as the multisignature. Once the forger F
finishes the execution it eventually outputs a valid forgery (r, z) together with

a list of public keys T and a message M with probability δ′ = δ −
3∑

i=0

P [badi].

Therefore, we have ‖z‖∞ ≤ N ·(k−d ·32) and Az−
N∑

i=1

Tici = r with probability

δ, where ci = H(Ti, r,T,M).
If the random oracle H1 has not been queried before, the probability of

correctly selecting all vectors ci such that ci = H1(Ti, r,T,M) is 1/|DH1 |l. Once
calling H1 during the signing step leads to the assignment of all B1[i, r,T,M ]
for 1 ≤ i ≤ h + Nmaxs. Thus, the success probability of F to provide a valid
signature with c∗ = hj and ci = H1(Ti, r,T,M) for 1 ≤ i ≤ N and 1 ≤ j ≤ t
is at least δ − N/|DH1 |. Assuming this, let 1 ≤ J ≤ t be the index such that
B1[0, r,T,M ] = hJ . We first record the tuple (r, z,hJ ) and by the forking lemma
we obtain another tuple (r′, z′,h′

J ) with probability of at least

(δ′ − N/|DH1 |) ·
(

δ′ − N/|DH1 |
t

− 1
|DH1 |

)

In both runs the same message M and set of keys T is used. This is due
since the environments of F provided by A are identical up to the first
call of H1(Ti, r,T,M) or H1(Ti, r′,T′,M ′), which leads to the assignments



148 R. El Bansarkhani and J. Sturm

B1[0, r,T,M ] = hJ and B1[0, r′,T′,M ′] = h′
J . As a result, we must have

M ′ = M, r′ = r and T′ = T because up to this point the same random tape,
values h1, . . . ,hJ−1 and random oracle responses have been used. Thus, let N∗

be the number of occurrences of T∗ in T. Furthermore, prior to the assign-
ment B1[0, r,T,M ] ← hJ all entries B2[Ti] and ci = B1[B2[Ti], r,T,M ] are
initialized. Consequently, the random vectors ci = c′

i are also the same in both
executions for Ti �= T∗. For T∗ we have c∗ = hJ and c′∗ = h′

J for the first and
second run, where hJ �= h′

J . Let the index set I∗ contain all indices 1 ≤ i ≤ l

such that Ti = T∗. From Az −
l∑

i=1

Tici = r′ = r = Az′ −
l∑

i=1

Tic′
i it follows

A (z − z′ + |I∗| · S∗(c∗ − c′∗)) = 0

Due to ‖z‖∞ , ‖z‖′
∞ ≤ N(k − d · 32) and ‖S∗c∗‖∞,‖S∗c′∗‖∞ ≤ d · 32 we have

‖z − z′ + |N∗| · S∗(c∗ − c′∗)‖∞ ≤ 2N(k −d ·32)+2|N∗| ·d ·32. Using A = (a,1)
(or in general A = v−1A′ for A′ = (a,v) and invertible v) and S∗ = (s(1), s(2))
we obtain the following equivalent presentation for the equality from above

a
(
z(1) − z(1)′ + |N∗| · s(1)(c∗ − c′)

)
+

(
z(2) − z(2)′ + |N∗| · s(2)(c∗ − c′)

)
= 0.

A quick view to this equation shows that we found in accordance
to [8,17] two polynomials b1 and b2 with small coefficients such that a·b1+b2 =
0. This solves Ring-SISn,2,β for β ≤ 2N(k − d · 32) + 2|N∗| · d · 32, which is pre-
sumed to be hard. We note that the number of cosigners N ≤ Nmax should not
be too large. �

The following lemma provides a bound on the size of a multisignature. In
practice the bound is much smaller than the assumed bound N · k.

Lemma 1 (Hoeffding’s Lemma). Let X be any real-valued random variable
with mean E[X] = 0 and such that a ≤ X ≤ b almost surely. Then for all λ ∈ R

it holds E[eλX ] ≤ eλ2(b−a)2/8.

Lemma 2 (Signature Size). Let Xi ←R [−k, . . . , 0, . . . , k] be uniform random
variables for 1 ≤ i ≤ N with E[Xi] = 0. Define X =

∑
Xi. Then, it holds

P [|X| ≥ √
2cNk] ≤ e−c. For a vector z =

∑
zi ∈ Z

n with n components, the
probability is given by P [‖z‖∞ <

√
2cNk] ≤ (1 − e−c)n.

Lemma 2 follows from Lemma 1 by straight forward calculations.

3.3 Application Scenario: Signed Bitcoin Transactions

Multisignature schemes are applied whenever a group of signers wishes to sign the
same data resulting in an aggregate signature of reduced size. Relevant finan-
cial application scenarios are Bitcoin1 transactions, where multisignatures are
1 Bitcoin is an open source project for the identically named currency on a peer-to-peer

basis which was first mentioned in [19].
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applied in order to validate crypto currency transactions prior to being written
into the public Blockchain, which can subsequently not be changed anymore.
The Blockchain technology itself is considered to be one of the most promising
disruptive technologies in the financial sector due to its decentral characteristic
to avoid the need of trusted parties such as banks or other intermediaries in
order process transactions. Applied to the real world the economy may save a
lot of time and huge amounts of money due to the ommission of intermediaries.
With a signed transaction Bitcoin users can send virtual money anonymously
over the network. Moreover, Bitcoin allows to make a multisignature transac-
tion, where the signature of more than one private key is required. Usually we
have an m-of-n address with n private keys for m ≤ n.

Fig. 2. Bitcoin multisignature

More specifically, transferring Bitcoins
from one address to another requires sig-
natures from at least m keys (see Fig. 2).
This has several advantages: On the one
hand it gets very hard for an adver-
sary to steal Bitcoins, because he needs
to compromise m machines in order to
mount his attack. With a 2-of-2 address,
for instance, two keys could have been
stored on two different machines and the
attacker would have to compromise them both. On the other hand multisigna-
ture transactions can be used for redundancy in order to protect against loss.
With a 2-of-3 address, for instance, a transaction can still be executed, though
an arbitrary key gets lost. It can also be utilized for wallet sharing, where an
address is shared by multiple members of an organization and a majority vote
is required to use the funds.

Our scheme from Sect. 3.1 can optimally be exploited for such purposes, espe-
cially for the case, where a user requires m private keys to successfully process
financial transactions. In this case, the interactive nature of our protocol has no
negative performance impact due to 2 reasons. First, in such protocols the num-
ber of private keys m required to sign transactions is rather small, i.e. m ≤ 5.
Second, the major part of the communication cost is restricted to the respective
user himself without involving any other party within the P2P network such
that the costs are minimal. Once the multisignature is created by the user, it
is transmitted to the different P2P participants within the Bitcoin/Blockchain
network. In this case, there are no additional communication costs beside of the
transmission of a multisignature of reduced storage size. In fact, we show in
Fig. 4 that the multisignature has essentially the size of a single signature, thus
saving about 4 signatures in case we have m = 5 private keys involved. Obvi-
ously, the signature size can never be smaller than a single signature. Therefore,
we conclude that our proposed multisignature scheme is indeed practical in such
scenarios, where the performance of generating multisignatures does not repre-
sent a bottleneck. This is often the case within companies, institutions or in case
of individuals.
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4 Fast Polynomial Arithmetic

4.1 Polynomial Multiplication

If we neglect the time which is consumed to broadcast data, queries with a large
input to the random oracle H1 and polynomial multiplication are by far the
most time-consuming operations in this scheme. Here we focus on fast polyno-
mial multiplication. In order to achieve quasi-linear runtime in O(n log n) for
this operation, we use highly optimized versions of the Fast Fourier Transforma-
tion (FFT) and the Number Theoretic Transformation (NTT). The difference
between those transformations is that the NTT is defined over a finite field Z/qZ
by means of a primitive n-th root of unity ωn ∈ Z/qZ, whereas the FFT has a
complex representation of ωn ∈ C.

Definition 4. (Root of Unity, [3]). ωn is a primitive n-th root of unity modulo
q, if ωn

n = 1 (mod q) and ω
n
d
n �= 1 (mod q) for every divisor d of n.

FFT and NTT Transformations. We assume that n is a power of two. The n-
point FFTω(a) of a coefficient vector a = (a0, ..., an−1) to y = (y0, y1, ..., yn−1)
with A(x) =

∑n−1
j=0 ajx

j is defined as yi = A(ωi
n) =

∑n−1
j=0 ajω

ij
n for i =

0, 1, ..., n−1. We basically evaluate a polynomial of degree n−1 at the powers of
the n-th roots of unity ωi

n. Due to the orthogonality relations between the n-th
roots of unity, we can compute the inverse FFT−1

ω (y) by just using ω−1
n instead

of ωn and dividing every resulting element by n.
The n-point NTTω(a) with components in Zq is defined analogous with addi-

tional modular reduction by q and the restriction that q ≡ 1mod2n. This restric-
tion ensures the existence of a primitive 2n-th root of unity ψ, because the order
of ψ has to divide the group order. Both transformations exploit the special prop-
erties of the roots of unity such that the divide-and-conquer approach improves
the computation time from O(n2) to O(n log n) [21].

For lattice-based cryptography it is convenient that many schemes prefer
to operate in rings Zq[x]/〈xn + 1〉 due to its nice properties. This allows, for
instance, to apply the convolution theorem, which gives us a modular reduction
by xn + 1 for free. In fact, it can be applied with both FFT and NTT.

In [9] the authors proposed a highly optimized iterative NTT algorithm.
While the NTT is restricted to a fixed prime q and n satisfying q ≡ 1mod2n,
there is a need to extend this implementation to other representations in order
to provide various efficiency and security trade-offs. We will now briefly review
some of these optimizations and how to adapt them to a more generic and highly
optimized FFT algorithm.

4.2 Optimizations

AVX. The first optimization is to use the Advanced Vector Extensions (AVX)
in order to run certain basic computations in parallel. AVX is an extension of
the x86 instruction set of modern Intel and AMD CPUs, i.e. Intel Sandy Bridge,
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Intel Ivy Bridge or AMD Bulldozer, to perform Single Instruction Multiple Data
(SIMD) operations. SIMD instructions allow us to operate similar instructions
on multiple data in a single CPU cycle. In case of AVX, we have 16 256-bit wide
registers ymm, which can store any multiple of 32-bit or 64-bit floating-point
type that add up to 128 or 256 bits, as well as multiples of integer values not
exceeding 128 bits [14]. We can represent a polynomial of degree n−1 by an array
of n double floating-point values. By use of AVX we can operate on four of these
64-bit coefficients all at once. This implies a theoretical speedup of 4. However,
due to load- and store instructions it is not possible to exploit the complete
bandwidth. Moreover, it depends on how many operations have to be executed
between these load- and store instructions. If we consider, for instance, the simple
function that adds or subtracts two polynomials, we just get a speedup of 1.7
using AVX since there is only one single vaddpd/vsubpd instruction between the
load- and store process. There are some more operations that can be executed
in parallel, e.g. modular reduction, the NTT transformation and polynomial
multiplication, which allow for an increased speedup. We can construct two more
functions poly equal and poly elementof that check, if two polynomials are equal
and the coefficients of a polynomial. To this end, we require the instructions
vcmppd and the vmovmskpd.

Fig. 3. vcmppd instruction

According to Fig. 3 the vcmppd instruction fills
the respective register values with either only ones,
in case the condition is true, or only zeros, if it is
false. The condition can be specified with a cer-
tain hex-code (0x1c for NEQ, 0xe for GT or 0x1
for LT). Following this, the instruction vmovmskpd
extracts the MSB of all four values and returns an
integer bitmask of the MSBs. In case the bitmask
is non-zero at some point (and we assume that the coefficients are in the pre-
defined range [−(q − 1)/2, (q − 1)/2]), the respective check fails. By means of
these two functions, we can achieve a speedup of about 3 as compared to its
serial counterpart. As shown in detail in [9, Sect. 3.2] the NTT, especially the
butterfly operations, run with AVX in parallel as well. To minimize memory
access they decide to split up the outer loop of the iterative NTT-algorithm
and merge several so-called levels together. The idea is to save store and load
instructions by holding some values in AVX registers, directly accessible for fur-
ther computations.

Regarding convolutions within the NTT/FFT almost every step of the poly-
nomial multiplication can be parallelized with AVX: We start by multiplying
the powers of ψ to the coefficient vector with some vmulpd instructions. Subse-
quently, we transform these vectors into the above mentioned parallel NTT cir-
cuit in order to carry out point-wise multiplication on four coefficients at once.
Finally, we apply the inverse transformation and multiply the resulting vector
with ψ−in−1 in parallel. Realizing an implementation with different values for q
requires to apply the FFT rather than the NTT for specific representations. To
this end, we have to deal with complex numbers (complex n-th roots of unity
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ωn = e2πi/n). In particular, we represent a polynomial by two arrays of n double
floating-point values. One for the real part and one for the imaginary part. Essen-
tially, we now have to apply all the above explained operations from the NTT
twice for the FFT, since the real- and imaginary part are treated separately.
Only for the inverse FFT step we can avoid computations with the imaginary
part, since the overall result is real. Another difference to the NTT algorithm is
that we do not need modular reduction in every single butterfly operation any-
more, because we are in the complex plane. Solely at the end of the polynomial
multiplication we have to perform one modular reduction step after rounding all
the resulting coefficients to the nearest integer. This rounding step is necessary
due to the fact that we lose some precision caused by the imprecise floating point
arithmetic. Furthermore, the point-wise multiplication has to be adapted to a
parallel complex alternative. Let v = a + ib and w = c + id be two complex
numbers, where the product is v · w = (ac − bd) + i(ad + bc). Thus we need four
vmulpd, one vaddpd and one vsubpd operations to compute the poin-twise multi-
plication of two complex numbers. As opposed to the optimized NTT algorithm
from [9], we relinquish merging several levels together since we have only 16
available ymm registers to cache data. However, we need almost twice as much
registers because of the real- and imaginary part. This approach does not scale
well in practice leading to less efficient allocations.

5 Performance Analysis and Benchmarks

In this section we analyze the performance of our software and report bench-
marks for the signing (multisig sign) and verification (multisig verify) algorithm.
We performed the experiments on the following machine: An Ultrabook, Intel
Core i5-6200U (Skylake) at 2300 MHz and 8 GB RAM running Linux 64 Bit.
All software was compiled with gcc-5.4.0 and compiler flags -Ofast -msse2avx
-march=core-avx2.

5.1 Experimental Results of Our Multisignature Scheme

In Fig. 4 we report the average of 500–1000 signature generations for message
sizes of 100 bytes. We also report the timings for MSign of one single signer
ignoring the time, which is consumed, to broadcast data. This reflects the fact
that in practice all signers run the protocol in parallel. In order to achieve 100 bits
of security for n = 1024 we sample the coefficients of the secret polynomials from
the set {−1, 0, 1}, i.e. for d = 1. We applied the large set of security analysis
tools from [1] to estimate the security level of the scheme. We note that the
NTT can only be used for moduli up to log(q) = 23 bits due to the imprecise
representation of q−1 in floating point modulo operations for larger values of
q. In the following table, we provide timings (ms) and sizes (kB) for different
parameter sets, where n = 1024 is chosen to be fixed. In particular, we provide
performance results for a various number of signers N and different moduli q for
a fixed number of protocol repetitions E.
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n=1024 d=1 Bit Security ≈ 120 [1]

N Modulus E k log(k) MSign MVerify SigSize |σ| Multisignature Size |Σ|

10

q = 8380417 100 142325 17.1 21.5 ms

0.2 ms

4.6 kB ≈ 1 signature (out of 10)
log(q) = 23 50 167540 17.4 11.5 ms 4.6 kB ≈ 1 signature (out of 10)

NTT 10 284635 18.1 2.3 ms 4.8 kB ≈ 1 signature (out of 10)
5 407214 18.6 1.1 ms 4.9 kB ≈ 1 signature (out of 10)

5

q = 8380417 100 71170 16.1 12.1 ms

0.1 ms

4.3 kB ≈ 1 signature (out of 5)
log(q) = 23 50 83778 16.4 6.0 ms 4.4 kB ≈ 1 signature (out of 5)

NTT 10 142325 17.1 1.3 ms 4.6 kB ≈ 1 signature (out of 5)
5 203615 17.6 0.6 ms 4.7 kB ≈ 1 signature (out of 5)

Fig. 4. Timings (in ms) for signing and verification (n = 512, d = 3), sizes for the
corresponding multisignatures and compression factors ϑ.

This term indicates according to Eq. 1 how often the protocol has to be
restarted in order to obtain a valid multisignature. The compression factor for
the signature size is defined as ϑ = 1− |Σ|

N ·|σ| , where |Σ| denotes the multisignature
size and |σ| the size of a single signature.

Our experiments show that the timings for the signing procedure increase
linearly with the number of signers N and the expected value E. However,
it depends only quasi linear on the polynomial degree n. The respective tim-
ings for the FFT are slightly slower. We observe that the multisignature size
(|Σ| = 2n· log(N ·2(k−32)+1) + 160N bits) is almost as large as a single signa-
ture and thus remains almost constant as required in an optimal multisignature
scheme according to Definition 2. The compression factor ϑ increases the more
signers participate. However, the verification time is not constant but linear in
the number of signers N .

Fig. 5. Comparison of signature sizes with and without MS scheme.
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Abstract. We describe an efficient cross-protocol attack, which enables
an attacker to learn the VPN session key shared between a victim client
and a VPN endpoint. The attack recovers the key which is used to
encrypt and authenticate VPN traffic. It leverages a weakness of the
RADIUS protocol executed between a VPN endpoint and a RADIUS
server, and allows an “insider” attacker to read the VPN traffic of other
users or to escalate its own privileges with significantly smaller effort
than previously known attacks on MS-CHAPv2.

1 Introduction

The Point-to-Point Tunneling (PPTP) protocol [5] implements a confidential
and authenticated virtual private network (VPN) tunnel in public computer
networks like the Internet. In this work, we analyze the security of PPTP using
MS-CHAPv2 in combination with a RADIUS authentication server. This is a
standard setting, which is used in large-scale and enterprise networks, where
RADIUS is used to centralize user management and to perform authentication
for different applications. Large scale analysis of public VPN service providers
shows that over 60 % of these still offer PPTP [14].

Contributions. We describe an efficient cross-protocol attack, which enables an
attacker to learn the VPN session key shared between a victim client and a VPN
endpoint. The attack recovers the key which is used to encrypt and authenti-
cate VPN traffic, usually with the Microsoft Point-to-Point Encryption (MPPE)
[9] scheme. The attack leverages a weakness of the RADIUS protocol executed
between the VPN endpoint and the RADIUS server.

VPN session establishment with RADIUS authentication. In order to be able
to sketch our attack, we first describe how a VPN session is established with
RADIUS authentication. VPN session establishment with RADIUS involves
three parties:

– The client which connects to the VPN endpoint. It shares a secret password
with the RADIUS server. The RADIUS server is used to authenticate the
client (or the user that uses this client). We assume that this password is a
strong, high-entropy password, such that a dictionary attack is infeasible.

c© Springer International Publishing AG 2016
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– The VPN endpoint relies on the RADIUS server to authenticate users. It
shares a RADIUS secret S with the RADIUS server. We assume that S is a
cryptographically strong high-entropy key.

– The RADIUS server is a trusted party, which performs user authentication
on behalf of the VPN endpoint, using that it shares the password with the
client and the RADIUS secret S with the VPN endpoint.

Establishment of a VPN session works as follows:

1. The client initiates a PPTP session with the VPN endpoint.
2. At the beginning of the PPTP session, it authenticates itself by running the

MS-CHAPv2 protocol. The VPN endpoint relays all MS-CHAPv2 messages
between the client and the RADIUS server. As a result of the MS-CHAPv2
protocol, client and RADIUS server obtain a shared session key kMPPE for the
connection between client and VPN endpoint. Additionally, the VPN end-
point transmits a random nonce, called the Request Authenticator (ReqAuth)
to the RADIUS server.

3. The RADIUS server uses the RADIUS secret S shared with the VPN endpoint
to encrypt and send kMPPE to the VPN endpoint. Here the so-called RADIUS
encryption scheme EncRADIUS is used, which essentially computes a ciphertext
EncRADIUS(kMPPE) encrypting kMPPE as

EncRADIUS(kMPPE) = (Salt,MD5(S||ReqAuth||Salt) ⊕ kMPPE)

where Salt is a short random 11 bit Salt and ReqAuth is the random nonce
selected in Step 2 by the VPN endpoint. (a full description of RADIUS encryp-
tion can be found in Subsect. 2.3)

4. The VPN endpoint decrypts this message. Now the client and the VPN end-
point share a session key kMPPE, which can be used to encrypt VPN payload
data, using the Microsoft Point-to-Point Encryption (MPPE) protocol.

A detailed description with our attack can be found in Fig. 2.

High-level attack description. Our attack is based on the following observations
about RADIUS encryption as used in the setting described above.

– The “pseudorandom” value MD5(S||ReqAuth||Salt) used to encrypt kMPPE

depends deterministically on S, ReqAuth, and Salt.
– The same value of S is used to encrypt all ciphertexts sent from the RADIUS

server to the VPN endpoint.
– Salt has only 11 bits of entropy, therefore it is very likely that it is repeated

in different ciphertexts sent from the RADIUS server to the VPN endpoint.
– The ReqAuth is a random nonce with high entropy (128 bits), however, it is
chosen by the VPN endpoint and transmitted in plain and unauthenticated
form from the VPN endpoint to the server.

Our attack leverages these observations as follows. We consider a setting with
an attacker that meets the following two requirements:
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– The attacker is able to monitor all data exchanged between the VPN endpoint
and the RADIUS server, and it is able to inject packets.

– The attacker is an “insider”, who is also able to establish VPN connections
(but possibly with lower permissions than other users), whose goal is to learn
the session key of another user.

This is a very practical setting in many applications of PPTP. We require the
attacker to perform only a very small amount of computations, which could
even be performed on a constrained device or a smartphone within a very short
time (a few seconds). We also sketch below how the assumption of an “insider”
attacker can be removed.

1. While the victim initiates a VPN connection, the attacker observes all mes-
sages exchanged between VPN endpoint and RADIUS server. In particular,
it records ReqAuth and EncRADIUS(kMPPE) = (Salt,MD5(S||ReqAuth||Salt) ⊕
kMPPE).

2. The attacker also initiates a VPN session as an honest user1 and proceeds as
follows:
(a) The attacker runs the MS-CHAPv2 protocol to establish a shared session

key k∗
MPPE shared with the RADIUS server.

(b) When the VPN endpoint sends a random RADIUS Request authenticator
Req∗

Auth to the RADIUS server, then the attacker replaces Req∗
Auth with

the previously recorded value ReqAuth sent from the VPN endpoint.
(c) The RADIUS server will respond to the VPN endpoint with a RADIUS

encryption

EncRADIUS(k∗
MPPE) = (Salt∗,MD5(S||ReqAuth||Salt∗) ⊕ k∗

MPPE)

If Salt∗ = Salt (which happens with high probability, because the salt is a
short random string of only 11 bits), then the attacker is able to use the
fact that it knows k∗

MPPE to easily compute

MD5(S||Req∗
Auth||Salt∗) = MD5(S||ReqAuth||Salt)

from EncRADIUS(k∗
MPPE). This is sufficient to decrypt the session key con-

tained in the message EncRADIUS(kMPPE) of the victim’s session.

Experimental analysis of the attack. We have implemented the attack in Python
on a Ubuntu Linux machine. The target RADIUS server was the FreeRadius
Server 3.0.10.

Our analysis shows that computing the session key of a victim user takes
about 62 s in our setting on average.

1 Recall here that in the basic setting we assume that the attacker is an “insider”,
which aims at learning the key kMPPE of the victim in order to read the traffic or to
escalate its own privileges.
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Comparison to other attacks on MS-CHAPv2. It is well-known that MS-
CHAPv2 is cryptographically weak, as it is based on the DES encryption scheme
with 56 bit keys [13]. The previously best known attacks on MS-CHAPv2 were
passive (=eavesdropping) attacks that recover the DES key, which required an
exhaustive search over the key space of size 256 (which is feasible on high-
performance hardware, but relatively expensive) or were based on the use of
low-entropy passwords [7,13].

In contrast, we show an active attack allowing to break MS-CHAPv2 authen-
tication in PPTP with RADIUS authentication with significantly smaller effort
of only 214, which is feasible even without access to high-performance hardware.

Extension to “outsider” attackers. Our attack assumes an “insider” attacker,
but we note that it generalizes easily to “outsider” attackers as well. An outsider
would first run the attack from Schneier and Mudge [13] to break MS-CHAPv2,
in order to recover the secret of one user to become an “insider”, and then mount
our attack.

The main advantage of this approach is that the attacker has to execute
the (feasible, but relatively expensive) attack of Schneier and Mudge only once,
while without our attack technique he would have to executed it once for each
victim user.

Further related work. Schneier and Mudge [13] as well as Eisinger [4] analyzed
the security of MS-CHAPv2 and showed the maximum security is one full DES
key space search. MPPE security was analyzed most recently by Patterson et al.
[10], who exploited biases in the RC4 keystream, in order to mount plaintext
recovery attacks. Downgrade attacks on PPTP were showed by Ornaghi et al.
[8], which tried to force PAP or MS-CHAPv1 as authentication protocol instead
of MS-CHAPv2.

2 Foundations

Our attack utilizes three different protocols, as described in Sect. 1 and therefore
can be split into three different parts:

1. The first part is the setup of an PPTP channel over any PPP channel between
the client and the VPN endpoint using the Link Control Protocol and Network
Control Protocol. All data is transfered encapsulated in GRE packets. This
is described in Subsect. 2.1.

2. The second part is the login procedure of the client at the RADIUS server.
Here the data is transported again with GRE on the side between client and
VPN endpoint and is then repacked into RADIUS packets and send from the
VPN endpoint to the RADIUS server. This part is described in Subsect. 2.2

3. After the client is successfully logged in, he and the RADIUS server both
compute a key kMPPE and the RADIUS server encrypts this key using the
RADIUS encryption Subsect. 2.3 and sends it to the VPN endpoint. Now that



Breaking PPTP VPNs via RADIUS Encryption 163

the client and VPN endpoint both have the same key, they derive a session
key from that and can start MPPE encrypted data communication. This part
is described in Subsect. 2.4.

After we describe this setting in detail, we introduce an attacker that can get
the key kMPPE, with a few messages send to the RADIUS server under certain
assumptions. We will then show, how the attacker can use the key to decrypt all
messages from the secured MPPE channel. Our attack is described in Sect. 3.

2.1 PPTP

The Point-to-Point-Tunneling Protocol (PPTP) was designed to allow for clients
that are not part of a network to tunnel their data trough a Point-to-Point
protocol to that network to extend the original one with a virtual one. This
allows to create Virtual Private Networks (VPNs). The Point-to-Point method
was chosen, so that it was not necessary to have a working Ethernet connection
between the networks, but phone communication or others could also be used.

PPTP uses a control channel over TCP and a second channel that is encap-
sulated in GRE to transfer the data.

PPP. The Point-to-Point-Protocol (PPP) was introduced in 1994 in RFC
1661 [1]. It is a layer-2 protocol to transmit arbitrary data packets over a full
duplex point-to-point connection that can be established over many underlying
systems.

Aside from the channel that transmits the actual data, the PPP uses two
distinct protocols to agree how the channel is build: 1. Link Control Protocol
(LCP) and 2. Network Control Protocol (NCP).

The LCP focuses on all management between the two parties constructing
the channel, while the NCP controls how the selected payload protocol is used
in the transfer later.

While the original PPP protocol was designed to allow transfer over Point-to-
Point connections, the protocol was extended with Point-to-Point-over-Ethernet
to also work in a Ethernet environment that is not a direct two point connec-
tion. This allows the use of all protocols based on PPP to be used over the
Internet. This allows PPTP Endpoint to work directly with clients coming over
the Internet and others using phone-lines with the same protocol.

PPTP. The PPP protocol itself does not offer security protection. As a result
the Point-to-Point-Tunneling-Protocol (PPTP) was designed. In the beginning
when PPP was only used over direct Point-to-Point connected endpoints, the
security was derived from this direct connection. Now that it also possible to
use the Internet as the underlying layer, these security guarantees are not valid
anymore and additional security is needed. In the original PPTP specification
in RFC 2637 [5], which was mainly driven by Microsoft, Ascend and a few
others, were already different authentication mechanism introduced. The PPTP
supports PAP, CHAP and the Microsoft version MS-CHAP. After MS-CHAP
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v1 was proven to be insecure, Microsoft developed v2. This standard has some
security difficulties, but until today still has a complexity of 256 for an attacker
to get the password of a client. We will make use of this attack later. Besides
the authentication Microsoft introduced the encryption Microsoft Point-to-Point
Encryption (MPPE), which we describe in Subsect. 2.4.

Microsoft used PPTP as default way to construct secure VPN connections
in its operating system Windows for a long time. Today still all Windows OSs
have build in support for PPTP with the Microsoft authentication mechanisms
MS-CHAPv1/v2. Further 60 % of publicly available VPN service providers still
offer PPTP as a possible VPN mechanism [14]. Also every smartphone with
Android or iOS supports PPTP by default.

GRE. The Generic Routing Encapsulation (GRE) is an older standard described
in RFC 1701 [6]. It does not influence the security and will not be discussed in
the paper.

2.2 MS-CHAPv2

During the setup of a PPTP connection a variety of protocols can be utilized
to authenticate the users. MS-CHAPv2 is one example. It is used together
with Microsoft’s implementation of the Point-to-Point tunneling Protocol. In
Microsoft environments PPTP is used together with Microsoft Point-to-Point
Encryption algorithm (MPPE). An example protocol run is as follows. First the
client requests an authenticator challenge from the server. The server then cre-
ates a 16 byte random authenticator challenge (CS) and sends it back to the
requesting client.

Next the client creates a new random 16 byte long challenge. This challenge
together with the name of the client user and the challenge created on the
server side are hashed via SHA-1 and the first 8 bytes results in the client hash
(ChallHash). For the creation of the client response of the server challenge a key
for the DES algorithm is created by hashing the user’s password via the message
digest algorithm 4 (MD4). The resulting hash is afterwards concatenated with 5
zero bytes. These constant 5 bytes lead to some major security issues as described
by Schneier et al. [13]. The resulting bytes stored in k are then split up into 3
keys (k1, k2, k3) and used for 3 different DES encryptions with ChallHash as
input data for every encryption. All ciphertexts are concatenated and stored
as the client response in RC. The values RC, CC and UName are sent back to
the server. To verify the credentials of the user, the server recreates the client
response. Therefore, it uses the password it stored for the corresponding user
name received with the client response, as well as the ChallHash recomputed by
the server. It then compares its created client response with the received RC.
In case the values are equal the server continues with the authentication process.
The next protocol message created by the server is the server response RS. As
a preparation the server double hashes the password of the user with the MD4
algorithm. The resulting hash value is used together with client response and
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a constant string value (const)2. This hash value (HSHA1) is used together with
the previous created ChallHash and the constant string value pad3 as input for
another SHA1 run. The result is named server response RS and send to the
client, which verifies the value. In case the verification ends successfully the
mutual authentication process is also completed successfully [13,15].

Schneier et al. Attack on MS-CHAPv2. As mentioned earlier, MS-CHAPv2 can
be broken by doing just one exhaustive key search of the DES key space. This
is possible due to the fact that the input data (ChallHash) for all three DES
encryption runs stays the same. Thus, 256 encryption executions are necessary to
find all three keys (K[0 . . . 6], K[7 . . . 13] and K[14 . . . 20]). This is accomplished
by trying every K ∈ Z256 as encryption key, when ChallHash is input into the DES
encryption and compare the corresponding result with Enc1, Enc2 and Enc3. As
soon as one key matches, it can be stored and the search continues until all three
keys are found [13].

2.3 RADIUS Encryption

The RADIUS protocol defines its own encryption scheme. This scheme is manda-
tory for PPTP, and is used by default in software like the FreeRADIUS [11]
server. The algorithm is defined in two RFCs: RFC 2865 [12], which is the
default RFC for RADIUS, defines how RADIUS encrypted user passwords are
send. RFC 2868 [17] defines how RADIUS is used in tunnel scenarios. Both
versions only differ in the point that the RFC for the tunnel scenarios adds an
additional Salt. We will focus on the tunnel version from now on, because this
version is used to encrypt the MPPE key (kMPPE).

The specification does not take care of key management for the RADIUS
encryption. As a result the shared key has to be established manually on the
VPN endpoint and the RADIUS server. If this shared key is of low-entropy, it
can be computed using dictionary attacks [2]. Therefore, we assume that only
high-entropy keying material is used.

Basically the RADIUS encryption is a stream cipher, with an input seed
consisting of the (static) RADIUS secret and some (pseudo-)random values (RA
and Salt for the first block, ci and Salt for the others) hashed using a MD5
hash function to generate the keystream. The ciphertext is then generated by
computing the XOR of the keystream and the plaintext (cf. Fig. 1).

The pseudorandom values are used to prevent the keystream output of MD5
from always being identical for a single RADIUS secret. The Request Authenti-
cator (ReqAuth) is chosen by the client before encrypting the data and is 16 bytes
long.

The Salt is 2 bytes long. The first bit is fixed to 1, indicating that the salt was
chosen by the server. This is followed by a 4 bit offset that is always incremented

2 “Magic server to client constant”.
3 “Pad to make it do more than one iteration”.
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Fig. 1. RADIUS encryption and decryption

by 1. The remaining 11 bits are chosen at random. The salt is transmitted as a
prefix to the encrypted data.

In the formal way the RADIUS encryption can be defined as two algorithms
(Enc,Dec) with

c = Enc(S,ReqAuth, p, SaO) and p = Dec(S, Sa,ReqAuth, c)

Request Authenticator. In the RADIUS standards, there is some confusion on
the term “Request Authenticator” (ReqAuth). In the original version of RADIUS
encryption [12], the client selects ReqAuth and uses it as nonce and an IV for the
encryption. The IV is used together with the RADIUS secret to encrypt data
which should be sent to the server. The ReqAuth is a 16 byte value and stored in
the message field named RADIUS Authenticator (RA). In case no encryption is
used, ReqAuth is just a nonce value and not an IV in the RADIUS encryption.
Thus, every RADIUS message from the client to the server contains a new value
stored in the field RA.

Of course there are also RADIUS messages send from the server to the client.
The server use the message field RA for authentication purposes. It creates
a Message Authentication Code (MAC) called “Response Authenticator”. The
MAC is computed over are all encrypted message fields, except the RA field.
Afterwards, the MAC (RespAuth) is stored in this ReqAuth field. As a consequence
the field cannot be used to store the new IV needed for the used RADIUS
encryption. Thus, the IV (ReqAuth) from the last message from the client to the
server is used. In short, the client controls which IV is used by the server for the
encryption.



Breaking PPTP VPNs via RADIUS Encryption 167

The RADIUS RFC [12] defines that the RAs should not be used twice with
the same RADIUS secret, but this is not checked by the server. This behavior
allows a successful attack against PPTP.

2.4 MPPE

For the PPTP protocol an additional encryption protocol is needed in order to
encrypt the user data. Because PPTP itself does not offer such an encryption,
Microsoft presented the Microsoft Point-to-Point Encryption protocol (MPPE)
[9]. MPPE offers 3 different lengths for the key: 40, 56 and 128 bits. We assume
that the strongest option with 128 bits is used, because the other options were
designed to fulfill other regulations like export limitations.

MPPE was designed for the use case of PPTP. As a result the protocol
expects an open PPTP channel and that a key was derived there. The encryption
is done by using the standard RC4 algorithm. MPPE only defines how the keys
and the data are fitted to be used in the RC4 encryption algorithm.

MPPE offers the functionality to exchange the key while transmitting data
and to synchronize keys again if the synchronization is lost at some point. This
allows MPPE to change the keys after a set schedule. The keys only depend on
older keys. If the first key is compromised, all others could be computed by an
attacker. Thus, there is no real key freshness. In this paper we will focus only
on the first key for a session.

Key Derivation. MPPE utilizes the keys derived by other protocols for its own
key derivation. This is then used in the RC4 algorithm. The protocols from which
MPPE can derive keys are MS-CHAPv1, MS-CHAPv2 and TLS as specified in
RFC 3079 [16].

For MS-CHAPv2 it works as follows: the key is split in two halves, one for
sending data from the client to the VPN endpoint called “Send-Key” and one
for the other way around called “Recv-Key”. This is done by hashing the MS-
CHAP key together with different magic constants. The Send-Key is computed
as follows:

Send-Key = HSHA1(Key‖pad‖const send‖pad)
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and the Recv-Key the same way with another constant. These keys are used as
the starting point for the session keys that are used for the encryption. The actual
keys used for the encryption are called session keys, and the first is derived only
from the Send-Key and Recv-Key, while the following also use the last session
key. Here again as hashing function only SHA1 is used. The key is derived as
follows:

Session-Send-Key = HSHA1(Send-Key‖Pad‖Send-Key‖Pad)

In consecutive runs the second Send-Key in the formula would be exchanged
with the last Session-Send-Key. When the keys are switched is depending on the
configuration of the VPN endpoint. It allows for sessions that run over a long
period of time to change the keys in between, without having to do a full restart.

Format of Key Fields in RADIUS. Microsoft extended the RADIUS format with
vendor specific attributes in order to be able to transport keys in encrypted form.
This was necessary, because no fields for these purposes were available before.
Thus, Microsoft introduced the field MS-MPPE-RECV-KEY and MS-MPPE-
SEND-KEY to transmit the keys in both directions for MPPE.

Today these fields are reused to transport keys for other protocols that do
not have any connection to the MPPE protocol. One of the best known protocol
that use these field are the EAP protocols like EAP-(T)TLS that use this field
to transmit the PMK.

3 Attack

For our attack we will first describe the scenario and its requirements. Further we
will show that this scenario is quite common and can even be relaxed if our attack
is mixed with other attacks later. Then we will introduce our known-plaintext
attack against RADIUS that allows us to learn about the key material that is
used for a key stream of a stream cipher. Then we will show that this attack
which is not specific for the PPTP VPN scenario can be used to mount an chosen-
ciphertext attack against the VPN which drastically reduces the complexity of
known attacks against it. Finally we show our real life test results of this attack
against the well used RADIUS implementation FreeRADIUS.

3.1 Scenario

Our attack works in every scenario, in which the attacker can wiretap and inject
packets to the local network of the VPN endpoint and RADIUS server. An
example of such a scenario is a university. In general students have access to
the network via wireless LAN. Due to the high amount of consumer devices
(e.g. smartphones, tablets, notebooks) there is a demand for wireless access,
therefore universities have many access points installed. In general these access
points are not protected well physically and can simply be exchanged against
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another arbitrary device by an attacker. This way a MitM attack is easy
to mount. Many universities also use RADIUS to manage the authentication
process of the users. In addition, universities often provide PPTP VPN services
so students can access university servers from abroad (e.g. ERASMUS), Internet
cafes or from home. A further requirement are valid MS-CHAPv2 credentials for
the VPN.

So we will, from this point on say that the attacker fulfills the following
requirements:

1. The attacker can act as a MitM between an VPN device and the RADIUS
Server

2. The network offers PPTP with MS-CHAPv2 (also other internal protocols
like MS-CHAPv1 would also work, but they are already broken)

3. The attacker has valid credentials for the network

Getting valid MS-CHAPv2 credentials is as easy as applying for an arbitrary
study in the university scenario. But this assumption can also easily be fulfilled
for other company networks, for which one could not just register. Here the
attack presented by Schneier et al. [13], described in Sect. 2.2, can be executed
to brute-force the credentials of an arbitrary user from any wiretapped PPTP
connection. Note, that breaking the weakest credentials of some user is enough
for our attack. Afterwards, these credentials can be used to run our attack against
every other user using the PPTP VPN of the closed network.

3.2 Known-Plaintext Attack on RADIUS Encryption

In this section we will introduce our attack to get the key material that is sent
encrypted with the RADIUS encryption. We will use a known plaintext attack
on the RADIUS encryption that allows us to recover the first 16 bytes of the key
material of a target ciphertext. We have already shown that PPTP only allows
keys with the length of 40, 56 or 128 bits, so this always gets the attacker the
complete key in the final attack in the next chapter.

Overview Known-Plaintext Attack on RADIUS to partially decrypt MPPE. The
problem of the RADIUS encryption is that the ReqAuth is used as an initializa-
tion vector IV for the encryption but is not chosen by the RADIUS server who
performs the encryption, but by the client. This allows for a simple and fast
attack on the RADIUS encryption that has the following features:

1. To decrypt a value that is encrypted with the RADIUS encryption one only
needs the output X1 of the MD5 hash function (cf. Fig. 1). This value is the
key stream that is used to be xored with the plaintext.

2. This MD5 result depends on the 3 inputs: RADIUS secret, the ReqAuth and
the Salt. While the secret only changes if manually reconfigured, it can be
assumed to be constant. To prevent an easy known-plaintext attack a ReqAuth
is chosen with a length of 128 bits, so that it is statistically unlikely that one
RA is chosen twice in a measurable amount of time.
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3. The Salt is only part of the encryption if the tunneled RADIUS mode is used.
This is done to add an easy way to check for the correct order by adding the
4 bit salt counter. In addition, the salt differs in the first bit if send from the
client to the server or the other direction, so that a message encrypted in one
direction cannot be injected in traffic in the opposite direction.

The attack is using the fact that the ReqAuth was designed to be chosen by
the party, which use the RADIUS encryption to encrypt messages. This is not
true in case the message originates from the server. Then the field RA is used in
another way namely to store the Response Authenticator. As described in section
Sect. 2.3, the server utilizes the last received ReqAuth as IV for the encryption
instead of choosing it on its own. This is the point the attack applies. In RADIUS
the messages from the client to the server are not integrity protected (just from
server to client), so that an attacker could easily exchange this ReqAuth and force
two of the three input values for the MD5 to be the same.

Now only the Salt remains changing, which based on its structure, is not a
big problem. The first bit is always 1 if the message is from the server and the
next 4 bits are a counter that increases by 1 per use in the encryption. But
the tunneled encryption is used twice in the RADIUS message, so that it is the
same every 8 protocol runs. Only the remaining 11 bits are random meaning an
attacker can get every 8 protocol runs a chance with probability of 2−11 to get
the same key stream. This allows for an efficient known-plaintext attack against
the tunneled version of the RADIUS encryption. In principal, the attack works
also for the non-tunneled version from RFC 2865 [12], but here in practice the
ReqAuth is always chosen by the sender and not the responding party.

3.3 Chosen-Ciphertext Attack on PPTP

Chosen RA Attack on RADIUS Encryption. The attack to get the key-stream
for MPPE kMPPE uses the known-plaintext attack idea outlined in Subsect. 3.2
to get the ReqAuth and combines it with the PPTP scenario.

As described previously the client and VPN endpoint need a shared key to
establish a connection secured by MPPE. But only the client and RADIUS server
share any common keys. The VPN endpoint and the RADIUS server share the
RADIUS secret S. So the idea is for the VPN endpoint to just relay the MS-
CHAPv2 login messages from the client to the RADIUS server and if the login is
successful, to get key material from the RADIUS server. The client can compute
the same key material from the MS-CHAPv2 protocol results (cf. Subsect. 2.2).

The key material kMPPE is transferred in the RADIUS packet from the
RADIUS server to the VPN endpoint. It is transferred in the MS-MPPE-RECV-
KEY and MS-MPPE-SEND-KEY attribute fields in the RADIUS message.
Because there was no attribute designed to transport keys encrypted, Microsoft
created this one that is nowadays used also for other protocols, even if they are
not using MPPE at all.

The MS-MPPE fields contains 18 changing bytes, while the rest defines the
field as MS-MPPE. RADIUS allows for vendor specific fields and this is one of
them, so it has to be clearly defined, because it is not part of the original RFC.
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When response is good,

compute Victims k1
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Fig. 2. Attack protocol flow

The 18 bytes contain: 2 bytes Salt and 16 bytes encrypted key. If not the
strong version of MPPE, which uses 128 bits keys is used, then the key is even
smaller. This means 16 bytes are encrypted using the RADIUS tunnel Encryption
EncRADIUS, while the two bytes Salt are sent in clear. The values can be seen in
Fig. 2 where the ciphertext C1 is the encrypted first 16 bytes. The RADIUS
encryption would allow to send more blocks for longer keys, as it is used for
example in EAP-TTLS but here only one block is used. The attack is shown in
Fig. 2 and is divided into the following 7 steps:

Step 1: The attacker needs to get himself in the position that he has MitM capa-
bilities on the designated connection between VPN endpoint and RADIUS
server.

Step 2: After the attacker is set, he has to wait for the victim user to start a
PPTP session and login with MS-CHAPv2 to the VPN through a wiretapped
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VPN endpoint. In case the potential victim uses another VPN endpoint the
attack would not work.

Step 3: The attacker monitors the communication between the VPN endpoint
and the RADIUS server.
A device running Wireshark can easily collect all the communication and
split them into the different messages that were send. The RADIUS struc-
ture dictates that all communication starts with a request from the RADIUS
client in this case the VPN endpoint and is answered by a response from the
RADIUS server. All following messages are build with the same structure.
There is never a response without a request. The attacker is only interested
in the last pair of requests and response. If multiple clients connect at the
same time to the VPN endpoint, the attacker has to find the correct pair of
messages for the desired victim. This information can be read directly from
the RADIUS messages, because RADIUS has no privacy protection in place
for this information (e.g., Username). This step is marked with the wiretap
arrows in Fig. 2

Step 4: After getting the correct pair of request / response RADIUS messages
the attacker takes the ReqAuth and Salt from the request and the ciphertext
from the MPPEKey field and stores both.

Step 5: The attacker now starts his own login at the same VPN endpoint using
his own authentication data. If the messages from the VPN endpoint to the
RADIUS server reach again the last pair, the attacker switches the Req2Auth

send from the VPN endpoint to the RADIUS server with the one (Req1Auth)
he stored in the step before. This means that the response will use the old
ReqAuth instead of the new one. Because the VPN endpoint used another
ReqAuth it will not be able to decrypt the MS-MPPE key stream kMPPE in the
following response, but that is not a problem, because it is not the goal of
the attacker to log himself into the network.

Step 6: The attacker compares the Salt that was received in the last response
with the Salt stored in step 4. If the Salt is the same he stores the ciphertext
again and this time also the plaintext. The attacker has access to the plaintext,
because he acts also as a client in the MS-CHAPv2 run and can compute the
MPPE-Key kMPPE from internal key material. If the Salt is not the same, the
attacker goes back to step 5 and starts there again. The Salt is only 2 bytes
(16 bit) long which would offer 65k possible Salts, but the Salt is restricted
in different ways (cf. Sect. 2). The first bit is always set to 1, because the
message is sent from the server. This protects the encryption from using the
client as decryption oracle, but limits the possible Salts. Bits 2 to 5 are used
to store the offset. Every time the Salt is used for encryption, the offset is
incremented by 1. Due to the fact that two encryptions are done per response
from the server (MS-MPPE-RECV-KEY and MS-MPPE-SEND-KEY ), the
offset repeats after 8 request and not after 16. As a result the attacker only
needs to check every 8th response from the server for the correct Salt. Only
the remaining 11 bits are chosen at random, so that after 2048 tries with the
same offset the attacker should have found the same random Salt values. On
Average an attacker would need 8 * 1024 = 8192 tries.
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The Salt was included into the RADIUS encryption to prevent reuse of the
RA, but it will show it does not help enough, because the 2048 tries could be
done in a short time.

Step 7: The attacker now takes the plaintext and ciphertext he has collected in
the last step and computes the XOR of the first 16 bytes of the plaintext called
p1 and of the ciphertext called c1 (cf. Fig. 1). We will call this intermediate
value X1. This value X1 is now the same as in the stored communication
of the victim and in the stored communication of the attacker. This results
from the identical ReqAuth and Salt. The RADIUS Secret S always stays the
same, so that now all input for the MD5 Algorithm is identical, which leads
to identical output. The attacker now can XOR the value X1 with the first
block of the victims C1. The result are the first 16 plaintext bytes, which is
the MPPE-Key kMPPE of the victim.

3.4 Practical Evaluation

Setup. The setup consists of four different Virtualbox machines, one acting as the
client, one as the VPN endpoint, one as the RADIUS server and the last machine
performing the attack. As the operating system Ubuntu Linux 15.04 with Ker-
nel 3.19.0-39-generic was used. The client had pptp-linux 1.7-2.7 installed for
the pptp client. The VPN endpoint used pppd 2.4.6 as PPTP server and the
FreeRadius Client 1.1.7 for the connection to the RADIUS server. The attack
was tested against FreeRADIUS. We used the version 3.0.10 in the default con-
figuration, without any further modifications. The host machine was equipped
with an Intel Core i5-6600K @ 3.5 GHz and 16 Gbyte of DDR4 memory.

Results. The attack was run for 432 times on the attack machine (see. Sect. 3.4).
The evaluation showed that for these 432 attack runs the average time was
62 s and it took on average 18847 protocol runs until the Salt was correct. The
theoretical average is 214 = 16384. This shows that the random salts generated
by the RADIUS server are chosen as random as roughly expected. For this
test we ran 8,1 Million protocol runs in total. Our cross protocol attack thus
reduced the complexity by 242 compared to the attack of Schneier et al. [13] and
Marlinspike [7]. Still today brute-forcing DES keys on an FPGA cluster takes
an average of 7 h (25,200 s) and hardware costs of around $140,000 [3]. This
means, our attack speeds up the time for the decryption process by factor of 124,
compared to the traditional brute-force approach and is achievable on standard
computer hardware, which cost around $700 US (reduction by factor 200).

4 Conclusion

In the paper we showed two novel attacks. A known-plaintext attack on RADIUS
encryption and a chosen-ciphertext attack on PPTP VPN. We describe how both
of these attacks can be combined in a cross protocol attack to decrypt PPTP
VPN sessions. Analyzes of public VPN services providers showed that PPTP is
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used by 60 % of them [14]. Further, all Windows and Linux operating systems
currently support PPTP VPNs. For our attacks we give a description of PPTP
VPN and how they are used together with MS-CHAPv2 and RADIUS server.
Based on the description we show how an attacker can use our cross protocol
attack to decrypt PPTP VPN sessions in a realistic scenario in one minute.
In contrast to previous published attacks [7,13], we reduced the computational
complexity by factor 242. The decryption of a PPTP VPN session is now achiev-
able with just 214 protocol runs. Our attacks do not need special hardware and
run on every modern device, from standard computers down to smartphones.
Further, the attack needs on average 62 s, leading to a time reduction by the
factor of 124, compared to the brute-force of the complete DES key space, which
also required special cracking hardware [3].

We saw with this attack that even after 18 years a protocol is in the wild
improvements for attacks can be found, by taking a look on cross protocol usage.
At first we tried to drive the attack on EAP-(T)TLS implementations [2], but
realized during the testing, that an additional MAC over the whole message is
computed preventing our attack.

In the RFC 2868 [17], which specified the used RADIUS attributes, multiple
protocols are defined, we analyzed only PPTP. Similar attacks may be possible
on other protocols like L2TP, depending on the used key derivation function and
are worth looking at in future research.
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Abstract. As demonstrated by the revelations of Edward Snowden on
the extent of pervasive surveillance, one pressing danger is in the vast
predominance of unencrypted messages, due to the influence of the cen-
tralizing silos such as Microsoft, Facebook, and Google. We present the
threat model and architectural design of the LEAP platform and client
applications, which currently provisions opportunistic email encryption
combined with a VPN tunnel and cross-device synchronization.

Keywords: Encryption · Email · VPN

1 Introduction

Why in the era of mass surveillance is encrypted email still nearly impossible?
Take for example the case of the journalist Glenn Greenwald, who could not
properly set-up encrypted email when Edward Snowden contacted him to leak
the NSA secrets. This lack of progress in over three decades in securing emails
is precisely what allows both content and meta-data analysis of email by agen-
cies such as the NSA to be pervasive and nearly inescapable. Well-understood
technologies such as OpenPGP-based email encryption are not used by the vast
majority of people for reasons that have been understood for nearly a decade
and a half [7]. While there has been considerable progress in the deployment of
increased use of TLS and even IP-address level anonymity via the Tor project [1],
most people rely on insecure and centralized silos for email. There are few work-
ing solutions for encrypted and privacy-preserving email. While Tor provides
the best solution for IP-level anonymity, this purpose is defeated when users
rely on centralized email systems, where the danger of their communication
being intercepted via disclosures by the service provider are considerable [1]. For
example, many users simply use Tor to ‘anonymize’ their access to email ser-
vices such as Gmail that can simply hand over their data, or even systems such
as riseup.net that likely have all outgoing and ingoing traffic monitored even if
the server itself refuses requests for user data. Although email is often sent over
an encrypted network channel via TLS and upgraded from an insecure channel

c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 176–191, 2016.
DOI: 10.1007/978-3-319-48965-0 11
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using STARTTLS, typically network traffic is not properly authenticated and
even network-level encryption tends to fail during mail transfer [2].

Beyond email, Off-the-Record messaging for chat works well, but requires
synchronous chat between two users,1 while Signal is not an open standard
or decentralized [6]. High-profile efforts such as Mailpile are aimed at essen-
tially replacing the user-experience of Thunderbird and Enigmail, not at actually
solving the underlying problems of key management and provisioning encrypted
email.2 Although message security rests entirely on a foundation of authenticity,
since without proper validation of encryption keys a user cannot be assured of
confidentiality or integrity, current systems of establishing message authentic-
ity are so difficult to use that many users simply ignore this step. To achieve
mass adoption of encrypted email, the steps of key provisioning, key validation
to determine message authenticity, and managing the server-side must be done
automatically so that email is encrypted opportunistically. Opportunistic email
encryption also needs to include an excellent client-side user experience, partic-
ularly if there are errors that the server cannot resolve.

Our solution to this problem is called LEAP, a recursive acronym for the
“LEAP Encryption Access Project.” LEAP is still in development, although
the core functionality of basic opportunistic encryption email is now available
for beta testing.3 The project source-code on Github is available to all.4 LEAP
infrastructure will be supported by providers such as riseup.net.

2 Goals and Requirements

2.1 Goal

The primary goal of LEAP is to provide easy-to-use software for end-to-end
encrypted communication between individual users. The long-term goals are that
the communication services should offer a user experience free of any ‘privacy tax’
on the user in the form of limited features as well as any additional cognitive load
and labor compared to non-encrypted communication. It should be backwards-
compatible with existing SMTP (Simple Mail Transfer Protocol) email. Thus,
LEAP’s primary goal is enabling the use of OpenPGP-enabled SMTP, but in a
more secure and user-friendly way than commonly used today by toolsets such
as Thunderbird and Enigmail. Thus in addition, we have chosen to prioritize the
following secondary goals:

– Memorable user identifiers: Users should be able to utilize familiar and mem-
orable user handles such as username@domain that are typically already used
in email when identifying themselves for purposes of communication.

1 http://www.cypherpunks.ca/otr/.
2 http://mailpile.is.
3 To try, follow instructions on http://demo.bitmask.net.
4 https://github.com/leapcode/.
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– Resilience: The communication system as a whole should continue to function
even if most of the organizations and infrastructure that constitute the whole
system have been eliminated or compromised by a malicious attacker.

– Untrusted : A third-party service provider should not have access to the con-
tent of a user’s communication (via hosting cleartext, decryption keys, or pass-
words) and minimize the amount of metadata they can access to the amount
needed to route the message.

There are many other possible goals that end-to-end encrypted communica-
tions system wish to provide. There are a number of possible goals that we are
explicitly not addressed by LEAP at this time:

– Device protection: If a user’s client device is subject to an ongoing compromise
while the device is powered on, then LEAP does not offers security benefits
as the private key is stored on the device. Possible mitigations are under
investigation.

– Anonymity : The LEAP system does not offer anonymous communications at
this time as users and service providers are given stable identifiers. However,
LEAP may be used in conjunction with IP anonymization such as Tor and
LEAP is currently exploring the feasibility of using mix networking for anony-
mous messaging.

2.2 Threat Model

In our threat model, we are considering two distinct types of attackers, an active
server attacker that focuses on decrypting messages on the server, and a global
passive adversary that simply copies all messages in transit between servers
(encrypted or not). For attackers, the goal is both (1) to gain access to the
content of the encrypted messages and (2) to determine the social graph of
who is communicating to whom. For the former goal of decrypting messages,
attacking a single server with many clients makes more sense than attacking
many clients for most attackers. For this section, we will consider only the first
attacker, as the second requires advanced approaches such as mix-networking.

The active server attacker uses either technical attacks or legal means to force
a server to hand over the private keys of its users so the attacker can decrypt the
encrypted messages. To prevent this, the private key material must not reach
or remain in cleartext form on any server. It should be that an attacker cannot
decrypt the encrypted message by compromising the server or placing the server
under compulsion. An example would be Lavabit, which had a single point of fail-
ure in the form of the system administrator himself: Ladar Levinson had access
to the key material for all his users, defeating the purpose of having end-to-end
encrypted email.5 Strangely enough, other services such as Protonmail6 seem to
be repeating this flawed model for encrypted messaging. Lastly, this is trivially

5 https://www.thoughtcrime.org/blog/lavabit-critique/.
6 https://protonmail.ch.
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true (as shown by the NSA Prism programme) for centralized messaging ser-
vices such as GMail that do not store the content of messages encrypted. Server
seizures are a threat in the USA that legally resist backdoors, such as recent
seizures against a Mixminion anonymous re-mailer on riseup.net.7 In terms of
the second global passive attacker who is aiming at collecting metadata, most
systems today offer no protection. Given the difficulty of defending against this
attacker, our current system does not currently aim provide metadata anonymity
from their perspective. That being said, LEAP aims not reveal the social graph
of a user via techniques for key validation such as the OpenPGP keyservers that
display the ‘web of trust’ of users to the public.

2.3 Requirements

When a system claims to offer security for a user’s communication data, typi-
cally the focus is on confidentiality and integrity. Although confidentiality and
integrity are certainly preconditions for any secure system, in order to achieve
high usability a public-key communication system should additionally focus on
these requirements:

– High data availability : Users expect to be able to access their data across
multiple devices with little delay and have the data backed up to redundant
cloud storage.

– Automatic public key authenticity : If key authentication is difficult, then there
is low effective confidentiality for any user who might be subject to an active
attack. Since existing systems of public key authentication for messages are
either very difficult for users or require a central authority, the confidentiality
of existing messaging system is often low in practice.

The LEAP architecture is designed around a federated model, like traditional
SMTP-based email or XMPP, where each user registers an account with a service
provider (that consists of one or more servers) of their choice and runs their
own client on a local device to connect to the provider in order to retrieve
encrypted e-mail. Both distributed (peer-to-peer) and centralized architectures
were considered, but both fell short of our requirements. A detailed analysis of
our approach in comparison to others such as is maintained online.8 In contrast
to LEAP’s design, competing encrypted e-mail services rely on centralized key
escrows or a web-browser that are vulnerable to an active server attacker. On a
high level, LEAP’s requirements are met in the following manner:

– High data availability : A user’s message data is client encrypted and synchro-
nized with redundant federated cloud servers and with a user’s other devices.
Their data quickly downloaded when needed and so not lost if a user’s device
is destroyed.

7 http://www.infosecisland.com/blogview/21186-FBI-Overreaches-with-May-First-
Riseup-Server-Seizure.html.

8 https://leap.se/en/docs/tech/secure-email.
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– Automatic key authenticity : With the assistance of a network of federated
servers containing the latest public key information of their users, the user’s
client intelligently manages public keys automatically by following a series of
rules that embody best practices and so validate public keys to the greatest
extent possible. As the public key information of LEAP-enabled users is kept
redundantly by a number of different servers, the client can audit the validation
of a key without relying on a single trusted server.

– Unmappability : As much metadata is possible is stored so that the provider
has no access to this information. Key validation is done via Nicknym (as
described in Sect. 3.4) as to not reveal the social graph of users to unnecessary
third-parties, unlike OpenPGP’s ‘web of trust’ keyservers. In future work,
LEAP will extend this to the metadata of messages in transit (including size
and timing information), by incorporating mix networking into the delivery
of messages and a CONIKS-style architecture for key validation [4].

2.4 General Design

The design of LEAP tackles each of the requirements for high data availability,
automatic key authenticity, and unmappability. The primary new contribution
of LEAP is tackling the problem of high data availability while defending against
active server attackers: How can we keep the key material from being inacces-
sible to the server and at the same time having the keys and data available for
synchronization across devices?

The problem can be broken down into a number of distinct components:
Server-side infrastructure, usable client software, and the fundamental protocols
needed to communicate between the server and the client. What is necessary
is to have the client and server actively work together in order to encrypt the
message, as to prevent the situation where private key materials stored only on
the server are only defended by weak defenses such as passwords. Simply storing
the private key on a single device of the user, as done by most encrypted mail
programs, is not enough as users need to access their email through multiple
devices and keep the state of their inbox synchronized. Thus the main problem
facing such a system is safely getting the correct keys onto users’ devices, a
problem known as key synchronization. This becomes an even more important
problem if best practices such as frequent key rotation are to be employed.

LEAP solves the problem of key synchronization through the installation of a
multi-purpose LEAP client application called Bitmask, that appears to the user
mainly as an OpenVPN client.9 However, there is more to Bitmask than just
a VPN. Inside of the Bitmask client are the routines for generating, validating,
and discovering keys as well as synchronizing keys and related material (such as
the status of messages being “read” across multiple devices). The LEAP client
appears to be a VPN as many users likely would install a VPN (but not special
‘key manager’ software) and the VPN provides additional security benefits by
creating an authenticated and encrypted channel for all traffic between the LEAP
client and server.
9 http://openvpn.net/.

http://openvpn.net/
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When a user installs a LEAP client, the LEAP client asks the user for a
username and master passphrase, and to select a LEAP-enabled provider. A
‘recovery code’ is made for the device (currently a 22 digit code) that is used to
derive a device key. The first time that an user authenticates a new device against
that LEAP-enabled provider after installing a LEAP client, the keymanager on
the LEAP client will attempt to perform a Soledad synchronization (Soledad is
described in Sect. 3.2). If the user has created a new account and so no valid
keypair is found, the LEAP client will generate a public-private OpenPGP key-
pair on the user’s device. After such generation is completed, the keypair will
be symmetrically encrypted with a key derived from the master passphrase and
the wrapped key will be uploaded to the remote Soledad replica in the server,
in order to let the user add new devices and synchronize them with Soledad.
For incoming email, messages are received by the service provider’s MX servers,
encrypted to the current user’s public key, and stored in the user’s database in
an incoming message queue. The LEAP client then fetches the incoming message
queue as part of a periodic Soledad synchronization, decrypting each message
and saving it in the user’s inbox, stored in the local Soledad database. The mail
module exposes the stored messages through a local IMAP server, so that the
messages can be accessed using any standard MUA.

Since email is distributed to the client and stored via the Soledad API, any
changes to the mailbox will eventually be synchronized to all devices. The muta-
ble parts of the messages and the attachments are kept in separate documents, so
that the sync overhead is kept low. Soledad allows for selective synchronization
so that header documents can be synchronized first, leaving the ability to down-
load attachments on the background or under demand, which will be specially
interesting for mobile.

For outgoing email, the LEAP client runs a thin SMTP proxy on the user’s
device, bound to localhost, and the mail user agent (MUA)10 is configured to
bind outgoing SMTP to localhost. When this SMTP proxy receives an email
from the MUA, it issues queries to a local keymanager (Nicknym agent) for
the user’s private key and public keys of all recipients. The message is then
signed, and encrypted to each recipient. If a recipient’s key is missing, email
goes out in cleartext (unless user has configured the LEAP client to send only
encrypted email). Finally, the message is relayed to provider’s SMTP relay. The
LEAP approach outlined is similar to the approach taken by Garfinkle [3] and
Symantec,11 although these systems do not include key discovery, key validation,
encryption of incoming messages, secure storage, or synchronization of email
among devices.

3 The LEAP Architecture

In detail, the LEAP federated architecture consists of three-components: (1) a
server-side platform automation system; (2) an easy-to-use client application;
10 Such as Thunderbird, Evolution, or Outlook.
11 http://www.symantec.com/desktop-email-encryption.

http://www.symantec.com/desktop-email-encryption
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Fig. 1. Components of LEAP Email Architecture

and (3) new protocols such as Soledad and Nicknym that allow the user to
place minimal trust in the provider, as well as well-known and standardized
protocols such as IMAP. These components are illustrated in Diagram 1.12 The
cryptographic details are also subject to change (in particular, migrating from
large RSA keys to Curve 25519 when possible) and are maintained online.13

The LEAP platform offers a set of automation tools to allow an organization
to deploy and manage a complete infrastructure for providing user communica-
tion services in the servers controlled by them. The LEAP client is an application
that runs on the user’s local device and is tightly bound to the server com-
ponents of the LEAP platform. The client is cross-platform, auto-configuring,
and auto-updating, with the initial configuration and updates verified via The
Update Framework14 in order to prevent a compromised server from forcing new
key material or accessing the existing client key material via a compromised
update.

12 Note that parts of Sect. 3 are modified versions of material available on the LEAP
wiki at http://leap.se/en/docs.

13 https://bitmask.net/en/features/cryptography.
14 http://theupdateframework.com/.

http://leap.se/en/docs
https://bitmask.net/en/features/cryptography
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3.1 LEAP Platform

The “provider instance” is a self-contained encapsulation of everything about
an organization’s server infrastructure (except for actual user data). The LEAP
platform consists of a command line tool and a set of complementary puppet
recipes allow an organization to easily operate one or more clusters of servers to
provision LEAP-enabled services. With the LEAP command line tool, a system
administrator can rapidly deploy a large number of servers, each automatically
configured with the proper daemons, firewall, encrypted tunnels, and certificates.

LEAP Data Storage. One design goal of the LEAP platform is for a service
provider to act as an ‘untrusted cloud’ where data are encrypted by the client
before being sent to the server, and we push as much of the communication
logic to the client as possible. There are a few cases where the server must
have knowledge about a user’s information, such as when resolving email aliases
or when processing support requests. Every user has a personal database for
storing client encrypted documents, like email and chat messages. In the current
implementation, data storage is handled by CouchDB although this may be
changed in future versions.

The unencrypted information stored on the server needed to resolve email,
including the database for routing incoming and outgoing email, is similar to any
traditional email provider, with the one exception that user accounts don’t have
traditional passwords. Mail is received via a Soledad synchronization session
(detailed in Sect. 3.2) and authenticated using Secure Remote Password (SRP),
a standardized password-authenticated key agreement (PAKE) mechanism that
can be strengthened via device keys.15 Mail is sent using SMTP with standard
SASL (Simple Authentication and Security Layer) authentication using client
certificates.16 In detail, the unencrypted database of user information maintained
by the service provider includes:

– username: The login name for the user. This is not necessarily the user portion
of ‘user@domain.’

– SRP verifier : Akin to a hashed password, but used in SRP ‘zero-knowledge’
dual pass mutual authentication between client and server.

– uuid : Random internal identifier for internal usage.
– identities: One or more ‘user@domain’ identities, with corresponding public

keys and separate authentication credentials for SMTP (stored as a finger-
print to an x.509 client certificate). Each identity has its own authentication
credentials so that the email headers show that the user authenticated with
the SMTP server using their identity username, not their real username. Each
identity includes delivery information, either to a uuid or to a third party
email address that messages should be forwarded to. One or more devices are
tied to an identity.

15 https://tools.ietf.org/html/rfc2945.
16 https://tools.ietf.org/html/rfc4422.

https://tools.ietf.org/html/rfc2945
https://tools.ietf.org/html/rfc4422
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For email delivery, the receiving MX (Mail exchanger record) servers do not
have access to the entire database. They only have read-only access to ‘identities.’
This allows the implementation of the Nicknym protocol (described in Sect. 3.4)
for resolving pseudonyms. Additionally, there are several non-encrypted data-
bases containing the minimal information needed to connect user accounts to
optional support tickets and even billing details. The LEAP platform includes a
web application for user and administrator access to these non-encrypted data-
bases, although future research will hopefully be able to minimize if not eliminate
this information.

3.2 Soledad

Soledad (“Synchronization Of Locally Encrypted Data Among Devices”) is
responsible for client-encrypting user data, keeping the data synchronized with
the copy on the server and on all the other devices of each user, and for providing
local applications with a simple API for document storage, indexing, and search
that is akin to CouchDB and related document-centric NoSQL databases. The
document that is saved and synchronized with Soledad can be any structured
JSON document, with binary attachments. Soledad is implemented on the LEAP
client to store email messages, the user’s public and private OpenPGP keys, and
a contact database of validated public keys. Soledad is based on U1DB, but
modified to support the encryption of both the local database replica and every
document before it is synchronized with the server.17 Local database encryption
is provided by a block-encrypted SQLite database18 via SQLcipher.19 Docu-
ments synchronized with the server are individually block encrypted using a key
produced via an HMAC of the unique document id and a long storage secret. In
order to prevent the server from sending forged or old documents, each document
record stored on the server includes an additional client-computed MAC derived
from the document id, the document revision number, and the encrypted content.
The server time-stamps each update of the database, so that Soledad’s MAC and
HMAC keys used to encrypt the client database can only send the server new
databases. Each time the LEAP client is online (both after re-connecting with the
LEAP platform and after each pre-set time interval), the client re-synchronizes
the messages and key material.

In addition to synchronizing public-private key materials and a contact list
of validated keys, Soledad is used to encrypt and synchronize email. This has the
benefit of not storing sensitive metadata on the server and allowing for search-
able locally-encrypted database of messages on the client side. For efficiency, a
single email is stored in several different documents (for example, for headers,
for attachments, and for the nested MIME structures). While in transit between

17 https://one.ubuntu.com/developer/data/u1db/.
18 https://sqlite.org/.
19 http://sqlcipher.net/.

https://one.ubuntu.com/developer/data/u1db/
https://sqlite.org/
http://sqlcipher.net/
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LEAP-enabled SMTP servers and the LEAP client, there are three different
forms of encryption that a single message is subject to:

1. Encrypted by sender, or on arrival by recipient’s service provider using
OpenPGP.

2. Decrypted from and re-encrypted in an SQLcipher database using AES block
encryption.

3. Individually re-encrypted for storage on a service provider that supports the
LEAP platform using block encryption with a nonce.

3.3 LEAP Client

The LEAP client (also known as Bitmask20) is a cross-platform application that
runs on a user’s own device and is responsible for all encryption of user data.
It currently includes the following components: Bitmask VPN, Soledad (multi-
device user data synchronization), Key Manager (Nicknym agent and contact
database), and email proxy (opportunistic email encryption). The client must be
installed in the user’s device before they can access any LEAP services (except
for user support via the web application). Written in Python (with QT, Twisted,
OpenVPN, SQLcipher), the LEAP client currently runs on Linux and Android,
with Windows and Mac being under development.21 When a user installs a
LEAP client, a first-run wizard walks the user through the simple process of
authenticating or registering a new account with the LEAP provider of their
choice, using the Secure Remote Password (SRP) protocol so that a cleartext
copy of the password never reaches the server. The SRP encoded password can
also be strengthened by wrapping it with a device key and so stored multiple
times, once per device key. The password’s strength is assessed via zxcvbn.22 Note
that when a user authenticates with the client, via a username and password,
these credentials as provided are used to both authenticate with the service
provider (via SRP) and also to unlock locally encrypted secrets (via Soledad).

One threat would be that an active server attacker would compel a LEAP-
enabled server to push a malicious update to the clients to compromise their
keys. This threat applies equally to any browser or plug-in based approach, and
in fact to the installation of any software. LEAP employs mitigation strategies
to prevent this attack. When distributed through the self-contained bundles, the
client has auto-updating capabilities, using The Update Framework (TUF) to
update LEAP code and other library dependencies as needed using the same
Thandy library as deployed by Tor [5].23 Unlike other update systems, TUF
updates are controlled by a timestamp file that is signed each day. This ensures
that the client will not miss an important update and cannot be pushed an old
or compromised update by an attacker. Updates to the LEAP client via TUF
20 https://bitmask.net/.
21 The Android version tends to lag behind development compared to the Linux version

due to the design having to be re-coded in Java.
22 https://github.com/dropbox/zxcvbn.
23 https://gitweb.torproject.org/thandy.git.

https://bitmask.net/
https://github.com/dropbox/zxcvbn
https://gitweb.torproject.org/thandy.git
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require signatures from multiple keys, held by LEAP developers in different
jurisdictions. Lastly, LEAP has started work on a system of reproducible builds,
which is working in an automated fashion for Android and in the future should
apply to all other platforms.24

VPN. The goal with LEAP’s VPN service is to provide an automatic, always on,
trouble-free way to encrypt a user’s network traffic. The VPN service encrypts
all of a user’s traffic and works hard to prevent data leakage from DNS, IPv6,
and other common client misconfigurations that are not tackled by OpenVPN
via a strict egress firewall. Currently OpenVPN is used for the transport. Open-
VPN was selected because it is fast, open source, and cross-platform. In the
future, LEAP plans to add support for Tor as an alternate transport. We believe
LEAP is the only VPN that autoconfigures and auto-restarts when connectiv-
ity is lost. When started, the LEAP client discovers the LEAP-enabled service
provider’s proxy gateways, fetches a short-lived X.509 client certificate from the
provider if necessary, and probes the network to attempt to connect. If there
are problems connecting, the LEAP VPN client will try different protocol and
port combinations to bypass common ISP firewall settings since VPN access is
typically blocked crudely by simple port and protocol rules rather than deep
packet inspection. In terms of deep packet inspection, obfsproxy25 integration is
under development to hide the VPN connection to an observer. By default, the
LEAP client will auto-connect the VPN service the next time a user starts the
computer if the encrypted proxy was switched on when the user the client quit
or the machine was shutdown. If network connectivity is lost while the proxy
is active, the LEAP client will automatically attempt to reconnect when the
network is again available. A firewall is also activated before launching the VPN
service, providing a fail-close mechanism that limits the unprotected access to
the network in case of client malfunction or crashes. Due to its stringent security
requirements, the LEAP VPN does not work when the user is behind a captive
network portal.

3.4 Nicknym Key Management

One of the main features of the LEAP system is to provide strong authentication
of public keys in a way that is easy for users. To do this, LEAP relies on a protocol
called Nicknym in the form of username@domain (similar to an email address).
Nicknym maps user nicknames to public keys. With Nicknym, the user is able to
think solely in terms of nicknames, while still being able to communicate with a
high degree of security (confidentiality, integrity, and authenticity). Another goal
of Nicknym is to, unlike the OpenPGP ‘Web of Trust’ mechanism, not reveal
the social graph of the user to the public.26

24 See work by Debian on reproducible builds that LEAP is applying to its code:
https://wiki.debian.org/ReproducibleBuilds.

25 https://www.torproject.org/projects/obfsproxy.html.en.
26 Details at https://leap.se/nicknym.

https://wiki.debian.org/ReproducibleBuilds
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Although various new key validation infrastructure schemes have been
recently proposed, most of the new opportunistic encrypted email projects have
proposed starting with some sort of “Trust On First Use,” (TOFU) but the term
itself is undefined. LEAP specifies generic rules for automatic key management
that can form a basis for defining a version of TOFU and to transition from
TOFU to more advanced forms of key validation. In particular, the rules try to
define when a user agent should use one public key over another. This section is
written from the point of view of Alice, a user who wants to send an encrypted
email to Bob, although she does not yet have his public key.

LEAP assumes the goal is to automate the process of binding an email
address to a public key. Alice knows Bob’s email address, but not his public
key and either Alice might be initiating contact with Bob or he might be initiat-
ing contact with her. Likewise, Bob might use an email provider that facilitates
key discovery and/or validation in some way, or he might not. Unless otherwise
specified, key in this text always means public key. A key directory is an online
service that stores public keys and allows clients to search for keys by address or
fingerprint. A key directory does not make any assertions regarding the validity
of an address and key binding. A key validation level is the level of confidence
the key manager has that it has the right key for a particular address, where key
registration is when a key manager assigns a validation level, being somewhat
analogous to adding a key to a user’s keyring. A key endorser is an organization
such as a LEAP provider that makes assertions regarding the binding of user-
name@domain address to public key, typically by signing public keys. When
supported, all such endorsement signatures must apply only to the uid corre-
sponding to the address being endorsed. Binding information is evidence that
the key manager uses to make an educated guess regarding what key to associate
with what email address. This information could come from the headers in an
email, a DNS lookup, a key endorser, and so on. A verified key transition is a
process where a key owner generates a new public/private key pair and signs
the new key with a prior key. An endorsement key is the public/private key pair
that a service provider or third party endorser uses to sign user keys. Currently,
LEAP implements these rules when encountering new keys or finding keys from
other providers.

LEAP Key Manager Rules.

1. First contact: When a new key is first discovered for a particular address, the
key’s the highest validation level is registered.

2. Regular refresh: All keys are regularly refreshed to check for modified expi-
rations, or new subkeys, or new keys signed by old keys.
(a) This refresh should happens via an anonymizing mechanism (currently

Tor) in order to prevent targeted attacks on particular servers.
(b) The key should not be revoked before the expiration date of the key,

unless it can be proved that there is a new version of the key or the key
has been compromised.
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3. Key replacement: A registered key must be replaced by a new key in one of
the following situations, and only these situations:
(a) Verified key transitions (when the new key is signed by the previously

registered key for same address).
(b) If the user manually verifies the fingerprint of the new key (using an

out-of-band authenticated channel).
(c) If the registered key is expired or revoked and the new key is of equal or

higher validation level.
(d) If the registered key has never been successfully used and the new key

has a higher validation level.
(e) If the registered key has no expiration date.

Previously registered keys must be retained by the key manager for the pur-
pose of signature authentication. However, these old keys are never used for
sending messages. A public key for Bob is considered successfully used by Alice
if and only if Alice has sent a message encrypted to the key and received an
authenticated response.

Validation Levels. A number of validation levels are described, from lowest
to highest validation level.

Weak chain: Bob’s key is obtained by Alice from a non-auditable source via a
weak chain. The chain of custody for ‘binding information’ is broken as at some
point the binding information was transmitted over a connection that was not
authenticated.

Provider trust : Alice obtains binding information for Bob’s key from Bob’s ser-
vice provider via a non-auditable source over a strong chain. By strong chain, we
mean that every connection in the chain used to determine the ‘binding infor-
mation’ from Bob’s provider to Alice is done over an authenticated channel. To
subvert this ‘provider-trust’ validation, an attacker must compromise Bob’s ser-
vice provider or a certificate authority (or parent zones when using DNSSEC), so
this level of validation places a high degree of trust on service providers and CAs.

Provider endorsement : Alice is able to ask Bob’s service provider for the key
bound to Bob’s email address and Bob is able to audit these endorsements.
Rather than simple transport level authenticity, these endorsements are time
stamped signatures of Bob’s key for a particular email address. These signatures
are made using the provider’s ‘endorsement key.’ Alice must obtained and reg-
ister the provider’s endorsement key with validation level at ‘provider-trust’ or
higher. An auditable endorsing provider must follow certain rules:

– The keys a service provider endorses must be regularly audited by its users.
Alice has no idea if Bob’s key manager has actually audited Bob’s provider,
but Alice can know if the provider is written in such a way that the same client
libraries that allow for submitting keys to a provider allow auditing of these
keys. Otherwise, it is considered to be the same as ‘provider-trust’ validation.
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– Neither Alice nor Bob should contact Bob’s service provider directly. Provider
endorsements should be queried through an anonymizing transport like Tor [1].
Without this, it is easy for provider to prevent Bob from auditing its endorse-
ments, and the validation level is the same as ‘provider-trust.’

Note that with provider endorsement, a service provider may summarily pub-
lish bogus keys for a user. Even if a user’s key manager detects this, the damage
may already be done. However, if a provider is suspected of being caught ‘cheat-
ing,’ the evidence should be submitted to a third-party endorser (ideally with an
audit log) so that can Bob (and other providers) can query the third-party, as
should happen during third-party endorsement and provider consensus. Regard-
less, a provider endorsement is a higher level of validation than ‘provider trust’
because there is a good chance that the provider would get caught if they issue
bogus keys, raising the cost for doing so.

Third-party endorsement : Alice asks a third-party key endorsing service for bind-
ing information, using either an email address of key fingerprint as the search
term. This could involve asking a key endorser directly, via a proxy, or asking
a key directory that includes endorsement information from a key endorser. A
third-party key endorser must follow certain rules:

– The third-party key endorser must be regularly audited by the key manager
of users. If there are conflicts, the key should be reduced to ‘provider trust’
validation until the conflict is resolved.

– The key endorser must either require verified key transitions or require that
old keys expire before a new key is endorsed for an existing email address.
This is to give a key manager time to prevent the user’s service provider from
obtaining endorsements for bogus keys. If a key endorsement system is not
written in this way, Alice’s key manager must consider it to have the same
level of validation as ‘provider-endorsement.’

– Key endorsers should provide information about key endorsements to key
owners to the user through an authenticated channel not controlled by the
provider (such as Tor) so the user can detect possible ‘cheating’ by their own
provider.

Third-party consensus: This is the same as third-party endorsement, but Alice’s
user agent has queried a quorum of third party endorsers and all their endorse-
ments for a particular user address agree.

Auditing : This works similar to third-party endorsement, but with better ability
to audit key endorsements. With historical auditing, a key endorser must publish
an append-only log of all their endorsements. Independent agents can watch
these logs to ensure new entries are always appended to old entries. The benefit
of this approach is that an endorser is not able to temporarily endorse and
publish a bogus key and then remove this key before Alice’s key manager is
able to check what key has been endorsed. The endorser could try to publish
an entire bogus log in order to endorse a bogus key, but this is very likely to be
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eventually detected. As with other endorsement models, the endorsement key
must be bootstrapped using a validation level of provider trust or higher.

Fingerprint Verification: Alice has manually confirmed the validity of the key
by inspecting the full fingerprint or by using a short authentication string with a
limited time frame. For established endorsers like LEAP providers, this authen-
ticated key has to be then hard-coded as known by the software.

As currently written, Nicknym relies on an approach based on network per-
spectives as enabled by Tor (i.e. retrieving the key from multiple network loca-
tions given by Tor exit nodes) to detect endorser equivocation, which allows for
the possibility that the endorser could publish a bogus key for a short period
of time in order to evade detection although eventually a discrepancy would be
detected by other key endorsers (via third-party consensus) and the history of
endorsed keys via a CONIKS-style approach would also detect this attack [4].
Any endorser equivocation should be widely reported and proven via audit logs
so that the users of a malicious endorser can detect the attack. To mitigate
the problem of stolen keys (either by a malicious or compromised provider or a
third-party adversary), LEAP is working on a system where a user can contact
their service provider (revealing their identity) and prove their identity via a
one-time passphrase generated at installation of the LEAP client on a device in
order to revoke verified key transitions.

4 Current State and Future Work

As of September 2016, the current LEAP architecture provides a VPN service
and end-to-end encrypted e-mail service available via bitmask.net. The LEAP
platform, Soledad, Nicknym, and the basic Key Manager are currently complete.
However, there is still ongoing work on greater scalability and reliability for the
LEAP platform’s encrypted data-storage. On the side of the LEAP client, LEAP
is pursuing greater compatibility with existing IMAP clients, improved usability,
and better network probing for the VPN. In co-operation with Thoughtworks,
we are working on a custom user-interface called Pixelated27 to be bundled with
LEAP client for users looking for alternatives to existing e-mail clients. Imme-
diate goals also include porting LEAP from Android and Unix-based environ-
ments (Linux and MacOS) to iOS and Windows environments. Work is ongoing
to improve the key validation rules (including key verification revocation) and
support validation with multiple network perspectives. In terms of research,
LEAP plans to add both Tor and mix-networking for messaging in transit both
in between LEAP providers and clients to prevent metadata collection by pas-
sive global attackers, support for CONIKS for key validation [4], the use of
the Signal protocol or simplified variant between LEAP-enabled providers as a
higher-security alternative to SMTP with perfect forward secrecy [6], increased
security for key material on the server and back-ups for stolen key material using

27 The source code for Pixelated is available here: https://github.com/pixelated-
project/.

https://github.com/pixelated-project/
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threshold password authenticated key exchange (TPAKE) and secret sharing
(TPASS), two-factor authentication for users to strengthen passwords for user
authentication, and deploying reproducible builds. In the future, LEAP may
expand its basic federated infrastructure to also provide hosting for other end-
to-end encrypted and traffic-analysis resistant services needed by users, such as
chat and voice-over-IP.

At this moment, email providers such as riseup.net provide centralized email
providers to tens of thousands of highly sensitive users such as activists that are
likely targets of surveillance. Likewise, many ordinary users and organizations
want to migrate from centralized silos that are easily compromised by programs
such as PRISM. Therefore, it is critical that technical solutions be provided
that work today with existing heavily-used protocols such as SMTP to combat
surveillance. The LEAP solution, by providing an integrated client and server
that stores all SMTP email encrypted without having the server have access to
the keys and that automates key management for the user, presents the first
open architecture for enabling widespread open federated end-to-end encryption
for email.
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Abstract. HSTS and HPKP are relatively recent protocols aimed to
enforce HTTPS connections and allow certificate pinning over HTTP.
The combination of these protocols improves and strengthens HTTPS
security in general, adding an additional layer of trust and verification,
as well as ensuring as far as possible that the connection is always secure.
However, the adoption and implementation of any protocol that is not
yet completely settled, usually involves the possibility of introducing new
weaknesses, opportunities or attack scenarios. Even when these protocols
are implemented, bad practices prevent them from actually providing the
additional security they are expected to provide. In this document, we
have studied the quantity and the quality of the implementation both
in servers and in most popular browsers and discovered some possible
attack scenarios.

Keywords: Certificates · HPKP · HSTS · Web browsing · Privacy

1 Introduction

HTTPS and SSL/TLS were created to provide confidentiality and integrity
to web browsing. However, they have also suffered serious security problems
regarding conceptualization, implementation and structure. At the conceptu-
alization and implementation level, some well-known failures are BEAST [1],
POODLE [2], CRIME [3] or Heartbleed [4].

Despite being designed to ensure confidentiality, integrity and authentication,
there have also been cases of MiTM attacks on TLS. In 2014 several researchers
presented client impersonation attacks against TLS renegotiations, wireless net-
works, challenge-response protocols, and channel-bound cookies [5]. In 2015 Jia
et al. [6] presented cache-poisoning attacks on different browsers. In addition,
there are other attacks that have been known for years such as SSL Strip tech-
niques [7]. In late 2010, the Firesheep extension [8] showed how sensitive infor-
mation, in particular cookies, could be easily obtained from websites if all HTTP
content was not encrypted throughout the whole browsing experience, not only
during the login process.
c© Springer International Publishing AG 2016
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Moreover, one of the main problems with TLS and HTTPS is the imper-
sonation of intermediate authorities in a certificate chain. In this regard, in the
recent years several incidents have called attention to the prevention of this issue.
Some of those significant incidents are Comodo security breach [9], Diginotar [9],
TurkTrust [11], the case of the French government [10], the Indian Controller of
Certifying Authorities (India CCA) [11], etc.

The coexistence of HTTPS (TLS over HTTP) for the transfer of sensitive
information leaves some room for unsafe areas even on those platforms that
enforce HTTPS and do care about redirecting traffic to protected sites. With
the use of HSTS a server can notify the browser that it wants to be always
accessed by its secure version, thus preventing user errors, lapses or redirection
tricks. The HPKP protocol is created in the context of certificate pinning to
allow the servers to send their own certificate (in a hashed format called “pins”)
to the browsers via HTTP, so browsers may remember them and detect MiTM
scenarios.

Beyond explaining some of its specifications, this document addresses the
implementation details of these protocols and their characteristics depending
on their acceptance level, both at server and web browsing (client) levels. The
remaining sections of this document are structured as follows: Sect. 2 defines
the background of HSTS and HPKP and related work. Sections 3 and 4 are an
introductory study for these protocols. Section 5 discusses their implementation
at server level. Section 6 describes some implementation weaknesses in client
level and finally, Sect. 7 includes the conclusions drawn from this study.

2 Background

The HSTS and HPKP protocols have been presented as solutions to provide
additional security to the “traditional” HTTPS protocol. The following is a
review of several of these alternatives aimed to provide additional security for
the TLS system in general, and the HTTPS system in particular.

One of the oldest and most notable solutions is DNS-based Authentication
of Named Entities (DANE) [12]. DANE is partly based on the infrastructure
of DNS Security Extensions (DNSSEC), used for securing the DNS protocol.
DANE is still modestly accepted. It leverages the DNSSEC infrastructure to
store and sign keys/certificates that will be used in TLS. Thus, domain names
are linked to cryptographic keys (certificates).

Another proposal is Trust Assertions for Certificate Keys (TACK) [13]. In
their draft from 2013, Moxie Marlinspike and T. Perrie suggested an extension
for the TLS protocol itself to allow the registration of the certificate chain.

Certificate Transparency is a proposal promoted by Google to create a cen-
tralized certificate log that is verifiable by anyone, and to which only information
can be added. The idea is that all issued certificates are public and added to
this log (transparency model) so users or browsers can evaluate whether the are
fraudulent or not.

However, none of the initiatives have been massively adopted. Certificate
Transparency [15] is the one that, thanks to Google’s impetus and the support
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from certification authorities, may become the most widely adopted standard,
although for now it has been only implemented in Chrome in an experimental
mode.

With regard to browsers, Firefox has a wide variety of extensions that
improve HTTPS and TLS security in general, like Certificate Patrol [14] and
Convergence [16] among others. Some of them implement a security protocol in
the background that could be applied to other browsers. But the use of exten-
sions and the initiatives behind them have not driven HTTPS’ securitization,
nor have they solved fundamental problems, as they have not been massively
welcomed or adopted (a requirement for many of them to work properly).

It seems that HSTS and HPKP, thanks to a slow but steady adoption,
together with their easy implementation, can become the true best improve-
ment standard of HTTPS security. But they also suffer problems and attacks,
as we will show in this document. One of the main contributions of this paper
is presenting an attack over the Firefox implementation that makes possible to
deactivate the use of these protocols for certain domains. Deactivating these
protocols implies that the domain will not be accessed through HTTPS or that
modifications on the certificate chain will go undetected, leaving the communi-
cation unprotected.

2.1 Related Work

In relation to the work presented in this document, there are several studies
analyzing the level (but usually not the quality) of implementation of the HSTS
and HPKP protocols in different environments. Among them, the studies by
Garron et al. [21] and by Kranch and Bonneau [22] are noteworthy, although
[21] focuses on HSTS and Alexa domains and both papers only on the server
side.

With regard to attacks and weaknesses against protocols, we should also men-
tion the work of Jose Selvi [23]. In 2014, the author presented a tool, Delorean,
which takes advantage of weaknesses in the implementation of the NTP protocol
to move the system time back or forward with a man in the middle attack and
invalidating HSTS making its maximum validity date expire.

At the Toorcon conference in the summer of 2015 [17], a formula was pre-
sented that allows us to know, by measuring the time of connection to known
servers, if an attacker has visited or not a specific website that uses HSTS. In
addition, a method was presented to use one of HPKPs options (report-uri) as
a permanent user tracking system. When such idea was presented, no browsers
were implementing this option described in the RFC.

As far as we know, not many attacks against the implementation of the HPKP
and HSTS protocols in browsers have been described to date (except [34]), nor
even a well documented description about how these protocols are implemented
in different browsers has been provided.
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3 HSTS Specifications

In November 2012, the Internet Engineering Task Force (IETF) [24] published
the RFC 6797 [18], which contains the details on the HTTP Strict Transport
Security protocol (HSTS). The HTTP Strict Transport Security protocol (HSTS)
can turn HTTP requests into HTTPS from the browser itself. If a server decides
to send HSTS headers to a browser, any subsequent visit to the domain from
that browser is automatically and transparently converted to HTTPS from the
browser, avoiding unsafe requests from the starting point of the connection
itself. The application of the HSTS protocol is transparent to the user, i.e.,
browsers themselves are responsible for redirecting and remembering for how
long domains should be visited via HTTPS if they have notified via HSTS. The
domain transmits HSTS information to the browser with the Strict-Transport-
Security header. This header provides three more fields:

– max-age (mandatory): The expiration time. In practice, the browser remem-
bers for this long (in seconds) that connections should always be made via
HTTPS, and thus it makes the necessary changes in the browser bar. After
this time it deletes the entry and (if not preloaded) reconnects via HTTP.

– includeSubdomains (optional): This field states that the current configuration
will also affect subdomains of the domain sending it.

– preload (optional): If the server intends to be always used via HTTPS, it can
include this option in the header indicating that it has been added to the
permanent lists preloaded to the browser.

4 HPKP Specifications

The draft RFC related to the HTTP Public Key Pinning protocol (HPKP) was
dated February 2014. Its final version is in RFC 7469 [19], of April 2015. The
idea behind the certificate pinning is to be able to detect when a chain of trust
has been modified. In order to do so, a digital certificate present in a certificate
chain needs to be unequivocally associated, usually in the browser, with a specific
domain. Thus, a domain A, e.g. www.google.com, will be linked to a specific
certificate/certification authority B. If for any reason a different certification
authority B’ (which depends on a trusted root certification authority) tries to
issue a certificate associated with domain A, an alarm is launched. In general,
any modification of the certification chain is suspected of a possible alteration.

The pinning can be performed from the client’s side or with the assistance of
the server, as it is the case of the HPKP solution. This HTTP Public Key Pinning
protocol (HPKP) defines a new HTTP header (Public-Key-Pins) in which the
domain sends information to the browser on its certificates and pinning policy.

This header allows various directives:

– pin-sha256 (mandatory): It contains the Subject Public Key Information field
(SPKI) base64 coded SHA-256 hash of the digital certificate that the server
wants to pin. Although the maximum number of appearances of this directive

http://www.google.com
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is not defined, the RFC states that at least the hashes from two certificates
should be offered. At least one of them must be in the certificate chain offered
by the server, unlike the other one, which will be considered as a backup.

– max-age (mandatory): This is the number of seconds, from the current date,
for which the browser must store the certificate information provided in the
previous field. Its “right” value depends on the exchange rate policy for server
certificates. From this point forward, the browser will refresh the information
provided by the server with the new provided pins in the event that they have
been modified.

– includeSubdomains (optional): This field states that the set configuration will
also affect subdomains.

– report-uri (optional): If an error occurs during verification, a POST request
is sent to the URI specified in this field. This URI provides information on
the domains provided by the server, and which were the ones expected by the
browser.

4.1 General Security Considerations

In this section, we will highlight the most interesting known problems related to
implementation prevented in their RFCs.

HSTS: Regarding HSTS, some dangers may arise from the misuse of
includeSubdomains. Using this directive is always recommended in order to pro-
tect any subdomain, that might be created in the future. This is not always
possible, as some subdomains may not have the TLS service properly config-
ured. In these situations, if an attacker is able to register a different subdomain
over which they have control, domain cookies (associated with the whole main
domain) could be obtained in plaintext by the attacker, since they are also issued
under such subdomain that they control in plaintext and not protected by HSTS.

The RFC recommends that servers should not send HSTS headers over
HTTP connections and browsers should ignore them, a practice that all browsers
follow.

Like many of the suggested solutions, HSTS has, by definition, a weakness
in the moment of first contact with the domain. This weakness is called Trust
On First Use, and it is based on the fact that the protocol must trust the first
connection used, and it remembers it as a reference in future dialogues between
those involved. This first use is the time when, in the event the network is
compromised and a man in the middle attack has taken place, the information
sent in the headers can be deleted or modified and can deceive the browser. This
situation repeats itself periodically whenever the max-age sent by the server
expires.

In practice, the usual situation is that the first time a browser connects via
HTTP to a domain that prefers to be visited by HTTPS, a redirect at HTTP
protocol level takes place, telling the browser where the real resource that it
wants to access to is. It is usually in this response to such redirect where the
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HSTS headers are sent to the browser if it is enabled on the server. From the
moment that these headers are received, the unsafe redirect is not required during
the time specified in the max-age field, and it will be the browser that will turn
by itself to HTTPS, even if the user tries to visit HTTP. However, the moment
when the first redirect takes place (or when max-age expires) still represents
a window of opportunity for a potential attacker. To mitigate this weakness,
browsers provide extra protection in the form of preloaded HSTS sites. The
embedded list is public and shared by multiple browsers.

A reasonable value in max-age is recommended, not too short since every
time it expires, the connection may be negotiated again in a HTTP context and
a new opportunity window opens up.

HPKP: A misuse of includeSubdomains in HPKP could cause for certain sub-
domains to be left unprotected or denied, depending on the pins used. With
respect to backup pins, the use of requests of still undeveloped certificates is
recommended to prevent their theft or loss and minimize costs.

It should be noted that backup pins may be used as a tracking method on
some sites. A server might offer unique backup pins associated with each user,
and as long as it offers other valid pin, this would not affect the navigation
process. This unique backup pin would be stored in the users browser. Any
subsequent comparison on the server would univocally tell that user apart.

5 Implementation at Web Server Level

Although both the HSTS and HPKP protocols were accepted as RFC in 2012
and 2015 respectively, their use is not yet widespread, neither at browser level
nor at server level. This section studies to which extent (and how) these protocols
are implemented to this day on web servers.

Although there are other studies from the point of view of HSTS and HPKP’s
implementation, such as the study by Garron et al. [21] and the one by Crunch
and Bonneau [22], these are usually based on the analysis of the most popular
domains in the Alexa ranking. In this case, we have complemented it and com-
pared it with some other domains not regarding popularity (using Shodan as of
November 2015 to find domains that implement them, searching between over
82 million domains using HTTP and 46 million using HTTPS), plus analyzing
the quality of the implementation focusing on the possible mistakes when using
features and directives in these protocols. For analyzing data in Shodan, we have
searched for the headers and assume HTTPS port is 443 and HTTP is used in
80 and 8080 ports.

For analyzing the one million most popular domains by Alexa as of March
2016, we have connected to the domain referenced in the list (and its www sub-
domain) via HTTPS and HTTP. We have in this way obtained 707008 headers
that have been used in the analysis.

Table 1 shows not only a low global implementation, but a substantial num-
ber of servers that uses HPKP and HSTS over insecure HTTP. Many of them
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Table 1. Comparing global and Alexa’s most popular domains using HSTS y HPKP
and its directives under HTTP and HTTPS

Security protocol Connection protocol Global (Shodan) Alexa

HSTS HTTP 91860 (0.11 %) 1692 (0.23 %)

includeSubdomains 52.57 % 36.17 %

preload 0.86 % 9.81 %

HTTPS 400516 (0.87 %) 45808 (6.48 %)

includeSubdomains 50.03 % 26.11 %

preload 6.93 % 12.22 %

HPKP HTTP 636 (7.72 ∗ 10−4%) 7 (0.001 %)

includeSubdomains 73.26 % 100%

report-uri 13.89 % 0.00 %

HTTPS 4477 (0.01 %) 617 (0.09 %)

includeSubdomains 81.38 % 43.43 %

report-uri 37.50 % 13,61 %

may redirect later to a real HTTPS connection with the same (and now effec-
tive) headers, but in the case of a browser not ignoring these headers or lack of
redirection, this would allow an attacker not just to manipulate the information,
but stablishing some kind of “wrong memory” into the client visiting it. The col-
lateral damage to this could go, in practice, from a denial of service in the client
(that would be unable to get to the web because it would not honor HPKP pro-
tocol and browsers would refuse to connect); up to a more sophisticated phishing
attack in which the victim could not tell a fraudulent certificate.

The directive report-uri is surprisingly adopted, despite that (as of March
2016) Chrome is the only browser implementing this directive and only from
September 2015. If we take into account that this directive will have no effect
in any other browser, it turns out to be even more interesting the percentage of
webs using report-uri over HTTP connections (13,89 %), something completely
discouraged (and useless) since the goal of HPKP is comparing certificates stored
against the current certificate chain, and HTTP does not provide this chain.
Besides, among the Alexa domains using report-uri, 7 of them (a 8,3 %) use the
same domain for reporting a problem, something totally discouraged.

We show some other relevant data about the values in the headers, related
with those 707008 headers taken from Alexa’s million most popular domains and
its www subdomains. The Table 2 shows the most usual values for max-age in
HSTS and HPKP and the percentage of web sites using them.

From Table 2 we may conclude that the most popular value is 31536000
seconds (a year) for HSTS and 5184000 (60 days) for HPKP. This is a much
more conservative value in opposite to HSTS, which seems logical since in the
case of stolen certificates, compromised or server changes, a chance of blocking
access is taken.
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Table 2. Percentage of sites using different values for max-age in HSTS and HPKP.

HSTS max-age Percentage of sites HPKP max-age Percentage of sites

31536000 21956 (46,12 %) 5184000 204 (32,58 %)

15552000 6336 (13,31 %) 2592000 142 (22,68 %)

63072000 4528 (9,51 %) 31536000 58 (9,26 %)

15768000 4255 (8,92 %) 604800 37 (5,91 %)

0 1876 (3,94 %) 15768000 34 (5,43 %)

43200 1697 (3,56 %) 86400 24 (3,83 %)

(Others) 6955 (14,61 %) (Others) 123 (19,64 %)

Table 3 shows, from the 707008 headers taken, the number of domains using
a certain number of pins. Despite the recommended values are using between 3
and 4 pins, some domains use from just one pin (violating the RFC) up to 17,
which seems to be an irregularity that reduces the efficiency. Almost a 27 % of
the most popular webs using HPKP use 0 or 1 pins, which is useless from the
browser standpoint since it will ignore it.

Table 3. Domains using different number of HPKP pins.

0 1 2 3 4 5 6 7 8

5 (0,7%) 167 (26,6%) 302 (48,2%) 73 (11,6%) 52 (8,3%) 11 (1,7%) 7 (1.1%) 1 (0.1%) 0

9 10 11 12 13 14 15 16 17

0 2 (0.3%) 0 2 (0.3%) 0 0 2 (0.3%) 0 2 (0.3%)

6 Study and Analysis of Implementation Weaknesses

Beyond the errors described, adoption level, and security recommendations, we
have prepared a lab environment and studied different situations in which it
is possible to remove, or at least reduce, the security of these protocols under
certain circumstances. The problems, weaknesses or failures described may come
both from the implementation of the browser, and from the administration of
the protocol carried out by the domain administrator.

6.1 Orphaned Domains

The implementation of HSTS and HPKP must evaluate whether the security
coverage offered by each protocol should apply to all subdomains of the main
domain, or to each domain and subdomain individually. This is achieved with the
use of includeSubdomains. It is also very common for administrators to redirect
visits to web subdomains when accessed through the main domain. For exam-
ple, it is quite usual to observe that domain.com redirects to www.domain.com
through an HTTP 301 response.

http://domain.com
http://www.domain.com
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A misguided combination of the redirect and a misuse of includeSubdomains
can lead to the appearance of what we have called orphaned domains. Usually,
this problem will affect just the main domain, which in turn will not be under
HSTS or HPKP protection. Two conditions must apply for this situation to take
place:

– A domain visited under HTTP or HTTPS redirects to a subdomain under
HTTPS. In this contact, no HSTS or HPKP headers are offered.

– After the redirect, the header provides HSTS or HPKP protection.

Whether the subdomain to which it has been redirected uses includeSubdo-
mains or not, the original domain will be unprotected (orphan). The browser
will remember www.domain.com as a domain protected by HSTS or HPKP, but
not domain.com, which, if not explicitly visited by HTTPS from the browser,
will again and again suffer the redirect process under the unsecure HTTP.

Regarding this, we consider that the includeSubdomains directive is not
clearly enough stated in the RFC. As we have already seen, given a domain
www.domain.com that issues HSTS or HPKP headers with includeSubdo-
mains, browser implementation does not protect the main domain example.com,
but only protects that same domain and subdomains associated (for example
a.www.example.com, b. www.example.com... but never ftp.example.com).

For example, a request is done to https://example.com, which redirects to
https://www.example.com with a Location header. This first request does not
contain the HSTS or HPKP headers, but they are only found when visiting the
subdomain https://www.example.com. We will see that, from the browser stand-
point, only www.example.com is protected, while any visit to http://example.
com from the browser will still be redirected through an unsafe channel that
can be exploited by an attacker to hijack the connection. If the same content
is served from the main domain (example.com/content.html) and from the sub-
domain (www.example.com/content.html), the overall effect is that the headers
will not offer effective protection to the user.

During our experiments, we have found that this problem is more common
than might be expected, even for popular domains. Popular affected domains
include the following: outlook.com, hotmail.com, facebook.com, youtube.com,
microsoft.com, python.org, quora.com, openssl.org, freebsd.org, ccn-cert.cni.es,
icloud.org, confianzaonline.es, instagram.com, f-secure.com, yammer.com...
From our investigation, a significant 5,33 % of domains using HSTS from Alexa’s
most popular ones, may create orphaned domains if they are not “preloaded”
sites.

6.2 Implementation of Protocols in Firefox

This section describes the most relevant aspects with regard to the implementa-
tion of these protocols in Firefox (which seems identical on Android, Mac, Linux
and Windows). Firefox supports HSTS from version 4, introduced in 2010 [27],
and HPKP from version 32, dated 2014 [28]. This section describes some of the
implementation details as well as the weaknesses that may arise from them.

http://www.domain.com
http://domain.com
http://www.domain.com
http://example.com
https://www.example.com/
https://www.example.com/
https://example.com
https://www.example.com
https://www.example.com
http://www.example.com
http://example.com
http://example.com
www.example.com/content.html
https://www.outlook.com/
https://www.hotmail.com/
https://www.facebook.com/
https://www.youtube.com/
https://www.microsoft.com/
https://www.python.org/
https://www.quora.com/
https://www.openssl.org/
https://www.freebsd.org/
https://www.ccn-cert.cni.es/
https://www.icloud.org/
https://www.confianzaonline.es/
https://www.instagram.com/
https://www.f-secure.com/
https://www.yammer.com/
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Storage: Although introduced in 2010, since 2012, Firefox stores informa-
tion about these protocols in the SiteSecurityServiceState.txt text file, which
is located in the user profile associated with the browser. The argument used
in development forums of the application [29] for keeping this information in a
simple text file was that these headers were rarely used in their origins, so it was
not necessary to add complexity to their management.

This file is a tab-separated plaintext file with no official documentation and
with the following structure:

– The first column is the domain, along with the type of header received (HSTS
or HPKP) after the “:” character.

– The second column is a value known as score. It is initialized at 0 the first time
a domain is visited and is incremented by one (and only by one, regardless of
the days that have passed between visits) for each subsequent day that the
website is visited, taking as a reference the current system date and time in
contrast to the value stored in the third column. In short and for all practical
purposes, the score represents how many different days that specific domain
has been visited since stored for the first time. This value will increase even
if the certificate is not validated, which we consider an implementation error,
as the updating of values should be conditional on the TLS or SSL handshake
being correct, and on the verification that the stored parameters are valid.
It can also be operated if the system date has been altered. For example, if
the current system date is artificially modified or increased, a visit on the
same day to domains protected by HSTS or HPKP will increase the score for
that domains by one. Again for all practical purposes, the score is related to
the user’s browsing habits. If the max-age has not expired, the most visited
domains will be those with a higher score.

– The third column corresponds to the number of days from January 1, 1970
(Epoch) to the system date for the last request or visit. This value is always
updated with each request. When there is a new request, Firefox calculates the
number of days from Epoch to the current date. If it increases with respect to
the stored data, the value of this column is updated and the score is increased
as well. Thus, the score is only updated when the number of days from Epoch
to the current date exceeds the number of days from Epoch to the date of the
last visit, that is, when at least one day has passed since the last visit to the
domain.

– The fourth column stores several fields separated by “,”:
• The first one corresponds to mozilla:pkix:time. This is the expiration time

of the header (max-age) in extended Epoch (in milliseconds since January
1, 1970).

• The second one stores the SecurityPropertyState field, which can have
three different values, depending on whether the property is disabled
(SecurityPropertyUnset, 0), enabled (SecurityPropertySet, (1) or is being
overwritten (SecurityPropertyKnockout, (2) [30]. This information is for
browsers internal use and is not documented.

• The third one is the flag indicating whether subdomains will be affected
by this header (if includeSubdomains has been established or not).
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• In the event that the header refers to HPKP, there will be a fourth field
in which the array of pins received will be included in a concatenated way.
Pins will be spaced between them with the character “=”.

In ElevenPaths Labs we have developed a plugin called PinPatrol to ease
the access to this information so that users can check which data their browsers
are holding regarding HPKP and HSTS. The plugin is freely available from the
Mozilla official repository [31].

Retention Policy: The storage policy in SiteSecurityServiceState.txt has an
interesting peculiarity. The Firefox file only holds the first 1024 sites visited
with these headers. In the event that this limit is exceeded, the least visited
entry will be deleted, i.e., the one with the lower score. If there is more than one
entry with minimum score, an indeterminate one from those with the minimum
value will be deleted. In fact, the entry that is first found (the one that appears
higher in SiteSecurityServiceState.txt) is the one deleted, but these are not fixed
positions, as domains are reordered with an internal browser’s criteria. This
situation in which all positions of the table have been used, is defined by the
browser’s developers as bad or unwanted. It should be noted that the browser
saves 1024 entries for HPKP and HSTS headers, implying that a domain that
uses both protocols, occupies two entries. Therefore, if a webpage is able to inject
strategically more than 1024 HSTS or HPKP entries into the browser from a
single webpage connection to a server using different subdomains, this pool of
1024 slots stack will quickly fill up in Firefox. Recall that when the same domain
is visited at least 24 h later than the last visit, the “score” is incremented by 1.
Then, if the attacker gets the “score” associated to these domains to be higher
than 0 (what is possible by repeating this attack in 24 h separated moments),
the final effect is that only a free slot (with “score” 0) will be available in the
file of the browser for storing new domains and it will be continously replaced,
making HSTS and HPKP practically disabled. The chances that a new domain,
expired or low valued max-age, cannot be stored by the browser are high. Even
more, domains with a very low “score” value may be replaced from the table by
other new domains visited, making the whole system ineffective.

We have successfully set up an environment able to easily reproduce this
undesired scenario, implementing for the first time this kind of attack, that it is
persistent as long as the preferences of the browser are not deleted, as the effect
of the attack remains working. Additionally, the attack can be accelerated and be
concluded in only a few seconds visiting a website with a simple JavaScript (for
instance) code and does not need to be performed in a compromised network.

On the other hand, according to the RFC 7469, at least one of the pins sent
via web must match the visited certificate validation chain. If pins are correct,
they are validated and stored. With respect to the pins validation policy, there
are several situations in which Firefox does not store them:

– When the root certificate has been entered by the user in the browsers list
of trusted certificates. The main reason is to enable certificate installation
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when antivirus solutions or proxies installed in corporate environments need
to inspect the TLS traffic.

– When the server sends more than one kilobyte of pins (about 22), whether
they are different or not.

– When they are not in double quotes.
– When they do not meet the proper format. However, it accepts pins without

the final character =, which will be stored in a concatenated way, provided
that there is a valid one in the set.

In Firefox, if a domain with the right pins stored accesses internally a domain
whose pins do not correspond with those stored (an inner HPKP fail occurs),
the browser will not load that domain... but neither will warn the user that the
reason is a potential MiTM attack. This is an implementation weakness that
should be noted. The problem with the lack of an explicit warning is that an
attack might go unnoticed and be considered as a network error. In this case, the
way to proceed should be the same one as when unsafe resources are accessed
within a site that is accessed by TLS. In these cases, the browser launches a
warning to alert the user of the problem.

6.3 Implementation of Protocols in Chrome

The Google Chrome browser and other browsers that belong to that same fam-
ily (including Chromium and Opera) support, both in desktop and in mobile
environments, HSTS and HPKP protocols from versions 38 [32] and 4 [33],
respectively. The report-uri directive in HPKP is only supported on Chrome
from version 46.

Storage: Chrome stores the headers of these protocols in memory, but it quickly
dumps results in the TransportSecurity file, in the local profile of the user for
Chrome. Chromes strategy is to store a Json with the structure shown in next
paragraph. Unlike Firefox, a hash of the domain is stored in order to keep some
confidentiality. In theory, it is not possible to know the domain if only the hash
is possessed.

{4dDOnhqrwjFImpcYPTTXDOuiw4vxPiWsi05eWK+Dw5o=: {

"dynamic_spki_hashes": [

"sha256/dDwJ9ZN1FXKMtMNttLS+kGiZLsCbCZ/SnqWl7ruaFKk=",

],

"dynamic_spki_hashes_expiry": 1448348962.746452,

"expiry": 1474700962.746436, "mode": "force-https",

"pkp_include_subdomains": false, "pkp_observed": 1443164962.746452,

"sts_include_subdomains": false, "sts_observed": 1443164962.746442}

Each field in the file represents the following:

– The dynamic spki hashes field comprises a list of hashes corresponding to the
domains (SPKI).
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– The expiry field represents the date of expiry of the HSTS or HPKP header.
– The mode field has the force-https literal as a value, which indicates that the

behavior expected from that domain is forcing access via HTTPS.
– The dynamic spki hashes expiry field is the date when SPKIs expire.
– Pkp include subdomains can be true or false, depending on whether the poli-

cies defined in HPKP need to be applicable to all subdomains of the domain.
– Pkp observed shows the moment when the pins have been observed, i.e., when

a site has been visited.
– Sts include subdomains can have store true or false values, depending on

whether the policy defined in HSTS is applicable to all subdomains of the
affected domain.

– Sts observed is the time when the pins have been observed, i.e., when a site
with this header has been visited.

In addition to this file, Chrome has its own interface, available through
the browser, that allows to check the status of domains. It is available in
chrome://net-internals/hsts#hsts. This interface uses the internal file, in addi-
tion to the information preloaded in the browser, and allows to check, set and
delete domains.

Retention Policy: Chrome does not have a removal policy for domains excess.
The browser remembers the data indefinitely as long as the browser history is
not deleted. This opens the door to a possible attack, where a webpage may
send different subdomains HSTS and HPKP headers very frequently and with
an abnormally high number of pins. TransportSecurity will grow up will grow up
in space (up to several hundred of megabytes in a few minutes) and the browser
will start to work erratically when trying to open it or even causing it not to work
at all until the whole history is manually deleted and all information lost. We
have successfully set up an environment able to easily reproduce this undesired
scenario implementing for the first time this kind of attack.

Validation Policy: In Chrome, as stated in the RFC, at least one of the HPKP
pins sent through the web must match the visited certificate validation chain.
Chrome’s peculiarity is that it stores any number of pins received form the server
(unlike Firefox), whether or not they are different from each other, there being
no theoretical limit. In practice, it will accept as many pins as the HTTP header
can store and the browser can read. This makes the aforementioned possible
denial of service attack easier.

Unlike Firefox, Chrome stores the pins if the root certificate has been entered
by the user in the list of trusted certificates of the operating system. Chrome
stores pins even if they are sent between single quotes in the header.

Just like Firefox, Chrome lacks of an explicit warning when an inner HPKP
error occurs, so an attack might go unnoticed and be considered as a network
error. Under Android 4.0 versions, Chrome does not even store HPKP pins.
Although the presence of this operative system is residual (about 2 % during
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2016) it is worth noting this users are not protected. This problem has not been
mentioned explicitly in either Chrome or Android official site before.

6.4 Implementation of Protocols in Internet Explorer (and Edge)

The Edge browser or its immediately earlier version, Internet Explorer, only
support HSTS from Internet Explorer 11 on Windows 7 and 8.1. They still do
not support HPKP. As far as we know, there is no technical documentation
(official or unofficial) on how this system works in the browser or stores the
information. From the point of view of forensic investigations, to date and to
our knowledge, there are no independent studies published or tools to facilitate
the study or analysis of Internet Explorer’s behavior with regard to the HSTS
protocol. In Fig. 1 we show one of the tables for Internet Explorer where this
data is stored, which has not been reversed so far.

Fig. 1. Edge database storing HSTS values.

Basically, the function or API that manages HSTS in Windows is located in
the WININET.DLL library, and it is called HttpIsHostHstsEnabled, for which
there appears to be no official documentation. We understand that knowing the
system in depth would require extensive reverse engineering and forensic work,
which is beyond the scope of this report. In recent versions of Internet Explorer
(and even Edge), Microsoft uses a type of proprietary database called Extensible
Storage Engine (ESE) to store HSTS data among many others. The base file
with the bulk of information is usually hosted in WebCacheV01.dat file under
the user profile, in WebCache folder. A low level study of the system HSTS’s
actual capabilities is beyond the scope of this report and requires in-depth study.

7 Conclusions

Although the HSTS and HPKP protocols are intended to provide an additional
layer of security to HTTPS communications, their implementation is not wide-
spread. At server level, many of the network’s most relevant domains do not even
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implement them. Moreover, among the minority of domains that do use them,
there has been a significant number of implementation errors, even a disregard
of the recommendations of their respective RFCs. This situation shows both low
level adoption and, somehow, some misunderstanding about how to take full
advantage of the protocols.

About the client side, browsers do not have a standard way to implement
described RFCs. The way they handle these protocols is undocumented and, in
the case of Firefox, even dangerous under certain circumstances that may cause
a false sense of security as we have proven in our labs. In the case of Chrome, a
malicious user may cause a denial of service, aside some weaknesses (previously
undescribed) in both that gives us the idea that there is still much more to
standardize and work to be done in them. Edge (formerly Internet Explorer)
does not even implement HPKP yet.

We conclude that implementation, either in server or client side, is not mature
enough yet as to prevent potential attack scenarios associated with denial of
service, full domain protection, RFC right implementation or even fulfilling what
the protocols are intended to achieve in the first place.

Some recommendations for administrators implementing the protocols in the
server side are keeping a good understanding of how protocol works and how it
is implemented; have a robust plan and planning for actually pinning and for
key rotation or potential problems; and being cautious with max-age values and
pins actually pinned. For users using the browsers, we would suggest using some
additional pinning system in the terms of plugins aforementioned, for example,
and checking their browser’s HSTS and HPKP data regularly.
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Abstract. Redactable signature schemes allow to black out predefined
parts of a signed message without affecting the validity of the signature,
and are therefore an important building block in privacy-enhancing cryp-
tography. However, a second look shows, that for many practical appli-
cations, they cannot be used in their vanilla form. On the one hand,
already the identity of the signer may often reveal sensitive information
to the receiver of a redacted message; on the other hand, if data leaks or
is sold, everyone getting hold of (redacted versions of) a signed message
will be convinced of its authenticity.

We overcome these issues by providing a definitional framework
and practically efficient instantiations of so called signer-anonymous
designated-verifier redactable signatures (AD-RS). As a byproduct we
also obtain the first group redactable signatures, which may be of inde-
pendent interest. AD-RS are motivated by a real world use-case in the
field of health care and complement existing health information shar-
ing platforms with additional important privacy features. Moreover, our
results are not limited to the proposed application, but can also be
directly applied to various other contexts such as notary authorities or
e-government services.

1 Introduction

Digitalization of data and processes as well as the use of promising IT-trends such
as cloud computing is prevalent, steadily increasing and meanwhile outreaches
even sensitive fields such as the health care sector.1 Given the sensitivity of the
involved data and the high demands in data correctness and quality, the health
care domain is a prime example for the beneficial application of cryptographic
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means such as encryption and digital signatures. This work is dedicated to the
development of a cryptographically enhanced solution for a real world hospital,
which is currently planning to complement its existing information sharing sys-
tem for electronic patient data with additional privacy features. The overall idea
of the system is to grant patients access to all their medical records via a cloud-
based platform. The patients are then able to use this as a central hub to dis-
tribute their documents to different stakeholders, e.g., to request reimbursement
by the insurance, or to forward (parts of) the documents to the family doctor
for further treatment. While means for access control and data confidentiality
are already in place, the system should be complemented by strong authenticity
guarantees. At the same time a high degree of privacy should be maintained, i.e.,
by allowing the patients, on a fine-granular basis, to decide which parts of which
document should be visible to which party. For instance, the family doctor might
not need to learn the precise costs of a treatment; similarly a medical research
laboratory should not learn the patients’ identities.

From a research point of view, one motivation behind this work is to show how
rather complex real world scenarios with conflicting interests and strong security
and privacy requirements can be elegantly and securely realized by means of
rigorous cryptographic design and analysis. More importantly, we can indeed
come up with provably secure and practical solutions being well suited for real
world use. Now, we discuss the motivation for our design.

Redactable Signatures. A trivial solution for the above problem would be to let
the hospital cloud create a fresh signature on the information to be revealed every
time the user wishes to forward authentic subsets of a document to other parties.
However, this is not satisfactory as it would require strong trust assumptions into
the cloud: one could not efficiently guarantee that the signed data has not been
altered over time by the cloud or by a malicious intruder. It is therefore preferable
to use redactable signatures (RS). These are signature schemes that allow to
black out (redact) predefined parts of a signed message while preserving the
validity of the signature, thereby guaranteeing the authenticity of the redacted
message. That is, it is not necessary to let the cloud attest the authenticity of the
forwarded data, as the signature on the redacted document can be extracted from
the doctor’s signature on the original document without requiring the doctor’s
secret signing key or further interaction with the doctor.

Designated Verifiers. Unfortunately, using redactable signatures in their van-
illa form in our scenario would lead to severe privacy problems, i.e., everyone
getting hold of a signed document would be convinced of its authenticity. In
such a case, for instance, an employer who gets hold of a signed health record
of an employee, might reliably learn the employee’s disease, who, in further
consequence, might get dismissed. What is therefore needed is a designated ver-
ifier for each redacted version of a document. That is, when redacting a doc-
ument, the patient should be able to define the intended receiver. Then, while
everybody can check the validity of a leaked document, only the designated
verifier is convinced about its authenticity. This can be achieved by construct-
ing the schemes in a way that the designated verifier can fake indistinguishable
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signatures on its own. Moreover, the public verifiability property might as well be
a motivation for designated verifiers to not leak/sell documents, as this reduces
the circle of possible suspects to the data owner and the designated verifier.

Group Signatures. Another problem of RS is that they only support a single
signer. However, a hospital potentially employing hundreds of doctors will not
use a single signing key that is shared by all its employees. By doing so, the
identity of the signing doctor could not be revealed in case of a dispute, e.g.,
after a malpractice. However, using different keys for different doctors poses a
privacy risk again. For instance, if the document was signed using an oncologist’s
key, one could infer sensitive information about the disease—even though the
diagnosis was blacked out. What is therefore needed are features known from
group signatures, where towards the verifier the doctor’s identity remains hidden
within the set of doctors in the hospital, while re-identification is still possible
by a dedicated entity.

Contribution. The properties we need for our scenario are contributed by three
distinct cryptographic concepts and what we actually need can be considered as
a signer-anonymous designated-verifier redactable signature scheme. However,
while a lot of existing work studies the different concepts in isolation, there is
no work which aims at combining them in a way to profit from a combination of
their individual properties. Trying to obtain this by simply combining them in an
ad-hoc fashion, however, is dangerous. It is well known that the ad-hoc combina-
tion of cryptographic primitives to larger systems is often problematic (as subtle
issues often remain hidden when omitting formal analysis) and security breaches
resulting from such approaches are often seen in practice. Unlike following such
an ad-hoc approach, we follow a rigorous approach and formally model what is
required by the use-case, introduce a comprehensive security model and propose
two (semi-)black-box constructions that are provably secure within our model.
While such a (semi-)black-box construction is naturally interesting from a theo-
retical point of view, our second construction is also entirely practical and thus
also well suited to be used within the planned system. Finally, as a contribution
which may be of independent interest, we also obtain the first group redactable
signatures as a byproduct of our definitional framework.

Technical Overview. Our constructions provably achieve the desired functional-
ity by means of a two-tier signature approach: a message is signed using a freshly
generated RS key pair where the corresponding public key of this “one-time RS”
is certified using a group signature. For the designated verifier feature, we follow
two different approaches. Firstly, we follow the näıve approach and use a disjunc-
tive non-interactive proof of knowledge which either demonstrates knowledge of
a valid RS signature on the message, or it demonstrates knowledge of a valid
signature of the designated verifier on the same message. While this approach is
very generic, its efficiency largely depends on the complexity to prove knowledge
of an RS signature. To this end, we exploit key-homomorphic signatures, which
we introduce and which seem to be of independent interest. In particular, we use
the observation that a large class of RS can easily be turned into RS admitting the
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required key-homomorphism, to obtain a practical construction. More precisely,
besides conventional group signatures and conventional redactable signatures,
our approach only requires to prove a single statement demonstrating knowl-
edge of the relation between two RS keys or demonstrating knowledge of the
designated verifier’s secret key. For instance, in the discrete logarithm setting
when instantiating this proof using Fiat-Shamir transformed [15] Σ-protocols,
they are highly efficient as they only require two group exponentiations.

Related Work. Redactable signature schemes have been independently intro-
duced in [18,27]. Although such schemes suffer from the aforementioned prob-
lems, we can use them as an important building block. In particular, we will
rely on the general framework for such signatures as presented in [13]. Besides
that, redactable signatures with an unlinkability property have been introduced
in [9,21].2 Unfortunately, apart from lacking practical efficiency, even unlinkable
redactable signatures are not useful to achieve the desired designated verifier
functionality. There is a large body of work on signatures with designated ver-
ifiers, which are discussed subsequently. However, none of the approaches con-
siders selective disclosure via redaction or a group signing feature.

In designated verifier (DV) signatures (or proofs) [17], a signature produced
by a signer can only be validated by a single user who is designated by the signer
during the signing process (cf. [19] for a refined security model). Designation can
only be performed by the signer and verification requires the designated verifier’s
secret. Thus, this concept is not directly applicable to our setting. In [17] also the
by now well known “OR trick” was introduced as a DV construction paradigm.

Undeniable signatures [11] are signatures that can not be verified without
the signer’s cooperation and the signer can either prove that a signature is valid
or invalid. This is not suitable for us as this is an interactive process.

Designated confirmer signatures [10] introduce a third entity besides the
signer and the verifier called designated confirmer. This party, given a signature,
has the ability to privately verify it as well as to convince anyone of its validity
or invalidity. Additionally, the designated confirmer can convert a designated
confirmer signature into an ordinary signature that is then publicly verifiable.
This is not suitable for our scenario, as it is exactly the opposite of what we
require, i.e., here the signature for the confirmer is not publicly verifiable, but
the confirmer can always output publicly verifiable versions of this signature.

Another concept, which is closer to the designation functionality that we
require, are universal designated verifier (UDV) signatures introduced in [26].
They are similar to designated verifier signatures, but universal in the sense
that any party who is given a publicly verifiable signature from the signer can
designate the signature to any designated verifier by using the verifiers public
key. Then, the designated verifier can verify that the message was signed by the
signer, but is unable to convince anyone else of this fact. Like with ordinary
DV signatures, UDV signatures also require the designated verifier’s secret key
for verification. There are some generic results for UDV signatures. In [29] it
was shown how to convert various pairing-based signature schemes into UDV
2 Similar to the related concept of unlinkable sanitizable signatures [7,8,16].
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signatures. In [25] it was shown how to convert a large class of signature schemes
into UDV signatures. Some ideas in our second construction are conceptually
related to this generic approach. However, as we only require to prove relations
among public keys, our approach is more tailored to efficiency.

2 Preliminaries

We denote algorithms by sans-serif letters, e.g., A,B. All algorithms are assumed
to return a special symbol ⊥ on error. By y ← A(x), we denote that y is assigned
the output of the potentially probabilistic algorithm A on input x and fresh ran-
dom coins. Similarly, y ←R S means that y was sampled uniformly at random
from a set S. We let [n] := {1, . . . , n}. We write Pr[Ω : E ] to denote the proba-
bility of an event E over the probability space Ω. We use C to denote challengers
of security experiments, and Cκ to make the security parameter explicit.

A function ε(·) : N → R≥0 is called negligible, iff it vanishes faster than every
inverse polynomial, i.e., ∀ k : ∃ nk : ∀ n > nk : ε(n) < n−k.

Followingly, we recap required cryptographic building blocks. Due to space
constraints we omit formal definitions for well known primitives such as a digital
signature scheme Σ = (KeyGen,Sign,Verify) and a (non-interactive) proof system
Π = (Setup,Proof,Verify) here, and present them in the extended version.

Redactable Signatures. Below, we recall the generalized model for redactable
signatures from [13], which builds up on [6]. As done in [13], we do not make the
structure of the message explicit. That is, we assume that the message m to be
signed is some arbitrarily structured data. We use ADM to denote a data structure
encoding the admissible redactions of some message m and we use MOD to denote
a data structure containing modification instructions for some message. We use
m̊ �ADM

m to denote that a message m̊ is derivable from a message m under ADM and
m̊ ←−MOD m to denote that m̊ is obtained by applying MOD to m. Likewise, we use
˚ADM ←−MOD

ADM to denote the derivation of ˚ADM from ADM with respect to MOD. We
use ADM � m to denote that ADM matches m, and MOD � ADM to denote that MOD

matches ADM.

Definition 1. An RS is a tuple (KeyGen,Sign,Verify,Redact) of PPT algo-
rithms, which are defined as follows:

KeyGen(1κ): Takes a security parameter κ as input and outputs a keypair (sk, pk).
Sign(sk,m, ADM): Takes a secret key sk, a message m and admissible modifications

ADM as input, and outputs a message-signature pair (m, σ) together with some
auxiliary redaction information RED.3

Verify(pk,m, σ): Takes a public key pk, a message m, and a signature σ as input,
and outputs a bit b.

Redact(pk,m, σ, MOD, RED): Takes a public key pk, a message m, a valid signature
σ, modification instructions MOD, and auxiliary redaction information RED as
input. It returns a redacted message-signature pair (m̊, σ̊) and an updated
auxiliary redaction information R̊ED.

3 As it is common for RS, we assume that ADM can always be recovered from (m, σ).
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While we omit correctness, we recall the remaining RS security definitions below.

Definition 2 (Unforgeability). An RS is unforgeable, if for all PPT adver-
saries A there exists a negligible function ε(·) such that

Pr
[

(sk, pk) ← KeyGen(1κ),
(m�, σ�) ← ASign(sk,·,·)(pk)

:
Verify(pk,m�, σ�) = 1 ∧

� (m, ADM) ∈ QSign : m� �ADM

m

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

Definition 3 (Privacy). An RS is private, if for all PPT adversaries A there
exists a negligible function ε(·) such that

Pr

⎡

⎣
(sk, pk) ← KeyGen(1κ), b ←R {0, 1},
O ← {Sign(sk, ·, ·), LoRRedact(sk, pk, ·, ·, b)},
b� ← AO(pk)

: b = b�

⎤

⎦ ≤ 1/2 + ε(κ),

where LoRRedact is defined as follows:
LoRRedact(sk, pk, (m0, ADM0, MOD0), (m1, ADM1, MOD1), b):

1: Compute ((mc, σc), REDc) ← Sign(sk,mc, ADMc) for c ∈ {0, 1}.
2: Let ((m̊c, σ̊c), R̊EDc) ← Redact(pk, σc,mc, MODc, REDc) for c ∈ {0, 1}.
3: If m̊0 �= m̊1 ∨ ˚ADM0 �= ˚ADM1, return ⊥.
4: Return (m̊b, σ̊b).

Here, the admissible modifications ˚ADM0 and ˚ADM1 corresponding to the redacted
messages are implicitly defined by (and recoverable from) the tuples (m̊0, σ̊0) and
(m̊1, σ̊1) and the oracle returns ⊥ if any of the algorithms returns ⊥.

We call an RS secure, if it is correct, unforgeable, and private.

Group Signatures. Subsequently, we recall the established model for static
group signatures from [3]. Again, we slightly adapt the notation to ours.

Definition 4. A group signature scheme GS is a tuple (KeyGen,Sign,Verify,
Open) of PPT algorithms which are defined as follows:

KeyGen(1κ, n): Takes a security parameter κ and the group size n as input. It
generates and outputs a group verification key gpk, a group opening key gok,
as well as a list of group signing keys gsk = {gski}i∈[n].

Sign(gski,m): Takes a group signing key gski and a message m as input and
outputs a signature σ.

Verify(gpk,m, σ): Takes a group verification key gpk, a message m and a signature
σ as input, and outputs a bit b.

Open(gok,m, σ): Takes a group opening key gok, a message m and a signature
σ as input, and outputs an identity i.

The GS security properties are formally defined as follows (we omit correctness).
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Definition 5 (Anonymity). A GS is anonymous, if for all PPT adversaries
A there exists a negligible function ε(·) such that

Pr

⎡

⎢
⎢
⎣

(gpk, gok, gsk) ← KeyGen(1κ, n),
b ←R {0, 1}, O ← {Open(gok, ·, ·)},
(i�

0, i
�
1,m

�, st) ← AO(gpk, gsk),
σ ← Sign(gski�b

,m�), b� ← AO(σ, st)

:
b = b� ∧

(m�, σ) /∈ QOpen
2

⎤

⎥
⎥
⎦ ≤ ε(κ),

where A runs in two stages and QOpen
2 records the Open queries in stage two.

Definition 6 (Traceability). A GS is traceable, if for all PPT adversaries A
there exists a negligible function ε(·) such that

Pr

⎡

⎢
⎢
⎣

(gpk, gok, gsk) ← KeyGen(1κ, n),
O ← {Sig(·, ·),Key(·)},
(m�, σ�) ← AO(gpk, gok),
i ← Open(gok,m�, σ�)

:
Verify(gpk,m�, σ�) = 1 ∧

(i = ⊥ ∨ (i /∈ QKey ∧
(i,m�) /∈ QSig))

⎤

⎥
⎥
⎦ ≤ ε(κ),

where Sig(i,m) returns Sign(gski,m), Key(i) returns gski, and QSig and QKey

record the queries to the signing and key oracle respectively.

We call a GS secure, if it is correct, anonymous and traceable.

3 Security Model

Now we formally define signer-anonymous designated-verifier redactable signa-
ture schemes (AD-RS). To obtain the most general result, we follow [13] and do
not make the structure of the messages to be signed explicit. Inspired by [20],
we view signatures output by Sign as being of the form σ = (σ, σ). That is, sig-
natures are composed of a public signature component σ and a private signature
component σ, where σ may also be empty. For the sake of simple presentation
we model our system for static groups, since an extension to dynamic groups [4]
is straight forward.

Definition 7 (AD-RS). An AD-RS is a tuple (Setup, DVGen, Sign, GVerify,
Open, Redact, Verify, Sim) of PPT algorithms, which are defined as follows.

Setup(1κ, n): Takes a security parameter κ and the group size n as input. It
generates and outputs a group public key gpk, a group opening key gok, and
a list of group signing keys gsk = {gski}i∈[n].

DVGen(1κ): Takes a security parameter κ as input and outputs a designated
verifier key pair (vskj , vpkj).

Sign(gski,m, ADM): Takes a group signing key gski, a message m, and admissible
modifications ADM as input, and outputs a signature σ.

GVerify(gpk,m, σ): Takes a group public key gpk, a message m, and a signature
σ as input, and outputs a bit b.
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Open(gok,m, σ): Takes a group opening key gok, a message m, and a valid sig-
nature σ as input, and outputs an identity i.

Redact(gpk, vpkj ,m, σ, MOD): Takes a group public key gpk, a designated-verifier
public key vpkj, a message m, a valid signature σ, and modification instruc-
tions MOD as input, and returns a designated-verifier message-signature pair
(m̊, ρ).

Verify(gpk, vpkj ,m, ρ): Takes a group public key gpk, a designated-verifier public
key vpkj, a message m, and a designated-verifier signature ρ. It returns a bit b.

Sim(gpk, vskj ,m, ADM, MOD, σ): Takes a group public key gpk, a designated-verifier
secret key vskj, a message m, admissible modifications ADM, modification
instructions MOD, and a valid public signature component σ as input and
outputs a designated-verifier message signature pair (m̊, ρ).

Oracles. We base our security notions on the following oracles and assume that
(gpk, gok, gsk) generated in the experiments are implicitly available to them. The
environment stores a list DVK of designated-verifier key pairs, and a set of public
signature components SIG. Each list entry and each set is initially set to ⊥.

Key(i): This oracle returns gski.
DVGen(j): If DVK[j] �= ⊥ this oracle returns ⊥. Otherwise, it runs (vskj , vpkj) ←

DVGen(1κ), sets DVK[j] ← (vskj , vpkj), and returns vpkj .
DVKey(j): This oracle returns vskj .
Sig(i,m, ADM): This oracle runs σ = (σ, σ) ← Sign(gski,m, ADM), sets SIG ←

SIG ∪ {σ} and returns σ.
Open(m, σ): This oracle runs i ← Open(gok,m, σ) and returns i.
Sim(j,m, ADM, MOD, σ): If σ /∈ SIG, this oracle returns ⊥. Otherwise, it runs

(m̊, ρ) ← Sim(gpk, vskj ,m, ADM, MOD, σ) and returns (m̊, ρ).
RoS(b, j,m, ADM, MOD, σ): If b = 0, this oracle runs (m̊, ρ) ← Redact(gpk, vpkj ,m,

σ, MOD) and returns (m̊, ρ). Otherwise, it uses the Sim oracle to obtain
(m̊, ρ) ← Sim(j,m, ADM, MOD, σ) and returns (m̊, ρ).

Ch(i, j, (m0, ADM0, MOD0), (m1, ADM1, MOD1), b): This oracle runs σc ← Sign(gski,
mc, ADMc), (m̊c, ρc) ← Redact(vpkj ,mc, σc, MODc), for c ∈ {0, 1}. If m̊0 �= m̊1 ∨
˚ADM0 �= ˚ADM1, it returns ⊥ and (m̊b, σb, ρb) otherwise.4

The environment stores the oracle queries in lists. In analogy to the oracle labels,
we use QKey,QDVGen,QDVKey,QSig,QOpen,QSim,QRoS, and QCh to denote them.

Security Notions. We require AD-RS to be correct, group unforgeable, desig-
nated-verifier unforgeable, simulatable, signer anonymous, and private.

Correctness guarantees that all honestly computed signatures verify correctly.
Formally, we require that for all κ ∈ N, for all n ∈ N, for all (gpk, gok, gsk) ←

Setup(1κ, n), for all (vskj , vpkj) ← DVGen(1κ), for all (vsk�, vpk�) ← DVGen(1κ),
for all (m, ADM, MOD) where MOD � ADM ∧ ADM � m, for all (m′, ADM

′, MOD
′) where

MOD
′ � ADM

′ ∧ ADM
′ � m′ for all i ∈ [n], for all σ = (σ, σ) ← Sign(gski,m, ADM),

for all u ← Open(gok,m, σ), for all (m̊, ρ) ← Redact(gpk, vpkj ,m, σ, MOD), for all

4 Here ˚ADM0 and ˚ADM1 are derived from ADM0 and ADM1 with respect to MOD0 and MOD1.
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(m̊′, ρ′) ← Sim(gpk, vsk�,m
′, ADM

′, MOD
′, σ), it holds with overwhelming probabil-

ity that GVerify(gpk,m, σ) = 1 ∧ i = u ∧ Verify(gpk, vpkj , m̊, ρ) = 1 ∧ Verify
(gpk, vpk�, m̊

′, ρ′) = 1 and that m̊ ←−MOD m ∧ m̊′ ←−MOD
′
m′.

Group unforgeability captures the intuition that the only way of obtaining valid
signatures on messages is by applying “allowed” modifications to messages which
were initially signed by a group member. Moreover, this property guarantees that
every valid signature can be linked to the original signer by some authority.

Technically, the definition captures the traceability property of group signa-
tures while simultaneously taking the malleability of RS into account.

Definition 8. An AD-RS is group unforgeable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

⎡

⎢
⎢
⎣

(gpk, gok, gsk) ← Setup(1κ, n),
O ← {Sig(·, ·, ·),Key(·)},
(m�, σ�) ← AO(gpk, gok),
u ← Open(gok,m�, σ�)

:
GVerify(gpk,m�, σ�) = 1 ∧

(u = ⊥ ∨ (u /∈ QKey ∧
�(u,m, ADM) ∈ QSig : m� �ADM

m))

⎤

⎥
⎥
⎦ ≤ ε(κ).

Designated-verifier unforgeability models the requirement that a designated-
verifier signature can only be obtained in two ways: either by correctly redact-
ing a signature (which can be done by everybody having access to the latter),
or by having access to the secret key of the designated verifier. The former
option would be chosen whenever a signature is to be legitimately forwarded to
a receiver, while the latter enables the designated verifier to fake signatures.

Together with the previous definition, designated-verifier unforgeability guar-
antees that no adversary can come up with a designated-verifier signature for a
foreign public key: by Definition 8 it is infeasible to forge a signature—and Defi-
nition 9 states that the only way of generating a designated-verifier signature for
somebody else is to know a valid signature to start from.

Definition 9. An AD-RS is designated-verifier unforgeable, if there exists a
PPT opener O = (O1, O2) such that for every PPT adversary A there is a
negligible function ε1(·) such that

∣
∣
∣
∣
∣
Pr

[
(gpk, gok, gsk) ← Setup(1κ, n) : A(gpk, gok, gsk) = 1

] −
Pr

[
(gpk, gok, gsk, τ) ← O1(1κ, n) : A(gpk, gok, gsk) = 1

]

∣
∣
∣
∣
∣
≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(gpk, gok, gsk, τ) ← O1(1κ, n),
O ← {Sig(·, ·, ·),Key(·),
DVGen(·),DVKey(·),
Sim(·, ·, ·, ·, ·)},
(m�, ρ�, v�) ← AO(gpk, gok),
u ← O2(τ, DVK,m�, ρ�, v�)

:

Verify(gpk, vpkv� ,m�, ρ�) = 1 ∧
v� /∈ QDVKey ∧

∧ (u = ⊥ ∨ (u /∈ QKey ∧
�(u,m, ADM) ∈ QSig : m� �ADM

m)) ∧
�(v�,m, ADM, ·, ·)∈QSim : m� �ADM

m)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ ε2(κ).
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In our definition, we assume a simple key registration for designated verifiers to
ensure that all designated-verifier key pairs have been honestly created and thus
an adversary is not able to mount rogue key attacks. In practice, this requirement
can often be alleviated by introducing an option to check the honest generation
of the keys (cf. [23]), which we omit for simplicity.

Simulatability captures that designated verifiers can simulate signatures on arbi-
trary messages which are indistinguishable from honestly computed signatures.

Definition 10. An AD-RS satisfies the simulatability property, if for all PPT
adversaries A there is a negligible function ε(·) such that it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(gpk, gok, gsk) ← Setup(1κ, n), b ←R {0, 1},
O ← {DVGen(·),DVKey(·)},
((m0, ADM0, MOD0), (m1, ADM1),
i�, j�, st) ← AO(gpk, gok, gsk),
σ = (σ, σ) ← Sign(gski� ,mb, ADMb),
(m̊0, ρ) ← RoS(b, j�,m0, ADM0, MOD0, σ),
b� ← AO(σ, m̊0, ρ, st)

:
b = b� ∧

ADM0 � m0 ∧
ADM1 � m1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1/2 + ε(κ).

As mentioned earlier, we assume that signatures consist of a private and a public
component (the latter being denoted by σ). To eliminate potential privacy issues
associated with a public σ, we also give σ as input to the simulator and the
adversary, and require that the adversary cannot tell real and faked signatures
apart even when knowing σ. This way, our definitional framework guarantees
that these parts do not contain any sensitive information.

In a realization of the system, the public parts of all signatures issued by the
hospital would be made publicly available (without further meta-information).

Signer anonymity requires that only the opening authority can determine the
identity of a signer.

Definition 11. An AD-RS is signer anonymous, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

(gpk, gok, gsk) ← Setup(1κ, n),
b ←R {0, 1},O ← {Open(·, ·)},
(i�

0, i
�
1,m

�, ADM
�, st) ← AO(gpk, gsk),

σ ← Sign(gski�b
,m�, ADM

�),
b� ← AO(σ, st)

:
b = b� ∧

�(m, (σ, ·)) ∈ QOpen
2 :

m �ADM

m�

⎤

⎥
⎥
⎥
⎥
⎦

≤ 1/2 + ε(κ),

and A runs in two stages and QOpen
2 records queries to oracle Open in stage two.

The definition guarantees that—no matter how many signatures already have
been opened—the signers’ identities for all other signatures remain secret. The
formulation is, up to the last clause of the winning condition, similar to the
anonymity definition of group signature schemes (cf. Definition 5). We, however,
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need to adapt the last clause because Definition 5 requires signatures to be non-
malleable. In contrast, our signatures are malleable by definition. However, we
can still require parts of the signature, and in particular the public part, to
be non-malleable. By doing so, we can achieve a strong notion that resembles
anonymity in the sense of group signatures whenever honestly generated signa-
tures have different public components with overwhelming probability. This is
in particular the case for our instantiations provided in the next sections.

Privacy guarantees that a redacted designated-verifier signature does not leak
anything about the blacked-out parts of the original message.

Definition 12. An AD-RS is private, if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr

⎡

⎣
(gpk, gok, gsk) ← Setup(1κ, n), b ←R {0, 1},
O ← {Sig(·, ·, ·),Ch(·, ·, ·, ·, b)},
b� ← AO(gpk, gok, gsk)

: b = b�

⎤

⎦ ≤ 1/2 + ε(κ).

We call an AD-RS secure, if it is correct, group unforgeable, designated-verifier
unforgeable, simulatable, signer anonymous, and private.

Group Redactable Signatures. When omitting the DV-related notions and
oracles, one directly obtains a definition of group redactable signatures, which
may also be useful for applications that require revocable signer-anonymity.

4 A Generic Construction

Now we present a simple generic construction which can be built by combining
any GS, any RS, and any Π that admits proofs of knowledge in a black-box way.
In Scheme 1 we present our construction which follows the intuition given in the
introduction. We use Π to prove knowledge of a witness for the following NP
relation R required by the verification of designated-verifier signatures.

((m, pk, vpkj), (σR, σV)) ∈ R ⇐⇒
RS.Verify(pk,m, σR) = 1 ∨ Σ.Verify( vpkj ,m, σV) = 1.

The rationale behind choosing R in this way is that this yields the most general
result. That is, no further assumptions on RS or Σ are required.

Theorem 1 (proven in the extended version). If GS, RS, and Σ are secure
and Π is witness indistinguishable and admits proofs of knowledge, then Scheme 1
is secure.

For an instantiation of our construction we can use standard GS and stan-
dard RS, where multiple practically efficient instantiations exist. Thus, the time
required for signature creation/verification is mainly determined by the cost of
the proof of knowledge of the RS signature σR. We, however, want to emphasize
that—depending on the concrete RS—this proof can usually be instantiated by
means of relatively cheap Σ-protocols. Ultimately, as we will show below, we
can replace this proof with a much cheaper proof by exploiting properties of the
used RS.
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Scheme 1. Black-Box AD-RS

5 Boosting Efficiency via Key-Homomorphisms

In [13] it is shown that RS can be generically constructed from any EUF-CMA
secure signature scheme and indistinguishable accumulators [12]. In our setting
it is most reasonable to consider messages as an (ordered) sequence of message
blocks. A straight forward solution would thus be to build upon [13, Scheme 2],
which is tailored to signing ordered sequences of messages m = (m1, . . . ,mn).
Unfortunately, this construction aims to conceal the number of message blocks in
the original message, and the positions of the redactions. This can be dangerous
in our setting, since it might allow to completely change the document semantics.
Besides that, it inherently requires a more complex construction.

To this end, we pursue a different direction and require another message rep-
resentation: we make the position i of the message blocks mi in the message
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explicit and represent messages as sets m = {1||m1, . . . , n||mn}. Besides solv-
ing the aforementioned issues, it also allows us to build upon the (simpler)
RS paradigm for sets [13, Scheme 1]. This paradigm subsumes the essence of
many existing RSs and works as follows. Secret keys, public keys, and signatures
are split into two parts each. One corresponds to the signature scheme Σ, and
one corresponds to the accumulator Λ. Then, Λ is used to encode the message,
whereas Σ is used to sign the encoded message. Consequently, we can look at RS
key pairs and signatures as being of the form (sk, pk) = ((skΣ, skΛ, pkΛ), (pkΣ,
pkΛ)) and σR = (σΣ, σΛ) where the indexes denote their respective types. We
emphasize that for accumulators it holds by definition that skΛ is an optional
trapdoor which may enable more efficient computations, but all algorithms also
run without skΛ and the output distribution of the algorithms does not depend
on whether the algorithms are executed with or without skΛ [12,13]. We require
this property to be able to create designated verifier signatures (cf. Sim) and use
(skΣ,⊥, pkΛ) to denote an RS secret key without skΛ.

RS following this paradigm only require Σ (besides correctness) to be EUF-
CMA secure. We observe that additional constraints on Σ—and in particular the
key-homomorphism as we define it below—does not influence RS security, while
it enables us to design the relation R such that it admits very efficient proofs.

Key-Homomorphic Signatures. Informally, we require signature schemes
where, for a given public key and a valid signature under that key, one can
adapt the public key and the signature so that the resulting signature is valid
with respect to the initial message under the new public key. Moreover, adapted
signatures need to be identically distributed as fresh signatures under the secret
key corresponding to the adapted public key.

Key-malleability in the sense of adapting given signatures to other signatures
under related keys has so far mainly been studied in context of related-key
attacks (RKAs) [2], where one aims to rule out such constructions. Signatures
with re-randomizable keys which allow to consistently update secret and public
keys, but without considering adaption of existing signatures, have recently been
introduced and studied in [16]. As we are not aware of any constructive use
of and definitions for the functionality we require, we define key-homomorphic
signatures inspired by key-homomorphic symmetric encryption (cf. [1]).

Let Σ = (KeyGen,Sign,Verify) be an EUF-CMA secure signature scheme
where the secret and public keys live in groups (H,+) and (G, ·), respectively.
Inspired by the definition for encryption schemes in [28], we define the following.

Definition 13 (Secret-Key to Public-Key Homomorphism). A signature
scheme Σ provides a secret-key to public-key homomorphism, if there exists an
efficiently computable map μ : H → G such that for all sk, sk′ ∈ H it holds that
μ(sk + sk′) = μ(sk) · μ(sk′), and for all (sk, pk) output by KeyGen, it holds that
pk = μ(sk).

Now, we define key-homomorphic signatures, where we focus on the class of func-
tions Φ+ representing linear shifts. We stress that Φ+ is a finite set of functions,
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all with the same domain and range, and, in our case depends on the public key
of the signature scheme (which is not made explicit). Moreover, Φ+ admits an
efficient membership test and its functions are efficiently computable.

Definition 14 (Φ+-Key-Homomorphic Signatures). A signature scheme is
called Φ+-key-homomorphic, if it provides a secret-key to public-key homomor-
phism and an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,Δ): Takes a public key pk, a message m, a signature σ, and a
function Δ ∈ Φ+ as input, and outputs a public key pk′ and a signature σ′,

where for all Δ ∈ Φ+, all (sk, pk) ← KeyGen(1κ), all messages m, all σ ←
Sign(sk,m), all (pk′, σ′) ← Adapt(pk,m, σ,Δ) it holds that Verify(pk′,m, σ′) = 1
and pk′ = Δ(pk).

For simplicity we sometimes identify a function Δ ∈ Φ+ with its “shift amount”
Δ ∈ H. To model that freshly generated signatures look identical as adapted
signatures on the same message, we introduce the following additional property.

Definition 15 (Adaptability of Signatures). A Φ+-key-homomorphic sig-
nature scheme provides adaptability of signatures, if for every κ ∈ N, and every
message m, it holds that Adapt(pk,m,Sign(sk,m),Δ) and (pk · μ(Δ),Sign(sk +
Δ,m)) as well as (sk, pk) and (sk′, μ(sk′)) are identically distributed, where (sk,
pk) ← KeyGen(1κ), sk′ ←R

H, and Δ ←R
Φ+.

For an in-depth treatment and examples of key-homomorphic signatures, we
refer the reader to a more recent work [14]. The important bottom-line here is
that there are various efficient schemes that satisfy Definition 15. For instance,
Schnorr signatures [24], BLS signatures [5], the recent scheme by Pointcheval
and Sanders [22] or Waters signatures [30].

Φ+-Key-Homomorphic Redactable Signature Schemes. When instantiat-
ing the RS construction paradigm from [13] (as outlined above) with a Φ+-key-
homomorphic signature scheme, the key homomorphism of the signature scheme
straight-forwardly carries over to the RS and we can define Adapt as follows.

Adapt(pk,m, σ,Δ): Parse pk as (pkΣ, pkΛ) and σ as (σΣ, σΛ), run (pk′
Σ, σ′

Σ) ←
Adapt(pkΣ, Λ(m), σΣ,Δ) and return (pk′, σ′) ← ((pk′

Σ, pkΛ), (σ′
Σ, σΛ)).

This allows us to concisely present our construction in Scheme 2. The NP rela-
tion, which needs to be satisfied by valid designated-verifier signatures is as
follows.

((pk, vpkj), (sk, vskj)) ∈ R ⇐⇒ pk = μ(sk) ∨ Σ.VKey(vskj , vpkj) = 1.

In the discrete logarithm setting such a proof requires an OR-Schnorr proof of
two discrete logs, i.e., only requires two group exponentiations.

Theorem 2 (proven in the extended version). If GS is secure, RS is an
adaptable RS following [13, Scheme 1], Σ is secure, and Π is witness indistin-
guishable and admits proofs of knowledge, then Scheme 2 is also secure.
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Scheme 2. Semi-Black-Box AD-RS where Setup, DVGen, Sign, GVerify, and Open are
as in Scheme 1.

6 Conclusion

We introduce the notion of signer-anonymous designated-verifier redactable sig-
natures, extending redactable signatures in their vanilla form in several impor-
tant directions. These additional features are motivated by a real world use-case
in the health care field, demonstrating its practical relevance. Besides rigorously
modelling this primitive, we provide two instantiations. While both are interest-
ing from a theoretical point of view, the latter is also interesting in practice. In
particular, due to using key-homomorphic signatures as we introduce them in
this paper, we obtain a simple and practically efficient solution (a performance
analysis confirming the practical efficiency is provided in the extended version).
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8. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sani-
tizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.)
EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-53997-8 2

9. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 11

10. Chaum, D.: Designated confirmer signatures. In: Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995). doi:10.1007/
BFb0053427

11. Chaum, D., Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990). doi:10.1007/
0-387-34805-0 20

12. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-16715-2 7
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Abstract. Group signatures are a class of digital signatures with
enhanced privacy. By using this type of signature, a user can sign a mes-
sage on behalf of a specific group without revealing his identity, but in
the case of a dispute, an authority can expose the identity of the signer.
However, it is not always the case that we need to know the specific
identity of the signature. In this paper, we propose the notion of deniable
group signature, where the authority can issue a proof showing that the
specified user is NOT the signer of the signature, without revealing the
actual signer. We point out that existing efficient non-interactive zero-
knowledge proof systems cannot be straightforwardly applied to prove
such a statement. We circumvent this problem by giving a fairly prac-
tical construction through extending the Groth group signature scheme
(ASIACRYPT 2007). In particular, a denial proof in our scheme consists
of 96 group elements, which is about twice the size of a signature in the
Groth scheme. The proposed scheme is provably secure under the same
assumptions as those of the Groth scheme.

Keywords: Group signature · Deniability · Non-interactive zero-
knowledge proof · Bilinear map

1 Introduction

Background and Motivation. Anonymity is often required in various appli-
cations in which the users’ personal information or privacy should be protected,
and a group signature scheme is one of the most popular cryptographic tools for
obtaining anonymity. By using a group signature, a user can generate digital
evidence (i.e., signature) which proves that he/she is a member of a specified
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group without revealing his/her identity. Furthermore, if needed, an authority
can extract the “embedded” identity from the above-mentioned signature and
generate another digital evidence (i.e., opening proof) of this opening result.
Therefore, in normal situations, users can anonymously prove their membership,
and in the case of incidents (e.g., crimes), the identity of the actual signer can be
revealed. Such a property seems quite useful for protecting the users’ anonymity
and tracing malicious users simultaneously. However, for some situations, this
property is insufficient.

For example, assume that the police needs to know whether a suspect was in
a specific building at the time of a crime, and the entrance and exit control for
the building is managed using a group signature. A naive way to check this is
to ask the authority (i.e., the manager of the building) to just reveal the signer
identities of all signatures that were used for the authentication within that
specified time period. This is what can be done by a standard group signature.
Obviously, this results in a serious violation of the privacy of the innocent users
who have entered the building in that time period.

One may think that traceable signature [16] can be employed for solving this
problem. That is, one can check whether the suspect was in the building by using
the token of the suspect. However, if the suspect was not in the building and this
suspect is innocent, serious privacy violation of the suspect happens since the
token can also be used for any signature generated at another time than that of
the crime.

To avoid this situation, it is further required that the group signature scheme
provides a functionality for generating yet another kind of digital evidence, which
only proves that, for a given signature and identity of a suspect, the signer of
the signature is NOT the suspect.

Our Contribution. In this paper, we describe the construction of a group sig-
nature that provides the above-mentioned functionality. In particular, we pro-
pose the notion of a deniable group signature, a method for designing it, and a
concrete instantiation. In addition to all the functionalities of a standard group
signature, a deniable group signature provides another functionality that the
authority (i.e., opener) can generate a denial proof that proves non-ownership of
a signature. In other words, in a deniable group signature, for a given signature
and an identity of a user, the authority can generate a proof of the fact that the
actual signer is NOT that particular user (if this is the case).

We first discuss the possibility of generically constructing such a group sig-
nature by extending the Bellare-Shi-Zhang technique [3] and clarify the main
difficulty for designing practical instantiations. In particular, we point out that
it is not straightforward to apply the Groth-Sahai proofs [14] for generating
denial proofs. The problem here is to find a way to prove that a user j is not
the actual signer i, i.e., i �= j, but such kind of language is not covered with
the Groth-Sahai proof. We overcome this problem and show a concrete deni-
able group signature scheme based on the (modified) Groth group signature
[13,28] together with a dedicated technique for overcoming the above-mentioned
difficulty.
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The proposed scheme is provably secure in the standard model under the deci-
sional linear (DLIN) assumption, q-strong Diffie-Hellman (q-SDH) assumption,
q-U assumption, universal one-wayness of hash functions, and strong unforge-
ability of one-time signatures. The denial proof in the proposed scheme consists
of nine commitments, four pairing product equations, and five multi-scalar mul-
tiplication equations. The total size is 96 group elements and is about twice the
size of a group signature in the Groth scheme.

Related Work. Komano, Ohta, Shimbo, and Kawamura [19] pointed out that
“the ring signature scheme allows the signer to shift the blame to entities (vic-
tims) because of its anonymity,” and proposed a deniable ring signature, where
a verifier and a user run interactive confirm/disavow protocols and the user can
insist that “I am the actual signer” (confirm) or “I am NOT the actual signer”
(disavow). Komano et al.’s scheme is secure in the random oracle model, and
later, Zeng et al. [30] proposed an improved scheme which is provably secure in
the standard model. In deniable ring signatures, the user can claim that he is
not the signer of the signature, while in the case of deniable group signatures,
the opener can generate the proof of non-ownership of the signature. That is, in
deniable group signatures, if all users except for a user collude, his anonymity is
still guaranteed unless the opener is not corrupted by them, unlike in the case
of deniable ring signatures.

As group signatures with additional functionality, group signatures with
message-dependent opening (GS-MDO) [27] were considered in order to restrict
the authority of the opener. In GS-MDO, the opener can open group signatures
on specific signed messages, as decided by another authority called the admit-
ter. In particular, an automated parking garage scenario was considered as an
application of GS-MDO. In this case, a customer generates a group signature
on the date he/she enters a garage, and if there is an accident (e.g., a person
is murdered) in the garage, the opener opens all the signatures for the date of
the accident to determine the customers present in the garage at the time of the
accident. Again, if multiple customers enter the garage on the same date, then
the false accusation problem occurs.

Abe et al. [1] considered non-snatching and undeniability in the traceable
signature context, where no one (but the actual signer) can claim to be the signer
of a signature, and no actual signer can deny being the signer of his signatures,
respectively. Abe et al.’s traceable signature scheme, in addition to the opening
and user tracing, allows the signer to claim non-ownership of a signature (as in
the case of deniable ring signatures [19,30]) while in the case of deniable group
signatures, the opener can generate the proof for non-ownership of a signature.
That is, as we discussed about deniable ring signatures, a user’s anonymity is
not guaranteed if all users except for the user collude.

Lyuu and Wu [24] considered group undeniable signatures where a verifier
and a group manager run an interactive protocol that can prove the valid-
ity/invalidity of signatures without compromising anonymity. To the contrary,
deniable group signatures support the non-interactive verification.
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Brickell et al. [8] proposed direct anonymous attestations (DAA), which can
be seen as group signatures without the opening functionality. They introduced
a tag, called basename, which enables to link signatures produced by the same
user with the same basename. After that, Desmoulins et al. [10] introduced DAA
with dependent basename opening (DAA-DBO), which is the extension of DAA.
In these primitives, even if the user can simply use a different basename for each
time to sign a message, he can only prove that he generated the signature by
producing a new signature on the same message with the same basename. That
is, he cannot prove that he did not generate the signature.

Recently, Blazy et al. [5] proposed group signatures with verifiable control-
lable linkability (VCL-GS), where a dedicated linking authority (LA) can deter-
mine whether two given signatures stem from the same signer without being
able to identify the signer(s). Compared to group signatures with controllable
linkability, VCL-GS does not require trusted LAs.

2 Preliminaries

In this section, we give definitions of building blocks of the modified Groth and
our schemes and the decisional linear assumption which is used in the security
proof of our scheme.

Bilinear Map. Bilinear groups are groups G and GT with prime order p that
have an efficiently computable bilinear map e : G × G → GT . Let G(1k) be
a probabilistic polynomial time algorithm which outputs a group parameter
gk = (p,G,GT , e, g) where k is a security parameter, p is the order of G and GT ,
g is a generator of G, and e is a non-degenerate bilinear map e : G × G → GT ,
i.e. ∀a, b ∈ Z, e(ga, gb) = e(g, g)ab and e(g, g) �= 1.

The Decisional Linear Assumption (DLIN Assumption). The decisional
linear assumption was introduced [7]. The decisional linear assumption holds
for G, when it is hard to distinguish for randomly chosen group elements and
exponents (f, g, h, fr, gs, ht) whether t = r + s or t is random.

Universal One-way Hash Function. A function family HashGen(1k) takes
as input a security parameter k and outputs a function H. The function H is
said to be universal one-way when Pr[(x, s) ← A(1k);H ← HashGen(1k);x′ ←
A(H, s) : H(x) = H(x′) ∧ x �= x′] is negligible for any polynomial time algo-
rithm A.

Strong One-time Signature. A signature scheme consists of three algorithms
(KeyGen,Sign,Ver), which satisfy the following correctness condition: For any
security parameter k ∈ N, any message m ∈ {0, 1}∗, the condition Vervk(m,
Signsk(m)) = 1 holds, where vk and sk are output by KeyGen as (vk, sk) ←
KeyGen(1k). In this paper, we use a one-time signature scheme: a scheme secure
against an adversary who mounts a single chosen message attack. The one-time
signature is said to be strong, if the adversary cannot even create a different
signature on the chosen message he already got signed. See [12] for a formal
definition.
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Non-interactive Proof. For a relation R ∈ {0, 1}∗ × {0, 1}∗ defining L =
{x | (x,w) ∈ R for some w}, a non-interactive proof system consists of three
algorithms (K,P,V) which satisfy the following correctness and soundness.

– Correctness: For any security parameter k ∈ N, any common reference string
crs ← K(1k), and any pair (x,w) ∈ R, it holds V(crs, x,P(crs, x, w)) = 1.

– Soundness: For any security parameter k ∈ N, any probabilistic polyno-
mial time algorithm A, the probability Pr[crs ← K(1k); (x, π) ← A(crs) :
V(crs, x, π) = 1 ∧ x /∈ L] is negligible.

Groth and Sahai introduced a framework for very efficient non-interactive
proof for the satisfiability of relations in bilinear groups, including pairing prod-
uct equations [14]. The proof system consists of algorithms (KNI,P,V,X). The
algorithm KNI(gk) takes a group parameter gk as input and outputs (crs, xk)
where crs is a common reference string and xk is an extraction key which can
extract a witness from a proof. The algorithm P(crs, x, w) takes crs, an equa-
tion description x, and its witness w as input and outputs a proof π. This proof
can be verified by running V(crs, x, π). The algorithm Xxk(crs, x, π) extracts a
witness w from the proof π.

There are two types of the Groth-Sahai proof systems, (KNI,PNIWI,VNIWI,
XNIWI) provides witness-indistinguishability and (KNI,PNIZK,VNIZK,XNIZK)
provides zero-knowledge. The two types of proof can share a single common
reference string. (Thus, multiple systems can use a common KNI.) There exists a
simulator that outputs a simulated common reference string crs and a trapdoor
key tk. These simulated common reference strings are computationally indistin-
guishable from the common reference strings produced by K under the DLIN
assumption. We say a proof system is perfect witness-indistinguishable, if, on a
simulated common reference string, the proof π does not reveal anything about
which witness was used by the prover when creating the proof. We say a proof
system is perfect zero-knowledge, if there exists a simulator that produces a
simulated proof and the simulated proof is perfectly indistinguishable from the
proof which is produced by using a witness and a simulated common reference
string.

In the Groth-Sahai proof system, to prove that committed variables sat-
isfy a set of relations, the prover computes one commitment per variable and
one proof element per relation. The non-interactive zero-knowledge (NIZK)
proofs are available for pairing product equations, which are relations of the
type

∏n
i=1 e(Ai,Xi) · ∏n

i=1

∏n
j=1 e(Xi,Xj)aij = tT with tT = 1 for variables

X1, . . . ,Xn ∈ G and constants A1, . . . ,An ∈ G, aij , for i, j ∈ {1, . . . n}. Even
if tT �= 1, still we can construct NIZK proofs if tT can be decomposed to
known base group elements g̃, ĝ ∈ G such that tT = e(g̃, ĝ). NIZK proofs also
can be constructed for multi-scalar multiplication equations, which are of the
form

∏m
i=1 Ayi

i · ∏n
j=1 X bj

j · ∏m
i=1

∏n
j=1 X yiγij

j = T for variables X1, . . . ,Xn ∈
G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G, b1, . . . , bm ∈ Zp, and
γij ∈ G, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Here, we note that though
the Groth-Sahai NIZK proof is efficient, it has a limitation of language. Espe-
cially, inequality statements (e.g., a �= b) are not covered by the languages which
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can be proved by the Groth-Sahai NIZK proof. Also, as mentioned above, if a
witness is a target group element, it needs to be decomposed into base group
elements to apply the Groth-Sahai proof. However, it is hard because of the
pairing inversion problem [11].

Kiltz’ Tag-based Encryption. We will use Kiltz’ construction of tag-based
encryption [18], which is explained below. Let gk = (p,G,GT , e, g) be a
group description. The key generation algorithm G(1k) chooses random inte-
gers ζ, η ← Zp and random elements K,L ← G, and sets the public key
pk = (F,H,K,L) where F = gζ and H = gη and the decryption key dk = (ζ, η).
The encryption algorithm Epk (t,m) outputs y = (y1, y2, y3, y4, y5) = (F r,Hs,
mgr+s, (gtK)r, (gtL)s) where m is a plaintext, t is a tag, and r, s are randomness.
The validity of the ciphertext is publicly verifiable by checking the two equations
e(F, y4) = e(y1, gtK) and e(H, y5) = e(y2, gtL). Here, let ValidCiphertextpk (t, y)
be an algorithm verifying the validity of a ciphertext. The decryption algorithm
Ddk (t, y) outputs m = y3/(y−ζ

1 y−η
2 ) if the above two equations hold, otherwise

outputs ⊥. This tag-based encryption is secure against selective-tag weak cho-
sen ciphertext attack under the DLIN assumption [18]. In the modified Groth
scheme and our scheme, we use the same F,H as in the common reference string
of non-interactive proofs.

3 Deniable Group Signatures

In this section, we give the definition of deniable group signature which is a
natural extension of the Bellare-Shi-Zhang (BSZ) model [3]. More precisely, we
base our definition on the Sakai et al. model [28], which slightly modifies the
BSZ model by introducing opening soundness.

3.1 Modification to the BSZ Model

For the ease of understanding (particularly for readers familiar with the standard
group signature), we first highlight the differences between our definition and the
BSZ model and then, provide the formal comprehensive definitions.

In deniable group signatures, we require that for the signature Σ of a message
m and a user j, the opener can establish a proof that the open result is not j.
Hence in addition to the standard functionality of group signature, we add new
algorithms, namely DOpen and DJudge, to the Sakai et al. model. The opener
produces this denial proof by using the DOpen algorithm and validity of the
proof can be judged by the DJudge algorithm.

Due to the addition of the two algorithms, we also need to change the security
definitions. Since we allow the opener to produce the new type of opening, namely
denial opening, we need to ensure that such openings do not compromise the
anonymity of group signatures. In a deniable group signature scheme, the denial
proofs will provide the adversary with additional information which potentially
could improve his abilities to attack the scheme. Thus, we allow the adversary
to obtain denial proofs for any group signatures of his/her choice, as the BSZ
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definition allows him/her to obtain opening proofs of any signature. Furthermore,
it is natural to expect that a denial proof for a signature Σ with respect to a
user j does not leak any information beyond the fact that Σ is not generated by
j. To capture this intuition, we allow the adversary in the anonymity game to
obtain denial proofs for the challenge.

3.2 Formal Definition

We give the formal definition of deniable group signatures. First, we define the
syntax of deniable group signature. We stress that the algorithms except DOpen
and DJudge are exactly the same as those of the Sakai et al. model.

Definition 1 (Deniable Group Signature). A deniable group signature
scheme D-GS consists of the algorithms (GKg,UKg, Join/Iss,GSig,GVf,Open,
Judge,DOpen,DJudge):

GKg: The group key generation algorithm takes as input a security parameter
1k (k ∈ N), and returns a group public key gpk, an issuer key ik, and an
opening key ok.

UKg: The user key generation algorithm, which is run by a user i, takes as input
1k and gpk, and returns a public and private key pair (upk i, usk i).

Join/Iss: The pair of (interactive) algorithms are run by a user and the issuer,
and takes as input gpk, upk i, and usk i from user i and gpk, upk i, and ik
from the issuer, respectively. If successful, the issuer stores the registration
information of user i in reg[i] and the user obtains the corresponding secret
signing key gsk i. We denote reg = {reg[i]}i.

GSig: The group signing algorithm takes as input gpk, gsk i and a message m,
and returns a group signature Σ.

GVf: The verification algorithm takes as input gpk, Σ, and m, and returns either
1 (indicating that Σ is a valid group signature), or 0.

Open: The opening algorithm takes as input gpk, ok, m, Σ, and reg, and returns
(i, τO), where i is a user identity, and τO is a proof that user i computed Σ.

Judge: The judgement algorithm takes as input gpk, i, upk i, m, Σ, and τO, and
returns 1 (indicating that Σ is produced by user i), or 0.

DOpen: The denial opening algorithm takes as input gpk, j, ok, m, Σ, and reg,
and returns τD(j), where j is a user identity, and τD(j) is a proof that user j
did not compute Σ.

DJudge: The denial judgement algorithm takes as input gpk, j, upk j, m, Σ, and
τD(j), and returns 1 (indicating that Σ is not produced by user j), or 0.

Here, we note that Judge(gpk , i, upk i,m,Σ, τO) = 0 does not imply that
the signature Σ is not generated by the user i. For example, if the proof
τO is not generated honestly, the Judge algorithm outputs 0. Similarly,
DJudge(gpk , j, upk j ,m,Σ, τD(j)) = 0 does not imply that the signature Σ is
generated by the user j. For example, if the proof τD(j) is not generated hon-
estly, the DJudge algorithm outputs 0.
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The model in [3] introduces four requirements for a group signature, namely,
correctness, anonymity, non-frameability, and traceability. Furthermore, opening
soundness is introduced by [28]. In this paper, we provide the definitions of
correctness, anonymity, non-frameability, traceability, and opening soundness for
a deniable group signature. The security model is extended from the dynamic
group signature defined by Sakai et al. [28] and therefore, is almost the same
except for anonymity. We define the security of anonymity in the following.
However, due to the page limitation, the formal definitions of the other notions
are given in the full version of this paper [15].

Anonymity. We first define several oracles used in anonymity game. We newly
introduce the DOpen oracle in addition to Sakai et al.’s definition.

CrptU: This corrupt-user oracle allows A to add corrupt users. On input an
identity i and upk , this oracle sets upk i ← upk and adds i to CU.

SndToU: This send-to-user oracle takes as input a user identity i, at first sets up
a user public and private key pair (upk i, usk i) ← UKg(1k, gpk) and adds i
to HU. Then the oracle interacts with A who corrupts the issuer by running
Join(gpk , upk i, usk i).

Ch: This challenge oracle takes as input a bit b, two identities i0, i1, and m, and
returns Σ∗ ← GSig(gpk , gsk ib

,m) if both i0 ∈ HU and i1 ∈ HU. If not, the
oracle returns ⊥. The oracle stores (m,Σ∗) in GSet, and stores i0 and i1 in
ISet.

Open: This opening oracle takes as input m and Σ, and returns (i, τO) ←
Open(gpk , ok ,m,Σ, reg) if (m,Σ) �∈ GSet and ⊥ otherwise.

DOpen: This deniable opening oracle takes as input a user identity j, m and Σ,
and returns τD(j) ← DOpen(gpk , j, ok ,m,Σ, reg) if (m,Σ) �∈ GSet ∨ j �∈ ISet
and ⊥ otherwise.

USK: This user secret keys oracle takes as input i ∈ HU, and returns the secret
keys usk i and gsk i.

WReg: This write-registration-table oracle takes as input i and a value ρ, and
modifies the contents of reg by setting reg[i] ← ρ.

Now, we give the definition of anonymity. In the following, we first describe
the difference between the anonymity of group signatures and the anonymity of
deniable group signatures. The anonymity of group signatures [28] is required so
that an adversary, who can corrupt the issuer and malicious users cannot extract
any user information from group signatures of honest users in the case when the
adversary is able to access the Open oracle. In the anonymity of deniable group
signatures, the adversary can also access the DOpen oracle. As mentioned above,
the adversary can even query the challenge signature to the DOpen oracle except
for querying the challenge users i0 and i1. Then, anonymity is guaranteed even
if denial proofs for all users except i0 and i1 are provided for the challenge group
signature.1

1 Recall that we exclude the case that an adversary requests a denial proof of either
i0 or i1 for the challenge signature, since this trivially breaks the anonymity. (See
the definition of DOpen oracle above.).
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Definition 2 (Anonymity). For an adversary A, we define the experiment
Expanon

D-GS,A(k) as follows.

Expanon
D-GS,A(k) :

b ← {0, 1}
(gpk , ik , ok) ← GKg(1k); CU ← ∅; HU ← ∅; GSet ← ∅; ISet ← ∅
b′ ← ACrptU(·,·),SndToU(·),WReg(·,·),USK(·),Open(·,·),DOpen(·,·,·),Ch(b,·,·,·)(gpk , ik)
Return 1 if b′ = b, otherwise return 0

A deniable group signature scheme is said to be anonymous if the advantage
Advanon

D-GS,A := |Pr[Expanon
D-GS,A(k) = 1]− 1

2 | is negligible for any PPT adversary A.

4 The Proposed Deniable Group Signature Scheme

Here, we show that a deniable group signature can be constructed by applying
this technique to the generic construction of a (standard) group signature pre-
sented by Bellare, Shi, and Zhang (BSZ) [3]. Then, we explain the difficulty of
instantiating an efficient scheme even when a generic construction of a deniable
group signature is given, and present our deniable group signature scheme, which
is fairly efficient. Lastly, we discuss the size of the denial proofs of the proposed
scheme.

4.1 Generic Construction and Its Limitation

Here, we give a generic construction of deniable group signature which is an
extension of the BSZ construction [3]. In the BSZ construction, each user i has a
key pair (vki, ski) of a signature scheme. The issuer also has a key pair (vks, sks)
of a signature scheme and the opener has a key pair (pke, ske) of a public key
encryption scheme. To issue a signing key to a user i, the issuer signs the message
(i, vki) using his key sks and sends the signature certi to the user i. A signer i can
produce a signature s on a message m under vki. To make this verifiable without
losing anonymity, the user makes an encryption C of (i, vki, certi, s) using pke

and also makes an NIZK proof π which proves that certi is a valid certificate
on (i, vki), i.e., Vrfyvks

((i, vki), certi) = 1, s is a valid signature on m, and the
ciphertext C is correctly generated. The opener can identity i by decrypting C
using ske. Then, the opener produces an NIZK proof τ which proves that C
decrypts to (i, vki, certi, s) under ske.

We can add deniability to the BSZ construction as follows. The opener pro-
duces an NIZK proof τ ′ where C decrypts to (i, vki, certi, s) under ske and certi
is NOT a valid certificate on (j, vkj), i.e., Vrfyvks

((j, vkj), certi) �= 1. Though
this denial proof can be constructed by using general NIZK proofs [6], it is quite
inefficient. The next attempt is to add deniability to an efficient group signature
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scheme (e.g., the modified Groth scheme [28]2) by using an efficient NIZK proof
(e.g., the Groth-Sahai proofs [14]). Unfortunately, this type of language (i.e.,
inequality statement) is not compatible with the Groth-Sahai proofs, especially
the Groth-Sahai NIZK proof.

4.2 The Proposed Scheme

We will now present the proposed scheme. In the case of a deniable group signa-
ture, the opener needs to issue a denial proof, which proves that the user j is not
the actual signer without revealing user i itself. Here, we review the technique
for proving an inequality statement i �= j introduced by, e.g., [29] as follows:
The technique is that to prove a �= b, the prover picks 	 ∈ Zp randomly and sets
c := (a/b)� and the verifier checks c �= 1 and the knowledge of 	. We note that
this technique for proving inequality cannot be straightforwardly applied to the
modified Groth scheme (See Remark in Sect. 4.2 for details).

We give our proposed scheme in Fig. 1. The proposed scheme is an exten-
sion of the modified Groth scheme [28], which has opening soundness added to
the Groth scheme [13]. The modified Groth scheme uses a universal one-way
hash function H : {0, 1}∗ → Zp, the Groth-Sahai proof systems (KNI,PNIWI,
VNIWI,XNIWI) and (KNI,PNIZK,VNIZK,XNIZK), and a strong one-time signature
(KeyGen,Sign,Ver) as building blocks. Note that in the modified Groth scheme,
we use a common KNI for both systems and XNIZK is not used.

First, we will explain the GSig and Open algorithms of the modified Groth
scheme. In the GSig algorithm, a signer constructs two Groth-Sahai proofs.
The first proof π, constructed via PNIWI shows the knowledge of a signa-
ture σ, a verification key v, and a part b of a certificate (a, b) that satisfies
e(a, hv)e(f, b) = T ∧ e(σ, vgH(vksots)) = e(g, g). The first part a can be revealed
in the group signature. The second proof ψ, constructed via PNIZK demonstrates
that the plaintext of y is the same as the witness σ used in π. That is, for a
commitment c = (c1, c2, c3) = (F rcU t,HscV t, grc+scW tσ) contained in π, there
exists (r, s, t) such that (c1y−1

1 , c2y
−1
2 , c3y

−1
3 ) = (F rU t,HsV t, gr+sW t). In the

Open algorithm, the opener reveals τF = y
1/dF

1 = gr and τH = y
1/dH

2 = gs

as a part of an opening proof. If a third party, given τF and τH wants to
check the correspondence between the ciphertext (y1, y2, y3) and the plaintext
σ, he/she checks whether e(F, τF ) = e(y1, g), e(H, τH) = e(y2, g), στF τH = y3,
and e(σ, vig

H(vksots)) = e(g, g) hold or not.
We note that a simple modification, where the opener makes an NIZK proof

for e(σ, vjg
H(vksots)) �= e(g, g), does not work because of the limitation of lan-

guages of the “zero-knowledge version” of the Groth-Sahai proof (See Remark
in Sect. 4.2 for details). To break the barrier, all witnesses need to be base group

2 Libert, Peters, and Yung (LPY) [23] proposed a short dynamic group signature
scheme in the standard model under simple assumptions. Since the scheme is secure
in the sense of the Kiayias-Yung model [17] and the model does not require that the
opener produces the opening proof, we cannot directly employ our technique to the
LPY scheme. Therefore, we leave it as a future work.
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elements. Therefore, to prove i �= j, we define the inequality to be proved on
the base group G such that vi �= vj where vi, vj ∈ G. That is, the opener takes
random 	 ← Zp and set c = τ� · (τ ′

�)
−1 where τ� = v�

i and τ ′
� = v�

j . The proof φ,
constructed via PNIZK, shows the knowledge of the opening proof (i, (σ, τF , τH)),
vi, τ�, and τ ′

� which satisfy

e(F, τF ) = e(y1, g) ∧ e(H, τH) = e(y2, g) ∧ στF τH = y3

∧ e(σ, vig
H(vksots)) = e(g, g) ∧ e(vi, τ

′
�) = e(vj , τ�) ∧ c = τ� · (τ ′

�)
−1.

The first four equations demonstrate that i is the actual signer of Σ and the
fifth equation demonstrates that the discrete logarithm of τ� and that of τ ′

� are
the same. In the DJudge algorithm, one checks the NIZK proof and whether
c �= 1.

Performance Evaluation. Since the proposed scheme is exactly the same as
the modified Groth scheme [13], except for the algorithms for generating and
verifying denial proofs, the efficiency of the other algorithms is identical to that
of the modified Groth scheme. Hence, we estimate the size of the denial proof.

We modify the equations above to produce a zero-knowledge proof as follows.
The first equation e(F, τF ) = e(y1, g) is changed to two equations e(F, τF ) ·
e(y′

1, g
−1) = 1 ∧ y′

1 · y−1
1 = 1 where y′

1 is a new witness. In the same way,
e(H, τH) = e(y2, g) is changed to e(H, τH)·e(y′

2, g
−1) = 1 ∧ y′

2 ·y−1
2 = 1 where y′

2

is a witness. Moreover, e(σ, vig
H(vksots)) = e(g, g) is changed to e(σ, vig

H(vksots)) ·
e(g′, g−1) = 1 ∧ g′ · g−1 = 1 where g′ is a witness.

Therefore, this denial proof consists of 6 commitments and 3 new commit-
ments, which consist of 3 group elements each, and 4 pairing product equations,
which consist of 9 group elements but a linear equation consisting of 3 group
elements, and 5 multi-scalar multiplication equations, which consist of 9 group
elements each. The denial proof consists of 96 group elements in total.

Next, we analyze the adequacy of the size of the denial proof. In our scheme,
the opener proves that “a signer is a member of the group,” and “the signer
does not generate a group signature without revealing the signer itself.” The
first part of denial proof can be regarded as a group signature, and the second
part of denial proof can be regarded as the revocation functionality, which proves
that a signer is not revoked without revealing the signer itself. Since revocable
group signature schemes, e.g., [2,21,22,25], require approximately 50–100 group
elements in addition to the membership proof part, it seems reasonable that
denial proof requires 96 group elements in total.

Remark. In the modified Groth scheme, we can confirm that the user i is
an actual signer by checking the equation e(σ, vig

H(vksots)) = e(g, g). Now, the
statement that we want to prove is e(σ, vjg

H(vksots)) �= e(g, g). From these,
it is natural to think that when {e(σ, vig

H(vksots))/e(σ, vjg
H(vksots))}� = c,

where i is the actual signer, a user j is not the signer and 	 is a random-
ness, we check whether c �= 1. However, the Groth-Sahai proof [14] has a
limitation related to languages. If we provide an NIZK proof for the equation
{e(σ, vig

H(vksots))/e(σ, vjg
H(vksots))}� = c in the Groth-Sahai proof, we need to
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GKg(1k):
gk = (p,G, GT , e, g) ← G(1k)
H ← HashGen(1k)
f, h, z ← G
T ← e(f, z)
(crs, xk) ← KNI(gk)
(F, H,U, V, W,U , V ,W ) ← crs
K, L ← G
pk ← (F,H, K,L)
Return (gpk , ik , ok)

← ((gk , H, f, h, T, crs, pk), z, xk)
Join/Iss(User i:gpk ; Issuer:gpk , ik):
Run the coin-flipping protocol

The user obtains vi = gxi and xi

and the issuer obtains vi

(Repeat until vi = reg[j] for all j)
Issuer:

r ← Zp

(ai, bi) ← (f−r, (vih)rz)
set reg[i] ← vi

send (ai, bi) to the user
User:

If e(ai, hvi)e(f, bi) = T
set gsk i ← (xi, ai, bi)

GSig(gpk , gsk i, m):
(vk sots, sk sots) ← KeyGensots(1k)

(Repeat until H(vk sots) = −xi)
ρ ← Zp; a ← aif

−ρ; b ← bi(hvi)ρ

σ ← g1/(xi+H(vksots))

π ← PNIWI(crs, (gpk , a,H(vk sots)),
(b, vi, σ))

y ← Epk (H(vk sots), σ)
ψ ← PNIZK(crs, (gpk , y, π), (r, s, t))
σsots ← Signsksots

(vk sots,m, a, π, y, ψ)
Return Σ = (vk sots, a, π, y, ψ, σsots)

GVf(gpk , reg, m, Σ):
Return 1 if the following holds:
1 = Vervksots((vk sots, m, a, π, y, ψ), σsots)
1 = VNIWI(crs, (gpk , a,H(vk sots)), π)
1 = VNIZK(crs, (gpk , y, π), ψ)
1 = ValidCiphertextpk (H(vk sots), y)
reg[i] = reg[j] for all i = j

else return 0
Open(gpk , ok , reg,m,Σ):
If GVf(gpk , reg,m,Σ) = 0, return (0, ⊥)
(b, v, σ) ← Xxk (crs, (gpk , a,H(vk sots)), π)
(dF , dH) ← xk
(y1, y2, . . . , y5) ← y

τF ← y
1/dF

1 , τH ← y
1/dH

2

Return (i, (σ, τF , τH))
if there is i so v = reg[i],

else (0,⊥)
Judge(gpk , i, reg,m,Σ, (σ, τF , τH)):
vi ← reg[i]
Return 1 if the following hold:
GVf(gpk , reg,m,Σ) = 1
i = 0, e(σ, vig

H(vksots)) = e(g, g)
e(F, τF ) = e(y1, g), e(H, τH) = e(y2, g)
στF τH = y3

else return 0
DOpen(gpk , j, ok , reg,m,Σ):
(i, (σ, τF , τH)) ← Open(gpk , ok , reg,m,Σ)
If (i, (σ, τF , τH)) = (0, ⊥), return ⊥

← Zp; τ ← vi ; τ ← vj

c ← τ · (τ )−1

φ ← PNIZK(crs, (gpk , y, vj , c),
(σ, τF , τH , vi, τ , τ ))

Return (φ, c)
DJudge(gpk , j, reg,m,Σ, (φ, c)):
Return 1 if the following hold:
GVf(gpk , reg,m,Σ) = 1
1 = VNIZK(crs, (gpk , y, vj , c), φ)
c = 1

else return 0

Fig. 1. The Proposed Deniable Group Signature Scheme

find g̃, ĝ ∈ G such that c = e(g̃, ĝ). However, this is the pairing inversion prob-
lem [11], which is believed to be hard. In contrast, in the proposed scheme, all
witnesses are base group elements in our construction. Therefore, we can avoid
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the pairing inversion problem since all target group elements are decomposed
into known base group elements.

Blazy et al. [4] proposed a new NIZK proof of non-membership based on the
Groth-Sahai proof. However, for the same reason, the NIZK proof is not directly
applicable to prove deniability in the modified Groth scheme. Nguyen [26] pro-
posed a revocable group signature scheme by employing accumulators, where
a user specific value is accumulated to a constant-size value and a user whose
value is accumulated can prove that the value is accumulated without revealing
the value. Since Li et al. [20] and Damg̊ard et al. [9] extended this member-
ship proofs to non-membership proofs where a user can prove that the value is
not accumulated without revealing the value, this technique might be applied
to realize the deniability. However, as in the Nguyen group signature scheme,
a signer is required to compute an updated accumulated value and this cost
depends on the number of (revoked) users, and therefore this solution does not
yield an efficient construction.

5 Security Analysis

In the proof of anonymity, an adversary is allowed to issue DOpen queries even
for the challenge group signature. Since the opening query for the challenge
group signature is not allowed in the anonymity game of the modified Groth
scheme, we cannot use the challenger of the modified Groth scheme. That is,
the simulator needs to respond DOpen queries for the challenge group signature
without knowing its opening result. The detail is given in Theorem 1. Except for
from Game 7 to Game 8, translations between games are almost same as those
of the modified Groth scheme [28].

Due to space limitation, we will give the proofs of other security require-
ments, correctness, non-frameability, traceability, and opening soundness in the
full version of this paper [15]. In the proofs of these security requirements, we can
directly break the modified Groth scheme by using an adversary who breaks our
scheme if the wining conditions are independent of deniability. In the deniability-
related parts, we can also give a proof in a similar way by assuming the security
of building blocks.

Theorem 1. The proposed group signature scheme satisfies anonymity if the
DLIN assumption holds in G, the one-time signature scheme is strong existential
unforgeable, and the hash function is universal one-way.

Proof. Let Aanon be an adversary that has the advantage ε in the anonymity
game. Now, we gradually modify the game played by Aanon. In the following Si

denotes the event that Aanon successfully guesses the bit b = b′ interacting with
the environment of Game i.

Game 0. Game 0 is identical to the game in the definition of anonymity. In this
game, we have Pr[S0] = 1

2 + ε.
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Game 1. We modify the behavior of the Open oracle and the DOpen oracle as
follows. If they receive a valid group signature which reuses the verification key
vk∗

sots of the challenge signature Σ∗, the game aborts. By the strong existential
unforgeability of one-time signature scheme, this modification does not change
the success probability of Aanon with more than negligible amount, that is, we
have that |Pr[S0] − Pr[S1]| is negligible.

Game 2. We further modify the Open oracle and the DOpen oracle to abort
when a queried group signature contains vk sots where H(vk sots) = H(vk∗

sots).
By the universal one-wayness of the hash function, this modification does not
change the success probability of Aanon with more than negligible amount, that
is, we have that |Pr[S1] − Pr[S2]| is also negligible.

Game 3. Now, we modify the way to generate the public key for the tag-based
encryption. We set K = gκ, L = gλ and store κ, λ. This modification does not
vary the behavior of the adversary Aanon, that is, Pr[S2] = Pr[S3].

Game 4. We then modify how the Open oracle and the DOpen oracle obtain
a signer identity i. Until Game 3, when the Open oracle and the DOpen oracle
receive a query, they first extract a witness (b, v, σ) from the proof π by using
the extraction key xk and search for i such that reg[i] = v. However, in Game 4,
the Open oracle and the DOpen oracle search for i such that e(σ, vig

H(vksots)) =
e(g, g) going through reg. This verification equation uniquely defines vi given
σ and H(vk sots). Furthermore, since the soundness of π guarantees that σ is a
valid signature on H(vk sots) under the extracted v, vi identified in above equation
must be identical to v. Hence, Pr[S3] = Pr[S4].

Game 5. In Game 5, we modify how the Open oracle and the DOpen oracle
obtain the signature σ. When the oracles receive a valid group signature, they
use κ and λ to decrypt the ciphertext of the tag-based encryption and extract
σ instead of extracting from the proof of knowledge π. By the validity check of
the ciphertext of the tag-based encryption and the soundness of the NIZK proof
ψ, this gives the same signature σ which we obtain when running the extractor
on the NIWI proof of knowledge. Hence, Pr[S4] = Pr[S5].

Game 6. Now, we change how we produce (τF , τH), which is a part of an
opening proof. Instead of using xk, the Open oracle and the DOpen oracle use
κ and λ to compute (τF , τH) as τF = (y4/yκ

1 )1/H(vksots), τH = (y5/yλ
2 )1/H(vksots),

and σ = y3/τF τH . The response of the Open oracle and the DOpen oracle in
Game 6 are exactly the same as those in Game 5. Hence, Pr[S5] = Pr[S6].

Game 7. In Game 6, the Open oracle and the DOpen oracle no longer need the
extraction key xk. We therefore now switch to using a simulated common ref-
erence string crs that provides perfect witness-indistinguishability and perfect
zero-knowledge. Since a simulated common reference string and a real common
reference string are computationally indistinguishable under the DLIN assump-
tion, the success probability of the adversary Aanon will not change by more
than a negligible amount, hence we have that |Pr[S6] − Pr[S7]| is negligible.
Furthermore, proofs ψ and φ are simulated with a trapdoor.
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Game 8. Finally, we change the component y3 in the challenge to a random
element. As shown in [28], this will not introduce more than a negligible change in
the success probability of the adversary Aanon assuming the DLIN assumption
holds. However, one point is different from the proof of the modified Groth
scheme. In the anonymity game of deniable group signature, the adversary can
query even the challenge signature to the DOpen oracle except for the challenge
users. Therefore, a denial proof φ ← PNIZK(crs, (gpk , y, vj , c), (σ, τF , τH , vi, τ�,
τ ′
�)) needs to be generated even though the witnesses (σ, τF , τH , vi, τ�, τ

′
�) are

not known. Since a denial proof in the proposed scheme is a NIZK proof, the
simulator can produce a simulated proof. More precisely, when the simulator
receives a denial open query (m,Σ, j), the simulator verifies the signature first
and, if it is not valid, he returns ⊥. In the case that the signature is valid, he
generates a simulated proof φ from the trapdoor and random c from G, and
outputs (φ, c). The randomness c has the same distribution as (vi/vj)� where 	
is random in Zp, hence |Pr[S7] − Pr[S8]| is negligible.

In Game 8, we can conclude that Pr[S8] = 1
2 , because the view of the adver-

sary is independent from the challenge bit b. First of all, the oracles behaves
independently of b. Also, the challenge (vk∗

sots, a, π, y, ψ, σ∗
sots) contains no infor-

mation of bit b. Indeed, vk∗
sots is independently generated, a is re-randomized

and uniformly random, the perfectly witness-indistinguishable proof π is distrib-
uted independently from the witness, and y is a random encryption. The proof
ψ does not contain the information of b since the proof is computed from y and
π by using the zero-knowledge trapdoor. Moreover, since σ∗

sots is a signature of
(vk∗

sots,m, a, π, y, ψ), it is independently of bit b. ��
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Abstract. We study the pseudo-random function (PRF) security of
keyed sponges that use a sponge function with extendable outputs in a
black-box way. “Capacity” is a parameter of a keyed sponge that usu-
ally defines a dominant term in the PRF-bound. The previous works
have improved the capacity term in the PRF-bound of the “prefix” keyed
sponge, where the key is prepended to an input message, and then the
resultant value is inputted into the sponge function. A tight bound for the
capacity term was given by Naito and Yasuda (FSE 2016): (qQ + q2)/2c

where c is the capacity, q is the number of online queries and Q is the num-
ber of offline queries. Thus the following question is naturally arisen: can
we construct a keyed sponge with beyond the (q2 + qQ)/2c bound security?

In this paper, we consider the “sandwich” keyed sponge, where the
key is both prepended and appended to an input message, and then the
resultant value is inputted into the sponge function. We prove that the
capacity term becomes rQ/2c for the rate r, which is usually r � q and
r � Q. Therefore, by the sandwich construction, the dependence between
the capacity term and the number of online queries can be removed.

Keywords: PRF · Keyed sponge · Sandwich construction · Game
playing · Coefficient H technique · Stirling’s approximation

1 Introduction

The sponge construction by Bertoni et al. [5] is a state-of-the-art permutation-
based mode of operation for keyless functions. Since the SHA-3 competition [20],
it has attracted a great deal of public attention. The sponge construction was
firstly adopted to the SHA-3 functions (a.k.a. Keccak) [4,19]. After that, it
has been adopted to numerous cryptographic functions e.g., [3,6–8]. One of the
reason why the sponge construction has been widely used was that it has the
capability of extendable output, namely, it can produce variable length outputs.
Indeed, the sponge construction is used to design a number of cryptographic
functions. We call such functions “sponge functions.”

– The SHA-3 functions have, in addition to hash functions, two sort of extend-
able output functions (XOFs): SHAKE128 and SHAKE256 [19]. As men-
tioned in FIPS202 [19], these sponge functions can be used as key derivation
functions.

c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 245–261, 2016.
DOI: 10.1007/978-3-319-48965-0 15
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– A number of lightweight hash functions e.g., [2,9,13] use the sponge construc-
tion with extendable outputs. Usually, hash functions are used as the compo-
nents of message authentication codes and PRFs (Pseudo-Random Functions).

In order to securely use these sponge functions in the keyed settings, we need
to confirm the PRF-security of keyed sponges that use a sponge function with
extendable outputs in a black-box way.

Sponge Construction with Extendable Outputs. The sponge construction
consists of a sequential application of a permutation on an internal state of b bits.
This internal state is partitioned into an r-bit part and a c-bit part with b = r+c.
Here r is called rate, c is called capacity, the first r-bit part is called outer part,
and the remaining c-bit part is called inner part. The internal state is updated, by
xor-ing the current message block of r bits with the outer part of the previous
internal state and then inputting the xor-ed result into the next permutation
call. After absorbing message blocks, an (r-bit) output block is generated, by
squeezing the outer part of the current internal state and then inputting the
internal state into the next permutation. This procedure is executed until an
output with a desired length is obtained. In the indifferentiability framework of
Maurer et al. [15], Bertoni et al. [5] proved that the sponge construction is secure
up to the O(2c/2) birthday-type bound regarding the capacity, assuming the
underlying permutation is a random permutation. Therefore, sponge functions
such as SHAKE128, SHAKE256 and the lightweight hash functions are usually
designed so that c > 0. This paper deals with sponge functions with c > 0.

Prefix Keyed Sponge. Bertoni et al. suggested (e.g., [5]) that a keyed sponge
should simply occur by appending the key to the prefixes of messages, where
the output is defined as H(K‖M) for a sponge function H, a message M and
a (padded) secret key K. We call the keyed sponge “prefix keyed sponge.” The
security of the prefix keyed sponge has been evaluated in the sense of PRF-
security in the random permutation model, where a distinguisher has oracle
access to the prefix keyed sponge (in the real world) or a random function (in the
ideal world), and a random permutation. Security parameters of keyed sponges
include the state size b, the capacity c, the rate r, and the key size k. Especially,
the capacity yields a dominant term in a security bound.

The PRF-security of the prefix keyed sponge can be derived from the indif-
ferentiability of the sponge construction [5]. Roughly, the dominant term has
the form (�q + Q)2/2c against a distinguisher with parameters q, Q, and �:
the number of online queries (queries to prefix keyed sponge/random function),
the number of offline queries (queries to random permutation), and the max-
imum number of permutation calls by an online query, respectively. However,
the indifferentiability-based PRF-bound is rather loose, and the actual PRF-
security of the prefix keyed sponge should be much higher, as first noticed by
Bertoni et al. [6].
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Andreeva et al. [1] successfully removed the term Q2/2c and obtained a PRF-
bound which was basically

(
(�q)2 +μQ

)
/2c. Here, μ is an adversarial parameter

called “multiplicity” and lies somewhere between 2�q/2r and 2�q. Gaži et al. [12]
succeeded in giving a tight PRF-bound but their result supports only single-
block outputs. Recently, Naito and Yasuda [18] provided a tight PRF-bound of
the prefix keyed sponge with extendable outputs which is basically

(
q2+qQ

)
/2c.

Motivation. The previous works attained the tight result on the capacity term
of the PRF-security of the prefix keyed sponge. Thus it is natural to move on to
find another type of keyed sponge with beyond the (q2 + qQ)/2c bound security.

Mouha et al. proposed a sponge-based MAC algorithm Chaskey [17] with
beyond the (q2 + qQ)/2c bound security. However, this mode of operation sup-
ports only single block outputs and cannot use a sponge function in a black-box
way.1 This immediately raises the question: can we construct a keyed sponge
with beyond the (q2 + qQ)/2c bound security that uses a sponge function with
extendable outputs in a black-box way?

Our Result. In this paper, we consider the sandwich construction [22,23],
where a secret key is prepend an appended to an input message and then
the resultant value is inputted into the sponge function. Namely, the output is
defined as H(K‖M‖K) for a sponge function H, a message M and a (padded)
secret key K. We call the construction “sandwich keyed sponge.” Regarding the
PRF-security of the sandwich keyed sponge, the indifferentiable security of the
sponge construction offers the capacity term in the PRF-bound: (�q + Q)2/2c

against a distinguisher with parameters q, Q, and �.
We thus improve the PRF-bound where the capacity term is rQ/2c. Con-

sequently, by using the sandwich construction for keyed sponges, beyond the
(q2 + qQ)/2c bound security can be achieved. In Table 1, the PRF-bounds for
the prefix keyed sponge and the sandwich keyed sponge are summarized, where
for simplicity, the k-terms (k is the key size) are omitted, and we assume that

Table 1. Comparison of PRF-bounds for keyed sponges. For simplicity, k-terms (key
size term) are omitted from these PRF-bounds and we assume that r ≤ q ≤ Q.

Prefix keyed sponge Sandwich keyed sponge

O

(
(�q + Q)2

2c

)
[5] (Indifferentiability) O

(
(�q + Q)2

2c

)
[5] (Indifferentiability)

O

(
(�q)2 + μQ

2c

)
[1] O

(
rQ

2c
+

(
�qQ

2b

)1/2

+
(�q)2

2b

)
[Ours]

O

(
q2 + qQ

2c
+

(
�qQ

2b

)1/2

+
(�q)2

2b

)
[18]

1 In Chaskey, c = 0, the initial value is replaced with the key, and the permutation
at the last block is sandwiched with the key.
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r � q ≤ �q ≤ Q. Here we compare our bound with Naito-Yasuda’s tight bound
of the prefix keyed sponge [18].

– We first consider SHAKE128 and SHAKE256 whose parameters are (b, c) =
(1600, 128) and (b, c) = (1600, 256), respectively. In this case, it may safely be
assumed that b-terms are negligible compared with the capacity terms. The
PRF-bound of the prefix keyed sponge becomes a constant if qQ = O(2c),
whereas the PRF-bound of the sandwich keyed sponge becomes a constant if
rQ = O(2c). Therefore, the sandwich keyed sponge achieves a higher level of
security than the prefix keyed sponge.

– We next consider sponge-based lightweight hash functions e.g., [2,9,13], which
have b/2 < c < b. The PRF-bound of the prefix keyed sponge becomes a
constant if qQ = O(2c) or �qQ = O(2b), and our bound of the sandwich
keyed sponge becomes a constant if rQ = O(2c) or �qQ = O(2b). Therefore, if
2c < 2b/� (� < 2r), then qQ affects the security of the prefix keyed sponge, and
thus the sandwich keyed sponge has a higher level of security than the prefix
keyed sponge. On the other hand, if 2c ≥ 2b/� (� ≥ 2r), then the sandwich
keyed sponge is as secure as the prefix keyed sponge.

Note that compared with the prefix keyed sponge, the sandwich keyed sponge
requires additional permutation invocations to absorb the key appended to mes-
sages. However, as mentioned above, the sandwich keyed sponge achieves a higher
level of security than the prefix keyed sponge.

Regarding the security proof, we take a similar approach to Naito-Yasuda’s
proof for the prefix keyed sponge [18]. The proof makes use of the game-playing
technique, introducing just one intermediate game between the real and ideal
worlds. This transition between the games heavily relies on the coefficient H
technique of Patarin [21]. In this proof, we need to consider “bad” events in
which a distinguisher may distinguish between the real and ideal worlds. The
bad events come from collisions for b-bit internal state values, since in the real
world the collisions may occur whereas in the ideal world the collisions never
occur due to a monolithic random function. Regarding the prefix keyed sponge,
a distinguisher can control the outer part by message blocks and thus the collision
probability largely depends on the inner part. On the other hand, regarding the
sandwich keyed sponge, no distinguisher can control the outer part, since the
outer part are hidden by a secret key appended to messages. The appended key
weakens the dependence between the collisions and the capacity, and thereby,
the sandwich construction achieves beyond the (q2 + qQ)/2c bound security.

More Related Works. Several works considered keyed sponge constructions
with the aim of improving the efficiency. Chang et al. [10] introduced an inner
keyed sponge, where the initial value of the inner part in the sponge function is
replaced with a key. Bertoni et al. [7] introduced a donkey sponge, which is the
prefix keyed sponge with the capacity size c = 0. Several works improved the
PRF-security of the inner keyed sponge and the donkey sponge e.g., [1,12,16,18].
Note that these keyed sponges cannot use a sponge function in a black-box way.
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2 Preliminaries

Notations. Let {0, 1}∗ be the set of all bit strings, for an integer b ≥ 0, {0, 1}b

the set of b-bit strings, 0b the bit string of b-bit zeroes, and λ an empty string.
For integers 0 ≤ i ≤ b and a bit string X ∈ {0, 1}b, let msbi(X) be the most
significant i-bit string of X. For a bit string X, Y ← X means that X is assigned
to Y . For a finite set X and a integer l ≥ 1, X1, . . . , Xl

$←− X means that l
elements are independently and randomly drawn from X , and are assigned to
X1, . . . , Xl, respectively. For a set X , let Perm(X ) be the set of all permutations:
X → X . For sets X and Y, let Func(X ,Y) be the set of all functions: X → Y.
For sets X and Y, X ← Y means that Y is assigned to X , and X ∪←− Y means
X ← X ∪ Y. For a bit string X and a set X , let |X| and |X | be the bit length
of X and the number of elements in X , respectively. For a bit string X and an
integer r, let |X|r := 
|X|/r� be the length of X in r-bit blocks.

PRF-Security. For integers τ, k ≥ 1, let FP
K : {0, 1}∗ → {0, 1}τ be a keyed

function using a permutation P and having a key K ∈ {0, 1}k. Although we deal
with keyed sponges that produce variable length outputs, for simplicity, we fix
the output length τ to the maximum length in outputs. Note that outputs whose
lengths are less than τ bit can be obtained by truncation. The PRF-security of
the keyed function is defined in terms of indistinguishability between the real
and ideal worlds. The security proof will be done in the ideal model, regarding
the underlying permutation as a random permutation P $←− Perm({0, 1}b). We
denote by P−1 its inverse. Through this paper, a distinguisher is denoted by
D and is a computationally unbounded algorithm. It is given query access to
one or more oracles. Its complexity is solely measured by the number of queries
made to its oracles. In the real world, D has query access to FP

K , P, and P−1

for a key K
$←− {0, 1}k and P $←− Perm({0, 1}b). In the ideal world, D has query

access to a random function R, P, and P−1, for R $←− Func({0, 1}∗, {0, 1}τ ) and

P $←− Perm({0, 1}b). After interacting with oracles O, it outputs y ∈ {0, 1} whose
event is denoted by DO ⇒ y. We define the advantage function as

Advprf
F (D) = Pr[DFP

K ,P,P−1 ⇒ 1] − Pr[DR,P,P−1 ⇒ 1].

We call queries to FP
K/R “online queries” and queries to (P,P−1) “offline

queries.” Though this paper, without loss of generality, we assume that D is
deterministic and makes no repeated query, which includes offline queries such
that once D obtains the offline query-response pair (X,Y ) such that Y = P(X),
it does not make a query X to P nor Y to P−1.

3 Sandwich Keyed Sponge and the Security

3.1 The Construction of Sandwich Keyed Sponge

� Sponge Function. For an integer b > 0, let P ∈ Perm({0, 1}b) denotes
the permutation used in the sponge function, and SpongeP denotes the sponge
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function. Let r > 0, c ≥ 0 and �out > 0 be integers with b = r + c. r is the bit
length called rate. c is the bit length called capacity. �out is the output length of
SpongeP in r-bit blocks.

For an input M ∈ {0, 1}∗, the output SpongeP(M) = Z is defined as follows.
Firstly, a bit string pad(|M |) is appended to M such that the bit length of
m‖pad(|M |) becomes a multiple of r, e.g., M‖pad(|M |) = M‖1‖0∗‖1, which
means that 1, the minimum number of zeros and 1 are appended to M so that the
bit length becomes a multiple of r. Secondly, M‖pad(|M |) is partitioned into r-bit
blocks M1, . . . ,Mn. Thirdly, b-bit internal state S is updated as: S ← 0b; for i =
1, . . . n − 1 do S ← P(S ⊕ Mi‖0c). Finally, the �out × r-bit string Z is defined as
Z ← λ;S ← S ⊕ Mn; for i = 1, . . . �out do S ← P(S);Z ← Z‖msbr(S).

� Sandwich Keyed Sponge. For an integer k > 0, let K ∈ {0, 1}k be a secret
key. SwSpongeP

K denotes the sandwich keyed sponge function using SpongeP

and having the key K. Then for a message M ∈ {0, 1}∗, the (�out × r)-bit out-
put SwSpongeP

K(M) is defined as SwSpongeP
K(M) = SpongeP(K‖0∗‖M‖10∗‖K).

Here, K‖0∗ is the prefix key, where the minimum number of zeros are appended
to K so that the bit length becomes a multiple of r; M‖10∗ is the padded mes-
sage, where 1 and the minimum number of zeros are appended to M so that the
bit length becomes a multiple of r.

The concrete procedure is given in the following. Let pad :=
pad(|K‖0∗‖M‖10∗‖K|) be the padding bit string in SpongeP . Let κpf =
|K‖0∗|/r be the r-bit block length of the prefix key K‖0∗, and κsf = |K‖pad|/r
the r-bit block length of the suffix key K‖pad. The output SwSpongeP

K(M) = Z
is defined as follows.

1. Partition K‖0∗ into r-bit blocks K∗
1 , . . . ,K∗

κpf
; W0 ← 0b

2. For i = 1, . . . , κpf do Ui ← Wi−1 ⊕ (K∗
i ‖0c); Wi ← P(Ui)

Fig. 1. Sandwich keyed sponge construction
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3. Partition M‖10∗‖K‖pad into r-bit blocks M1, . . . ,Mn; T0 ← Wκpf

4. For i = 1, . . . , n − 1 do Si ← Ti−1 ⊕ (Mi‖0c); Ti ← P(Si)
5. H0 ← Tn−1 ⊕ (Mn‖0c); Z ← λ
6. For i = 1, . . . , �out do Hi ← P(Hi−1); Z ← Z‖msbr(Hi)
7. Return Z

The Fig. 1 shows the above procedure, where K‖pad = K ′
1‖K ′

2‖ · · · ‖K ′
κsf

with
|Ki| = r (i = 1, . . . , κsf), and K‖pad = Mn−κsf+1‖Mn−κsf+2‖ · · · ‖Mn. Note that
our proof uses the above notations.

3.2 The PRF-Security of Sandwich Keyed Sponge

We assume that r×�out is the maximum output length in bits, i.e., the maximum
length in r-bit blocks is �out. Let �in be the maximum number of n, i.e., n ≤ �in,
and � = �in + �out. Let q be the number of online queries, and Q the number of
offline queries. Then the PRF-bound of the sandwich keyed sponge is given in
the following, and the proof is given in the next section.

Theorem 1. For any distinguisher D, we have

Advprf
SwSponge(D) ≤2r(Q + κpf)

2c
+

(
44�q(Q + κpf)

2b

)1/2

+
6�2q2

2b
+ λ(Q) +

q

2k
,

where λ(Q) = Q
2k if k ≤ r; λ(Q) = 1

2b + Q

2

(

1
2− log2(3b)

2r
− 1

r

)

k
otherwise.

4 Proof of Theorem 1

We give the PRF-bound of the sandwich keyed sponge via three games. We
denote these by Game 1, Game 2, and Game 3. For i ∈ {1, 2, 3}, we denote by
Gi the set of oracles (Li,P,P−1) to which D has query access in Game i. In each

game, P is independently drawn as P $←− Perm({0, 1}b). Let L1 := SwSpongeP
K

and L3 := R. We will define L2 in the Subsect. 4.1. Then we have

Advprf
SwSponge(D) =

2∑

i=1

(
Pr[DGi ⇒ 1] − Pr[DGi+1 ⇒ 1]

)
. (1)

Hereafter, for i ∈ {1, 2} we upper bound Pr[DGi ⇒ 1] − Pr[DGi+1 ⇒ 1].
In this proof, for β ∈ {1, . . . , Q}, we denote the β-th offline query to P

(resp., P−1) by Xβ (resp., Y β) and the response by Y β (resp., Xβ), where
Y β = P(Xβ) (resp., Xβ = P−1(Y β)). For α ∈ {1, . . . , q}, we denote the α-th
online query by Mα and the response by Zα, where Zα = Li(Mα) (i ∈ {1, 2, 3}).
For i ∈ {1, 2, 3}, we also use the superscript symbol for internal values in Li,
e.g., for α ∈ {1, . . . , q}, Sα

1 , Tα
1 , nα etc.
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4.1 Upper Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

We start by defining L2. Let F1, . . . ,F�in−1,G1, . . . ,G�out

$←− Func({0, 1}b, {0, 1}b)

be random functions, and let K
$←− {0, 1}k be a secret key. Random functions

F1, . . . ,F�in−1 are used to absorb message blocks and the suffix key, and random
functions G1, . . . ,G�out are used to squeeze output blocks. For an online query
M ∈ {0, 1}∗, the response L2(M) = Z is defined as follows.

1. Partition K‖0∗ into r-bit blocks K∗
1 ,K∗

2 , . . . ,K∗
κpf

; W0 ← 0b

2. For i = 1, . . . , κpf do Ui ← Wi−1 ⊕ (K∗
i ‖0c); Wi ← P(Ui)

3. Partition M‖10∗‖K‖pad into r-bit blocks M1, . . . ,Mn; T0 ← Wκpf

4. For i = 1, . . . , n − 1 do Si ← Ti−1 ⊕ (Mi‖0c); Ti ← Fi(Si)
5. H0 ← Tn−1 ⊕ (Mn‖0c); Z ← λ
6. For i = 1, . . . , �out do Hi ← Gi(Hi−1); Z ← Z‖msbr(Hi)
7. Return Z

Hereafter, we call the block with input Si (defined at the step 4) “i-th input
block,” and the block with output Hi (defined at the step 6) “i-th output block.”

Transcript

Since D is deterministic, its output is determined by the transcript, which is
a list of values obtained by its queries. Let T1 be the transcript in Game 1
obtained by sampling K

$←− {0, 1}k and P $←− Perm({0, 1}b). Let T2 be the

transcript in Game 2 obtained by sampling K
$←− {0, 1}k, P $←− Perm({0, 1}b)

and F1, . . . ,F�in−1,G1, . . . ,G�out

$←− Func({0, 1}b, {0, 1}b). We call a transcript τ
valid if an interaction with their oracles could render this transcript, namely,
Pr[Ti = τ ] > 0 for i ∈ {1, 2}. Then Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] is upper
bounded by the statistical distance of transcripts, i.e.,

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] ≤ SD(T1,T2) =
1
2

∑

τ

|Pr[T1 = τ ] − Pr[T2 = τ ]|,

where the sum is over all valid transcripts.
Regarding D’s transcript, it obtains the following sets of query-response pairs

by its queries: τL = {(M1, Z1), . . . , (Mq, Zq)} the set of query-response pairs
defined by online queries; τP = {(X1, Y 1), . . . , (XQ, Y Q)} the set of query-
response pairs defined by offline queries. In addition, we define the following sets.

– For i = 1, . . . , �in − 1, let τ in
i :=

⋃q
α=1{(Sα

i , Tα
i )} be the set of input-output

pairs at the i-th input block. Note that if (Sα
i , Tα

i ) is not defined, i.e., nα ≤ i,
then {(Sα

i , Tα
i )} := ∅.

– For i = 1, . . . , �out, let τ out
i :=

⋃q
α=1{(Hα

i−1,H
α
i )} be the set of input-output

pairs at the i-th output block.
– Let τK := {(U1,W1), . . . , (Uκpf

,Wκpf
)} be the set of input-output pairs

obtained by the prefix key K‖0∗.
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Let τ in :=
⋃�in−1

i=1 τ in
i , and τ out :=

⋃�out
i=1 τ out

i . This proof permits D to obtain
these sets and the secret key K after D’s interaction but before it outputs a
result. Thus D’s transcript is summarized as τ = (τL, τP , τ in, τ out, τK ,K).

Coefficient H Technique

We upper bound Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] by using the coefficient H tech-
nique [11,21]. In this technique, firstly, we need to partition valid transcripts
into good transcripts Tgood and bad transcripts Tbad. Then we can upper bound
the difference by the following lemma, and the proof is given in e.g., [11].

Lemma 1 (Coefficient H Technique). Let 0 ≤ ε ≤ 1 be such that for all τ ∈
Tgood,

Pr[T1=τ ]
Pr[T2=τ ] ≥ 1− ε. Then, Pr[DG1 ⇒ 1]−Pr[DG2 ⇒ 1] ≤ ε+Pr[T2 ∈ Tbad].

Hereafter, we first define good and bad transcripts. We then upper bound ε and
Pr[T2 ∈ Tbad]. Finally, we obtain the upper bound of Pr[DG1 ⇒ 1]−Pr[DG2 ⇒ 1]
by putting these upper bounds to the lemma.

Good and Bad Transcripts

In order to define good and bad transcripts, we need to recall the modification
from Game 1 and Game 2, where the underlying primitive definition b-bit outputs
Wi, Ti and Hi is modified. In Game 1, outputs Wi, Ti and Hi in L1 are defined
by using P. On the other hand, in Game 2, outputs Wi, Ti and Hi in L2 are
defined by using P, Fi and Gi, respectively. Namely, in Game 2, (1) Ti and Hi

are independently defined, and (2) Ti and Hi are defined independently of offline
queries (Xi, Yi) and Wi-values. In addition, (3) Ti and Tj with i �= j are also
independently defined, and the same is true for Hi and Hj with i �= j. Therefore,
if Game 1 and Game 2 are indistinguishable, then these independences for (1), (2)
and (3) should also hold in Game 1. Thus we consider conditions hitsx,ty, hithx,hy,
hitsh,th, hitss,tt and hithh, which define good and bad transcripts. hitsh,th comes
from the independence for (1), hitsx,ty and hithx,hy come from the independence
for (2), hitss,tt and hithh come from the independence for (3). In addition, by
the PRP-PRF switch from Game 1 to Game 2, we need to consider a condition
with respect to output collisions of random functions, denoted by coll. These
definitions are given in the following.

– hitsx,ty ⇔ ∃(S, T ) ∈ τ in, (X,Y ) ∈ τP ∪ τK s.t. S = X ∨ T = Y
– hithx,hy ⇔ ∃(H,H ′) ∈ τ out, (X,Y ) ∈ τP ∪ τK s.t. H = X ∨ H ′ = Y
– hitsh,th ⇔ ∃(S, T ) ∈ τ in, (H,H ′) ∈ τ out s.t. S = H ∨ T = H ′
– hitss,tt ⇔ ∃i, j ∈ {1, . . . , �in − 1} with i �= j s.t. ∃(Si, Ti) ∈ τ in

i , (Sj , Tj) ∈ τ in
j

s.t. Si = Sj ∨ Ti = Tj

– hithh ⇔ ∃i, j ∈ {1, . . . , �out} with i �= j s.t. ∃(Hi−1,Hi) ∈ τ out
i , (Hj−1,Hj) ∈

τ out
j s.t. Hi−1 = Hj−1 ∨ Hi = Hj

– coll ⇔ ∃(S, T ), (S′, T ′) ∈ τ in ∪ τ out s.t. S �= S′ ∧ T = T ′.

We define Tbad by the set of transcripts which satisfy one of the above conditions,
and Tbad by the set of transcript which do not satisfy any of the above conditions.
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Upper Bound of Pr[T2 ∈ Tbad]

First we note that Pr[T2 ∈ Tbad] = Pr[hitsx,ty∨hithx,hy∨hitsh,th∨hitss,tt∨hithh∨coll],
where these conditions are considered within Game 2. In this evaluation, we use
the randomness of internal values Si, Ti and Hi, where S1 = Wκpf

⊕ (M1‖0c)
where Wκpf

is defined by P, and other values are defined by random functions.
In order for Wκpf

to become a (almost) b-bit random value, we use the condition:
hitux,wy ⇔ ∃(Uκpf

,Wκpf
) ∈ τP , meaning D obtains the pair (Uκpf

,Wκpf
) by some

offline query. Under the condition ¬hitux,wy, D does not know Wκpf
, and thereby

it can be seen as a (almost) b-bit random value. By basic probability theory, we
have

Pr[T2 ∈ Tbad] ≤Pr[hitux,wy] + Pr[hitsx,ty ∧ ¬hitux,wy] + Pr[hithx,hy]
+ Pr[hitsh,th ∧ ¬hitux,wy] + Pr[hitss,tt] + Pr[hithh] + Pr[coll]. (2)

Hereafter, we evaluate these probabilities. Without loss of generality, we assume
that (U1,W1), . . . , (Uκpf

,Wκpf
) are defined in τK before D’s interaction.

� Upper Bound of Pr[hitux,wy]. The same condition appears at the security
proofs of the prefix keyed sponge function in [1,12,18], where the following upper
bound was given: Pr[Hitux,wy] ≤ λ(Q) + 2κpfQ

2b . We use the upper bound.

� Upper Bound of Pr[hitsx,ty ∧¬hitux,wy]. Due to lack of space, we give only an
intuition of deriving the upper bound. The condition hitsx,ty considers a collision

between τ in and τP ∪τK , where τ in = τ in
1 ∪

(⋃�in−1
i=2 τ in

i

)
. In order to upper bound

Pr[hitsx,ty ∧ ¬hitux,wy], the randomness of elements in τ in is used.

– For ∀(S, T ) ∈ τ in
1 , the output element T is defined as T

$←− {0, 1}b by a random
function, and the input element S is of the form S = Wκpf

⊕ M1‖0c. By
¬hitux,wy, Wκpf

is randomly drawn from at least 2b − κpf values of b bits.
– All elements in

⋃�in−1
i=2 τ in

i , which are defined by random functions, can be seen
as b-bit random values.

Since |τ in
1 | ≤ q, |⋃�in−1

i=2 τ in
i | ≤ (� − 2)q, |τP ∪ τK | ≤ Q + κpf , we have

Pr[hitsx,ty ∧ ¬hitux,wy] ≤q(Q + κpf)
2b − κpf

+
q(Q + κpf)

2b
+ 2 × (� − 2)q(Q + κpf)

2b

≤2�q(Q + κpf)
2b

, assuming κpf ≤ 2b−1.

� Upper Bound of Pr[hithx,hy]. The condition hithx,hy considers a collision
between τ out and τP ∪ τK , where τ out =

⋃�in−1
i=1 τ in

i . Similar to the evaluation
of Pr[hitsx,ty], in order to upper bound Pr[hithx,hy], the randomness of elements
in τ out is used. However, we need to care the fact that D can obtain the rate
values of these elements from the corresponding outputs of L2. This implies that
the randomness of the rate values cannot be used in this evaluation. In order to
reduce the influence of this fact, we use the analysis based on a multi-collision on
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the rate values, which have been used in many security proofs of sponge-based
functions e.g., [1,14,18].

Let H :=
⋃q

α=1{Hα
1 , . . . , Hα

�out
} be the set of outputs defined by G1, . . . ,G�out .

Note that Hout does not include H1
0 , . . . , Hq

0 . Then we define a condition for a
multi-collision in rate values of Hout.

mcoll ⇔ ∃H(1), . . . , H(ρ) ∈ H s.t. msbr(H(1)) = · · · = msbr(H(ρ))

where ρ is a free parameter which will be defined later. Then we have

Pr[hithx,hy] ≤ Pr[mcoll] + Pr[hithx,hy ∧ ¬mcoll].

Firstly, we upper bound Pr[mcoll]. Fix H ∈ {0, 1}r and H(1), . . . , H(ρ) ∈ H.

Since H(1), . . . , H(ρ) $←− {0, 1}b, the probability that H = msbr(H(1)) = · · · =
msbr(H(ρ)) holds is ≤ (

1
2r

)ρ. Since |Hout| ≤ �q, we have Pr[mcoll] ≤ 2r × (
�q
ρ

) ×
(

1
2r

)ρ ≤ 2r ×
(

e�q
ρ2r

)ρ

, using Stirling’s approximation (x! ≥ (x/e)x for any x,
where e = 2.71828 · · · is Napier’s constant).

Secondly, we upper bound Pr[hithx,hy ∧ ¬mcoll]. The strategy of deriving the
upper bound is simple but we need to deal with several types of values for Hi,
which yields many cases. Due to lack of space, we give only an intuition of
deriving the upper bound.

– For a collision between τP ∪ τK and elements {H1
0 ,H2

0 , . . . , Hq
0} in τ out,

H1
0 ,H2

0 , . . . , Hq
0 are defined by random functions and thus can be seen as

b-bit random values. Thus the collision probability is ≤ q × (Q + κpf) × 1/2b.
– For a collision between τP ∪ τK and other elements {H1

1 , . . . , Hq
1 ,H1

2 , . . .} in
τ out, we use the condition ¬mcoll. Although D can obtain the rate values of
{H1

1 , . . . , Hq
1 ,H1

2 , . . .} from outputs of L2, by ¬mcoll, for each element E in τP∪
τK , the number of elements in {H1

1 , . . . , Hq
1 ,H1

2 , . . .} whose rate value equal
to msbr(E) is at most ρ. Since the capacity values of {H1

1 , . . . ,Hq
1 ,H1

2 , . . .}
are randomly drawn from {0, 1}c by random functions, the probability that
one of the ρ values collides with E is ≤ ρ/2c. Thus the collision probability is
≤ 2(Q + κpf) × ρ/2c.

Thus, we have Pr[hithx,hy ∧ ¬mcoll] ≤ q(Q + κpf)/2b + 2ρ(Q + κpf)/2c.

Finally, we have Pr[hithx,hy] ≤ q(Q+κpf)
2b + 2ρ(Q+κpf)

2c +2r ×
(

e�q
ρ2r

)ρ

, and putting

ρ = max
{

r,
(

2ce�q
2r(Q+κpf)

)1/2
}

gives

Pr[hithx,hy] ≤q(Q + κpf)
2b

+
2r(Q + κpf)

2c
+ 2 ×

(
e�q(Q + κpf)

2b

)1/2

+ 2r ×

⎛

⎜
⎝

e�q
(

2ce�q
2r(Q+κpf)

)1/2

2r

⎞

⎟
⎠

r

≤q(Q + κpf)
2b

+
2r(Q + κpf)

2c
+

(
44�q(Q + κpf)

2b

)1/2

.
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Fig. 2. hit
(0)
sh ∧ (i = nβ) ∧ (msbr·dβ (Mα) = Mβ‖10∗‖K‖padβ)

� Upper Bound of Pr[hitsh,th∧¬hitux,wy]. This evaluation makes use of the exis-
tence of the suffix key that avoids the attack using the iterated structure of L2:
for two message block sequences Mα

1 ,Mα
2 , . . . ,Mα

nα and Mβ
1 ,Mβ

2 , . . . ,Mβ
nβ , if the

message blocks are the same up to the i-th block, namely, Mα
1 = Mβ

1 , . . . ,Mα
i =

Mβ
i , then input-output pairs of the underlying random functions are the same

up to the i-th block. By this property, hitsh,th may be satisfied. Concretely, this
property may yield the collision Sα

i = Hβ
0 as shown in Fig. 2. However, D needs

to make a query including the suffix key, and thereby this attack can be avoided
without a negligible probability. The detail analysis is given in the following,
where this case is considered in the sub condition hit

(0)
sh of hitsh,th defined bellow.

We split the condition hitsh,th into the following three conditions with respect
to the collisions S = H,T = H and the block numbers of H.

– hit
(0)
sh ⇔ ∃α, β ∈ {1, . . . , q}, i ∈ {1, . . . , nα − 1} s.t. Sα

i = Hβ
0

– hit
(1)
sh ⇔ ∃α, β ∈ {1, . . . , q}, i ∈ {1, . . . , nα − 1}, j ∈ {1, . . . , �out − 1} s.t.

Sα
i = Hβ

j

– hitth ⇔ ∃α, β ∈ {1, . . . , q}, i ∈ {1, . . . , nα − 1}, j ∈ {1, . . . , �out} s.t. Tα
i = Hβ

j

Since hitsh,th = hit
(0)
sh ∨ hit

(1)
sh ∨ hitth, we have

Pr[hitsh,th ∧ ¬hitux,wy] ≤ Pr[hit(0)sh ∧ ¬hitux,wy] + Pr[hit(1)sh ∧ ¬hitux,wy] + Pr[hitth].

Firstly, we upper bound Pr[hit(0)sh ∧ ¬hitux,wy]. We assume that hitux,wy is not
satisfied, and then evaluate the probability that hit

(0)
sh is satisfied. We divide

hit
(0)
sh into the following three cases. Note that in this condition, nα > nβ holds.

– hit
(0)
sh ∧ (i = nβ) ∧ (msbr·nβ (Mα) = Mβ‖10∗‖K‖padβ): The equation i = nβ

ensures that the block numbers of Sα
i and Hβ

0 are the same, andmsbr·nβ (Mα) =
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Mβ‖10∗‖K‖padβ ensures that for each block up to the i-th block, the inputs by
the α-th and β-th online queries are the same (See also the Fig. 2). Thus, if this
case occurs, then D makes an online query including the secret key K. Since
K

$←− {0, 1}k, the probability that this case occurs is ≤ q/2k.
– hit

(0)
sh ∧ (i = nβ) ∧ (msbr·nβ (Mα) �= Mβ‖10∗‖K‖padβ): By the condition

msbr·nβ (Mα) �= Mβ‖10∗‖K‖padβ , there exists j ∈ {1, . . . , nβ − 1} such that
Sα

j �= Sβ
j and Sα

j+1 = Sβ
j+1, where Sβ

nβ := Hβ
0 . Note that for γ ∈ {α, β}

Sγ
j+1 = T γ

j ⊕ Mγ
j+1‖0c. By Sα

j �= Sβ
j , Tα

j , T β
j

$←− {0, 1}b. Thus, fixing α, β,
the probability that for some j, Sα

j �= Sβ
j ∧ Sα

j+1 = Sβ
j+1 holds is ≤ � × 1/2b.

Therefore, the probability that this case holds is ≤ (
q
2

) × �/2b ≤ 0.5�q2/2b.
– hit

(0)
sh ∧ (i �= nβ) ∧ (i = 1): Note that Sα

1 = Wκpf
⊕ Mα

1 ‖0c, and by ¬hitux,wy,
Wκpf

is randomly drawn from at least 2b − (Q + κpf) values of b bits. Thus,
fixing α, β, the probability that Sα

1 = Hβ
0 holds is ≤ 1/(2b −(Q+κpf)) ≤ 2/2b,

assuming Q + κpf ≤ 2b−1. Therefore, the probability that this case holds is
≤ q × q × 2/2b = 2q2/2b.

– hit
(0)
sh ∧ (i �= nβ) ∧ (i �= 1): Note that Sα

i = Tα
i−1 ⊕ Mα

i ‖0c and Hβ
0 = T β

nβ−1
⊕

Mβ
nβ ‖0c. By i �= nβ , Tα

i−1, T
β
nβ−1

$←− {0, 1}b, and thereby, the probability that
Sα

i = Hβ
0 holds is ≤ 1/2b. Thus the probability that this case holds is ≤

(� − 2)q × q × 1/2b = (� − 2)q2/2b.

Thus, we have Pr[hit(0)sh ] ≤ q/2k + 1.5�q2/2b.
Secondly, we upper bound Pr[hit(1)sh ∧¬hitux,wy]. Note that Sα

i = Tα
i−1⊕Mα

i ‖0c

where Tα
0 := Wκpf

. By ¬hitux,wy, Wκpf
is randomly drawn from at least 2b − (Q+

κpf) values of b bits, and Tα
i−1

$←− {0, 1}b for i �= 1. We thus have Pr[hit(1)sh ] ≤
q × �outq × 1/(2b − (Q + κpf)) + (�in − 2)q × �outq/2b ≤ �2q2/2b, assuming that
Q + κpf ≤ 2b−1.

Thirdly, we upper bound Pr[hitth]. Since Tα
i ,Hβ

j
$←− {0, 1}b, we have

Pr[hitth] ≤ �inq × �outq × 1/2b ≤ �2q2/2b.
Finally, we have Pr[hitsh,th] ≤ q

2k + 3.5�2q2

2b .

� Upper Bound of Pr[hitss,tt]. Note that hitss,tt ⇔ ∃α, β ∈ {1, . . . , q}, i ∈
{1, . . . , nα −1}, j ∈ {1, . . . , nβ −1} with i �= j s.t. Sα

i = Sβ
j ∨Tα

i = T β
j . Without

loss of generality, we assume that j �= 1. Regarding the equation Sα
i = Sβ

j , Sα
i =

Tα
i−1 ⊕ Mα

i ‖0c and Sβ
j = T β

j−1 ⊕ Mβ
i ‖0c, where Tα

0 := Wκpf
. By i �= j, Tα

i−1 and

T β
j−1 are independently drawn, and T β

j−1
$←− {0, 1}b. Thus, the probability that

for some α, β, i, j, Sα
i = Sβ

j holds is ≤ q2 × (
�
2

) × 1/2b = 0.5�2q2/2b. Regarding
the equation Tα

i = T β
j , by i �= j, Tα

i and T β
j are independently drawn, and

T β
j

$←− {0, 1}b. Hence, the probability that for some α, β, i, j, Tα
i = T β

j holds is

≤ 0.5�2q2/2b. Finally, we have Pr[hitss,tt] ≤ �2q2

2b .
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� Upper Bound of Pr[hithh]. Note that hithh ⇔ ∃α, β ∈ {1, . . . , q} s.t.
(∃i, j ∈

{0, . . . , �out} with i �= j s.t. Hα
i = Hβ

j

)
. Since for γ ∈ {α, β}, Hγ

i
$←− {0, 1}b for

i �= 0, and Hγ
0 := T γ

nγ−1 ⊕ Mnγ ‖0c where T γ
nγ−1

$←− {0, 1}b, we have Pr[hithh] ≤
(
(�out+1)q

2

) × 1
2b ≤ �q

2b ≤ 0.5�2q2

2b .

� Upper Bound of Pr[coll]. By the birthday analysis, Pr[coll] ≤ 0.5(�q)2

2b .

� Upper Bound of Pr[T2 ∈ Tbad]. Putting the above upper bounds into (2)
gives

Pr[T2 ∈ Tbad] ≤2r(Q + κpf)
2c

+
(

44�q(Q + κpf)
2b

)1/2

+
5.5�2q2

2b
+ λ(Q) +

q

2k
.

Upper Bound of ε

Let τ ∈ Tgood be a good transcript. For i = 1, 2, let alli be the set of all oracles
in Game i, and let compi(τ) be the set of oracles compatible with τ in Game i.
Then Pr[T1 = τ ] = |comp1(τ)|

|all1| and Pr[T2 = τ ] = |comp2(τ)|
|all2| .

Firstly, we evaluate |all1|. Since K ∈ {0, 1}k and P ∈ Perm({0, 1}b), we have
|all1| = 2k · 2b!.

Secondly, we evaluate |all2|. Since K ∈ {0, 1}k, P ∈ Perm({0, 1}b), and
F1, . . . ,F�in−1,G1, . . . ,G�out ∈ Func({0, 1}b, {0, 1}b) we have |all2| = 2k · (2b!) ·
((2b)2

b

)�in+�out−1.
Thirdly, we evaluate |comp1(τ)|. For i ∈ {1, . . . , �in−1}, let γ in

i be the number
of pairs in τ in

i . For i ∈ {1, . . . , �out}, let γout
i be the number of pairs in τ out

i . Let
γP be the number of pairs in τP ∪τK . Let γ in =

∑�in−1
i=1 γ in

i and γout =
∑�out

i=1 γout
i .

Let γ = γ in + γout + γP . Note that τ in
1 , . . . , τ in

�in−1, τ out
1 , . . . , τ out

�out
, and τP ∪ τK are

defined so that these sets do not overlap each other. Moreover, K is uniquely
determined. Hence we have |comp1(τ)| = (2b − γ)!

Finally we evaluate |comp2(τ)|. γ in
1 , . . . , γ in

�in−1, γout
1 , . . . , γout

�out
, γ in, γout, γP

and γ are analogously defined. Note that K is uniquely determined. We thus
have |comp2(τ)| = (2b − γP)! · ∏�in−1

i=1 (2b)2
b−γ in

i · ∏�out
i=1 (2b)2

b−γout
i = (2b − γP)! ·

(2b)(�in+�out−1)2b−γ+γP .
Hence we have

Pr[T1 = τ ]
Pr[T2 = τ ]

≥ (2b − γ)!
2k · 2b!

· 2k · (2b!) · (2b)(�in+�out−1)2b

(2b − γP)! · (2b)(�in+�out−1)2b−γ+γP
≥ 1.

We thus have ε = 0.

Upper Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

By Lemma 1, we have Pr[G1] − Pr[G2]

≤ 2r(Q + κpf)
2c

+
(

44�q(Q + κpf)
2b

)1/2

+
5.5�2q2

2b
+ λ(Q) +

q

2k
. (3)
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4.2 Upper Bound of Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1]

Note that L3 is a random function R. We show the following lemma.

Lemma 2. L2 and R are indistinguishable unless the following events occur in
Game 2.

collh ⇔ ∃α, β ∈ {1, . . . , q} with α �= β and ∃i ∈ {0, . . . , �out − 1} s.t. Hα
i = Hβ

i .

Proof. If collh does not hold then for any online query to L2 the response is freshly
and randomly drawn from {0, 1}�out×r. Hence, L2 and R are indistinguishable. ��
By the above lemma, Pr[DG2 ⇒ 1|¬collh] = Pr[DG3 ⇒ 1] holds. Hence, we have

Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1] ≤ Pr[collh].

The upper bound is given in the following. Due to lack of space, we omit the
detail for the evaluation of Pr[collh]. The upper bound can be obtained by using
the birthday analysis for the random functions in L2.

Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1] ≤ Pr[collh] ≤ 0.5�q2

2b
. (4)

4.3 Upper Bound of the Advantage

Putting (3) and (4) into (1) gives

Advprf
SwSponge(D) ≤ 2r(Q + κpf)

2c
+

(
44�q(Q + κpf)

2b

)1/2

+
6�2q2

2b
+ λ(Q) +

q

2k
.

References

1. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed
sponge constructions using a modular proof approach. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48116-5 18

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
1–15. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 1

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Duplexing the sponge: single-pass
authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.)
SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28496-0 19

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 19

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: On the indifferentiability of the
sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
181–197. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 11

http://dx.doi.org/10.1007/978-3-662-48116-5_18
http://dx.doi.org/10.1007/978-3-662-48116-5_18
http://dx.doi.org/10.1007/978-3-642-15031-9_1
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://dx.doi.org/10.1007/978-3-642-38348-9_19
http://dx.doi.org/10.1007/978-3-540-78967-3_11


260 Y. Naito

6. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed
sponge construction. In: Symmetric Key Encryption Workshop (SKEW), February
2011

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryp-
tion, authentication and authenticated encryption. In: Directions in Authenticated
Ciphers (2012)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Sponge-based pseudo-random
number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 33–47. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 3
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Abstract. We consider a setting where there are two parties, each
party holds a private graph and they wish to jointly compute the struc-
tural dissimilarity between two graphs without revealing any information
about their private input graph. Graph edit distance (GED) is a widely
accepted metric for measuring the dissimilarity of graphs. It measures
the minimum cost for transforming one graph into the other graph by
applying graph edit operations. In this paper we present a framework
for securely computing approximated GED and as an example, present
a protocol based on threshold additive homomorphic encryption scheme.
We develop several new sub-protocols such as private maximum compu-
tation and optimal assignment protocols to construct the main protocol.
We show that our protocols are secure against semi-honest adversaries.
The asymptotic complexity of the protocol is O(n5� log∗(�)) where � is
the bit length of ring elements and n is the number of nodes in the graph.

Keywords: Secure two-party computation · Graph edit distance ·
Privacy · Graph algorithms

1 Introduction

Graph matching is a task of assessing the structural similarity of graphs. There
are two types of graph matching, namely exact matching and error-tolerant
matching (also known as inexact matching) [1,26,29]. The exact graph matching
aims to determine, whether two graphs – a source graph and a target graph –
are identical. The later one aims to find a distortion or dissimilarity between two
graphs. Graph edit distance is a metric that measures the structural dissimilar-
ity between two graphs. The graph edit distance is quantified as the minimum
costs of edit operations required to transform the source graph into the tar-
get graph. We consider an attribute graph consisting of a set of nodes, a set of
edges and labels assigned to nodes and edges. Examples of such graphs are social
network graphs and fingerprint graphs [20,24]. A standard set of graph edit oper-
ations on an attribute graph includes insertion, and deletion and substitution
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 265–283, 2016.
DOI: 10.1007/978-3-319-48965-0 16
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of edges and nodes and substitution of vertex and edge labels. Unfortunately,
there is no polynomial time algorithm for computing the exact graph edit dis-
tance between two graphs. However, several algorithms have been developed for
computing approximated or suboptimal graph edit distance in polynomial time
[1,9,24,26,29]. A common strategy used for computing the GED is to find an
optimal assignment between each node of one graph to each node of the other
graph with minimum cost. The optimal assignment is computed by solving an
assignment problem with a cost matrix derived using the structure of the graphs
and the costs of graph edit operations. Graph edit distance has many applica-
tions in social network graph computation, pattern recognition and biometrics
such as in fingerprint identification systems [20,24].

Our Contributions. In this paper, for the first time, we consider secure two-
party graph edit distance computation where each party has a private graph
and they wish to jointly compute an approximated graph edit distance between
two private graphs, without leaking any information about their input graph. A
private graph is meant by the structure of the graph represented by an adjacency
matrix, node labels and edge labels are private, only the number of nodes is pub-
lic. First, we propose a general framework for securely computing approximated
graph edit distance, which consists of securely computing the entries of the cost
matrix from the private input graphs, securely solving the assignment problem
and securely processing an optional phase to obtain the graph edit distance.
Then, as an example, we develop a protocol for securely computing an approxi-
mated graph edit distance, determining the error-tolerant graph matching, based
on the algorithm by Riesen and Bunke [26]. Our protocol construction relies
on threshold additive homomorphic encryption scheme [13] instantiated by the
threshold Paillier encryption scheme [25]. The reason for choosing homomorphic
encryption in the construction is to design efficient protocols by exploiting the
structures of the GED algorithms. To construct the main protocol, we develop
several sub-protocols such as a private maximum computation protocol and an
optimal assignment protocol based on the Hungarian algorithm. We prove the
security of the protocol in the semi-honest model. The difference between the
workloads of the parties is negligible. The asymptotic complexity for the pro-
posed protocol is O(n5(� log∗(�))), where � is the bit length of ring elements and
n is the maximum among the numbers of nodes in two graphs.

2 Related Work

Secure Two-party Computation. Secure two-party computation is a pow-
erful tool that enables two parties to jointly compute a function on their private
inputs without revealing any information about the inputs except the output of
the function. Works on secure two-party computation began with the seminal
work of Yao [28] that showed that any function can be securely evaluated in the
presence of semi-honest adversaries by first generating a garbled circuit comput-
ing that function and then sending it to the other party. Then the other party
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can obtain the output by evaluating the garbled circuit using a 1-out-of-2 Obliv-
ious Transfer (OT) protocol. A series of work on secure two-party computation
have been done under different security settings and on optimization of garbled
circuits [4,15,17], to name a few and a number of tools and compilers such as
Fairplay [19] and TASTY [14] have been developed for secure computation.

Secure Processing of Graph Algorithms. Graph algorithms have a wide
variety of use in many secure applications. Recently secure and data oblivious
graph algorithms have been studied in [2,5,6]. Aly et al. [2] proposed secure
data-oblivious algorithms for shortest path and maximum flow algorithms. In
[6], Blanton et al. proposed secure data-oblivious algorithms for breadth-first
search, single-source single-destination shortest path, minimum spanning tree,
and maximum flow problems. In [5], Blanton and Saraph proposed secure data-
oblivious algorithms for finding maximum matching size in a bipartite graph. In
our work, as a sub-task, we need to find a perfect matching for computing the
optimal cost in a complete weighted bipartite graph.

Secure Edit Distance Computation. An edit distance measures the dissim-
ilarity (similarity) between two strings. In [3], Atallah et al. proposed a privacy-
preserving protocol for computing an edit distance between two strings based on
an additive homomorphic encryption scheme. Jha et al. [16] presented privacy-
preserving protocols for computing edit distance between two strings. The proto-
cols are constructed using oblivious transfer and Yao’s garbled circuits method.
Later on, Huang et al. [15] developed a faster protocol for edit distance com-
putation with the garbled circuit approach. Recently, Cheon et al. [7] proposed
a privacy-preserving scheme for computing edit distance for encrypted strings.
Their protocol is based on a somewhat homomorphic encryption scheme.

3 Preliminaries

In our construction, we use the threshold Paillier encryption scheme (TPS)
TPS = (πDistKeyGen, πDistSk,Enc, πDistDec) in the two-party setting, due to Hazay
el al. [13] where πDistKeyGen is the protocol for distributively generating a RSA
modulus N = pq, πDistSk is the protocol for distributed generation of shared
private key and πDistDec is the protocol for the distributed Paillier decryption
of shared private key. The encryption algorithm Enc is defined as follows. For
a plaintext message m with randomness r ∈R ZN the ciphertext is computed
as c = Enc(m, r) = rN (N + 1)m mod N2. where N = pq and p and q are
two large primes of equal length. Assume that the bit length of N is �. The
Paillier encryption scheme has (1) additive homomorphic property: E(m1 +
m2) = Enc(m1) · Enc(m2) and Enc(km1) = Enc(m1)k and (2) rerandomizing
property meaning for a ciphertext c, without knowing the private key, another
ciphertext c′ = Rand(pk,Enc(m; r), r′) = r′NrN (N +1)m = (rr′)N (N +1)m can
be created. For the details about other protocols, the reader is referred to [13].
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The computation of the GED involves operations on negative numbers as
well. We represent the negative numbers in modular arithmetic in the encryption
as [�N

2 �, N − 1] ≡ [−�N
2 �,−1]. The positive numbers lie in the range [0, �N

2 �]
and the negative numbers lie in the range [�N

2 �, N − 1].

4 Problem Formulation

We consider an undirected attribute graph G = (V,E, lG, ζG) where V is a finite
set of vertices, E is the set of edges, and lG is the vertex labeling function
and ζG is the edge labeling function. Assume that the graph G does not contain
any multi-edges and self-loops. Let G1 = (V1, E1, lG1 , ζG1) be a source graph and
G2 = (V2, E2, lG2 , ζG2) be a target graph. The graph edit distance [1,26] between
G1 and G2 is defined by fGED(G1, G2) = min(eo1,...,eok)∈Γ (G1,G2)

∑k
i=1 c(eoi)

where Γ (G1, G2) is the set of all edit paths that transform G1 into G2 and c(eoi)
denotes the cost for the edit operation eoi. The reader is referred to Appendix B
for the details about graph edit operations.

In this work we consider a setting where there are two parties P1 and P2,
P1 has a private graph G1 and P2 has another private graph G2. The parties
wish to compute an approximated graph edit distance fGED(G1, G2) between
G1 and G2 without leaking anything about their input graph, where fGED is
a function running in polynomial time computing an approximated graph edit
distance between G1 and G2. At the end of the execution of the protocol, each
party Pi should learn nothing about other party’s input graph G3−i, beyond the
edit distance value fGED(G1, G2), i = 1, 2. A private graph is meant by node and
edge labels and the structure of the graph represented by an adjacency matrix
are private, only the number of nodes in the graph is public.

Adversary model. We define the security of the protocol for the GED com-
putation against honest-but-curious or semi-honest adversaries where a party
compromised by an adversary follows the prescribed actions of the protocol and
aims to learn some unintended information from the execution of the protocol.
Let A be a probabilistic polynomial time adversary that can corrupt at most
one party at the beginning of the execution of the protocol. The adversary A
sends all input messages of the corrupted party during the execution of the pro-
tocol and receives messages from the honest party. The honest party follows the
instruction of the protocol.

Let A corrupts the party Pi. We denote the view of Pi in the real execution of
the protocol Π by VIEWΠ

Pi
(1λ, G1, G2) = {Gi, Ri,m1,m2, · · · ,mT }, i = 1 or 2,

where Gi is Pi’s private input graph, m1,m2, · · · ,mT are the messages received
from P3−i and Ri is Pi’s random tape used during the execution of the protocol.

Definition 1. Let fGED(G1, G2) be the functionality computing an approxi-
mated graph edit distance. We say that a two-party protocol Π securely evaluates
fGED(G1, G2) in the presence of semi-honest adversaries if there exists a PPT
simulator S = (SP1 ,SP2) such that for all G1 and G2, it holds that
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{SPi
(1λ, Gi, fGED(G1, G2))} c≈ {VIEWΠ

Pi
(1λ, G1, G2)}

where
c≈ denotes the computational indistinguishably of two distribution

ensembles.

5 Description of Proposed GED Protocols

This section presents a framework for the two-party graph edit distance compu-
tation based on the assignment problem. As an example, we present a protocol
for the graph edit distance computation and prove its security in the semi-honest
model.

5.1 A Framework for Two-Party GED Computation

Figure 1 provides the process of an approximated GED computation. At a high
level, the graph edit distance computation consists of three phases, namely the
construction of the cost matrix, solving the optimal assignment problem with
the cost matrix and further processing (optional processing) using the results
from the assignment problem and inputs graphs to improve the approximated
GED. The cost matrix construction phase takes graph inputs from the par-
ties and computes the entries of the matrix in terms of the costs of graph edit
operations. Solving the assignment problem does not take any graph inputs
from parties. Based on the approximation factor of the approximated GED, the
optional processing is performed. The general structure of the protocols for two-
party graph edit distance computation consists of secure two-party evaluations
of the cost matrix construction, the optimal assignment problem and optional
processing. At the end of secure processing of each phase, we ensure that there
is no leakage of information from the output, except the final output that will
be known to both parties.

Fig. 1. A block diagram for two-party graph edit distance computation

In the current paper, we perform the secure evaluation of graph edit distance,
following the above framework, using the threshold Paillier additive homomor-
phic encryption scheme. The private key of the encryption scheme is shared
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between two parties. First, the parties construct an encrypted cost matrix using
the input graphs and then they run the optimal assignment protocol on the
encrypted cost matrix. The encrypted outputs from the optimal assignment pro-
tocol along with the input graphs if needed are used in the optional processing
phase to obtain the graph edit distance. In Sect. 5.3, we present an approximated
graph edit distance computation protocol.

5.2 Sub-protocols

Secure equality testing and comparison protocols have been extensively stud-
ied in the literature under different two-party computation settings, e.g., in
[8,11,18,27]. We present a variant of encrypted equality test protocol, denoted
by πEQ in the Appendix. We use the greater-than protocol of Toft [27] with
the modification that we replace the equality test protocol by πEQ. In this
section we present two sub-protocols Private Maximum Computation protocol
and Optimal Assignment protocol that are necessary for the main protocols
for graph edit distance. As our protocol construction uses an equality check,
comparison, oblivious transfer and oblivious polynomial evaluation protocol, we
denote the functionalities by FEQ, FCMP FOT, and FOPE and corresponding
protocols by πEQ, πCMP, πOT and πOPE, respectively.

Private Maximum Computation Protocol. Let P1 and P2 hold a vector of
encrypted numbers c = (c1, c2, ..., cn) with ci = Enc(xi) for the plaintext vector
x = (x1, x2, ..., xn). Let xmi be the maximum value in x for index mi, 1 ≤ mi ≤ n.
The private maximum computation (PMC) protocol is to jointly compute the
encrypted maximum value Enc(xmi) and the encrypted index Enc(mi) from c
without revealing xmi and mi.

We develop a two-party protocol for private maximum computation. The
basic idea behind the construction of the PMC protocol is that one party shuffles
the order of the elements of c through a secret permutation π1 and after shuffling,
each element is re-randomized using Rand(·, ·, ). We denote the resultant vector
by c′. Next, the other party chooses a random permutation π2 and using this
permutation, it obliviously picks up an element from c′ by running a 1-out-of-n
oblivious transfer (OT) protocol [23], denoted by OTn

1 , and then randomizes the
chosen element. Both parties then run a comparison protocol to determine the
maximum value. This procedure is repeated (n − 1) times for π2(i), 2 ≤ i ≤ n
to compute the maximum among n encrypted elements. The encrypted index
Enc(mi) for the maximum value is computed through an oblivious polynomial
evaluation (OPE) protocol. We use the FNP oblivious polynomial evaluation
protocol [10] to obtain the encrypted index Enc(mi). We describe the details of
the protocol in Fig. 2.

Complexity. We evaluate the communication and computation overhead of the
πPMC protocol, which is composed of πCMP, an OTn

1 protocol and an OPE pro-
tocol. Since the round complexity of πCMP is O(log(�) log∗(�)), the total commu-
nication complexity for πCMP is (n log(�) log∗(�)). The communication overhead
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Protocol: Private MAX Computation πPMC

Input: A ciphertext vector c = (c1, c2, ..., cn) of x = (x1, x2, ..., xn) where
ci = Enc(xi), 1 ≤ i ≤ n.
Output: Encryption of the maximum value Enc(xmi) and its encrypted posi-
tion Enc(mi).

1. P1 chooses a random permutation π1 on {1, 2, ..., n} and computes
(cπ1(1), cπ1(2), ..., cπ1(n)). It then randomizes this vector and obtains c′ =
(c′

1, c
′
2, ..., c

′
n) where c′

i = Rand(pk, cπ1(i), ri), 1 ≤ i ≤ n where ri is a ran-
dom number.

2. P2 chooses a random and secret permutation π2 on {1, 2, ..., n}. It then
runs an OT n

1 protocol with inputs c′ from P1 and π2(1) from P2. Let
c′

π2(1)
be the output of the OT protocol. P2 randomizes c′

π2(1)
as c′′

1 =
Rand(pk, c′

π2(1)
, r′

1) and sends c′′
1 to P1.

3. Both parties set cIndex ← c′′
1 . P2 assigns Index ← π2(1).

4. For each t ∈ [2, n], P1 and P2 performs the following steps:
(a) P2 chooses π2(t).
(b) P1 and P2 run the OT n

1 protocol with inputs c′ from P1 and π2(t)
from P2 Let c′

π2(t)
be the output of the OT protocol received by P2.

(c) P2 randomizes c′
π2(t)

as c′′
t = Rand(pk, c′

π2(1)
, r′

t) and sends c′′
t to P1.

(d) P1 and P2 run the comparison protocol πCMP with inputs c′′
t and cIndex

and let Enc(bt−1) be the output. They run the threshold decryp-
tion protocol DistDec(Enc(bt−1)). If bt−1 = 1, both parties update
cIndex ← c′′

t and P2 updates Index ← π2(t).
5. P1 computes the polynomial representation of π−1

1 using the Lagrange
interpolation with coefficients in Zn and let Q

π−1
1

(x) =
∑n−1

j=0 Qjx
j be

the polynomial of degree at most (n − 1).
6. P1 and P2 run the FNP OPE protocol with inputs Qπ−1(x) from P1

and Index from P2 to compute the encrypted index Enc(mi) where
mi = Q

π−1
1

(Index).

(a) P1 encrypts the coefficients of Q
π−1
1

(x) as

(Enc(Q0), Enc(Q1), · · · , Enc(Qn−1)) and sends it to P2.

(b) P2 computes Enc(Q
π−1
1

(Index)) =
∏n−1

j=0 (Enc(Q1))
Indexj

and sends

Enc(Q
π−1
1

(Index)) to P1.

Fig. 2. Protocol for private maximum computation

for OTn
1 is O(n). Therefore the overall communication complexity for πPMC is

O(n2 + n� log(�) log∗(�)). It is easy to see that the computation complexity of
the protocol is also O(n2 + n� log(�) log∗(�)).

Theorem 1. The protocol πPMC securely computes the encrypted maximum
value and its encrypted maximum index, in the presence of semi-honest adver-
saries.

Proof. The proof follows from the semantic security of the Paillier encryption
scheme. The details of the proof can be found in the full paper [21].
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Optimal Assignment (OA) Protocol. The assignment problem is one of the
fundamental optimization problems. Given two sets X = {u1, u2, · · · , un} and
Y = {v1, v2, · · · , vn} and a cost matrix W = (wij)n×n where wij is the cost of
assigning ui to vj , the assignment problem is to find a permutation ρ on [1, n]
that maximizes

∑n
i=1 wiρ(i). We denote an assignment problem instance and its

solution by (ρ,
∑n

i=1 wiρ(i)) ← AssignProb(X,Y,W ), which can be solved by the
Hungarian algorithm with time complexity O(n3) [22]. The assignment problem
can also be viewed as the problem of finding a perfect bipartite matching in a
complete weighted bipartite graph G = (V,E,W ) with V = X ∪ Y,X ∩ Y = φ
where the cost matrix W is the weight matrix consisting of weights of the edges.
In this paper, we consider the perfect bipartite matching variant of the Hungarian
algorithm. An optimal assignment ρ that minimizes

∑n
i=1 wiρ(i) can be obtained

from this by making the entries of the cost matrix W negative.
Given an encrypted cost matrix W = (Enc(wij))n×n for AssignProb(X, Y,

W), we develop a two-party protocol for the assignment protocol based on the
Hungarian algorithm for computing Enc(

∑n
i=1 wiρ(i)) for an optimal assignment

ρ. In the secure two-party computation protocol, we resolve the following chal-
lenges (a) securely computing and updating the labeling of nodes in X and Y ;
(b) hiding the edges in the perfect matching set as it eventually determines the
optimal assignment ρ; and (c) securely computing augmenting paths and updat-
ing the matching set. Since the order of node and/or edge operations during the
execution of the algorithm leaks information about the assignment, we prevent
this by encrypting the matching set M and shuffling the order of nodes while
keeping the assignment problem invariant. We make the following observation
about the assignment problem when it solved using the Hungarian algorithm.

Observation 1. Let (ρ,
∑n

i=1 wiρ(i)) ← AssignProb(X,Y,W ) be an assignment
problem as described above. Let π be a permutation on [1, n]. Define Xπ =
{uπ(1), · · · , uπ(n)} and Y π = {vπ(1), · · · , vπ(n)} and Wπ = (wπ(i)π(j))n×n. If the
assignment problems (X,Y,W ) has an optimal value

∑n
i=1 wiρ(i) with assign-

ment mapping ρ, then the assignment problem AssignProb(Xπ, Y π,Wπ) has the
same optimal value with assignment mapping ρ1 = π ◦ ρ ◦ π−1.

Our main idea for constructing the OA protocol is to choose a secret
permutation π shared between two parties and transform the problem
AssignProb(X,Y,W ) into AssignProb(Xπ, Y π,Wπ) and then securely execute
the steps of the bipartite matching algorithm on the encrypted cost matrix.
The party P1 chooses a secret permutation π1 and P2 chooses another secret
permutation π2. Then they jointly construct the encrypted cost matrix Wπ =
(Enc(wπ(i)π(j))) where π = π2 ◦ π1. We compute the initial labelings of nodes
in X using the private maximum computation protocol πPMC. We encrypt node
identities ui ∈ X and vj ∈ Y of the bipartite graph and their labels, denoted
by lblX(u) for u ∈ X and lblY (v) for v ∈ Y and construct 2-tuple sequences
as (Enc(ui),Enc(lblX(ui))), 1 ≤ i ≤ n for both X and Y . We use the same
permutation π to hide the order of each sequence of 2-tuple encrypted values
component-wise for both X and Y . Denoting M = {(Enc(u),Enc(v)) : u ∈
X, v ∈ Y } by the matching set containing encrypted edges, {Enc(u) : u ∈ X}
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the set all encrypted tail node ids in M by M 	 X and {Enc(v) : v ∈ Y } the
set all encrypted head node ids in M by M 	 Y . The initial matching is found
by using the πEQ and πDistDec protocol. An encrypted equality graph EQlbl

represented by an encrypted adjacency matrix is constructed from encrypted
labels for X and Y and encrypted cost matrix W using the πEQ protocol.
The perfect matching is found by extending the matching set by finding an
encrypted augmenting path. An encrypted augmenting path is found by execut-
ing the breadth-first-search (BFS) algorithm on the encrypted equality graph
EQlbl where the source and target vertices are free vertices in X and Y . We
adopt a variant of Blanton et al.’s BFS algorithm [6] in our setting where
the secret key for the decryption algorithm is shared between two parties and
we denote this protocol by πBFS. We don’t provide the technical details due
to space limit. For an encrypted equality graph P := Enc(t0) − Enc(t1) −
Enc(t2) − · · · − Enc(tk) of length k − 1, the set of encrypted edges are given by
Pedge = {(Enc(t0),Enc(t1)), (Enc(t2),Enc(t1)), · · · , (Enc(tk−1),Enc(tk))}. After
finding Pedge, the matching set is updated as M ← MΔPedge where Δ is the
symmetric difference set operation. We use two dummy counters of length n for
keeping track of encrypted free nodes of X and Y . For computing the GED,
we only need the maximum value

∑n
i=1 wiρ(i). Thus the protocol outputs only∑n

i=1 wiρ(i). Figure 3 presents the details of our secure protocol for the assign-
ment problem.

Complexity. From πOA, it can be seen that the time complexity for finding
the initial matching (Step 1 to Step 7) is O(n3 +n2� log(�) log∗(�)). If the initial
matching is not a perfect matching, the computational complexity for termi-
nating the protocol is O(n5� log∗(�) + n4� log(�) log∗(�)) = O(n5� log∗(�)). An
insecure version of the Hungarian algorithm runs in O(n3) steps. The overhead
of the protocol due to security is (n2� log∗(�)).

Theorem 2. The protocol πOA securely computes the encrypted optimal value
in the presence of semi-honest adversaries.

Proof. We prove the security of the protocol in the hybrid model. In the protocol,
one party receives messages from the other party and also from the trusted
third party computing a functionality. The simulator also needs to simulate the
outputs for the trusted third party functionalities. We construct two different
simulators for the view of the adversary.

When P1 is corrupted. Let A be the adversary controlling the party P1.
S1 chooses 2n uniformly random tapes r0 = {(r0i , r1i )}n

i=1 from ZN and com-
putes the encrypted 2-tuple vector LBLY . It emulates the outputs Enc(lblX(ui))
and Enc(di), 1 ≤ i ≤ n for the trusted third party functionality FPMC on ith
row Wi. S1 chooses n random tapes r1 = {r2i }n

i=1 uniformly at random for
P1 and computes the encryptions of i, 1 ≤ i ≤ n. S1 picks a permutation π1

and (6n + n2) random tapes r2 = {{(r3i , r4i , r5i , r6i , r7i , r8i )}n
i=1, (r

0
ij)n×n} uni-

formly at random for P1 and computes LBLXπ1 , LBLYπ1 , Dπ1 and Wπ1 and
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Protocol: Optimal Assignment based on the Hungarian algorithm πOA

Input: The cost matrix Enc(W ) = (Enc(wij))n×n wij = cost(ui, vj).
Output: Optimal assignment value Enc(

∑n
i=1 wiρ(i)).

1. P1 computes (Enc(lblY (v1) : 1 ≤ i ≤ n) with lblY (vi) = 0, vi ∈ Y and (Enc(i) :

1 ≤ i ≤ n) and constructs LBLY =
(
(Enc(lblY (vi)), Enc(i)) : 1 ≤ i ≤ n

)
and

sends it to P2.
2. L ← φ; VP ← φ; M ← φ;
3. For each ui ∈ X, P1 and P2 run πPMC with input ith row Wi = (wi1, wi2, ..., win)

and obtain output Enc(lblX(ui)) and Enc(di) where lblX(ui) = widi =
max
vj∈Y

{wij}, ui ∈ X and 1 ≤ di ≤ n.

(a) Construct LBLX =
(
(Enc(lblX(ui)), Enc(i)) : 1 ≤ i ≤ n

)
.

(b) Construct D = ((Enc(i), Enc(di)) : 1 ≤ i ≤ n).
(c) Update L ← L ∪ { Enc(lblX(ui)), Enc(lblY (vi))

)}.
4. P1 chooses a random perm π1 and computes the following and sends all to P2

(a) LBLYπ1 :=
(
(Enc(lblY (vπ1(j))), Enc(π1(j))) : 1 ≤ j ≤ n

)
, LBLXπ1 :=(

(Enc(lblX(uπ1(j))), Enc(π1(j))) : 1 ≤ j ≤ n
)

(b) Dπ1 := ((Enc(π1(j)), Enc(dπ1(j))) : 1 ≤ j ≤ n)
(c) W π1 = (Enc(wπ1(i)π1(j)))n×n

(d) Rerandomize each encrypted value above
5. P2 chooses a random perm π2 and computes the following and sends all to P1

(a) LBLYπ2◦π1 :=
(
(Enc(lblY (vπ2◦π1(j))), Enc(π2 ◦ π1(j))) : 1 ≤ j ≤ n

)
,

(b) LBLXπ2◦π1 :=
(
(Enc(lblX(uπ2◦π1(j))), Enc(π2 ◦ π1(j))) : 1 ≤ j ≤ n

)

(c) Dπ2◦π1 := ((Enc(π2 ◦ π1(j)), Enc(dπ2◦π1(j))) : 1 ≤ j ≤ n)
(d) W π2◦π1 = (Enc(wπ2◦π1(i)π2◦π1(j)))n×n

(e) Rerandomize each encrypted value above. Set π = π2 ◦ π1.
6. For each (Enc(π(i)), Enc(dπ(i))) ∈ Dπ, i = 1, ..., n, P1 and P2 run πEQ protocol

with inputs Enc(dπ(i)) and Enc(dπ(j)) and obtain Enc(bij), bij ∈ {0, 1} for j =

1, ..., i−1. Compute R =
∏i−1

j=1 Enc(bij). P1 and P2 run πEQ protocol with inputs R
and Enc(0) and obtain Enc(bi) as output. P1 and P2 then jointly decrypt Enc(bi).
If bi = 1, perform M ← M ∪ {(Enc(π(i)), Enc(dπ(i)))}.

7. If |M| = n, return the encrypted optimal value is Enc(
∑n

i=1 lblX(uπ(i)) +∑n
i=1 lblY (vπ(i))) =

∏n
i=1 Enc(lblX(uπ(i)))

∏n
i=1 Enc(lblY (vπ(i)). Else, P1 and

P2 execute the following steps.
8. P1 and P2 construct a matrix EQlbl = (Enc(eij))n×n by running the πEQ protocol

with inputs Enc(lblX(uπ(i)) + lblY (vπ(j))) and Enc(wπ(i)π(j)) where Enc(eij) is
the output 1 ≤ i, j ≤ n and eij ∈ {0, 1}.

9. Initialize S ← φ and T ← φ.
10. P1 and P2 find Enc(uπ(i)) such that Enc(uπ(i)) /∈ M � X, then S ← S ∪

{Enc(uπ(i))}.
11. P1 and P2 compute Nlbl(S) for each Enc(uπ(i)) ∈ S as

(a) For row EQlbl
i = (Enc(ei1), Enc(ei2), · · · , Enc(ein)) of EQlbl, compute Zi =

(Enc(ei1 ·v1), Enc(ei2 ·v2), · · · , Enc(ein ·vn)) from EQlbl
i where Enc(eik ·k) =

Enc(eik)k.
(b) Run πSR protocol with input Zi = (Enc(ei1 ·v1), Enc(ei2 ·v2), · · · , Enc(ein ·vn))

and obtain the output Z′
i = (z1, z2, · · · , zn)

(c) Run πEQ with inputs zj and Enc(0) and obtain the output Enc(bj). Run
DistDec on input Enc(bi) and obtain bj for 1 ≤ j ≤ n. If bj = 0, perform
Nlbl(S) ← Nlbl(S) ∪ {Enc(vj)}.

Fig. 3. Secure optimal assignment protocol based on the Hungarian algorithm
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Protocol: Optimal Assignment πOA (Cont.)

12. P1 and P2 check the equality of sets Nlbl(S) and T running πEQ and πDistDec

protocols.
13. If Nlbl(S) = T

(a) P1 and P2 compute T̄ = ((LBLYπ
1 � Y ) − T ) from sets LBLYπ � Y and T by

running πEQ and πDistDec protocols.
(b) For each Enc(uπ(i)) ∈ S and Enc(vj) ∈ T̄ , P1 and P2 compute Enc(lblij) =

Enc(lblX(uπ(i)) + lblY (vj) − wπ(i)π(j)).
(c) P1 and P2 compute Enc(δlbl) = min{Enc(lblij) : Enc(i) ∈ S, Enc(j) ∈ T}

using the πPMC protocol.
(d) P1 and P2 update the label lbl as

Enc(lblX(u)) = Enc(lblX(u)) · Enc(δlbl)
−1 if E(u) ∈ S

Enc(lblY (v)) = Enc(lblY (v)) · Enc(δlbl) if E(v) ∈ T

14. If Nlbl(S) �= T
(a) P1 and P2 choose Enc(vj) ∈ Nlbl(S) − T .
(b) If Enc(vj) /∈ M � Y , find an augmenting path P := Enc(uk) − Enc(vj) by

running the πBFS protocol with inputs EQlbl and Enc(vj).
(c) Update M ← MΔPedge. Goto Step 7.
(d) If Enc(vj) ∈ M � Y and (Enc(uπ(�)), Enc(vj)) ∈ M, extend alternating tree

S ← S ∪ {Enc(upi(�))} and T ← T ∪ {Enc(vj)}. Goto Step 11.

Fig. 3. (continued)

rerandomizes each encrypted value. S1 chooses π2 and (6n + n2) random tapes
r3 = {{(r3i , r4i , r5i , r6i , r7i , r8i )}n

i=1, (r
1
ij)n×n} uniformly at random and computes

LBLXπ2◦π1 , LBLYπ2◦π1 , Dπ2◦π1 and Wπ2◦π1 and rerandomizes each encrypted
value using r3. In Step 5, for each Enc(dπ(i)), 1 ≤ i ≤ n, the simulator gener-
ates bij at random and computes Enc(bij) for FEQ with inputs Enc(dπ(i)) and
Enc(dπ(j)), 1 ≤ j ≤ i − 1 and obtains b1 = (b1, b2, · · · , bn). S1 computes R from
b1. S1 computes M. In Steps 10 – 14, S1 simulates the output of the functional-
ities FEQ, FDistDec, FPMC and FBFS while ensuring the loop terminates in O(n3)
steps. The outputs at �-th iteration for Steps 10 – 14 are b�

3 = (b1, b2, · · · , bn)
(Step 10); z� = (z1, z2, · · · , zn) and b�

4 = (b1, b2, · · · , bn) (Step 11); b�
5 =

(b1, b2, · · · , b|T |·|Nlbl(S)|) (Step 12); b�
6 = (b1, b2, · · · , bt), t ≤ n, (Step 13); b�

7 =
(b1, b2, · · · , bt), t ≤ n, P�

sim = Enc(u) − Enc(v) (simulated augmenting path),
b�
8 = (b1, b2, · · · , b|M|·|Pedge|) and b�

9 = (b1, b2, · · · , bt), t ≤ n (Step 14). Define
B� = (b�

3, z
�,b�

5,b
�
6,b

�
7,P�

sim,b�
8,b

�
9). The output of S1 is S1(1λ, n,X, Y,W ) =

(r1, π1, r2, LBLXπ2◦π1 , LBLYπ2◦π1 ,Dπ2◦π1 ,Wπ2◦π1 , EQlbl,b1,b2, {B�}). The
distributions for LBLXπ2◦π1 , LBLYπ2◦π1 , Dπ2◦π1 and B� in the real and ideal
executions are identically distributed since the random tapes for r1 and r2
were chosen uniformly at random, the Paillier encryption scheme is semanti-
cally secure and the permutation π2 for the honest party in the real execution
of the protocol is unknown to S1.

When P2 is corrupted. Let the adversary A controlling the party P2. The
construction of the simulator is similar to that of S1, except Step 1. We don’t
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provide the details of the simulator S2. The view of A output by S2 is
S2(1λ, n,X, Y,W ) = (r3, π2, LBLXπ1 , LBLYπ1 , Dπ1 ,Wπ1 , EQlbl,b1,b2, {B�}).
Applying the similar argument, the views for the adversary in the real and ideal
execution of the protocol are identically distributed.

As the protocols πEQ, πPMC, πSR, πDistDec and πBFS are secure, applying the
composition theorem, πOA is secure in the hybrid model against semi-honest
adversaries and hence πOA is secure in the real execution of the protocol. ��

5.3 The Main Protocol for Graph Edit Distance

In this section we present a secure realization of the approximated GED compu-
tation by Riesen and Bunke [26], based on bipartite graph. We consider the two-
party computation in the semi-honest model. We consider a setting where there
are two parties P1 and P2, each party has a private graph Gi = (Vi, Ei, lGi

, ζGi
)

with ni = |Vi| ≥ 3 and n = n1 + n2. For simplicity, we consider the cost matrix
W that includes only the costs of node edit operations1. The parties start the
protocol execution by computing a cost matrix. We start by explaining how the
parties jointly construct the cost matrix.

Encrypted Cost Matrix Construction. We assume that each party secretly
defines the costs for the graph edit operations deletion, insertion and substitution
of nodes and/or edges. The edit operation costs for nodes are defined as follows.
Let lG1(ui) = αi ∈ ZN be the node labeling function of G1 and lG2(vj) = βj ∈
ZN be the node labeling function of G2. The party P1 chooses the edit costs of
node insertion and deletion operations as c(ui → ε) = c(ε → ui) = C1 ∈ ZN .
Similarly, the party P2 decides the costs of insertion and deletion operations for
nodes as c(ε → vj) = c(vj → ε) = C2 ∈ ZN . The cost of the node substitution
operation is defined as wij = c(ui → vj) = min{(c(ui → ε) + c(ε → vj)), c′(ui →
vj)} = min{(C1 + C2), |αi − βj |} where c′(ui → vj) = |αi − βj |, αi, βj ∈ ZN .
This definition of the cost function can be found in [24]. Each entry of the cost
matrix is computed by running a joint protocol.

We now explain how to construct the encrypted cost matrix W =
(Enc(wij))n×n. For insertion and deletion operations, the party Pi encrypts its
cost Enc(Ci) and sends it to the other party. For the substitution cost, the
parties exchange respective encrypted costs of insertion and deletion opera-
tions and encrypted node labels. Let the parties P1 and P2 have encryptions
Enc(d1) and Enc(d2) of numbers d1 and d2, respectively and they would like
to compute Enc(|d1 − d2|) where |d1 − d2| is the absolute difference between
d1 and d2. The absolute difference between d1 and d2 can be computed as
|d1 − d2| = (d1 − d2) + b(d2 − d1) = (1 − b)d1 + (b − 1)d2 where b = 0, d1 < d2;
otherwise, b = 1. We use this relation to compute encrypted absolute difference

1 Several constructions of cost matrix can be found in [9,26] for the improvement of
the approximation of the actual GED. However, the two-party computation of GED
remains same, except the cost matrix construction.
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between two encrypted numbers. We provide the details of the protocol in Fig. 6
in Appendix A.

Description of the Protocol. We are now ready to describe the protocol.
The parties P1 and P2 initiate the protocol by generating the public key and
the shares of the private key for the threshold Paillier encryption scheme using
πDistKeyGen and πDistSk, respectively. Each party encrypts its node labels for the
construction of the encrypted cost matrix. The computation of GED consists
of two main phases. First, the parties construct the encrypted cost matrix
Enc(W ) = (Enc(wij))n×n using the function defined above and then solve the
assignment problem with input as the encrypted cost matrix Enc(W ) to find an
optimal of the nodes of the graphs. The parties use the distributed decryption
protocol DistDec to obtain the graph edit distance fGED(G1, G2) = (

∑n
i=1 widi

).
Figure 4 presents the details of the approximated GED computation protocol.

Protocol: Protocol ΠGED

Input: Graph G1 = (V1, E1, lG1) from P1 and G2 = (V2, E2, lG2) from P2.
Output: Approximated graph edit distance d = fGED(G1, G2) or ⊥.

1. P1 and P2 run the distributed key generation protocol πDistKeyGen, followed
by the distributed shared secret key generation protocol πDistSk.

2. P1 encrypts the cost for node insertion and deletion Enc(C1) and
{Enc(αi) : ui ∈ V1}.

3. P2 encrypts the cost for node insertion and deletion Enc(C2) and
{Enc(βj) : vj ∈ V2}.

4. For each ui ∈ V1 and vj ∈ V2, P1 and P2 run πSub with inputs Enc(C1)
and Enc(αi) from P1 and inputs Enc(C2) and Enc(βj) from P2 and obtain
the output Enc(wij).

5. P1 and P2 make all the entries of E(W ) negative, i.e., W ′ =
(Enc(w′

ij))n×n = (Enc(wij)
−1)n×n where w′

ij = −wij .
6. Run the optimal assignment protocol πOA with input Enc(W ′) and obtain

the output the encrypted the minimum cost Enc(
∑n

i=1 w′
idi

).
7. P1 and P2 jointly run the distributed decryption protocol πDistDec on

Enc(
∑n

i=1 w′
idi

)−1 and obtain the approximated graph edit distance d =
(
∑n

i=1 widi).

Fig. 4. Protocol for computing an approximated graph edit distance based on bipartite
graph

Complexity of ΠGED. For computing encrypted node labels, each party
performs O(n) operations. The computation complexity for constructing the
encrypted cost matrix is O(n2). The parties run the optimal assignment protocol
on the encrypted matrix. The computational complexity and the communication
complexity of the graph edit distance protocol ΠGED is atmost O(n5� log∗(�)).
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The complexity of the protocol is dominated by that of the optimal assignment
protocol. In the protocol execution, the parties do almost an equal amount of
computation.

Theorem 3. Assuming the threshold Paillier encryption scheme is secure, the
protocol ΠGED is secure in the presence of the semi-honest adversaries.

Proof. The protocol ΠGED sequentially invokes the protocols for distributed key
generation πDistKeyGen and πDistSk, the cost matrix construction πSub and the opti-
mal assignment πOA, and the distributed decryption πDistDec for the approximated
GDE. The protocols πDistKeyGen, πDistSk and πDistDec are secure according to [13].
The construction of πSub based on πCMP. The security of the πSub protocol relies
on that of πCMP, which is proven secure in [27]. Theorem 2 guarantees the parties
securely solves the assignment problem. According to the sequential composition
theorem [12], ΠGED is secure against semi-honest adversaries in the real execution
of the protocol. ��

6 Conclusions

In this paper we considered secure two-party computation of graph edit dis-
tance measuring the dissimilarity between two graphs where each party has a
private graph and they wish to jointly compute graph edit distance of two pri-
vate graphs. We proposed a framework for the graph edit distance computation
and, as an example, developed a protocol for computing of graph edit distance.
To construct main protocols for graph edit distance, we developed sub-protocols
such as private maximum computation and optimal assignment protocol based
on the Hungarian algorithm. The asymptotic complexities of both protocols
are O(n5(� log∗(�))). Our protocol is secure against semi-honest adversaries and
has applications in two-party social network graph computations for measuring
structural similarity and fingerprint identifications.

Acknowledgement. This work was supported by ONR grant N00014-14-1-0029 and
a grant from the King Abdulaziz City for Science and Technology (KACST). The
authors would like to thank Seny Kamara for conducting several discussions during
the initial phase of this work. The authors also thank the anonymous reviewers of
CANS 2016 for bringing the references [3,16] into our attention and for their helpful
comments.

A Description of Sub-protocols

A.1 Encrypted Equality Test Protocol and Comparison Protocol

Given encryptions Enc(y1) and Enc(y2) of y1 and y2, respectively, where y1 and
y2 are of �-bit numbers in ZN . In our setting, the secure equality testing protocol
outputs the encrypted value Enc(b) where b = 0 if y1 �= y2 and b = 1 if y1 = y2,
without revealing y1, y2 and b where y1 and y2 are of � bits. Our equality testing
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protocol is based on the idea of plaintext-space reduction introduced in [11],
which can also be found in [18]. The setting of the equality check is different
from the one proposed in [11]. In our case, the private key is shared between the
parties, but in [11], one party holds the private key and the other party holds
the encrypted numbers. We describe a secure encrypted equality test protocol
based on plaintext-space reduction in Fig. 5. We use the greater-than protocol
of Toft [27] with the modification that we replace the equality test protocol by
πEQ. We denote this protocol by πCMP which takes inputs Enc(x) and Enc(y) and

Protocol: Equality Test πEQ

Input: Two encrypted numbers Enc(y1) and Enc(y2).
Output: Enc(b) where b = 0 if y1 �= y2 and b = 1 if y1 = y2.

1. Denote y = y1 − y2. P1 and P2 perform the operation: Enc(y) = Enc(y1)
Enc(y2)

.

2. P1 generates a random number A1 and represents it in binary as A1 =
A1

�−1A
1
�−2...A

1
0 and computes c1 ← Enc(y + A1) and C1

i ← Enc(A1
i ), 0 ≤

i ≤ n − 1 and send {c1, C
1
i , 0 ≤ i ≤ 
 − 1} to P2.

3. P2 generates a random number A2 and represents it in binary as A2 =
A2

�−1A
2
�−2...A

2
0 and computes c2 ← Enc(y + A1 + A2) and computes C2

i ←
Enc(A2

i ), 0 ≤ i ≤ n − 1 and send {c2, C
2
i , 0 ≤ i ≤ 
 − 1} to P1.

4. P1 and P2 run πDistDec to decrypt c2 to obtain x where x = y+A1+A2 = y+A
and A = A1 + A2.

5. P1 and P2 compute ciphertexts Enc(Ai) with A = A�−1...A0 using C1
i , C2

i , 0 ≤
i ≤ 
 − 1 and additive circuits of two integers as follows. P1 and P2 computes
Enc(s0) with s0 = 0. For i = 0 to 
 − 1, P1 and P2 execute the following steps
and for each encryption operation parties re-randomize the ciphertext:

(a) P1 computes Enc(A1
i si) = Enc(si)

A1
i and Enc(2A1

i si) = Enc(si)
2A1

i from
Enc(si) and send these two to P2.

(b) P2 computes Enc(A2
i si) = Enc(si)

A2
i and Enc(2A2

i si) = Enc(si)
2A2

i from
Enc(si) and send these two to P1.

(c) Using Enc(2A2
i si), P1 computes Enc(2A2

i A
1
i si) = Enc(2A2

i si)
A1

i and using

Enc(A1
i si), P2 computes Enc(2A1

i A
2
i si) = Enc(A1

i si)
A2

i .

(d) P1 computes Enc(si+1) = (C2
i )A1

i · Enc(A1
i si) · Enc(A2

i si) = Enc(A1
i A

2
i +

A1
i si + A2

i si).

(e) P2 computes Enc(si+1) = (C1
i )A2

i · Enc(A1
i si) · Enc(A2

i si) = Enc(A1
i A

2
i +

A1
i si + A2

i si).
6. P1 and P2 independently perform the following steps:

(a) Compute Enc(Ai) =
Enc(A1

i )·Enc(A2
i )·Enc(si)·Encpk(4siA1

i A2
i )

Enc(2A1
i si)·Enc(2A2

i si)
.

(b) Compute Enc(Zi) = Enc(Ai)·Enc(xi)
Enc(2xiAi)

using Enc(Ai) and xi where Zi =
xi ⊕ Ai = xi + Ai − 2xiAi.

(c) Compute Enc(Z) as Enc(Z) =
∏�−1

i=0 Enc(Zi) where Z =
∑�−1

i=0 Zi.
7. Set Enc(y) ← Enc(Z), P1 and P2 execute Step 2 to Step 6 log∗(
) times.
8. P1 and P2 compute Enc(1 − Z). Output Enc(1 − Z).

Fig. 5. Protocol for equality of encrypted numbers using Paillier threshold encryption
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outputs Enc(b) where b = 1 iff x ≥ y and b = 0, otherwise. Its round complexity
is O(log(�)) and computation complexity is O(� log(�) log∗(�)).

A.2 Substitution Cost Protocol

Figure 6 presents the protocol for computing the substitution cost for construct-
ing the cost matrix. The proof of the security of the protocols can be found in
the full paper.

B Graph Edit Operations and Cost Matrix

A standard set of graph edit operations are node insertion (ε → u), deletion
(u → ε) and substitution (u → v) and edge insertion (ε → e), deletion (e → ε)
and substitution (e1 → e2) and substitution of node and edge labels where ε
denotes empty nodes or edges. The edge edit operations can be defined in terms of
the node edit operations as follows. Let e1 = (u1, u2) ∈ E1 and e2 = (v1, v2) ∈ E2

where u1, u2 ∈ V1 ∪ {ε} and v1, v2 ∈ V2 ∪ {ε}. An edge substitution operation
between e1 and e2, denoted by e1 → e2, is defined as the node substitution
operations u1 → v1 and u2 → v2. If there is no edge e1 in E1 and e2 ∈ E2,
then the edge insertion in G1, denoted by (ε → e2) is defined by ε → v1 and
ε → v2. Similarly, if there is an edge e1 ∈ E1 and no edge e2 in E2, then the
edge deletion, denoted by (e1 → ε) is defined by u1 → ε and v2 → ε.

The cost matrix is constructed by considering substitution costs of vertices
and the costs of vertex insertions and deletions. The structure of the edit cost

Protocol: Substitution Cost πSub

Input: P1’s inputs Enc(C1) and Enc(αi); P2’s inputs Enc(C2) and Enc(βj);
Output: Enc(wij) with wij = c(ui → vj) = min{(c(ui → ε)+c(ε → vj)), |αi−βj |}.

1. P1 computes Enc(C1) and Enc(αi) and sends these to P2.
2. P2 computes Enc(C2) and Enc(βj) and sends these to P1.
3. P1 and P2 compute Enc(C1+C2) = Enc(c(ui → ε)+c(ε → vj)) by multiplying

Enc(C1) and Enc(C2).
4. P1 and P2 run πCMP with inputs Enc(αi) and Enc(βj) and obtain Enc(b).
5. P1 first computes Enc(1 − b) from Enc(b) and then computes Enc((1 − b)αi)

and sends Enc((1 − b)αi) to P2.
6. P2 first computes Enc(b − 1) from Enc(b) and then computes Enc((b − 1)βj)

and sends Enc((b − 1)βj) to P1.
7. Both parties compute Enc(|αi − βj |) = Enc((1 − b)αi) · Enc((b − 1)βj).
8. P1 and P2 run πCMP with inputs Enc(C1 + C2) and Enc(|αi − βj |) and ob-

tain Enc(b′). If b′ = 0, output Enc(wij) = Enc(C1 + C2)), otherwise output
Enc(|αi − βj |).

Fig. 6. Protocol for computing node substitution cost c(ui → vj)
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matrix W = (wij)(n+m)×(n+m) has the following form [26]:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w11 w12 · · · w1m w1ε ∞ · · · ∞
...

...
...

...
...

...
...

...
wn1 wn2 · · · wnm ∞ ∞ · · · wnε

∞ wε2 · · · ∞ 0 0 · · · 0
...

...
...

...
...

...
...

...
∞ ∞ · · · wεm 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[

W1 W2

W3 W4

]

where the submatrix W1 is corresponding to the cost assignment of nodes (i →
j), W2 and W3 are corresponding to the cost assignment of node deletion (i → ε)
and insertion (ε → i) of nodes. The insertion and deletion of edges are not
taken care of in the cost matrix. However, it is not hard to incorporate the edge
substitution cost into the matrix entries. We omit the details here.
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Abstract. This work addresses the security and privacy issues in remote
biometric authentication by proposing an efficient mechanism to ver-
ify the correctness of the outsourced computation in such protocols.
In particular, we propose an efficient verifiable computation of XOR-
ing encrypted messages using an XOR linear message authentication
code (MAC) and we employ the proposed scheme to build a biometric
authentication protocol. The proposed authentication protocol is both
secure and privacy-preserving against malicious (as opposed to honest-
but-curious) adversaries. Specifically, the use of the verifiable compu-
tation scheme together with an homomorphic encryption protects the
privacy of biometric templates against malicious adversaries. Further-
more, in order to achieve unlinkability of authentication attempts, while
keeping a low communication overhead, we show how to apply Oblivious
RAM and biohashing to our protocol. We also provide a proof of security
for the proposed solution. Our simulation results show that the proposed
authentication protocol is efficient.

Keywords: Verifiable computation · Universal hash functions · Homo-
morphic encryption · Biometric authentication · Template privacy and
security

1 Introduction

Following the rapid growth of mobile and cloud computing, outsourcing com-
putations to the cloud has increasingly become more attractive. Many practical
applications, however, require not only the privacy of the sensitive data in such
computations, but also the verifiability of correctness of the outsourced compu-
tations. There has been a wealth of work on verifiable computations in recent
years, see, e.g., [1–3] and the references therein. One type of outsourced compu-
tation, in biometric authentication with distributed entities, is the computation
over encrypted bitstrings (e.g., encrypted biometric templates) to obtain the
XOR of two bitstrings (e.g., the XOR of the fresh and reference biometric tem-
plates). Consider, for instance, the following biometric authentication protocol
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 284–298, 2016.
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consisting of three entities, namely, a set C of clients Ci, for i = 1, · · · , N , one
for each user Ui, a cloud server CS with a database DB, and an authentication
server SP. Each client Ci has a sensor that extracts biometric templates from its
owner’s biometrics (e.g., fingerprints). The cloud server CS stores the reference
biometric templates and performs calculations. The authentication server SP
takes the final decision depending on whether there is a match between the fresh
and the reference biometric templates. This is a reasonable model adopted in
many research papers (cf. Related Work) and the industry (e.g., [4]) considering
the fast rise of cloud computing and storage services, and also the widespread
use of smartphones with embedded biometric sensors. However, the privacy of
biometric features must be seriously taken into account in such architectures,
since its disclosure may lead to breaches in security and traceability of users
among services, besides the inherent private information disclosure.

Let us consider a simple example of a biometric authentication protocol
using an homomorphic encryption scheme. Let HE = (KeyGen,Enc,Dec) be a
hypothetical homomorphic encryption (HE) scheme and f a function such that
f
(
Enc(m),Enc(m′)

)
= Enc

(
m ⊕ m′), for m, m′ in the domain of Enc, where ⊕

is the XOR operation. Suppose that the encryption/decryption keys pk/sk are
generated by the authentication server SP and pk is distributed to CS and all
Ci. Then, the protocol works as follows. During the enrollment phase, the client
Ci provides an encrypted reference biometric template Enc(bi), along with the
user IDi for storage in the database DB on the CS side. During the authentica-
tion phase, the client Ci provides an encrypted fresh biometric template Enc(b′

i)
and a claimed user IDi to CS, which then retrieves Enc(bi) corresponding to IDi

from its database, computes ctbi⊕b′
i

= f
(
Enc(bi),Enc(b′

i)
)

= Enc
(
bi ⊕ b′

i

)
and

sends ctbi⊕b′
i

to SP. Finally, SP decrypts ctbi⊕b′
i

and checks if the Hamming
weight HW(bi ⊕ bi) ≤ τ , where τ is a predefined authentication threshold. If
HW(bi ⊕ bi) ≤ τ , then the user is granted access; otherwise, he/she is rejected.
Note that HW(bi ⊕ b′

i) is equal to the Hamming distance HD(bi, b
′
i).

At a first glance, the protocol may seem secure against a malicious CS, with
respect to both the fresh and the stored template privacy. However, this only
holds under the assumption that CS honestly performs the intended calculation,
since there is no mechanism in place to prevent or detect cheating. By com-
puting a function, g, different than what the protocol specifies (or the intended
function f but on different inputs than the legitimate ones), and using SP as
an oracle, CS can learn information about either the stored reference biometric
template bi or the fresh biometric template b′

i. As an example CS could compute
g(Enc(bi),Enc(v)), where v is a chosen vector by CS, and subsequently send the
result to SP, which outputs OutSP . By mounting a variant of the hill climbing
attack [5], performing multiple repeated attempts, each time carefully choosing
v, the stored template bi can be retrieved. Such attacks against several protocols
proposed in [6–8] are presented in [9–11]. Therefore, in similar applications it is
important to verify the correctness of the outsourced computation, namely, the
computation of XORing encrypted bitstrings. Moreover, verifiable computation
of XOR is what we need in order to mitigate such an attack by a malicious
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CS on the above presented protocol. Here, we propose an efficient scheme for
verifying the correctness of the outsourced XOR computation and apply it to
biometric authentication. To our knowledge, the employment of verifiable com-
putation in privacy-preserving biometric authentication has not been studied
before, although the infeasibility of (fully) homomorphic encryption alone for
privacy-preserving cloud computing is already known [12].

Contributions. In this work, we propose an efficient verifiable computation
of XORing encrypted messages using an XOR linear message authentication
code (MAC) and we build a biometric authentication protocol that is secure and
privacy-preserving in the malicious (as opposed to the honest-but-curious) adver-
sary model. In the proposed protocol, the use of homomorphic encryption (HE)
and the XOR linear MAC scheme protects the privacy of biometric templates
against the malicious cloud, while the secret identity to an index map provides
anonymity. However, the authentication protocol does not hide access patterns
from the cloud. This could be avoided using Private Information Retrieval, but
at the expense of a large communication overhead. Hence we further propose
an extension of the protocol using oblivious RAM (ORAM). Since bi ⊕ b′

i is
revealed to SP in the proposed protocol, we also discuss how to make it robust
against leakage of information regarding the user’s biometric characteristics by
employing biohashing techniques.

Related Work. Privacy-preserving biometric authentication has attracted con-
siderable attention over the last decade. Multiple protocols for privacy-preserving
biometric authentication are based on secure multi-party computation tech-
niques including oblivious transfer [13] and homomorphic encryption [14,15],
as well as on private information retrieval [16,17]. Bringer et al. [8] proposed a
distributed biometric authentication protocol using the Goldwasser-Micali cryp-
tosystem [15] to protect the privacy of the biometric templates against honest-
but-curious (or passive) adversaries. Nevertheless, some attacks on this protocol
were reported in [5,11,18]. In [11], the authors have also improved upon the
Bringer et al. protocol to achieve security against malicious but non-colluding
adversaries. Simoens et al. [5] also presented a framework for analysing the secu-
rity and privacy-preserving properties of biometric authentication protocols. In
particular, they showed how biometric authentication protocols designed to be
secure against honest-but-curious adversaries can be broken in the presence of
malicious insider adversaries. They described several attacks against protocols
proposed in [8,18,19]. There are also other protocols for privacy-preserving bio-
metric authentication that are based on additive HE [14,20] such as [21] for face
recognition and its subsequent improvement in [22], as well as the protocol in
[23]. Yasuda et al. proposed two biometric authentication protocols using some-
what HEs based on ideal lattices [6] and ring learning with errors [7], and the
security of these protocols is scrutinised in [9,10]. In most of these schemes, bio-
metric templates are extracted as bitstrings and the similarity of two biometric
templates is measured by computing the Hamming distance between them. For
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this reason, in [24] the authors have proposed protocols for secure Hamming
distance computation based on oblivious transfer. These have potential applica-
tions in privacy-preserving biometric authentication. Recently Bringer et al. [25]
generalised their results for secure computation of other distances such as the
Euclidean and the normalised Hamming distance. Oblivious transfer was also
used in SCiFi [26].

Outline. The rest of the paper is organised as follows. Section 2 introduces
the necessary background. Section 3 presents our adversary model. In Sect. 4,
we present our protocol for biometric authentication employing the scheme for
verifiable computation of XOR. Section 5 shows how ORAM can be applied to
our protocol. Finally, Sect. 6 concludes the paper.

2 Preliminaries

Homomorphic Encryption. For our purposes, the employed HE scheme must
be such that given Enc(m) and Enc(m′), it is possible to homomorphically com-
pute Enc(Dist(m,m′)), where Dist is a distance metric. We require the HE scheme
to have semantic security against chosen plaintext attacks. Consider the follow-
ing game played between a probabilistic polynomial time (PPT) adversary and
a challenger:

ExpIND-CPA
HE,A (λ):
(pk, sk), ← KeyGen(λ); (m0, m1), m0 �= m1 ← A(λ, pk);

β
R←− {0, 1}; c ← Enc(mβ , pk); β′ ← A(m0, m1, c, pk);

Return 1 if β′ = β, 0 otherwise

and define the adversary’s advantage in this game as AdvIND-CPA
HE,A (λ) =∣

∣2Pr
{
ExpIND-CPA

HE,A (λ) = 1
} − 1

∣
∣.

Definition 1. We say that HE is IND-CPA-secure if all PPT adversaries have
a negligible advantage in the above game: AdvIND-CPA

HE,A (λ) ≤ negl(λ).

Definition 2. A function negl : N �→ [0, 1] is called negligible if for all positive
polynomials poly and sufficiently large λ ∈ N: negl(λ) < 1/poly(λ).

Message Authentication Codes. A message authentication code (MAC) con-
sists of (KeyGen,TAG,VRFY) (associated with a key space, a message space and
a tag space). KeyGen, a key generation algorithm, takes a security parameter
λ as input and outputs a key k (i.e., k ← KeyGen(λ)). TAG, a tag generation
algorithm, takes a message m and a key k as input, and outputs a tag (i.e.,
t ← TAG(m, k)). VRFY, a verification algorithm, takes a message m, a tag t and
a key k as input, and outputs a decision OutMAC (i.e., OutMAC ← VRFY(m, t, k)),
which is 1 if the message-tag pair (m, t) is valid, and 0 otherwise.

A typical construction of a MAC is via the use of Universal2 (U2) hash
functions, see [27–29] for more on U2 hash functions. There are constructions
of U2 hash functions that are ⊕-linear [30], from which one can construct an
⊕-linear MAC scheme. Note that a MAC scheme is called ⊕-linear if TAG(m1 ⊕
m2, k) = TAG(m1, k) ⊕ TAG(m2, k).
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Definition 3. A MAC is called (QT , QV , t, ε)-secure (or simply ε-secure) if no
PPT adversary A running in time at most t cannot generate a valid message-tag
pair, even after making QT tag generation queries to TAG and QV verification
queries to VRFY, except with probability ε.

Privacy-Preserving Biometric Authentication. A privacy-preserving bio-
metric authentication (PPBA) protocol comprises:

– Setup: In this step, a trusted party runs the key generation algorithm KeyGen
for the employed cryptographic primitives (e.g., homomorphic encryption)
using a security parameter λ as input: (pk, sk) ← KeyGen(λ). The keys are
distributed to the relevant parties.

– Enroll: This process collects the encrypted reference biometric template Enc(bi)
and stores it along with additional user information such as the user’s identity
IDi in the database DB, i.e., DB ← Enroll

(
Enc(bi), IDi

)
.

– Authen: This process takes an encrypted fresh biometric template Enc(b′
i) and

a claimed identity IDi, and involves actions from the protocol actors. This can
be abstracted as OutSP ← Authen(Enc(b′

i), IDi).

The PPBA protocol is correct if the following definition is satisfied.

Definition 4 (Correctness). We say that a privacy-preserving biometric
authentication protocol PPBA is correct if, for all enrolled user identities IDi

with the corresponding reference biometric templates bi, and for all fresh bio-
metric templates b′

i, Authen(Enc(b
′
i), IDi) results in a successful authentication of

the user with IDi if and only if Dist(bi, b
′
i) ≤ τ .

We define the security of PPBA against a malicious adversary A as follows.
Consider the following game:

ExpPrivPPBA,A(λ):

(pk, sk) ← KeyGen(λ); DB ← Enroll(IDi, Enc(bi)); b′
i0

, b′
i1

, b′
i0

�= b′
i1

← A(IDi, λ, pk);

β
R←− {0, 1}; Out ← Authen

(

IDi, Enc(b
′
iβ

)
)

; β′ ← A(IDi, λ, pk, b′
i0

, b′
i1

, Enc(b′
iβ

), DB,Out
)

;

Return 1 if β′ = β, 0 otherwise

and define the adversary’s advantage in this game as AdvPriv
PPBA,A(λ) =

∣
∣2Pr{ExpPrivPPBA,A(λ) = 1} − 1

∣
∣.

Definition 5 (Security and privacy). We say that PPBA is secure if, for
all PPT adversaries A, AdvPriv

PPBA,A(λ) ≤ negl(λ).

We assume that the adversary is given an oracle access to Authen and is
allowed to query it polynomially many times, e.g., poly(λ) times, where λ may
depend on the false acceptance rate. The adversary is also given Enc(b′

iβ
). If

the adversary cannot distinguish whether it is (IDi, b
′
i0

) or (IDi, b
′
i1

) that is being
used by Authen, then we say that the protocol preserves privacy of the biometric
templates.
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3 Adversary Model

In this paper, we focus on malicious as opposed to honest-but-curious, adver-
saries and we consider a distributed setting, namely, each user Ui has his/her own
client Ci, a cloud computing server CS with its own database, and an authenti-
cation server SP. The client Ci (e.g., a smartphone owned by the user Ui) has a
biometric sensor that extracts biometric templates from the user. By requiring
that each user Ui has a client Ci, potential damages can be minimised in case
the client Ci is stolen or lost. We assume that each user trusts his/her own client
device only to the extent that the biometric sensor and the extracted biometric
template are only accessible by the authorised apps on the user device. This is the
minimal reasonable assumption given the fact that most people nowadays have a
smartphone with an embedded biometric sensor, and without such a trust, users
cannot use their devices to remotely access services. This assumption has also
to be made in any type of authentication using client devices, e.g., password- or
token-based remote access. This assumption does not rule out the case where
an adversary is using several clients Ci, in collusion with the cloud server, to
impersonate a user that is not the owner of compromised clients. However, we
do note that if a client Ci is compromised, say, infected by malware, then the
reference biometric template of the owner Ui can be recovered using the fresh
biometric template provided by Ui by hill climbing attacks [31].

The authentication server SP handles the keys for the employed encryption
scheme and is responsible for making the authentication decision based on the
underlying matching process used. We also consider the authentication server SP
as a trusted key managing entity which keeps the secret keys secure and performs
its task honestly. However, we do not trust any biometric template to SP. The
malicious party that we want to have a full protection against is the cloud server
CS. In our case the cloud has a database that stores the encrypted reference
biometric templates. Additionally, CS performs computations on the encrypted
fresh and reference biometric templates. The results of the computation will allow
the authentication server to make its decision. We consider a malicious cloud
server as a PPT adversary. We do not consider denial-of-service type of attacks,
which are easy to mount by CS, since it can always send a wrong response which
would with high probability result in a false rejection.

Regarding communication among the protocol actors, we assume that the
communication channel between the protocol entities is secure in order to avoid
replay attacks. This can be achieved by using TLS or IPsec. We also only con-
sider the case of a single client for each user, a single cloud server, and a single
authentication server.

4 The Scheme and the Protocol

The main idea behind the verifiable computation of XOR is that the client stores
homomorphically encrypted message-tag pairs (e.g., Enc(m), Enc(t), where t =
TAG(m, k)) in the cloud server. When the client provides a new homomorphi-
cally encrypted message-tag pair (e.g., Enc(m′), Enc(t′), where t′ = TAG(m′, k)),
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the cloud server computes the designated function on the encrypted mes-
sages and tags separately (e.g., ctm⊕m′ = f(Enc(m),Enc(m′)) and ctt⊕t′ =
f(Enc(t),Enc(t′))), and returns the results to the client. The client decrypts
the results and checks if the tag is valid (i.e., m ⊕ m′ ← Dec(ctm⊕m′),
t ⊕ t′ ← Dec(ctt⊕t′), and VRFY(m ⊕ m′, t ⊕ t′, k)). If the MAC verification is
successful, then the client can be sure (up to the security of the MAC scheme)
that the cloud server has performed the correct computation.

Below, we apply this simple method to build a privacy-preserving bio-
metric authentication protocol. In the description, HE is an encryption
scheme which allows the computation of XOR of encrypted messages, i.e.,
f(Enc(m),Enc(m′)) = Enc(m ⊕ m′), and MAC is an XOR linear MAC. The
enrollment procedure Enroll involves the following interactions:

– SP generates (pk, sk) ← HE.KeyGen(λ) using a security parameter λ.
– The user Ui is asked to provide a user identity IDi (e.g., a username or a

pseudonym, etc.) by his/her client Ci, which sends his IDi as part of an enroll-
ment request to SP.

– SP maps IDi to an index i (i.e., i ← IDi) using a secret process known only to
itself. It then generates a key for the MAC using the security parameter λ and
IDi: ki ← MAC.KeyGen(λ, IDi). The tuple (i, pk, ki) is sent to Ci, and pk to CS
(the latter is only done once).

– After receiving (i, pk, ki), Ci first obtains the reference biometric template bi
from the user Ui, computes ti = TAG(bi, ki), and encrypts the reference bio-
metric template and the tag to obtain Enc(bi) and Enc(ti), respectively. Ci then
provides (i,Enc(bi),Enc(ti)) to the database DB on the cloud server side for
storage.

– Ci and SP store (i, ki) locally.

It is important for security that the user enrollment is performed in a secure
and controlled environment.

The authentication Authen involves the following interactions:

– The user Ui initiates the authentication process by providing his/her identity IDi

and a fresh biometric template b′
i to Ci, which then computes t′

i = TAG(b′
i, ki).

– Ci sends IDi as part of an authentication request to SP, and obtains pk from
SP.

– Ci computes Enc(b′
i) and Enc(t′

i), and sends (i,Enc(b′
i),Enc(t

′
i)) to CS.

– CS retrieves (Enc(bi),Enc(ti)) corresp. to i from DB and computes ctbi⊕b′
i

=

f(Enc(bi),Enc(b
′
i)) = Enc(bi⊕b′

i) and ctti⊕t′
i

= f(Enc(ti),Enc(t
′
i)) = Enc(ti⊕t′

i),

and sends (ctbi⊕bi , ctti⊕t′
i
, i′) to SP.

– SP extracts i from IDi and checks if the extracted i and the index i′ received
from CS are equal. If i �= i′, SP outputs ⊥. Otherwise, SP retrieves the locally
stored ki corresponding to i, decrypts ctbi⊕b′

i
and ctti⊕t′

i
to obtain bi ⊕ b′

i and
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ti ⊕ t′
i, respectively. If VRFY(bi ⊕ b′

i, ti ⊕ t′
i, ki) == 0, it outputs ⊥. Otherwise,

it checks if the Hamming weight HW(bi ⊕ b′
i) ≤ τ . If this is the case, SP

authenticates the user Ui; otherwise, it outputs ⊥.

From now on, we denote this protocol by PPBA-HE-MAC. It is straightfor-
ward to see that PPBA-HE-MAC is correct, since a legitimate user with his/her
own legitimate device can always successfully authenticate himself/herself as
long as the fresh biometric template matches the reference biometric template.

Security and Privacy Analysis. Intuitively, PPBA-HE-MAC is secure as long
as the employed HE scheme is IND-CPA-secure (cf. Definition 1) and the MAC
scheme is ε-secure (cf. Definition 3). In any biometric template recovery attack
that makes use of the side channel information (i.e., OutSP), CS needs to be
able to submit to SP a ctbi⊕b′

i
and ctti⊕t′

i
that encrypt a valid message-tag pair.

The ε-security of the employed MAC scheme does not allow this to happen.
Furthermore, if OutSP == ⊥, CS does not know whether it is due to the MAC
verification failure or the mismatch between the fresh and the reference biometric
template. Hence, the protocol is secure against the malicious CS. The following
summarises the security of our protocol, and the proof is given in Appendix-6.

Theorem 1 (Security and privacy) . The protocol PPBA-HE-MAC is secure
and privacy-preserving against the malicious CS according to our Definition 5,
if the employed HE is IND-CPA-secure and MAC ε-secure.

Simulation. PPBA-HE-MAC is efficient because both the MAC scheme and
the HE scheme can be implemented efficiently. The efficiency of the ⊕-linear
MAC scheme in our case depends on the efficiency of the employed U2 hash
functions. One suitable family of U2 hash functions for our instantiation is the
construction by Krawczyk [30], which exploits a Linear Feedback Shift Register
to allow efficient hardware implementations. This construction is also efficient on
software. We refer the curious reader to [32] for more on the software performance
of U2 hash functions.

Note that our utilisation of a lightweight MAC scheme for verifying the cor-
rectness of the outsourced computation contrasts nicely with the existing verifi-
able computation schemes. More precisely, efficiency is the main issue with the
existing verifiable computation schemes since they are very heavy computation-
ally and have a large overhead [33]. On the other hand, our approach using a
MAC scheme is very efficient regarding computation cost.

Regarding the HE scheme, we demonstrate its efficiency by simulating the
Goldwasser-Micali encryption scheme [15] for various security levels and biomet-
ric template lengths. The Goldwasser-Micali encryption scheme supports homo-
morphic evaluation of the XOR operation, and their primitives are the most
heavy ones in our construction.
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The simulations were performed on a Intel®CoreTM2 Duo CPU E8400 @
3.00 GHz x2 64 bit CentOS Linux 7 computer. The simulation software, written
in C++, linked the NTL v9.4.0 (Number Theory Library [34]), GNU Multiple
Precision Arithmetic Library v6.0.0 [35], for efficient multiprecision arithmetics
support. The security level and the corresponding size of the prime factors are
chosen according to the ECRYPT II recommendations and the length of the
biometric binary templates is chosen following Daugman [36] and SCiFI [26].
The simulation setup and results are shown in Table 1, the source code can be
provided upon request via anonymous channels.

Table 1. Simulation setup and results for the Goldwasser-Micali scheme.

Security
level in bits

Size of prime
factors in bits

Binary biometric
template length

Mean template
encoding time [s]

Mean template
decoding time [s]

80 1248 900 9.22 · 10−3 2.06 · 10−1

2048 2.09 · 10−2 4.69 · 10−1

128 3248 900 3.79 · 10−2 6.51 · 10−1

2048 8.60 · 10−2 1.48

We remark that since our aim is to show the feasibility of the HE scheme,
the implementation is not optimised. Also, the simulations are run on single
core, even though the Goldwasser-Micali encryption and decryption procedures
can be done in parallel, since it is a bitwise encryption scheme. Therefore, the
simulation results show that the HE scheme required for our instantiation is not
only feasible, but also efficient.

5 Protocol Extensions

Oblivious RAM (ORAM) for Hiding Access Patterns. Our protocol can
be easily extended to protect the access pattern of the client Ci towards the cloud
server CS. However, existing methods such as Private Information Retrieval
(PIR) come at an elevated communication overhead. To reduce such costs, we
suggest the use of ORAM instead, as a more suitable mechanism, and its use, as
presented by this work, would not alter the underlying security properties of the
main protocol. ORAM allows a client to hide the entry as well as the access pat-
tern from the server at a significantly reduced communication vs PIR. Moreover,
ORAM security is derived from the indistinguishability of any two access pat-
terns A(y) and A(y′), for any two respective queries y and y′. The concept was
initially presented by Goldreich and Ostrovsky [37] in 1996. Since then, the field
has seen the introduction of various protocols with improved mechanisms and
primitives, e.g., [38]. These advances on protocol efficiency have motivated the
apparition of new applications such as, biometric identification [39]. Typically,
ORAMs are designed and used to solve the problem of DB outsourcing [40]. This
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model would require the user to execute various ORAM primitives so that the
remote database is correctly shuffled. To alleviate this processing task, and to
make our protocol user agnostic, we propose to use a Secure Multiparty Compu-
tation (MPC) scheme. MPC schemes have been suggested in combination with
ORAM constructions in recent works (e.g., [41]). Under this extended protocol,
every time a new user data (e.g., Enc(bi) and Enc(ti)) is added to the ORAM
DB. The index i is used to store the data mapping in a separate ORAM. The
following are the additional parties, operations and the protocol extension:

– MPC Agent: MPC mechanisms provide security against semi-honest or mali-
cious adversaries and in various coalitions, including computational security
against dishonest majorities e.g., [42]. An MPC agent, composed by differ-
ent distrustful players (computational parties) with competing interests can be
added to our scheme. These computational parties can be as many as needed,
to give the users confidence on the scheme and could be allocated by any com-
bination of the scheme participants. This agent has to store, in shared form, an
ORAM containing the mapping of the template database using i.

– MAP(i): It returns the mapping of the template based on the shared index i
from the user. The mapping corresponds to the position to be queried on the
remote ORAM DB template.

– Sh(i): It is used to represent the secure secret sharing of the index i.
– Enrollment: The enrollment procedure is the same as described in Sect. 4.

However, at the end of the scheme, the client Ci provides (Sh(i),Enc(bi),Enc(ti))
to the MPC agent, who then stores i on its local mapping ORAM and appends
Enc(bi),Enc(ti)) to the � position of the physical DB of the cloud ORAM.

– Authentication: Similarly to the Enrollment, the authentication procedure
follows the same steps that are described at Sect. 4. In the same spirit as before,
once the client Ci has computed (Enc(b′

i),Enc(t
′
i)), it is sent to the MPC agent

instead, together with the stored index i in shared form. Then, the agent uses
i to extract the template and grants access to the cloud storage, so that the
original process can continue. To avoid revealing i to the CS, the MPC agent
sends the index directly towards the SP as i′.

These protocol extensions are oriented towards a task distribution. Hence,
they do not have an impact on the security properties of the authentication
scheme. It is worth noticing, however, that the security with respect to the
access pattern will depend solely on the underlying ORAM and MPC protocols
used by any implementation.

Biohashing for Avoiding Linkability of Error Patterns. The error pattern
bi ⊕ b′

i is disclosed to SP at the end of the authentication phase, as shown in
Sect. 4. This can disclose some information about the binary biometric templates.
For instance, the reliability of each bit can be different among different users, so
the error patterns can be used for tracking users. In the ideal case, all the error
patterns should be equiprobable for all the users. In this case, disclosing the
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error patterns would not provide any advantage to SP. However, this is difficult
to achieve in practice.

A practical solution to this problem is to use biohashing techniques [43]. The
usual approach for obtaining binary templates bi from biometric features fi is
by using a user-independent binarization transformation bi = B(fi). Biohashing
consists of using a user-specific random transformation bi = Bi(fi) instead. The
specific design of these transformations ensures a minimum distortion in the
distances in the transformed domain with respect to the distances in the original
domain, thus keeping the discrimination ability of the biometrics unaffected.
And the dependency between the error patterns and the user-specific binary
templates’ reliability is avoided, since changing Bi leads to an independent error
pattern.

The incorporation of biohashing into our system is straightforward. The user-
specific random transformation Bi is generated during the enrollment phase in
the user client Ci, where it is stored and used to obtain the enrollment binary
template bi = Bi(fi). During the authentication phase, this transformation is
used by Ci to obtain b′

i = Bi(f ′
i). When the user enrolls again, a new random

transformation would be generated, thus avoiding linkability between the previ-
ous and the new error patterns.

6 Conclusions

We proposed an efficient scheme for verifiable computation of XORing encrypted
messages, and successfully applied it to the scenario of distributed biometric
authentication, where the storage of the encrypted biometric templates and part
of the computations are outsourced to a cloud server. The security and privacy
of the proposed scheme has been proved in a challenging and reasonable mali-
cious internal adversarial scenario, as opposed to the more usual and less realistic
honest-but-curious scenario. Additionally, ORAM is employed instead of preva-
lent PIR schemes to reduce the communication overhead while keeping the access
pattern hidden from the cloud. Moreover, Biohashing techniques are proposed
to avoid the disclosure of linkable error patterns. The efficiency of the proposed
scheme has been assessed by simulating the most computationally costly parts
of the proposed scheme, i.e. the homomorphic encryption primitives, showing
the feasibility and efficiency of the proposed solution.

Acknowledgments. This work was funded by the European Commission through the
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supported by the FP7-STREP project “BEAT: Biometric Evaluation and Testing”,
grant number: 284989 and the VR project PRECIS.

A Proof of Theorem 1

Proof. Let Π be the PPBA-HE-MAC protocol. The security of Π against a mali-
cious adversary A (i.e., CS) is defined via the following game.
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ExpPrivΠ,A(λ, IDi):
(pk, sk), ki,MAC.K ← KeyGen(λ, IDi); DB ← Enroll(IDi, Enc(bi), ki)
(b′

i0
, b′

i1
), b′

i0
�= b′

i1
← A(IDi, λ, pk,MAC.K);

β
R←− {0, 1}; t′

iβ
← TAG(b′

iβ
, ki); Out ← Authen

(

IDi, Enc(b
′
iβ

), Enc(t′
iβ

)
)

;

β′ ← A(IDi, λ, pk, b′
i0

, b′
i1

, Enc(b′
iβ

), Enc(t′
iβ

), DB,Out
)

;

Return 1 if β′ = β, 0 otherwise

where MAC.K is the key space for the employed MAC. The adversary’s advan-
tage is defined as AdvPrivΠ,A =

∣
∣2Pr{ExpPrivΠ,A(λ, IDi) = 1} − 1

∣
∣. If the advantage

is ≤ negl(λ), we say that Π is secure (and preserves the privacy of biometric
templates) against A.

The details of Authen
(
IDi,Enc(b′

iβ
),Enc(t′iβ

)
)

are given below.

Authen
(

IDi, Enc(b′
iβ

), Enc(t′
iβ

)
)

:

Ci: SP(IDi, ctbi⊕b′
iβ

, ctti⊕t′
iβ

, i′, sk):

Send (Enc(b′
iβ

), Enc(t′
iβ

), i) to CS i ← IDi

Send IDi to SP If i �= i′ then

Return Out=0

bi ⊕ b′
iβ

← Dec
(

ctbi⊕b′
iβ

)

CS(i, Enc(b′
iβ

), pk): ti ⊕ t′
iβ

← Dec
(

ctti⊕t′
iβ

)

Enc(bi), Enc(ti) ← DB(i) Retrieve ki

ctbi⊕b′
iβ

← f(Enc(bi), Enc(b
′
iβ

)) If 0 == VRFY(bi ⊕ b′
iβ

, ti ⊕ t′
iβ

, ki) then

ctti⊕t′
iβ

← f(Enc(ti), Enc(t
′
iβ

)) Return Out=0

Send (ctbi⊕b′
iβ

, ctti⊕t′
iβ

, i′) to SP If HW(bi ⊕ b′
iβ

) ≤ τ then

Return Out=1

Return Out=0

The proof is based on the following two hybrid games.

game 0: This is the original game. Let S0 be the event that β′ = β.

game 1: This is the same as game 0, except that now CS always performs the
correct computation. Let S1 be the event that β′ = β in game 1.

Since providing a different index i′ than the correct one i always results in ⊥
output, it does not help the adversary (i.e., the cloud) to win any of the games.
So we assume that CS always provides the correct index i.

Claim 1: |Pr{S0}−Pr{S1}| is negligible. This follows from the ε-security of the
MAC scheme. Precisely, the difference between the two games is that in game 0,
VRFY(bi⊕b′

iβ
, ti⊕t′iβ

, ki) == 0 if CS does not perform the computation correctly,
except for probability ε, while in game 1, that does not happen as it performs
the computation correctly. So the difference between the winning probabilities
in game 0 and game 1 is negligible.

Claim 2: The adversary has negligible advantage in game 1, i.e.,
∣
∣2Pr{S1} −

1
∣
∣ ≤ negl(λ). This follows from the IND-CPA-security of the employed HE

scheme. Since otherwise, we can use the adversary A as a blackbox to con-
struct another PPT adversary A′ that can win the IND-CPA game against the
HE scheme with non-negligible probability in a straightforward fashion. More
precisely, the adversary A′ can use the challenge ciphertext in the IND-CPA game
to simulate the Π for A, and use A’s guess to win the IND-CPA game against the
HE scheme. Hence, combining the two claims, we have that AdvPrivΠ,A is negligible.
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Abstract. One of today’s main challenge related to cloud storage is
to maintain the functionalities and the efficiency of customers’ and ser-
vice providers’ usual environments, while protecting the confidentiality
of sensitive data. Deduplication is one of those functionalities: it enables
cloud storage providers to save a lot of memory by storing only once a
file uploaded several times. But classical encryption blocks deduplication.
One needs to use a “message-locked encryption” (MLE), which allows the
detection of duplicates and the storage of only one encrypted file on the
server, which can be decrypted by any owner of the file. However, in most
existing scheme, a user can bypass this deduplication protocol. In this
article, we provide servers verifiability for MLE schemes: the servers can
verify that the ciphertexts are well-formed. This property that we for-
mally define forces a customer to prove that she complied to the dedupli-
cation protocol, thus preventing her to deviate from the prescribed func-
tionality of MLE. We call it deduplication consistency. To achieve this
deduplication consistency, we provide (i) a generic transformation that
applies to any MLE scheme and (ii) an ElGamal-based deduplication-
consistent MLE, which is secure in the random oracle model.

1 Introduction

Cloud computing is often promoted towards companies as a way to reduce their
costs while increasing accessibility and flexibility. It is common sense to have
one large computing infrastructure that companies would share instead of repli-
cating smaller ones. This saves money and is an eco-friendlier way to distribute
resources. But cloud platforms are neither cheap nor eco-friendly. The larger
amount of data these platforms host, the more expensive they become. Impact
on the environment grows as well. One way to address this issue is to delete iden-
tical files stored by different users. This method, called deduplication, is widely
used by cloud providers. However, some of the cloud storage users may want to
encrypt their data, distrusting honest-but-curious providers. If they use a clas-
sical encryption scheme, deduplication is not possible anymore: two encryptions
of the same plaintext under different keys yield indistinguishable ciphertexts.
A new kind of encryption is needed, under which it is possible to determine
whether two different ciphertexts are locked to the same message or not.
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 299–315, 2016.
DOI: 10.1007/978-3-319-48965-0 18
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Previous Work. The work on the message-locked encryption model has been
initiated by Douceur et al. [8] with their convergent encryption (CE) scheme. The
main idea is very simple: everyone that encrypts the same message m will obtain
the same ciphertext c. The convergent encryption protocol CE given in [8] uses
a hash function H (which is modelled as a random oracle for the security proof)
and a deterministic symmetric encryption scheme SE: it sets the encryption and
decryption key as K = H(M), where M is the message to be encrypted, and the
ciphertext C is computed as SE.Encrypt(M,K). The ciphertext is concatenated
to a tag τ = H(C) which allows the server to easily detect duplicates. When the
server receives a new ciphertext, it discards the file if the tag equals one already in
its database. Following this protocol, several schemes have been given, focussing
mainly on improving efficiency e.g. [7,10,18].

However, in [4], the authors point out the lack of a formal security investi-
gation of this emerging model. They formally introduce the concept of message-
locked encryption (MLE) and provide a complete security analysis. In particular,
they show that a secure MLE does not need to be deterministic to achieve its
goal. It is sufficient (and more general) to provide an equality testing procedure
that publicly checks if two ciphertexts encrypt the same plaintext, as shown
in [1]. The interactive case has recently been studied in [3].

Security. As other kinds of “searchable encryption”, MLE stands at the boundary
of deterministic and probabilistic encryption worlds. As such, it cannot provide
the standard notions of semantic security. Likewise, security can only be achieved
for unpredictable data. If one can guess a possible message, one can encrypt it
and then easily test ciphertexts for equality. In previous works the following pri-
vacy properties (PRV for short) were defined. The first one is PRV$-CDA [4] that
states that the semantic security should hold when messages are unpredictable
(having high min-entropy), even for an adversary being able to choose the dis-
tribution where the messages are drawn (hence the notion of CDA, for Chosen
Distribution Attack). In this experiment, the adversary has to distinguish a
ciphertext according to a distribution of its choice from a random bit sequence.
The second one is PRV-CDA2 [1] that adds the parameter dependence setting, for
which the security should hold even for messages that depend on the public para-
meters. They are then given to the adversary who chooses a distribution. Abadi
et al. [1] have also slightly modified the security experiment, compared to [4],
introducing a real-or-random oracle that gives to the encryption algorithm either
a set of (unpredictable) messages drawn from the adversary’s chosen distribution,
or a true randomly chosen set of (unpredictable) messages. The adversary has to
distinguish between both cases. Additionally to these indistinguishability-type
properties, the authors in [4] introduce the natural requirement of tag consis-
tency, whose goal is to make it impossible to undetectably replace a message by
a fake one. It states that if two tags are equal, then the underlying messages
should be equal.

Our contributions. In this article, we investigate the converse: if two messages
are equal, does the server always perform deduplication? Strangely enough, in
almost all previous CE and MLE schemes [3,4,8], it is straightforward for a user
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to avoid the deduplication process altogether. The main feature for which those
schemes were introduced is not achieved. In those schemes, the server does not
actually verify that the key has actually been computed as required.

In this context, we have three contributions in this paper. First, we formalize
this new security requirement, namely deduplication consistency, second we pro-
vide a generic transformation of a non-deduplication consistent MLE scheme into
a deduplication consistent one and third we give a ElGamal-based construction.

In order to achieve verifiability in MLE, we introduce a new notion of dedu-
plication consistency. It states that an equality test run on two valid ciphertexts
with the same underlying plaintext will output 1 with overwhelming probability.
Verifiability is a classical notion to prevent denial-of-service attacks, but this can
be also useful in many scenarios. A court could oblige a cloud service provider
to delete all copies of a given file, for example a newspaper article (right-to-
be-forgotten) or a media file (for copyright infringement). If users are able to
escape the deduplication process, the cloud service provider would not be able
to prove that he complied to the court decision. A different scenario could be
a collaborative database. Some attributes need to have a unique value in each
row. If two users want to upload the same information, then the database would
want to enforce deduplication.

A natural way to provide the verifiability of a ciphertext in a scheme of e.g. [8],
is to provide a NIZK proof that the key K = H(M) is correctly computed from
the message M , and the ciphertext C = SE.Encrypt(M,K) is also consistent
w.r.t. the same message M and key K. Based on this, we propose a generic
construction to turn any MLE scheme into a deduplication consistent scheme.

To instantiate this generic scheme, we rely on an ElGamal-based construc-
tion. Indeed, another important issue in cloud storage is efficiency, as people
usually expect instant uploading and responses from the cloud storage provider.
Moreover, the ciphertexts’ expansion should be carefully controlled, as the dedu-
plication main goal is to save space storage. As such, neither generic non-
interactive zero-knowledge proof (NIZK) used in [1] nor fully homomorphic
encryption used in [3] could be considered as acceptable solutions. Combining
an ElGamal encryption with an algebraic hash function makes possible to use
efficient NIZK over discrete logarithm relation sets [16] to prove that these com-
putations are all consistent one with each other. Our construction is the first
one that provably achieves deduplication consistency. As this is a strong secu-
rity requirement, our scheme is far less efficient than convergent-like solutions,
but it is still more efficient than those of Abadi et al. [1] or those of Bellare and
Keelveedhi [3] whose goal is also to strengthen security.

Organization of the paper. The paper is now organized as follows. In the next
section, we provide some background that will be useful all along the paper.
In Sect. 3, we give the security model for message-locked encryption. Section 4
introduces our new notion of deduplication consistency and the generic construc-
tion and Sect. 5 describes the ElGamal-based construction. Finally, in Sect. 6, we
provide the security proofs and discuss efficiency.
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2 Preliminaries

2.1 Bilinear Groups

Our construction relies on pairings, so we recall the definition of bilinear groups
that are a set of three groups G1,G2,GT of prime order p together with a bilinear
map e : G1 × G2 → GT such that (i) for all X1 ∈ G1,X2 ∈ G2 and a, b ∈ Zp,
e(Xa

1 ,Xb
2) = e(X1,X2)ab, (ii) for X1 �= 1G1 and X2 �= 1G2 , e(X1,X2) �= 1GT

,
and (iii) e is efficiently computable. We use type 3 pairings for which there are
no efficiently computable homomorphisms between G1 and G2.

2.2 Computational Assumptions

Our construction security relies on the following computational assumptions.

Assumption 1 (blinded-DDH (bl-DDH)). Given (t1, tu1 , g1, g
r
1, g

z
1) ∈ G

5
1 and

(t2, tu·k
2 ) ∈ G

2
2 for random (u, r, k) ∈ (Z∗

p)
3, it is hard to decide whether z = r · k

or z is a random element from Z
∗
p. We define Advbl-DDH

A (λ) as the advantage of
a polynomial-time adversary A against bl-DDH.

In the security proof of our scheme, we use the following generalization of
the bl-DDH assumption. We stress that (1, 1)-bl-DDH is the bl-DDH assumption.

Assumption 2 ((T, �)-blinded-DDH ((T, �)-bl-DDH)). Let T and � be two
integers. Let

[
uh, {ri,h}�

i=1, kh

]T

h=1
be random in (Z∗

p)
T (�+2). Given (t1, g1, . . . , g�)

in G
�+1
1 , t2 in G2,

[
tuh
1 , {g

rh,i

i }�
i=1, {g

zh,i

i }�
i=1

]T

h=1
∈ G

T (2�+1)
1 and

[
tuh·kh
2

]T

h=1
∈

G
T
2 , for all h = 1, . . . , T and for all i = 1, . . . , �, it is hard to decide whether

zh,i = rh,i · kh or z is a random element from Z
∗
p. We define Adv

(T,�)-bl-DDH
A (λ) as

the advantage of a polynomial-time adversary A against (T, �)-bl-DDH.

To assert the strength of our hypothesis, we prove the following reduction to
the tripartite decisional Diffie-Hellman assumption [5].

Theorem 1. The blinded-DDH assumption is polynomially reducible to the tri-
partite Diffie-Hellman assumption. The (T, �)-blinded-DDH assumption is poly-
nomially reducible to the blinded-DDH assumption.

2.3 Commitment Schemes

A commitment scheme aims at masking a secret while allowing a later revelation.

Generic Description. Formally, those schemes are made up with three algo-
rithms, namely the Setup which on input a security parameter λ outputs the
public parameters pp, the Commit which on input pp and a message M outputs
a commit C and a witness r, and the Open which on input a commit C, a mes-
sage M and a witness r outputs 1 if C is a commitment of M for the witness r,
and 0 otherwise. A commitment scheme Γ is considered to be cryptographically
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secure if it verifies both the hiding and the binding properties. We focus on the
latter as it is the one that matters the most in our constructions and proofs.

The commitment binding experiment ExpbindingΓ,A (λ) starts by executing the
Setup to obtain pp. On input pp, the adversary A outputs a commitment C, and
two pairs (M, r) and (M ′, r′). The experiment outputs 1 iff Open(C,M, r) =
Open(C,M ′, r′) = 1. We say that the commitment scheme Γ is binding if for
all polynomial time adversaries A the following advantage is negligible for all λ:
AdvbindingΓ,A (λ) = Pr

(
ExpbindingΓ,A (λ) = 1

)
.

The Pedersen Commitment. Let G be a group of prime order p and let g and
h be generators of G. The Pedersen Commitment [13] allows a prover to com-
mit on a secret value m ∈ Zp. During the Commit execution, one computes
C = gmhr with r ∈ Zp picked uniformly at random to the verifier. The Open
algorithm is straightforward. This commitment scheme is perfectly hiding and
is computationally binding under the discrete logarithm assumption.

2.4 Non-Interactive Zero-Knowledge (NIZK) Proofs

We use NIZK proofs of membership in NP languages to achieve the notion of
deduplication consistency that we introduced.

Generic Description. Let Π be a proof system in NP languages for a NP-relation
rel. Such a system is given by two probabilistic polynomial-time machines P and
V such that (i) for all (y, w) ∈ rel (that is rel(y, w) = true), P takes as input
(y, w) and V takes as input y and (ii) at the end of the protocol between P and
V, V outputs a bit d of acceptance (d = 1) or rejection (d = 0). We require
the following properties: (i) Completeness for all (y, w) ∈ rel, V returns 1 with
probability 1; and (ii) Soundness: for all y ∈ {0, 1}∗, if V returns 1, then it exists
w such that (y, w) ∈ rel with overwhelming probability.

We also need this proof system to be zero-knowledge. This means that a
distinguisher D cannot distinguish between the proofs produced by a real prover
or the ones produced by a simulator. We denote AdvzkΠ,D(λ) the advantage of an
adversary A in this distinguishing game, and we say that a non-interactive proof
system (P,V) is (statistically) zero-knowledge if there exists a polynomial time
simulator sim such that for any polynomial time distinguisher D, the function
AdvzkΠ,D(λ) is negligible.

Double Discrete Logarithms Proofs. For our ElGamal-based scheme, the NIZK
proofs we use are conjunctions of classical discrete logarithm relations [16]. They
are made non-interactive thanks to the Fiat-Shamir transform [9], proven to
be secure in the random oracle model [14]. The main time-consuming part is
a double logarithm NIZK proof (with a statistical zero-knowledge property, as
shown in [17]), where the statement has the form: NIZK

(
s : V1 = hxs ∧ V2 = ys

)
,

where h, y ∈ Zp and x ∈ Z
∗
p are public, while s ∈ Z

∗
p is secret.
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2.5 Hashing Block Sources

Message-locked encryption, like deterministic encryption, can only protect mes-
sages that are hard to guess. To model this fact, Bellare et al. propose in [2] a
definition of privacy, which states that no information about multiple dependent
messages is leaked from their encryptions. Though unpredictable, the adversary
A can choose the distribution over the messages, allowing them to be corre-
lated. In order to avoid brute force attacks, the distribution of messages should
guarantee a minimal entropy of the messages. The min-entropy of a random
variable X is defined as H∞(X) = − log(maxx(Pr [X = x])). A random variable
X such that H∞(X) ≥ μ is a μ-source. A (T, μ)-source is a random variable
X = (X1, . . . , XT ) where each Xi is a μ-source. A (T, μ)-block source is a ran-
dom variable X = (X1, . . . , XT ) where each Xi|X1=x1,...,Xi−1=xi−1 is a μ-source.

One of the crucial point in our construction of MLE is the hashing of such
block sources. The Leftover Hash Lemma [12] is a classic tool for extracting
random-looking strings from an uncertain source of entropy. Precise and tight
results from [6] will help us to prove the privacy of our MLE when the keys
are derived from messages produced from a block source. The following theorem
from [6] states that if H is a 2-universal hash function applied to some elements
of a block source (X1, . . . , XT ), the distribution (H,H(X1), . . . , H(XT )) is close
to the uniform distribution. Let us recall that a family H of hash functions
mapping {0, 1}n to {0, 1}� is said to be 2-universal if for all distinct x and y,
the probability that H(x) = H(y) equals 1

2� , when H is drawn at random.

Theorem 2. [6, Theorem 3.5] Let H : {1, . . . , 2n} → {1, . . . , 2m} be a random
hash function from a 2-universal family H. Let X = (X1, . . . , XT ) be a (T, μ)-
block source over {1, . . . , 2n}T . For every ε > 0 such that μ > m + log(T ) +
2 log(1/ε), the hashed sequence (H,Y) = (H,H(X1), . . . , H(XT )) is ε-close to
uniform in H × {1, . . . , 2m}T .

3 Message-Locked Encryption: Definition and Security

There are two different definitions for message-locked encryption (MLE) in the
literature. The first one is due to Bellare, Keelveedhi and Ristenpart [4] and the
second one from Abadi, Boneh, Mironov, Raghunathan and Segev [1]. Our defin-
ition, as well as the security model, is based on the ones from [1]. This definition
is more general than Bellare et al.’s, but makes the notion of tag less present.
In [4], the tag generation is performed only from the ciphertext, and the tag cor-
rectness ensures that one message encrypted by two different users will have the
same tag, so that a server will be able to remove one of the ciphertexts. Abadi et
al.’s definition of MLE (denoted MLE2) introduces a validity test to check the
validity of ciphertext, and an equality test to deduplicate redundant files. This
allows to handle randomized tags instead of deterministic. Even though there is
no tag generation anymore, the security notion of tag consistency is kept, and
we will sometimes informally call “tags” the parts of the ciphertext that are
involved in the equality test.
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3.1 Syntactic Definition

A Message-Locked Encryption (MLE) scheme is defined by the six following
algorithms (PPGen, KD, Enc, Dec, EQ, Valid) operating over the plaintext space
M, ciphertext space C and keyspace K, with λ as a security parameter.

– The parameter generation algorithm PPGen takes as input 1λ and returns the
public parameters pp ← PPGen(1λ).

– The key derivation function KD takes as input the public parameters pp, a
message M , and outputs a message-derived key kM ← KD(pp,M).

– The encryption algorithm Enc takes as input pp, a message-derived key kM ,
and a message M . It outputs a ciphertext c ← Enc(pp, kM ,M).

– The decryption algorithm Dec takes as input pp, a secret key kM , a ciphertext
c and outputs either a message M or ⊥ : {M,⊥} ← Dec(pp, kM , c).

– The equality algorithm EQ takes as input public parameters pp, and two
ciphertexts c1 and c2 and outputs 1 if both ciphertexts are generated from
the same underlying message, and 0 otherwise: {0, 1} ← EQ(pp, c1, c2).

– The validity-test algorithm Valid takes as input public parameters pp and a
ciphertext c and outputs 1 if the ciphertext c is a valid ciphertext, and 0
otherwise: {0, 1} ← Valid(pp, c).

A message-locked encryption is said to be correct if for all λ ∈ N, all pp ←
PPGen(1λ), all message M ∈ M and all c ← Enc(pp,KD(pp,M),M),

(i) M = Dec(pp,KD(pp,M), c) and Valid(pp, c) = 1, and
(ii) EQ(pp,Enc(pp,KD(pp,M),M ;ω),Enc(pp,KD(pp,M),M ;ω′)) = 1.

This last property is equivalent to tag correctness in [4] (and we explic-
itly wrote the randomness ω and ω′ to recall that encryption is proba-
bilistic). To avoid trivial solutions, we recall that keys kept for decryption
must be shorter than the message. As mentioned in [4], there must exist
constants c, d < 1 such that the function that on input λ ∈ N returns
maxpp,M (Pr[|KD(pp,M)| > d|M |c]) is negligible, where pp ∈ PPGen(1λ) and
M ∈ M.

3.2 Privacy

The main security requirement for message-locked encryption is privacy of unpre-
dictable messages. No MLE scheme can provide indistinguishability for pre-
dictable messages (drawn for a polynomial-size space), because of the equality
testing procedure EQ. Our privacy notion is a combination of those existent. We
rely on a PRV-CDA2-like requirement [1], however, like in [4], our scheme does
not achieve the privacy property when the message distribution chosen by the
adversary depends on the public parameters. Therefore, we call our privacy prop-
erty PRV-piCDA, for Privacy under parameter independent Chosen Distribution
Attack. It captures privacy of messages that are unpredictable but independent
of the public parameters. Let us first define the real-or-random encryption oracle.
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Definition 1 (Real-or-Random encryption oracle). The real-or-random
encryption oracle takes as input pairs (mode,M) with mode ∈ {real, rand}, and
M a polynomial size circuit representing a joint distribution over T messages
from M. If mode = real then the oracle samples (M1, . . . ,MT ) ← M and if
mode = rand then the oracle samples T uniform and independent messages from
M. Then the oracle outputs a ciphertexts vector C = (c1, . . . , cT ) such that, for
each i the oracle computes kMi

= KD(pp,Mi) and ci = Enc(pp, kMi
,Mi).

Following [15], we consider adversaries whose restriction on their queries is
that they are samplable by a polynomial-size circuit in the random oracle model.

Definition 2 (q-query polynomial-sampling complexity adversary). We
consider (T, μ)-block source. Let A(1λ) be a probabilistic polynomial-time algo-
rithm that is given an oracle access to RoR(mode, pp, ·) for some mode ∈
{real, rand}. Then, A is a q-query (T, μ)-source adversary if, for each of A’s
RoR-queries M, it holds that M is a (T, μ)-block source that is samplable by a
polynomial-size circuit that uses at most q queries to the random oracle.

Informally, PRV-piCDA security notion requires that encryptions of random
messages should be indistinguishable from encryptions of messages drawn from
a (T, μ)-block source.

Definition 3 (PRV-piCDA Security). An MLE scheme Π is (T, μ)-block source
PRV-piCDA secure if, for any probabilistic polynomial-time (T, μ)-block source
adversary A = (A0,A1), there exists a negligible function ν(λ) such that:

AdvPRV−piCDA
Π,A (λ) =

∣
∣
∣Pr

[
Expreal

Π,A = 1
]

− Pr
[
Exprand

Π,A = 1
]∣∣
∣ ≤ ν(λ),

where the game Expmode
Π,A (λ) is defined Fig. 1.

Fig. 1. PRV-piCDA Game:
Expmode

Π,A(λ)
Fig. 2. Tag Consistency Game : ExpTC

Π,A(λ)

As stated in [1, Theorem 4.6], the case where A can query the RoR oracle
multiple times is equivalent to the case where A can query this oracle just once.
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3.3 Tag Consistency

Tag consistency is a major requirement of any MLE scheme. It ensures that the
server will not discard a file if it doesn’t have another file encrypting the same
plaintext. We use the game defined by Abadi et al. in [1].

Definition 4 (Tag consistency). An MLE scheme Π is tag consistent if for
any probabilistic polynomial-time A, there exists a negligible function ν(λ) such
that:

AdvTC
Π,A(λ) = Pr

[
ExpTC

Π,A = 1
]

≤ ν(λ),

where the random experiment ExpTC
Π,A(λ) is described in Fig. 2.

4 Deduplication Consistency

In precedent works, the main security requirement, besides privacy, was tag con-
sistency, meaning that if the equality test EQ(c1, c2) outputs 1 on two ciphertexts,
then the underlying plaintexts are the same. As sketched in the introduction, we
tackle here the converse case: if two ciphertexts c1 and c2 are meant to encrypt
the same message, we require that EQ(c1, c2) outputs 1 with overwhelming prob-
ability. To capture such a security issue, we introduce in the following a new
security notion for message-locked encryption, called deduplication consistency.
This notion ensures that a MLE scheme provably provides deduplication.

4.1 Overview

The main point of deduplication consistency is to make a MLE scheme verifiable.
In fact, if a server makes use of an MLE scheme for which it cannot be convinced
that deduplication is actually enforced, he will loose the benefit he has expected
from deduplication. In most existing schemes indeed (see below), only users are
responsible for a smooth deduplication process. Then these schemes can easily
be “deviate[d] from [their] prescribed functionality”1.

In addition to save space storage, verifiable deduplication is a functionality
that can have an interest of its own. Today, a really hot topic is the right-to-
be-forgotten. An important question related to this topic is how a server can
prove that he really deleted some given files. The problem is even more difficult
if the files are encrypted on the server: the right to privacy of a user cannot
prevail over the right to privacy of other users. It can happen however that a
court asks a cloud service provider to remove a defamatory newspaper article
or video from its storage space. Then the server’s manager could encrypt this
specific file with a verifiable MLE scheme and match it against the other files in
the server. If the equality test returns one, deleting the corresponding file will be
sufficient to prove that no user can now access to this file, as no user can bypass
the deduplication procedure.

1 Oded Goldreich, The Foundations of Cryptography, Preface.
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4.2 Formal Definition

We define the deduplication experiment ExpDC
Π,A(1λ) described on Fig. 3.

Definition 5 (Deduplication consistency). An MLE scheme Π is dedu-
plication consistent if for any probabilistic polynomial-time A, there exists a
negligible function ν(λ) such that:

AdvDC
Π,A(λ) = Pr

[
ExpDC

Π,A = 1
]

≤ ν(λ),

where the random experiment ExpDC
Π,A(1λ) is described in Fig. 3.

Fig. 3. Deduplication Security Game : ExpDC
Π,A(λ)

As for previous schemes, none of them formalizes this notion. Moreover, it
is obvious that the different solutions given by Bellare et al. [4] do not achieve
deduplication consistency. We have the intuition that the randomized scheme
proposed by Abadi et al. [1] is deduplication consistent due to the presence of
the NIZK, but a formal proof remains an open problem.

4.3 A Generic Construction

We first describe a generic construction permitting to transform any private and
tag consistent MLE scheme Λ into a MLE scheme Λ′ additionally achieving the
deduplication consistency.

Our construction. For this purpose, we need a secure commitment scheme Γ and
a NIZK proof system Π (see Sect. 2). Our scheme is described as follows.

– PPGen. This step executes (i) Λ.PPGen which outputs Λ.pp, (ii) Γ.Setup which
gives Γ.pp and (iii) the generation of a reference string R for the NIZK proof.
Then, Λ′.pp = (Λ.pp, Γ.pp, R).

– KD. On input Λ′.pp and a message M , this algorithm simply corresponds to
the execution of Λ.KD, which outputs kM = Λ.KD(Λ.pp,M).
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– Enc. There are three steps during the encryption algorithm. At first, we execute
the Λ.Enc(Λ.pp, kM ,M) which outputs c. Then, we compute a commitment
on M , as (C, r) = Γ.Commit(Γ.pp,M). Finally, we provide the following NIZK
proof:

π = NIZK
(
M, r : c = Λ.Enc(Λ.pp, Λ.KD(Λ.pp,M),M)

∧(C, r) = Γ.Commit(Γ.pp,M)
)

and the output ciphertext is c′ = (c, C, π).
– Valid. On input c′ = (c, C, π), this algorithm executes Λ.Valid(Λ.pp, c) and

verifies that the NIZK π is correct.
– Dec. On input c′ = (c, C, π) and kM , this algorithm first executes Valid, and,

if it returned 1, it executes Λ.Dec(Λ.pp, kM , c) to obtain M .
– EQ. On input c′

1 = (c1, C1, π1) and c′
2 = (c2, C2, π2), this algorithm first

executes Valid on both ciphertexts, and then, if both returned 1, it executes
Λ.EQ(Λ.pp, c1, c2).

Security. Regarding the security of the above construction, it verifies the privacy
and the tag consistency properties. This is mainly due to the fact that the
addition of the commitment and the NIZK proof does not affect the security
proofs related to both privacy and tag consistency, for obvious reasons.

More precisely, regarding the privacy property, the NIZK proof can be sim-
ulated during the experiment (by the real-or-random oracle), using the zero-
knowledge property. We have a slight loss in security, corresponding to the
advantage of the adversary against the hiding property of the used commitment
scheme Γ . Regarding the tag consistency property, this is similarly obvious.

The deduplication consistency is given by the following theorem.

Theorem 3. The scheme Λ′ given above is deduplication-consistent, assuming
that Λ is tag consistent, Γ is binding, and π is a sound zero-knowledge proof.

Proof. Our aim in this proof is to reduce the deduplication consistency of our
construction to the binding property of the commitment scheme. We consider the
commitment binding experiment given in Sect. 2 and play the role of an adversary
A against it. A has the parameters Γ.pp of the scheme Γ . His aim is to output
a commitment C and two pairs (M, r) and (M ′, r′) such that Open(C,M, r) =
Open(C,M ′, r′) = 1. We assume that A has access to an adversary B which has
a non-negligible advantage against the deduplication consistency experiment of
our scheme.

Parameter generation. We first generate the parameter of the MLE system, exe-
cuting Λ.PPGen, generating a reference string R for the NIZK proof, and adding
the commitment parameter Γ.pp obtained above. We then give (Λ.pp, Γ.pp, R)
to the adversary B.

Adversary’s answer. At any time of the experiment, using its advantage against
deduplication consistency, B outputs (M, c′

0, c
′
1), with c′

0 = (c0, C0, π0) and
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c′
1 = (c1, C1, π1), such that all the conditions related to the deduplication con-

sistency experiment are verified. In particular, we have Λ′.Valid(pp, c′
0) = 1,

Λ′.Valid(pp, c′
1) = 1 and Λ.EQ(pp, c0, c1) = 0.

Answer to the commitment challenge. Using the soundness property of the NIZK,
A is then able to extract, from π0 and π1, the underlying secret messages M ′

0

and M ′
1, related to c0 and c1 respectively. As we have Λ.EQ(pp, c0, c1) = 0, and

since Λ is tag consistent, we necessarily have M ′
0 �= M ′

1.
As B is successful in the DC experiment, and using c0 and c1 respectively,

A computes kM = Λ.KD(pp,M), and then M0 = Λ.Dec(pp, kM , c0) and M1 =
Λ.Dec(pp, kM , c1), with M = M0 = M1.

It means that it exists i ∈ {0, 1} such that Mi �= M ′
i . As both ciphertexts

are valid, for both Mi and M ′
i , there is a sound zero-knowledge proof provided

by B from which A is able to extract the corresponding witnesses ri and r′
i. A

sends Ci, (Mi, ri), (M ′
i , r

′
i) to the binding challenger. It is a winning output for

the binding experiment of Γ , with an advantage at least equal to the one of B
against deduplication consistency, which concludes the proof.

5 A Concrete Message Locked Encryption
with Deduplication Consistency

In this section, we describe our construction of a deduplication consistent MLE.
Compared to the fully randomized message-locked encryption from [1], the main
difference is that the secret key is derived from the message using a hash func-
tion which has algebraic properties. Thus, we avoid generic NIZK [11], gaining
efficiency. More precisely, the message M is cut into small blocks (m1‖ . . . ‖m�)
of ρ bits, and the key is computed as kM =

∏�
i=1 ami

i mod p for publicly known
ai’s. By using Theorem 2, we prove that if the messages come from a source with
high enough min-entropy, the key kM is indistinguishable from a uniform key.

These blocks mi are chosen small enough to be efficiently decrypted, as we
encrypt them using the ElGamal encryption with messages in the exponent, and
the key kM : T1,i = gri

i and T2,i = hmi · gri·kM
i . In order to achieve DC, those

equations should be included in the NIZK proof.
It remains to create a suitable tag, which is done by using the same technique

as in [1]. More precisely, we provide a pair (τ1 = tu1 , τ2 = tu·kM
2 ), which will make

it possible to detect a duplication using a pairing computation. We add the
following relations to the NIZK proof: τ1 = tu1 and e(τ1, t2)kM = e(t1, τ2).

We finally provide a Pedersen commitment C of the mi’s using a generator
x of Zp and a random s: C =

∏�
i=1 ami

i · xs = kM · xs mod p.
The main point regarding our NIZK is that we need to prove that the secret

kM (as an exponent for the groups G1 and GT ) involved in the tag, the com-
mitment and the ciphertexts is the same secret kM as the one (as an element
of the group Z

∗
p of order p) computed from the message. Regarding the tag and

the ElGamal ciphertext equations, the key kM is seen as an exponent, and we
can thus use standard and efficient ZK proofs à la Schnorr [16], making them
non-interactive using the Fiat-Shamir heuristic [9].
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The correctness of the commitment is easily proven. It remains to make
the link between the message and the key. Equation e(τ1, t2)kM = e(t1, τ2) can
be rewritten as: e(τ1, t2)C = e(t1, τ2)xs

. Proving that this last equation is true
involves the use of a double discrete logarithm. We use the techniques from [17]
described in Sect. 2, which alter the efficiency of our construction.

Description

In this section, we formally describe our verifiable message-locked encryption Λ.

– PPGen. Let λ be the security parameter, and �, ρ be integers. The parame-
ter generation consists in generating a bilinear environment (p,G1,G2,GT , e)
where p is a λ-bit prime, G1, G2 and GT are three multiplicative groups of
same order p and e : G1 × G2 −→ GT is a bilinear asymmetric pairing. Let
t1, {gi}i=1,...,�, h be generators of G1 and t2 be a generator of G2. We finally
need � + 1 public elements x, a1, . . . , a� that generates Z

∗
p.

pp = {p,G1,G2,GT , e, t1, {gi}i=1,...,�, h, t2, x, {ai}i=1,...,�}.
– KD. On input public parameters pp and a message M = (m1‖ . . . ‖m�) divided

into � blocks of ρ bits, it computes the key kM =
∏�

i=1 ami
i mod p.

– Enc. On input public parameters pp, a message M = (m1‖ . . . ‖m�) and a key
kM , the ciphertext is computed as follows:

1. uniformly pick u ∈ Z
∗
p, compute τ = (τ1, τ2) = (tu1 , tu·kM

2 );
2. uniformly pick s ∈ Z

∗
p and compute a Pedersen commitment over the

mi’s: C = kM · xs =
∏�

i=1 ami
i · xs mod p;

3. for all 1 ≤ i ≤ �, pick uniform and independent ri ∈ Z
∗
p and compute

T1,i = gri
i and T2,i = hmi · gri·kM

i ;
4. compute the following non-interactive zero knowledge proof

π = NIZK
(
u, {ri}i=1,...,�,M, kM , s : τ1 = tu1 ∧ e(τ1, t2)kM = e(t1, τ2)

∧ T1,1 = gr
1 ∧ · · · ∧ T1,� = gr

� ∧ T2,1 = T kM
1,1 gm1 ∧ · · · ∧ T2,� = T kM

1,l gm�

∧ C =
�∏

i=1

ami
i · xs ∧ e(τ1, t2)C = e(t1, τ2)xs

)
.

Finally output c = (τ, {T1,i, T2,i}i=1,...,�, C, π).
– Valid. On input a ciphertext c = (τ, {T1,i, T2,i}i, C, π), this algorithm outputs

1 iff π is correct.
– Dec. On input pp, a key kM and a valid ciphertext c, the procedure is:

1. for all i ∈ {1, . . . , �} compute hmi = T2,i/T kM
1,i as in a standard ElGamal

decryption procedure;
2. for all i ∈ {1, . . . , �}, retrieve the mi with a discrete logarithm computa-

tion (this step is made possible by the choice of a small ρ);
3. output M = (m1‖ . . . ‖m�).
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– EQ. On input pp and two valid ciphertexts c = (τ, {T1,i, T2,i}i, C, π) and c̃ =
(τ̃ , {T̃1,i, T̃2,i}, C̃, π̃), parse τ as τ1 = tu1 and τ2 = tu·k

2 and τ̃ as τ̃1 = tũ1 and
τ̃2 = tũ·k

2 . This algorithm outputs 1 iff e(τ1, τ̃2) = e(τ̃1, τ2).

Correctness. Correctness is directly derived from the correctness of the ElGamal
encryption scheme and properties of bilinear maps.

6 Security and Efficiency Arguments

6.1 Privacy

Theorem 4. Let ε and μ be two non-zero positive reals, p a prime number and
T ,� be integers such that μ > log p+log(T )+2 log(1/ε). Our scheme Λ is PRV-
piCDA secure for (T, μ)-block sources under the (T, �)-bl-DDH assumption in the
random oracle model.

Sketch of Proof. As the inner product 〈·, ·〉 :
(
Z

�
p

)T → Zp is a 2-universal hash
function, we can apply Theorem2: the keys extracted from the adversarially
chosen (T, μ)-block source random variable M = (M1, . . . ,MT ), will be indistin-
guishable from uniform. More precisely, if μ ≥ log(p) + log(T ) + 2 log(1/ε), the
distribution of the keys is at distance ε from the uniform distribution in Z

�
p ×Z

T
p .

We construct a simulator S of the real-or-random encryption oracle against
which qH -query (T, μ)-block source polynomial-sampling complexity adversary
A for the PRV-piCDA game has advantage exactly 1

2 , using a sequence of games.

Game G0. This is the original game. We consider an adversary A able to break
the PRV-piCDA security. In this game, A chooses a distribution M of the
messages. She then queries the real-or-random oracle. Only after the query to
this oracle, the public parameters of the scheme are generated.

The adversary A has access to a vector of T ciphertexts and she must return
the value b′ (real or random), matching how the plaintexts were generated by
the real-or-random oracle. Let Si be the event that b = b′ in game Gi. We have:

AdvPRV−piCDA
Λ,A (λ) =

∣
∣
∣Pr

[
Expreal

Λ,A = 1
]

− Pr
[
Exprand

Λ,A = 1
]∣∣
∣ = 2

∣
∣
∣
∣Pr(S0) − 1

2

∣
∣
∣
∣ .

Game G1. In this game, S simulates the T non-interactive zero-knowledge
proofs, using the random oracle, rather than computing them. The advantage
of A against the zero-knowledge property of the NIZK proof is bounded by
AdvzkΠ,A(λ). Moreover, this simulation is computationally indistinguishable for A
if there is no collision in the requests of the hash oracle. Let qH the number of
queries A makes to the random hash oracle.

|Pr(S0) − Pr(S1)| ≤ qH

2ρ�T pT (2+�)
+ AdvzkΠ,A(λ).
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Game G2. We address the key generation. Instead of computing the keys with
the KD procedure, S draws keys uniformly from Zp. From now on, the encryp-
tion key does not depend on the messages. From Theorem 2, (kM1 , . . . , kMT

) is
at distance ε from the uniform distribution in Z

T
p , independently on how the

messages were generated: |Pr(S1) − Pr(S2)| ≤ ε.

Game G3. With those simulated keys, the view of the adversary is exactly a
(T, �)-bl-DDH instance. Let B be an adversary against (T, �)-bl-DDH, then for all
B, we have: |Pr(S2) − Pr(S3)| ≤ Adv

(T,�)-bl-DDH
B (λ).

Game G4. In this game, S behaves as the real-or-random oracle, computing a
Pedersen commitment over the mi’s. Thus we have Pr(S3) = Pr(S4).

Moreover, A’s advantage for breaking the indistinguishability of the Pedersen
commitment is exactly 1

2 , as it is perfectly hiding. Then we have:
∣
∣
∣
∣Pr(S0) − 1

2

∣
∣
∣
∣ ≤ AdvzkΠ,A(λ) +

qH

2ρ�T pT (2+�)
+ ε + Adv

(T,�)-bl-DDH
B (λ),

and the probability for A to win the PRV-piCDA game is negligible. �

6.2 Tag Consistency and Deduplication Consistency

Theorem 5. Our scheme Λ is tag consistent as that the key derivation function
is collision-free (the inner product is a 2-universal hash-function).

The proof derives from the EQ procedure : the bilinearity property of the
pairing implies that if two ciphertexts are considered duplicate, then the keys
used to generate them must be equal. Which means that A is able to find colli-
sions for the key-derivation function with non-negligible probability.

Theorem 6. As a Pedersen commitment is computationally binding, our
scheme Λ is deduplication-consistent in the random oracle model.

As our construction is an instantiation of the generic construction given
Sect. 4, the proof of this theorem directly follows from the proof of Theorem3.

6.3 Efficiency

As [1,3], we improve upon security of convergent encryption, resulting in a loss
in efficiency. We are however obviously more efficient than [1] as it uses generic
NIZK (for a hash function represented as a circuit) and than [3] as it uses several
times a fully homomorphic encryption. But a complete comparison is difficult as
the three schemes achieve completely different security properties.

The most time and space consuming steps of our construction are the NIZK
proof computation (especially the double logarithm), and the decryption which
requires � small discrete logarithm computation.
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Abstract. Authenticated encryption (AE) combines privacy with data
integrity, and in the process of decryption, the plaintext is always kept
until successful verification. But in applications with insufficient memory
or with realtime requirement, release of unverified plaintext is unavoid-
able. Furthermore most of present online AE schemes claim to keep the
unverified plaintext, leading to online encryption but offline decryption,
which seems unreasonable for online applications. Thus, security of the
releasing unverified plaintext (RUP) setting, especially for online AE
scheme need to be taken seriously. The notion of plaintext awareness
(PA) together with IND-CPA have been formalized to achieve privacy
in RUP setting by Andreeva et al. in 2014. But notion of PA is too
strong and conflicts to online property, namely no online AE scheme can
be PA secure according to their results, leading PA to lose its practi-
cal significance. In this paper, we define a similar security notion OPA
and combine OPA with OPRP-CPA (IND-CPA) to achieve privacy of
online AE scheme in RUP setting, which solves the conflicts between
PA and online property. And we analysis the relation between OPA and
some other notions. Then we study OPA security of existing online AE
schemes, and show OPA insecurity of Stream Structure and structures
with the property of “controll ciphertext to jump between two plaintexts”
(CCJP), which are adopted by most of schemes in the ongoing CAESAR
competition. At last, combining the property CCJP with the simple tag-
producing process, we look upon the INT-RUP insecurity of existing
schemes from new different angle.

Keywords: Online authenticated encryption · Releasing unverified
plaintext · Plaintext extractor · INT-RUP · CAESAR competition

1 Introduction

The design and analysis of authenticated encryption (AE) have recently
attracted a great deal of scholarly attention in cryptography, mostly driven by
the NIST-funded CAESAR competition for authenticated encryption [1]. The
decryption process of conventional AE schemes consists of two phases: decryp-
tion and verification, and the temporary plaintext has to be kept up to successful
verification. But in many practical applications, releasing unverified plaintext
(RUP) before verification can not be unavoidable at times. For example, when
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 319–334, 2016.
DOI: 10.1007/978-3-319-48965-0 19
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AE scheme is implemented on resource-constrained devices like smart cards, sen-
sors, RFIDs, it is almost impossible to store entire temporary plaintext because
of the limited buffer. Another situation is the real-time requirement for online
applications, which may not be met if plaintext is released after verification.
Most of the present online AE schemes require to store the plaintext before ver-
ification, leading to online encryption but offline decryption which seems quite
unreasonable. Even beyond these settings, if a scheme is secure in RUP setting,
it can increase efficiency of certain applications. For instance, to prevent release
of unverified plaintext on the devices with insecure memory [24], the two-pass
Encrypt-then-MAC composition can be used: a first pass to verify the Tag, and
second to decrypt the ciphertext. However, a single pass AE scheme which is
secure against the release of unverified plaintext can increase the efficiency.

Related Work: In Asiacrypt 2014, Andreeva et al. [4] formalized the security
of AE scheme in RUP setting. They defined the security notion of PA (PA1 and
PA2), and proposed to use PA1 along with IND-CPA to achieve privacy of the
scheme. An AE scheme is PA1 if there exists a plaintext extractor which can suc-
cessfully fool the adversary by simulating the decryption oracle. It becomes infea-
sible to distinguish between answers from the real decryption oracle and from
the plaintext extractor for the adversary, then the release of unverified plaintext
becomes harmless. The feature of security notion PA1 is to describe the security
of decryption separately from encryption in RUP setting. To achieve integrity
of ciphertext, they used INT-CTXT in RUP setting, called INT-RUP. And they
also showed INT-RUP insecurity of schemes like OCB [22] and COPA [5].

In FSE2014, Abed et al. [2] used the notion of OPRP-CCA which borrowed
from online ciphers [6] to achieve the privacy of online AE schemes in RUP
setting. An AE scheme is OPRP-CCA if the adversary can not distinguish
between the world with real encryption oracle and decryption oracle and the
world with random online permutation and its inverse permutation. This notion
is just applicable to online schemes, and weaker than PA1, which accepts privacy
up to repetition and privacy up to longest common prefix.

In 2015, Chakrakraborti et al. [11] considered the INT-RUP security of the
blockcipher based AE schemes. They first gave an INT-RUP attack on iFeed,
an AE scheme submitted to the CAESAR competition, and then generalized
the attack to any feedback mode of AE schemes. Using samilar ways, they also
provided generic INT-RUP attack on the “rate-1” blockcipher based AE schemes,
and concluded that no “rate-1” affine domain AE scheme can be INT-RUP
secure.

Problems of Security Notions in RUP Setting: In the security setting of
PA1, E called plaintext extractor tries to fool the adversary with access just to
encryption query histories, and the adversary is allowed to use the response of
decryption oracle as the query to encryption oracle without any other restric-
tions, which is always prohibited in conventional AE security settings. Both two
lead to a trivial distinguishing attack on most of the present AE schemes (Propo-
sition 1 in [4]). For the encryption scheme Π = (EK ,DK), if EK is bijective,
then for arbitrary IV and ciphertext C, there exists EK(IV,DK(IV,C)) = C.
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Knowing this, the adversary can easily distinguish between the real decryption
oracle DK and the plaintext extractor E just by one decryption query and one
encryption query. Then it is concluded that AE schemes with bijective encryp-
tion can not be PA1 secure. At this point, we can find that PA1 is a quite strong
security notion, and there are only several schemes can achieve PA1 security,
such as SIV [23], BTM [18], HBS [19]. Those PA1 secure schemes are almost all
two-pass and thus offline, which conflicts to one of the original goals to achieve
online property in RUP setting. Thus we can find the strong notion PA1 that
conflicts to online property lose most of its practical significance.

OPRP-CCA is a security notion for online schemes, and weaker than PA. It
is defined based on the “online cipher” and “online permutation”, where IV is
default to be reused and leakage of common prefix is acceptable. But in some
applications, the leakage of common prefix may bring about disasters, such as the
the SPSS attack [16] proposed recently. Thus OPRP-CCA may be not enough
to describe the privacy in RUP setting when IV is not allowed to be reused.
Furthermore, we consider it more helpful for comprehensive understanding of
the privacy to define the security of encryption and decryption separately.

Our Contribution: Finding appropriate balances between security and prac-
tical constraints is an impactful and active research endeavor where the goal is
not necessarily to achieve some strong notion of security but to have the “best
possible” security under given practical constraints [6]. Thus, in this paper, we
define a more practical security notion called OPA for online schemes in RUP
setting described in Fig. 1. A set H which is used to keep the query histories
is appended to the right world. Each time when the plaintext extractor receive
a decryption query, it first checks the set H to see if the query or the prefix
with the same IV has ever been queried, and return a plaintext with known
prefix to fool the adversary by mimicking the decryption algorithm. We use
both OPRP-CPA (IND-CPA) and OPA to achieve privacy and also INT-RUP
to achieve integrity. We also study the relations between OPA and some other
related security notions, and then analyze the OPA security of some existing
AE schemes. The results are concluded in Table 1, we find that some structures
adopted by many AE schemes are not OPA secure, and some well designed
schemes which are not PA1 secure can achieve OPA security, like POET [2],
ELmD [12] and McOE-G [14]. At last, we explain the INT-RUP insecurity of
some AE schemes from a new angle.

2 Preliminaries

Notations. The length of a string x ∈ {0, 1}∗ is denoted by |x|, and for any
two strings x, y ∈ {0, 1}∗ we use x||y and xy interchangeably to denote the
concatenation of x and y. For integers n, l, d ≥ 1, Dd

n = ({0, 1}n)d denotes the
set of all strings whose length is d blocks of n bits, and D∗

n =
⋃

d≥0 Dd
n. Note that

D0
n only contains the empty string ε. If P ∈ Dd

n, we can write P = (p1, p2, · · · , pd)
with pi ∈ D1

n, and we use (P )l, (l ≤ d) to denote the truncation of the first l
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Fig. 1. The security model of OPA, where D is the adversary. The set H is used to
keep the query histories with H = {(IV, P,C)}. Left: real world with encryption oracle
EK and decryption oracle DK . Right: simulated world with encryption oracle E∗

K and
plaintext extractor E. E and E∗

K always give responses according to the set H.

blocks of P , namely (P )l = (p0, · · · , pl−1). For P,R ∈ D∗
n, say, P ∈ Dp

n and
R ∈ Dr

n, define the length of the longest common prefix of P and R as

LLCPn(P,R) = max{i|p1 = r1, · · · , pi = ri}
Let H a non-empty set of strings in D∗

n, then define the length of longest
common prefix of a string and a set LLCPn(H,P ) as maxR∈H LLCPn(R,P ).

For a multiset H = A × B × C, where A,B,C ⊆ {0, 1}∗, we use H|A =
{a|∃(b, c) : (a, b, c) ∈ H} to denote restriction on a set. And for a fixed string
a0 ∈ A, we denote Ha0 = {(b, c)|(a0, b, c) ∈ H} to denote fix on a set.

We use $ to denote the random strings, and $|P | means the random string
with the same number of blocks as message P .

Adversaries and Advantages. An adversary is a Turing machine to make a
distinguish by interacting with oracles from two worlds, real world and simulated
world. Let D be some class of computationally bounded adversaries, and for
convenience, we use the notation

Dis
D

(f ; g): = max
D∈D

|Pr[Df = 1] − Pr[Dg = 1]|

to denote the upperbound of the distinguishing advantages over all adversaries
to distinguish oracles f and g of two worlds, where DO indicates the value
output by D after interacting with oracle O. The probabilities are defined over
the random coins used by the oracles and the random coins of the adversary.
And Dis

D
(f1, f2; g1, g2) denotes to distinguish the world with oracles f1, f2 and

the world with oracles g1, g2.

2.1 Authenticated Encryption (AE) Scheme

A conventional AE scheme is a tuple of two functions, encryption algorithm E and
decryption algorithm D, where D contains two process: decryption and verifica-
tion. While under RUP environment, it becomes more reasonable to disconnect
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the decryption algorithm from the verification algorithm, because the decryption
algorithm always releases the plaintext even if the verification process fails. Then
the new AE scheme is a triplet Π = (E ,D,V) with algorithms of encryption E ,
decryption D, and verification V. An AE scheme is also associated with some
parameter sets, for instance, IV space IV, associated data space A, message
space M, key space K, ciphertext space C, and tag space T . In this paper we
omit the associated data for convenience, and we just consider the nonce IV and
arbitrary IV schemes, where the IV value is not allowed to be reused in nonce IV
scheme, and is arbitrary in the other case. Moreover, we consider the message
space M is subspace of D∗

n, indicating the messages are all in blocks of n bits,
which is a reasonable assumption because the fractional messages can be easily
padded by proper means.

Then encryption algorithm E takes IV ∈ IV, K ∈ K, M ∈ M as inputs
and outputs a tagged ciphertext (C, T ) ∈ C × T . Decryption algorithm D and
verification algorithm V take IV ∈ IV, K ∈ K, (C, T ) ∈ C × T as inputs and
D outputs M ∈ M even if verification fails, V outputs ⊥ (reject) or � (accept).
More formally,

EK(IV,M) → (C, T ), DK(IV,C, T ) → M, VK(IV,C, T ) → ⊥/�
As in the conventional setting, the correctness condition of an AE scheme indi-
cates that ∀K ∈ K,∀IV ∈ IV and ∀M ∈ M, DK(IV, EK(IV,M)) = M and
VK(IV, EK(IV,M)) = �.

2.2 Security Definitions Under RUP Environment

We borrow the security notion OPRP-CPA and OPRP-CCA from Bellare et al.
[6] for online schemes. And we will describe some related security notions in new
syntax. Let Π = (E ,D) denote an encryption scheme, and P denote a random
online permutation.

Definition 1 (IND-CPA Advantage). Let D be a computationally bounded
adversary with access to the encryption oracle. Then the IND-CPA advantage of
D relative to Π is given by

CPAΠ(D) := Dis
D

(EK ; $),

where K
R← K, the probability is defined over the key K, the random coins of D,

and the random coins of E.

Definition 2 (OPRP-CPA Advantage). Let D be a computationally
bounded adversary with access to the encryption oracle and P be a random online
permutation. Then the OPRP-CPA advantage of D associated to Π is given by

OPRP-CPAΠ(D) := Dis
D

(Ek;P ),

where K
R← K, the probability is defined over the key K and the random coins

of D.
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For an encryption scheme to be OPRP-CPA secure, the above advantage
should be negligible for any adversary D. And it is well known that the OPRP-
CPA secure scheme can always achieve the IND-CPA security when IV is not
allowed to be reused. However, the same IV can be used many times in decryption
queries, leading to that the IND-CCA security can never be achieved for online
schemes. Then we will not consider the IND-CCA security in this paper.

Definition 3 (PA1 Advantage). Let D be a computationally bounded adver-
sary with access to the encryption oracle and decryption oracle in real world or
simulated world. Let E be an algorithm with access to the history of encryption
queries, called PA1 extractor. The PA1 advantage of D associate to Π and E is
given by

PA1E
Π(D) := Dis

D
(EK ,DK ; EK , E),

Where K
R← K, the probability is defined over the key K, the random coins of

D, and the random coins of E.

For an encryption scheme to achieve PA1 security, the above advantage
should be negligible for any adversary D. From the discussion in Sect. 1.2, we
know PA1 is a strong security notion. Andreeva et al. [4] also defines a stronger
notion PA2 in which E even has no access to the encryption query histories.

Definition 4 (OPRP-CCA Advantage). If Π is an online scheme, and P
is a random online permutation. Let D be a computationally bounded adversary
with access to the encryption oracle and decryption oracle in two worlds. The
OPRP-CCA advantage of D associated to Π is given by

OPRP-CCAΠ := Dis
D

(EK ,DK ;P, P−1),

Where K
R← K, the probability is defined over the key K and the random coins

of D.

For an encryption scheme to be OPRP-CCA secure, the above advantage
should be neligible for any adversary D. The notion OPRP-CCA is weaker than
PA1, with privacy up to longest common prefix. It describes the security of
encryption and decryption process at the same time and IV is default to be
reused in encryption process.

Conventional integrity requirement of AE scheme can be achieve by INT-
CTXT, where the adversary can make encryption queries and decryption queries,
but the decryption oracle always returns ⊥. While under RUP environment, the
ability to observe the unverified plaintexts is given to the adversary, and the
integrity requirement should be modified.

Definition 5 (Integrity under RUP Environment (INT-RUP)). Let D
be a computationally bounded adversary with access to oracles EK , DK , and VK .
Then the INT-RUP advantage of D associate to Π is given by

INT-RUPΠ: = Pr[DEK ,DK ,VK �= ⊥]
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Where K
R← K, the probability is defined over the key K and the random coins

of D.

3 New Security Notion and Relations

In this section, we will first give the definition of E and E∗
K in detail, and then

study the relations between OPA and some other security notions.
The setting of OPA still adopts the framework of plaintext extractor similar

to PA1 with the feature of achieving security of decryption process separately
from encryption process. As described in Fig. 1, the adversary D tries to distin-
guish the real world from simulated world, while E tries to mimic the decryption
oracle DK to fool the adversary. Some significant differences are introduced in
the setting of OPA for online AE schemes. A set H = (IV, Pi, Ci) is appended
to the simulated world to keep the query histories. Each time when E receives a
query (IV0, C), it tries to mimic the decryption oracle by returning a plaintext
P . Let HIV0 = {(Pi, Ci)|(IV0, Pi, Ci) ∈ H}, if IV0 together with prefix of C have
been found in H and LLCPn(HIV0 |C , C) = l, P must satisfy

LLCPn(Pj , P ) = l

where (Pj , Cj) ∈ HIV0 and LLCPn(Cj , C) equals l.
When the encryption oracle E∗

K in the simulated world receives a query
(IV0, P ), it behaves as follows,

1. Computes C ′ = EK(IV0, P )
2. Checks if IV0 together with prefix of P exist in H or not
3. If not, C = C ′

4. Otherwise, if LLCPn(HIV0 |P , P ) = l, find (Pj , Cj) ∈ HIV0 , s.t.
LLCPn(Pj , P ) == l. Replace prefix of C ′ with (Cj)l to get C.

5. H = H ∪ (IV0, P, C) and returns C.

Here we should pay more attentions to the difference of E∗
K and EK when the

adversary uses the (prefix of) output of decryption oracle to make encryption
queries. One example is that the adversary ask a query E(IV,D(IV,C)), the
response is always C no matter the encryption and decryption oracle is from
real world or from simulated world, then the attack in Sect. 1.2 can not work
under notion of OPA.

Let Π = (E ,D) denote an encryption scheme, the advantage of OPA security
is defined as follows,

Definition 6 (OPA Advantage). Let D be a computationally bounded adver-
sary with access to the encryption oracle and decryption oracle in two worlds,
the plaintext extractor E is an algorithm with access to the history of queries
made by D. The encryption algorithm E∗

K and E are defined as above. Then the
OPA advantage of D associated to Π and E is given by

OPAE
Π(D): = Dis

D
(EK ,DK ; E∗

K , E),
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Where K
R← K, and the probability is defined over the key K, the random coins

of D, and the random coins of E.

The encryption oracle in the simulated world is denoted by E∗
K because its

output may be different from EK when the query or the prefix has been found
in the set H. The adversary D tries to distinguish the two worlds while E tries
to simulate the decryption oracle DK to fool the adversary.

The security notion of OPA is defined dedicatedly for online AE schemes.
Thus there is no explicit relation between PA1 and OPA, but we have the fol-
lowing theorem.

Theorem 1 (OPRP-CPA +OPA ⇔OPRP-CCA). Let Π be an encryption
scheme. Then Π is OPRP-CCA secure if and only if it is OPA secure and OPRP-
CPA secure.

Proof. Let D be a computationally bounded adversary, and P be the random
online permutation. Firstly, we show

OPRP-CPA + OPA ⇒ OPRP-CCA,

By the triangle inequality,

OPRP-CCAΠ = Dis
D

(EK ,DK ;P, P−1)

≤ Dis
D

(EK ,DK ; E∗
K , P−1) + Dis

D
(E∗

K , P−1;P, P−1)

From the definition of OPA extractor E, we can easily construct E associated
to Π using the random online permutation P−1. When E receives queries, it
forwards them to P−1, and uses the outputs of P−1 as the responses. Hence,

Dis
D

(EK ,DK ; E∗
K , P−1) = Dis

D
(EK ,DK ; E∗

K , E),

The first term is just the OPAE
Π(D).

Furthermore, the random online permutation P or P−1 is independent of
EK , then there exists a adversary D1, such that

Dis
D

(E∗
K , P−1;P, P−1) ≤ Dis

D1
(EK , P ),

where D1 can be viewed as an OPRP-CPA adversary, and

Dis
D1

(EK , P ) = OPRP-CPAΠ(D1).

We define D1 as follows. It runs D, and directly forwards D’s encryption oracle
queries to its own oracles. The adversary D1 responds to D’s decryption query
(IV0, C0) just like P−1. Namely, if IV0 together with prefix of C0 have been found
in query histories, it responds using the plaintext with corresponding prefix,
otherwise, it responds using random strings. Therefore, the game to distinguish
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the world with oracles E∗
K , P−1 and the world with P, P−1 can be perfectly

simulated by D1.
Then, we get

OPRP-CCAΠ(D) ≤ OPAE
Π(D) + OPRP-CPAΠ(D1).

In the opposite direction, it is easy to know that OPRP-CCA security implies
OPRP-CPA security. To show the equivalence, we just need to prove

OPRP-CCA ⇒ OPA,

Let D be a computationally bounded adversary, and E the OPA extractor
associated to Π. We construct E using inverse of an online permutation, denoted
by P−1. Then, by triangle inequality,

OPAE
Π = Dis

D
(EK ,DK ; E∗

K , P−1)

≤ Dis
D

(EK ,DK ;P, P−1) + Dis
D

(P, P−1; E∗
K , P−1)

The first term is just OPRP-CCAΠ(D). Because EK is independent of P and
P−1, we define the adversary D′ and have

Dis
D

(P, P−1; E∗
K , P−1) ≤ OPRP-CPAΠ(D′),

where D′ is the OPRP-CPA adversary. Therefore,

OPAE
Π(D) ≤ OPRP-CCAΠ(D) + OPRP-CPAΠ(D′).

Then, we get the equivalence between OPRP-CCA and OPRP-CPA+OPA
and we can easily deduce separations between OPRP-CPA and OPA. Consider-
ing the SPSS attack, and that OPRP-CPA scheme can achieve IND-CPA security
if IV is not allowed to be reused, we use IND-CPA+OPA to achieve the privacy
of the encryption scheme in RUP setting if the IV is not allowed to be reused,
otherwise we use OPRP-CPA together with OPA to achieve the privacy.

4 Security Analysis of Existing Schemes

We have already known most of the existing AE schemes, including OCB [22],
SpongeWrap [8], CCM [25], GCM [20], COPA [5], and so on, can not achieve
PA1 security, because the encryption process is a bijective function [11]. In this
section, we will study the security of existing AE schemes under the weaker
security notion OPA. Note that the proof of all the propositions and claims can
be found in the full version of the paper [27].

Among the existing AE schemes, some may have similar structures. One
example is that many schemes first produce keystreams by iteration of the
encryption function, and then the ciphertext is generated by XOR of the plain-
text and the keystream, which is similar to the process of stream cipher. We call
this structure Stream Structure.
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Definition 7 (Stream Structure). Let Π = (EK ,DK) be an encryption
scheme. If the ciphertext is produced by xor of the plaintext and the keystream,
where the keystream is generated by iterations of the encryption function, we call
Π is in Stream Structure.

The great advantage of this structure is its inverse-free property in the decryption
process. It means the decryption algorithm will not invoke the inverse of the
primitives which can save the hardware cost and improve efficiency. A great
deal of schemes adopt the Stream Structure, such as GCM, SpongeWrap, and
all the dedicated AE schemes, here “dedicated” just mean the scheme is not
block cipher based, like ALE [10], AEGIS [26], ASCON [13] and so on. It is well
known that the reuse of IV for the schemes with Stream Structure is insecure
because of leaking xor difference of the first block pair that differs between the
two messages. And similarly, we can deduce the schemes in Stream Structure
can not achieve OPA security and OPRP-CPA security at the same time.

Proposition 1. If a scheme Π = (EK ,DK) is in Stream Structure, then there
exists an adversary D such that for all extractor E, there exists an adversary
D1 and

1 − OPRP-CPAΠ(D1) ≤ OPAE
Π(D),

where D makes one encryption query and one decryption query, and D1 is as
efficient as D plus one query to E.

We have observed some other structures used frequently also can not be
both OPA and OPRP-CPA secure. Before describing them, we first define an
interesting property as follows.

Definition 8 (CCJP). Let Π be an encryption scheme, N be an arbitrary IV
value, and C0 = (C0

0 , C0
1 , · · · , C0

l−1), C1 = (C1
0 , C1

1 , · · · , C1
l−1) be two cipher-

texts under N . The corresponding plaintext are M0 = (M0
0 ,M0

1 , · · · ,M0
l−1),

M1 = (M1
0 ,M1

1 , · · · ,M1
l−1). If ∀δ = (δ0, δ1, · · · , δl−1), δi ∈ {0, 1}, we can find

a ciphertext Cδ = f(C0, C1) = (C ′
0, C

′
1, · · · , C ′

l−1) to make corresponding plain-
text M δ = (M δ0

0 , · · · ,M
δn−1
n−1 ), where f is a function. Then we call this property

controll ciphertext to jump between two plaintexts (CCJP).

If an encryption scheme Π has CCJP property, we can easily see that it can
not achieve OPA security and OPRP-CPA security at the same time.

Proposition 2. If an encryption scheme Π = (EK ,DK) has CCJP property,
then there exists an adversary D such that for all extractors E, there exists an
adversary D1 and

1 − OPRP-CPAΠ(D1) ≤ OPAE
Π(D),

where D makes one encryption query and two decryption queries, and D1 is as
efficient as D plus one query to E.
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Fig. 2. Structures which are OPA insecure. Left: ECB structrue. Middle: Simplified
EME structure. Right: PFB structure.

The parallelism is a attractive property of an AE scheme, always accompanied
with incremental property, both contribute to the excellent performance of the
scheme. Full parallelism require that each message block is processed indepen-
dently, then all the message blocks can be handled at the same time. To achieve
full parallelism, many schemes adopt ECB structure (Fig. 2 left) such as OCB.
Some other schemes adopt a similar EME (Encrypt-Mix-Encrypt) structure [15]
with partial parallelism but stronger security. But the linear layer of EME can
be simplified like COPA to achieve full parallelism in decryption process (Fig. 2
middle). We can find these two structures both have the CCJP property and
can not achieve OPA security according to Proposition 2. The scheme ELmD
[12] adopts the similar structure but with a linear transform ρ, which makes the
scheme not really achieve full parallelism, and ELmD has no CCJP property.
Then, we conclude,

Claim. The OPRP-CPA secure schemes in ECB structure and in simplified EME
structure with full parallelism can not achieve OPA security.

It seems like that the full parallelism conflicts to the OPA security because
of CCJP property, which makes us consider some other schemes that claimed
to achieve full parallelism, and also find the OPA insecurity. The scheme iFeed
and CPFB are both the CAESAR candidates, and are claimed to achieve full
parallelism. In2015, Chakrabori et al. [11] give a INT-RUP attack on these two
schemes, and we find the property they exploited to attack is just the CCJP
property. The two schemes both adopt the structure based on PFB (plaintext
feedback) mod (Fig. 2 right) with some modifications. The feedback plaintexts
have been truncated in CPFB and masked by secret message in iFeed. Then, we
have

Claim. The OPRP-CPA secure schemes in PFB structure can not achieve OPA
security.

In this section, we mainly proved OPA insecurity of AE schemes in some
conventional structures. And we described an interesting flaw property CCJP
for an AE scheme. But it may not be an easy work to find out whether the
scheme has the CCJP property, and there is no uniform ways. However, we
require the value of δ in the definition of CCJP property to be arbitrary, then
we just propose to study the two consecutive block cipher calls, and consider
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if it possible to modify the ciphertext blocks to control the message blocks to
“jump”.

We also studied OPA security of some other online AE schemes, and sum-
marized the results in Table 1. We find that some PA1 insecure AE schemes
become secure under notion of OPA, such as McOE-G, ELmD and POET, which
solves the contradiction between PA1 and online property. The OPA security of
POET can be deduced from the OPRP-CCA security given by the designers.
And we studied the OPA security of McOE-G and ELmD, and gave the proof
for ELmD in Appendix A. We also find that nearly no nonce IV scheme can
achieve OPA security. The reason may be the IV are allowed to be reused in
decryption process, namely the adversary can use the same IV to query decryp-
tion oracle many times, or use the same IV as the one in some encryption query,
both two may lead to attacks on nonce IV schemes. Then there comes a puzzle if
the arbitrary IV scheme must be OPA secure intuitively. The answer is of course
“no” which can be testified by insecurity of COPA.

Table 1. Summary of OPA security of existing online AE schemes.

IV Reuse Schemes OPA PA1 Remark

× OCB [22], CBA [17] × × ECB, CCJP

� COPA [5] × × EME, CCJP

× GCM [20], PAEQ [9] × × CTR, Stream Structure

× Spongewrap × × Stream Structure

× Dedicated AE × × Stream Structure

× CPFB [21], iFeed [28] × × PFB, CCJP

� POET [2] � × OPRP-CCA [2]

� McOE-G [14], ELmD [12] � × [27]

� APE [3] � � backward decryption

5 Security of Verification

INT-RUP clearly implies INT-CTXT, and the opposite is not necessarily true,
which is proven in [4]. Chakrabori et al. [11] have studied the INT-RUP security
of blockcipher based AE schemes. They gave an INT-RUP attack on iFeed and
CPFB and then generalized the attack and drew a significant conclusion that
no “rate-1” block-cipher based affine AE construction can be INT-RUP secure.
Their results concern the no. of block-cipher calls required to have a secure AE
scheme, and their methods to prove may be not so easy to understand. Here,
in this paper, we look upon the INT-RUP insecurity of the schemes uniformly
from new different angle. Namely, the reason resulting in INT-RUP insecurity
of all schemes found by [4,11] may be the same from our angle.
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If the encryption process of the AE scheme has CCJP property, and the
tag-producing process is simple, then we can find an INT-RUP attack. Here
“simple” means input of the function to generate the tag is mainly subject to
linear combinations of all message blocks, and the checksum is the most common
“simple” ways to produce the tag.

Proposition 3. For an AE scheme, encryption process with CCJP property,
together with the “simple” tag-producing process, will lead to an INT-RUP attack.

The proof of this proposition is trivial. We just take an INT-RUP attack on
COPA as an example to testify the proposition, although Andreeva et al. [4]
have ever claimed the INT-RUP insecurity of COPA.

Fig. 3. Structure of COPA. V is generated from associated data and L = EK(0).

The AE scheme COPA (Fig. 3) adopts the simplified EME structure which
we have proved the CCJP property and the input to generate the tag is the XOR
of the message blocks. Then we will exploit the property to give an INT-RUP
attack.

Firstly, the adversary queries EK(N,M) = (N,C, T )), where M =
((M0,M1), · · · , (M2l−2,M2l−1)) consists 2l blocks of n bits, and 2l ≥ n. Let
C = ((C0, C1), · · · , (C2l−2, C2l−1), and Z = M1 ⊕ M2 ⊕ · · · ⊕ M2l−1.

Now, the adversary chooses C0 = ((C0
0 , C1), · · · , (C0

2l−2, C2l−1)), and C1 =
((C1

0 , C1), · · · , (C1
2l−2, C2l−1)), and makes queries (N,C0, T 0) and (N,C1, T 1)

to the decryption oracle DK with arbitrary T0, T1, and gets the correspond-
ing unverified plaintexts M0 = ((M0

0 ,M0
1 ), · · · , (M0

2l−2,M
0
2l−1)) and M1 =

((M1
0 ,M1

1 ), · · · , (M1
2l−2,M

1
2l−1)). Fixing the second element in each ciphertext

pair can ensure the state after process message pairs is equal, then to make
a success forgery, the adversary only need to find a δ = (δ0, · · · , δl−1) where
δi ∈ {0, 1} such that

Z = ⊕l−1
i=0(((M

0
i ⊕ M0

i+1) · δi) ⊕ ((M1
i ⊕ M1

i+1) · (δi ⊕ 1))),



332 J. Zhang and W. Wu

where δi = 1 corresponds to selecting the pair (M0
i ,M0

i+1), and δi = 1 to selecting
pair (M1

i ,M1
i+1) as the ith message block pair of forged message. Because of

linearity, this expression can be converted into n equations, one for every bit j,

Z[j] = ⊕l−1
i=0(((M

0
i [j] ⊕ M0

i+1[j]) · δi) ⊕ ((M1
i [j] ⊕ M1

i+1[j]) · (δi ⊕ 1))),

where j = 0, 1, · · · , n − 1.
This is a linear equations system with n equations and l unknowns. Bellare et

al. [7] have ever studied this system, and get the conclusion the probability that
the system has a solution is at least 1 − 2n−l. Then, by Gaussian elimination,
the adversary can find the solution δ. Thus because of the CCJP property, for δ,
the adversary can construct the ciphertext Cf = ((Cδ0

0 , C1), · · · , (Cδl−1
2l−2, C2l−1)),

and knows the tag must be T . The adversary can output (N,Cf , T ) as a forgery.
We can find that the INT-RUP insecurity of some other schemes, such as

OCB, iFeed, CPFB may be all resulted from the insecurity of privacy in RUP
setting and the simpleness of tag-producing process. Here, we look upon these
INT-RUP insecurity uniformly.

6 Conclusion

In applications with realtime requirement, the encryption and decryption always
need to be online, thus the online AE schemes are required to securely output
the plaintext before verification. We considered the security of online schemes in
RUP setting, and defined the OPA security notion which inherits the frame of
plaintext extractor of PA1 but with some differences. Compared to PA1 notion
proposed by Andreeva et al., OPA is weaker and accepts privacy up to repetition
and privacy up to longest common prefix, which solves the conflicts between PA1
and online property. We showed relations between different notions and gave
some OPA security analysis of existing schemes. Under OPA notion, some well-
designed schemes which can not achieve PA1 security become secure in RUP
setting, such as McOE-G, ELmD and POET.

We have noticed that the leakage of the longest common prefix have been
used to give an CPSS attack by Rogaway et al. [16]. But in decryption process,
the CPSS attack may make no sense. And the reuse of IV in decryption process
is unavoidable even for nonce IV schemes, which results in OPA insecurity of
most existing online schemes. A solution to solve this problem is to use random
IV schemes or transform the existing schemes to random IV schemes by ways
proposed in [4], but with some extra cost. The differences between decryption and
encryption is our main consideration to use OPRP-CPA (IND-CPA) together
with OPA to achieve the privacy of online AE schemes in RUP setting.
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Abstract. User authentication based on biometrics is getting an
increasing attention. However, privacy concerns for biometric data have
impeded the adoption of cloud-based services for biometric authenti-
cation. This paper proposes an efficient distributed two-factor authen-
tication protocol that is privacy-preserving even in the presence of
colluding internal adversaries. One of the authentication factors in our
protocol is biometrics, and the other factor can be either knowledge-
based or possession-based. The actors involved in our protocol are users,
user/client devices with biometric sensors, service provider, and cloud for
storing protected biometric templates. Contrary to the existing biometric
authentication protocols that offer security only in the honest-but-curious
adversarial model, our protocol provides enhanced security and privacy
properties in the active (or malicious) adversarial model. Specifically,
our protocol offers identity privacy, unlinkability, and user data (i.e., the
biometric template data and the second factor) privacy against compro-
mised cloud storage service, and preserves the privacy of the user data
even if the cloud storage service colludes with the service provider. More-
over, our protocol only employs lightweight schemes and thus is efficient.
The distributed model combined with the security and privacy proper-
ties of our protocol paves the way towards a new cloud-based business
model for privacy-preserving authentication.

Keywords: Biometrics · Security · Privacy · Privacy-preserving
authentication

1 Introduction

As biometric authentication is becoming more popular and ubiquitous, protect-
ing and ensuring the privacy of biometric templates is of utmost importance.
Biometrics poses a serious threat to user privacy. Not only does it reveal sen-
sitive information about users such as medical condition, race and ethnicity,
but it can also be used for mass surveillance. A number of privacy-preserving
authentication protocols involving biometrics have been proposed over the last
decade. Most of them, however, are designed to be secure in the honest-but-
curious (HBC) adversarial model. In this work, we go beyond the HBC model
and propose an efficient privacy-preserving biometric authentication protocol
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 335–349, 2016.
DOI: 10.1007/978-3-319-48965-0 20
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with enhanced security and privacy properties in the malicious adversary model.
Our protocol also utilises an additional short secret, e.g., a password, as a sec-
ond factor. Privacy of users is protected from two different threats: disclosure of
privacy-sensitive data (i.e., biometric templates and other secrets) and disclosure
of behavioural information (i.e., user’s identity when using an online service) to
malicious internal adversaries. We employ a distributed model for the protocol
participants and categorise them as the user, the client device (i.e., sensor), the
service provider, and the cloud storage.

A Brief Overview of the Protocol. It consists of a set of N (� 1) users
U, a set of N sensors S (one for each user), a service provider SP, and a cloud
storage provider which we just call database DB throughout the paper. During
the enrolment phase, the sensor Si obtains from a user Ui a biometric reference
template bi, a password pwi (for simplicity, we regard the second factor as a
password, but any knowledge-based or possession-based factor could be used
instead) and an identity IDi. It then derives a random bitstring ri of the same
length as bi from pwi and IDi using a key derivation function KDF [1] (i.e.,
ri ← KDF(pwi, IDi)), computes bi ⊕ ri, and sends (IDi, bi ⊕ ri) to the service
provider SP. Since we are using a combination (i.e., XOR) of factors, this has to
be taken into consideration when choosing security parameters for these factors
(cf. Sect. 3.1). SP then maps the IDi to an index i (i.e., i ← IDi) using a procedure
known only to itself and forwards (i, bi ⊕ ri) to the database DB for storage.
SP itself stores (i, IDi).

During the authentication phase, a user Ui authenticates himself to the ser-
vice provider as follows. The sensor Si obtains a fresh biometric template b′

i,
the user password pwi and an identity IDi from the user. Si then generates ri

using the same procedure as in the enrolment phase, computes b′
i ⊕ri, and sends

(IDi, b
′
i ⊕ri) to SP. The service provider SP retrieves i corresponding to IDi from

its own storage and retrieves bi ⊕ri from DB by employing a private information
retrieval PIR scheme. This scheme allows SP to retrieve bi ⊕ ri from DB with-
out revealing to DB the value of the retrieved information (under information-
theoretic or computational security assumptions, cf. Sect. 3). SP then XORs bi⊕ri

and b′
i ⊕ ri to get bi ⊕ b′

i, and grants the user Ui access (or simply authenticates
the user) if the Hamming weight HW(bi ⊕ b′

i) ≤ τ , where τ is a predefined
authentication threshold. Note that HW(bi ⊕ b′

i) = HD(bi, b
′
i), where HD is the

Hamming distance.
This two-factor authentication protocol employs a combination of a private

information retrieval scheme and a key derivation function to achieve strong pri-
vacy. It preserves the privacy of the biometric templates, password and password-
derived key against malicious and colluding service provider and database; and
also offers identity privacy and unlinkability against malicious database, due to
the database anonymisation and the use of a PIR during authentication.

Applications. Cloud computing provides an interesting set of advantages, such
as increased availability and flexibility, reduced risks related to data losses,
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and reduced costs in terms of technology infrastructure. Due to privacy concerns,
however, the adoption of cloud-based services for biometric authentication has
been delayed. Our new protocol enables a new secure and privacy-preserving
authentication cloud service business model. Services provided by the Database
actor in our protocol can be securely transferred to a cloud-based service. This
cloud-based Protected Biometrics Database service can scalably provide secure
and private storage and retrieval of user’s authentication data to different Service
Providers.

Remarks. Some design decisions in our system must be explained in more
depth, to make clear that they are realistic and fully justified.

First, we choose to work with biometric binary templates instead of other
alternative representations based on integers or real numbers. This is justified
by the existence of many biometrics based on binary templates, e.g. iris pat-
terns are represented by IrisCodes [2]; or where a binary representation can be
derived, e.g. even behavioural biometrics such as online signatures can be repre-
sented in binary templates [3]. Furthermore, binary templates can be compared
using the Hamming distance, which is very convenient for simple and well-known
homomorphic encryption schemes, thus avoiding the need for a specific design
of a new cryptosystem. Using other representations requires using much more
complex crypto schemes, e.g. computing the Euclidean distance requires a fully
homomorphic encryption or coupling additive homomorphic encryption scheme
with an oblivious transfer or garbled circuits.

Second, we combine several factors. This may influence usability, since the
processes for using the system in both enrollment and verification will take
longer and the users will experience usability issues related to both authen-
tication factors. However, the combination of several authentication factors, as
demonstrated in this paper, minimizes the risks associated with the use of each of
the authentication factors. Specifically, the security of the system is significantly
increased, making attacks much more difficult to the typical adversaries, and
the privacy concerns posed by the use of biometrics are minimized by using the
additional authentication factor for binding the binary biometric information.
The proposed solution is simple yet effective.

Related Work. Privacy-preserving biometric authentication has attracted a
considerable amount of research over the last decade. Many of the existing
privacy-preserving biometric authentication protocols are based on secure multi-
party computation techniques including oblivious transfer [4,5] and homomor-
phic encryption [6,7], as well as on private information retrieval [8,9]. For exam-
ple, Bringer et al. [10] proposed a protocol using the Goldwasser-Micali cryp-
tosystem [7]. This protocol by Bringer et al. and the subsequent protocols by
Barbosa et al. [11] and Stoianov [12] all use a distributed entity model. How-
ever, all of the these protocols are designed to achieve security in the HBC
model, and their security is also critcized [11,13–16]. To the best of our knowl-
edge, most (if not all) of the protocols using biometrics as single authentication
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factor presented in the literature are at best secure against HBC adversaries
only. Recently, Abidin et al. [17] describe a simple attack on the Bringer et al.
[10] protocol and proposes an improvement to achieve security against malicious
but not colluding insider adversaries, utilizing additional secret keys. As in the
original Bringer et al. protocol, Abidin et al. protocol also stores the reference
biometric templates in the clear.

There have been other works combining biometrics with other authentica-
tion factors, such as knowledge-based (e.g., passwords) and/or possession-based
(e.g., tokens). This multi-factor approach involving biometrics has been a pop-
ular approach to remote biometric authentication [18]. For example, in [19] a
scheme combining biometrics with a password and a smart card was proposed
by Lee et al.. Weaknesses of this scheme were identified subsequently in [20],
where the authors also propose a flexible remote authentication scheme based
on fingerprints and ElGammal cryptosystem. However, this latter scheme was
vulnerable to, among others, spoofing attacks as identified by Khan and Zhang
[21]. More efficient schemes were also proposed in [18,22,23] in the past couple
of years, although some of them turned out to have security weaknesses [24].
A common feature among these schemes is that they use smart cards to store
authentication information. Hence a drawback of these schemes is that if the
smart card is stolen or lost, then either the security is at risk or the user can no
longer authenticate himself.

Outline. After giving the necessary background material and our threat model
in Sect. 2, we give a detailed presentation of our protocol, paying particular
attention to the key derivation function and the private information retrieval
scheme in Sect. 3. Next, we analyse its privacy and security in Sect. 4. Finally,
Sect. 5 summarises the paper.

2 Background and Threat Model

This section presents the necessary background material and the security require-
ments for the cryptographic primitives used in our protocol.

Definition 1. A function negl : N �→ [0, 1] is said to be negligible if for all
positive polynomials poly and all sufficiently large λ ∈ N, we have negl(λ) <
1/poly(λ).

2.1 Security and Privacy Definitions

Definition 2. Let Π be a two-factor authentication protocol. Then Π is secure if
no probabilistic polynomial time (PPT) adversary A can successfully authenticate
itself to the verifier as the legitimate user it impersonates, even when given all
protocol transcripts and all inputs of the verifier and all provers (i.e., users)
with the exception of at least one authentication factor of the user it tries to
impersonate.
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Regarding privacy, we consider unlinkability, identity privacy and user data
privacy. Let Π be as before in all of the following definitions.

Unlinkability. Intuitively, if the adversary cannot distinguish a user who is
authenticating himself from a user who is not, then unlinkability holds. There-
fore, we define unlinkability as follows.

Definition 3. Suppose that any two distinct users Ui0 and Ui1 , where i0, i1 ≥ 1,
are given and that Uiβ

, β ∈ {0, 1}, makes an authentication attempt. Then, Π
has unlinkability, if any PPT adversary A cannot guess β, except with a negligible
advantage. Here, the adversary’s advantage is defined as

∣
∣ Pr{β = β′} − 1/2

∣
∣,

where β′ is the adversary’s guess.

Identity privacy. If the adversary cannot tell to which ID a given authentication
credential belongs, then we say that the identity privacy is preserved. Formally,
this is defined as follows.

Definition 4. Suppose that any identity IDi and two credentials ci0 = bi0 ⊕ ri0

and ci1 = bi1 ⊕ri1 , where i0, i1 ≥ 1 and ciβ
, β ∈ {0, 1}, belongs to IDi, are given.

Then, Π preserves the identity privacy, if any PPT adversary A cannot guess
β, except with a negligible advantage. Here again, the adversary’s advantage is
defined as

∣
∣ Pr{β = β′} − 1/2

∣
∣, where β′ is the adversary’s guess.

User data privacy. If the adversary cannot learn anything about the sensitive
user data (i.e., biometric data and the second authentication factor), then we
say that the user data privacy is preserved.

Definition 5. We say that Π preserves the privacy of the user data, i.e.,
the biometric templates (both fresh and reference), the password and/or the
password-derived key, if no PPT adversary A can gain more information on
the user data than what is allowed by the protocol transcripts, except with a
negligible probability.

2.2 Key Derivation Function

A key derivation function (KDF) is a (deterministic) function that can be used
to derive keys for cryptographic applications using a secret input data, such as
passwords. We require that the KDF satisfies the following security definition [1].

Definition 6. A key derivation function KDF is said to be secure with respect
to a source of input with sufficient min-entropy γ if no probabilistic polynomial
time (PPT) attacker A can distinguish its output from a random output of equal
length, except with a negligible probability negl(γ).

2.3 Private Information Retrieval

A PIR scheme allows a user to retrieve a value from a database without revealing
to the database which value is retrieved. For example, using a PIR scheme a user
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can retrieve the i-th bit (or the i-th block) from a database of N -bits (or a
database of N blocks) without revealing the value of i to the database. We
require that the PIR scheme satisfies the following definition.

Definition 7. Suppose that the database contains an N data blocks with block-
length � bits each, with both N, � ≥ 1 (i.e., the database contains x1x2 · · · xN ,
where the length of xi is �, for i = 1, · · · , N .) And let PIR be the private informa-
tion retrieval scheme employed to retrieve the i-th block from the database (i.e.,
xi ← PIR(i)). Then the database should not have any information about the
value of i and xi. If the database is assumed to be computationally unbounded,
the PIR is called information-theoretic PIR; otherwise, it is called computational
PIR.

2.4 Threat Model

In the typical security analysis, adversaries are divided into two main categories:
(i) honest-but-curious (HBC) adversaries, and (ii) malicious adversaries. In the
HBC adversarial model, corrupted parties follow the protocol specification. How-
ever, the adversary may obtain the internal state of all corrupted parties (i.e.,
transcript of all received messages) and may attempt to use this information to
recover sensitive data (e.g., biometric templates) that should remain private. In
the malicious adversarial model, the corrupted parties may arbitrarily deviate
from the protocol specification in order to break the security and privacy of the
protected data. Since external adversaries cannot obtain more information than
the internal ones, we consider exclusively malicious internal adversaries that may
arbitrarily deviate from the protocol specification.

To be privacy-preserving, a biometric authentication protocol should satisfy
not only the security requirement (cf. Definition 2), but also the following privacy
requirements:

1. Biometric reference privacy: An adversary A should not be able to recover the
stored reference biometric template (cf. Definition 5).

2. Biometric sample privacy: A should not be able to recover the fresh biometric
sample (cf. Definition 5).

3. Password privacy: A should not be able to recover the password or the key
derived from the password (cf. Definition 5).

4. Identity privacy: A should not be able to link a database entry to a user identity
ID. Note that the protocol does not require ID to be personally identifiable infor-
mation, and so this privacy requirement only concerns whether a database entry is
associated to a specific user ID employed in the protocol (cf. Definition 4).

5. Unlinkability: A should not be able to link an authentication attempt to a user
(cf. Definition 3).

In this paper, we only consider adversaries that attempt to violate these privacy
requirements and skip denial-of-service type of attacks.

Depending on the attack scenario (i.e., depending on which protocol entity
is compromised or malicious), the privacy requirements change accordingly. For
instance, the service provider SP always knows which user is authenticating
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himself so the unlinkability and identity privacy are not relevant, although the
latter can be achieved using anonymous IDs. Therefore, whenever the SP is
compromised, either colluding or not colluding with the DB, we only focus on
the biometric samples and the password (or password-derived key) secrecy. On
the other hand, if the attacker is the database DB all of the requirements must
hold.

The Sensor is trusted, i.e. it does not deviate the protocol, it does not store ID
or biometric samples, and the information it handles during the enrollment and
verification phases is discarded and only accessible to the legitimate application
at run time; and we are not considering the case where it is compromised, e.g.
infected by malicious software. We assume that each user has a client device
(e.g., a smartphone) with a biometric sensor. It is quite common nowadays that
people use their smartphones to do even bank transactions. This does not make
the user devices trustworthy, but if the users cannot trust the devices used to
log in, a secure access to their remote services cannot be accomplished.

A further assumption we make is that the communication among the protocol
entities takes place over a secure channel. This means that an adversary can-
not intercept or modify a message in transit. Lastly, we require that before any
user authenticates himself to the service provider, the service provider authenti-
cates itself to the client device (i.e., the sensor). This can be achieved by using
secure transmission protocols, e.g. TLS or IPsec. Hence, at the conclusion of
the protocol there should be a mutual entity authentication, where the service
provider is authenticated first and then the user authenticates himself to the
service provider. This is to preclude phishing attacks, i.e. to ensure that the user
does not blindly give away his identity and authentication data to attackers. The
authentication mechanism for the server and the way it is coupled to the user
authentication is left outside the scope of this paper.

3 The Protocol

The protocol comprises a set S of N sensors, one for each user in a set U of N
users, a service provider SP, and a database DB. Each user is assumed to have
a client device (e.g., a smartphone), which has a biometric sensor.

Enrolment. The enrolment works as follows. The sensor Si prompts the user
Ui, for i = 1, · · · , N , for his biometrics and password pwi, and outputs bi ⊕ ri,
where bi is a (binary) reference biometric template of bitlength � extracted by
the sensor from the user provided biometrics and ri ← KDF(pwi, IDi) is also
of bitlength �. Then, Si sends (IDi, bi ⊕ ri) to the service provider SP, that
first maps the IDi to a unique index i and locally stores (i, IDi), and forwards
(i, bi ⊕ ri) to DB for storage.

The service provider does not need to store (i, IDi). Instead, what SP needs
is a deterministic one-to-one map to map IDi to an index i. For the sake of
simplicity, however, we assume that SP locally stores the pair (i, IDi), and that
during authentication it just retrieves the index i corresponding to a received
IDi from its local storage.
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User Authentication. A user Ui authenticates himself to the service provider
as follows. After authenticating the service provider, the sensor Si prompts the
user for his data: fresh biometrics, password and identity. Then, the sensor
extracts a fresh biometric template b′

i from the user provided biometrics, receives
the user password pwi and identity IDi from the user Ui. Subsequently, Si derives
ri using the key derivation function KDF with pwi and IDi as input, computes
b′
i ⊕ ri, and sends (IDi, b

′
i ⊕ ri) to the service provider SP. SP first obtains i

corresponding to IDi from its own local storage and retrieves bi ⊕ ri from DB by
employing a private information retrieval PIR scheme (see Sect. 3.1 on PIR for
details). SP then XORs bi ⊕ ri and b′

i ⊕ ri to obtain bi ⊕ b′
i. Finally, the user is

authenticated if the Hamming weight HW(bi ⊕ b′
i) ≤ τ ; rejected, otherwise.

Note that the sensors Si, i = 1, · · · , N , do not store any user information
(i.e., biometric template data and/or password), thus user’s data privacy is still
preserved if his terminal is stolen or lost. When a user Ui presents his biometrics
to the sensor Si, it only outputs the XOR of the extracted biometric template
with the derived key ri, i.e., b′

i ⊕ ri or bi ⊕ ri depending on the protocol phase,
and never outputs the biometric template data or the password-derived key ri

in the clear or stores them. Also, the ri’s are generated at run time using the
password pwi and user IDi as input to a KDF, and ri and pwi are erased from
memory immediately after use.

To highlight the feasibility of our protocol, below we elaborate further on the
KDF and the PIR scheme that can be employed in our protocol. However, since
we would like to keep it as generic as possible, we leave the choice for specific
KDF and PIR schemes for the users of our protocol.

3.1 KDF

In our protocol, both the reference bi and fresh b′
i biometric templates are bound

(i.e., XORed) with keys ri generated from the second authentication factor (e.g.,
password) using a KDF. KDF is a useful tool in cryptography and often used in
diverse applications to derive cryptographic keys from a secret input. According
to PKCS # 5 [25], for a password-based KDF, it is recommended to salt the
password in order to prevent dictionary attacks and to compute the hash many
times to slow down the KDF process, which is also known as key-stretching [26].
If password is used as the second factor in our protocol, then the salt needs to be
stored in the user device. We refer the interested reader to Yao et al. [27] for a
formal treatment of password-based KDF, and to Krawczyk [1] for a more general
treatment and rigorous security definitions of KDF. What is important to note
when choosing a specific KDF for our protocol is that the chosen KDF must be
secure according to our Definition 6.

Regarding the security requirements on the inputs to the KDF, we note that
the password should have at least the same min-entropy as the one required for
the output. Since only the XOR of the KDF output with the biometric template
is stored, the security requirement should be referred to this combination (i.e.,
ri ⊕ bi), whose min-entropy is greater than or equal to max{H∞(ri),H∞(bi)},
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where H∞ stands for min-entropy. Therefore, as long as one of the factors pro-
vides sufficient min-entropy, the entropy requirement on the other can be relaxed
if the security is our only concern. However, the min-entropy of the second
authentication factor impacts privacy. The min-entropy of the second factor
should be greater than or equal to the entropy of the biometric template for
avoiding biometric information leakage to internal adversaries.

3.2 PIR

As mentioned briefly in Sect. 2, PIR schemes allow for the retrieval of the content
of a database entry, say the i-th bit of an N -bit database, without revealing to the
database which content or entry is retrieved (i.e., the value of i in the example).
Chor et al. [8] were the first to introduce the notion of PIR, and they studied
information-theoretically secure PIRs in the case of single database or multiple
non-communicating databases. Since then, there has been a substantial amount
of work on PIR; we present here a quick review of the work relevant to our
protocol.

Recall that we assume that there is a single database. In practice, however,
one can use multiple databases (e.g., multiple cloud storage providers) storing the
same information. This is more robust, because even if some databases are down,
e.g., due to power outage, users can still authenticate themselves to the service
provider. So, we divide our discussions on PIR into single database PIR and
multiple database PIR.

Single DB PIR. Since Kushilevitz and Ostrovsky [28] proposed the first sin-
gle DB PIR scheme, the field has evolved and important connections between
single DB PIR and other cryptographic primitives, such as oblivious transfer
and collision resistant hashing, have been identified [29]. Ostrovsky and Skeith
give a nice survey on single DB PIR schemes in [29]. Here we describe a sim-
ple scheme that appeared in [10], which utilises the Goldwasser-Micali cryp-
tosystem [7], a bit-wise encryption scheme with an homomorphic property:
Enc(m)Enc(m′) = Enc(m ⊕ m′), where m and m′ are two message bits. Sup-
pose that the SP wants to retrieve the i-th user’s data item bi ⊕ ri from the
DB. Also suppose that SP generates a private and public key pair (sk, pk)
for the Goldwasser-Micali encryption schemes, and gives the public key pk
to the database and keeps the secret key sk to itself. Assume from now on
that the content of the DB is an N × � binary matrix A. Then, SP forms
PIR(i) as follows: for j = 1, · · · , N , sj = 1, if j = i, 0 otherwise. It sends
Enc(s) =

(
Enc(s1), · · · ,Enc(sN )

)
to the DB, which computes, for n = 1, · · · , �,

Ci,n :=
( ∏N

j=1 Enc(sj)Aj,nEnc(0)
)

= Enc
(
Ai,n

)
= Enc

(
bi,n ⊕ ri,n

)
, and returns

Ci = (Ci,1, · · · , Ci,�) to SP. Note that Enc(0) is used to randomise the response
in order to resist an attack similar to the one described by Barbosa et al. [11].
Finally, SP decrypts Ci to obtain bi ⊕ ri. This scheme has a communication
complexity of O(Nc + �c), where c is the ciphertext length, which needs to be
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at least 2048 bits for 112-bit security. Furthermore, this PIR scheme is computa-
tionally secure according to our Definition 7, if the Goldwasser-Micali encryption
is IND-CPA secure [10].

Multiple DB PIR. When there are k (� 1) copies of (i, bi⊕ri), for i = 1, · · · , N ,
stored in k DBs, we can use the following information-theoretic PIR scheme in
our protocol. Suppose that there are 2 DBs and that the SP wants to retrieve i
entry, which is bi ⊕ ri, from the DBs. Then, the PIR scheme works as follows:

– The SP prepares the queries as follows:
• generate at random a bitstring s of length N .
• flip the i-th bit of s; let us denote the resulting bitstring by s′.
• send s to DB1, and s′ to DB2.

– DB1 returns t = sA mod 2, where s is used as a row vector, to SP.
– DB2 returns t′ = s′A mod 2, where s′ is used as a row vector, to SP.
– Finally, SP computes t ⊕ t′ = sA ⊕ s′A = (s ⊕ s′)A = bi ⊕ ri. Note that s ⊕ s′ is all

0 s except at the i-th position, where it has a 1.

Obviously, this 2-DB PIR scheme has a communication complexity of O(N + �).
And the computation performed by the DBs is just the XOR of the rows (of
A) corresponding to the components of s (or s′) that are 1. We note that this
scheme, or for that matter most k-DB PIR schemes, assumes that the DBs are
trusted not to collude with each other; otherwise, the DBs can learn the value
of i. There are, however, also k-DB PIR schemes that remain secure even if
all databases collude with each other [30]. We refer to the excellent survey by
Gasarch [31] for more on multiple DB PIR.

4 Security and Privacy Analysis

We assume that the protocol setup and enrolment phases are done securely and
all involved entities behaved honestly in these phases. Therefore, we focus on
the authentication phase in our analysis. We distinguish the following attack
scenarios from each other.

1. Attacker = The service provider SP: Its objective is to learn the user biometric
template or the user password. It has access to b′

i ⊕ ri and bi ⊕ ri, and b′
i ⊕ bi. The

identity privacy and unlinkability, however, are not relevant if SP is compromised,
as it knows the user IDs.

2. Attacker = The database DB: Its objectives are to learn (a) user identity, (b) bio-
metric templates, (c) passwords or password-derived keys, and (d) link different
authentication attempts. It knows only bi ⊕ ri, but it does not know to which user
it belongs, since the database is anonymised. Also, since a secure PIR is employed
during authentication, the identity privacy and unlinkability requirements are also
satisfied. So all of the privacy requirements are satisfied in this case.

3. Attacker = SP+DB: Their objective is to learn the user biometric template or the
user password. In this case, they know bi ⊕ ri, b

′
i ⊕ ri, and bi ⊕ b′

i, as in the case
of the attacker being SP. Therefore, against the collusion between SP and DB, the
biometric template (both reference and sample) privacy and the password (or the
password-derived key ri) privacy are preserved.
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4. Attacker = The sensor Si: we only consider the case where Si is used by a malicious
user to impersonate its legitimate owner. Since the sensor does not store any infor-
mation about its legitimate user’s biometrics and password, the attacker cannot
learn anything or impersonate the user.

We now state the security and privacy properties of our protocol. The proofs are
presented in Appendix 5.

Theorem 1. Our proposed protocol is secure according to our Definition 2, if the
employed KDF and PIR are secure according to Definitions 6 and 7, respectively,
and i ← IDi procedure is known only to the SP.

Unlinkability against malicious DB. Recall that if the adversary cannot
distinguish a user who is authenticating himself from a user who is not, then
unlinkability holds. Therefore, we state the unlinkability result against malicious
DB as follows.

Theorem 2. Our proposed protocol has unlinkability against malicious
DB according to Definition 3, if the employed PIR is secure according to
Definition 7.

Identity privacy against malicious DB. If the DB cannot tell to which ID a
database entry belongs, then we say that the identity privacy is preserved. This
is summarised in the next theorem.

Theorem 3. Our proposed protocol has identity privacy against malicious
DB according to Definition 4, if the employed PIR is secure according to Defi-
nition 7 and i ← IDi procedure is known only to the SP.

User data privacy against malicious SP+DB. Our last result relates to the
privacy of user data, i.e., the fresh and reference biometric templates, password
and password-derived key. Note that when we say that the password has sufficient
min-entropy, the word “password” is used just as a reference to the second
authentication factor which is given as an input to the KDF. The following
theorem states that as long as the KDF is secure, the privacy of the user data is
preserved against malicious and colluding SP and DB.

Theorem 4. Our protocol preserves the privacy of the user data (i.e., the fresh
and reference biometric templates, password and password-derived key) against
malicious SP+DB according to Definition 5, if the employed KDF is secure
according to Definition 6 and the password has sufficient min-entropy.

5 Conclusions

In this paper, we proposed a two-factor privacy-preserving authentication pro-
tocol that is secure against malicious and possibly colluding adversaries. The
second factor (e.g., password) adds another layer of security in that even if an
attacker successfully forges a user biometrics (e.g., a fingerprint), he/she can-
not impersonate the user without knowing the password. Furthermore, as our
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analysis shows, the privacy of the users’ identities, their passwords and biomet-
ric template data is preserved even if the protocol actors are compromised. The
protocol is efficient and employs a distributed model for the protocol actors and
thus suitable for applications where users authenticate themselves to a service
provider using their smart devices that have embedded biometric sensors and
where part of the user data (i.e., the encrypted biometric reference template) are
outsourced to cloud storage providers. Hence, our protocol paves the way towards
a secure and privacy-preserving authentication cloud service business model. In
this model, services provided by the Database in our protocol can be securely
transferred to one or several cloud-based services. Such cloud storage services
can provide a secure and private storage and retrieval of user’s authentication
data to different Service Providers.

Acknowledgements. This work was funded by the European Commission through
the FP7 project “EKSISTENZ,” with grant number: 607049.

A Proofs

Proof (of Theorem 1). The proof is split into two cases. In the first case, the
adversary A is given a valid password (e.g., A is given pwi of user Ui). In the
second case, A is given a valid biometrics, (e.g., A is given b′

i of user Ui). In
both cases, if A can provide b′

i ⊕ ri such that HW(bi ⊕ b′
i) ≤ τ , then A succeeds

in impersonating the user Ui.

Case 1: Assume that the attacker can successfully impersonate a user with a non-
negligible probability. This means that A either (a) can forge the user biometrics
and generate b′

i that matches the reference template bi of the user Ui, or (b)
knows i ← IDi so that it can collude with DB to learn bi. However, the probability
of case (a) happening is bounded by the false acceptance rate, which can be
bounded to be arbitrarily small, at the price of increased false rejection rate.
And case (b) requires that A can learn i from PIR(i) or can derive i from IDi,
which contradicts both the security of the PIR scheme and the fact that i ← IDi

is only known to SP. Therefore, A cannot impersonate a user knowing only the
password.

Case 2: Assume again that the attacker can successfully impersonate a user with
a non-negligible probability. As in Case 1, this means that A either can guess
the password (or the password-generated key ri) or knows i ← IDi so that it
can collude with DB to learn ri. However, while the probability of the former
is negligible in H∞(pw), the latter requires that A can learn i from PIR(i) or
knows i ← IDi.

Therefore, A cannot successfully impersonate any user without having access
to both authentication factors. Note that the use of salt prevents the adversary
from practical dictionary attacks. Hence, it is important to salt the KDF, e.g.
with the user ID, so that the security of the protocol in Case 2 can be related
to H∞(pw).
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Proof (of Theorem 2). Suppose that the adversary (i.e., the malicious DB) has
a non-negligible advantage, i.e.,

∣
∣ Pr{β = β′} − 1/2

∣
∣ ≥ negl(λ), where λ is a

chosen security parameter for the protocol. Then, that means DB can guess the
value of β (or iβ) from PIR(iβ) with a non-negligible probability. This in turn
implies that DB can break the security of the underlying PIR scheme with a
non-negligible probability, which contradicts the assumption that PIR is secure
according to Definition 7. �
Proof (of Theorem 3). Suppose that the adversary can distinguish (IDi0 , ci0)
from (IDi0 , ci1). Then the adversary can infer from PIR(i0) (and the response
to the query) the value of i0, or infer from IDi0 the value of i0. This contra-
dicts the security assumptions on the PIR, or the secrecy assumption on the
correspondence between IDi0 and i0, respectively. �
Proof (of Theorem 4). Since the adversary (i.e., malicious SP+DB) has access
to bi ⊕ ri, b′

i ⊕ ri and bi ⊕ b′
i only, for all i ∈ [1, N ], it cannot learn more than

what can already be learnt from these about bi, b′
i and ri (or the password from

which the ri is generated), as long as the KDF is secure and the password has
sufficient min-entropy. The adversary can attempt to guess the value of bi, b′

i or
ri at random using what the information at its disposal, but in order to verify
whether the guess is correct, it needs access to an oracle that can answer whether
the guessed values are correct. If the KDF is secure and the second factor has
sufficient min-entropy, the expected number of queries needed to finally get an
affirmative answer from such oracle is exponential in the min-entropy of ri. �
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Abstract. Searchable symmetric encryption (SSE) enables a user to
outsource a collection of encrypted documents in the cloud and to per-
form keyword searching without revealing information about the contents
of the documents and queries. On the other hand, the information (called
search pattern) whether or not the same keyword is searched in each
query is always leaked in almost all previous schemes whose trapdoors
are generated deterministically. Therefore, reducing the search pattern
leakage is outside the scope of almost all previous works. In this paper, we
tackle to the leakage problem of search pattern, and study methodology
to reduce this leakage. Especially, we discuss that it might be possible
to reduce the search pattern leakage in cases where a trapdoor does not
match any encrypted document. We also point out that the same search
pattern is leaked regardless of probabilistic or deterministic generation
of trapdoors when the user searches using a keyword which has already
searched and matched a certain encrypted document. Thus, we further
aim to construct SSE schemes with fast “re-search” process, in addition
to reducing the search pattern leakage. In order to achieve the above,
we introduce a new technique “trapdoor locked encryption” which can
extract a deterministic trapdoor from a probabilistic trapdoor, and then
propose a new SSE scheme which can generate trapdoors probabilisti-
cally and reduce the search pattern leakage. Our scheme is constructed by
applying our technique to the well-known and influential scheme SSE-2
(ACM CCS 2006) and can be proved secure in the standard model.

1 Introduction

1.1 Background

Searchable encryption of symmetric-key type is called searchable symmetric
encryption or SSE and its concrete schemes have been proposed (e.g., [1–13,15–
26,28–33]). SSE consists of document storing process and keyword searching
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 350–364, 2016.
DOI: 10.1007/978-3-319-48965-0 21
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process, and the processes are executed by the same user in the simple user
setting. In the document storing process, the user encrypts documents and gen-
erates an encrypted index I from a secret key K, and the server stores a pair of
encrypted documents (ciphertexts hereafter) and encrypted index I. In the key-
word searching process, the user generates an encrypted query called trapdoor
from the secret key K and a keyword w, and the server searches on the cipher-
texts that contain the keyword w by applying the trapdoor to the encrypted
index I. Finally, the server obtains a document identifier set S as a search
result.

Several security models for SSE have been studied. Especially, the security
model formalized by Curtmola et al. [9] covers the security of both the document
storing process and the keyword searching process. Curtmola et al. carefully
examined unavoidable information leaked from the document storing process
and the keyword searching process of a general SSE scheme, and they formalized
acceptable leakage information in SSE, namely history, access pattern and search
pattern. Then, they defined that an SSE scheme is secure if no information except
the acceptable leakage information is revealed from the processes of the scheme.
Since their security framework is considered practical in current SSE literature,
many previous works [1,3–5,7–12,15–26,29–33] employ this security model and
its slightly modified variants.

The information (called search pattern) whether or not the same keyword is
searched in each query is included in the acceptable leakage information, and
always leaked in almost all previous schemes. Therefore, this search pattern
leakage is outside the scope of almost all previous works.

1.2 Motivations

Search Pattern Hiding. Contrary to the security definition of Curtmola et al.,
leaking search patterns might be a serious problem in real situations. For exam-
ple, an adversary might reveal hidden keywords from trapdoors by executing
frequency analysis if the adversary obtains background knowledge (e.g., distrib-
ution on age or family names). In previous SSE works, search patterns are always
leaked because trapdoors are generated deterministically. Of course, we can eas-
ily construct a scheme with no search pattern leakage, by using strong primitives
like oblivious RAMs or fully homomorphic encryption [14,27]. However, these
techniques incur high computation or communication cost. Therefore, in this
paper, we aim to use only light-weight cryptographic primitives like pseudo-
random function (PRF) and symmetric key encryption (SKE), and to construct
a non-interactive scheme as in previous SSE works.

In addition to deterministic generation of trapdoors, SSE schemes based on
hash functions or PRFs must leak search patterns when the searched keyword w
is contained in documents, because of the following current methodology for con-
structing encrypted indexes. In many SSE schemes, each entry of an encrypted
index I can be formed as (val, id)1 abstractly, where val is generated from a

1 In several SSE schemes like [7], id is encrypted.
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keyword w by using hash functions or PRFs and id is an identifier of a document.
In keyword searching process, the server generates val by using a trapdoor t and
checks whether the encrypted index I contains val. If the document matches the
trapdoor t (that is, the document contain the keyword w), the server can find
the same val in I. Then, if two trapdoors generated from the same keyword w,
the server computes the same val from these trapdoors in the search process,
and thereby the search pattern is always leaked regardless of the probabilistic
or deterministic generation of trapdoors.

On the other hand, in cases where a trapdoor does not match any encrypted
document (that is, the identifier set S output by the search process is empty),
it might be possible to hide the search pattern. Hence, we aim to propose a new
SSE scheme which can generate trapdoors probabilistically and have leakage
resilience to search patterns if a trapdoor matches no encrypted documents.

Speeding Up for “Re-Search”. By generating trapdoor probabilistically, we
can achieve that no search pattern is leaked when a trapdoor does not match any
encrypted document. However, the server has to execute the keyword searching
process to an entry of the encrypted index one by one because of probabilistic
trapdoor. Thus, the search time is quite slower than SSE schemes whose trap-
doors are generated deterministically. In order to reduce this search cost, we will
propose a new SSE scheme that provides high speed search only when the same
keyword has already been searched. We call this situation “re-search”. Re-search
means that the user searches once again by using the same keyword which has
already been matched some documents in the previous search phase.

In this paper, we achieve the above goals, probabilistic trapdoor generation
and fast re-search by introducing new technique “trapdoor locked encryption
technique” which is explained in the next subsection.

1.3 Key Technique: Trapdoor Locked Encryption Technique

Difficulties. In order to achieve the above purposes, in the first step, we try to
randomize the trapdoors of SSE-2 [9], which is first adaptive semantic secure SSE
scheme, as Table 1 (we call this scheme Tentative Scheme). In SSE-2, an entry of
encrypted index is generated by (κj = F (K,w, j), idj) and a trapdoor is gener-
ated by t = F (K,w′, j) where F is a PRF, idj is an identifier of j-th document
Dj in the document collection in the server, respectively. The server can confirm
that the trapdoor t matches the entry of encrypted index by checking t = κj . In
Tentative scheme, the user generates (t = F ′(F (K,w′, j), u), u) as the trapdoor
where F ′ is a PRF and u is a randomness. The server can confirm whether the
trapdoor matches or not by checking t = F ′(κj , u) using randomness u, which
is the second component of the trapdoor.

In Tentative scheme, search patterns are hidden from the trapdoor if the
keyword w does not match any stored document by using the randomness u.
However, the server computation for searching is inefficient compared with SSE-2
scheme, because the keyword searching process in Table 1 is executed m×n times
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where m and n are the numbers of keywords and documents which are stored in
the server, respectively.

Through the above discussion, in the case that trapdoors match any entry of
the encrypted index, search patterns are leaked even if trapdoors are generated
probabilistically. Additionally, the same search pattern is leaked regardless of the
probabilistic or deterministic generation of trapdoors when the user searches for
a keyword which is matched once, because the server can compute and find same
val by using deterministic/probabilistic trapdoors where (val, id) is an entry of
encrypted index. Thus, we have a possibility of speed-up of re-searching process
by using deterministic trapdoors instead of probabilistic trapdoors in the case
that the user searches the same keyword which matches encrypted index. From
the above observation, we will set up a goal of Re-Search case as follows: we aim
the speed up of re-search by using deterministic trapdoors when re-searching
process is executed.

In order to achieve this purpose, we construct another encrypted index I ′

to further speed up search process. In re-search phase, the server searches doc-
uments by using this encrypted index I ′. In this paper, our re-search perfor-
mance aims at O(log n′) equal to the structured encryption scheme of Chase
and Kamara [7] where n′ is the number of indexes in I ′. In order to search in
O(log n′), I ′ should contain deterministic information for searched keywords.
Hence, we adopt the following goals.

(1) In the first search phase, a trapdoor should be generated probabilistically for
search pattern hiding. Additionally, the user should not give any information
of keywords to the server if the trapdoor does not match any document.

(2) At the same time, to construct another encrypted index I ′, the server has
to obtain deterministic information for the keyword if the trapdoor matches
with some entry of the encrypted index I in the keyword searching process.

(3) In re-search phase, the server executes searching process by using encrypted
index I ′ which consists of deterministic information for searched keywords.

The user can choose executing of searching process or re-searching process when
the user generates trapdoors. In Tentative scheme, the server cannot generate
deterministic encrypted index I ′. On the other hand, the search patterns are
leaked to the server if the user generates deterministic trapdoor. In order to
overcome this seemingly contradictory situation, we introduce a new technique
trapdoor locked encryption technique.
Trapdoor Locked Encryption Technique. For the above purposes, the user
should send deterministic information of keywords to the server and trapdoors

Table 1. SSE-2 v.s. Tentative scheme

SSE-2 [9] Tentative scheme

Entry of encrypted index: (κj = F (K, w, j), idj) ⇒ (κj = F (K, w, j), idj)

Trapdoor: t = F (K, w′, j) ⇒ (t = F ′(F (K, w′, j), u), u)

Search: t
?
= κj ⇒ t

?
= F ′(κj , u)
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Table 2. SSE-2 v.s. Proposed scheme

SSE-2 [9] Proposed scheme

Entry of I: (κj = F (K, w, j), idj) ⇒ (κj = F (K, w, j), idj)

Trapdoor: (t = F (K, w′, j)) ⇒ (t = SKE.Enc(F (K, w′, j), F (K′, w′)||r), r)
Search: t

?
= κj ⇒ X||r′ = SKE.Dec(κj , t)

r
?
= r′

Entry of I′: not available ⇒ X = F (K′, w′)

Re-Search: not available ⇒ F (K′, w′′) ?
= X

(Note that w, w′ and w′′ are keywords which are used in the document storing process,
the searching process, and the re-searching process, respectively.)

should be probabilistic value to the third parties and the server when the keyword
is searched for the first time. Then, we consider that trapdoors are generated
probabilistically by encrypting deterministic information of the keyword using
a symmetric key encryption (e.g., AES-CBC or AES-CTR). However, search
patterns are leaked to the server if the sever can always decrypt trapdoors. We
need to develop the method that the server can decrypt only when the trapdoor
matches with some entry of the encrypted index I by using one component of
a part of the entry of encrypted index I as the secret key of a symmetric key
encryption.

In SSE-2, an entry of encrypted index is formed as (F (K,w, j), idj). Then, in
our scheme, the user generates a ciphertext by using κj = F (K,w, j) as the key
of symmetric key encryption. If the trapdoor matches, the server can decrypt
the trapdoor (ciphertext) correctly since the server has κj = F (K,w, j). On the
other hand, if the trapdoor does not match, the server cannot decrypt it and
cannot obtain the deterministic information since the server does not have the
key κj = F (K,w, j).

The overview of proposed method is as follows. The user generates t =
SKE.Enc(F (K,w′, j), F (K ′, w′)||r) as the trapdoor where SKE.Enc is a symmet-
ric key encryption algorithm and K ′ is a PRF key which is different from K,
F (K ′, w′) is deterministic information for re-search and r is a l-bit randomness.
This trapdoor matches if the low order l bits of the decryption result is equiv-
alent to r. We call this technique “trapdoor locked encryption technique”. The
construction overview is described in Table 2.

1.4 Our Contributions

– This paper presents a reasonable and useful definition which covers reducing
search pattern leakage and fast re-search. First, we define the syntax of our
SSE scheme (see Sect. 3). In our concept, the server can obtain determinis-
tic information from trapdoors and update the encrypted index I ′ from the
information in order to re-search quickly. After that, the user can generate a
deterministic trapdoor of keywords which have been already searched, and the
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server can quickly re-search by using it. We define DetTrpdr and QuickSearch
as a deterministic trapdoor generation algorithm and a search algorithm by
using deterministic trapdoors, respectively. Additionally, we propose a secu-
rity definition, adaptive semantic security, which takes into account search
pattern hiding (see Sect. 3.2).

– This paper proposes the first adaptive secure and search pattern hiding SSE
scheme based on SSE-2 [9] (see Sect. 4.1). Security of our scheme is proved
under the existence of PRFs in the standard model (see Sect. 4.2).

1.5 Related Works

There are SSE schemes closely related to our work [15,24]. Moataz and Shikfa
proposed the SSE scheme which can generate trapdoors probabilistically [24].
Their trapdoor is expressed as a vector form, and all trapdoors obtained from
the same keyword can be represented as scalar multiplications of some vector.
Therefore, anyone can easily check whether given trapdoors contain the same
keyword. That is, their scheme cannot reduce search pattern leakage. The SSE
scheme providing a quick re-searching algorithm was also proposed by Hahn
and Kerschbaum [15]. Their strategy for quick re-searching is similar to ours.
However, the trapdoors of their scheme are generated deterministically (i.e. their
search pattern of the scheme is leaked more than that of our proposed scheme),
and no trapdoor locked encryption technique is used.

2 Preliminaries

Notations. We denote the set of positive real numbers by R
+. We say that a

function negl : N → R
+ is negligible if for any (positive) polynomial p, there

exists n0 ∈ N such that for all n ≥ n0, it holds that negl(n) < 1/p(n). We
denote by poly(n) unspecified polynomial in n. If A is a probabilistic algorithm,
y ← A(x) denotes running A on input x with a uniformly-chosen random tape
and assigning the output to y. AO denotes an algorithm with oracle access to O.
We denote the empty set by ∅. For an associative array I ′, its value for a key s
is denoted by I ′[s], and I ′[s] ← x represents assignment of x to I ′[s]. We denote
by |S| the cardinality for a finite set S, and the bit length for a bit string S. If
S is a finite set, s

u←− S denotes that s is uniformly chosen from S. We denote a
security parameter by λ throughout this paper.

Cryptographic Primitives. We recall the definition of pseudo-random func-
tions (PRF). A function f : {0, 1}λ × {0, 1}m → {0, 1}n is pseudo-random if f
is polynomial-time computable in λ, and for any probabilistic polynomial-time
(PPT) algorithm A, it holds that

|Pr[1 ← Af(K,·)(1λ) | K
u←− {0, 1}λ] − Pr[1 ← Ag(·)(1λ) | g

u←− Fm,n]| ≤ negl(λ),

where Fm,n is the set of functions mapping {0, 1}m to {0, 1}n.
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We recall the definition of pseudo-randomness against the chosen plaintext
attack (PCPA) for a symmetric-key encryption scheme SKE = (Gen, Enc, Dec).
Let PCPAA,SKE(λ) be an experiment for an adversary A and SKE as follows:

1. A key K is generated by SKE.Gen(1λ).
2. A is given oracle access to SKE.Enc(K, ·).
3. A outputs a message m.
4. Two ciphertexts c0 and c1 are generated as follows: c0 ← SKE.Enc(K,m) and

c1
u←− C, where C denotes the set of all possible ciphertexts. A random bit

b
u←− {0, 1} is chosen, and cb is given to A.

5. A is given oracle access to SKE.Enc(K, ·), and outputs a bit b′ ∈ {0, 1}.
6. The output of the experiment is 1 if b′ = b, 0 otherwise.

We say that SKE is PCPA-secure if for any PPT adversary A,
∣
∣
∣
∣Pr[PCPAA,SKE(λ) = 1] − 1

2

∣
∣
∣
∣ ≤ negl(λ),

where the probability is taken over the random coins of Gen and Enc.

Document Collections. Let w be a keyword, and Δ ⊆ {0, 1}� be a set of d
keywords.

Let D ∈ {0, 1}∗ be a document (or file), and D = (D1, . . . , Dn) be a document
collection. Let C = (C1, . . . , Cn) be a ciphertext collection of D, where Ci is a
ciphertext of Di for 1 ≤ i ≤ n. We assume that the ciphertext Ci contain a
unique identifier (or file name) idi ∈ {0, 1}ν . For D = (D1, . . . , Dn), let D(w) be
a set of identifiers of documents that contain the keyword w. That is, D(w) =
{idi1 , . . . , idin}.

3 Definitions

In this section, we define our new SSE scheme which has two keyword search
algorithms. One is a search algorithm for a trapdoor generated probabilistically.
The other is a search algorithm for a trapdoor generated deterministically.

The former algorithm can reduce the amount of the search pattern leak-
age. On the other hand, the latter algorithm using deterministically-generated
trapdoors can reduce computational cost of a re-searching case when the user
wants to search using a keyword which has already been searched. Furthermore,
index updating algorithm is also provided in order to achieve the above quick
re-searching.

3.1 Syntax

We now define new SSE scheme over a Δ, SSE = (Gen, Enc, Trpdr, Search,
Dec, Update, DetTrpdr, QuickSearch), which consists of the following algo-
rithms:
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– K ← Gen(1λ): is a probabilistic algorithm which generates a secret key K,
where λ is a security parameter.

– (I,C, I ′) ← Enc(K,D): is a probabilistic algorithm which outputs two
encrypted indexes I and I ′, and a ciphertext collection C = (C1, . . . , Cn).

– t(w) ← Trpdr(K,w): is a probabilistic algorithm which outputs a probabilistic
trapdoor t(w) for a keyword w.

– S(w) ← Search(I, t(w)): is a deterministic algorithm which outputs an iden-
tifier set S(w).

– D ← Dec(K,C): is a deterministic algorithm which outputs a plaintext D of
C.

– I ′ ← Update(I ′, I, t(w)): is a deterministic algorithm which outputs an
updated encrypted index I ′.

– T (w) ← DetTrpdr(K,w): is a deterministic algorithm which outputs a deter-
ministic trapdoor T (w) for a keyword w.

– S(w) ← QuickSearch(I ′, T (w)): is a deterministic algorithm which outputs
an identifier set S(w).

Here, the SSE scheme is correct if for all λ ∈ N, all w ∈ Δ, all K
output by Gen(1λ), all D, and (I,C, I ′) output by Enc(K,D), the follow-
ing conditions hold: (i) Search(I, Trpdr(K,w)) = D(w), and Dec(K,Ci) =
Di (1 ≤ i ≤ n), (ii) QuickSearch(I ′, DetTrpdr(K,w)) = D(w) if D(w) is
not empty and Update(I ′, I, Trpdr(K,w)) has been run at least once so far,
QuickSearch(I ′, DetTrpdr(K,w)) = ⊥ otherwise.

3.2 Security

We define Adaptive Semantic Security under the Chosen Keyword Attack as
follows, based on [7]. In our SSE, since there are two trapdoor generation algo-
rithms, Trpdr or DetTrpdr, we denote a query by (w, β) where β ∈ {0, 1} is used
to switch these trapdoor generation algorithms. Namely, a probabilistic trapdoor
t(w) is generated for a query (w, 0) by Trpdr and is to be input to Search. In con-
trast, a deterministic trapdoor T (w) is generated for a query (w, 1) by DetTrpdr
and is to be input to QuickSearch. We denote a query sequence whose length
is q by wq = ((w1, β1), . . . , (wq, βq)), and a set of trapdoors by T .

Definition 1. Let SSE be an SSE scheme, λ be a security parameter, and L1,L2

be leakage functions. For PPT algorithms A = (A0,A1, . . . ,Aq+1) with its state
stA and S = (S0,S1, . . . ,Sq) with its state stS such that q = poly(λ), define the
following games RealadptSSE,A(λ) and Simadpt

SSE,A,S(λ).

RealadptSSE,A(λ):
K ← Gen(1λ)
(D, stA) ← A0(1λ)
(I,C, I ′) ← Enc(K,D)
T ← ∅
for 1 ≤ i ≤ q,
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(wi, βi, stA) ← Ai(stA, I,C, I ′, T )
if βi = 0 then
t(wi) ← Trpdr(K,wi) and T ← T ∪ {t(wi)}
else
T (wi) ← DetTrpdr(K,wi) and T ← T ∪ {T (wi)}
b ← Aq+1(stA, I,C, I ′, T ), output b

Simadpt
SSE,A,S(λ):

(D, stA) ← A0(1λ)
(I,C, I ′, stS) ← S0(L1(D))
T ← ∅
for 1 ≤ i ≤ q,
(wi, βi, stA) ← Ai(stA, I,C, I ′, T )
if βi = 0 then
(t(wi), stS) ← Si(stS ,L2(D,wi)) and T ← T ∪ {t(wi)}
else
(T (wi), stS) ← Si(stS ,L2(D,wi)) and T ← T ∪ {T (wi)}
b ← Aq+1(stA, I,C, I ′, T ), output b

SSE is secure in the sense of adaptive semantic security under the chosen keyword
attacks if for any PPT adversary A, there exists a PPT simulator S such that

|Pr[RealadptSSE,A(λ) = 1] − Pr[Simadpt
SSE,A,S(λ) = 1]| ≤ negl(λ).

4 Specific Construction

In this section, we firstly give a construction of our scheme based on SSE-2
proposed by Curtmola et al. [9]. Secondly, we define three acceptable information
leakage functions H,α and σ in our construction. Finally, we prove that our
construction is adaptive semantic secure for these leakage functions.

4.1 A Construction of Our Scheme

Here, we give our construction of SSE. In this construction, F is a pseudo-random
function such that F : {0, 1}λ × {0, 1}∗ → {0, 1}μ, SKE = (Gen, Enc, Dec) is a
PCPA-secure symmetric key encryption scheme, I ′ is a associative array and
n = |D|. We denote by idj the j-th identifier in D.

– Gen(1λ): Sample K1,K2
u←− {0, 1}λ, generate K3 ← SKE.Gen(1λ), and output

K = (K1,K2,K3).
– Enc(K,D): I ← ∅

for 1 ≤ i ≤ |Δ| do
for 1 ≤ j ≤ n do

if idj ∈ D(wi) then
I ← I ∪ {(F (K2, wi, j), idj)}
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else
I ← I ∪ {(F (K2, wi, n + j), idj)}

C ← ∅
for 1 ≤ i ≤ n do

C ← C ∪ {SKE.Enc(K3,Di)}
Set I ′ to empty associative array
return (I,C, I ′)

– Trpdr(K,w):
r

u←− {0, 1}λ

for 1 ≤ j ≤ n do
tj(w) ← SKE.Enc(F (K2, w, j), F (K1, w) || r)

return t(w) = (t1(w), t2(w), . . . , tn(w), r)
– Search(I, t(w)):

S(w) ← ∅
for 1 ≤ i ≤ n do

for ∀(κj , idij ) ∈ I do
a ← SKE.Dec(κj , ti(w)), and parse a as s || r′

if r = r′ then
S(w) ← S(w) ∪ {idij}

return S(w)
– Dec(K,C): return D ← SKE.Dec(K3, C)
– Update(I ′, I, t(w)):

if Search(I, t(w)) �= ∅ then
retrieve s such that r = r′ from t(w) in the same manner as Search

I ′[s] ← Search(I, t(w))
return I ′

– DetTrpdr(K,w): return T (w) ← F (K1, w)
– QuickSearch(I ′, T (w)): return I ′[T (w)]

4.2 Security

In this section, let us discuss acceptable information leakage L1 and L2 of our
SSE, in order to formalize security of our SSE. First, we define the leakage
functions H, α and σ that the server can obtain from (I,C, I ′, T ) in our SSE.
H, α and σ represent history, access pattern and search pattern, respectively
as the security definition of Curtmola et al. [9]. The most important difference
between our SSE and ordinary SSE is the probabilistic generation of trapdoors.
By using probabilistic trapdoors, we can reduce the leakage of the search pattern
σ in the case where D(w) = ∅ in contrast to a ordinary SSE which always leaks
the search pattern.

– If a ciphertext Ci of a document Di is stored in the server, then the server can
easily infer the bit length |Di|, and thereby |D1|, . . . , |Dn| are always leaked
in SSE. Let H(D) = (|D1|, . . . , |Dn|).

– For a probabilistic trapdoor t(w), the server can easily obtain the search result
of t(w), i.e. the set of identifiers D(w). On the other hand, for a deterministic
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trapdoor T (w), the search result will be D(w) or ⊥. If D(w) �= ∅ and a
probabilistic trapdoor t(w) has been used at least once before searching with
T (w), I ′ is updated by running Update. The search result with T (w) will be
D(w) then. Otherwise, the search result of T (w) is ⊥ since updating I ′ has
never occurred. Then, let α(D,wk) be a function as follows:

α(D,wk) =

{
D(wk) if (βk = 0) ∨ ((D(wk) �= ∅) ∧ ((wk, 0) ∈ wk)),
⊥ otherwise.

– As ordinary SSE whose trapdoors are generated deterministically, the server
immediately infer whether the i-th query (wi, 1) and the j-th query (wj , 1)
are the same or not by checking T (wi) = T (wj). On the other hand, for
probabilistic trapdoors t(wi) and t(wj), it is hard for the server to decide
whether wi = wj from t(wi) = t(wj). However, the server can decide it when
D(wi) �= ∅ and D(wj) �= ∅ in our SSE, since a combination of entries that a
query w matches in an encrypted index I is unique to w unless D(w) = ∅.
Furthermore, for queries (wi, βi), (wj , βj) such that (βi = 0 or βj = 0) and
D(wi) = D(wj) = ∅, it is hard for the server to decide wi = wj because no
information which is effective to infer whether wi = wj is disclosed. Therefore,
for k queries (w1, β1), . . . , (wk, βk), the following binary matrix Hk is always
leaked in our SSE. For 1 ≤ i < j ≤ k, the element in the i-th row and the j-th
column, Hk[i, j], is defined as below:

Hk[i, j] =

⎧
⎪⎨

⎪⎩

1 if ((βi = βj = 1) ∨ (D(wi) �= ∅ ∨ D(wj) �= ∅)) ∧ (wi = wj),
0 if ((βi = βj = 1) ∨ (D(wi) �= ∅ ∨ D(wj) �= ∅)) ∧ (wi �= wj),
⊥ if (βi = 0 ∨ βj = 0) ∧ (D(wi) = D(wj) = ∅),

Let σ(D,wk) = (Hk, β1, . . . , βk), where wk = ((w1, β1), . . . , (wk, βk)).

We now have the following theorem for the leakage L1(D) = H(D) and
L2(D,w) = (α(D,w), σ(D,w)).

Theorem 1. If F : {0, 1}λ ×{0, 1}∗ → {0, 1}μ is a pseudo-random function and
SKE is PCPA-secure symmetric key encryption scheme, our scheme is adaptive
semantic secure for the above leakage (L1,L2).

Proof. We construct a PPT simulator S = (S0,S1, . . . ,Sq) such that for
any PPT-adversary A = (A0,A1, . . . ,Aq+1), the outputs of RealadptSSE,A(λ) and
Simadpt

SSE,A,S(λ) are computationally indistinguishable.
Firstly, we construct S = {S0,S1, . . . ,Sq} as follows.

– S0(L1(D)): Generate I∗, C∗ = {C∗
1 , C∗

2 , . . . , C∗
n} and I ′∗ from L1(D) = H(D)

as follows:
• Set I∗ ← ∅.

For 1 ≤ i ≤ |Δ|, 1 ≤ j ≤ n:
∗ Generate κ∗

i,j
u←− {0, 1}μ
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∗ Set I∗ ← I∗ ∪ {(κ∗
i,j , idj)}.

• Generate C∗
i

u←− {0, 1}|Di| (1 ≤ i ≤ n), and set C∗ = (C∗
1 , . . . , C∗

n).
• Set I ′∗ ← ∅ and stS ← I∗.
• Output (I∗,C∗, I ′∗, stS).

– Si(stS ,L2(D,wi)): Generate t∗(wi) = (t∗1(wi), . . . , t∗n(wi), ri) or T ∗(w) from
L2(D,wi) = (α(D,wi), σ(D,wi)) as follows:

1. Firstly, Si checks if wj such that wj = wi (j < i) exists using σ(D,wi).
Namely, Si tries to find wj such that Hi[j, i] = 1 (Si ignores a case that
Hi[j, i] = ⊥).

2. If such wj does not exist:
(a) Pick δi

u←− {0, 1}μ.
(b) If βi = 0, Si chooses ni = |α(D,wi)| entries {(κ∗

i,k, idik)}k=1,...,ni
⊆

I∗ for all elements idik ∈ α(D,wi), where κ∗
i,k have never cho-

sen by Si′ (i′ < i). Si picks ri
u←− {0, 1}λ and sets t∗k(wi) ←

SKE.Enc(κ∗
i,k, δi||ri). Additionally, Si sets t∗k(wi)

u←− {0, 1}μ+λ for
ni + 1 ≤ k ≤ n. Finally, Si outputs t∗(wi) and stS ← stS ∪
(i, δi, κ

∗
i,1, . . . , κ

∗
i,ni

).
(c) If βi = 1, Si outputs T ∗(wi) ← δi and stS ← stS ∪ (i, δi).

3. Otherwise:
(a) In the case of βi = 0, if (wi, βi) is the first query such that βi = 0,

κ∗
j,k has not created in stS yet. In such case, Si chooses them from

I∗ in the same manner as the case 2-(b) above, and complements the
entry by the κ∗

j,k. Si now has the retrieved δj and κ∗
j,k in stS , then Si

picks ri
u←− {0, 1}λ and computes t∗k(wi) for 1 ≤ k ≤ n as mentioned

in the case 2-(b). Finally, Si outputs t∗(wi) and stS .
(b) If βi = 1, Si outputs T ∗(wi) ← δj and stS since Si can retrieve it

from stS .

Let us analyze each output of Si for 0 ≤ i ≤ q. We denote the set of the
trapdoor which is output of Si by T ∗. Firstly, we show that Search, Update and
QuickSearch on (I∗,C∗, I ′, T ∗) behave in the same way as these on (I,C, I ′, T )
do. After that, we show that each component of (I∗,C∗, T ∗) is computationally
indistinguishable from the corresponding component of (I,C, T ).

We consider queries (wi, βi) and (wj , βj) such that j < i. In the case of �wj

such that Hi[j, i] = 1, namely ((βj = 0 ∨ βi = 0) ∧ D(wj) = D(wi) = ∅) ∨ (wj �=
wi) for ∀j < i, we have the following facts:

– If βi = 0 and D(wi) = ∅: Since Si sets t∗k(wi)
u←− {0, 1}μ+λ, all t∗k(wi) will not

match any entry in I∗ with all but negligible probability. Therefore, Search
just outputs S(wi) = ∅, and Update does nothing.

– If βi = 0 and D(wi) �= ∅: Since Si sets t∗k(wi) ← SKE.Enc(κ∗
i,k, δi||ri) to match

the entries associated with idik ∈ D(wi) by choosing κ∗
i,k and generating

δi that have never appeared previously, t∗(wi) matches the entries that are
distinct from the entries any past trapdoor has matched with all but negligible
probability. Therefore, Search outputs S(wi) = D(wi) and Update sets the
entry I ′[δi] ← D(wi).
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– If βi = 1: Since Si generates δi
u←− {0, 1}μ and sets T ∗(wi) ← δi, QuickSearch

outputs ⊥ with all but negligible probability. Note that QuickSearch outputs
⊥ even if D(wi) �= ∅ in real side since we have wj �= wi for ∀j < i in this case,
namely Update for wi has never run so far.

Subsequently, we consider the other case, ∃wj such that Hi[j, i] = 1, namely
((βj = βi = 1) ∨ (D(wj) �= ∅ ∨ D(wi) �= ∅)) ∧ (wj = wi) for ∃j < i:

– If βi = 0 and D(wi) = ∅: As is the previous case βi = 0 and D(wi) = ∅,
Search just outputs S(wi) = ∅, and Update does nothing.

– If βi = 0 and D(wi) �= ∅: Since Si can retrieve κ∗
j,k and δj which are previously

used from stS , Search and Update run in the same way as these for t∗(wj).
– If βi = 1: Since Si can retrieve δj from stS and set T ∗(wi) ← δj , QuickSearch

run in the same way as it for T ∗(wj).

We now show that (I,C, T ) and (I∗,C∗, T ∗) are computationally indistin-
guishable for any PPT adversary A.

– I and I∗: Since all the elements κi,k in I are outputs of PRF F and A does
not have K2 with all but negligible probability, any A cannot distinguish κ
and a random string whose length is μ. Therefore, I∗ is indistinguishable from
I.

– C and C∗: Since all the elements Ci ∈ C are ciphertexts of the PCPA-secure
scheme SKE and A does not have K3 with all but negligible probability, any
A cannot distinguish Ci and a random string whose length is |Di|. Therefore,
C∗ is indistinguishable from C.

– T and T ∗:
• t(wi) and t∗(wi): Since all the elements tk(wi) such that ni + 1 ≤ k ≤ n

are ciphertexts of the PCPA-secure scheme SKE and A does not have κi,k

with all but negligible probability, any A cannot distinguish tk(wi) and a
random string whose length is μ + λ. For all the elements tk(wi) such that
1 ≤ k ≤ ni, A can obtain the δi and a random string ri as its decryption
result with key κi,k ∈ I. Since δi are outputs of F and A does not have K1

with all but negligible probability, any A cannot distinguish δi||ri and a
random string whose length is μ+λ. Therefore, t∗(wi) is indistinguishable
from t(wi).

• T (wi) and T ∗(wi): For all the elements T (wi) are outputs of F and A
does not have K1 with all but negligible probability, any A cannot distin-
guish T (wi) and a random string whose length is μ. Therefore, T ∗(wi) is
indistinguishable from T (wi). ��

5 Conclusion

In this paper, we focused on the information, search pattern, leaked from trap-
doors in ordinary SSE, and pointed out that the amount of the search pattern
can be reduced if a trapdoor is not matched any entry of an encrypted index.
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We formalized the security definition of SSE which can generate trapdoors proba-
bilistically. Then, we proposed the SSE scheme which can reduce computational
cost in the re-searching case where the same keyword is searched again, and
showed that our scheme is secure in the sense of the security definition in the
standard model.
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Abstract. Security and privacy requirements in ubiquitous systems
need a sophisticated policy language with features to express access
restrictions and obligations. Ubiquitous systems involve multiple actors
owning sensitive data concerning aspects such as location, discrete and
continuous time, multiple roles that can be shared among actors or evolve
over time. Policy consistency is an important problem in languages sup-
porting these aspects. In this paper we present an abstract language
(AAL) to specify most of these security and privacy features and compare
it with XACML. We also classified the existing conflict detection mech-
anisms for XACML in dynamic, testing, or static detection. A thorough
analysis of these mechanisms reveals that they have several weaknesses
and they are not applicable in our context. We advocate for a classic
approach using the notion of logical consistency to detect conflicts in
AAL.

1 Introduction

Security and privacy requirements demand sophisticated policy language fea-
tures to express access restrictions and obligations meaningfully. Ubiquitous
computing applications involve multiple actors often handling sensitive data (e.g.
Health Care data), in distributed networks. These applications deal with aspects
such as location, discrete and continuous time, where the roles of the subjects
accessing data evolve. Along the paper, we present multiple examples involv-
ing this kind of constraints. Former approaches to security and privacy policies
would hardly address the needs in diverse new scenarios brought by the internet
of things, cloud computing, and mobile devices we are already facing today.

Research has shown that it is difficult to find the balance between expressive-
ness and enforceability (see [1,2,16,20] to cite a few): the more expressive the
policy language is; the more room for writing inconsistent and conflicting poli-
cies is. The designers of the XACML standard adopted a straightforward option
to address conflicts. They are solved at runtime by the policy decision point
(PDP) who applies a disambiguation pattern defined in the policy (for instance,
deny-overrides, permit-overrides, first applicable, and so on). This makes it hard
to understand the behavior of the policy at design time. Moreover, the language
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has some limitations making it cumbersome to address the requirements raised
by ubiquitous applications.

In this paper, we present a static conflict detection approach for the Abstract
Accountability Language (AAL) for declarative policies (introduced in [3]). It
is a formal language based on first-order and linear temporal logic with types
and signatures. It has features allowing for expressing usage control rules, roles,
delegation and obligations. Our approach also allows us to check whether policies
are compliant with respect to standards or regulations provided in AAL. The
major contributions we present here are: (i) an expressive and flexible language
for addressing various privacy and security concerns, (ii) a thorough review
of related work supporting the XACML standard on policy inconsistency and
conflict resolution, and evidences of their weaknesses, (iii) a practical policy
verification approach at design time for AAL, and experimental results with
scalable performance using a state of the art theorem prover. The remainder
of the paper is structured as follows. The related work section classifies the
conflict detection in dynamic, testing, or static solutions. The third section is
devoted to a presentation of our language with examples addressing various
needs for security and privacy. Section 4 discusses the different approaches for
conflict detection and illustrates their weaknesses. Section 5 advocates for the
use of a SAT solver or a prover and shows its effectiveness with AAL. Finally,
the conclusion summarizes our work.

2 Related Work

We comment here only recent references which are dedicated to conflict detection
and the XACML standard and mainly published in the last 10 years. We roughly
classify these approaches in dynamic, testing or static conflict detection. We are
not interested in errors thus we focus on correct rules and policies without the
indeterminate value. Furthermore, we will only focus on the conclusions: action
is permitted or denied, or some obligations. Thus discarding the not applica-
ble case. Note that in AAL these behaviours can be embedded with additional
rules but it does not change the way to detect conflicts. XACML provides two
structures for the rule level and the policy level. Some work captures this dis-
tinction but others do not and consider that all are sort of rules with combining
algorithms. These are assumptions we will use to simplify and to more easily
compare with other approaches.

Dynamic Detection. Some approaches suggest a dynamic detection, that is each
request is evaluated at runtime and conflicts are detected and resolved.

XACML is a standardized XML language for attribute-based access control
policies [17]. XACML specifications are collections of policies, themselves being
collections of rules. A rule in XACML matches incoming access requests against
conditions expressed using attributes values. A rule will produce then an access
decision, among the following possible values permit, deny, or not-applicable,
the latter is the output generated by the Policy Decision Point (PDP) when
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the request is not matched by any rule in the policy. On the other hand, more
than one rule can apply to the same request within the same policy. Similarly,
distinct policies may also overlap, producing potentially contradicting decisions.
In order to solve conflicts, the XACML standard introduces combining algorithms
for rules and polices such as: permit-overrides, deny-overrides, first-applicable.
The standard allows for the definition of custom algorithms. The semantics of
these algorithms are straightforward given their names.

The authors of [16] consider access control policies with hierarchy of concepts
and define an algorithm for dynamic conflict detection. The exact rule language
is not described and it is not also clear which part of XACML is covered by
this analysis. [7] analyzes the principle of combining algorithm in XACML and
argues that “strategy that combines all these policies into a single super policy
may not work for all situations”. They propose a resolution mechanism with an
algorithm choosing the combining rule dynamically. The fundamental problem
of this proposal is that there is no algorithm which can always guess what is the
good answer in case of conflicts.

Testing Detection. In this case the method is to generate a set of requests and
to test if a conflict occurs using the request evaluation process. [12] focuses on
multiple-duty and conflicts in access control rules. This work generates a finite set
of requests and check for their consistency. [9] focuses on anomalies detection in
web policies using XACML. The technique uses two levels of partition (rules and
requests) and consider the entire request space of a rule. They do not consider
obligations and discrete time.

Static Detection. In the static approaches various means are used to identify
conflict situations but they do not rely on a requests generation.

The work from [11] proposes a translation of XACML into formal models
on which Boolean satisfiability is possible. The purpose is mainly to do gen-
eral verification not static detection of conflict, but it seems straightforward to
add this kind of checking. The authors identifies some limitations due to the
use of the bounded SAT technique. [1] analyzes some access control models.
It proposes an access control model with permission and prohibition, first-order
conditions, dynamic groups, and a type system which ensures the absence of con-
flict. The model does allow neither obligation nor temporal logic. [20] recognizes
the importance of static conflict detection and argues for a new method more
efficient than logical approaches. The authors propose to reuse an algorithm from
machine learning. The base language supports access control and delegation but
neither temporal logic nor obligation. [22] states the “inadequacy of conflict res-
olution mechanism” and explains that the complexity of the mechanism comes
from historical and legacy reasons. This work uses a more abstract and non
technical language and a writing method based on more complex conditions to
group several rules into a single one. [25] argues for a static conflict detection
and identifies two kinds of conflicts: authorizations and resource conditions. The
approach uses model-checking in a context with hierarchical resources. However,
the proposed approach is rather limited: no obligation, no hierarchy on roles, and
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no linear time. [2] proposes an SMT approach to check for conflicts. The interest-
ing thing is that it locates the pair of rules which are conflicting but it assumes
that rules are only authorizations with conjunction of atoms. The approach in
[5] is not directly related to XACML but it is a good example of a static conflict
detection approach. The context is rather privacy and exchange information than
access control but the principle can apply to access control policies. They pro-
pose a simple algorithm to detect conflicts between pairs of rules. [23] proposes
a verification detection approach based on an SMT tool support. Other verifica-
tion approaches are mainly Boolean based, but numeric and string theories are
important in actual policies. This work focuses on subsumption (refinement or
compliance), it does not explicitly consider conflict detection between rules. The
authors do not tackle obligation and linear time, this should make the approach
really more complex to apply. [21] exposes the critical importance of the sta-
tic conflict detection and defines an algorithm for that. The main novelty is the
proof of the algorithm processed thanks to the Coq prover. This work considers a
subset of XACML, mainly focusing on continuous time constraints, but without
obligation and temporal logic. Our language (AAL [3]) allows access control but
also obligations. It is a typed language which enables hierarchies for resources,
subjects, roles, actions, with continuous and discrete linear time. We advocate
for a static detection approach reusing logical satisfiability.

3 Usage Control Policies in AAL

AAL, for Abstract Accountability Language, is devoted to accountability but as
such it covers classic security and privacy concepts. The accountability feature
is described in [3] we focus here on the security and privacy part which is called
usage expression in AAL. From the point of view of conflict detection there is no
difference between usage expression and accountability. Generally rules for access
control need a subject, an object and an action. But often roles for subjects are
required and also some parameters for the various attributes as well as complex
conditions (“if the data is owned by Kim then KardioMon is allowed to transfer
it to Croatia but only during working days and a notification will be sent to the
data subject”.) Thus having a flexible language is an important requirement if
we do not address a specific, well-delimited domain.

We show with few examples how AAL addresses access control, privacy con-
cerns, delegation and other features. For a more detailed presentation of the
syntax and the semantics the reader can see [3]. The semantics rely on the
translation into FOTL (First-Order Linear Temporal Logic) and the decision
for satisfiability uses the TSPASS prover [15]. The main motivation to use a
logical prover is that we are at an abstract level which is easier to link with end-
users obligations. Using a model-checker forces us to define a more operational
behaviour for the agents and we need a more flexible support for data and agent
quantifiers.
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3.1 Security and Privacy Concepts

We illustrate some security and privacy constructions and thanks to the flexibil-
ity of AAL (predicates are uninterpreted) many kinds of them can be defined. An
obligation is identified with an action in this paper. Note that FOTL does not
support theories for integer, real, string and so on, contrary to SMT approaches.
Our prototype implementation1 offers dedicated translation for duration, for
instance, but generally the specifier has to express this kind of knowledge as a
composition of predicates. There is no specific construction for confidentiality,
integrity or availability, most of these features should be manually specified.

Authorizations and Obligations. The AAL language allows to express permis-
sions and prohibitions with PERMIT and DENY keywords. A prohibition is the negation
of a permission. Expression in Listing 1.1 means that for all data if Kim (a patient)
is the owner, then the Hospital (an agent, for example a cloud provider) is not
allowed to process the data.

Listing 1.1. A simple prohibition
FORALL d:Data (d.subject==Kim) => DENY Hospital.process(d)

Note that AAL provides conditions, data types with subtypes and also quantifiers
and Boolean operators. AAL can also express obligations, that is an action to
perform under some conditions as in Listing 1.2.

Listing 1.2. An obligation example
FORALL d:Data (d.subject==Kim) AND Hospital.process(d) => Hospital.notify[Kim]("processing")

Any obligation or authorization can be used in clauses, especially in conditions.
In order to process an action its permission should be established, this is auto-
matically checked by the tool.

Expressing Time. Time is an essential feature in ubiquitous sys-
tems. AAL supports full linear temporal logic with all the operators:
NEXT, UNTIL, UNLESS, ALWAYS, SOMETIME and a past operator (ONLYWHEN). For instance, List-
ing 1.3 expresses that if Kim inputs a data to the Hospital, the Hospital will send, in
the future, an acknowledgement.

Listing 1.3. A linear time example
ALWAYS FORALL d:Data (Kim.input[Hospital](d) =>

SOMETIME EXISTS ack:Receipt Hospital.received[Kim](ack))

Linear discrete time is not always sufficient and AAL proposes a limited way to
express real time constraints. Listing 1.4 means that the Hospital should delete
Kim’s data before two months. Using predicates expressing dates and predicate
compositions the specifier can build its proper time constraints.

Listing 1.4. Data retention example
ALWAYS FORALL a:Data (d.subject=Kim) => Hospital.delete(d) :BEFORE 2months

1 AccLab tool http://web.emn.fr/x-info/acclab/.

http://web.emn.fr/x-info/acclab/
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Explicit Consent and Purpose. Classic privacy statements add to access control:
data subject preferences, data retention, data transfer, explicit consent, process-
ing purpose and notification. These are all expressible in AAL. We have already
seen how to express access control, privacy preferences, notifications, data reten-
tion, and usage control using the concepts of authorizations and actions. Of
course we can express time evolution of these rights either with linear discrete
time or real time constraints. The feature “explicit consent” means that the
privacy user will explicitly give its consent for data processing (see Listing 1.5).

Listing 1.5. Explicit consent
FORALL d:data (d.subject=Kim) =>

((NOT Hospital.process(d)) UNTIL Kim.giveConsent[Hospital](d))

The processing purpose can be easily captured with a set of discrete values and
an additional parameter in the concerned actions or with dedicated predicates.

Data Transfer. Data transfer and location controls are easily expressed as soon
as we defined geographic areas as a partition of types. The type system supports
all the Boolean operators and thus making it easy to define type hierarchies.
Once you declared a type in AAL the prefix “@” denotes the associated type
predicate. Example 1.6 states that Hospital can transfer if and only if the target
is inside a European country.

Listing 1.6. Data transfer example
ALWAYS FORALL d:Data target:Agent @Europe(target) => PERMIT Hospital.transfer[target](d) AND
ALWAYS FORALL d:Data target:Agent NOT @Europe(target) => DENY Hospital.transfer[target](d)

Note that here the natural sentence “Hospital is allowed to transfer to European
countries” can be interpreted strictly as above or in a more permissive way
(removing the second clause) or in a negative way (keeping only the second
clause).

3.2 Advanced Concepts

With AAL we are also able to embed various security related models but also
to write complex protocols.

Delegation. AAL does not provide specific feature for authority delegation but
a manual translation can be done based on the following example (Listing 1.7)
coming from [20] and generalized with parameters.

Listing 1.7. Delegation example in AAL
// the @ prefix denotes a predicate, @rights collects three permissions
FORALL a:Agent d:DBase (@rights(a, d) <=> PERMIT (a.read(d) AND a.write(d) AND a.delete(d)))
// P1: Administrator can read, write and delete database.
AND FORALL a:Administrator d:DBase @rights(a, d)
// P2: Technician can read, and write database.
AND FORALL c:Technician d:DBase PERMIT (c.read(d) AND c.write(d))
// P3: Administrator can delegate his rights to technician.
AND FORALL a:Administrator c:Technician d:DBase (a.delegate[c]() => @rights(c, d))
// P4: Action delete can only be performed by administrators.
AND FORALL a:Agent d:DBase ((PERMIT a.delete(d)) <=> @Administrator(a))
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Many other kind of access control models can be embedded in AAL, like
attributes or roles based access control. For instance, we can easily embed the
PEPS language from [5] in AAL.

Complex Dependencies. AAL allows to define role sharing, dynamically evolving
roles and dynamic dependencies between authorizations and obligations. In other
words AAL allows the definition of protocols involving permissions and obliga-
tions. All theses things are not generally covered by simple access control rules.
An example of sharing and dynamic evolution of roles appears in Listing 1.8, a
person is a student until he starts a PhD and then becomes a professor.

Listing 1.8. Sharing and dynamic roles
FORALL p:Person ((NOT p.getPhD()) UNTIL p.startPhD()) AND // start a PhD before to get it
// a person is not a professor until he starts his PhD and then becomes a professor
FORALL p:Person ((NOT @Professor(p)) UNTIL (p.startPhD() AND (ALWAYS @Professor(p)))) AND
FORALL p:Person (@Student(p) UNTIL (p.getPhD() AND (ALWAYS NOT @Student(p))))

Let us mimic the following protocol: Kim can be admitted to and be discharged
from the Hospital. He will get the permission to read only if he has been admitted,
that is after an admission and until a discharge. Listing 1.9 expresses permissions
that are depending on actions and vice-versa (without parameters to simplify).

Listing 1.9. Permission and obligation dependencies
(ALWAYS ((NOT (Kim.admit() AND Kim.discharge())) AND // events exclusivity

NOT ((PERMIT Kim.read()) AND Kim.admit()) AND NOT ((PERMIT Kim.read()) AND Kim.admit())))
AND (DENY Kim.read()) AND (ALWAYS (Kim.discharge() => NEXT Kim.admit())) AND
(ALWAYS (Kim.admit() => NEXT (Kim.discharge() OR PERMIT Kim.read()))) AND
(ALWAYS (PERMIT Kim.read() => NEXT (Kim.discharge() OR PERMIT Kim.read())))

The writing of this kind of protocol is not obvious but can be assisted using an
automatic generation from an automaton description. We can mix, in a dynamic
setting, dependencies between roles, permissions, obligations, conditions in a
uniform and unlimited way. That does not mean that these expressions are
simple to understand thus requiring analysis and verification tools, preferably
automatic tools.

3.3 Comparisons with XACML

We need to restrict the expressiveness of AAL to make a clear comparison to the
XACML standard. In the following we only consider authorizations and oblig-
ations and single policies containing rule sets. While both languages are quite
generic on resources and subjects, XACML is also generic on actions (AnyAction).
This is not an important drawback since generally we have systems enabling
only a finite set of actions others are eliminated by a kind of static checking. To
summarize some main differences with XACML:

1. AAL defines a true negation (a permission is a negation of a prohibition, and
it allows negative obligations), and explicit quantifiers.

2. AAL enables subtype hierarchy for resources, subjects, roles, actions
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3. AAL provides attributes but also dynamic roles and roles sharing, XACML
can manage these features by using an external component.

4. AAL supports both real time and discrete linear time and allows complex
dependencies between authorizations and obligations.

The main strength of XACML is its policy enforcement. We have a first approach
with the AccMon monitoring includes in the AccLab tool but this is out of the
scope of this paper. Lastly, another main difference is the way to detect conflict,
it is discussed in the next sections.

4 Existing Conflict Detection Mechanisms

This section discusses different ways to detect conflicts in rules in proposals
related to XACML. Conflict detection means to check if a set of rules contains
an inconsistency, each rule is supposed to be correct or consistent alone. Conflict
localization is the activity to find precisely where is located the conflict, generally
to find the pairs of rules which are conflicting. Conflict resolution tries to propose
a solution to remove a conflict. We focus here only on conflict detection and
compare most of the existing approaches to reveal their weaknesses. A more
precise analysis, illustrated by examples, is needed in order to understand why
the existing solutions are not sufficient enough in more complex languages.

4.1 Dynamic Detection

We summarize here the main critics to the dynamic detection of XACML which is
the most representative of this tendency. The principle is to analyze, at runtime,
each request and to look for conflicting results. In case of conflict a combining
algorithm is used to choose one reply to the request.

Processing dynamically can add an overhead which is not small in case of
many rules or policies. The presence of conflicts and the use of combining mech-
anisms is the second challenge quoted by [14]. The number of rules is grow-
ing with the number of agents, resources, roles, the hierarchical structure of
these elements, etc. Conflicts can occur during maintenance, merging of pol-
icy sets and evolution of policy sets, but also because of rules distribution and
the number of specifiers or policy administrators which are critical factors. For
instance [1,7,9,12,16,22,26] comment these problems. In case of dynamic res-
olution the algorithm is statically chosen from a finite set of solutions. Note
that this set was enlarged from XACML V2 to its current V3 but as quoted
by [6,7,13,22] this is not sufficient. We can precise two additional arguments.

Most of the conflicts occurring in a set of rules are not intended, they result
from various errors, great number of rules, several administration domains, etc.
[22] considers that “The risk of error is by definition 50 % and can produce false
positives or false negatives”. But in fact the real situation is worse because it
does not take into account errors. In case of a conflict, the maximum probability
for the specifier to make a good choice is (1−q)/2 where q is the probability of a
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requirement error in a rule. We do not have a precise estimation of q but it is not
null, related statistics for firewalls can be found in [24]. Should we consider that
a system with less than 50 % of success is a good system? What is the meaning
of solving a conflict for a situation the privacy or security officer is not aware of?

The second problem has a more theoretical nature, this is a problem of com-
pleteness of the conflict resolution. Dynamic resolution with a finite set of com-
bining algorithms is definitively limited, [13] gives some concrete examples of
policy not specifiable in XACML. Scalability is an important aspect in case of
several policy sets, written by different officers in a distributed setting. In this
case an automatic management is needed, but it is not possible because merg-
ing several sets of rules will add new conflicts and combining algorithms are not
closed by composition. The combining algorithm could implement one choice but
the number of possible choices (or functions) is exponential. Thus, even if the
combining algorithm language would be closed by composition, it is undecidable
to automatically make the right choice.

4.2 Testing

The testing approach is based on the notion of consistency, that is any
request does not lead to contradictory conclusions (or deductions). The test-
ing approaches have two main drawbacks: an exhaustive covering is difficult or
impossible to achieve and it is costly. Even an automatic generation of request
tests does not solve completely these problems. If a static approach without
request generation exists then it is better to use it, providing it is efficient and
correct.

4.3 Static Detection

The principle of the static detection is to use an algorithm, at design time,
to detect conflicts but without the drawbacks of the requests generation. One
strong advantage of it compared to the combining algorithms way is that in case
of merging it is an automatic approach, it does not need a combining algorithm
and it does not add runtime overhead. Another critical benefit is that the conflict
is immediately reported to the privacy or security officer, at design time, and
resolved by him which is the only one who can reasonably find a correct solution.
There are several approaches to statically detect conflicts in XACML but mainly
ad-hoc approaches like [1,2,5,12,20–22,26]. They are often focusing on some
specific access control or privacy aspects, for instance hierarchy of resources,
data transfers, dynamic and negative roles, and so on. We will illustrate few
examples and problems of these previous approaches.

Static Detection Mechanisms. To clarify our discussion we will consider a logical
framework with rules. The rules syntax is an important issue and critical aspects
are explicit quantifiers, obligations, negation without restrictions and specific
modal operators. Some frameworks use simple rules with only conjunctions of
atoms in conditions while others rely on general conditions. This makes a great
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difference in the ability to decide for conflicting situations. To compare more
easily the different approaches we assume to faithfully translate all the exam-
ples in AAL. A rule will be a pair of logical expressions noted A => B with the
implication operator and where variables are implicitly universally quantified.

Abstractly, an access control or privacy system can be viewed as a function
from request to replies. Replies are usually permit or deny keywords but in a
more general context it could be anything (roles, obligations, etc.). We know that
partial functions are more general and more convenient than total ones. In the
case of requests to an authorization system we can assume that some requests are
discarded for different reasons before to be submitted to the authorization sys-
tem. Without lost of generality we will consider a partial authorization process:
a unary function F with a definition domain D. While a request x is a closed
term defining specific input information for the function F , it is a correct request
if D(x) is true.

There are several possible definitions for a conflict and it is often related to a
property called consistency. In many work we can find a definition of a conflict
which essentially says that two policies or rules are consistent or without conflict
when conjoined, no user can have both the permission and the prohibition to
do something (or they do not have contradictory conclusions). A more general
formulation is: two rules are conflicting if their conditions are conjointly satisfi-
able and their conclusions are contradictory (or not satisfiable). Remember that
satisfiability is a semantic notion which means that it exists an assignment (or
a model) of the variables which makes a clause true. This approach is imple-
mented with various algorithms in [2,5,9,20–22] and allows to localize precisely
the conflicting rules.

In classic logic consistency means that we cannot derive a formula and its
negation from the formal system. It means that we cannot deduce (or prove) a
contradiction or Phi AND NOT Phi. In the sequel we will show that these two notions
of consistency are generally not equivalent by exhibiting some examples. Fur-
thermore, looking for conflicting rules cannot be extended to situations where
rules conclusions are complex. Logical consistency is the most general and is
correct even if we have logical clauses not only A => B rules.

Non Verified Algorithms. First of all, in the examples from [1,5,20] the complete
conditions are lacking to get a conflict. One such an example from [1] is described
in Listing 1.10.

Listing 1.10. AAL translation of [1] example
FORALL e:Hospital NOT (@Doctor(e) AND @Nurse(e)) AND
FORALL p:PatientRecord d:Doctor (PERMIT (d.read(p) AND d.write(p))) AND
FORALL p:PatientRecord d:Doctor (@sameward(d, p) => PERMIT d.read(p)) AND
FORALL p:PatientRecord c:Chief PERMIT c.read(p) AND
FORALL p:PatientRecord n:Nurse ((NOT @sameward(n, p)) => DENY n.read(p))

“we find an inconsistency in this access control example, which arises if there
are nurses that are also chiefs”. But this is not exact because it needs that “the
nurse not assigned to the patient’s ward” is true. Another similar example is
related to Listing 1.7. We do not report all the examples here due to lack of
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space but we observe omissions in conditions to get a conflict, sometime due to
implicit hypotheses about non empty sets or types disjunction. We think that
these problems comes from the fact that the algorithms are not backed up by
formal proofs of correctness.

Partial Systems. Most of the existing algorithms are looking for pair of con-
flicting rules. In Listing 1.11 the example is consistent and any request verifying
A(x) AND B(x) will have a unique response. But, the second rule is conflicting with
the first under the condition A(x) AND B(x) and it will be considered as a conflict.
However, this is not a global conflict because the above condition is not satisfiable
in the global system.

Listing 1.11. Conflicting pairs of rules are not necessary
(FORALL x:Agent (A(x) => PERMIT)) AND (FORALL x:Agent (B(x) => DENY)) AND
(FORALL x:Agent ((A(x) AND B(x)) => PERMIT)) AND (FORALL x:Agent ((A(x) AND B(x)) => DENY))

The above system represents a partial computation where the two last rules
defined the definition domain. In this case the authorization control models only
a partial function, for instance in the above example, requests not verifying
A(x) AND B(x) are discarded. The conflicting pairs algorithm only enables some
systems because conflicts are local to a pair of rules and the algorithm does not
check it against a possible context, hence it is considered as a global conflict.

Forcing Exclusivity. Indeed this mechanism forces the rules to be mutually exclu-
sive if they have opposite conclusions, which is often desirable and more readable.
However, in case of role sharing or dynamic evolution it is difficult to achieve
and even not desirable for readability (see Listing 1.8 for instance). In RBAC
policy [10] considers that the separation of duty is the most important constraint
and it complicates the policy management.

Boolean Equivalence. Checking the incompatibility of two rules is simple if we
have atomic conclusions (like permit, deny, or role names). But it is more com-
plicated if we allow Boolean expressions in the conclusion, for instance in case of
positive and negative obligations. To have complex conclusions is not surprising
if we expect to follow some composition rules like (A => B) AND (A => C) is equivalent
to A => (B AND C). This kind of transformation also exists for conditions and are
often bearable. But it is easy to see that looking for conflicting pairs of rules is
not stable over these equivalences. This problem still decreases understandability
and readability of the set of rules [22].

Extensibility. In a general context where conclusions are not strictly atomic
looking for conflicting pairs does not work because it is not able to detect all the
problems. To cope with complex conclusions the natural extension of the conflict
checking will look for a pair of rules with unsatisfiable conclusions and satisfiable
conditions. Let us consider the following propositional example in Listing 1.12.
This system is globally inconsistent for any choice of the propositions A and B.
Looking for a possible conflict between the first and the second or the first and
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the third rule, the conjunction of the conclusions are satisfiable thus there is no
conflict to catch. The problem here is still that checking pairs of rules is a local
algorithm which does not cope with the global context inferred by the set of
rules.

Listing 1.12. Conflicting pairs of rules is not sufficient
(X => A) AND (X => B) AND (X => (NOT A OR NOT B)) AND
(NOT X => A) AND (NOT X => B) AND (NOT X => (NOT A OR NOT B))

One can remark that checking three rules can reveal the problem, but more gen-
erally a correct solution should consider the global set of rules. Implementing a
derivation or proof system is a solution, but proof of correctness and termination
are challenging.

Translating XACML rules (without the meta-policies) into some decidable
first-order logic fragments is possible and this paves the way of correct static
approaches for the conflict detection. Previous related work here is [8] which
defines a first-order language for policies and with conflict detection but in a
strict context without obligation. The detection mechanism relies on logical con-
sistency. Other logical approaches use model-checker or SAT solver [11,23].

Defining an ad-hoc algorithm carries out three important challenges: proof
of correctness (which is often lacking), efficiency, and faithful implementation.
Extending these algorithms to cover more complex cases: dynamic roles, discrete
and dense time, positive and negative obligations, complex dependencies between
roles and obligations are other non obvious challenges. The next section will
discuss the AAL static detection solution.

5 Conflict Detection in AAL

AAL is a language which enables implication rules with unrestricted conclusions,
with obligations and temporal logic and without restriction on conditions. How-
ever, as exemplified in Sect. 3, it is not strictly restricted to rules as discussed in
the previous section. The previous analysis of the detection mechanisms shows
that checking for conflicting pair of rules is not a correct algorithm in such a
context. Our approach is based on the idea that any request will have at most
only one reply that is to rely on the notion of logical consistency. In a complete
classic logical context consistency is equivalent to the semantic notion of satis-
fiability (or existence of a model). This completeness property exists for classic
logic: propositional, FOL, and LTL. For FOTL with the monodic constraint, [4]
has demonstrated the completeness of the temporal resolution process. There
are various algorithms to check the satisfiability of propositional, LTL or FOL
clauses. However, there is currently only one implemented algorithm for checking
satisfiability in FOTL. The algorithm, its proof and implementation are detailed
in [15]. In the sequel we sketch the conditions and the principles of this tempo-
ral resolution process. A necessary condition for the resolution mechanism is the
monodic constraint. That means at most one free variable under the scope of any
temporal operator. Moreover, we target decidable fragments of first-order logic
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(see [4] for instance). The algorithm is based on the resolution process for first-
order logic which used clausal normal form and the unification process. Before
to use first-order resolution the FOTL clauses are put in a divided separated
normal form. Then the temporal normalized problem is transformed into a set
of pure first-order clauses by adding, in the predicates, a new parameter that
denotes linear time. Finally, a saturation (semi)-algorithm is used on the input
problem until a contradiction is raised or there is no new clause to consider.

Thus unsatisfiability (or inconsistency checking) can detect the presence of
conflicts in a general context as proposed by AAL. Our solution relies on a classic
and general principle which is correct and more general than the detection of
conflicting pairs of rules. This covers in a uniform way conflict in permissions,
in obligations and any other kinds of conflicts. We think it is more reliable to be
founded on a classic logic or model-checking approach because the underlining
theories are well established, there are efficient tools and evidences that these
tools are well tested.

5.1 Examples

Let us consider Listing 1.8 of the previous section and add some authorizations
as described in Listing 1.13. This seems correct, however, there is a conflict as
soon as we assume that there exist marks in each computation state.

Listing 1.13. A conflict with evolving and shared roles
(ALWAYS FORALL d:Mark x:Professor PERMIT x.read(d)) AND // professors can read marks
// students can read their marks
(ALWAYS FORALL d:Mark x:Student @owner(x, d) => PERMIT x.read(d)) AND
// complete prohibition
(ALWAYS FORALL d:Data a:Agent ((NOT @Professor(a) OR NOT @Marks(d)) => DENY a.read(d))) AND
(ALWAYS FORALL d:Data a:Agent ((NOT @Student(a) OR NOT @owner(a, d) OR NOT @Marks(d))

=> DENY x.read(d)))

Considering the protocol example in Listing 1.9, we can detect a conflict with
the first line in Listing 1.14. This line states a situation where a discharge has
been done, and then a read but without an admit before the read action. While
the second line can be proved to be a logical consequence of the protocol or in
other word, it is compliant with the protocol. It means that in any state of the
system after an admit we cannot admit unless a discharge action has been done.

Listing 1.14. Complex dependencies: Conflict and compliance examples
(SOMETIME (Kim.discharge() AND (NOT Kim.admit() UNTIL Kim.read()))) // 1
(ALWAYS (Kim.admit() => NEXT (NOT Kim.admit() UNLESS Kim.discharge()))) // 2

One drawback of this solution is: we can detect the conflicts but it is more difficult
to precisely localize them. To localize the conflicting rules in a policy is another
problem, read for example [18]. The author suggests to use clause masking to
help in conflict localization and our tool implements a basic approach of this
kind. The resolution needs a good support for localization and as we argue it,
it should be done manually by the privacy officer (but a smart assistance is
welcome). We think that more can be done here, from the point of view of
efficiency and relevance of information to the privacy officer.
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5.2 Performance Tests

Regarding efficiency, the theoretical resolution complexity behind TSPASS is not
elementary, but despite this, the TSPASS implementation was compared with
several classic LTL model-checkers and SAT solvers and [19] concludes that no
one dominates or solves all instances. We describe here some time measures to
show that the TSPASS tool can be used in a real context, examples are provided
with our AccLab tool. We provide only TSPASS time, the translation done by
AccLab has a linear time complexity. The idea is to give a rough estimation of the
time performance (MacBook Pro, 2,5 GHz, 16 Go RAM, OS X 10.11.5) not to
strictly compare with other benchmarks because of our language expressiveness.
All the previous examples in this paper will generate until 560 clauses and the
checking time in each case is less than 0.01 s.

We manually translate the two CONTINUE XACML policies2, nearly 25
XML files containing 44 rules. The process comprises a manual translation of
XACML into AAL, check it with TSPASS and fix some mismatches between
the AAL and the XACML files. We have 4 concrete actions plus 1 abstract, 4
concrete role types plus 1 abstract and 23 resource types. The Table 1 reports
the total number of clauses generated by TSPASS and the global time to show
satisfiability. Step 1 is the original writing, step 2 is after fixing 6 reporting errors,
step 3 introduces abstract actions in 2 rules, and step 4 adds some ternary
predicates. We also manually translate the CONTINUE B policy which is an
improved version of the previous one with similar metrics.

We have done a previous healthcare use case in [3] and express accountabil-
ity, data transfer and temporal logic expressions. For instance, the compliance in
the use case was a formula with more than 1200 identifiers and it can be proved
valid in less than 4 s. The last example is extracted from a demonstrator done in
the A4Cloud project3. The context is composed of 6 agent types plus 4 abstract,
6 actions, 15 concrete data types plus 2 abstract, 50 concrete location types
plus 8 abstract. The WearableCo policy has 39 access control, 1 data retention
and 1 data transfer clauses. The KardioMon policy has 63 access control, 1 data
retention and 2 data transfer clauses. The first version of KardioMon is incorrect
with a conflict and the second one is correct. Checking the consistency of Kar-
dioMonPolicy2 and WearableCoPolicy, and that KardioMonPolicy2 implies the
WearableCo policy were also reported (KandW and K=>W columns in Table 1).

Table 1. CONTINUE and Wearable tests.

CONT. A step 1 step 2 step 3 step 4 CONT. B

# clause 715 687 481 102 578

Time (s) 0.022 0.023 0.016 0.01 0.019

Wearable WearableCoPolicy KardioMonPolicy1 KardioMonPolicy2 KandW K=>W

# clause 647 922 3310 4627 23967

Time (s) 0.03 s 0.04 s 0.2 s 0.35 2.8

2 http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/.
3 http://www.a4cloud.eu/.

http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/
http://www.a4cloud.eu/
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6 Conclusion

We propose a language to declare privacy and security concerns. This language
can embed various access control models and delegation mechanisms. It over-
comes some current limitations: hierarchy for roles, actions and data types. It
proposes discrete linear time and dense time and it enables to write complex
dependencies between actions and permissions, that is, true protocols.

Our analysis confirms that approaches performing dynamic analysis or test-
ing are not good solutions for conflict detection in policy languages like XACML.
We also analyze most of the proposals for static conflict detection and we show
limits regarding partial systems and policy readability. We also consider an
extension of the conflicting rules principle and show that it cannot work in a
general context with complex conclusions. Our ultimate conclusion is that sat-
isfiability checking is a general and correct mechanism for conflict detection.
Furthermore, it relies on a well-founded theory and an efficient tool support
which is effective for our AAL language. Future work will focus on the integra-
tion of specific models with efficient solutions, as the one from [8] and other
verification.
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Abstract. With the advancements in multi-core CPU architectures, it
is now possible for a server operating system (OS) such as Linux to
handle a large number of concurrent application services on a single
server instance. Individual service components of such services may run
in different isolated environments, such as chrooted jails or application
containers, and may need controlled access to system resources and the
ability to collaborate and coordinate with each other in a regulated and
secure manner. In an earlier work, we motivated the need for an access
control framework that is based on the principle of least privilege for
formulation, management, and enforcement of policies that allows con-
trolled access to system resources and also permits controlled collabora-
tion and coordination for service components deployed in disjoint con-
tainerized environments under a single OS instance. The current work
provides a more in-depth treatment of secure inter-component commu-
nication in such environments. We show the policies needed for such
communication and demonstrate how they can be enforced through a
Linux Policy Machine that acts as the centralized reference monitor. The
inter-component interaction occurs through the persistent layer using
a tuple space abstraction. We implemented a tuple space library that
provides operations on the tuple space. We present preliminary experi-
mental results of its implementation that discuss the resource usage and
performance.

Keywords: Access control · Data and application security · Denial of
service protection · Distributed systems security · Security architectures

1 Introduction

The advancements in contemporary multi-core CPU architectures have greatly
improved the ability of modern server operating systems (OS) such as Linux
to deploy a large number of concurrent application services on a single server
instance. The emergence of application containers [7], introduction of support
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for kernel namespaces [11] allows a set of loosely coupled service components
to be executed in isolation from each other and also from the main operating
system. This enables application service providers to lower their total cost of
ownership by deploying large numbers of application services on a single server
instance and possibly minimize horizontal scaling of applications across multiple
nodes. Executing the individual service components in isolated containers has
its benefits. If a single containerized application runtime is compromised by
the attacker, the attack surface is limited in its scope to a single component.
This theoretically limits the possibility of disrupting the entire data service.
Moreover, such an approach also simplifies the management and provision of
service components.

Fig. 1. Problems of controlled sharing

In this model, the individual isolated service components may need to coor-
dinate and collaborate to provide the service and the various service components
may not have access to a common centralized database management system or a
key-value store for the purpose of communication. Moreover, many services may
not rely on database storage in the first place. For instance, consider a real-world
service deployment scenario illustrated in Fig. 1. A Linux server has three appli-
cations, namely, Squid Web Cache Server, Squid Log Analyzer, and HTTP Web
Server, deployed in three separate isolated environments (chrooted jail direc-
tories), each under a distinct unprivileged user identifier (UID). Combined, all
three applications represent individual components of a single service – ISP web
caching that caches Internet HTTP traffic of a large customer base to minimize
the utilization of ISP’s Internet backbone. Squid Web Cache Server component
generates daily operational cache logs in its respective runtime environment.
Squid Log Analyzer component needs to perform data analytics on those oper-
ational log files on a daily basis. It then creates analytical results in the form
of HTML files that need to be accessible by the HTTP Web Server component
to be available through the web browser for administrative personnel. In such a
case, there is a need to access and share data objects across the applications in
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disjoint containerized environments. Due to isolation properties, those applica-
tions cannot write data objects to a shared storage area of the server OS such
as /var directory to simplify their interaction. Usual Inter-Process Communica-
tion (IPC) primitives such as message queues, memory-mapped files and shared
memory may cause unauthorized access or illegal information flow and therefore
could be disabled in targeted deployments [3].

In conventional UNIX or Linux OS, applications can be deployed in isolated
(containerized) environments, such as chrooted jails. Such isolated environments
limit the access of the applications beyond some designated directory tree and
have the potential to offer enhanced security and performance. However, no
mechanism is provided for controlled communication and sharing of data objects
between isolated applications across such environments. A new type of access
control targeting multi-service deployments on contemporary server hardware
has been recently introduced through Linux Policy Machine (LPM) [3] frame-
work. The framework proposed such a component-oriented access control for
isolated service components that controls access to OS resources, and regulates
the inter-component communication under a single service. LPM is a user-space
reference monitor that allows the formulation and enforcement of component-
oriented policies.

The regulated communication between isolated service components relies on
the access control that is based on the adaptation of generative communication
paradigm introduced by Linda programming model [8] which uses the concept
of tuple spaces for process communication. However, the traditional tuple spaces
lack any security features and also have operational limitations [3]. Most imple-
mentations are limited to tuple space communication within a single memory
address space of an application and do not offer simple ways to interact between
separate component processes with independent runtime environments. More-
over, main memory based solutions could be subjected to heavy disk swapping
with simultaneous transfers of large data objects. That essentially eliminates
the advantages of using purely memory resident tuple spaces with hardware
that has limited RAM capacity. In our current work we enhance the original
paradigm and provide the initial experimental results of the developed Tuple
Space Library (TSL) that relies on the persistent storage approach [5] and pro-
vides personal tuple space per service component for security reasons. The com-
munication between applications is mediated through a Tuple Space Controller
(TSC) – the component of the LPM reference monitor which is allowed limited
access to an application’s tuple space. The component-oriented access control
allows a regulated way of coordinating and collaborating among components
of a single service through tuple spaces. We also present the formal model for
expressing component-oriented policies.

The rest of the paper is organized as follows. Section 2 provides the
overview of component-oriented access control targeting isolated runtime envi-
ronments. Section 3 describes the architecture for inter-component communica-
tion. Section 4 demonstrates the preliminary experimental results for the devel-
oped TSL library. Section 5 covers some related works. Section 6 concludes the
paper.
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2 Communicative Access Control

In order to address the requirements of the regulated communication between
isolated service components, we introduce the notion of a communicative policy
class that consists of a group of applications (service components) that reside in
different isolated environments and need to collaborate and/or coordinate with
each other in order to provide a service offering. Our notion of communicative
policy class is different from the conventional notion of UNIX groups. In the
conventional groups, the privileges assigned to a group are applied uniformly to
all members of that group. In this case, we allow controlled sharing of private
data objects among members of the communicative policy class via object repli-
cation. Such a sharing can be very fine-grained and it may be unidirectional –
an isolated application can request a replica of data object belonging to another
isolated application but not the other way around.

Fig. 2. Flow control of isolated service components (Color figure online)

Some applications may require bidirectional access requests where both appli-
cations can request replicas of respective data objects. Such types of possible
information flow are depicted in Fig. 2 where green arrow denotes the granted
request for a replicated data object in the direction of an arrow, while red one
with a cross signifies the forbidden request. Implementing such rules may be non-
trivial as isolated environments are non-traversable due to isolation properties.
This necessitates proposing alternative communication constructs.

The access control policies of a communicative policy class specify how the
individual applications in such a class can request a replica of mutual data
objects. Only applications within the same communicative class can communi-
cate and therefore communication across different communicative policy classes
is forbidden. Such a regulation is well-suited for multiple data services hosted on
a single server instance. The assignment of individual data service to a separate
policy class facilitates the fine-grained specification of communication policies
between various isolated service components.
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The construct of communicative policy class is designed to support the follow-
ing communication patterns among the applications in a single class. (i) coordi-
nation – often applications acting as a single service do not require direct access
to mutual data objects or their replicas but rather need an exchange of messages
to perform coordinated invocation or maintain collective state [3]. Coordination
across mutually isolated environments is problematic. However, if applications
belong to a single communicative policy class, it enables the exchange of coor-
dination messages without reliance on usual UNIX IPC mechanisms that may
be unavailable under security constrained conditions. (ii) collaboration – compo-
nents acting as a single data service may need to access mutual data or runtime
file objects to collaborate and perform joint or codependent measurements or
calculations as illustrated in the description of the web caching service. Empow-
ering an application with the ability to obtain a replica of a data object that
belongs to another application in the same communicative policy class makes
such collaboration possible.

Based on the described communication patterns between service components,
a single communicative policy class can be classified as a coordinative policy class
if it contains a set of coordination policies. Consequently, it can also be classified
as a collaborative policy class if it contains a set of collaboration policies.

3 Communications Architecture

We now discuss the enforcement architecture for communicative policy class
model.

3.1 IPC Constraints

In general, applications that need to communicate across machine boundaries
use TCP/IP level communication primitives such as sockets. However, that is
unnecessary for individual applications located on a single server instance [12].
Applications that need to communicate on a modern UNIX-like OS may use
UNIX domain sockets or similar constructs. However, socket level communication
is usually complex and requires the development and integration of dedicated
network server functionality into an application. Modern data service compo-
nents also prefer information-oriented communication at the level of objects [4].
The necessity of adequate authentication primitives to prove application identity
may also be non-trivial. Moreover, as illustrated in Sect. 2, many localized appli-
cations may require to communicate across isolated environments but may not
need access to the network I/O mechanisms. Thus, more privileges must be con-
ferred to these applications just for the purpose of collaboration or coordination,
which violates our principle of least privilege [3].

Reliance on kernel-space UNIX IPC primitives may also be problematic.
First, such an IPC may be unavailable for security reasons in order to avoid
potential malicious inter-application exchange on a single server instance that
hosts a large number of isolated application services. In other words, IPC may
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be disabled on the level of OS kernel. Second, modern applications often require
more advanced, higher-level message-oriented communication that is not offered
by the legacy byte-level IPC constructs. Third, UNIX IPC is bound to UID/GID
access control associations that does not provide fine-grained control at the level
of individual applications. Therefore kernel-space IPC mechanisms do not offer
regulated way of inter-application interaction. The usage of system-wide user-
space IPC frameworks such as D-Bus [9] may also be problematic due to security
reasons and absence of flexible access control mechanisms despite its ability to
transport arbitrary byte strings (but not file objects) [3].

3.2 Tuple Space Paradigm

In order to address the complexities introduced in Sect. 3.1, we applied an alter-
native approach that can be classified as a special case of generative communi-
cation paradigm introduced by Linda programming model [8]. In this approach,
processes communicate indirectly by placing tuples in a tuple space, from which
other processes can read or remove them. Tuples do not have an address but
rather are accessible by matching on content therefore being a type of content-
addressable associative memory [12]. This programming model allows decou-
pled interaction between processes separated in time and space: communicating
processes need not know each other’s identity, nor have a dedicated connection
established between them [15]. However, the lack of any protection mechanism
in the basic model [12,15] makes the single global shared tuple space unsuitable
for interaction and coordination among untrusted components. The traditional
in-memory implementation of tuple space makes it unsuitable in our current
work due to security issues and memory utilization overheads [3]. Another prob-
lem identified with the RAM-based tuple spaces is that it is suitable mainly for
a single application with multiple threads that share the same memory address
space. That makes such a construct problematic for use between independent
processes [3].

We implemented a tuple space calculus that is compliant with the base model
introduced in [8] but is applied on dedicated tuple spaces of individual applica-
tions instead of a global space. Our tuple space calculus comprises the following
operations: (i) create tuple space operation, (ii) delete tuple space operation –
deletes tuple space only if it is empty, (iii) read operation – returns the value
of individual tuple without affecting the contents of a tuple space, (iv) append
operation – adds a tuple without affecting existing tuples in a tuple space, and
(v) take operation – returns a tuple while removing it from a tuple space. We
adhere to the immutability property – tuples are immutable and applications
can either append or remove tuples in a tuple space without changing contents
of individual tuples.

An application is allowed to perform all the described operations in its tuple
space while LPM is restricted to read and append operations only. Note that
the take operation is the only manner in which tuples get deleted from a tuple
space because the delete tuple space operation is allowed only on an empty tuple
space.
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Tuple space is implemented as an abstraction in the form of a filesystem
directory with its calculus performed via TSL employed by the applications and
the LPM. Therefore, this part of the unified framework is not transparent and
the applications may need to be modified in order to utilize the tuple space com-
munication. However, in certain cases that may not be necessary. For instance,
if applications require only limited collaboration, such as periodic requests for
replicas of data objects (the case for daily logs), a separate data requester appli-
cation that employs TSL can handle such a task without the need to modify the
existing application such as a log analyzer.

The LPM plays a mediating role in the communication between applications.
The communication takes place through two types of tuples: control tuples and
content tuples. Control tuples can carry messages for coordination or requests
for sharing. Content tuples are the mechanism by which data gets shared across
applications (service components). The LPM periodically checks for control
tuples in the tuple spaces for applications registered in its database. Note, that in
our calculus, at most one control tuple and one content tuple could be appended
into a tuple space at any given time.

Fig. 3. Tuples structure

The structure of the tuples is shown in Fig. 3. Control tuples are placed by an
application into its tuple space for the purpose of coordination or for requesting
data from other applications. A control tuple has the following fields: (i) Source
ID – indicates an absolute path of the application that acts as an application
ID of the communication requester. (ii) Destination ID – indicates an absolute
path of the application that acts as an application ID of the communication
recipient. (iii) Type – indicates whether it is a collaborative or coordinative
communication. (iv) Message – contains the collaborative/coordinative infor-
mation. For collaboration it is the request for an absolute path of data object.
Coordination message may be opaque as other entities may be oblivious of this
inter-application communication. It may even be encrypted to ensure the security
and privacy of inter-application coordination efforts. XML or JSON are possible
formats that can be used for the representation of coordination messages. LPM
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merely shuttles the coordination tuples between respective applications’ spaces
and is not aware of their semantics. Content tuples are used for sharing data
objects across applications and they have the following fields: (i) Destination ID
– indicates the ID of recipient application that is an absolute path of an appli-
cation. (ii) Sequence Number – indicates the sequence number of a data object
chunk that is transported. ASCII objects in the form of chunks are the primary
target of inter-application collaboration. (iii) Payload – contains the chunk of a
data object. Content tuples are placed by the LPM reference monitor into corre-
sponding tuple space of the requesting application that needs to receive content.
Note that content tuples are designed for collaboration only. Coordination is
performed exclusively through control tuples.

Containerized service components are often not aware of whether they are
deployed in an isolated runtime environment, such as a chrooted jail or not.
Therefore, tuple fields, such as Source/Destination IDs and object paths that
technically require the absolute path to the object on the filesystem can be sub-
stituted with the isolated environment ID, such as a container ID. This permits
the service deployment with individual components that are only aware of imme-
diate containerized path locations or corresponding components’ service identi-
fiers. For instance, the containerized identifier, such as /100/opt/bin/service-
component-2 can be mapped to a system-wide path of /opt/containers/
container-100/opt/bin/service-component-2 by the LPM reference monitor with
a proper support for such a composite service mapping.

3.3 Tuple Space Transactions

We provide the sample transactional flow involved in tuple space operations,
necessary to carry out collaborative and coordinative types of communication
between isolated service components. Since loosely coupled processes can not
communicate directly due to isolation properties, the flow is conducted indirectly
via the TSC.

Coordinative Transaction. Coordinative communication between two com-
ponents is depicted in Fig. 4. Intrinsically, coordination is bidirectional, since
both endpoints need to obtain coordinative messages. Both components need to
create the corresponding tuple spaces in the isolated runtime environments. In
the first phase, Component 1 delivers a message to Component 2.

– [Step 1:] Component 1 appends a control tuple (see the structure of tuples
in Fig. 3) to its tuple space TS 1. This control tuple (denoted as message A)
has to be subsequently delivered to Component 2;

– [Step 2:] TSC reads the control tuple from TS 1;
– [Step 3:] Component 1 retracts the control tuple via the take operation;
– [Step 4:] TSC appends the control tuple into tuple space TS 2 of Compo-

nent 2;
– [Step 5:] Component 2 takes the appended control tuple (message A from

Component 1) from its tuple space TS 2.
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Fig. 4. Coordination through tuple spaces

In the next phase of coordinative communication, Component 2 has to deliver
its coordination message to Component 1. Such a message could contain inde-
pendently new coordinative information, or serve as the acknowledgement for
the control tuple that has just been received. Such a decision is service-specific.
However, we require that coordinative transactional flow is terminated through
such a confirmative control tuple from Component 2. The steps in the second
phase are described next.

– [Step 6:] Component 2 appends a control tuple to its tuple space TS 2. This
control tuple (denoted as message B) has to be subsequently delivered to
Component 1;

– [Step 7:] TSC reads the control tuple from TS 2;
– [Step 8:] Component 2 retracts the control tuple via the take operation;
– [Step 9:] TSC appends the control tuple into tuple space TS 1 of Compo-

nent 1;
– [Step 10:] Component 1 takes the appended control tuple (message B from

Component 2) from its tuple space TS 1. This step completes the coordinative
transaction.

Note, that the coordination messages could be of any type. Therefore,
our communication architecture allows full transparency in inter-component
exchange and does not require proprietary formats. Most common formats that
could be incorporated into the message field of a control tuple is XML, JSON or
text strings. Such a choice is service-dependent. Moreover, the service compo-
nents could utilize the serialization libraries such as XStream [16], to represent
class objects in the form of XML messages. In this case, isolated components
that use our TSL library can perform complete object-based transport within a
single service solely through provided tuple space communication.

Collaborative Transaction. Collaborative communication is depicted in
Fig. 5. Intrinsically, collaboration is unidirectional, since the workflow is only
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Fig. 5. Collaboration through tuple spaces

directed from a single requester to TSC and back in the form of content tuples.
In contrast to a control tuple, a content tuple only has a Destination ID field, as
depicted in Fig. 3. However, at the level of service logic, collaboration flow could
conceptually be bidirectional. Both endpoints could obtain replicas of mutual
data objects through TSC, if such a replication is explicitly permitted in the
policies store of a reference monitor. Such a scenario of symmetric collaboration
is depicted in Fig. 5. The steps of collaborative transaction, on the left, are shown
below.

– [Step 1:] Component 1 appends a control tuple to its tuple space TS 1 with
indication of request for data object that is owned by Component 2;

– [Step 2:] TSC reads the control tuple from TS 1;
– [Step 3:] TSC reads the requested data object on the filesystem. Note, that

this step is not a part of the actual transactional flow, but represents the
internal operations of TSL;

– [Step 4:] TSC appends the replica of a data object, fragmented in three
content tuples, into tuple space TS 1, one tuple at a time. Note, that TSC can
append the next content tuple only after the current one is taken from a tuple
space. The step shows four actual tuples – TSC has to append a special End
of Flow (EOF) content tuple to indicate the end of data flow. Such a tuple
has the Payload field set to empty string and Sequence Number field set to
−1 to indicate the EOF condition;

– [Step 5:] Component 1 takes appended content tuples, one tuple at a time;
– [Step 6:] Component 1 assembles the appended content tuples into a replica

of the requested data object. Note, that this step is not a part of the actual
transactional flow, but represents the internal operations of TSL;

– [Step 7:] Component 1 takes a control tuple from its tuple space TS 1. This
step completes the collaborative transaction.

The flow of second collaborative transaction, on the right, is identical. The
communication starts with creation of a tuple space and ends with its dele-
tion after the transactional flow completes. The complexity for both types of
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communication is hidden from applications. TSL provides public Application
Programming Interface (API) methods without exposing internal operations of
tuple space calculus.

3.4 Security Aspects

Tuple space communication addresses the confidentiality, integrity, and avail-
ability issues with respect to tuple space implementation. Only members of the
same communicative policy class can coordinate and/or share data. Extra protec-
tion mechanisms are also incorporated for each application’s tuple space. Each
application (service component) creates its own tuple space in the directory
structure of the filesystem allocated to its isolated runtime environment. Only
the individual application can perform all the operations, namely, create tuple
space, delete tuple space, read, append, and take. TSC can only perform read and
append operations on the tuple space. Thus, no one other than the application
itself can remove anything from its tuple space. Moreover, the confidentiality and
integrity are guaranteed by virtue of isolation from other services deployed on
the node. Note that, from the confidentiality standpoint a malicious application
cannot request a replica of a data object that belongs to another application
deployed in a separate isolated runtime environment unless it is registered in
the policy database containing communicative policies classes of the LPM and
has the appropriate policy records. Removing it from the associated communica-
tive policy class will disable the collaboration with other service components [3].
Unrestricted inter-application communication is avoided through the notion of
trust between applications that is implicit for components of a single data ser-
vice. Such components should be logically placed in the same communicative
policy class as indicated in Sect. 2.

Applications may misbehave and cause Denial-of-Service (DOS) attacks by
exhausting system resources. Our TSL facilitates the data and control flow that
prevents an application from using all the allocated filesystem space in the direc-
tory structure of the isolated environment. The implementation of append opera-
tion for collaboration ensures that such an operation writes only a single content
tuple at a given time and the application has to take the tuple before a new one is
written in its tuple space. Such a strategy avoids overconsumption of filesystem
space, alleviates disk/filesystem access loads with large numbers of concurrent
transactions, and also serves as an acknowledgement mechanism before the next
chunk of the replicated data object is written.

4 Experimental Results

The initial prototype of the TSL implemented in Java SE is publicly avail-
able through the LPM’s GitHub repository [2]. The specification of the
machine involved in the benchmarking is depicted in Table 1. Memory uti-
lization and time information has been obtained using JVM’s internal Run-
time and System packages. Due to space limitations, we do not provide the
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benchmarking results for coordinative transaction. Despite its implementa-
tion complexity, such a transaction involves only exchange of two control
tuples and therefore does not incur any significant performance overheads in
terms of CPU and RAM utilization. The actual unit test for coordination
is available at: https://github.com/kirillbelyaev/tinypm/blob/LPM/src/test/
java/TSLib UnitTests Coordination.java.

Table 1. Node specifications

Attribute Info

CPU Intel(R) Xeon (R) X3450 @ 2.67 GHz; Cores: 8

Disk SATA: 3Gb/s; RPM: 10 000; Model: WDC; Sector size: 512 bytes

Filesystem EXT4-fs; Block size: 4096 bytes; Size: 53 GB; Use: 1%

RAM 8 GB

OS Fedora 23, Linux kernel 4.4.9–300

Java VM OpenJDK 64-Bit Server SE 8.0 92

For collaboration, the payload of individual content tuple is set at 1 MB.
Therefore, for instance, it takes 64 content tuples to replicate a 64 MB data
object. Six sizes of data objects have been chosen - 64, 128, 256, 512, 1024
and 2048 MB objects respectively. Collaborative transactional flow, as discussed
in Sect. 3, is performed on the EXT4 filesystem, where the requesting service
component creates a tuple space in its isolated directory structure and assembles
the content tuples appended by the TSC into a replica in its isolated environment
outside the tuple space directory.

Replication performance for sequential collaboration is depicted in Fig. 6. The
create ObjectReplica() method in Utilities package of the TSL library is a refer-
ence method that sequentially executes the collaborative transaction conducted
between TSC and the service component within a single thread of execution. We
can observe that the replication time progressively doubles with an increase of
the object size. On average, it takes 0.625 s to replicate a 64 MB object, 1.065 s
a 128 MB object, 1.955 s a 256 MB object, 3.950 s a 512 MB object, 8.550 s a
1024 MB object and 17.505 s to replicate a 2048 MB object. Java Virtual Machine
(JVM) memory utilization during sequential collaboration has been observed to
be negligible. That is largely due to the usage of Java NIO library in our Utilities
package that is designed to provide efficient access to the low-level I/O operations
of modern operating systems. On average, memory usage is 23 MB for replica-
tion of a 64 MB object, 34 MB for a 128 MB object, 56 MB for a 256 MB object,
305 MB for a 512 MB object (an outlier, repeatedly observed with this object size
that might be specific to the garbage collector for this particular JVM), 58 MB
for a 1024 MB objects, and 36 MB for replication of a 2048 MB object. Note, that
since the measured JVM memory utilization takes into account the processing
of both TSC and requester components within a single thread of execution, the

https://github.com/kirillbelyaev/tinypm/blob/LPM/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM/src/test/java/TSLib_UnitTests_Coordination.java
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Fig. 6. Replication performance for sequential collaboration

actual JVM utilization will be roughly twice lower for two endpoints in the col-
laborative transaction when endpoints execute in separate JVMs. This shows the
practical feasibility of our collaborative implementation even for replication of
large data objects. According to obtained results, we can anticipate that TSC can
handle a large number of concurrent collaborative transactions without consum-
ing significant amounts of physical RAM. We observed partially full utilization of
a single CPU core during replication of the largest data object (2048 MB). The
actual unit test for sequential collaboration is available at: https://github.com/
kirillbelyaev/tinypm/blob/LPM/src/test/java/TSLib Utilities UnitTests.java.

In real-world settings TSC and service component execute concurrently in
separate threads, and in fact in different JVMs. Replication performance for con-
current collaboration is depicted in Fig. 7, where TSC and service component
execute as concurrent threads in a single JVM. In such settings, TCS thread
performs a short sleep in its section of TSL library after every append operation
to allow the service component thread to take a content tuple from its tuple
space. That results in a longer replication time compared to sequential execu-
tion depicted in Fig. 6. Due to concurrent execution, two CPU cores have been
partially utilized by the JVM during concurrent collaboration. The obtained
results show that replication time is sufficient for non-critical, non-real-time ser-
vices where medium-size data objects need to be replicated across service com-
ponents. Further decrease in replication time is possible through the usage of
faster storage media, such as Solid-State Drives (SSDs) and Non-Volatile Mem-
ory (NVM) [5]. Again, we can observe that the replication time progressively dou-
bles with an increase of the object size. On average, it takes 17.152 s to replicate
a 64 MB object, 23.8 s a 128 MB object, 37.1 s a 256 MB object, 63.8 s a 512 MB
object, 117.5 s a 1024 MB object and 246.505 s to replicate a 2048 MB object. In
line with sequential collaboration, JVM memory utilization during concurrent

https://github.com/kirillbelyaev/tinypm/blob/LPM/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM/src/test/java/TSLib_Utilities_UnitTests.java
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Fig. 7. Replication performance for concurrent collaboration

collaboration also has been observed to be negligible. On average, memory usage
is 7 MB for replication of a 64 MB object, 14 MB for a 128 MB object, 8 MB for
a 256 MB object, 9 MB for a 512 MB object, 12 MB for a 1024 MB objects, and
19 MB for replication of a 2048 MB object. In fact, the utilization is much lower
then in case of sequential collaboration. Again, when executed in separate JVMs,
the memory footprint for every endpoint in the transactional flow will be fur-
ther diminished. Therefore, TSC memory usage during real-life operations for
handling multi-component collaborative transactions is expected to be minimal.
Note, that due to preliminary nature of conducted transactional benchmarks, the
focus is on functionality, rather then availability. Therefore, no actual saturation
of storage media has been attempted. The actual unit test for concurrent col-
laboration is available at: https://github.com/kirillbelyaev/tinypm/blob/LPM/
src/test/java/TSLib UnitTests Collaboration.java.

5 Related Work

For the complete coverage of relevant research efforts, we direct the interested
reader to our original work on the subject [3]. Application-defined decentralized
access control (DCAC) for Linux has been recently proposed by Xu et al. [17]
that allows ordinary users to perform administrative operations enabling isola-
tion and privilege separation for applications. In DCAC applications control their
privileges with a mechanism implemented and enforced by the operating system,
but without centralized policy enforcement and administration. DCAC is config-
urable on a per-user basis only [17]. The objective of DCAC is decentralization
with facilitation of data sharing between users in a multi-user environment. Our
work is designed for a different deployment domain – provision of access con-
trol framework for isolated applications where access control has to be managed

https://github.com/kirillbelyaev/tinypm/blob/LPM/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM/src/test/java/TSLib_UnitTests_Collaboration.java
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and enforced by the centralized user-space reference monitor at the granularity
of individual applications using expressive high-level policy language without a
need to modify OS kernel.

The application-level access control is emphasized in Decentralized Informa-
tion Flow Control (DIFC) [13]. DIFC allows application writers to control how
data flows between the pieces of an application and the outside world. As applied
to privacy, DIFC allows untrusted software to compute with private data while
trusted security code controls the release of that data. As applied to integrity,
DIFC allows trusted code to protect untrusted software from unexpected mali-
cious inputs. In either case, only bugs in the trusted code, which tend to be small
and isolated, can lead to security violations. Current DIFC systems that run on
commodity hardware can be broadly categorized into two types: language-level
and operating system-level DIFC [10,14]. Language level solutions provide no
guarantees against security violations on system resources, like files and sockets.
Operating system solutions can mediate accesses to system resources, but are
inefficient at monitoring the flow of information through fine-grained program
data structures [14]. However, application code has to be modified and perfor-
mance overheads are incurred on the modified binaries. Moreover the complexi-
ties of rewriting parts of the application code to use the DIFC security guarantees
are not trivial and require extensive API and domain knowledge [14]. These chal-
lenges, despite the provided benefits, limits the widespread applicability of this
approach. Our solution allows to divide the information flow between service
components into data and control planes that are regulated through the user-
space reference monitor. Therefore, no modification to OS kernel is required. The
rewrite of existing applications for utilization of data flow may not be necessary,
since a separate flow requesting application that leverages our TSL can handle
such a task and deliver the replica of a data object to unmodified application.

In the mobile devices environment, Android Intents [6] offers message pass-
ing infrastructure for sandboxed applications; this is similar in objectives to our
tuple space communication paradigm for the enforcement of regulated inter-
application communication for isolated service components using our model of
communicative policy classes. Under the Android security model, each applica-
tion runs in its own process with a low-privilege user ID (UID), and applications
can only access their own files by default. That is similar to our deployment
scheme. Despite their default isolation, Android applications can optionally com-
municate via message passing. However, communication can become an attack
vector since the Intent messages can be vulnerable to passive eavesdropping or
active denial of service attacks [6]. We eliminate such a possibility in our commu-
nication architecture due to the virtue of tuple space communication that offers
connectionless inter-application communication as discussed in Sect. 3. Malicious
applications cannot infer on or intercept the inter-application traffic of other ser-
vices deployed on the same server instance because communication is performed
via isolated tuple spaces on a filesystem. Moreover, message spoofing is also pre-
cluded by our architecture since the enforcement of message passing is conducted
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via the centralized LPM reference monitor that regulates the delivery of mes-
sages according to its policies store.

We have adapted the original Linda model to serve the requirements of inter-
component communication. As covered in Sect. 3, the original paradigm has a
number of resource-oriented limitations and does not offer security guarantees.
For that matter, many researchers [4,12,15,18] have conducted adaptation of the
original tuple space model to fit the domain-specific requirements. The LightTS
tuple space framework [1] has adapted the original operations on Linda tuple
space for use in context-aware applications. LightTS offers support for aggre-
gated content matching of tuple objects and other advanced functionality such
as matches on value ranges and support for uncertain matches. Our adapta-
tion allows coordination and collaboration between isolated service components
based on content matching on a set of tuple fields. To the best of our knowledge,
we offer the first persistent tuple space implementation that facilitates the regu-
lated inter-application communication without a need for applications to share
a common memory address space [3].

6 Conclusion and Future Work

In this work we implemented the communication sub-layer necessary for enforce-
ment of inter-component access control policies expressed through the notion of
communicative policy class. We have demonstrated how inter-application com-
munication for isolated service components can take place through persistent
tuple spaces. The prototype of TSL library demonstrates the feasibility of our
approach. A lot of work remains to be done. A carrier-grade TSC, that is nec-
essary for the enforcement of communicative policy class model needs to be
developed for inclusion into our LPM reference monitor. Therefore, we plan to
measure system utilization and performance degradation with a large number of
concurrent tuple space transactions. The Parser and Persistence layers of LPM
also have to be extended to support formulation and storage of policies for com-
municative class model.
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Abstract. The goal of this paper is to propose an approach based on
DHT toward access control for ad hoc MCC and Fog computing. We
rely on Chord DHTs to create a scalable, generic and robust access con-
trol solution. We use simulations to evaluate the performances of the
proposal. We focus on a set of metrics to measure the overhead of the
system. We considered a variable network size, a variable responsible
nodes percentage and different hash function as simulation parameter.
The obtained results show acceptable overhead for relatively average net-
works sizes. Simulations show that all the metrics increase with the nodes
number and the number of responsible nodes.

Keywords: Access control · Ad hoc mobile cloud · Fog computing ·
DHT

1 Introduction

The research community is interested in the use of shared, heterogeneous
resources. The numerous benefits that distributed computing can provide in
the field of big data, latency-sensitive applications, mobile applications, video-
on-demand service and Smart Grids led to the emergence of new distributed
computing paradigms such as Fog computing and ad hoc MCC.

Fog computing is a systematic, highly virtual, secure and network-integrated
platform that provides computing, storage, and networking services at the edge
of the network [1]. Resources and services are available and are closer to the
end-user. They are located between endpoints and the traditional Cloud [3]. Fog
computing is located outside the Cloud to ensure the provision of resources in a
truly distributed way [10]. This helps eliminating service latency, improves QoS
and removes other possible obstacles in relation with data transfer and mobile
data high cost. All these characteristics make the Fog computing paradigm well
positioned for big data and real time analytics. It supports mobile computing
and data streaming [1].
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Ad hoc MCC is one particular scenario of Fog computing where mobile
devices are used as resource providers. These devices are connected via sponta-
neous ad hoc networks and are evolving in the end-users local vicinity. Compared
to older mobile cloud approaches such as Cloudlet [18], the ad hoc MCC presents
many advantages. It is spontaneously deployed, easy to access, cost effective and
does not rely on central servers or connections to infrastructure networks.

Ad hoc MCC can support various applications such as sharing GPS/Internet
data, sensor data applications, crowd computing, multimedia search, image
processing, language processing, social networking, and disaster recovery [15].
It is promising in various locations such as airports, stations, cafes, museums,
battlefield or any environment where connectivity to cloud services is not avail-
able and where ad hoc communities can be gathered. The scenario detailed below
can take advantage of a mobile cloud over ad hoc networks.

In this scenario, a massive disaster such as an earthquake or a tsunami has
ravaged the land causing human loss and infrastructure destruction. Internet
services providing satellite images, maps, reliefs or buildings such as Google
Earth or Google maps are now useless. Since internet infrastructure is destroyed
and almost landmarks like bridges, highways, and buildings are collapsed, rescue
teams conducting search and rescue operations face many problems. Indeed, the
absence of a clear image of the terrain and buildings harms the efficiency of the
rescue effort. Thanks to ad hoc MCC, the disaster survivors and rescue teams
members can share the resources of their mobile terminals interconnected over
ad hoc networks. They take pictures with their smartphones or tablets cam-
eras. These pictures can be processed and stored locally or using the resources
provided by other mobile terminals. Then, users can access the shared storage
spaces to discover the new face of the disaster sites.

The goal of this paper is to propose an approach toward access control in the
context of ad hoc MCC and Fog computing. This paper is structured as follows:
Sect. 2 is a reminder of our previous work. In Sect. 3, we present the literature
review related to access control in Fog computing and P2P systems. Section 4
introduces the proposed access control model. Section 5 depicts the performance
evaluation of the proposal. Finally, in Sect. 6, we conclude the paper and present
ongoing works.

2 Related Works

Ad hoc MCC and fog computing rise a number of security and privacy con-
siderations that are mostly regarding access to resources and services [17,20].
Fog computing faces various challenging security issues. In the following, we
focus on access control and present preliminary approaches and studies aiming
to implement access control in fog environment. In addition, from the analysis
of different distributed paradigms, we observe that Fog computing has multiple
similarities with P2P [12]. such as: Decentralization, heterogeneity, autonomy,
support for mobility, resource sharing, large number of nodes, real-time interac-
tion, predominance of wireless access, edge located. Consequently, we introduce,
the main approaches of access control in P2P systems.



402 B. Zaghdoudi et al.

2.1 Related Works on Access Control in Fog

Due to its infancy, there are very few research works on access control in fog
computing. In traditional systems, subjects are assigned with identities. During
users’ identification, these identities are presented to the system and then verified
during authentication. After a successful authentication process, access control
involves the authorization process which is to decide whether an access request
should be permitted or denied. For the arbitrarily changing number of nodes in
a fog area, assigning and verifying identities for every node is not possible. On
one hand, not all services might be publicly available. On the other hand some
services might require consumer identification. This urges the need for an access
control system that can consider information describing subjects, objects and
the context of operation.

In [17], the authors propose a distributed access control system using iden-
tities and attributes for authentication and authorization purposes. A deep dis-
cussion of Fog computing access control requirements is also presented, to finally
conclude by suggesting the main features of a proper access control system. The
first suggestion is to use an Attribute-Based Access Control (ABAC). It is an
access control approach based on attributes, which can be implemented within
an organization such as a fog environment. Attributes are characteristics, defined
as name-value pairs, which can contain information about subjects, objects and
context. Context attributes, or environmental conditions, allow ABAC imple-
mentations to be context-aware, thus making it an ideal candidate for fog appli-
cations, where context is a factor that affects the entire system behavior. The
second suggestion for implementing a suitable access control model for fog is to
use a reference monitor (RM). The reference monitor is constituted of the Pol-
icy Decision Point (PDP) and the Policy Enforcement Point (PEP). The PDP’s
role is to make the access decisions. The PEP is responsible for making access
request and enforcing authorization decisions. In traditional computing environ-
ments, the reference monitor is usually implemented in a centralized way [9].
However this approach is not viable in the dynamic and highly distributed fog
environment and will impose significant latency. The distributed reference mon-
itor based on ABAC presented in [17] can overcome this issue.

Authors in [6] propose a policy-based resource access control in fog comput-
ing, to support secure collaboration and interoperability between heterogeneous
resources. They demonstrated the feasibility and practicality of their approach
through a proof of concept implementation of a fog computing environment
based on use case scenarios. However, the work lacks in clarity since it is prelim-
inary, and authors did not present any conclusive implementation and evaluation
results of any reliability tests. The approach presented in [11] is based on trust
propagation. Instead of granting access based on conventional criteria such as
roles and identities, the access to resources is granted based on the trustworthi-
ness of the user. A node may be able to grant access to users even if they are
previously unknown. It can do so without requiring any intervention from the
users. The trustworthiness of an unknown user may be established through trust
propagation.
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The literature review about access control models in fog computing shows
that we are at the beginning and there is still a lot of work to be done. All the
studied works tried to underline the requirements of access control and to study
the applicability of existent schemes on fog computing.

2.2 Related Works on Access Control in P2P Systems

In this section, we present a set of P2P access control approaches according
to three types: Discretionary access control (DAC), Certificate based and Role
based access control (RBAC).

Various approaches rely on identity based access control to determine the
access rules for resources in P2P systems. This kind of access control called
Discretionary Access Control (DAC) is based on the user’s identity and the
authorizations he/she possesses [8]. DAC models are mostly used with legacy
applications and have a non-negligible management overhead in the context of
distributed environments.

In [22], the authors propose a DAC based approach and introduce an autho-
rization framework as a solution for the problem of access to computational
resources in a grid environment. The main goal of this framework is to help in
reasoning about the behavior of resource owners and their clients. This solution
is enhanced in [2] by adding XML encryption files. It is based on the user’s
identity and the authorizations he/she possesses. The work in [21] extends DAC
models to P2P file-sharing systems. Trust is integrated by means of a reputation
model that maps two dimensions into rating certificates: trust and contribution.
This approach is not suitable to the decentralized nature of MANETs because
it assumes that there is a node in the network that classifies users, assigns users
access rights and authenticates nodes. Another scheme presented in [8], provides
authorization capabilities for file sharing over pure P2P networks. The authors
make use of public key certificates to store security clearances as attributes.
These clearances are issued by content providers and used to classify them. The
access to content is granted when the peer’s security clearance is at least the
same level of the content.

Other approaches propose certificate based access control models which use
digital certificates, as medium for transferring access control data concerning
a node. The work presented in [7] is based on this model. The authors pro-
pose an access control system for mobile P2P collaborative environments. They
assume the presence of a specific peer providing authorization certification to
other peers in the network. In order to be allowed to access shared files, users
must present their authorization certificates to the service providers. This app-
roach is vulnerable to Man in the middle attacks. Since the certificate does not
carry any information for the authentication of the owner, an attacker can use
it to gain access to shared files. Authors in [23], propose a trusted computing
architecture based on an abstract layer of trustworthy hardware. Every peer has
a role defined by the integration of his attributes according to his identity and
his certificate. To ensure the authenticity of the certificates, the use of a Public
Key Infrastructure is required.
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In Role-based access control models (RBAC), users have access to objects
based on their assigned roles. Roles are defined according to job functions while
permissions are defined according to job authorities and responsibilities which
in their turn simplify the administration and management of permissions. When
using a RBAC model there is no need to configure privileges for every user of
the system. This can enhance scalability for distributed architecture. Authors
in [16] present a scalable role based access control approach for two different
architectures. It is based on the use of Lightweight Peer Certificates. The access
control decision is centralized in specific peers called super-peers. The assump-
tion that the network is composed of two different types of nodes or superposing
two networks is not suitable to P2P environment over ad-hoc networks. This
may generate an overhead that affects the scalability of the system.

Access control models for P2P have shortcomings related to the requirements
of Fog and ad hoc MCC access control presented in Sect. 4.1. However, it appears
to be a good start in the design of a suitable access control approach as it takes
into consideration the similarities of the two environments presented above.

3 Previous Work

In a previous work, we propose an architecture and a protocol supporting the
deployment of ad hoc mobile MCC. This solution permits to use the resources
of mobile terminals in a MANET to create a virtual cloud meeting the mobile
community resources provider needs.

3.1 The Architecture

Our Cloud system is composed of two main entities: Provider nodes acting as
resources provider, Customer nodes acting as cloud clients. The role of Providers
is to offer services to the Customers such as tasks execution and data stor-
age, or collecting information. We proposed a protocol for the deployment and
the management of nodes in a mobile Ad hoc Cloud over MANETs named
C-Protocol. As for the layered model of our architecture, we integrated the
C-Protocol as a meta-layer within the TCP/IP stack under the Cloud frame-
work layer. C-Protocol provides a set of services that allow MCC management
and to abstract and simplify a part of MANET networks operation. Among its
main services: On-demand Cloud deployment, Dynamic management of Provider
and Customer nodes.

3.2 The Protocol

C-Protocol is composed of two main phases, the Setup phase and the dynamic
nodes management. It uses a set of UDP messages exchanged between nodes.
The MCC Setup phase aims at setting up an ad hoc MCC over a spontaneous
MANET. Any node in the ad hoc network with resource shortage can start
the Setup by broadcasting a request on the network. At the end of this phase,
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a cloud provider system (CPS) composed of provider nodes is created. Access
lists are generated and delivered to all nodes. The dynamic networks topology
and the variable capacity of devices in terms of resources result in the necessity
to manage the group of Providers: new providers can join the ad hoc MCC to
satisfy Customers’ needs while others can leave it and similarly for customers.
C-Protocol handles the arrival and the departure of Customers or Providers.
To be able to do that, we implemented the following processes: Add provider
process, Add Customer process, MCC member departure process.

3.3 Results

The performances of the proposed protocol is evaluated by simulation using the
NS-3 simulator. Our solution presents latency issues for the dynamic manage-
ment of nodes and ACL recovery and update mechanisms. In Fig. 1, we present
results for adding Customer in small networks. The time required to add a Cus-
tomer in a network composed of 50 nodes is equal to 8.19 s.

Fig. 1. Required time to add a customer

4 The Proposal

The main goal of this work is to provide a generic solution to prevent unautho-
rized access of malicious nodes to the Cloud Provider System or pretending to
be service providers. Our Solution ensures that only nodes members of the MCC
can communicate with each other. We present the mechanisms and the design
of the security approach.

4.1 The Requirements

An access control model for fog computing must fulfill a set of requirements,
which are derived from requirements for access control in mobile ad hoc systems,
P2P networks, and other distributed paradigms sharing the same characteristics.
Fog computing introduces the following requirements for access control: Decen-
tralization, Nodes identification and classification, Context-awareness, Resource
constraint, Network availability, Decision latency. These requirements present
a challenge from the point of view of the security mechanisms that should be
applied to provide access control.
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4.2 The Proposed Mechanisms

In order to propose a solution as generic as possible with regard to mobile
computing characteristics, we propose an DHT overlay based model. Figure 2
presents the architecture of the system composed of two different layers. The
upper layer is the MCC architecture composed of Provider and Customer nodes.
The lower layer is the overlay network created based on the Providers and Cus-
tomers lists (PL, CL) provided by the C-Protocol after the Setup of the main
MCC architecture.

Fig. 2. The system architecture

We assume the existence of a clustering algorithm, which will select nodes
to be responsible nodes from the provider nodes list based on a set of criteria.
Responsible nodes are a group of nodes selected from the PL to maintain the
access control data hash table and make decision about nodes requesting access
to the MCC network. As we mentioned in the previous work section, two access
lists, i.e. Provider list and Customer list are created by the initiator node during
the Setup phase. All authorized nodes are known by the initiator. The lists
are delivered to all registered nodes after the creation of the mobile cloud. The
integrity of these lists are maintained by an update and a recovery mechanisms
when nodes join or leave the MCC. From the simulation results of our proposal,
we have shown that our solution faces latency and ACL management issues.

To solve these problems, we propose to distribute the creation and the update
of access control lists. We rely on distributed hash tables (DHT) as a substitute
to ACLs. DHT is a class of distributed system which partitions the key space
among participating peers [4,14]. The DHT determines the peer in the system
which is responsible for storing the data and retrieves the data that are stored as
(key, value) pairs among a number of peers [19]. DHT are usually implemented
in structured overlay networks.

We studied and compared between the most known structured overlay net-
works, i.e. Pastry, Tapestry, CAN and Chord [13]. From that comparison, we can
conclude that Chord is designed to offer the required functionalities to imple-
ment general purpose systems while preserving maximum flexibility. It is an
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efficient distributed lookup system based on consistent hashing [5]. Tapestry has
an advantage against Chord protocol because the algorithm knows the network
topology, so queries never travel more than the network distance required to
reach them. However, it does not handle node joins and failures like Chord. Like
Tapestry, Pastry takes into account the network locality; it seeks to minimize
the distance using a scalar proximity metric like the number of IP routing hops.
However, it has a more complicated join protocol. A new node’s routing table
will be populated with information from nodes along the path taken by the join
message. This leads to latency.

From the studied research works, theoretical analysis, simulations, and exper-
iments confirm that Chord scales well with the number of nodes, recovers from
large numbers of simultaneous node failures and joins, and answers most lookups
correctly even during recovery. We believe that Chord will be a valuable com-
ponent for our solution.

We propose the use of Chord to implement access lists using Chord distrib-
uted hash tables in order to authenticate nodes accessing the Fog or the ad hoc
MCC. This permits to benefit of Chord advantages for the creation of a scalable,
generic and robust access control solution. Figure 3.a presents the Chord DHT
structure. The DHT has two primitive operations: put() is a function that puts
data V into the DHT space with a key K. Get() is a function that gets the orig-
inal data using a given key K. Although extremely simple, these two primitives
are suitable for a great variety of applications and provide good robustness and
high efficiency, especially in large-scale systems.

We will modify the Chord DHT to meet the access control needs. The new
DHT called access control DHT is presented in Fig. 3.b. It is created during
the creation of the overlay for each responsible node of the overlay ring. It is
updated and maintained dynamically. The access control DHT consists of a
two-dimensional table containing the set of pairs of nodes’ identifiers and their
respective role identifier (NodeID, CloudID). The node’s identifier is mapped
from the node’s mac address and a random sequence by a hash function and it is
a substitute for the key K in the original DHT. The CloudID is a unique identifier
generated for each ad hoc MCC created and added to the Chord layer. In order
to back up the role of each authorized node, we use the CloudID concatenated
with a random sequence to identify the two possible role respectively Customer
or Provider. These two unique identifiers will replace the data V in the classic
structure.

Furthermore, in order to prevent the replay of sensitive messages such us
requesting access to resources messages, we propose to include a nonce (unique
for each message and easy to check). The nonce is calculated as defined bellow
using concatenated and hashed information, which are able to guaranty the
authenticity of received messages. These information are the responsible node
identifier associated to the node creating the nonce and the message transmission
time. In the requesting resources case, the processing of the nonce is defined as
follows:
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– Nonce generation: is processed by the node requesting access. The Chord layer
is requested about its responsible node’s identifier. This layer will replay with
a message containing a NodeID which is a hash of the responsible node’s
MAC address and a random sequence. At the C-Protocol level, this identifier
is concatenated with the message transmission time creating the nonce.

– Nonce checking: The first verification of the nonce is accomplished at the
Chord layer level. A request is sent by the C-Protocol to the Chord layer to
verify the relation between the MAC address of the requesting node and the
NodeID received in the message. If the Chord layer responds with a message
to affirm that the NodeID is the identifier of the responsible node of that
MAC address. The C-Protocol verifies the transmission time to check the
authenticity of the message.

Fig. 3. Data hash table structure

4.3 The Protocol:

We define the process through which nodes have to follow in order to access to
mobile cloud resources. The process is based on the whole Chord mechanism. All
the nodes member of the MCC have a replicas on the Chord ring. When added
to the ring, a node gets its unique identifier which is the hash of the node’s MAC
address and a random sequence forming the NodeID. Every authorized node has
an entry in the DHT of its responsible node composed of the NodeID and the
CloudID.

– The Setup: At the end of the MCC setup, a Provider and Customer lists will be
generated by the C-Protocol. These two lists store all the nodes member of the
Cloud provider system and the Customer nodes authorized to access shared
resources. The Chord layer uses these lists to create the overlay network. This
overlay is a replicas of the Ad hoc network where the nodes are placed on the
Chord ring. The first step in the setup phase is to create the ring and place
the first node. Taking into consideration the selection algorithm assumption
presented above, the first nodes in the PL are responsible nodes. So, an empty
DHT will be created. Then, Chord will hash nodes’ identifiers and place them
on the ring in an ascending order. When the overlay replicas network is created
with empty DHTs, the Chord layer will launch the setting of authorizing nodes.
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It is about placing nodes in responsible nodes’ distributed hash tables. Nodes
can be added in the local DHT, also a lookup operation for responsible node
can be performed and an InsertNode message is sent to add the node in a
distant node’s DHT.

– The Authentication: In a traditional system, each user willing to access a
resource or a service, must pass through an authentication/authorization
process with a centralized entity. In our system, this process is discreet. The
node requesting access does not communicate directly with an authentica-
tion server. When a node receives a request to access resource, the message is
passed to the Chord layer to authorize the node. The Chord layer reconstructs
the NodeID and identifies the responsible node of the node requesting access.
Then a message SearchRequest is sent to the responsible node to verify if the
NodeID is present in its DHT. If the result is affirmative, the node’s role is
verified according to the CloudID coupled with its identifier. Then access is
permitted and an Access-authorized message is returned to the C-Protocol.
Otherwise, access is denied.

– The node management: The dynamic networks topology and the variable
capacity of devices in terms of resources result in the necessity to manage the
group of Providers. New providers can join the ad hoc MCC to satisfy Cus-
tomers needs while other can leave it and similarly for Customers. C-Protocol
handles the arrival and the departure of Customers or Providers. To ensure
homogeneity between the physical ad hoc network and the overlay network.
All nodes’ management operations should be replicated on the ring.

5 Performance Evaluation

To evaluate the performances of our access control solution, we used a com-
bination of the NS-3 simulator and the OpenChord API. It is an open source
implementation of the Chord distributed hash table. OpenChord provides the
possibility to use the Chord distributed hash table within Java applications by
providing an API to store all serializable Java objects within the distributed
hash table. We performed 20 runs for each simulation scenario and computed
the 95 % confidence interval for all simulations results. We define the following
metrics:

– TChord: This metric measures the time required for the deployment of the
overlay network.

– TCloudG: This metric measures the global time required for the setting up
of the mobile Cloud (C-Protocol and Chord Layer). TCloudG = TCloud +
TChord where TCloud is the time required to create the CPS.

– TAccess: This metric measures the time required to authenticate a node.
– TAdd: This metric measures the time required for adding a node to the overlay

network.
– TDelete: This metric measures the time required for deleting a node from the

overlay network.
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5.1 Simulation Model

In the following simulations, the nodes number varies between 10 and 300 nodes.
The percentage of responsible nodes in the Chord ring varies between 20 % to
100 % for two scenarios (Effect of responsible nodes percentage on TChord and
TAccess) and equal to 30 % in the other scenarios. SHA-1 as Chord hash function
for the majority of simulated scenarios. To study the effect of changing the
hash function on the selected metrics, we used MD5, SHA-1 and SHA-2 hash
functions.

5.2 Evaluation of TChord

Our goal here is to have an estimation of the time required for the creation of
the overlay network. Through this estimation, we will study the influence of the
responsible nodes percentage on TChord.

Effect of the Responsible Nodes Percentage on TChord: In the first
scenario, we simulated the deployment of 4 networks composed respectively of
10, 50, 150 and 300 nodes. We varied the percentage of responsible nodes in
the ring. For the four simulated networks, Fig. 4.a shows that TChord increases
with the percentage of responsible nodes. TChord is relatively low for small
number of responsible nodes (up to 30 %). It is equal to 0.15 s for the 10 nodes
network, 1.37 s in a network composed of 50 nodes, 7.59 s for 150 nodes and
29.51 s for 300 nodes with a percentage of responsible nodes equal to 30 %. For
large percentage of responsible nodes in the network, TChord reaches the value
of 82.08 s and 181.67 s respectively for 150 and 300 nodes networks. All the nodes
are responsible nodes. We can consider acceptable the obtained values of TChord
for the setting up of the overlay network with a percentage of responsible nodes
up to 30 %.

Estimation of TChord: In order to estimate TChord and show the impact of
the network size, we vary the number of nodes from 10 to 300. The percentage
of responsible nodes in the network is fixed to 30 %. Figure 4.b shows that the
TChord increases with the number of nodes in the network.

Effect of the Hash Function on TChord: The OpenChord API gives the
user the ability to use 3 different hash functions respectively MD5, SHA-1,
SHA-2. We studied the effect of changing the hash function on TChord. From the
simulation results, we concluded that the lowest values of TChord are measured
when using MD5 hash function while SHA-2 has the highest TChord values.
The effect of the hash function is the same for all measured metrics: TChord,
TAccess, TAdd and TDelete.
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5.3 Evaluation of TCloudG

Our goal here is to have an estimation of the time required for setting up the
mobile Cloud infrastructure and to identify the factors that influence this met-
ric. In previous research work, we estimated and studied the time required for
the CPS setup using the NS-3 simulator that we called TCloud. We considered
acceptable the obtained values of TCloud for the setting up of CPS in small net-
works (up to 100 nodes). Also, we concluded that like TChord, TCloud increases
with the number of nodes. The density of the network has an important impact
on TCloud, which is not significantly affected by the nodes’ speed for medium
size networks. In addition, TCloud is higher when using AODV and it is not
impacted by the data rate when using OLSR.

The lower curve in Fig. 5 shows the value of TCloud. It is considered as the
MCC deployment time without security. The upper curve in the same figure
shows the TCloudG which is the sum of the TCloud and the TChord. TCloudG
inherits the properties of TCloud and TChord. It increases with nodes number
and we can consider acceptable the obtained values of TCloudG for the setting
up of the mobile MCC in small networks (up to 100 nodes).

5.4 Evaluation of TAccess

Effect of the Responsible Nodes Percentage on TAccess: We study here
the effect of varying the responsible nodes percentage on TAccess. In this sce-
nario, we simulated 4 networks composed respectively of 10, 50, 150 and 300
nodes while varying the responsible nodes percentage between 20 % and 100 %
and measured the time required to authenticate a node. We observe in Fig. 6.a
that the curves of TAccess have the same shape for each simulated network.
TAccess is equal to 15.61 ms, 16.34 ms, 18.21 ms and 19.57 ms respectively for
10, 50, 150, 300 nodes networks when 30 % of the nodes are responsible nodes
and it reaches the values of 17.28 ms, 18.81 ms, 21.57 ms and 24.17 ms for the
same networks when all the nodes of the Chord ring are responsible nodes. We
can conclude that TAccess is not significantly affected by the responsible nodes
percentage for different size networks.

Estimation of TAccess: In order to show the impact of the network size on
TAccess, we vary the number of nodes from 10 to 300 while the percentage of
responsible nodes is fixed to 30 %. Figure 6.b shows that TAccess increases with
the number of nodes. It is equal to 16.34 ms in a network composed of 50 nodes
and reaches 19.57 ms when authenticating a node in a 300 nodes network.

5.5 Evaluation of TAdd and TDelete

Figure 7 shows the simulation results of respectively TAdd and TDelete. We
varied the number of nodes from 10 to 300 nodes and used a responsible nodes
percentage equal to 30 %. Each figure presents two curves, the lower curves show
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Fig. 4. TChord study

Fig. 5. TCloudG vs Nodes number

all measures of TAdd and respectively TDelete for normal node joining or leaving
the Chord ring while the upper ones show the results for the responsible node
join/leave operations.

In a network composed of 50 nodes, the required time to add a normal node is
equal to 21.54 ms compared to responsible node TAdd equal to 26.40 ms. TAdd
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Fig. 6. TAccess study

Fig. 7. Simulation results of TAdd and TDelete

and TDelete increase with the number of nodes. In more populated networks
for example a 300 nodes network, TDelete is equal to 102.95 ms when deleting
a normal node and 108.3 ms when it is a responsible node.
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6 Conclusion and Outlook

In this paper, we explore the use of Chord layer in our MCC solution architecture.
This layer and DHTs stored in Chord responsible nodes are used to create a
scalable, generic and robust access control solution. This access control model
would befit to spontaneous networks created temporarily in situations where the
mobile infrastructures are very pervasive, and responds to MCC access control
requirements.

We use simulations to evaluate the performances of the proposed access con-
trol solution. We focus on a set of metrics TChord, TCloudG, TAdd and TDelete.
We considered a variable network size, a variable responsible nodes percent-
age and different hash function as sensitive simulation parameter. The obtained
results show acceptable values of TChord for relatively average networks since it
takes around 8 seconds to setup an overlay composed of 150 Providers. Simula-
tions show that all the metrics increase with the nodes number and the respon-
sible nodes network. In terms of performance, hash functions are classified in the
following order SHA-2, SHA-1 and the lowest measured time is for MD5.

Ongoing work addresses more evaluation of the scalability and the overhead
of the global proposal. In addition, a study of the model energy consumption
appears to be an urgent need in such environment.
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Abstract. Reachability, which answers whether one person is reachable
from another through a sequence of contacts within a period of time, is
of great importance in many domains such as social behavior analysis.
Recently, with the prevalence of various location-based services (LBSs),
a great amount of spatiotemporal location check-in data is generated by
individual GPS-equipped mobile devices and collected by LBS compa-
nies, which stimulates research on reachability queries in these location
check-in datasets. Meanwhile, a growing trend is for LBS companies to
use scalable and cost-effective clouds to collect, store, and analyze data,
which makes it necessary to encrypt location check-in data before out-
sourcing due to privacy concerns. In this paper, for the first time, we
propose a scheme, SecReach, to securely evaluate reachability queries
on encrypted location check-in data by using somewhat homomorphic
encryption (SWHE). We prove that our scheme is secure against a semi-
honest cloud server. We also present a proof-of-concept implementation
using the state-of-the-art SWHE library (i.e., HElib), which shows the
efficiency and feasibility of our scheme.

Keywords: Reachability · Location privacy · Homomorphic encryption

1 Introduction

Reachability, which answers whether a user is reachable from another through a
sequence of contacts in a period of time, is of great importance in many domains,
e.g., social behavior analysis, friend recommendations, public health monitoring,
to name a few. Due to the prevalence of various location-based services (LBSs),
such as Google Maps, Foursquare, Yelp, etc., a great amount of location check-
in data is generated by individual GPS-equipped mobile devices and collected
by these LBS companies. This stimulates research on reachability analysis in
these location check-in datasets [19,21]. For instance, if two people are in close
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 419–434, 2016.
DOI: 10.1007/978-3-319-48965-0 25
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proximity to each other, we can infer that they are socially connected or an
item (e.g., an infectious virus) could spread from one to another. Base on these
inferences, companies or other authorized parties such as governments are able to
build customized advertising systems, identify certain targets or trace epidemic
contacts.

Meanwhile, with the increase in the volume of data (for example, there are
millions of new check-ins in Foursquare each day), a growing trend is for LBS
companies to use scalable and cost-effective cloud services to store and analyze
data. For instance, both Foursquare and Yelp use Amazon S3 (Amazon Simple
Storage Service) to store their data. Moreover, advanced cloud services (such as
Amazon Kinesis Firehose) allow mobile LBS applications to send data directly
to cloud stores (e.g., Amazon S3) from users’ mobile devices, which enables LBS
companies to scale location check-in data collection on clouds. However, out-
sourcing location check-in data to clouds poses the privacy concerns of users.
Location check-ins are sensitive because they reveal private individual informa-
tion including home addresses, interests, and state of health [20]. Furthermore,
the anonymity of location check-in data is difficult to achieve. A recent research
work [5] shows that in a dataset, where the locations are specified hourly, four
spatiotemporal points are enough to uniquely identify most of the individuals.
Given the sensitivity of location information, users, who are willing to make their
locations available to LBS companies, may not fully trust third party clouds. On
the other hand, LBS companies also do not want to reveal individually generated
location check-in data to public clouds, due to legal and commercial reasons.

To prevent clouds from learning location check-in data, the most effective
way is to use end-to-end data encryption. However, the analysis of the encrypted
check-in data in clouds remains to be a very challenging problem. Specifically, in
this paper, we study how to evaluate reachability queries on encrypted location
check-in data. Theoretically, Fully Homomorphic Encryption (FHE) [7] allows
an untrusted party to compute any functions on encrypted data, however, the
state-of-the-art FHEs are far from being practical [16]. Somewhat Homomor-
phic Encryption (SWHE), which supports additions and a few multiplications,
is more efficient than FHE. Unfortunately, it cannot be directly used for evalu-
ating reachability queries, because the limited number of multiplications is not
sufficient for comparisons in reachability queries. On the other hand, some recent
methods have been proposed for similar queries on encrypted location data, such
as trajectory similarity [12] and kNN [6,17], in which they combine partially
homomorphic encryption and secure two-party computation to implement com-
parisons on ciphertexts. However, this kind of method is ordinarily based on the
system model of two cloud servers, which introduces extensive interactions.

In this paper, we propose a scheme for reachability queries evaluation on
encrypted location check-in data. Our main contributions are as follows:

– To the best of our knowledge, this is the first work that studies reachabil-
ity queries evaluation on encrypted location check-in data. We propose a
method to compute 2-hop reachability using additions and a limited number of
multiplications, instead of relying on comparisons which implies interactions.
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With the use of SWHE and Bloom filters, the evaluation of reachability queries
is non-interactive between a cloud server and a data analyzer. One of the key
innovations in our scheme is a new method to determine whether an integer
number is equal to a given integer k or whether it is in the range of [0, k − 1]
in the ciphertext domain without decryption.

– We formally analyze the security of our scheme against a semi-honest server,
and it is shown that our scheme does not leak any user locations, intermediate
results or final reachability results to the server. We also present a proof-of-
concept implementation, and experimental results show our scheme is feasible
and efficient in practice.

The rest of this paper is organized as follows. Section 2 presents the problem
statement and Sect. 3 introduces the preliminaries of our scheme. In Sect. 4 we
describe the idea anddetails of our scheme.Weanalyze the security of our scheme in
Sect. 5 and present a proof-of-concept implementation with a performance analysis
in Sect. 6. Finally, Sect. 7 reviews the related work and Sect. 8 concludes the paper.

2 Problem Statement

In this paper we study the problem of evaluating reachability queries on
encrypted location check-in data. In this section, we first introduce our sys-
tem and adversarial model. Then, we state the data format of location check-ins
and definition of reachability. Finally, we present our design objectives.

2.1 System and Adversarial Model

System Model. Our system model, as shown in Fig. 1, consists of a set of users,
a data owner, a data analyzer, and a cloud server. Specifically, each user generates
location check-in data on personal devices (e.g., smartphones or tablets), and
uploads location check-ins to the cloud server over time. As a result, the cloud
server stores and maintains a dataset containing a set of location check-ins, where
each location check-in (also referred to as a tuple) is reported by one of the
users at a certain time. Said differently, each tuple consists of three properties,
including who, where and when. The dataset belongs to the data owner (e.g., an
LBS company). The data analyzer is able to submit reachability queries to the
cloud server to discover the reachability of a certain user to other users. Note
that the data analyzer could also be the data owner itself. The cloud server
should be able to perform the evaluation of reachability queries in a location
check-in dataset, and return results to the data analyzer.

Adversarial Model. We assume users trust the data owner, but not the cloud
server. Specifically, we assume the cloud server is semi-honest (i.e., honest-but-
curious), which means it follows protocols correctly but may try to learn the
private location of each tuple in a location check-in dataset. To be more precise,
given a location check-in, the cloud server tries to figure out where this loca-
tion check-in is reported. Due to the privacy concerns of users, each location is
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Fig. 1. The system model.

encrypted with a public key of the data owner before uploading it to the cloud.
Therefore, given a reachability query, the cloud server computes it on encrypted
data, and returns encrypted result back to the data analyzer. The data analyzer
asks the data owner to decrypt the result. Only the data owner can decrypt the
result with its secret key. We assume the data analyzer and the cloud server do
not collude. Previous examples of this type of system model can also be found
in recent secure medical computation applications such as [3,26].

2.2 Location Check-in Data, Proximity and Reachability

Location Check-in Data. As discussed in [19], location check-in data is asso-
ciated with both space dimension and time dimension as users move within a
space over time. We define a location check-in data as a tuple d = (u, l, t), where
u is a user identity (i.e., who), l is the location of this user (i.e., where), and t
is the time slot of generating this location check-in (i.e., when). Moreover, we
leverage a square grid to index locations, as shown in Fig. 2. Specifically, a loca-
tion l = (x, y) is the center of a cell, and a user’s location is reported as l on
condition that its physical location is within this cell. Similar as square grid,
other types of grids, such as hexagonal grid [15] can also be leveraged in location
check-in data.

Proximity and Reachability. Given a tuple d = (u, l, t), where l = (x, y),
we define the proximity range of user u as its square neighborhood including
nine cells, where the center of this square is (x, y) and the size of this square
can be configured by changing the cell size. This square is in fact the Moore
neighborhood of the cell (x, y) with a specific range, which is frequently used
in geographic information system (GIS). If another user’s location is inside the
proximity range of user u in the same time slot t, we say that the two users are
in direct contact. Correspondingly, two users can be in indirect contact if they
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Fig. 2. An example of location check-in data generated by four users. The locations
(i.e., where) are indexed using a grid. In this example, u3 is reachable from u1 through
u2 (i.e., there is a contact path u1 → u2 → u3).

have a common direct-contact user. A contact path, which is bidirectional, exists
between two users if they are in contact (either direct or indirect). A reachability
query of a user ui to another user uj tells whether there is a contact path between
them in a given time interval T (including several time slots). In other words, it
is a way to decide whether one user is reachable from another user within T .

Figure 2 shows an example of location check-in data generated by four users
in time slot t0. In this example, for user u3 and user u1 in time interval T = t0,
u3 is outside the proximity range of u1, but it is inside the proximity range of u2,
who is in the proximity range of u1. Thus, there is a contact path u1 → u2 → u3

from u1 to u3, i.e., u3 is reachable from u1 through u2. For user u4 and user
u1, because u4 is outside all the proximity ranges of the other three users, it is
not reachable from any of those three users. More details about the definition of
reachability can be found in [19].

2.3 Design Objectives

In this paper, we aim at designing a secure scheme to compute reachability
queries under the preceding system and adversarial model. Our main design
objectives include two aspects, data privacy and efficiency. Specifically,

– Data Privacy. The cloud server is not be able to reveal any of the locations in
a location check-in dataset or the results of any reachability queries. In addi-
tion, the cloud server cannot reveal intermediate results (e.g., the proximity
between users). The reason of such high level of privacy protection is that,
if we leak either intermediate proximity results or final reachability results
to the cloud server, the cloud server may be able to infer users’ locations by
encrypting locations of its choice and then conduct proximity tests with the
locations in the dataset, and use triangulation attacks to learn users’ locations
with reasonable accuracy [11].
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– Efficiency. Our scheme should efficiently carry out reachability queries on
encrypted location check-ins and avoid interactions between the cloud server
and data analyzer during the evaluation of reachability queries.

3 Preliminaries

3.1 Bloom Filters

A Bloom filter [1] is a space-efficient randomized data structure for membership
testing (i.e., whether an element is in a set or not). More specifically, a Bloom
filter is able to decide either an element is definitely not in a set or it is in
a set with a very high probability. A (m, k)-Bloom filter BF = (b1, . . . , bm) is
essentially a binary vector of m bits, which are initially all set as 0s. There are
k independent hash functions h1, . . . , hk, where the hash values of each of those
hash functions is within the range of [1,m] and each value within this range
maps a component index in a Bloom filter.

To add an element x to a Bloom filter BF, bits {bh1(x), ..., bhk(x)} are set as
1s. To query if an element y is in a set, we check whether {bh1(y), ..., bhk(y)} are
all 1s. If not, then y is definitely not a member of the set; otherwise, y is in the
set with a small false positive probability. We denote the above two algorithms
as BF.add and BF.query, respectively.

3.2 Somewhat Homomorphic Encryption

Somewhat homomorphic encryption (SWHE) is a fundamental building block
of fully homomorphic encryption (FHE), which can be extended to FHE by
utilizing bootstrapping [7]. Compared to FHE, SWHE can only carry out a
limited number of multiplications, but it is much faster than FHE [14].

A typical public-key SWHE scheme consists of five algorithms, including
SWHE.KeyGen, SWHE.Enc, SWHE.Dec, SWHE.Add and SWHE.Mul. Specifically,
SWHE.KeyGen(1λ) takes as input a security parameter and outputs a pair of pub-
lic and secret keys (pk, sk). c ← SWHE.Enc(pk,m) and m ← SWHE.Dec(sk, c)
are used for encryption and decryption, respectively, where m and c are a pair
of plaintext/ciphertext. In addition, SWHE.Add and SWHE.Mul are used for
homomorphically additions and multiplications, respectively. More concretely,
SWHE.Add(c1, c2) takes as input two ciphertexts c1 and c2 and outputs a new
ciphertext cadd, where c1 is the ciphertext of m1, c2 is the ciphertext of m2, and
cadd is the ciphertext of m1 + m2. Similarly, SWHE.Mul(pk, c1, c2) outputs cmul,
which is the ciphertext of m1m2.

4 SecReach: Secure Reachability Computation

As we discussed above, given two users (ui, uj) and a time interval T , a reach-
ability query answers whether there is a contact path from ui to uj within time
interval T . In this paper, we begin with the very fundamental problem, i.e.,
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whether uj is reachable from ui by a contact path with two hops, which we call
it a 2-hop reachability query. This type of queries can be easily seen in practice,
e.g., finding a friend of a friend in social networks [23]. In the following, for ease
of presentation, we first assume all the location check-ins are reported in one
time slot t0, and the query time interval is T = t0. Then we will explain how to
extend our scheme to support queries with different time slots.

4.1 Our Main Idea

Assume each user generates a location check-in in time slot t0, and there are n
users in total. Given a 2-hop reachability query of (ui, uj) in T = t0, our main
idea is to evaluate whether there is at least one user, e.g., uk, is in direct contact
with both ui and uj . If it is, then it implies that uj is reachable from ui within
2 hops, and there is at least one contact path, e.g., ui → uk → uj ; otherwise, ui

and uj are not 2-hop reachable.
By following this logic, our method can be broken down in two steps. First,

we compute the contacts between ui and all the n users, and represent the results
as an n-bit binary vector vi, which is referred to as the contact vector of user ui.
If user ui and uk (1 ≤ k ≤ n) are in direct contact, the k-th position of contact
vector vi is set to 1 (i.e., vi[k] = 1); otherwise, it is set to 0. Similarly, we can
compute a contact vector vj for user uj . In the second step of our approach, we
compute an inner product of vi and vj , which is represented as 〈vi,vj〉. If this
inner product is equal to or greater than 1, i.e., 〈vi,vj〉 ≥ 1, it indicates there
is at least one user (e.g., uk) in direct contact with both of the two users, and
these two users are reachable within 2 hops. Note that, at least one same index
is assigned as 1 in both of the two contact vectors vi,vj , e.g., vi[k] = vj [k] = 1.

In order to decide whether user ui is in direct contact with a user uk, or said
differently, whether this user uk is inside user ui’s proximity range, we describe
each user’s proximity as a set of locations that are close to it, and leverage a
Bloom filter to represent this set. As a result, whether user ui is in direct contact
with user uk is equivalent to say whether user uk’s location is a member of the
Bloom filter of user ui. The essential reason that we utilize membership test-
ing other than computing and comparing distances of two locations, is because
membership testing is more efficient on encrypted data. Specifically, we lever-
age inner product to conduct membership testing in Bloom filter, which can
be efficiently computed on encrypted data using SWHE (with one homomor-
phic multiplication). Moreover, we present a new way to convert the result of
this inner product to a binary number in ciphertext domain so as to build the
contact vector described above.

4.2 The Details of Our Scheme

In the following, we describe the details of our scheme. Our scheme leverages a
public-key somewhat homomorphic encryption scheme SWHE and we denote by
�x� the ciphertext of x encrypted under SWHE.
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Encrypt Locations on the User Side. Given a location check-in tuple di =
(ui, li, t0) generated by user ui in time slot t0, user ui encrypts its location li as
follows:

1. Enumerate and add all the locations in its proximity range to an (m, k)-Bloom
filter BF using BF.add. Here we use an m-bit vector αi to represent BF and
refer to it as the proximity vector of user ui.

2. Create another m-bit vector βi, where all bits are initialized as 0s, and set
the hj(li)-th bit of βi to 1, for 1 ≤ j ≤ k, where hj (1 ≤ j ≤ k) are the k
hash functions of BF. βi is called the location vector of user ui.

3. Encrypt αi and βi using SWHE.Enc. More concretely,

�αi� ← (SWHE.Enc(pk,αi[1]), . . . ,SWHE.Enc(pk,αi[m])) (1)

�βi� ← (SWHE.Enc(pk,βi[1]), . . . ,SWHE.Enc(pk,βi[m])) (2)

Note that the above encryptions are bit-wise, where we encrypt each bit in
vector αi and βi separately.

In the end, user ui obtains an encrypted location check-in as (ui, �αi�, �βi�, t0),
and sends it to the cloud server.

Evaluate 2-Hop Reachability on Cloud Server. Assume user ui sends one
encrypted location check-in (ui, �αi�, �βi�, t0), and there are n encrypted location
check-ins in total from the n users. The cloud server stores these encrypted
location check-ins in a data table with n rows and four columns as shown in
Fig. 3. Note that the fourth column is empty before any computation.

Fig. 3. The data table maintained by the cloud server, and one table per time slot.

Given a 2-hop reachability query of (u1, u2) in time interval T = t0, the
cloud server first checks whether the contact vectors �v1� and �v2� have been
computed and stored in the data table. If not, it computes �v1� and/or �v2�
by Algorithm 1, and stores them in the data table. Specifically, in Algorithm
1, we present a novel approach, i.e., by homomorphically evaluating a function
f(x) = (k!)−1

∏k−1
i=0 (x− i) on an encrypted integer x to check whether x is equal

to k or whether 0 ≤ x ≤ k − 1, and represent the result as an encrypted binary



SecReach: Secure Reachability Computation on Encrypted Location 427

number in order to build the contact vector. Then, with �v1� and �v2�, the cloud
server computes �〈v1,v2〉� using SWHE.Add and SWHE.Mul and returns it to the
data analyzer. �〈v1,v2〉� is the ciphertext of the inner product of vectors v1 and
v2. Note that the cloud server does not decrypt any encrypted data during
this above evaluation, and all the computations are operated on encrypted data
correctly based on the homomorphic properties of SWHE.

Algorithm 1. Compute contact vector �vi� of ui by the cloud server
Input: �αi� of ui, �βj� of uj (1 ≤ j ≤ n)
Output: The encrypted contact vector �vi� of ui

1: for j = 1 to n do
2: if i == j then
3: �vi[j]� ← SWHE.Enc(pk, 1)
4: continue
5: else
6: �x� = �〈αi,βj〉� // using SWHE.Add and SWHE.Mul
7: �vi[j]� = �f(x)� // f(x) = (k!)−1∏k−1

i=0 (x − i) where (k!)−1 is the inverse of
(k!) in message space of SWHE, using SWHE.Add and SWHE.Mul

8: // Note that here SWHE.Add and SWHE.Mul should take as input �(k!)−1�
and �1�, �2�, . . . , �(k−1)�, which can be pre-computed using SWHE.Enc by the
cloud server.

9: end if
10: end for
11: return �vi� = (�vi[1]�, �vi[2]�, . . . , �vi[n]�)

Decrypt the Query Result. The data analyzer sends �〈v1,v2〉� to the data
owner. And the data owner decrypts it using its secret key sk. Specifically, the
data owner computes

〈v1,v2〉 ← SWHE.Dec(sk, �〈v1,v2〉�) (3)

If 〈v1,v2〉 equals 0, the data owner returns 0 to the data analyzer, which means
there is no 2-hop reachability from u1 to u2. If 〈v1,v2〉 is non-zero, the data
owner returns 1 to the data analyzer, which means u2 is reachable from u1

within 2 hops. Note that the data analyzer could also be the data owner itself.
In this case, the data owner simply decrypts �〈v1,v2〉� with its secret key.

Correctness. In the plaintext domain, at line 6 in Algorithm 1, it essentially
evaluates whether the location lj of user uj is in the Bloom filter BF generated by
user ui, where BF contains all the locations in ui’s proximity range. Obviously, if
it is, x, i.e., the inner product of vector αi and βj , is equal to k, i.e., the number
of hash functions used in Bloom filters; otherwise, 0 ≤ x ≤ k−1. In other words,
we use the inner product 〈αi,βj〉 instead of BF.query to decide whether location
lj is in Bloom filter BF.
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At line 7, f(x) represents the binary number to indicate whether x is equal
to k. Specifically, if x = k, f(x) = 1; if x ∈ {0, 1, . . . , (k − 1)}, f(x) = 0.
We would like to emphasize that this mapping from x to f(x) is important for
the subsequent computations. Note that the calculation of the inner product of
〈αi,βj〉 and the mapping from x to f(x) together only contains additions and a
limited number of multiplications, which can be implemented with SWHE.Add
and SWHE.Mul on encrypted data by the cloud server.

Therefore, if user ui and uj are in direct contact, then �vi[j]� = �1�; otherwise,
�vi[j]� = �0�. For the 2-hop reachability from u1 and u2, if there is a user u3 in
direct contact with both u1 and u2, then both v1[3] and v2[3] equal 1, which
implies the inner product 〈v1,v2〉 will definitely not be zero (i.e., at least 1).
Note that u1 and u2 could be in direct contact, in this case, w.l.o.g., u3 could
be either u1 or u2.

Process Reachability with Different Time Slots. Our scheme can be
extended to support reachability with different time slots. More specifically,
given a 2-hop reachability query of (u1, u2) in time interval T = [tx, ty], which
includes y − x + 1 time slots, i.e., tx, tx+1, . . . , ty, if there is a contact path
u1 → u3 → u2, the second contact u3 → u2 should happen in a time slot that
is later than the time slot of the first contact u1 → u3 happens. More precisely,
assume u1 → u3 occurs in time slot ti while u3 → u2 occurs in time slot tj , then
we have x ≤ i ≤ j ≤ y.

Fig. 4. The data tables maintained by the cloud server for 3 time slots (for the limi-
tation of space we omit the second and third columns) and an example of reachability
query about two users u1 and u2 within time interval T = [t1, t3].

To evaluate this 2-hop reachability query, the cloud server should search all
the possible combinations of ti and tj within T = [tx, ty] to find out whether
there is such a contact path u1 → u3 → u2. Specifically, for each time slot, the
cloud server maintains a data table as described above and returns the query
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results as �
∑y

i=x(
∑y

j=i(〈vi1,vj2〉))�, where vi1 is the contact vector of u1 in time
slot ti and vj2 is the contact vector of u2 in time slot tj . It is easy to prove that
the 2-hop reachability exists if and only if

∑y
i=x(

∑y
j=i(〈vi1,vj2〉)) ≥ 1. Figure 4

is an example for a query about T = [t1, t3].

5 Security Analysis

In this section we analyze the security of our scheme against the semi-honest
cloud server. Our scheme does not reveal any input locations, intermediate or
final results to the semi-honest cloud, except the dataset size.

Formally, the location privacy guarantee of our scheme can be modeled under
a standard CPA game for multiple encryptions as denoted in Theorem 11.6 [9].
A challenger C chooses public and secret keys of a public encryption scheme
(pk, sk). An adversary A submits two series of messages {mi

0}n
i=1, {mi

1}n
i=1, and

C chooses b ← {0, 1} uniformly at random and sends A encryptions of {mi
b}n

i=1.
Finally A outputs its guess b′. Privacy is guaranteed if Pr[b′ = b] ≤ 1

2 + negl(λ),
where λ is the security parameter.

Theorem 1. If public-key somewhat homomorphic encryption scheme SWHE is
CPA-secure, then it also has indistinguishable multiple encryptions.

In our scheme, given a location check-in data (ui, li, ti), the encryption of
location li is (�αi�, �βi�), where

�αi� = (SWHE.Enc(pk,αi[1]), . . . ,SWHE.Enc(pk,αi[m])) (4)

�βi� = (SWHE.Enc(pk,βi[1]), . . . ,SWHE.Enc(pk,βi[m])) (5)

In other words, the encryption of a location in our scheme consists of multiple
encryptions under SWHE. According to Theorem 1, we can conclude that, given a
CPA-secure somewhat homomorphic encryption scheme SWHE , the encryptions
of locations in our scheme are indistinguishable under chosen plaintext attack.
Proof of Theorem 1 can be found in Theorem 11.6 [9]. Also, the privacy of the
intermediate results (e.g., the proximity vector vi) and the query results are
protected under the security of the SWHE.

In the adversarial model, we assume that the data analyzer and the cloud
server do not collude. Otherwise, the 2-hop reachability results are revealed and a
semi-honest cloud server may be able to infer the users’ locations by, for example,
the triangulation attacks in [11]. But the impact of this attack should be much
smaller since no direct proximity is known. Moreover, in practice, we can limit
the risk of such collusion attack by letting the data owner restricting reachability
queries to only authorized data analyzers.

6 Proof of Concept and Experimental Results

In this section, we present a proof-of-concept implementation of our scheme. We
leverage the state-of-the-art SWHE scheme as the building block for our scheme,
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and examine the performance of our design over synthetic location check-ins.
Specifically, we implement our scheme using HElib [8], which is a C++ library
that implements the BGV SWHE scheme [2].

Parameters and Encoding of Messages. The parameters of our scheme
consist of the parameters of Bloom filters and the parameters of HElib. In our
scheme, each user adds nine locations to an empty Bloom filter to generate its
proximity vector. We choose the number of hash functions as k = 3 and the
length of Bloom filters as m = 220, such that the false positive probability of
Bloom filters is around 0.001 (the probability is taken from [1]). As a result, the
length of a proximity vector and a location vector is |α| = |β| = m = 220.

Furthermore, given k = 3 , our scheme needs 2k + 2 = 8 depth of homo-
morphic multiplication (k + 1 for computing encrypted contact vector �v� in
Algorithm 1 and double (k + 1) for computing �〈vi,vj〉�). Therefore, the depth
of homomorphic multiplication of the SWHE should at least be eight. We set
the parameters of HElib as shown in Table 1 to meet this requirement.

The underlying SWHE scheme (BGV) of HElib is based on the “ring learning
with errors” (RLWE) problem, which means messages that can be encrypted
with HElib are polynomials. We use scalar encoding to encode an integer by
representing it as constant coefficient of a plaintext polynomial. Note that, if a
constant coefficient increases beyond the plaintext base p′, it will automatically
be reduced by modulo p′. We choose p′ = 1009, which means it can support
up to one thousand users (e.g., in the worst case, if both user ui and uj are in
contact with all the other 1000−1 users in one time slot, the final result 〈vi,vj〉
will be equal to 1000, which is less than p′).

Table 1. The parameters of HElib in our implementation, where p′ is the plaintext
base, r′ is the lifting, L′ is the number of levels in the modulus chain, c′ is the number
of columns in the key-switching matrics, w′ is the hamming weight of secret key, d′ is
the degree of the filed extension, and k′ is the security parameter.

p′ r′ L′ c′ w′ d′ k′

1009 1 16 3 64 0 80

Experimental Results. Our proof-of-concept implementation runs on a
Ubuntu 14.04 virtual machine (VM) with 4 GB memory. The VM is hosted in a
desktop PC with Inter(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 8 GB mem-
ory. We test the running time for generating one encrypted contact vector �v�,
and evaluate the performance of answering 2-hop reachability query of two users
within one time slot (i.e., computing �〈vi,vj〉�). The experimental results are
illustrated in Fig. 5. Even with our un-optimized implementation, a 2-hop reach-
ability query between two users can be evaluated on encrypted location data
in approximately 100 seconds for a system contains 1,000 users. Although from
Fig. 5(a), computing an encrypted contact vector seems to be time-consuming,
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(a) Compute encrypted contact vector (b) Evaluate 2-hop reachability

Fig. 5. The performance of our proof-of-concept implementation for one time slot

we argue that this computation is only a one time operation. In other words,
if a user has been queried before, the cloud server does not have to compute it
again. Moreover, our implementation can be further optimized using more effi-
cient message encoding methods. In addition, the implementation of SWHE (and
FHE) on high performance computing platforms (e.g., GPU) is itself a question
of interest (and has been studied recently in, e.g., [4,10]), and the efficiency of
our scheme can be significantly boosted up if we implement it with GPU. For
instance, [10] implements a SWHE using GPU, which results in a speedup of
104x in homomorphic multiplication over the implementations with CPU.

7 Related Work

To the best of our knowledge, current work does not tackle the problem of
computing reachability on encrypted location check-in data. The previous works
most relevant to ours are [18,27].

In [27], Yi et al. propose an optimized 2-hop labeling (which is an index
of a graph), namely m-2-hop, for privacy-preserving reachability queries in a
sparse graph. In their system model, there is a data owner who owns graph
data and pre-computes an m-2-hop index offline. Then, the data owner encrypts
the m-2-hop index and outsources it to the cloud server. A reachability query
is processed on the encrypted m-2-hop index. Their solution is essentially for
the reachability queries in static graph data (from which they can abstract an
index first). However, in our work, we consider the reachability queries over
individually generated location check-in data, which has both space and time
dimension and cannot be represented as a static graph. Therefore, their work is
not able to address our problem.

In [18], Shahabi et al. propose an extensible framework, PLACE, which con-
sists of some building blocks including location proximity block, and enables
privacy-preserving inference of social relationships from location check-in data.
Specially, they state one of the use cases of PLACE is to analyze the reachability
of two users. However, this work does not present any concrete designs.
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In addition to the above two works, we briefly review two categories of studies
on location privacy, private proximity testing (PPT) and searchable encryption
for range search, which are also relevant to the topic of this paper.

Private Proximity Testing. A PPT protocol enables a pair of users to test if
they are within a certain distance of each other, but otherwise reveal no infor-
mation about their locations to anyone. For example, in [15], Narayanan et al.
present several PPT protocols by reducing the PPT problem to the problem of
private equality testing (PET). However, PPT protocols are essentially secure
two-party computation protocols, therefore, they are not compatible with our
system model in which encrypted location check-in data and computations are
centralized on an untrusted cloud server.

Searchable Encryption for Range Search. Recently, a couple of searchable
encryption schemes for range search, e.g., [24,25], have been proposed. In [25],
Wang et al. propose two searchable encryption schemes supporting circular range
search on encrypted spatial data. They improve their work to support arbitrary
geometric range search in [24]. However, in these searchable encryption schemes,
a database server (e.g., a cloud server) will know search results, while our scheme
does not leak those information.

Our work is also relevant to another problem called privacy-preserving
location data publication. The works on this problem generally leverage non-
cryptography anonymization techniques, such as k-anonymity [22]. Specially, in
[13], Liu et al. propose the problem of reachability preserving anonymization
(RPA), and design an RPA algorithm which supports computing reachability
over anonymous graph. These anonymization techniques are generally very effi-
cient, however, the security of these schemes cannot be proven formally and
the results are not accurate because they have to modify the original data to
achieve anonymization. Moreover, like [27], the method in [13] is designed for
static graph, which cannot be used for the spatiotemporal location check-in data
generated by individual users over time.

From a technical point of view, based on Wilson’s Theorem (p − 1)! ≡ −1
(mod p) with p as a prime number greater than 2, Wang et al. [26] propose a
function g(x) = −∏p−1

i=1 (i − x) (mod p) to check whether an integer x equals
0 or whether 1 ≤ x ≤ p − 1, which is similar to the f(x) in Algorithm 1 in
our design. Plausibly, we can also use g(x) to check whether x is equal to k by
checking whether (k − x) equals 0. However, to compute “mod p” on encrypted
data, they use scalar encoding and set p as the plaintext base (recall that in
scalar encoding, the plaintext will automatically modulo p). In other words,
their method is limited to applications with small message space, otherwise it
will exceed the limitation of SWHE on the number of multiplications.

8 Conclusion and Future Work

In this paper we studied the problem of reachability queries on encrypted location
check-in data. Specifically, we presented a scheme, namely SecReach, to support
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2-hop reachability queries, which is based on a fresh approach of combining
Somewhat Homomorphic Encryption and Bloom filters. Our scheme is provably
secure and our experimental results demonstrate its practicality.

As part of future work, we are going to consider indexing location check-
in data with more efficient data structures to improve efficiency (for instance,
splitting the location space into smaller partitions including less users). Also, we
plan to extend our scheme to enable multi-hop reachability queries, in which the
length of a contact path is greater than 2, and implement our extension on high
performance computing platforms (e.g., GPU).
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Abstract. Fully homomorphic encryption (FHE) over the integers, as
proposed by van Dijk et al. in 2010 and developed in a number of
papers afterwards, originally supported the evaluation of Boolean cir-
cuits (i.e. mod-2 arithmetic circuits) only. It is easy to generalize the
somewhat homomorphic versions of the corresponding schemes to sup-
port arithmetic operations modulo Q for any Q > 2, but bootstrapping
those generalized variants into fully homomorphic schemes is not easy.
Thus, Nuida and Kurosawa settled a significant open problem in 2015
by showing that one could in fact construct FHE over the integers with
message space Z/QZ for any constant prime Q.

As a result of their work, we now have two different ways of homomor-
phically evaluating a mod-Q arithmetic circuit with an FHE scheme over
the integers: one could either use their scheme with message space Z/QZ

directly, or one could first convert the arithmetic circuit to a Boolean one,
and evaluate that converted circuit using an FHE scheme with binary
message space. In this paper, we compare both approaches and show
that the latter is often preferable to the former.

1 Introduction

Fully homomorphic encryption. A fully homomorphic encryption (FHE)
scheme is an encryption scheme that supports the homomorphic evaluation of
arbitrary efficiently computable functions on ciphertexts. In other words, it is a
usual encryption scheme (KeyGen,Encrypt,Decrypt) together with an additional
algorithm Evaluate that takes as input ciphertexts c1, . . . , cn together with the
description of a function f (and public-key information), and returns a new
ciphertext c∗ such that

Decrypt(sk, c∗) = f
(
Decrypt(sk, c1), . . . ,Decrypt(sk, cn)

)
.

FHE is a very powerful primitive with applications to secure multiparty compu-
tation, verifiable computation outsourcing, encrypted search and more. It was
already envisioned by Rivest, Adleman and Dertouzos in 1978 [RAD78], but
the first construction was only proposed in 2009 in a seminal paper of Gen-
try [Gen09b,Gen09a]. Since then, many other FHE schemes have been proposed,
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 435–450, 2016.
DOI: 10.1007/978-3-319-48965-0 26
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but all constructions (of FHE scheme in a strict sense, as opposed to relaxed vari-
ants such as “leveled fully-homomorphic” schemes) essentially follow Gentry’s
original approach, based on a technique called bootstrapping.

Gentry’s blue-print. That approach (the “blue-print” for homomorphic
encryption) can be roughly described as follows. First, one starts from a so-
called somewhat homomorphic encryption (SHE) scheme, in which ciphertexts
contain some “noise”, and can be added and multiplied together homomorphi-
cally provided that the noise (which can increase during homomorphic opera-
tions) remains small. These features make it possible to evaluate a moderately
large class C of functions on ciphertexts (essentially “low-degree” polynomials),
but not arbitrary functions.

Then, in a second step, Gentry proposes to express the decryption circuit of
the SHE scheme as a function belonging to C. This is not always possible, and
when it is, it usually involves a significant amount of technical hurdles, but for
the concrete schemes considered Gentry’s paper and later works, it can be done.
This is called squashing, and the resulting scheme is said to be bootstrappable.

Finally, one publishes an encryption csk of the secret key sk. As a result, for
any ciphertext c, anyone can homomorphically evaluate the function fc defined
by fc(sk) = Decrypt(sk, c) on csk: that function belongs to the class C of sup-
ported functions thanks to the squashing step. And the resulting ciphertext c∗

encrypts the same plaintext as c. However, the size of its noise depends only
on the fixed noise in csk, and not on the noise in c. In particular, by setting
parameters appropriately, one can ensure that c∗ supports at least one addi-
tional homomorphic additional and/or multiplication, regardless of how noisy
c may be. Therefore, if we carry out this “ciphertext refresh” procedure after
each homomorphic addition and multiplication, we obtain a scheme that sup-
ports arbitrarily many homomorphic addition and multiplication operations. In
other words, the resulting scheme can evaluate all efficient polynomial functions
(or equivalently, all polynomial-size arithmetic circuits on the plaintext space).
When the plaintext space is a finite field of constant (or at most logarithmic)
size, all efficient functions are of that form, and we obtain fully homomorphic
encryption. This is called bootstrapping, and the “ciphertext refresh” procedure
that takes a noisy ciphertext and reduces its noise by homomorphically evaluat-
ing the decryption algorithm is sometimes also called a bootstrapping operation.

Fully-homomorphic encryption over the integers. A comparatively simple
example of Gentry’s blue-print is the fully homomorphic encryption scheme over
the integers, initially proposed by van Dijk et al. [DGHV10], and refined in
a number of papers afterwards, including [CMNT11,CNT12,CCK+13,CLT14,
CS15].

Those schemes essentially share the same basic structure. In their symmetric-
key, somewhat homomorphic versions, the secret key is a prime number p, the
message space is Z/2Z, and m ∈ Z/2Z is encrypted as:

c = q · p + 2r + m (1)
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where r � p is a small random noise value, and q is uniformly random in
[0, 2γ/p) for ciphertext size γ. We can decrypt c using p by computing m =
(c mod p) mod 2. Under the hardness of the Approximate GCD problem, the
scheme is semantically secure, and it is also clearly somewhat homomorphic: as
long as the noise remains small, the sum and the product of two ciphertexts c, c′

decrypt to the sum and the product modulo 2 of the associated plaintexts. One
can thus evaluate low-degree polynomials on ciphertexts.

However, the scheme is not bootstrappable as is: the decryption algorithm

p �→ (c mod p) mod 2 = (c mod 2) ⊕ (p · �c/p�) mod 2

involves a division by p, which is a function of very large when represented as a
binary polynomial—provably too large, in fact, to be permitted by the somewhat
homomorphic scheme. Squashing is therefore required. This is done by approxi-
mating the value 1/p by a sparse subset sum

∑
i si · yi, si ∈ {0, 1}, of (pseudo-

)random fixed point real numbers yi with sufficient precision to ensure that

�c/p� =
⌊ ∑

i

si · (cyi)
⌋

for all supported ciphertexts c. The resulting decryption algorithm is then a
simple iterated addition of fixed point numbers, with only a small number of non
zero terms (by the sparseness condition), and that only needs to be evaluated
with enough precision to get its integral part. The resulting binary polynomial is
of much lower degree than the original division, and makes it possible to choose
parameters in such a way that the scheme becomes bootstrappable.

Message space and Nuida–Kurosawa FHE. As observed for example
in [PAD12,CCK+13], it is easy to obtain a variant of the somewhat homomor-
phic scheme above that supports homomorphic operations in the message space
Z/QZ for some other modulus Q 	= 2. It suffices to use ciphertexts of the form:

c = q · p + Q · r + m

instead of the form (1). The security argument is identical, as is the verification
that the scheme supports the homomorphic evaluation of low-degree polynomials
over Z/QZ (i.e. low-depth mod-Q arithmetic circuits).

However, obtaining fully homomorphic encryption based on that SHE scheme
appeared to be quite hard. Indeed, to carry out squashing in the mod-Q setting,
one has to represent the decryption algorithm, and in particular the large integer
division of c by p, as a low-degree polynomial over Z/QZ. This is a much less
familiar setting than Boolean circuits, and even in small characteristic, mod-Q
arithmetic circuits are known to be exponentially less powerful than Boolean
circuits with respect to depth [vzGS91].

Nevertheless, in a paper presented at EUROCRYPT 2015, Nuida and Kuro-
sawa [NK15] solved an interesting open problem by describing the first FHE over
the integers with non-binary message space. Their construction supports arbi-
trary prime fields of constant size, and is in fact the first FHE scheme supporting
homomorphic evaluation in a field of characteristic different from 2.
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Of course, the Nuida–Kurosawa scheme does not really extend the scope
of computations that can be carried out homomorphically using FHE schemes.
One can also perform arithmetic operations modulo Z/QZ using an FHE scheme
with binary message space. It suffices to represent an element of Z/QZ as the
binary expansion of its integer value in {0, . . . , Q − 1}, encrypt it bit by bit,
and carry out arithmetic operations on such representations by using Boolean
circuits for modular addition and modular multiplication. However, the Nuida–
Kurosawa scheme can be seen as an optimization: if we need to evaluate a specific
arithmetic circuit, it lets us do so directly without conversion to and from mod-Q
representations.

Our contributions. Since the Nuida–Kurosawa approach is an optimization,
it is interesting to explore how much it gains, if at all, compared to the binary
setting.

It is relatively clear that the optimization cannot be worthwhile for large
values of Q. This is due to the fact that the squashed decryption circuit has a
depth polynomial in Q, so the overall scheme incurs an overhead polynomial in
Q (and that overhead is really intrinsic to the mod-Q setting, by the optimality
results on polynomial degree given in [NK15, Sect. 3–4]). By contrast, there are
Boolean circuits for addition and multiplication modulo Q of size polylogarithmic
in Q, so the overhead of converting everything to the binary setting and using
an FHE scheme with binary message space is at most polylogarithmic in Q.

But a more careful analysis is needed to compare the efficiency of both
approaches even when Q is relatively small. This is what we propose to do
in this paper. To make the playing field as level as possible, we compare the
Nuida–Kurosawa scheme to itself, pitting its mod-Q version to its own binary
message space version.

More precisely, let us simply compare the Nuida–Kurosawa scheme for modu-
lus Q, denoted by NKQ, with the scheme Convert-NK2 that takes a mod-Q arith-
metic circuit, converts it to a Boolean circuit in a straightforward way (using sim-
ple, explicit circuits for addition, multiplication and modular reduction) and eval-
uates it homomorphically using NK2. Then ciphertexts in Convert-NK2 (which
are tuples of (log2 Q) ciphertexts in NK2) are shorter than ciphertexts in NKQ by
a factor of Ω(Q6/ log Q). Moreover, denote by TQ the time complexity of a single
ciphertext refresh operation in NKQ, and by T ′

2 the time complexity of carrying
out a multiplication mod Q in Convert-NK2 (by homomorphically evaluating the
Boolean circuit for modular multiplication, with a refresh operation after each
AND gate). Then we show that:

T ′
2

TQ
= O

(
log4 Q

Q7

)

and the implied constant in the big-O is relatively small (about 2,000).
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2 Preliminaries

In this section, we introduce the notation used throughout this paper, and review
the Nuida–Kurosawa fully homomorphic encryption (NK FHE) scheme, giving a
concrete description of the squashed decryption circuit, bootstrapping procedure,
and parameter choice.

2.1 Notation

For a real number x, �x� denotes the largest integer less than or equal to x,

x� denotes the smallest integer greater than or equal to x, and �x� denotes the
nearest integer to x. For an integer n > 0, we identify the quotient ring Z/nZ
of integers modulo n with the set {0, 1, 2, · · · , n − 1}, and define x mod n as the
unique integer y ∈ [0, n) with y ≡ x (mod n) and [x]n as the unique integer
z ∈ (−n/2, n/2] with z ≡ x (mod n). We denote the set {1, 2, · · · , n} by [n] for
a positive integer n. Furthermore, for a prime Q, an integer a and an integer
b ∈ Z/QZ, we define

(
a
b

)
Q

:= a(a − 1) · · · (a − b + 1) · InvQ(b!) where InvQ(x) is
the unique integer y ∈ [0, Q) with xy ≡ 1 (mod Q). Note that

(
a
b

)
Q

is congruent
to the binomial coefficient

(
a
b

)
modulo Q. We will use notation log A := log2 A

the logarithm of a real number A to base 2 unless otherwise stated. We often
identify an integer m mod Q with its binary expansion (mn−1, · · · ,m0) which
is the binary string of the length n = 
log(Q + 1)� such that m =

∑n−1
i=0 mi2i,

and call n the size of m. For a Q-ary representation A = (a0.a1, a2, a3, · · · )Q of
a real number A, denote (A)L := (a0.a1, a2, · · · , aL)Q with an integer L ≥ 0.

2.2 Nuida–Kurosawa Fully Homomorphic Encryption Scheme

Let λ be the security parameter, then we have parameters depending on λ: γ
the size of ciphertexts, η the size of secret prime, and ρ the size of small error.
There are more parameters L, τ, θ, κ and Θ, whose conditions will be presented
later. Then NK FHE scheme with message space M = Z/QZ is constructed as
follows:

– NK.KeyGen(1λ) → (pk, sk):
• Choose η-bit prime p uniformly random and choose q ← [1, 2γ/p) ∩ Z such

that gcd(q, p) = 1, gcd(q,Q) = 1 and q has no prime factors less than 2λ2
.

Set N = qp.
• Choose eξ,0, eξ,1 for ξ ∈ {1, · · · , τ} and e′

0, e
′
1 by eξ,0, e

′
0 ← [0, q) ∩

Z, eξ,1, e
′
1 ← (−2ρ, 2ρ) ∩ Z. Let xξ be the unique integer in (−N/2, N/2]

satisfying

xξ ≡ eξ,0 (mod q) and xξ ≡ eξ,1Q (mod p)

and let x′ be the unique integer in (−N/2, N/2] satisfying

x′ ≡ e′
0 (mod q) and x′ ≡ e′

1Q + 1 (mod p).
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• Choose uniformly at random a Θ-bit vector (s1, · · · , sΘ) ∈ {0, 1}Θ with
Hamming weight θ.

• Set Xp = �Qκ([p]Q)/p�. For i ∈ [Θ], choose ui ← [0, Qκ+1) ∩ Z in such a
way that

Θ∑

i=1

siui ≡ Xp (mod Qκ+1).

• Choose qi ← [0, q0) ∩ Z and ri ← (−2ρ, 2ρ) ∩ Z, and generate vi ← [pqi +
Qri + si]N for i ∈ [Θ].

• Output a public key pk = 〈N, {xξ}ξ∈[τ ], x
′, {ui}i∈[Θ], {vi}i∈[Θ]〉, and a

secret key sk = (s1, · · · , sΘ).
– NK.Encrypt(pk,m) → c: Given a plaintext m ∈ M, output a ciphertext c

defined by

c :=

⎡

⎣mx′ +
∑

ξ∈T

xξ

⎤

⎦

N

where T ⊂ [τ ] is a uniformly random subset.
– NK.Decrypt(sk, c) → m: Given a ciphertext c, compute zi := (cui/Qκ)L =

(zi;0.zi;1 · · · zi;L). Then output

m := c −
⎢
⎢
⎢
⎣

∑

i∈[Θ]

sizi

⎤

⎥
⎥
⎥

mod Q.

– NK.SHEEvaluate(pk, f, 〈c1, · · · , ct〉) → c∗: Given a polynomial f with integer
coefficients and ciphertexts c1, · · · , ct, output

c∗ := [f(c1, · · · , ct)]N

– NK.Evaluate(pk, f, 〈c1, · · · , ct〉) → c∗ is obtained using Gentry’s bootstrapping
technique by applying NK.SHEEvaluate to the squashed decryption circuit
NK.Decrypt.

Let us briefly explain the correctness of NK scheme [NK15, Sect. 7]. For a
ciphertext c, we can write as c = α(c) · p + β(c) · Q + m where α(c) and β(c)
are some integers depending on c, and |β(c) · Q + m| is smaller than p. For zi’s,
which are computed in Decrypt(sk, c), we have

⌊∑Θ
i=1 sizi

⌉
= α(c) · p+β′ ·Q for

the same α(c), and hence we can decrypt c correctly:

c −
⌊

Θ∑

i=1

sizi

⌉

= α(c) · p + β(c) · Q + m − (α(c) · p + β′ · Q) ≡ m (mod Q).
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2.3 More Remarks on NK Scheme

For NK scheme to be bootstrappable, we have to squash Decrypt – namely lower
the depth of the decryption circuit – so that it is expressed as a low-degree
polynomial. This is done in [DGHV10] for the case of Q = 2, but generalizing
this for the case of Q > 2 was not easy. Then, in [NK15], the authors resolved
the problem by constructing a mod-Q half adder and extending the decryption
circuit of [DGHV10] to mod-Q message spaces.

They first constructed a polynomial fcarry,Q(x, y) =
∑Q−1

i=1

(
x
i

)
Q

(
y

Q−i

)
Q

of
degree Q (it is proved that the degree Q is lowest), for which one can easily
check that c = fcarry,Q(x, y) mod Q where x + y = c · Q + s for x, y ∈ Z/QZ.
Then given x, y ∈ Z/QZ as input, a mod-Q half adder HAQ computes the sum
s = x+y mod Q and the carry c = fcarry,Q(x, y) mod Q. See Algorithm 1 below.

Algorithm 1. HAQ, a mod-Q half adder
Input: x, y ∈ Z/QZ

Output: (c, s)Q where x + y = c · Q + s
s ← x + y mod Q
c ← fcarry,Q(x, y) mod Q
return (c, s)Q

The following lemma tells us that NK.Decrypt can be computed by polyno-
mials of degree less than Q3λ.

Lemma 1 [NK15, Theorem 4]. For any positive integer Θ and for L =

logQ λ� + 2 with λ a security parameter, there are L + 1 polynomials of degree
≤ QL+1 ∼ Q3λ over Z/QZ which compute the mod-Q sum of Θ Q-ary real
numbers with L digits of precision after the Q-ary point.

Finally, we recall the concrete choice of parameters given in [NK15, Sect. 5],
where message size Q is regarded as constant.

– ρ = Θ(λ log log log λ), η = Θ(λ2 log log λ), γ = Θ(λ4 log2 λ), and τ = γ + λ
– L = 
logQ θ� + 2, κ = 
(γ − log(4Q − 5))/ log Q� + 2, Θ = Θ((λ log λ)4), and

θ = λ.

In a nutshell, we compare the case Q > 2 with the case Q = 2, so we have to
handle Q more carefully. We will study the dependence of parameters on Q in
Sect. 4.1.

3 Homomorphic Evaluation of mod-Q Arithmetic Circuit
Using FHE Scheme with Binary Message Space

In this section, we present a way to homomorphically perform arithmetic oper-
ations in Z/QZ using an FHE scheme with binary message space. For a given
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FHE scheme Π2 = (KeyGen2,Encrypt2,Decrypt2,Evaluate2) with the message
space M = Z/2Z, one can construct an FHE scheme ΠQ = (KeyGenQ, EncryptQ,
DecryptQ, EvaluateQ) with message space M = Z/QZ by encrypting messages
bit by bit in their binary expansions (n = 
log(Q + 1)�):
– KeyGenQ(1λ) → (pk, sk): Given a security parameter λ, run

(pk, sk) ← KeyGen2(1
λ).

Then output a public key pk and a secret key sk.
– EncryptQ(pk,m) → c: Given a plaintext m ∈ M, write m = (mn−1, · · · ,m0)

as its binary expansion. Encrypt each bit mi using

ci ← Encrypt2(pk,mi).

Then output a ciphertext tuple c := (cn−1, · · · , c0).
– DecryptQ(sk, c) → m: Given a ciphertext c = (cn−1, · · · , c0), decrypt

component-wise to get

mi ← Decrypt2(sk, ci)

and output m :=
∑n−1

i=0 mi2i.

A ciphertext of the scheme ΠQ is an n-tuple of ciphertexts of the scheme Π2, so
the ciphertext size of ΠQ is log Q times that of Π2.

3.1 EvaluateQ and mod-Q Arithmetic Circuits

In what follows, we describe Boolean circuits BAddQ and BMultQ to perform
addition and multiplication on two n-bit integers modulo Q (these circuits are
mostly chosen for their simplicity, and are far from optimal, particularly in terms
of depth, but they will be sufficient for our purpose). Then, the evaluation algo-
rithm EvaluateQ of ΠQ is obtained by carrying out the homomorphic evaluation
of these Boolean circuits on ciphertext tuples.

For m,m′ ∈ Z/QZ, BAddQ first adds two numbers over Z, and reduces it
mod Q. See Algorithm 2. Note that reducing m + m′ mod Q is done by first
checking whether it is greater than or equals to Q, and subtracting Q only
if it is so. Subtracting Q or nothing is sufficient for modular reduction since
0 ≤ m + m′ < 2Q. We denote the circuit carrying out this reduction step by
Modn+1

Q (see Fig. 1).
BMultQ circuit computes m · m′ =

∑n−1
i=0 m · m′

i2
i by using the formular

(· · · ((m · m′
n−1 · 2 + m · m′

n−2) · 2 + m · m′
n−3) · · · ) · 2 + m · m′

0. See Algorithm 3.
Whenever the possibility that intermediate values are getting bigger than Q
occurs, apply Modn+1

Q circuit to the current value.
We finish this section by counting the complexities of the two circuits BAddQ

and BMultQ in terms of the number of AND gates they use. This is a reasonable
measure of complexity, as the homomorphic evaluation of those AND gates are
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Algorithm 2. BAddQ, Boolean circuit for mod-Q addition
Input: m, m′ ∈ Z/QZ

Output: m + m′ mod Q
sum ← m + m′ n bit addition (2n AND)
sum ← sum − 0 or Q Modn+1

Q (7n AND)
return sum

A ≥ Q?

A − Q

bit-by-bit
AND

bit-by-bit
AND

n + 1 Input bits of A

· · ·

n
O
u
tp
u
t
b
its

o
f
A

(m
o
d
Q

)

...

...
...

...

...

...
.... . .

. . .

Fig. 1. Modn+1
Q : For an (n + 1)-bit input integer A with 0 ≤ A < 2Q, the circuit

Modn+1
Q outputs A mod Q. The ‘A ≥ Q?’ part takes an (n + 1)-bit integer A as input

and returns 1 if A ≥ Q and 0 otherwise. ‘bit-by-bit AND’ part takes an n-bit string
(an−1, · · · , a0) and a bit b as inputs, and output n-bit string (an−1 ∧ b, · · · , a0 ∧ b)

Algorithm 3. BMultQ, Boolean circuit for mod-Q multiplication
Input: m, m′ = (m′

n−1, · · · , m′
0) ∈ Z/QZ

Output: m · m′ mod Q
prod ← m · m′

n−1

for i = n − 2, · · · , 1, 0 do
prod ← (prod � 1) − 0 or Q Modn+1

Q (7n AND)
next ← m · mi n bit-by-bit AND operation (n AND)
prod ← BAddQ(prod, next) BAddQ (9n AND)

end for
return prod
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typically the costly operation in the underlying scheme Π2: for example, in the
Nuida–Kurosawa scheme, they correspond to a large integer modular multiplica-
tion followed by an expensive ciphertext refresh (i.e. bootstrapping) operation.

Since the usual full adder and full subtractor can be realized by using 2
AND gates, both n-bit addition and subtraction circuits are constructed using
2n AND gates. The circuit Modn+1

Q consists of one comparison (A ≥ Q?), one
subtraction (A − Q), and two bit-by-bit AND operations. It is well known that,
for two bits b and b′, the bit inequality (b > b′) is determined by b ∧ ¬b′ (where
(statement) = 1 if the statement is true, and 0 otherwise). One can check the bit
equality (b = b′) from b ⊕ ¬b′. Then the comparison (A > B) of two (n + 1)-bit
integers A =

∑n
i=0 ai2i and B =

∑n
i=0 bi2i is:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(an > bn), or
(an = bn) ∧ (an−1 > bn−1), or

...
(an = bn) ∧ · · · ∧ (a1 = b1) ∧ (a0 > b0).

We need 3n AND gates for the comparison; n + 1 AND for bit inequalities
(ai > bi), n − 1 AND among bit equalities (an = bn) ∧ · · · ∧ (a1 = b1), and n
more AND for the last parts ∧(ai > bi). An n bit subtraction and a bit-by-bit
AND operation use 2n and n AND gates, respectively, and so Modn+1

Q circuit
requires 7n AND gates in total. BAddQ circuit contains one n-bit addition and
one call to Modn+1

Q , and BMultQ circuit iterates about n times and each iteration
uses 17n AND gates. Summarizing, we need the following numbers of AND gates
for BAddQ and BMultQ:

Proposition 1. For an n-bit prime Q, BAddQ uses 9n AND gates, and BMultQ
uses 17n2 AND gates.

4 Comparison of Convert-NK2 with NKQ

The main goal of this paper is to understand how much of an improvement that
Nuida–Kurosawa’s approach to the homomorphic evaluation of modular arith-
metic circuits have achieved over a more naive technique based on conversions
to and from binary representations.

In this section, we quantify this improvement in concrete terms, by comparing
the efficiency of two approaches that evaluate mod-Q message homomorphically,
focusing on the NK scheme. For any prime Q, denote by NKQ the NK FHE scheme
with message space M = Z/QZ, and by Convert-NK2 the FHE scheme obtained
from Π2 = NK2 using the naive conversion method described in Sect. 3. Then
we will compare the two schemes Convert-NK2 and NKQ in terms of the size
of ciphertexts and the time complexity of basic operations carried out during
homomorphic evaluation.

As mentioned in the introduction, it is easy to see that Convert-NK2 will be
more efficient than NKQ for large values of Q, due to the fact that the squashed



FHE Over the Integers and Modular Arithmetic Circuits 445

decryption circuit (and hence each ciphertext refresh operation) of NKQ has a
depth polynomial in Q, whereas the overhead incurred by using bitwise rep-
resentations as in Convert-NK2 is at most polylogarithmic in Q. However, a
more careful analysis is needed to compare the relative efficiencies of NKQ and
Convert-NK2 for very small Q, such as Q is 3, 5 or 7.

4.1 Dependence of NKQ Parameters upon Q

As we pointed out above, there are several factors making parameters depend on
the message size Q. Decrypting a ciphertext is done by a circuit of degree Q3λ as
in Lemma 1. As a result, the noise of a refreshed ciphertext is Q3λ times larger
than that of encrypted secret key bits. To ensure the correctness, the secret prime
p should be larger than that noise bound. Thus, Q affects the size η of p since the
multiplicative degree of Bootstrap is related to the degree of Decrypt and hence
it depends on Q. Although Q is regarded as constant in the parameter selection
of [NK15], estimating how it concretely affects the parameters is necessary to
compare Convert-NK2 with NKQ.

In the key generation step of NKQ, the secret key bits si’s are encrypted as
vi = pqi+Qri+si with |ri| < 2ρ, and then we have |Qri+si| ≤ Q|ri|+1 ≤ Q ·2ρ.
Note that vi’s are published as a part of the public key, and one can execute
bootstrapping with input vi’s to refresh a ciphertext. Meanwhile, by Lemma1
the decryption is done by a circuit of degree Q3λ. Therefore, for any encryption
c of a message m, the refreshed ciphertext c∗ ← Bootstrap(pk, c) will be of the
form c∗ = pq∗ + Qr∗ + m with log |Qr∗ + m| ≤ Q3λ · (log Q + ρ) ∝ Q3 (since
log Q � ρ). Since the size η of p should be greater than log |Qr∗ +m| to prevent
a decryption failure, we can conclude that η is proportional to Q3: η ∝ Q3.
Similarly the size γ of N is proportional to Q6 as γ ∝ η2: γ ∝ Q6. We will
use subscript notation ηQ and γQ to emphasize this dependence. Obviously, the
number L of digits of precision depends on Q by definition, so we denote it
by LQ. Note that since p ∈ [2ηQ−1, 2ηQ) ∩ Z and N ∈ [1, 2γQ) ∩ Z, p and N also
rely on Q. So we also denote them by pQ and NQ to highlight the effect of Q.

On the other hand, there are also some parameters independent of Q. The
error size ρ is chosen so that the approximate GCD problem is hard, and the
number Θ of secret bits si is chosen so that the sparse subset sum problem is
hard [NK15, Sect. 5]. These two problems remain unaffected by change of Q, so
the same ρ and Θ will work for both Convert-NK2 and NKQ schemes. We restate
the selection of parameters of Sect. 2.3 with the effect of Q:

ηQ = Θ(Q3λ2 log log λ), γQ = Θ(Q6λ4 log2 λ), and LQ = 
logQ λ� + 2.

4.2 Efficiency of Convert-NK2 Measured Against NKQ

Since ciphertexts in the scheme NKQ are defined modulo NQ ∈ [1, 2γQ)∩Z, they
are of size γQ. A ciphertext of Convert-NK2, on the other hand, is an n-tuple of
ciphertexts of NK2, so its size will be n ·γ2 ∼ γ2 log Q. Proposition 2 tells us that
ciphertext size of Convert-NK2 is asymptotically smaller than that of NKQ.
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Proposition 2. For a given security parameter λ and any prime Q, let γ′
2 =

γ2 · log Q. Then we have

γ′
2

γQ
∼ 64 · log Q

Q6
.

Proof. By the argument in the previous section, we have γQ = Θ(Q6λ4 log2 λ)
where the implied constant does not depend on Q. Therefore (note that γ2 is γQ

with Q = 2)

γ′
2

γQ
∼ γ2 · log Q

γQ
∼ 26λ4 log2 λ · log Q

Q6λ4 log2 λ
∼ 64 log Q

Q6
.

��
Then, we would like to compare the speed, in a suitable sense, of homo-

morphic operations in NKQ on the one hand and Convert-NK2 on the other.
That speed is essentially determined by the cost of homomorphic multiplica-
tions modulo Q. Now, in NKQ, a homomorphic multiplication consists of an
integer multiplication modulo NQ followed by a bootstrapping operation, and
that latter operation will dominate the cost of the computation1. On the other
hand, in Convert-NK2, a homomorphic multiplication is carried out by homo-
morphically evaluating the Boolean circuit for multiplication modulo Q using
NK2, which in turns costs as many NK2 ciphertext refresh operations as there
are AND gates in that Boolean circuit BMultQ. Therefore, we compare precisely
those two quantities in the following proposition.

Proposition 3. For a given security parameter λ and any prime Q, let TQ be
the time complexity of a single ciphertext refresh operation in NKQ, and T ′

2 be
the time complexity of carrying out a multiplication mod Q in Convert-NK2 (by
homomorphically evaluating the Boolean circuit for modular multiplication, with
a refresh operation after each AND gate). Then we have

T ′
2

TQ
≤ 2176 · log4 Q

Q7
.

To prove Proposition 3, we need to count a more precise number of operations
needed to carry out the Nuida–Kurosawa mod-Q bootstrapping. This is done
in the next two lemmas: Lemma 2 gives the number of AND gates used in the
half adder HAQ, and Lemma 3 gives the number of calls to HAQ in squashed
decryption circuit. By combining the two lemmas, we can estimate the number
of used homomorphic AND gates in bootstrapping procedure of Convert-NK2.
1 One can ask whether it could be beneficial to choose parameters in such a way that

refreshed ciphertexts support not just one but several levels of multiplication before
another bootstrapping is required. The answer is no: to support d additional levels
of multiplications, one needs to increase the size η of the secret prime p by a factor
2d, and hence overall ciphertext size γ by a factor Ω(22d). This makes all operations
on ciphertexts at least Ω(22d) slower, while one gains a factor at most O(2d) on the
number of required bootstrapping operations, so there is a net efficiency loss overall.
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Lemma 2. One can evaluate fcarry,Q(x, y) =
∑Q−1

i=1

(
x
i

)
Q

(
y

Q−i

)
Q

mod Q using
4Q− 7 mod-Q multiplications. In particular, when Q = 2, we need only 1 mod-2
multiplication, i.e., 1 AND operation, as we expect.

Proof. By the definition of
(
a
b

)
Q

= a(a − 1) · · · (a − b + 1) · InvQ(b!), we have

fcarry,Q(x, y) =
∑Q−1

i=1

(
x
i

)
Q

(
y

Q−i

)
Q

=
∑Q−1

i=1 x(x−1) · · · (x−i+1)·y(y−1) · · · (y−
Q + i + 1)InvQ(i!(Q − i)!). First we compute Y1 = (y − 1), Y2 = (y − 1)(y − 2),
· · · , YQ−2 = (y−1)(y−2) · · · (y−Q+2) which requires Q−3 multiplications. And
compute X0 = yx,X1 = yx(x − 1), · · · ,XQ−2 = yx(x − 1) · · · (x − Q + 2) which
is done by Q − 2 multiplications. Then i-th term in fcarry,Q is Xi · YQ−i−1 ·
InvQ(i!(Q − i)!) that requires 2 more multiplications, and in total 2(Q − 1)
multiplications since we iterate this for i = 1, · · · , Q − 1. To sum up, we need
(Q − 3) + (Q − 2) + 2(Q − 1) = 4Q − 7 mod-Q multiplications to compute
fcarry,Q(x, y). ��
Lemma 3. In NKQ.Decrypt, one can compute the iterated addition

∑Θ
i=1 sizi

using HAQ at most ΘL2 times.

Proof. Here we concentrate on counting the number of call to HAQ only, and
full algorithm is described in [NK15, Sect. 4].

Let ai = sizi and ai;j = sizi;j for 1 ≤ i ≤ Θ, 0 ≤ j ≤ L. Then
∑Θ

i=1 sizi =
∑Θ

i=1 ai is computed by

a1 = a1;0 . a1;1 · · · a1;L

a2 = a2;0 . a2;1 · · · a2;L

...
+) aΘ = aΘ;0 . aΘ;1 · · · aΘ;L

(First iteration) For j-th column (a1;j , a2;j , · · · , aΘ;j)�, apply HAQ Θ times
sequentially to obtain (αj , (β2;j , · · · , βΘ;j)�) such that

∑Θ
i=1 ai;j = αj + Q ·

∑Θ
i=2 βi;j . Since we do this for 0 ≤ j ≤ L, we need to apply HAQ about Θ · L

times.
(Next iteration) Each column has different weight; for j-th column we have

the weight of Q−j , and so

Θ∑

i=1

ai;jQ
−j = αj · Q−j +

(
Θ∑

i=2

βi;j

)

· Q−(j−1).

Therefore it suffices to add the following:

α0 . α1 · · · αL−1

β2;1 . β2;2 · · · β2;L

...
+) βΘ;1 . βΘ;2 · · · βΘ;L
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Note that αL is the last digit of the result, and β2;0, · · · , βΘ;0 are canceled by
modulo Q reduction. Repeat a similar process with the first iteration. To obtain
all the digits of the result, we have to iterate these processes about L more times.
One can do this by applying HAQ about ΘL2 times altogether. ��

Now we present the proof of Proposition 3:

Proof (Proof of Proposition 3). For any constant prime Q, let us denote by tQ
the time complexity of mod-NQ multiplication. Then TQ is tQ multiplied by
the number of multiplications in NKQ.Decrypt, and T ′

2 is T2 multiplied by the
number of AND gates in BMultQ circuit.

As far as we know, the best time complexity for k-bit multiplication is
k log k2O(log∗ k) where log∗ k represents the iterated logarithm [Für09]. In our
case, k is γQ and log γQ = log Θ(Q6λ4 log2 λ) = 6 log Q + 4 log λ + 2 log log λ +
constant. Here the effect of log Q is dominated by that of log λ, so we can esti-
mate t2/tQ by γ2/γQ since we can ignore effect of Q in the part log γQ2O(log∗ γQ).
Furthermore, γ2/γQ = 26λ4 log2 λ/Q6λ4 log2 λ = 64/Q6.

By Lemma 3, we call HAQ in NKQ.Decrypt about ΘL2
Q times. Since each

half adder HAQ consists of exactly one evaluation of the polynomial fcarry,Q,
the number of multiplications in NKQ.Decrypt is about 4QΘL2

Q by Lemma 2.
On the other hand, we need 17 log2 Q AND gates for the Boolean circuit BMultQ
as in Proposition 1.

T ′
2

TQ
≤ 17 log2 Q · 8ΘL2

2

4QΘL2
Q

· t2
tQ

∼ 34 log2 Q log2 λ

Q log2 λ/ log2 Q
· 64
Q6

∼ 2176 log4 Q

Q7
.

��
Remark 1. The value 64 log Q

Q6 is 0.139146 if Q = 3 and 0.009511 if Q = 5, and

becomes much smaller as Q grows. Similarly, the value 2176 log4 Q
Q7 is 0.809588 for

Q = 5 and 0.164120 for Q = 7. Thus, as shown in Table 1, even for small Q,
Convert-NK2 is more advantageous than NKQ in all practical respects.

Table 1. The values 64 log Q/Q6 and 2176 log4 Q/Q7 for the first five odd primes

Q 64 log Q/Q6 2176 log4 Q/Q7

3 0.139146 6.278936

5 0.009511 0.809588

7 0.001527 0.164120

11 0.000125 0.015993

13 0.000049 0.006502
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5 Conclusion

In this work, we have compared the two schemes NKQ and Convert-NK2, and
have seen that the latter is preferable in almost every measure, even for very
small values of Q. That conclusion follows from a detailed analysis quantify-
ing the precise dependence of the parameters of the underlying scheme with
respect to the modulus Q. It is also based on a particularly simple choice of the
Boolean circuits for modular arithmetic; more careful choices may result in an
even greater performance advantage in favor of the naive bitwise approach.

Based on our concrete estimates, we conclude that the Nuida–Kurosawa app-
roach is not competitive for any Q > 3 (and possibly not even Q = 3) as soon as
one needs to carry out ciphertext refresh operations—and if one does not need
bootstrapping, other somewhat homomorphic schemes with large message space
are certainly preferable.
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Abstract. Surprisingly, most of existing provably secure FHE or SWHE
schemes are lattice-based constructions. It is legitimate to question
whether there is a mysterious link between homomorphic encryptions and
lattices. This paper can be seen as a first (partial) negative answer to this
question. We propose a very simple private-key (partially) homomorphic
encryption scheme whose security relies on factorization. This encryption
scheme deals with a secret multivariate rational function φD defined over
Zn, n being an RSA-modulus. An encryption of x is simply a vector c
such that φD(c) = x + noise. To get homomorphic properties, nonlinear
operators are specifically developed. We first prove IND-CPA security
in the generic ring model assuming the hardness of factoring. We then
extend this model in order to integrate lattice-based cryptanalysis and
we reduce the security of our scheme (in this extended model) to an alge-
braic condition. This condition is extensively discussed for several choices
of parameters. Some of these choices lead to competitive performance
with respect to other existing homomorphic encryptions. While quantum
computers are not only dreams anymore, designing factorization-based
cryptographic schemes might appear as irrelevant. But, it is important
to notice that, in our scheme, the factorization of n is not required to
decrypt. The factoring assumption simply ensures that solving nonlinear
equations or finding non-null polynomials with many roots is difficult.
Consequently, the ideas behind our construction could be re-used in rings
satisfying these properties.

1 Introduction

The prospect of outsourcing an increasing amount of data storage and manage-
ment to cloud services raises many new privacy concerns for individuals and
businesses alike. The privacy concerns can be satisfactorily addressed if users
encrypt the data they send to the cloud. If the encryption scheme is homomor-
phic, the cloud can still perform meaningful computations on the data, even
though it is encrypted.

The theoretical problem of constructing a fully homomorphic encryption
scheme (FHE) supporting arbitrary functions f , was only recently solved by
the breakthrough work of Gentry [6]. More recently, further fully homomorphic
schemes were presented [4,7,16,17] following Gentry’s framework. The under-
lying tool behind all these schemes is the use of Euclidean lattices, which have
c© Springer International Publishing AG 2016
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previously proved powerful for devising many cryptographic primitives. A cen-
tral aspect of Gentry’s fully homomorphic scheme (and the subsequent schemes)
is the ciphertext refreshing Recrypt operation. Even if many improvements have
been made, this operation remains very costly [8,12].

In many real-world applications, in the medical, financial, and the advertising
domains, which require only that the encryption scheme is somewhat homomor-
phic. Somewhat homomorphic encryption schemes (SWHE), which support a
limited number of homomorphic operations, can be much faster, and more com-
pact than fully homomorphic encryption schemes. Even if several quite efficient
lattice-based SWHE exist in the literature, significant efficiency improvements
should be done for most real-world applications. This paper aims at elaborating
an efficient SWHE whose security relies on factorization.

Many cryptographic constructions are based on the famous problem
LWE [14]. In particular, this cryptographic problem is currently the most rel-
evant to build FHE [2,9]. Typically, the secret key is a vector s ∈ Z

κ
n and

an encryption c of a value x � n is a randomly chosen vector satisfying1

s · c = x + noise. This scheme is born (partially) additively homomorphic
making it vulnerable against lattice-based attacks. We propose a slight mod-
ification to remove this homomorphic property. In our scheme, the secret key
becomes a pair of vectors (s1, s2) and c is a randomly chosen vector satisfying
s1 ·c/s2 ·c = x+noise ( mod n). Clearly, the vector sum is not a homomorphic
operator anymore. This is a sine qua non condition for overcoming lattice-based
attacks. Indeed, as a ciphertext c is a vector, it is always possible to write it as
a linear combination of other known ciphertexts. Thus, if the vector sum were a
homomorphic operator, the cryptosystem would not be secure at all. This sim-
ple remark suffices to prove the weakness of the homomorphic cryptosystems
presented in [11,18]. In order to use the vector sum as a homomorphic opera-
tor, noise should be injected into the encryptions as done in all existing FHE
[3,4,6,7,16,17] and lattice-based attacks can be mount to recover linear combi-
nations with small coefficients. To resist against such attacks, the dimension of
c should be chosen sufficiently large which dramatically degrades performance.

To obtain homomorphic properties, nonlinear homomorphic operators Add
and Mult should be developed and published. Quadratic homomorphic operators
can be naturally defined. However, it should be ensured that these operators do
not leak information about the secret key. We get results in this sense under the
factoring assumption where n is a product of large secret primes. In particular,
we prove the IND-CPA security of our scheme in the generic ring model [1,10] for
any κ ≥ 2. In this model, the CPA attacker is assumed to only perform arithmetic
operations +,−,×, /. A security proof in the generic model indicates that the
idea of basing the security on factorization is not totally flawed. This leads us
more or less to the situation of RSA where it was recently shown that breaking
the security of RSA in the generic ring model is as difficult as factoring [1].
A classical objection against security analysis in the generic ring model deals
with the Jacobi symbol Jn. For concreteness, it was shown in [10] that computing

1 s · c denoting the scalar product between s and c.
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Jn is difficult in the generic ring model while it is not in general. However, this
result is neither surprising nor relevant because Jn is not a rational function2.
Indeed, we can even show that φ(x) = Jn(x) with probability smaller than 1/2
provided φ is a rational function and x uniform over Z

∗
n. In our scheme, the

function φ defined by φ(c) = x + noise is rational suggesting that a security
analysis in the generic ring model is meaningful.

However, the security analysis in the generic ring model is not sufficient
because lattice-based cryptanalysis exploiting the fact that x + noise is small is
not considered in this model. In Sect. 5, we propose a general characterization of
lattice-based attacks which naturally extends the generic ring model. We reduce
the non-existence of such attacks to an algebraic condition. This condition is
discussed in Sect. 5.3 for several choices of κ. We prove that this condition is sat-
isfied for κ = Θ(λ) proving the non-existence of lattice-based attacks. Moreover,
the simplest and most natural lattice-based attack is shown inefficient provided
κ = Ω(log λ). By assuming that this attack is also the most efficient, choosing
κ = Θ(log λ) could hopefully ensure the non-existence of efficient lattice-based
attacks.

Notation. We use standard Landau notations. Throughout this paper, we let
λ denote the security parameter: all known attacks against the cryptographic
scheme under scope should require 2Ω(λ) bit operations to mount.

– δ ≥ 2 is a positive integer independent of λ.
– The inner product of two vectors v and v ′ is denoted by v · v ′

– The set of all square 2κ− by −2κ matrices over Zn is denoted by Z
2κ×2κ
n . The

ith row of S ∈ Z
2κ×2κ
n is denoted by si and Li denotes the linear function

defined by Li(v) = si · v .
– A δ-RSA modulus n is a product of δ η-bit primes p1 · · · pδ where η is cho-

sen sufficiently large to ensure that the factorization of n requires Ω(2λ) bit
operations provided p1, . . . , pδ are randomly chosen.

– The set of the positive integer strictly smaller than ξ is denotes by Iξ =
{0, . . . , ξ − 1}.

Remark 1. The number M(m, d) of m-variate monomials of degree d is equal to(
d + m − 1

d

)
. In particular, M(2κ, κ) > 3κ for any κ ≥ 2.

Because of the lack of space, most of the proofs were omitted. They
can be found in [5].

2 Preliminary Definitions and Results

Let δ ≥ 2 be a positive integer (independent of the security parameter) and let
n = p1 · · · pδ be a randomly chosen δ-RSA modulus. Given a r-variate function
φ and a subset I ⊆ Z

r
n, zφ,I denotes the probability over I that φ(x) = 0,

2 It comes from the fact that Jn(x) mod p (resp. Jn(x) mod q) is not a function of
x mod p (resp. x mod q).
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zφ,I
def=

|{x ∈ I|φ(x) = 0}|
|I|

zφ,Zr
n

will be simply denoted by zφ.

2.1 Roots of Polynomials

The following result proved in [1] establishes that it is difficult to output a
polynomial φ such that zφ is non-negligible without knowing the factorization of
n. The security of RSA in the generic ring model can be quite straightforwardly
derived from this result (see [1]).

Theorem 1 (Lemma 4 of [1]). Assuming factoring is hard, there is no p.p.t-
algorithm A which inputs n and which outputs3 a {+,−,×}-circuit computing a
non-null polynomial φ ∈ Zn[X] such that zφ is non-negligible.

Thanks to this lemma, showing that two polynomials4 are equal with non-
negligible probability becomes an algebraic problem: it suffices to prove that
they are identically equal. This lemma is a very powerful tool which is the heart
of the security proofs proposed in this paper. We extend this result to the mul-
tivariate case.

Proposition 1. Assuming factoring is hard, there is no p.p.t algorithm A which
inputs n and which outputs (see Footnote 3) a {+,−,×}-circuit computing a
non-null polynomial φ ∈ Zn[X1, . . . , Xr] such that zφ is non-negligible.

The following proposition yields links between zφ,I and zφ for particular subsets
I ⊆ Z

r
n.

Proposition 2. Let φ ∈ Zn[X1, . . . , Xr] and let I = Iξ1 × · · · × Iξr
with ξj ≥

max(p1, . . . , pδ) for any j = 1, . . . , r. If zφ is negligible then zφ,I is negligible.

By considering the notation of the two previous propositions, if φ ← A(n) and
zφ,I is non-negligible then φ is null5 assuming factoring is hard. This is the heart
of our security proofs.

2.2 κ-symmetry

The following definition naturally extends the classical definition of symmetric
polynomials.

Definition 1. A polynomial φ ∈ Zn[X11, . . . , X1t, . . . , Xκ1 . . . , Xκt] is said to
be κ-symmetric if for any permutation σ of {1, . . . , κ},

φ(X11, . . . , X1t, . . . , Xκ1, . . . , Xκt)
= φ(Xσ(1)1, . . . , Xσ(1)t, . . . , Xσ(κ)1, . . . , Xσ(κ)t)

3 with non-negligible probability (the coin toss being the choice of n and the internal
randomness of A).

4 built without knowing the factorization of n.
5 with overwhelming probability.
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This property is at the heart of our construction. Informally, all the values
known by the CPA attacker are evaluations of κ-symmetry polynomials while
the decryption function6 does not satisfy this property. Our security proofs are
all based on this fact.

2.3 Rational Functions

Throughout this paper, we will consider the class of rational functions useful in
our security proof in the generic ring model.

Definition 2. A function φ : Zr
n → Zn is said to be rational if there exists a

{+,−,×, /}-circuit computing this function.

Throughout this paper, recovering a rational function means recovering a
{+,−,×, /}-circuit computing this function. The following result states that
a rational function can be represented by a {+,−,×, /}-circuit or equivalently
by two {+,−,×}-circuits.

Lemma 1. Given C be a polynomial-size {+,−,×, /}-circuit, we denote by φC
the (rational) function computing by C. There exists a p.p.t. algorithm A such
that A(C) outputs two polynomial-size {+,−,×}-circuits C′, C′′ satisfying φC =
φC′/φC′′ .

3 A Somewhat Homomorphic Encryption (SWHE)

3.1 A Private-Key Encryption

Let δ > 2 be a constant and let λ be a security parameter and let η denote the
bit size of the prime factors of δ-RSA moduli.

Definition 3. The functions KeyGen, Encrypt, Decrypt are defined as follows:

– KeyGen(λ, δ). Let κ be a parameter indexed by λ. Let ξ be an arbitrary (η+1)-
bit integer, let n be a δ-RSA modulus chosen at random and let S be an
invertible matrix of Z2κ×2κ

n chosen at random. The ith row of S is denoted by
si and Li denotes the linear function defined by Li(v) = si · v . Output

K = {S} ; pp = {n, ξ}
– Encrypt(K, pp, x ∈ Iξ). Choose at random r1, r2, r

′
2, . . . , rκ, r′

κ ∈ Z
∗
n, k ∈ Iξ

and output

c = S−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r1x
r1
r2
r′
2

· · ·
rκ

r′
κ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where x = x + kξ.
6 which is not a polynomial but a rational function.
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– Decrypt(K, pp, c ∈ Z
2κ
n ). Output x = L1(c)/L2(c) mod n mod ξ

In the rest of the paper, it will be assumed that pp = {n, ξ} is public. Cor-
rectness can be straightforwardly shown by noticing that L1(c) = r1x and
L2(c) = r1. As claimed in the introduction, c is a randomly chosen vector sat-
isfying L1(c)/L2(c) = x. However, we have adopted a slightly more complex
definition in order to introduce material useful when defining the homomorphic
operators.

3.2 The Multiplicative Operator

Let S ← KeyGen(λ, δ).

Proposition 3. There exists a (unique) tuple of quadratic 4κ-variate polyno-
mials (q1, . . . , q2κ) such that for any u, v ∈ Z

2κ
n it is ensured that

S(q1(u, v), . . . , q2κ(u, v)) = (a1b1, . . . , a2κb2κ)

where a = Su, b = Sv.

Proof. (Sketch.) It suffices to define the polynomials qi by
⎛

⎜
⎝

q1(u , v)
...
q2κ(u , v)

⎞

⎟
⎠ = S−1

⎛

⎜
⎝

L1(u)L1(v)
...
L2κ(u)L2κ(v)

⎞

⎟
⎠

�	
We consider the function MultGen which inputs S and outputs the expanded
representation of the polynomials q1, . . . , q2κ defined in Proposition 3. By
using the fact that each quadratic polynomial qi has O(κ2) monomial, it is
not hard to show that the running time of MultGen is O(κ4). The operator
Mult ← MultGen(S) consists of evaluating these polynomials, i.e. Mult(u , v) =
(q1(u , v), . . . , q2κ(u , v)), leading to a running time in O(κ3).

Proposition 4. Mult ← MultGen(S) is a valid multiplicative homomorphic
operator.

Mult

⎛
⎜⎜⎜⎜⎜⎝
S−1

⎛
⎜⎜⎜⎜⎜⎝

r1x
r1

rκ

rκ

⎞
⎟⎟⎟⎟⎟⎠

S−1

⎛
⎜⎜⎜⎜⎜⎝

t1y
t1

tκ
tκ

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= S−1

⎛
⎜⎜⎜⎜⎜⎝

r1t1xy
r1t1

rκtκ
rκtκ

⎞
⎟⎟⎟⎟⎟⎠

... , ...
...

Fig. 1. Description of the operator Mult ← MultGen(S)
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3.3 The Additive Operator

Let S ← KeyGen(λ, δ).

Proposition 5. There exists a (unique) tuple of quadratic 4κ-variate polyno-
mials (q1, . . . , q2κ) such that for any u, v ∈ Z

2κ
n it is ensured that

S(q1(u, v), . . . , q2κ(u, v)) = (a1b2 + a2b1, a2b2, . . . , a2κ−1b2κ + a2κb2κ−1, a2κb2κ)

where a = Su, b = Sv.

Proof. (Sketch.) It suffices to define the polynomials qi by

⎛

⎜
⎝

q1(u , v)
...
q2κ(u , v)

⎞

⎟
⎠ = S−1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

L1(u)L2(v) + L2(u)L1(v)
L2(u)L2(v)
...
L2κ−1(u)L2κ(v) + L2κ(u)L2κ−1(v)
L2κ(u)L2κ(v)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�	
We consider the function AddGen which inputs S and outputs the expanded
representation of the polynomials q1, . . . , q2κ defined in Proposition 5. By
using the fact that each quadratic polynomial qi has O(κ2) monomial, it is
not hard to show that the running time of AddGen is O(κ4). The operator
Add ← AddGen(S) consists of evaluating these polynomials, i.e. Add(u , v) =
(q1(u , v), . . . , q2κ(u , v)), leading to a running time in O(κ3).

Proposition 6. Add ← AddGen(S) is a valid additive homomorphic operator.

3.4 Discussion

Clearly the operators Add and Mult are valid homomorphic operators pro-
vided δ ≥ 4. Note that these operators are commutative. By publishing these
homomorphic operators, we get a somewhat homomorphic private-key encryp-
tion scheme. Arithmetic circuits of depth δ/2 ≈ log n/2 log ξ can be evaluated.
For instance, if n is a 10-RSA Modulus, circuits of depth 5 can be evaluated.

Add

⎛
⎜⎜⎜⎜⎜⎝
S−1

⎛
⎜⎜⎜⎜⎜⎝

r1x
r1

rκ

rκ

⎞
⎟⎟⎟⎟⎟⎠

S−1

⎛
⎜⎜⎜⎜⎜⎝

t1y
t1

tκ
tκ

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= S−1

⎛
⎜⎜⎜⎜⎜⎝

r1t1(x + y)
r1t1

rκtκ + rκtκ
rκtκ

⎞
⎟⎟⎟⎟⎟⎠

... , ...
...

Fig. 2. Description of the operator Add ← AddGen(S)
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The classic way (see [15]) to transform a private-key cryptosystem into a
public-key cryptosystem consists of publicizing encryptions ci of known values
xi and using the homomorphic operators to encrypt x. Let Encrypt1 denote this
new encryption function. Assuming the IND-CPA security of the private-key
cryptosystem, it suffices that Encrypt1(pk, x) and Encrypt(K, pp, x) are compu-
tationally indistinguishable to ensure the IND-CPA security of the public-key
cryptosystem.

4 Security Analysis

All the security results of this section are true for any κ ≥ 2. Thus, to simplify
notation, we set κ = 2 throughout this section. Let K = {S} ← KeyGen(λ, δ).
To break semantic security, an attacker is required to find a function ϕ satisfying

Advϕ def= |Pr(ϕ ◦ Encrypt(K, pp, 1) = 1) − Pr(ϕ ◦ Encrypt(K, pp, 0) = 1)|
is non-negligible.

Externalizing the generation of n . To clearly understand the role of the
factoring assumption in our security proof, it is important to notice that the
factorization of n is not used by KeyGen. Consequently, the generation of n could
be externalized7 (for instance generated by an oracle). In other words, n could
be a public input of KeyGen. This means that all the polynomials considered in
this section are built without using the factorization of n implying that they are
equal to 0 with negligible probability provided they are not null (according to
Proposition 1).

Randomness θn. After n is publicized, the CPA attacker receives the public
operators Add and Mult and it has access to an encryption oracle. For any 1 ≤ i ≤
t, it chooses xi ∈ Iξ and receives encryptions ci = S−1(rixi, ri, r

′
i, r

′′
i ) of xi from

the encryption oracle. The randomness of its knowledge comes from the internal
randomness of KeyGen and the one of the encryption oracle. This randomness
is encapsulated in the tuple θn of elements belonging to Zn defined by

θn = (s1, s2, r1x1, r1 . . . , rtxt, rt, s3, s4, r
′
1, r

′′
1 . . . , r′

t, r
′′
t )

Knowledge of the CPA attacker. We first assume that Δ = det S is revealed
to the CPA attacker. By doing this, it can be assumed that (Δ·ci)i=1,...,t, Δ·Add
and Δ·Mult are revealed to the CPA attacker instead of (ci)i=1,...,t, Add and Mult.
It follows that the CPA attacker receives a tuple αn ∈ Z

m
n where each component

is the evaluation over θn of a polynomial8 αi , i.e. αn = (α1(θn), . . . , αm(θn)).
All our security analysis is based on the fact that the polynomials αi are κ-
symmetric9 (see Definition 1). Throughout this section, we consider the function
7 ensuring that its factorization was forgotten just after its generation.
8 αi can be seen as a {+, −, ×}-circuit C (independent of n) with |θn| inputs.
9 it means that αi(s1, s2, r1x1, r1 . . . , rtxt, rt, s3, s4, r

′
1, r

′′
1 . . . , r′

t, r
′′
t ) =

αi(s3, s4, r
′
1, r

′′
1 . . . , r′

t, r
′′
t , s1, s2, r1x1, r1 . . . , rtxt, rt). It should be noticed that

det S is a κ-symmetric polynomial defined over θn.
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α̂ defined by α̂(θn, z ) = (α1(θn), . . . , αm(θn), z ) for any z ∈ Z
4
n. By construction,

we have

(αn, c) = α̂(θn, c)

4.1 Generic Ring Model

A Generic Ring Algorithm (GRA) (see [1]) defined over a ring R (here R =
Zn) is an algorithm where only arithmetic operations +,−,×, / and equality
tests are allowed. In the special case R = Zn, equality tests are not needed.
This is implicitly shown in [1] as a straightforward consequence of Proposition 1.
Indeed, this proposition ensures that two rational functions10 are either equal
with negligible probability or equal with overwhelming probability. It follows that
a GRA is simply a {+,−,×, /}-circuit computing a rational function ϕ. We say
that our scheme is IND-CPA secure in the classical generic model if there does
not exist any p.p.t algorithm A such that A(n) outputs a {+,−,×, /}-circuit of
a rational function ϕ satisfying

|Pr(ϕ ◦ α̂(θn,Encrypt(K, pp, 1)) = 1) − Pr(ϕ ◦ α̂(θn,Encrypt(K, pp, 0)) = 1)|
(1)

is non-negligible.

Lemma 2. SWHE is IND-CPA secure in the classical generic ring model assum-
ing the hardness of factoring.

However, this result is not surprising because the decryption function is not
rational11. We propose to extend this model by enhancing the power of the
attacker: informally, we let it use the function mod ξ. By doing this, the CPA
attacker only needs to recover the evaluation p(x) of a polynomial p in order to
recover x or at least to break IND-CPA security in this model. Indeed, if the
degree of p and its coefficients are small enough12 then p(x) mod n mod ξ =
p(x) mod ξ. This extension is encapsulated in the next definition.

Definition 4 (Generic IND-CPA security). Our scheme is generically IND-
CPA secure if there does not exist any p.p.t algorithm A such that A(n) out-
puts13 a {+,−,×, /}-circuit computing a rational function ϕ, x ∈ Iξ and a
non-constant polynomial p satisfying

ϕ ◦ α̂(θn, c)[= ϕ(αn, c)] = p(x) (2)

with non-negligible probability over θn, c ← Encrypt(K, pp, x).
10 built in polynomial-time under the factoring assumption.
11 as explained for Jn in the introduction, there does not exist a rational function equal

to the decryption function with non-negligible probability.
12 Ideally p(x) = x..
13 with non-negligible probability, the coin toss being the internal randomness of A

and the choice of n.
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4.2 Hardness of Factoring ⇒ Generic IND-CPA Security

In this section, we prove the generic IND-CPA security of our scheme. The
proof exploits intrinsic symmetry properties of our construction. Informally, only
functions (indexed by S) which are stable by permuting the two first rows of S
with the two last ones can be generically recovered. In particular, the decryption
function L1/L2 cannot be generically recovered.

Theorem 2. SWHE is generically IND-CPA secure assuming the hardness of
factoring.

5 Lattice-Based Cryptanalysis

Throughout this section, we adopt the notation of the previous section. In partic-
ular, αn denotes the knowledge of the CPA attacker and θn denotes the internal
randomness coming from KeyGen and the encryption oracle used to produce αn.
In the previous section, we prove the generic IND-CPA security of our encryption
scheme under the factoring assumption for any κ ≥ 2. This indicates that the
idea of basing the security on factorization is not totally flawed. However, this is
not sufficient because lattice-based cryptanalysis is excluded from this analysis:
indeed lattice-based algorithms work outside Zn and they compute functions
which may be not rational.

Throughout this section, we will consider the polynomial ΦR = L2 · · · L2κ.
This polynomial is indexed by S (and thus θn) and it can be seen as a degree-κ
homogeneous polynomial φR defined over θn, c, i.e.

φR(θn, c) = ΦR(c) =
∏


=1,...,κ

s2
 · c =
∏


=1,...,κ

(
2κ∑

i=1

s2
,i · ci

)

5.1 A Basic Example

Let x ∈ Iξ, let c ← Encrypt(K, pp, x) and let ΦX be the polynomial defined by
ΦX = ΦR · L1/L2. By construction,

ΦX(c)/ΦR(c) = x

ΦX (also ΦR) is a homogeneous degree-κ polynomial, i.e.

ΦX(c) =
∑

e1+···+e2κ=κ

ae1,...,e2κ
ce1
1 · · · ce2κ

2κ

According to Theorem 2, the CPA attacker cannot generically recover both ΦR

and ΦX . Nevertheless, let us assume that it can generically derive ΦR from its
knowledge αn. It follows that

∑

e1+···+e2κ=κ

ae1,...,e2κ
· ce1

1 · · · ce2κ
2κ

ΦR(c)
= x � n (3)
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By exploiting the fact that x is small relatively to n and by considering suf-
ficiently many encryptions, the monomial coefficients ae1,...,e2κ

of ΦX could be
classically recovered by using a lattice basis reduction algorithm, e.g. LLL or
BKZ. However, this attack requires first to recover ΦR. In the next section, we
propose a characterization of lattice-based attacks and we show that recovering
ΦR or a multiple of ΦR is a necessary condition to mount a lattice-based attack.
This condition will be discussed in Sect. 5.3.

5.2 Characterization of Lattice-Based Attacks

In this section, we propose a general characterization of lattice-based attacks
which naturally extends the generic ring model.

Given x ∈ Iξ, let us imagine that the CPA attacker is able to recover func-
tions ϕ1, . . . , ϕt such that there are coefficients a1, . . . , at ∈ Zn and a function ε
satisfying

a1 · ϕ1(c) + · · · + at · ϕt(c) = ε(c)

where c ← Encrypt(K, pp, x) and ε(c) � n. By sampling sufficiently many
encryptions c, the coefficients a1, . . . , at and thus ε can be recovered by solving
an approximate-SVP. This is a relevant attack if the knowledge of ε can be
used to break IND-CPA security. This attack can be identified to the tuple
(ϕ1, . . . , ϕt). This is formally encapsulated in the following definition where the
quantities ϕ1(c), . . . , ϕt(c) are generically derived and where ε(c) = p(x), p
being a polynomial.

Definition 5 (Lattice-based attacks). A lattice-based attack is an efficient
algorithm A such that A(n) outputs14 a tuple of rational functions (ϕ1, . . . , ϕt),
x ∈ Iξ and a non-constant polynomial p such that there exist15 functions
a1, . . . , at satisfying

a1(θn) · ϕ1 ◦ α̂(θn, c) + . . . + at(θn) · ϕt ◦ α̂(θn, c) = p(x) (4)

with non-negligible probability the choice of θn, c ← Encrypt(K, pp, x).

If there exists a lattice-based attack A then the CPA attacker can obviously
use it to recover rational functions ϕ1, . . . , ϕt satisfying (4) then it can hope to
recover a1(θn), . . . , at(θn) and thus to break IND-CPA security by using lattice
basis reduction algorithms exploiting the fact that x � n.

Theorem 3. Let A be a lattice-based attack and assume that (φ′
i/φi)i=1,...,t,

x, p ← A(n) satisfies (4). Assuming the hardness of factoring, there exists16

i ∈ {1, . . . , t} such that gcd(φi ◦ α̂, φR) = φR.

14 with non-negligible, the toss coin being the internal randomness of A and the choice
of n.

15 Theorem 2 ensures that a1(θn), . . . , at(θn) cannot be generically derived from αn.
16 with overwhelming probability.
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Corollary 1. There does not exist17 any polynomial-size {+,−,×}-circuit com-
puting a polynomial φ satisfying gcd(φ ◦ α̂, φR) = φR ⇒ There does not exist
any lattice-based attack assuming the hardness of factoring,

This corollary provides a sufficient algebraic condition ensuring the existence of
lattice-based attacks. This condition is discussed in the next section.

5.3 Analysis

We discuss Theorem 3 and Corollary 1 for several choices of κ.

• κ = Θ(λ). As mentioned at the beginning of this section, each value known
by the CPA attacker is an evaluation over θn of a κ-symmetric polynomial.
We enhance the power of the CPA attacker by allowing it to recover evalua-
tions αi(θn) of arbitrarily chosen κ-symmetric polynomials (αi)i=1,...,t. Each
monomial coefficient of ΦR is a κ-symmetric polynomial defined over S. How-
ever, its expanded representation is exponential-size provided κ = Θ(λ). The
question arising here consists of wondering whether ΦR can be efficiently and
generically written using only (αi(θn))i=1,...,t. We provide a negative answer
to this question.

Proposition 7. Assuming the hardness of factoring, there does not exist any
lattice-based attack provided κ = Θ(λ).

This result is fundamental in the sense that it formally proves the non-
existence of lattice-based attacks for some choices of κ.

• κ ≥ t log3 λ. In this case, we do not have any formal result excluding the
possibility to generically recover ΦR. However, the attack described in Sect. 5.1
is not efficient. Indeed, ΦX has a number of monomials larger than λt (see
Remark 1) implying that the dimension of the lattice considered in this attack
is also larger than λt, e.g. ΦX has more than 2×107 monomials for κ ≥ 10. As
the approximation obtained in polynomial-time with the best known lattice
basis reduction algorithm is exponential, it suffices to adjust t in order that
this approximation is not good enough. This choice of κ would be relevant
by assuming that this attack is the most efficient. We are convinced that this
assumption is true legitimating this choice of κ.

6 Efficiency

Our scheme can evaluate arithmetic circuit of depth smaller than δ/2. A cipher-
text is a 2κ-vector in Zn, implying that the ratio of ciphertext size to plaintext
size is approximately equal to 4κδ. By assuming that the size of a δ-RSA modu-
lus is O(δ), the running time of Encrypt/ Decrypt/ Add/ Mult is O(δ2κ), O(δ2κ),
O(δ2κ3), O(δ2κ3). The security analysis proposed in the previous section is not

17 with overwhelming probability over the choice of n.
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sufficient to determine κ. The performance of our scheme is very competitive
with respect to classic schemes with κ = Θ(log λ) but poor with κ = Θ(λ). For
instance, if we choose κ = 10 (a choice potentially relevant according to the
previous section), applying the homomorphic operators requires around 2000
modular multiplications. Our security analysis should be refined to optimize the
choice of κ.

7 Future Work

Our security proof is not complete and the main challenge is to completely reduce
the security of our scheme to the factorization.

Another interesting question consists of wondering whether this SWHE can
be boostrapped in order to obtain an FHE scheme. We did not think about this
and we do not have any idea about the way to achieve it.

Randomizing the homomorphic operators (see [5]) gives hope for another
motivating perspective. The factoring assumption defeats the whole “post-
quantum” purpose of multivariate cryptography [13]. In our opinion, this
assumption could be removed by introducing randomness into homomorphic
operators in order to maintain the truth of the formal results proved under the
factoring assumption.

It is important to notice that the factorization of n is not used by the decryp-
tion function of our scheme. The factoring assumption simply ensures that solv-
ing nonlinear equations or finding non-null polynomials with many roots is dif-
ficult. Consequently, the ideas behind our construction can be straightforwardly
re-used in rings satisfying these properties.

Acknowledgment. The authors thank the reviewers for their helpful remarks.
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Abstract. We propose a new, lightweight (t, n)−threshold secret shar-
ing scheme that can be implemented using only XOR operations. Our
scheme is based on an idea extracted from a patent application by Hewlett
Packard that utilises error correction codes. Our scheme improves on the
patent by requiring fewer randomly generated bits and by reducing the
size of shares given to each player, thereby making the scheme ideal. We
provide a security proof and efficiency analysis. We compare our scheme
to existing schemes in the literature and show that our scheme is more
efficient than other schemes, especially when t is large.

Keywords: Threshold · Secret sharing · Perfect · Efficient · Ideal ·
Error correction

1 Introduction

A (t, n)−threshold secret sharing scheme provides a method for distributing
a secret k amongst n players in such a way that any t players can uniquely
reconstruct the secret and t − 1 players learn no information about the secret.

Secret sharing can be utilised in distributed systems to store information,
such as a decryption key, across n servers. A user wishing to access the encrypted
data could retrieve shares from any t servers and combine them to recover the
key and decrypt the data. A system such as this would enable greater availabil-
ity, as there is no single point of failure, and add redundancy, thereby improving
reliability in case of failures. Furthermore, secret sharing offers security without
the reliance on cryptographic keys. In an encryption system, the decryption key
must be stored securely and an adversary that gains access to the key would ren-
der the encrypted data insecure. If the key were dispersed via a (t, n)−threshold
scheme, the adversary would need to extract the shares from t of the n servers
in order to recover it. Learning shares from up to t − 1 servers would reveal
no information. A system with these benefits is of particular interest given the
growth of constrained devices in potentially insecure locations, such as devices
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 467–483, 2016.
DOI: 10.1007/978-3-319-48965-0 28
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in the Internet of Things. An adversary may find it easy to extract the informa-
tion stored on a constrained device, but no information would be learnt if the
information extracted were a share of a key rather than the key itself.

Blakley and Shamir first introduced (t, n)−threshold schemes in 1979 [2,3].
Shamir’s scheme achieves minimal share sizes and requires generating minimal
randomness. The scheme is elegant but, despite improvements in implementa-
tion, has a fairly heavy computational cost because the recovery procedure relies
on Lagrange interpolation. Given the increase in constrained devices, there have
been efforts to create schemes that achieve the properties of Shamir’s scheme
but can be implemented using only XOR operations. These schemes claim to be
lighter than Shamir’s and therefore more applicable to limited devices.

A novel (t, n)−threshold scheme that achieves the properties of Shamir’s
scheme and can be implemented using only XOR operations is presented here.
Our scheme is based on a computationally secure scheme by Hewlett Packard
(HP) [1], from which we extracted a (t, n)−threshold scheme. We have improved
their scheme by requiring fewer randomly generated bits and achieving smaller
share sizes for each player. We present a proof of security and provide an effi-
ciency analysis. We then compare our scheme with other threshold schemes that
have the same properties (minimal share size and XOR based implementation).

Kurihara et al. presented the first XOR based, ideal (t, n)−threshold in [5] as
a generalisation of the work in [4], which considered (3, n)−threshold schemes.
Kurihara et al.’s scheme constructs shares by XORing pieces of the secret with
multiple random numbers and distributing these amongst the players. Recovery
is possible by multiplying a vector consisting of the shares by a matrix gener-
ated via Gaussian elimination, which is computationally heavy. Kurihara et al.
analysed the efficiency of their scheme and compared it to Shamir’s scheme.

Since Kurihara et al.’s scheme, few schemes achieving the same properties
have been proposed. Lv et al. proposed one such scheme in [6] and a multisecret
analogue in [7], but Wang and Desmedt [8] show that in [6] the size of the shares
are smaller than the size of the secret and therefore cannot be correct. Their
criticism is, however, only true when more than one secret is being dispersed.
Nonetheless, Lv et al.’s scheme does have a number of flaws, such as incom-
patible matrix-vector multiplications and an incorrect analysis of the number of
randomly generated values and will therefore not be further considered.

Wang and Desmedt proposed their own (t, n)−threshold scheme that is equiv-
alent to an error correcting code [8]. They proved their scheme to be secure and
claimed it could be implemented using only XOR and cyclic shift operations.
However, they do not provide an exact distribution algorithm, an efficiency
analysis or compare their scheme to the current literature.

1.1 Contributions

Our contribution can be summarised as follows:

– We present a new, ideal (t, n)−threshold secret sharing scheme based on an
idea from a patent application by HP [1]. The scheme is defined in the Galois
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Field GF (2�) and requires only XORs and shift operations for both distrib-
ution and recovery. The scheme could be generalised to any Galois Field; we
have specified q = 2 as this is likely to be the case when implemented.

– We provide a proof of security for our scheme and show it is ideal. No proof
of security was presented for HP’s scheme.

– We analyse the complexity of our proposed scheme with respect to the number
of bitwise XOR operations required.

– We compare our scheme to existing XOR based, ideal (t, n)−threshold schemes
in the literature. In order to conduct this analysis, we have provided the first
efficiency analysis of the scheme presented by Wang and Desmedt [8].

1.2 Organisation

This paper is organised as follows. In Sect. 2 we present notation and provide
definitions. In Sect. 3 we define our scheme and in Sect. 4 we prove our scheme is
an ideal, (t, n)−threshold scheme. An efficiency analysis of the distribution and
recovery algorithms of the scheme is given in Sect. 5. In Sect. 6, we analyse the
efficiency of Wang and Desmedt’s scheme [8] and compare this with Kurihara et
al.’s scheme [5], Shamir’s scheme [3] and our scheme.

2 Preliminaries

In this section, the definitions and notation used will be introduced.

2.1 Secret Sharing Schemes

Let n, t ∈ N, t ≤ n. A (t, n)−threshold scheme is a method of distributing a
secret k amongst a set of n players in such a way that any subset of t players
can uniquely recover the secret and any subset of fewer than t players cannot
learn any information about the secret.

A (t, n)−threshold scheme can be defined using information theoretic nota-
tion [9]. Let K denote the discrete random variable corresponding to the choice
of secret and let A denote the discrete random variable corresponding to the set
of share given to the players in the set A ⊆ P.

Definition 1. A dealer distributes a secret k amongst a set P = {P0, . . . , Pn−1}
of n players. Let t ≤ n be the threshold and let Γ be a set containing all sets of at
least t players. A (t, n)−threshold scheme consists of two algorithms: Share and
Recover. Share is a probabilistic algorithm that takes as input the secret k and
outputs an n−vector S. Each player Pi receives a share S[i]. Players then input
their shares to the Recover algorithm, which satisfies the following properties:

(1) Any set B of fewer than t players learns no information about the secret:
∀B /∈ Γ,H(K|B) = H(K), and

(2) any set A of at least t players can uniquely recover the secret. Information
theoretically: ∀A ∈ Γ,H(K|A) = 0.
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These two conditions will be referred to as (1) privacy and (2) recoverability.

Note that schemes achieving the privacy requirement are said to have perfect
security. Shamir proposed the first (t, n)−threshold scheme in 1979 [3].

Definition 2 (Shamir’s (t, n)−threshold scheme). Let P be a set of n play-
ers P = {P0, P1, . . . , Pn−1} and let p > n be some prime. Let r1, r2, . . . , rt−1 be
t − 1 values generated uniformly at random from Zp. For a given secret k ∈ Zp,
let f ∈ Zp[x] be the polynomial defined by

f(x) = k + r1x + r2x
2 + · · · + rt−1x

t−1.

Allocate to each player Pi the share S[i] = f(i + 1).

Any set of t or more players can use polynomial interpolation on their shares
to recover the polynomial f(x) and thus calculate k = f(0). However, given
fewer than t shares there exists a polynomial in Zp[x] of degree t − 1 for any
k ∈ Zp. Thus t − 1 shares reveals no information about k.

In any (t, n)−threshold scheme distributing a key of λ bits requires the gen-
eration of a minimum of λ(t − 1) bits of randomness for distribution [19].

The information rate ρ of a scheme is the ratio of the size of the secret to
the size of the largest share. In any (t, n)−threshold scheme the share given to
each player must be at least the size of the secret [9], so ρ ≥ 1. Schemes that
meet this bound have every share equal to the size of the secret and are called
ideal. Shamir’s scheme is an ideal scheme.

Schemes with smaller share sizes can be constructed by relaxing the require-
ment for the scheme to achieve perfect security, meaning that sets of fewer than
t players learn some information about the secret. Ramp schemes achieve this.

Definition 3. A (t0, t1;n)−ramp scheme is a method of distributing a secret k
such that any set of at least t1 players can pool their shares to uniquely recover
the secret. A set of t0 or fewer players reveals no information about the secret.

Observe that a (t, n)−threshold scheme is a (t − 1, t;n)−ramp scheme. There is
no bound on the amount of information a set of between t0 and t1 players can
learn about k. In a (0, t, n)−threshold scheme, there are no security constraints;
only recoverability for t players must be satisfied. In Sect. 2.3 it is shown that a
(0, t;n)−ramp scheme is equivalent to an information dispersal algorithm.

If we wish the security of the ramp scheme to be maximised with respect
to the limit on the size of each share then the information theoretic knowledge
about the secret is likely to increase linearly with respect to the number of
participants pooling their shares. This motivates the following definition [10].

Definition 4. A (t0, t1;n)−ramp scheme is said to be linear if, for any set of
players A ⊆ P such that |A| = r, where t0 ≤ r ≤ t1,

H(K|A) =
t1 − r

t1 − t0
H(K). (1)
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Intuitively, a linear (t0, t1;n)−ramp scheme reveals no information about
the secret k to a set containing up to t0 players. Then, for every further player
contributing a share, a fixed amount of information is learnt about k. This
continues in a linear fashion until t1 players have pooled their shares and k is
learnt completely. In fact, after t0 shares are pooled, every further share reveals

1
t1−t0

bits of information about k.

2.2 Error Correcting Codes

An error correcting code (ECC) is a method of encoding data with some redun-
dant information to ensure the original data can be recovered, even if a number
of errors occur during either data transmission or storage [11].

Definition 5. An error correcting code (ECC) C of length n over a finite
alphabet F is a subset of Fn. The elements of C are called codewords. The size
of C is |C| = m. The minimum distance of C is the minimum Hamming distance
between any two distinct codewords in C and is denoted by d.

ECCs are able to detect and correct a number of errors. A code C is e1−error
detecting if, whenever a codeword u ∈ C is sent and between 1 and e1 errors
occur, the received word v is not a codeword, so the receiver will know something
has gone wrong in the channel and the error will be detected. A code C is
e2−error correcting if, whenever u ∈ C is a codeword, and v is a word of length
n over F such that v �= u and the Hamming distance between u and v is at most
e2, then v is decoded to u using nearest neighbour decoding.

Let C be a code of length n. We say that C is linear if for all u,w ∈ C, we have
u + w ∈ C, where addition is done modulo q with |F | = q. Intuitively, a linear
code is a code in which linear combinations of the codewords are also codewords.
If u1, . . . , ut is a basis for a linear code C, then we say C has dimension t. Each
codeword in C is of length n and there are qt possible codewords in C. Let d be
the minimum distance of C. We say that C is an [n, t, d]−code.

One important type of ECC is a maximum distance separable code [11].

Definition 6. A maximum distance separable (MDS) code is a linear code that
meets the Singleton bound: d = n − t + 1.

MDS codes have the maximum possible Hamming distance between code-
words and each can be separated into message symbols and check symbols. A
code in which the message string appears in the codeword is called systematic.
In an MDS code, recovery of a codeword is possible from any t of the n symbols.
MDS codes are e error correcting and 2e = n − t error detecting. For a received
word with a errors and b erasures, the codeword will be uniquely recovered if
2a + b < 2e. One example of an MDS code is a Reed Solomon (RS) code [12].

The notions of (t, n)−threshold schemes and MDS codes are closely related.
In 1983, Karnin et al. observed that every ideal (t, n)−threshold scheme deter-
mines a unique MDS code and vice versa [13]. Furthermore, a [n, t, n−t+1]−MDS
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code is equivalent to a linear (0, t;n)−ramp scheme [14]. An RS code is a type
of MDS code, and thus is also equivalent to a linear ramp scheme.

A (t, n)−optimal erasure code is an ECC that transforms a message of t
symbols into a codeword of length n such that any t received symbols from the
codeword allow reconstruction of the message. An erasure code cannot necessar-
ily correct errors, but can correct up to n− t erasures [15]. A (t, n)−erasure code
is equivalent to a (t, n)−information dispersal algorithm.

2.3 Information Dispersal Algorithms

Information dispersal was first introduced by Rabin in 1989 [16].

Definition 7. Let t, n ∈ N, t ≤ n. A (t, n)−information dispersal algorithm
(IDA) consists of a message space M and two algorithms Share and Recover.
Share takes as input a message m ∈ M and outputs an n−vector S. Recover
takes as input elements of the vector S. If at least t elements are submitted
correctly to Recover, the algorithm will output the original message m.

Intuitively, a (t, n)−IDA shares data between n players such that any set of
at least t players can recover the data. This is equivalent to the recoverability
property of a (t, n)−threshold scheme, but there are no privacy requirements on
an IDA. Any (t, n)−threshold scheme is an IDA, but it is possible to achieve
smaller share sizes in a (t, n)−IDA than in a (t, n)−threshold scheme.

Systematic IDA. Using systematic erasure codes, Plank and Resch [17] present
a systematic (t, n)−IDA consisting of two algorithms: ShareIDA and RecoverIDA.

ShareIDA is a probabilistic algorithm that takes as input a message M to
be distributed between n players. M is parsed into a t−vector M where each
element is in the Galois Field F = GF (2λ). Let G be a publically known n × t
binary matrix such that the first t rows form the t × t identity matrix It and
the final n − t rows are filled with bits such that any t of the n rows of G
are linearly independent. Multiply G and M to calculate an n−vector C, where
multiplication of elements b ∈ {0, 1} and d ∈ F is defined as follows: {0, 1}×F →
F , where 0 × d = 0 ∈ F and 1 × d = d ∈ F .

Each player Pi is then given the element C[i] as their share. Note that,
because the first t rows of G form the identity matrix, the first t elements of C
will be identical to elements in M . This matrix-multiplication is shown in (2).
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

G[t][0] G[t][1] . . . G[t][t − 1]
...

...
. . .

...
G[n − 1][0] G[n − 1][1] . . . G[n − 1][t − 1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

M [0]
M [1]
. . .

M [t − 1]

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M [0]
M [1]
. . .

M [t − 1]
C[t]
. . .

C[n − 1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)



Efficient, XOR-Based, Ideal (t, n)−threshold Schemes 473

In order to recover M , t shares are submitted to RecoverIDA. A new t−vector
C ′ is created consisting of the t pooled shares. A t× t matrix G′ is then formed,
which consists of the t rows of G corresponding to the shares pooled. This matrix
is then inverted and multiplied by the vector C′ to return M = (G′)−1 · C ′.

Plank and Resch’s systematic IDA is a systematic variant of Rabin’s IDA
[16], which uses a matrix G consisting entirely of random bits. The systematic
version is more efficient because only the final n − t elements of C are encoded;
the first t elements can be directly copied from the vector M .

As mentioned in Sect. 2.1, an IDA is equivalent to a (0, t;n)−ramp scheme. In
particular, Plank and Resch’s systematic IDA is a linear (0, t;n)−ramp scheme
if M ∈ {0, 1}� has maximal entropy, meaning that H(M) = 2�.

Theorem 1. Plank and Resch’s systematic IDA is a linear (0, t;n)−ramp
scheme if the message M ∈ {0, 1}� has maximal entropy H(M) = 2�.

Proof. A set of t players are able to recover M by constructing the vector C ′,
creating the corresponding G′ and then calculating (G′)−1 · C ′. Therefore the
systematic IDA satisfies the recoverability property of a ramp scheme.

Now we must show that the IDA is linear. Recall from Sect. 2.2 that a
(t0, t1;n)−ramp scheme is linear if (1) is satisfied. So, we must show that, for
any set of players A, such that |A| = r for 0 ≤ r ≤ t,

H(M |A) =
t − r

t
H(M).

As H(M) = 2�, when M is parsed into t equal sized elements to form the
t−vector M , each element has entropy M [i] = 2�

t . So each element of M learnt
reduces the entropy of M by exactly 2�

t . Thus,

H(M |A) = 2� −
(

r
2�

t

)
=

2�(t − r)
t

=
t − r

t
× 2� =

t − r

t
H(M),

as required. Therefore the systematic IDA is a linear (0, t;n)−ramp scheme. 	


3 An Efficient (t, n)−threshold Scheme

In this section, we present our (t, n)−threshold scheme, based on an idea
extracted from HP’s scheme [1]. Our scheme improves HP’s by requiring the
generation of fewer random bits, by decreasing the size of each player’s share
thereby making the scheme ideal, and by using the systematic IDA described
in Sect. 2.3 to minimise encoding. Our scheme is defined in the Galois Field
F = GF (2�), as this is likely the chosen field for implementation. The scheme
could, however, be generalised to any Galois field GF (q�).
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3.1 Share

Our scheme constitutes two algorithms, Share and Recover. Both algorithms
are presented in Figs. 1 and 2 respectively.

Share(k) is a probabilistic algorithm that takes as input a secret k ∈ {0, 1}λ.
The secret k is considered as a string of t words, with each word consisting of �λ

t �
bits, by parsing k into t elements. Let GF (2� λ

t �), then k ∈ F t. If λ is divisible
by t, k will parse exactly into t words. If not, k must be padded with exactly
(−λ) mod t elements to ensure each word is an element in F and k ∈ F t. For
ease of notation, it will be assumed that λ is divisible by t throughout.

Step 1 of the algorithm randomly generates t − 1 dummy keys, labelled
r1, . . . , rt−1 ∈ GF (2λ). As was done with k, these are parsed into t words, so
each ri ∈ F t. In Step 2, k and the dummy keys are XORed to produce k′ ∈ F t.

All the dummy keys r1, . . . , rt−1 and k′ are then treated as t−vectors over F
and independently dispersed via the ShareIDA algorithm described in Sect. 2.3.
This results in t vectors of length n: R1, . . . ,Rt−1 and K′ ∈ Fn. The first t
elements of the output from the IDA are equal to the t elements from the input
vector. The final n − t elements are check symbols.

Elements of each of these n−vectors are then given to the n players in Step
5 in such a way that every player receives t elements: each element will be from
a distinct vector and will be from a different position in each vector. Let Ri[j]
denote the jth element in the vector Ri. One possible distribution process can
be illustrated by constructing a t × n matrix M , where each n−vector output
by the systematic IDA defines a row of M , where

M =

⎛

⎜
⎜
⎝

K′[0] K′[1] . . . K′[n − 2] K′[n − 1]
R1[0] R1[1] . . . R1[n − 2] R1[n − 1]
. . . . . . . . . . . . . . .
Rt−1[0] Rt−1[1] . . . Rt−1[n − 2] Rt−1[n − 1]

⎞

⎟
⎟
⎠ . (3)

A new matrix can then be constructed from M by shifting elements in row
i, for 0 ≤ i ≤ t, i places to the left, resulting in the matrix

M ′ =

⎛

⎜
⎜
⎝

K′[0] K′[1] . . . K′[n − 2] K′[n − 1]
R1[1] R1[2] . . . R1[n − 1] R1[0]
. . . . . . . . . . . . . . .
Rt−1[t] Rt−1[t + 1] . . . Rt−1[t − 2] Rt−1[t − 1]

⎞

⎟
⎟
⎠ . (4)

The elements in column i of M ′ are then concatenated and given to Pi as
their share. Label the share given to player Pi for 0 ≤ i ≤ n − 1 as S[i] ∈ F t.

3.2 Recover

The Recover(S) algorithm requires the input of shares from at least t players.
Steps 1, 2 and 3 check that a sufficient number of shares are contributed. If S[i] =
♦, player i has not contributed their share to the Recover algorithm. If fewer
than t shares are submitted, the algorithm will fail and output ⊥. Otherwise,
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Fig. 1. Our (t, n)−threshold Share
algorithm

Fig. 2. Our (t, n)−threshold Recover
algorithm

Step 4 parses each player’s share S[i] into its t elements and, in Steps 5 and 6,
t−vectors are constructed from the available shares. These are used to recover k′

and r1, r2, . . . , rt−1 via the RecoverIDA algorithm, as in Sect. 2.3. These recovered
values are then XORed in Step 7 to retrieve the key, k.

In our scheme, t − 1 dummy keys are generated. This is an improvement on
HP’s scheme where t are generated [1]. The generation of fewer dummy keys
results in smaller dimensions for the matrices M and M ′, thereby decreasing
the size of the shares given to each player. Therefore, in our scheme, each player
receives t elements in F , rather than t+1 elements. Finally, we specify a system-
atic IDA, rather than using a general RS code, to distribute k′ and the dummy
keys. The systematic IDA requires the encoding of only the final n − t words,
thereby making the scheme more efficient.

It will be shown in the next section that generating only t − 1 dummy keys
and using a systematic IDA is sufficient to ensure the (t, n)−threshold scheme
achieves the recoverability and privacy properties required, as in Definition 1.

4 Security Analysis

It will now be proved that the (t, n)−threshold scheme presented in Sect. 3 satis-
fies the recoverability and privacy requirements, as in Definition 1. The original
HP scheme has no such analysis [1]. The proof given here can easily be adapted
to prove the security of the key distribution in the HP scheme.

The structure of the proof is as follows. In Lemma1, it is shown that any
distribution of elements from the matrix M to the n players that allows any t
players to learn at least t shares in every row of M will allow recovery of the
secret. Theorem 2 then shows that the distribution of elements from M via M ′

satisfies this condition, thus the scheme achieves recoverability. Lemma 2 shows
that any distribution of elements from the matrix M to the players that allows
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no more than t − 1 players to learn at most t − 1 elements in each column of M
achieves privacy. Theorem 3 shows that the distribution of elements from M via
M ′ satisfies this property, thus achieving privacy. Together, Theorems 2 and 3
show that our scheme satisfies the requirements to be a (t, n)−threshold scheme,
as in Definition 1. It will then be shown that our scheme is ideal.

4.1 Recoverability

Lemma 1. Let n players be allocated elements from the matrix M . If any set of
at least t players learns at least t elements in every row of M , k can be recovered.

Proof. Assume fragments from the t × n matrix M are allocated such that any
t players learn at least t shares in every row. We wish to show that a set of (at
least) t players can pool their shares and learn k′, r1, . . . , rt−1, then recover k.
Each row M [i] of M , when transposed and considered as an n−vector, is the
output of the systematic (t, n)−IDA. In particular, M [0]T ← ShareIDA(k′) and
M [i]T ← ShareIDA(ri) for 1 ≤ i ≤ t − 1. For any row M [i] of M , t players
can form a t−vector M ′[i] and use this vector as input to RecoverIDA. This will
return the dispersed value: k′ if i = 0, or ri if 1 ≤ i ≤ t−1. The players can repeat
this procedure for every row of M and reconstruct all the values k′, r1, . . . , rt−1.
Once these values are obtained, they are able to add them and output k. 	

Theorem 2. The (t, n)−threshold scheme satisfies the property that any set of
t players learn at least t elements in every row of M .

Proof. Each player is given a column of the matrix M ′, where M ′ is formed
by shifting row i of M , for 0 ≤ i ≤ t − 1, i places to the left. As each player
is allocated a distinct column of M ′, each player is necessarily given a distinct
element from every row. Therefore, when any t players pool their shares, there
will be t distinct elements in every row. 	


Theorem 2 shows that the scheme meets the requirements in Lemma 1 and
hence meets the recoverability requirements of a (t, n)−threshold scheme.

4.2 Privacy

Now we must prove that the privacy requirement is also satisfied. Intuitively, the
following lemma shows that an unauthorised set of players must be prevented
from learning all elements in a given column of M , otherwise the players could
calculate the corresponding part of k by XORing all elements in that column.

Lemma 2. If elements from M are allocated such that any set A of at most
t−1 players learn no information about at least one element from every column,
then no information is learnt about k. In information theoretic terms, H(K) =
H(K|S), where S is the set of shares given to the players in A.
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Proof. Let k be a string of λ bits. Assume a set A of at most t − 1 players
collectively knows a set S of elements from the matrix M . Assume that players
in A can learn no information about at least one element from every column
in M . We must first note that the IDA used in the (t, n)−threshold scheme
is systematic, therefore the result of XORing any of the first t columns of the
matrix M will give the corresponding fragment of the key k. Similarly, if we add
any of the final n − t columns of M , the output will be the corresponding entry
of the codeword vector for k ⇒ ShareIDA(K).

For any given column j, for 0 ≤ j ≤ n − 1, S can contain any number of
elements (but not every element) of M [j], the jth column of M . So S will contain
at most t−1 of the t elements in each column. Without loss of generality, choose a
column j; we will prove that no information is learnt about k from this individual
column. This argument can then be applied to every other column of M .

Denote the set of elements in column j and not in S as S′
j . Note that |S′

j | ≥ 1.
Let sj be the XOR of all the elements in S. Let bj be the XOR of all elements
in S′

j , so bj is the XOR of all elements in column j that are unknown to A.
Assume the key k is also distributed via the IDA, resulting in the vector K.

Denote the jth element of K as K[j]. Note that sj ⊕ bj = K[j]. As the dummy
keys are all randomly generated, each value ri has entropy 2λ. Thus each element
of Ri has entropy 2λ

t , and so H(bj) = 2λ

t .
Now, we can equate this to a one-time pad. The value sj is equivalent to a

known ciphertext and bj is equivalent to a key. The XOR of these would reveal
the plaintext message K[j]. As bj has entropy H(bj) = 2λ, the value K[j] also
has entropy 2λ. Thus no information is learnt about K[j]. 	

Theorem 3. The (t, n)−threshold scheme satisfies the condition that any set of
t − 1 players learns no information about at least one element in every column.

Proof. In the scheme, each player is given a column of the matrix M ′, so each
player will receive exactly one element from each row of M . Therefore any set of
t− 1 players will learn exactly t− 1 elements of each row. As the IDA is a linear
(0, t;n)−ramp scheme and because each of the dummy keys and k are generated
uniformly at random, players with only t − 1 elements are unable to learn any
further elements from each row. Each player will also be given elements that
come from n − t distinct columns of M . Therefore a set of up to t − 1 players
can pool their shares and learn at most t − 1 shares in each column. 	


Theorem 3 proves that the scheme meets the requirements of Lemma 2 and
thus satisfies the privacy requirement. Therefore the scheme presented in Sect. 3
satisfies both the recoverability and privacy requirements to be a (t, n)−threshold
scheme. Note that this security analysis is not specific to the systematic IDA and
any general (0, t;n)−ramp scheme could be used.

4.3 Information Rate

Finally, we will comment on the information rate of the scheme, which is an
improvement of HP’s original scheme [1] by a factor of t

t+1 .
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Theorem 4. Let k ∈ {0, 1}λ. The (t, n)−threshold scheme has an information
rate of 1 if λ is divisible by t and is therefore ideal. If λ is not divisible by t, each
share has λ mod t more elements than the secret.

Proof. In general, (−λ) mod t bits of padding will be added to k, so that each
element in the matrix M will consist of

⌈
λ
t

⌉
bits. Each player will receive t

elements from M , and thus the size of each player’s share will be
⌈

λ
t

⌉
t bits.

Therefore, the information rate is calculated as

ρ = λ ÷
(⌈

λ

t

⌉
t

)
.

If λ is divisible by t, then ρ = 1 and the scheme is ideal. 	


5 Efficiency Analysis

Our (t, n)−threshold scheme can be implemented using only XORs and cyclic
shifts. In this section, the complexity of both Share and Recover with respect to
the number of bitwise XORs is computed. We also consider what computations
can be pre-computed, before the dealer has knowledge of the key k.

5.1 Complexity of Share

The Share protocol requires the generation of t−1 random strings (dummy keys
ri for 1 ≤ i ≤ t − 1) of λ bits. These dummy keys are XORed with the secret k
to output k′. In total, this requires t − 1 XORs of λ bit strings. However, t − 2
of these XORs can be pre-computed (XORing the dummy keys).

The dummy keys and k′ are then dispersed via the systematic IDA. This
is computationally the most expensive operation. Each value is treated as a
t−vector (where element in F = {0, 1}λ

t ) and multiplied by an n × t binary
matrix G to output an n−vector. As the first t rows of the matrix G form
the t × t identity matrix, the first t−elements of the n−vector will be identical
as those in the input t−vector. Therefore, only the final n − t elements of the
n−vector need to be computed, which is done by multiplying the final n − t
rows of G with the input t−vector. This computation requires (n − t)(t − 1)
XORs of λ

t bit strings. No multiplications are required as G is a binary matrix
and so multiplication can be implemented as a lookup table. Each of the t − 1
dummy keys ri, 1 ≤ i ≤ t − 1 and k′ must be dispersed via the IDA, resulting in
t(n − t)(t − 1) XORs of λ

t bit strings.
Of these XORs, the distribution of the random values via the systematic IDA

can be pre-computed. There are t − 1 random values to be dispersed, meaning
that O(nt) ·λ bitwise XORs can be pre-computed. The dispersal of k′ cannot be
pre-computed, which requires O(n) · λ bitwise XORs.

Therefore, without pre-computation, a total of

t(n − t)(t − 1)λ
t

+ (t − 1) · λ = O(nt) · λ
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bitwise XORs are required. Of these, O(tn) ·λ can be pre-computed and O(n) ·λ
require knowledge of k.

We do not consider the computation costs of constructing the matrix G, as it
is easy to construct and is a public matrix that can be pre-computed and reused.

5.2 Complexity of Recover

Recovering the dummy keys and k′ is achieved by multiplying the t contributed
shares with a t × t matrix M constructed from the relevant rows of G. The
complexity of the Recover algorithm can vary dependent on which rows of M
are used. The best case is that all t shares submitted to Recover will correspond
to the t rows of M that form the identity matrix It. In this case, no XORs will
be required to recover the dummy keys and k′. Therefore recovery requires only
t − 1 XORs of strings of length λ to calculate k, totalling O(t) ·λ bitwise XORs.

In the worst case scenario, the n − t corresponding rows of M that are not a
part of the identity matrix It will be used to reconstruct the dummy keys and k′.
This would require O(n− t)(t−1) XORs of λ

t bit strings. This must be repeated
for each of the t values, totalling O(nt) · λ bitwise XORs.

If each player contributes a share to Recover with equal probability, the best-
case scenario happens with probability 1 ÷ (

n
t

)
, as exactly one t−set of players

out of a possible
(
n
t

)
sets will yield the best case. If players do not contribute

shares with equal probability, it may be possible to give players more likely to
contribute a share that corresponds to a row of the identity matrix to minimise
computations. If t = n, the best case scenario will always occur.

6 Comparison to Other Schemes

In this section, we discuss the efficiency of other (t, n)−threshold schemes, then
compare the current schemes to our proposed scheme.

6.1 Other Schemes

Kurihara et al. [5] present a complexity analysis on the number of bitwise
XORs required in their scheme. For some prime p ≥ n, their scheme requires the
generation of (t − 1)(p − 1)� λ

p−1� bits. Their Share algorithm requires O(nt) · λ
bitwise XORs. Of these XORs, O(nt) · λ require knowledge of only the random
strings and can be pre-computed, whereas O(n) · λ cannot. Each player’s share
is � λ

p−1�(p − 1) bits. If λ is divisible by p − 1, the scheme is ideal.
To recover the secret, a matrix M is computed using Gaussian elimina-

tion, which has complexity O(t3p3). As M can be pre-computed and reused,
we include the computation of M in Fig. 3 as optional. Recovery then requires
O(tp) · λ bitwise XORs. As p is close to n, we let p = n in Fig. 3.
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Wang and Desmedt. [8] present an efficient, ideal (t, n)−threshold scheme for
λ ≥ n, equivalent to an [q, t, q − t + 1]−MDS code, for some prime q ≥ λ + 1.

A specific distribution algorithm is not defined. Instead, they define the
scheme to be a collection of (q − 1) × q matrices that satisfy q(q − t) linear
constraints, with each column of the matrix forming a share for a player, exclud-
ing the first which defines the secret. Two ways of calculating the matrices are
suggested and either requires only XORs and bit shifts.

One of their suggestions is as follows. Choose a prime q ≥ λ + 1. Randomly
generate t elements f0, . . . , ft−1 ∈ {0, 1}q and create a q × t matrix F of these
values, where each column corresponds to a random string. A t×n binary matrix
G is then constructed where elements are coefficients of the generator polynomial
of the Galois Field GF (2λ). Generating the elements of G is done by choosing a
primitive element α of GF (2λ) and calculating

g(x) = (x − 1)(x − α) . . . (x − αn−t−1) = g0 + g1x + · · · + gn−tx
n−t.

This requires (n − t)2 − 1 XORs, while multiplication can be implemented via a
lookup table, as before. So the pre-computation required is O(n2) bitwise XORs.

The two matrices F and G are then multiplied together. As G is a binary
matrix, multiplication can be implemented as a lookup table and so only q(t−1)n
bitwise XORs are required. As q is near to λ, we note this as O(nt) · λ bitwise
XORs in Fig. 3. Each player is given a column from the output matrix n−vector,
which is a string of q bits. If q = λ + 1, the scheme is ideal.

The recovery procedure for the scheme is equivalent to a decoding procedure
presented by Blaum and Roth [18] that decodes an array code with at most r
erasures and no errors. The procedure requires O(r(q2 + r)) XOR operations.
The number of erasures Wang and Desmedt’s scheme can correct is n − t, thus
the decoding algorithm requires O((n − t)(q2 + n − n)) = O(nq2) XORs. The
elements in F each have λ bits, and thus there are O(nq2) · λ bitwise XOR
operations. The value q is of the same magnitude as λ, and so the recovery
algorithm requires O(nq2) · λ = O(n) · λ3 bitwise XOR operations.

6.2 Discussion

Figure 3 presents a summary of the number of bitwise XORs required in our
scheme, the two schemes considered and Shamir’s scheme. The second and third
columns consider the complexities of the distribution algorithms if as much pre-
computation is done as possible. The fourth column considers the distribution
complexities if no pre-computation is possible and the fifth considers recovery.

The table does not consider the share size and the randomness required for
each scheme. This is because all schemes are essentially ideal and all schemes
(apart from Wang and Desmedt’s) require the generation of a minimum amount
of randomness ((t − 1)λ bits [19]). Wang and Desmedt’s scheme requires the
random generation of t × m bits, where m ≥ λ + 1.

Note that much of the computation for the distribution in Shamir’s scheme
can be pre-computed. This is because the dealer possesses all coefficients of the
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Fig. 3. Comparing bitwise XORs in (t, n)−threshold schemes with λ bit secrets

polynomial f and most of the inputs to f are fixed. Therefore sharing the secret
would require only adding the secret to each pre-computed value.

If pre-computation is impossible and the construction of M in Kurihara et
al.’s scheme is ignored, all four schemes have the same distribution complexity.
However, if pre-computation is possible, our scheme has an equivalent complexity
to Shamir’s scheme and Kurihara et al.’s scheme (again, assuming we ignore the
construction of M). Wang and Desmedt’s scheme has a heavier complexity and
allowing for pre-computation does not decrease the distribution complexity. If
the complexity of computing M in Kurihara et al.’s scheme is taken into account,
their scheme has by far the heaviest distribution algorithm.

In the best case scenario for our scheme, the recovery complexity is dependent
only on t. This is the same as Shamir’s scheme but with a lower complexity.

Kurihara et al. discuss how their recovery procedure is dependent on both
t and n. This is in contrast to Shamir’s scheme, which is dependent only on t.
Kurihara et al. say their scheme is more efficient than Shamir’s when t is close to
n. However, when n is large and t is small, Shamir’s is faster. In the worst case
scenario for our Recover algorithm, the number of bitwise XORs is equivalent
to Kurihara et al.’s. Therefore, their argument holds true for our scheme also.

In contrast, Wang and Desmedt’s scheme has a complexity dependent only
on n, but a factor of λ3. Being dependent only on n means the scheme will not
be able to take advantage of a low threshold value. Also, in many applications, λ
may be considerably larger than both n and t, meaning that Wang and Desmedt’s
scheme may be considerably slower than Kurihara et al.’s scheme and ours.

One other aspect to consider is that of implementation. Our scheme uses a
linear (0, t;n)−ramp scheme, which is equivalent to a [n, t, n− t+1]−MDS code.
Rather than using the systematic IDA in our scheme, any MDS code for which
there already exists an implementation could be used; as the two are equivalent,
the security proof from Sect. 4 would still hold true. This is also true for Wang
and Desmedt’s scheme, as their scheme is equivalent to an array code.

6.3 Conclusion

We presented an XOR based (t, n)−threshold scheme. We presented a security
proof and efficiency analysis and compared our scheme to other schemes with
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equivalent properties. Our scheme has an equivalent, or more efficient, Share
complexity to the other schemes considered, especially when pre-computation is
possible. The complexity of Recover is, in the worst case scenario, equivalent to
Kurihara et al.’s scheme, which is faster than Shamir’s when t is large. In the
best case scenario, our Recover complexity is independent of n and faster than
all other proposed schemes. Furthermore, our scheme is ideal and, unlike Wang
and Desmedt’s scheme, requires minimal randomness.

Further work will consider non-ideal (t, n)−threshold schemes and whether
compromises can be met (with respect to the share size, the number of random
bits generated or specifying values for t) that would allow fewer bitwise XORs.
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Abstract. It is known that secure multiparty computation can be per-
formed using physical cards with identical backs, and numerous card-
based cryptographic protocols have been proposed. Almost all existing
protocols require multiple cards that have the same pattern on their face
sides; thus, a standard deck of playing cards cannot be used for execut-
ing these protocols. However, there is one exception: Niemi and Renvall’s
protocols, proposed in 1999, can be used with standard playing cards. In
this paper, we continue their efforts to improve secure multiparty com-
putation using a standard deck of playing cards, and propose efficient
AND, XOR, and copy protocols that require significantly fewer shuffles
compared to previous protocols.

1 Introduction

Secure multiparty computation enables a group of players to learn only the
value of a predetermined function of their private inputs (without revealing
more information than necessary). Although such a cryptographic task is usually
implemented digitally on computers and/or network systems, there is another
research direction in which cryptographic protocols are implemented physically
(e.g. [4,6]). In this paper, we consider the use of a deck of physical cards. In fact,
it is known that secure multiparty computation can be conducted using physical
cards with identical backs (such as ? ), and numerous card-based cryptographic
protocols have been designed. Almost all existing protocols use cards whose face
sides have a pattern such as black ♣ or red ♥ ; further, multiple cards having
the same pattern are necessary (e.g., [1,2,7,8,11,12,14–16]). This paper begins
with a brief introduction to such protocols.

1.1 Mainstream Card-Based Protocols

Most card-based protocols manipulate Boolean values based on the following
encoding:

♣ ♥ = 0, ♥ ♣ = 1. (1)

That is, considering a pair of black and red cards, postulate that bit value 0
represents the left card being black, and bit value 1 represents the left card being
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 484–499, 2016.
DOI: 10.1007/978-3-319-48965-0 29
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red. Based on this encoding rule (1), input is given to a card-based protocol. For
example, the secure NOT computation, which is the simplest protocol, receives
a pair of face-down cards equaling the value of input bit a ∈ {0, 1} (which is
called a commitment to a), and reverses their order to obtain a commitment to
negation ā:

? ?
︸ ︷︷ ︸

a

→
�

︷ ︸︸ ︷
? ? → ? ?

︸ ︷︷ ︸
ā

.

Another example: given commitments to input bits a and b

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

,

a protocol for secure AND computation outputs a commitment to a ∧ b

? ?
︸ ︷︷ ︸
a∧b

without revealing any information about the values of a and b after applying
a predetermined series of operations such as shuffling, rearranging, and turning
over cards [2,7,11,12,16].

One of the efficient AND protocols works with two additional cards [11]:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

♣ ♥ → · · · → ? ?
︸ ︷︷ ︸
a∧b

♣ ♥ ♣ ♥ ;

during the protocol’s execution, several operations are performed, among them
a shuffling operation called a random bisection cut (the details of which will be
introduced in Sect. 3.1) is applied once. In regard to XOR computation, it is
known that one random bisection cut enables a secure XOR to be performed
without any additional cards [11]:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

→ · · · → ? ?
︸ ︷︷ ︸
a⊕b

♣ ♥ .

Furthermore, making two copied commitments can be achieved with four addi-
tional cards and one random bisection cut [11]:

? ?
︸ ︷︷ ︸

a

♣ ♥ ♣ ♥ → · · · → ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

♣ ♥ .

There are also other protocols designed for specific functions such as the adder
[14] and 3-variable Boolean functions [15].

Because the above-mentioned protocols require multiple cards having the
same pattern (such as ♣ and ♥ ), a standard deck of playing cards, unfortu-
nately, cannot be utilized to execute these protocols. (Note that each card in a
standard deck has a unique pattern on its face side, namely its suit and number.)
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1.2 Use of a Standard Deck of Playing Cards

As seen thus far, almost all existing protocols do not work with a standard deck
of playing cards. However, there is one exception: Niemi and Renvall’s protocols
[13] proposed in 1999 can be executed with the use of a normal deck of playing
cards.

A standard, commercially available deck of playing cards consists of 52 cards
(excluding jokers). Each card’s face has a unique pattern (its suit and num-
ber), and hence we can easily create a total order on the set of these 52 cards.
Therefore, hereafter we assume the following deck of 52 cards:

1 2 3 4 5 6 · · · 52 ,

where, of course, the backs of all cards are identical ? .
Similar to encoding rule (1) mentioned before, Niemi and Renvall [13] con-

sidered an encoding rule based on which of two cards is smaller or larger. That
is, for any two cards i j with 1 ≤ i < j ≤ 52, they define the encoding rule
as:

i j = 0, j i = 1. (2)

Thus, 0 represents the left card being smaller, and 1 represents the left card
being larger. We can naturally consider a commitment as well, and throughout
this paper, a commitment to bit x using two cards i j is written as

? ?
︸ ︷︷ ︸
[x]{i,j}

,

where we call such a set {i, j} a base of the commitment. For example,

? ?
︸ ︷︷ ︸
[x]{1,2}

is a commitment of base {1, 2}; when we turn over these two cards, the order
1 2 implies x = 0, and 2 1 implies x = 1. Under this encoding rule, reversing
the order of two cards constituting a commitment also corresponds to the NOT
computation.

Based on encoding rule (2), Niemi and Renvall designed a protocol for real-
izing the following as a secure AND computation with five cards [13]:

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

→ · · · → 5 ? ?
︸ ︷︷ ︸

[a∧b]{1,4}

2 3 .

During the protocol’s execution, a random cut, which represents a cyclic shuffle,
is applied an average of 9.5 times.
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Regarding XOR computation, they showed that, on average, seven random
cuts would provide the following result with four cards [13]:

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

→ · · · → 4 ? ?
︸ ︷︷ ︸

[a⊕b]{1,2}

3 .

Furthermore, as for copying a commitment, 5.5 random cuts suffice to realize
the following with six cards [13]:

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

6 3 4 → · · · → 5 ? ?
︸ ︷︷ ︸
[a]{1,2}

6 ? ?
︸ ︷︷ ︸
[a]{3,4}

.

The details of these three existing protocols will be introduced in Sect. 2.

1.3 Our Results

In this paper, we focus on secure multiparty computation using a standard deck
of playing cards (as introduced in Sect. 1.2), and enhance the efficiency. That is,
we propose efficient AND, XOR, and copy protocols. As seen later, our three
protocols will be constructed partially based on the ideas behind the mainstream
card-based protocols [11] that use custom-made cards ♣ ♥ and random bisec-
tion cuts.

Table 1 indicates the performance of our three protocols. As shown by the
table data, our protocols require significantly fewer shuffles. Specifically, whereas
the existing protocol requires an average of 9.5 shuffles for AND computation,
our protocol terminates after applying exactly 4 shuffles. As for both XOR com-
putation and secure copy, our protocols require only one shuffle. Because the
“cost” of a card-based protocol comes mainly from shuffling operations in gen-
eral, reducing the number of required shuffles is very important. (Note that the
“cost” would be directly linked to human motivation to execute a protocol practi-
cally.) Further, whereas the existing protocols are so-called Las Vegas algorithms
that require an average number of trials to be conducted, our protocols always
terminate after applying a fixed number of shuffles.

Furthermore, our protocols utilize random bisection cuts, whereas existing
protocols use random cuts. The details will be discussed in the succeeding sec-
tions. Although the random bisection cut may be an unfamiliar shuffling oper-
ation, humans can easily implement a random bisection cut that is similar to a
random cut (as will be seen in Sect. 3.1).

When considering the number of required cards, our protocols work with
the same number of cards as the existing protocols for both XOR computation
and secure copy; however, for AND computation, our protocol requires three
more cards than the existing protocol. This might be perceived as a disadvan-
tage; however, we believe that such a three-card increase would not be an issue,
because card players can use the 52 cards as they like after they buy a standard
deck of playing cards at a toy store.
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Table 1. Performance comparison between existing protocols and our protocols

# of cards # of shuffles

avg. fixed total

◦ AND computation

Niemi-Renvall [13] (Sect. 2.2) 5 9.5 0 9.5

Ours (Sect. 3) 8 0 4 4

◦ XOR computation

Niemi-Renvall [13] (Sect. 2.3) 4 7 0 7

Ours (Sect. 4) 4 0 1 1

◦ Secure copy

Niemi-Renvall [13] (Sect. 2.4) 6 4.5 1 5.5

Ours (Sect. 5) 6 0 1 1

The remainder of this paper is organized as follows. First, in Sect. 2, we
introduce the details of the existing protocols. Then, in Sect. 3, we propose an
efficient AND protocol. Next, we describe an efficient XOR protocol in Sect. 4,
and an efficient copy protocol in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Niemi-Renvall Protocols

In this section, we introduce the details of the three protocols provided by Niemi
and Renvall [13]. As preliminary information, we first introduce the random cut
and its application to card searching in Sect. 2.1. Then, we explain the AND
protocol in Sect. 2.2, the XOR protocol in Sect. 2.3, and the copy protocol in
Sect. 2.4.

2.1 Random Cuts and Search for Cards

As mentioned previously, a random cut represents a cyclic shuffle; given a
sequence of cards, it shifts their positions randomly without changing the order
apart from cyclic rotation. For instance, consider five cards 1 2 3 4 5 placed
with their faces down (on a table) in this order:

? ? ? ? ? ;

then, applying a random cut results in one of the following five sequences (if the
table had eyes):

1 2 3 4 5 5 1 2 3 4 4 5 1 2 3 3 4 5 1 2 2 3 4 5 1 ,

where each case occurs with a probability of exactly 1/5.
It is known that Humans are able to implement a random cut easily [18].
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Next, as an application of the random cut, we explain a technique to search
for designated cards. For example, assume that five cards from {1, 2, 3, 4, 5} are
placed with their faces down:

? ? ? ? ? ,

and that their order is unknown, i.e., we do not know which one of 5! possible
orders the sequence represents. Now, suppose that we want to search for card
2 . To this end, we apply a random cut to the sequence of five cards, and then
reveal the first card (counting from the left). Unless the face-up card is 2 , turn
over the card, apply a random cut, and reveal the first card again. Repeating
this, we obtain the following after an average of five trials:

2 ? ? ? ? .

Note that the order of the sequence following 2 has not changed, apart from
the cyclic rotation, and that no information has leaked other than the fact that
2 is the first card.

Generalizing this, given a sequence of face-down cards from a set C ⊆
{1, 2, . . . , 52} together with target cards S ⊆ C, we can find a card contained
in S after applying an average of |C|/|S| random cuts. As we soon show, Niemi
and Renvall’s protocols frequently use this random-cut-based search as their
sub-protocol.

2.2 And Computation

Here, we elaborate Niemi and Renvall’s AND protocol. The protocol uses five
cards 1 2 3 4 5 . The first four cards are utilized for commitments to bit a

and b, and the remaining 5 is an additional card; thus, input to the protocol is:

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

.

Now, consider the following rearrangement of the sequence of input cards:

5 ? ? ? ?
������

5 ? ? ? ? .

The four face-down cards would be in one of these four possible sequences
depending on values (a, b):

(a, b) seq. of cards

(0, 0) 5 1 3 2 4

(0, 1) 5 1 4 2 3

(1, 0) 5 2 3 1 4

(1, 1) 5 2 4 1 3

.
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Suppose here that we could somehow delete both cards 2 and 3 :

(a, b) seq. of cards

(0, 0) 5 1 4

(0, 1) 5 1 4

(1, 0) 5 1 4

(1, 1) 5 4 1

;

then, one can easily notice that only when (a, b) = (1, 1), i.e., a ∧ b = 1, the
order would be 5 4 1 ; when a ∧ b = 0, it would be 5 1 4 . Therefore, this
implies that we could obtain

5 ? ?
︸ ︷︷ ︸

[a∧b]{1,4}

.

Based on this idea, an AND protocol is constructed immediately.

1. For input sequence

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

,

turn over card 5 and rearrange the sequence as:

5 ? ? ? ?
������

? ? ? ? ? .

2. Using the random-cut-based search (explained in Sect. 2.1), find card 2 or
3 , and then discard it. This step requires an average of 5/2 = 2.5 trials.

3. For the sequence of the remaining four cards, find the card, 2 or 3 , that has
not been found at the previous step, and then discard it. This step requires
an average of 4/1 = 4 trials.

4. For the sequence of the remaining three cards, using the random-cut-based
search, find card 5 to obtain a commitment to a ∧ b:

5 ? ?
︸ ︷︷ ︸

[a∧b]{1,4}

.

This step requires an average of 3/1 = 3 trials.

This is Niemi and Renvall’s AND protocol, which requires 2.5 + 4 + 3 = 9.5
random cuts on average.
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2.3 XOR Computation

Here, we explain Niemi and Renvall’s XOR protocol, which requires no additional
cards, and performs an XOR computation using only input commitments.

1. For input sequence

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

,

rearrange it as:

? ? ? ?
������

? ? ? ? .

Now, similar to the case of the AND protocol above, the sequence of these
four cards is the same as the left below; if we could somehow delete card 3 ,
then it would be the same as the right:

(a, b) seq. of cards

(0, 0) 1 3 2 4

(0, 1) 1 4 2 3

(1, 0) 2 3 1 4

(1, 1) 2 4 1 3

⇒

seq. of cards

1 2 4

1 4 2

2 1 4

2 4 1

.

Note that if we cyclically shift the three cards so that 4 is the first card, then
the two cards following 4 would be a commitment to a ⊕ b of base {1, 2}.

2. Using the random-cut-based search, find card 3 , and then discard it. This
step requires an average of four trials.

3. Using the random-cut-based search, find card 4 , and obtain a commitment
to a ⊕ b:

4 ? ?
︸ ︷︷ ︸

[a⊕b]{1,2}

.

This step requires an average of three trials.

This is Niemi and Renvall’s XOR protocol, which requires 4 + 3 = 7 random
cuts on average.

2.4 Secure Copy

Here, we explain Niemi and Renvall’s copy protocol. The protocol makes two
copied commitments to input bit a with four additional cards.
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1. For input sequence

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

6 3 4 ,

turn over cards 3 4 , and apply a random cut1 to the two face-down cards
to create a commitment to a uniformly distributed random bit r:

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

6 ? ?
︸ ︷︷ ︸
[r]{3,4}

.

Turn over cards 5 and 6 as well:

? ? ?
︸ ︷︷ ︸
[a]{1,2}

? ? ?
︸ ︷︷ ︸
[r]{3,4}

.

2. Using the random-cut-based search, find a card in {1, 2, 3, 4}, and reveal the
fourth card. (This requires 6/4 = 1.5 trials on average.) For instance, if we
found 1 , we have either

1 ? ? 3 ? ? or 1 ? ? 4 ? ? .

If the two face-up cards are from either {1, 3} or {2, 4}, then r = a. Otherwise,
i.e., they are from either {1, 4} or {2, 3}, r̄ = a.

3. Turn over the two face-up cards, and find a card in {5, 6} using the random-
cut-based search. (This requires 6/2 = 3 trials on average.) In this case, we
have

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

? ? ?
︸ ︷︷ ︸
[r]{3,4}

or 6 ? ?
︸ ︷︷ ︸
[r]{3,4}

? ? ?
︸ ︷︷ ︸
[a]{1,2}

.

Apply the NOT computation to the commitment to r in the case of r̄ = a.
Thus, in either case, we obtain

5 ? ?
︸ ︷︷ ︸
[a]{1,2}

6 ? ?
︸ ︷︷ ︸
[a]{3,4}

.

This is Niemi and Renvall’s copy protocol, which requires one fixed number
of a random cut together with 1.5 + 3 = 4.5 random cuts on average.

3 Our AND Protocol

In this section, we propose an efficient AND protocol. Whereas Niemi and Ren-
vall’s AND protocol requires an average of 9.5 random cuts (as seen in Sect. 2.2),
our protocol requires exactly four random bisection cuts.
1 Because there are only two cards here, it is just a shuffle.
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As preliminary information, we first introduce the random bisection cut [11]
in Sect. 3.1. Then, in Sect. 3.2, we propose a method for changing the base of
a commitment using a random bisection cut. Next, in Sect. 3.3, we introduce
an “opaque commitment pair,” which is a new concept. Finally, we present our
protocol in Sect. 3.4.

3.1 Random Bisection Cuts

The random bisection cut is a shuffling operation that was proposed in 2009
[11]. Since the random bisection cut appeared, the performance of card-based
protocols has increased significantly (e.g., [8,11,14,15]). As described later, this
paper applies random bisection cuts to a standard deck of playing cards to
provide efficient protocols.

In a random bisection cut, a given sequence of cards is bisected, and then
the two portions are switched (or not) with a probability of 1/2. For example,
consider four cards 1 2 3 4 placed with their faces down in this order:

? ?
︸ ︷︷ ︸
[0]{1,2}

? ?
︸ ︷︷ ︸
[0]{3,4}

.

Apply a random bisection cut (denoted by [ · | · ]) to the sequence:
[
? ?

∣
∣
∣ ? ?

]
.

Then, the sequence of these four cards will be either

? ?
︸ ︷︷ ︸
[0]{1,2}

? ?
︸ ︷︷ ︸
[0]{3,4}

or ? ?
︸ ︷︷ ︸
[0]{3,4}

? ?
︸ ︷︷ ︸
[0]{1,2}

,

where each case occurs with a probability of exactly 1/2.
Similar to the random cut, it is known that the random bisection cut can be

easily performed by humans [18].

3.2 Change of Base

Here, we propose a method for changing the base of a commitment using a
random bisection cut.

Take a commitment of base {1, 2}

? ?
︸ ︷︷ ︸
[a]{1,2}

as an example, and assume that we have other cards 3 4 . We want to convert
the base into {3, 4}; of course, we do not want to reveal the value of bit a. The
following procedure achieves this.
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1. Turn over 3 4 so that they become a commitment to 0:

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[0]{3,4}

.

2. Rearrange the sequence, apply a random bisection cut, and rearrange it again:

? ? ? ?
������

? ? ? ?

→
[
? ?

∣
∣
∣ ? ?

]
→

? ? ? ?
������

? ? ? ? .

Then, we have

? ?
︸ ︷︷ ︸

[a⊕r]{1,2}

? ?
︸ ︷︷ ︸
[r]{3,4}

where r is a uniformly distributed random bit.
3. Reveal the first two cards; then, we know whether r = a or r = ā, and hence

we have

1 2 ? ?
︸ ︷︷ ︸
[a]{3,4}

or 2 1 ? ?
︸ ︷︷ ︸
[ā]{3,4}

.

(In the latter case, apply the NOT computation to the commitment to trans-
form it into a commitment to a.)

Note that, because r is random, the information about a does not leak even
if the commitment to a ⊕ r is revealed.

Thus, the base of a given commitment can be easily changed.
Our AND protocol utilizes this change-of-base method. The method seems

quite useful because any base can be assigned to a given commitment whose base
is unknown. In addition, the method can be used for detecting irregular cards
such as jokers among two face-down cards placed as an input commitment. (This
is a similar idea to that behind the checking-input method designed for custom-
made cards ♣ ♥ [10].)

3.3 Opaque Commitment Pair

Here, we consider a situation in which the base of a commitment is opaque. Now,
assume that there are two commitments under {1, 2, 3, 4}:

? ?
︸ ︷︷ ︸
[a]B1

? ?
︸ ︷︷ ︸
[b]B2

where we do not know which base is {1, 2}. That is, we cannot determine
whether (i) B1 = {1, 2} and B2 = {3, 4}, or (ii) B1 = {3, 4} and B2 = {1, 2}
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(the probabilities of events (i) and (ii) are both 1/2, and these events are indepen-
dent of any input values). We call two such commitments an opaque commitment
pair, and write it as

? ?
︸ ︷︷ ︸

[a]{1,2},{3,4}

? ?
︸ ︷︷ ︸

[b]{1,2},{3,4}

.

Given an opaque commitment pair, if the base of one of the two commitments
is found, then the base of the other commitment is also determined. For instance,
for the above opaque commitment pair, if we turn over the first commitment (to
a) and know that its base was {1, 2}, then the base of the commitment to b is
determined, and hence we have

? ?
︸ ︷︷ ︸
[b]{3,4}

.

Furthermore, assume that there are a commitment to b and an opaque com-
mitment pair

? ?
︸ ︷︷ ︸
[b]{3,4}

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

.

Then, we can make the base of the commitment to b opaque. That is, applying
the change-of-base method shown in Sect. 3.2 to the first and third commitments
results in

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[b]{5,6},{7,8}

.

3.4 Description of Our Protocol

Now, we are ready to present our AND protocol. The protocol performs a secure
AND computation using eight cards, as follows.

1. Arrange input commitments and two commitments to 0:

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

5 6 7 8 → ? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

? ?
︸ ︷︷ ︸
[0]{5,6}

? ?
︸ ︷︷ ︸
[0]{7,8}

.

2. Apply a random bisection cut to the third and fourth commitments:

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

[
? ?

∣
∣
∣ ? ?

]
;

then, we have an opaque commitment pair:

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

.



496 T. Mizuki

3. Apply the change-of-base method presented in Sect. 3.2 to the second and
fourth commitments:

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[b]{5,6},{7,8}

.

(From here up through step 5, simulate the AND protocol [11] that is based
on custom-made cards ♣ ♥ .)

4. For the sequence of these six cards, apply rearrangements and a random
bisection cut as:

? ? ? ? ? ?
�

������ ���
? ? ? ? ? ?

→
[
? ? ?

∣
∣
∣ ? ? ?

]
→

? ? ? ? ? ?
������

�
��	

? ? ? ? ? ? .

Then, we have either

(i) ? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[b]{5,6},{7,8}

or (ii) ? ?
︸ ︷︷ ︸
[ā]{1,2}

? ?
︸ ︷︷ ︸

[b]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[0]{5,6},{7,8}

,

where each case occurs with a probability of exactly 1/2.
5. Reveal the first two cards.

(a) Assume that the two face-up cards are 1 2 . Then, in the case of (i)
above, we have a = 0, and hence a ∧ b = 0 and ā ∧ b = b. In the case of
(ii), we have a = 1, and hence a∧ b = b and ā∧ b = 0. Therefore, in either
case, we have

1 2 ? ?
︸ ︷︷ ︸

[a∧b]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[ā∧b]{5,6},{7,8}

.

(b) Assume that the two face-up cards are 2 1 . Similarly, we have

2 1 ? ?
︸ ︷︷ ︸

[ā∧b]{5,6},{7,8}

? ?
︸ ︷︷ ︸

[a∧b]{5,6},{7,8}

.

6. After applying a random bisection cut (namely, a shuffle) to the commitment
to ā∧b, reveal it to find the base of the commitment to a∧b; then, we obtain

? ?
︸ ︷︷ ︸

[a∧b]{5,6}

or ? ?
︸ ︷︷ ︸

[a∧b]{7,8}

.

This is our AND protocol, which uses four random bisection cuts in total.
At step 5, although we reveal the first commitment, no information about bit a
leaks because both (i) and (ii) occur with a probability of 1/2.

We can easily give a more formal proof of the security by using the “Koch-
Walzer-Härtel diagram [7]” although we omit it due to the page limitation.
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4 Our XOR Protocol

In this section, we propose an efficient XOR protocol. Whereas Niemi and
Renvall’s XOR protocol requires an average of seven random cuts (as seen in
Sect. 2.3), our protocol terminates after only one random bisection cut. The
protocol is obtained by simulating the XOR protocol [11] (which is based on
custom-made cards ♣ ♥ ).

1. Arrange two commitments:

? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[b]{3,4}

.

2. Rearrange the sequence, apply a random bisection cut, and rearrange it again:

? ? ? ?
������

? ? ? ?

→
[
? ?

∣
∣
∣ ? ?

]
→

? ? ? ?
������

? ? ? ? .

Then, we have

? ?
︸ ︷︷ ︸

[a⊕r]{1,2}

? ?
︸ ︷︷ ︸

[b⊕r]{3,4}

where r is a uniformly distributed random bit.
3. Reveal the first commitment; then, we have

1 2 ? ?
︸ ︷︷ ︸

[a⊕b]{3,4}

or 2 1 ? ?
︸ ︷︷ ︸

[a⊕b]{3,4}

.

5 Our Copy Protocol

In this section, we propose an efficient copy protocol. Whereas Niemi and Ren-
vall’s copy protocol requires an average of 5.5 random cuts (as seen in Sect. 2.4),
our protocol terminates after only one random bisection cut. The protocol is
obtained by simulating the copy protocol [11] as well.

1. Arrange an input commitment and two commitments to 0:

? ?
︸ ︷︷ ︸
[a]{1,2}

3 4 5 6 → ? ?
︸ ︷︷ ︸
[a]{1,2}

? ?
︸ ︷︷ ︸
[0]{3,4}

? ?
︸ ︷︷ ︸
[0]{5,6}

.

2. Apply rearrangements and a random bisection cut as:

? ? ? ? ? ?
�

������ ���
�

��	
? ? ? ? ? ?

→
[
? ? ?

∣
∣
∣ ? ? ?

]
→

? ? ? ? ? ?
���

�
���

�
��	 ���

? ? ? ? ? ? .
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Then, we have

? ?
︸ ︷︷ ︸

[a⊕r]{1,2}

? ?
︸ ︷︷ ︸
[r]{3,4}

? ?
︸ ︷︷ ︸
[r]{5,6}

where r is a uniformly distributed random bit.
3. Reveal the first commitment; then, we have

1 2 ? ?
︸ ︷︷ ︸
[a]{3,4}

? ?
︸ ︷︷ ︸
[a]{5,6}

or 2 1 ? ?
︸ ︷︷ ︸
[ā]{3,4}

? ?
︸ ︷︷ ︸
[ā]{5,6}

.

6 Conclusion

Although almost all existing card-based protocols cannot be executed with a
standard deck of playing cards, there is one exception: Niemi and Renvall’s
protocols [13] achieve secure AND, XOR, and copy computations using normal
playing cards. In this paper, we continued their efforts to improve card-based
protocols that use a standard deck of playing cards, and proposed efficient AND,
XOR, and copy protocols. Our protocols were constructed by applying random
bisection cuts [11] to a standard deck of playing cards; as a result, we succeeded
in significantly reducing the number of required shuffles. Specifically, for AND
computation, whereas the existing protocol requires an average of 9.5 random
cuts, our protocol terminates after applying exactly four random cuts. Regarding
XOR computation and copy, the existing protocols require an average of seven
and 5.5 random cuts, respectively; in contrast, our protocols require only one
random bisection cut.

An intriguing future work might involve finding lower bounds on the number
of required cards and shuffles. It should be noted that there is a formalization
for the card-based computation model [9]; a standard deck of playing cards is
within the model. Therefore, to obtain lower bounds, the existing formalization
could be useful.

The card-based protocol is easy to understand. By combining our AND,
XOR, and copy protocols, any function can be securely computed using a com-
mercially available deck of cards. We hope that people all over the world would
perform secure multiparty computation in their daily activities by utilizing our
protocols that require only a standard deck of cards. For example, to avoid an
awkward situation, a group of friends can determine whether or not they go
out for a drink by securely computing the conjunction x1 ∧ x2 ∧ · · · ∧ xn of
their NO/YES input bits x1, x2, . . . , xn. All they need is a deck of playing cards.
Furthermore, in the literature, playing cards related to cryptography have been
studied (e.g., [3,5,17]). These can reveal the underlying concepts of cryptography
to non-specialists.

Acknowledgments. We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. This work was supported by JSPS KAK-
ENHI Grant Number 26330001.
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Abstract. We propose several efficient card-based cryptographic proto-
cols for the millionaires’ problem by introducing a new operation called
Private Permutation (PP) instead of the shuffle used in existing card-
based cryptographic protocols. Shuffles are useful randomization tech-
niques for designing card-based cryptographic protocols for logical gates,
and this approach seems to be almost optimal. This fact, however, implies
that there is room for improvements if we do not use logical gates as
building blocks for secure computing, and we show that such an improve-
ment is actually possible for the millionaires’ problem. Our key technique,
PP, is a natural randomization operation for permuting a set of cards
behind the player’s back, and hence, a shuffle can be decomposed into two
PPs with one communication between them. Thus PP not only allows
us to transform Yao’s seminal protocol into a card-based cryptographic
protocol, but also enables us to propose entirely novel and efficient pro-
tocols by securely updating bitwise comparisons between two numbers.
Furthermore, it is interesting to remark that one of the proposed proto-
cols has a remarkably deep connection to the well-known logical puzzle
known as “The fork in the road”.

1 Introduction

Background. Multiparty computation (MPC) can be realized by using several
cards, and such a special implementation of MPC is known as a card-based cryp-
tographic protocol [2,5]. Much of the research related to card-based cryptographic
protocols has been devoted to secure computation of logical gates such as AND
and XOR1, since any computation can be implemented by their combinations.

Y. Misawa—This work was carried out when he was affiliated to the University of
Electro-Communications.

1 In card-based cryptographic protocols, NOT is easy to implement, and an OR oper-
ation is easily derived from an AND operation.
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The central issue when designing efficient card-based cryptographic protocols
for logical gates is to minimize the number of cards required in the protocol.
For instance, Mizuki–Sone [9] realized AND and XOR operations on two binary
inputs with six and four cards, respectively, and recently, Koch–Walzer–Härtel [7]
reduced the number of cards to five in AND2. On the other hand, randomization
is also important in order to realize secure card-based cryptographic protocols.
In this regard, an operation known as shuffle is considered to be useful for imple-
menting logical gates securely with a smaller number of cards, and the usage of
this operation has been extensively studied thus far.

We note that shuffles in card-based cryptographic protocols are different from
those in ordinary card games in terms of two points: The first difference is that
a shuffle in a card-based cryptographic protocol specifies a certain permutation,
whereas a shuffle in ordinary card games permutes the set of cards in a completely
random manner. The second difference is that the result of a permutation must
not be known to any players (including the player performing the shuffle). For
instance, a random bisection cut [9] is a useful type of shuffles in the following
manner: an even number of cards are divided into two sets consisting of the same
number of cards, and these two sets are permuted (in this case, exchanged) many
times until none of the players can recognize how many times the two sets of
cards are permuted.

Motivation and Our Idea. We observe here that the following two problems exist
in card-based cryptographic protocols based on logical gates and shuffles:

(1) Constructing a protocol by using logical gates is a general technique, but it
can be less efficient than protocols specially developed to perform a certain
function.

(2) From the viewpoint of MPC, a shuffle is not a single operation since it
requires at least two players to communicate with each other3, and hence,
a card-based cryptographic protocol is not efficient if it uses a shuffle as a
building block.

We discuss (1) and (2) in detail before we propose our idea:
(1) In the secure computing of logical gates by card-based cryptographic

protocols, it is known that one bisection cut is necessary and sufficient in state-
of-the-art card-based cryptographic protocols [9]. This fact implies that, when
we compute a certain function, random bisection cuts are necessary at least with
the number of logical gates so as to represent the function. For instance, consider
the case of the millionaires’ problem initiated by Yao’s seminal work [1], which is
a secure two-party computation involving a comparison of two numbers without
making each millionaire’s wealth public. Comparing two numbers less than m ∈
2 We assume in this paper that the results are correctly computed with a probability

1. If a computation error is allowed with small probability, it is shown in [7] that
four cards are sufficient.

3 Although this fact is mentioned in [7], the efficiency of the protocol based on this
fact is not discussed by these authors, and hence, they use shuffles as building blocks.
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N by logical gates can be realized as in Fig. 1, in which logical AND and OR
operations are necessary 2�log m�−1 and 2�log m�−2 times, respectively4. When
executing these logical operations, the COPY operation [9] is also necessary
for ¬ai and bi in each comparison of bits, and hence, 6�log m� − 5 random
bisection cuts are necessary in total in order to implement the millionaires’
problem as shown in Fig. 1. Noticing that a random bisection cut is necessary for
randomization, it seems difficult to reduce this number as long as we implement
the millionaires’ problem based on logical operations as shown in Fig. 1.

We can expect this inefficiency to be resolved if we design a card-based
cryptographic protocol specialized for the function computed in the protocol,
although an improvement such as this has not been studied intensively to date.
Proceeding with this idea, it is natural to recall Yao’s solution to the millionaires’
problem ([1], see Sect. 3.1) since it does not depend on logical gates but special-
izes in comparing two numbers privately. As we will see in Sect. 3.1, for instance,
Yao’s protocol involves public key encryption, which is difficult to implement
by logical gates, but is easy to realize by using face-down cards without pub-
lic/private keys! As a result, it is easy to implement Yao’s protocol by cards if we
do not restrict ourselves to using card-based cryptographic protocols for logical
gates.

When implementing Yao’s protocol by using cards that do not depend on
logical gates, it should become clear that his protocol uses private computation
since it is an MPC protocol. On the other hand, every operation is assumed to be
public in existing card-based cryptographic protocols. Hence, in this paper, we
explicitly allow such a private operation if it is possible to implement by cards.

input: a = (an...a2 a1)2, b = (bn...b2 b1)2 ;
f1 = ā1 ∧ b1 ;
for( i : 2 to n) {

fi = āi ∧ bi ∨ ( āi ∨ bi ) ∧ fi−1 ;
}
output: fn ;

if fn = 0 then a ≥ b
if fn = 1 then a < b

Fig. 1. Comparing protocol constructed by logical gates

(2) In previous work, a shuffle is considered as a building block for random-
ization, but actually, it is not a single operation from the viewpoint of MPC. For
instance, a random bisection cut by Alice can be realized as follows: Alice first
generates a random number rA and permutes bisected cards rA times behind her
back, and sends the permuted cards to the other player, say Bob. Bob privately
generates a random number rB and permutes bisected cards rB times behind

4 Throughout this paper, logarithmic base is 2.
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his back. If rA and rB are kept private by Alice and Bob, respectively, this pro-
tocol shuffles bisected cards rA + rB times, and no one can know the number of
permutations.

Note that such private randomness and private operations ((rA, rB) and per-
mutation in this example, respectively) are often used in MPC. Hence, we call
such a permutation behind someone’s back Private Permutation (PP). The intro-
duction of PPs makes it easy to see that shuffles, including a random bisection
cut, generally consist of at least two PPs and one communication among these
PPs. Note that the number of PPs and communications is considered as com-
putational cost, and the number of cards is considered as memory cost.

Table 1. Comparison of Proposed Card-based Cryptographic Protocols

Protocols # of Comm. # of PP # of cards

Logical gates (Fig. 1) 6�log m� − 5 12�log m� − 10 4�log m� + 2

Proposed protocol I (Yao) 1 2 2m

Proposed protocol II (storage) 2�log m� 2�log m� 4�log m� + 2

Our Contributions. As shown above, the concept of a PP is motivated by (1) and
(2). We propose two protocols corresponding to (1) and (2), denoted as proposed
protocols I and II, respectively. The evaluations of our results presented in this
paper are summarized in Table 1, where we use the number of communications,
PPs, and cards as efficiency measures.

We resolve problem (1) by constructing a card-based cryptographic protocol
for the millionaires’ problem based on Yao’s protocol for two numbers less than
or equal to m (proposed protocol I). Even though this protocol is näıve, only one
communication and two PPs are sufficient, which is a considerable improvement
of card-based cryptographic protocols based on logical gates (6�log m� − 5 and
12�log m� − 10, respectively). On the other hand, the number of cards required
by the protocol is 2m, which is much worse than the card-based millionaires’
problem based on logical gates (4�log m� + 2).

Regarding problem (2), we expect that a more efficient card-based protocol
can be proposed in terms of the number of communications, PPs, and cards.
Actually, we propose an entirely new and efficient card-based cryptographic
protocol specially developed to solve the millionaires’ problem. This protocol
succeeds in reducing the number of communications and PPs to almost 1/3 and
1/6, respectively, compared to the protocol for logical gates, whereas the number
of cards remains the same (see Proposed protocol II in Table 1). The new proto-
col compares two numbers bit by bit, starting from the less significant bit, and
the compared results are recorded on cards, called storage. The results recorded
in storage need to be kept secret from both Alice and Bob, to solve the million-
aires’ problem securely. Hence, we show how to manipulate the storage privately
by using PPs. It is very interesting to note that the technique on which this
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manipulation is based proved to be the same as that of the well-known logical
puzzle “The Fork in the Road5” [6, p. 25]. This observation will be introduced
when explaining the idea of the proposed protocol II in Sect. 4.1.

Organization. The remaining part of this paper is organized as follows: We
introduce several notations, basic operations of cards including PP, and the
security notion for card-based cryptographic protocols in Sect. 2. In Sect. 3, the
card-based cryptographic protocol for the millionaires’ problem based on Yao’s
protocol is presented. Section 4 is devoted to the proposal of a new card-based
cryptographic protocol with storage, which is efficient from the viewpoint of the
number of communications and PPs. We summarize our results in Sect. 5 and
discuss the improvements of the protocol proposed in Sect. 4.

2 Preliminaries

2.1 Notations and Basic Operations

In card-based cryptographic protocols, we normally use two types of cards such
as ♣ and ♥ , which are represented in the following sentences by ♣ and ♥,
respectively. We assume that two cards with the same mark are indistinguishable.
We also assume that all cards have the same design on their reverse sides, and
that they are indistinguishable and represented as ? . The Boolean values 0 and
1 are encoded as ♣♥ and ♥♣, respectively. Note that we regard the sequence of
cards as a vector. In this paper, we use the following fundamental card operations
[8]. Note that these operations are executed publicly.

– Face up: ? �→ ♣ , ? �→ ♥
– Face down: ♣ �→ ? , ♥ �→ ?

– Swap: ? ? (represents x ∈ {0, 1}) �→ ? ? (represents ¬x ∈ {0, 1})

If a pair of face-down cards for the Boolean value x ∈ {0, 1}, it is called
commitment. The term Swap indicates reversal of the left and the right of the
commitment.

5 This problem is summarized as follows: An logician finds himself on an island inhab-
ited by two tribes: liars and truth-tellers. Members of the one tribe always tell the
truth, whereas members of the other tribe always tell lies. The logician reaches a
fork in a road and has to ask a native bystander which branch he should take to
reach the village. He has no way of telling whether the native is a truth-teller or a
liar. The logician only asks one question. From the reply he knows which road to
take. What question does he ask?.
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2.2 Random Bisection Cut and Private Permutation

Random Bisection Cut. This is a key technique to realize efficient card-based
cryptographic protocols for logical gates, e.g., 6-card AND protocol [9], which is
described as follows:

For a positive integer v, suppose that there is a sequence of 2v face-down
cards. Denote the left and right halves by u1 and u2, respectively.

v cards
︷ ︸︸ ︷
? ? · · · ?
︸ ︷︷ ︸

=:u1

v cards
︷ ︸︸ ︷
? ? · · · ?
︸ ︷︷ ︸

=:u2

(1)

Then, u1 and u2 are interchanged or left unchanged with probability 1/2.
Depicting this by using figures, one of either

? ? · · · ?
︸ ︷︷ ︸

u1

? ? · · · ?
︸ ︷︷ ︸

u2

or ? ? · · · ?
︸ ︷︷ ︸

u2

? ? · · · ?
︸ ︷︷ ︸

u1

(2)

is selected with a probability 1/2. If no player knows whether one of the above
is selected, such a shuffle is known as a random bisection cut.

A random bisection cut is known to be a convenient randomization technique
for implementing card-based protocols for logical gates securely. However, it has
two drawbacks.

The first drawback is that it is not known how to use this technique other
than in the card-based cryptographic protocols for logical gates. In other words,
this technique is not useful for implementing Yao’s protocol, for instance, as a
card-based cryptographic protocol because it does not use logical gates.

The second drawback is that it is not possible for one player to realize this
technique. That is, a random bisection cut by Alice can be realized as follows:
Alice first generates a random number rA and permutes the bisected cards rA
times behind her back, and sends the permuted cards to the other player, say
Bob. Bob privately generates a random number rB and permutes the bisected
cards rB times behind his back. If rA and rB are kept private by Alice and Bob,
respectively, this protocol permutes the bisected cards rA + rB times, and no
one can know the number of permutations. As long as we implement card-based
cryptographic protocols based on logical gates, at least one shuffle such as a
random bisection cut is necessary for every logical gate, which would have a
highly adverse impact on the efficiency of the protocols.

Private Permutation. We resolve the above-mentioned drawbacks by decompos-
ing the shuffle operation into the private permutations behind the player’s back
and the communication between them. Hence, we introduce a new randomization
operation called Private Permutation (PP), which can be formalized as follows:

For a positive integer t, let c ∈ {♣,♥}t be a vector consisting of t face-down
cards. For a set Pt of all permutations over6 [t] := {1, 2, . . . , t}, let Rt ⊂ Pt

6 In this paper, we define [n] := {1, 2, . . . , n} for an integer n ∈ N.
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be a set of possible permutations. We also define Rt = {π0, π1, . . . , π|Rt|−1}.
Then, for a positive integer t and a set of possible permutations Rt, the private
permutation is formalized as follows:

PP
[t]
Rt

(c, s) := πs(c), s = 0, 1, . . . , |Rt| − 1.

Note that the same function was introduced by others [7,8] although we
impose an additional assumption on this function. Namely, we assume that the
player executing PP

[t]
Rt

keeps s secret, whereas he/she makes the other parameters
public, which is easy to realize by permuting the cards behind the player’s back.
This requirement is firstly introduced in this paper explicitly by considering that
shuffle implicitly assumes the necessity of PPs. Note that, in the existing card-
based cryptographic protocols, every operation other than shuffle is assumed to
be executed in public. Note that, not only the random bisection cut, but also
several different types of shuffles, e.g., [10] can be realized by PPs in a similar
manner by specifying Rt appropriately.

For instance, consider the set of permutations capable of randomly inter-
changing the first and the latter halves of a vector as follows: For a positive
integer v, Ric

2v := {π0, π1} ⊂ P2v where

π0 := (1, . . . , v, v + 1, . . . , 2v), and π1 := (v + 1, . . . , 2v, 1, . . . , v), (3)

which means that π0(c) = (u1,u2) and π1(c) = (u2,u1) for c := (u1,u2)
given by (1). Then, the random bisection cut for 2v cards is represented as
PP

[2v]

Ric
2v

(c, s) = πs(c) where s is chosen from {0, 1} uniformly at random and it
is known only by the player executing this operation. In executing the random
bisection cut, for the sequence of cards c, Alice executes PP

[2v]

Ric
2v

(c, rA) =: c′

by using her private randomness rA ∈ {0, 1}, and c′ is sent to Bob. Bob also
executes PP

[2v]

Ric
2v

(c′, rB) by using his private randomness rB ∈ {0, 1}.

Efficiency Measures. Most of the previous work, e.g., [8,11], considers the num-
ber of shuffles as the computational complexity since shuffle is the most time-
consuming operation. On the other hand, in this paper we consider that the
computational complexity is evaluated by the number of PPs and communica-
tions since such measures are suitable for MPC. In this paper, successive PPs
executed by one player without communication and/or face up is counted as one
PP since the composition of permutations is also regarded as a permutation and
the subsequent private permutation can be executed at once behind the player’s
back.

2.3 Security Notion

Throughout this paper, we assume that both Alice and Bob are semi-honest
players. Following [4], we introduce the security notion (perfect secrecy) of card-
based cryptographic protocols for the millionaires’ problem.
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In defining the security of card-based cryptographic protocols, view plays a
key role. View is roughly defined to be a vector of random variables7 correspond-
ing to the data that each player can obtain in the protocol. More precisely, view
is a vector which consists of random variables corresponding to the input of the
player, the output of the protocol, public information all players can gain, and
random values which are used when the player makes a random choice.

For a fixed integer m ∈ N, let a ∈ [m] and b ∈ [m] be positive integers
representing the wealth of Alice and Bob respectively. In this case, the inputs
by Alice and Bob for the protocol are a and b, respectively. The common output
of the millionaires’ problem for Alice and Bob is represented as χge(a, b) where

χge(u, v) :=

{
1 if u ≥ v

0 otherwise,
(4)

for positive integers u, v ∈ [m].
The information obtained by Alice and Bob in the protocol can be classified

into private information denoted by rA and rB , and public information denoted
by λ. Hence, Alice’s (resp. Bob’s) view can be described as the sequence of ran-
dom variables corresponding to her (resp. his) input a (resp. b), output of the
protocol, private information rA (resp., rB) and public information λ. The pri-
vate information rA (resp., rB) is the random number generated by Alice (resp.,
Bob) and used in PPs. The public information is the cards that Alice and Bob
made public by turning them face up. Note that, in ordinary MPC, view includes
information that each player receives via private channel, but in card-based cryp-
tographic protocols, there is no private channel. Only face-up cards can reveal
information, and hence, we can define the face-up cards are included in the view
as public information. Let RA, RB , and Λ be random variables corresponding
to the values rA, rB , and λ, respectively. Then, the views of Alice and Bob are
represented as (A,χge(A,B), RA,Λ) and (B,χge(A,B), RB ,Λ), respectively.

Intuitively, if all Alice’s (resp., Bob’s) private and public information can
be simulated from Alice’s (resp., Bob’s) input and output, we can say that no
information is contained in the private and public information other than Alice’s
(resp., Bob’s) input and output. Hence, we can formulate perfect secrecy of card-
based cryptographic protocols for the millionaires’ problem as follows:

Definition 1 (Perfect secrecy). Consider the millionaires’ problem for Alice
and Bob. We say that the card-based cryptographic protocol for the millionaires’
problem is perfectly secure if there exist polynomial-time simulators SA and SB
such that for all possible inputs a and b, it holds that

SA(a, ca,b)
perf≡ (a, χge(a, b), RA,Λ) and SB(b, ca,b)

perf≡ (b, χge(a, b), RB ,Λ) (5)

7 Throughout the paper, random variables are represented by capital letters. The
probability that a random variable X takes a value x is represented by Pr{X = x}
which is also written as PX(x) for short. Mathematically, random variable is defined
to be a map from probability space to the set of real numbers. However, for simplicity,
we allow the cards ♣, ♥ to be treated as the values of random variables in each view.
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where U
perf≡ V means that the (joint) probability distributions PU and PV corre-

sponding to the random variables U and V , respectively, are perfectly the same.

3 Proposed Protocol I: Card-Based Cryptographic
Protocol for Millionaires’ Problem Based on Yao’s
Solution

3.1 Yao’s Solution and Our Idea Behind the Proposed Protocol I

We propose a card-based cryptographic protocol that resolves the millionaires’
problem by cards based on Yao’s original solution. Before providing our protocol,
we explain Yao’s public key based solution [1] with the following:

Yao’s Solution to the Millionaires’ Problem. For a fixed integer m ∈ N, assume
that Alice and Bob have wealth represented by positive integers a and b, respec-
tively, where a, b ∈ [m]. Let X := [2N −1] be a set of N -bit integers. (EncA,DecA)
is a public-key encryption of Alice. Hence, EncA : X → X is an encryption under
Alice’s public key, and DecA is a decryption under Alice’s private key.

〈1〉 Bob selects a random N -bit integer x ∈ X , and computes c := EncA(x)
privately.

〈2〉 Bob sends Alice the number c − b + 1
〈3〉 For i = 1, 2, . . . ,m, Alice computes privately the values of yi = DecA(c− b+

i).
〈4〉 Alice generates a random prime p of N/2 bits, and computes the values

zi := yi mod p for i = 1, 2, . . . ,m. If |zu − zv| ≥ 2 for all distinct u, v ∈ [m],
then go to next step; otherwise generates another random prime and repeat
the process until all zu differ by at least 2;

〈5〉 Alice makes z′ = (z1, z2, . . . , za, za+1 +1, za+2 +1, . . . , zm +1); each value is
in the mod p sense.

〈6〉 Alice sends Bob p and the vector z′.
〈7〉 Bob looks at the b-th number in z′. If it is equal to x mod p, then a ≥ b,

otherwise a < b.
〈8〉 Bob sends Alice the result.

Our Idea Behind Proposed Protocol I. We first point out that the key steps of
Yao’s protocol are 〈5〉–〈7〉, where Alice privately adds 1 to za+1 to zm in the
m-dimensional vector, and sends the vector to Bob. He privately checks the b-
th value in the vector, and outputs the result. These private operation can be
implemented by PP, which corresponds to the step 〈3〉 in the following proposed
protocol I.

Note that, in Yao’s solution, 〈1〉–〈4〉 are necessary for realizing the key steps
〈5〉–〈7〉 securely, since they prevent the vector z′ in 〈5〉 from leaking Alice’s
wealth a to Bob. However, in a card-based cryptographic protocol, these steps
can be replaced with single step since face down play the role of encryption. Fur-
thermore, the communication in 〈8〉 can be removed in the card-based protocol
since face-up cards on the tabletop can immediately be recognized by both Alice
and Bob.
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3.2 Proposed Protocol I

Based on the ideas discussed in the previous section, we propose a card-based
cryptographic protocol for the millionaires’ problem based on Yao’s solution. We
refer to this protocol proposed protocol I. The definitions of a, b,m are same in
the previous section.

Proposed Protocol I (Card-based Yao’s Solution)

(1) Alice prepares m pairs of ♣♥ and turn them all face down. This
preparation is represented in a vector form as (x1,x2, . . . ,xm) where
x1 = x2 = · · · = xm = ♣♥.

(2) For i = 1, 2, . . . ,m, repeat the operation in which Alice swaps xi if i > a;
otherwise do not. Each swap operation must be executed privately, and
it is described as the following PP with respect to Ric

2 := {π0, π1} which
is given by (3) with v = 1:

PP
[2]

Ric
2
(xi, χ

ge(i − 1, a)), i = 1, 2, . . . , m, (6)

where χge(·, ·) is defined in (4), i.e., χge(i−1, a) = 1 iff i > a. As a result,
Alice privately generates the sequence of cards x′ := (x′

1,x
′
2, . . . ,x

′
m)

where x′
i := PP

[2]

Ric
2
(xi, χ

ge(i − 1, a)).
(3) Alice sends Bob x′.
(4) Bob privately moves x′

b to the first element of x′, which is described as
the following PP:

PP
[2m]

Rmf
2m

(x′, b − 1) = πb−1(x′) (7)

where Rmf
2m := {πi}m−1

i=0 such that πi : x′ �→ (xi+1,x1, . . . ,xi,xi+2,
. . . ,xm).

(5) Bob reveals the left most commitment of PP[2m]

Rmf
2m

(x′, b−1), i.e., x′
b. If the

value represented by x′
b is 0, then a ≥ b, otherwise a < b.

The remaining cards are completely randomized by Alice or Bob in public in
order to discard the information of x′ except for x′

b. We call this operation
“the remaining cards are discarded,” hereafter.

Note that steps (1) and (2) in the proposed protocol correspond to step
〈1〉–〈5〉, and the steps (3) and (4) correspond to steps 〈6〉 and 〈7〉, respectively,
which shows that the step (2) considerably simplifies Yao’s protocol. We omit
the proof of correctness of the proposed protocol since it is almost obvious from
Yao’s protocol.

Note that (EncA,DecA) in Yao’s millionaires’ protocol must be public-key
encryption since a is obtained by Bob in step 〈5〉 if (EncA,DecA) is a private
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key encryption. On the other hand, in the proposed protocol I, such leakage
of a to Bob is prevented by requiring that all cards except x′

b are completely
randomized by Alice or Bob publicly at the end of the protocol.

Efficiency of the proposed protocol I. In the proposed protocol, note that the
constant numbers for PP and communication are sufficient. We use two PPs in
steps (2) and (4), and one communication in step (3), and this outperforms the
protocol based on logical gates (see Fig. 1). We note that the steps (4) and (5)
are necessary so that Bob turns x′

b face up publicly without making b public8.
We can show the perfect secrecy of the proposed protocol in the following

theorem, but we omit the proof since it is almost obvious.

Theorem 1. The proposed protocol I is perfectly secure; it satisfies (5) in Def-
inition 1.

Remark. Thanks to the special operations of card, e.g., face up, face down, and
swap, etc., the proposed protocol I is not only a direct transformation of Yao’s,
but also is superior to the original protocol. For instance, the proposed protocol
I does not use any randomness, whereas randomness is necessary for generating
public/private keys in the original solution by Yao. Furthermore, it is worth
observing that both Alice and Bob can know the output result simultaneously
in the proposed protocol I, whereas Yao’s original protocol, Bob is required to
announce his result to Alice (see step 〈8〉).

4 Proposed Protocol II: Card-Based Cryptographic
Protocol for Millionaires’ Problem with Storage

4.1 Ideas Behind Proposed Protocol II

In order to reduce the number of cards to below 2m, it is natural to repre-
sent the wealth of Alice and Bob as binary numbers with �log m� bits (i.e.,
2�log m� cards). This approach enables us to consider the strategy by compar-
ing the Alice’s and Bob’s wealth bit-by-bit starting from their least significant
bit although our strategy is not based on the use of logical gates.

Let (an, . . . , a1) and (bn, . . . , b1) be the binary representation of the pos-
itive integers a and b, respectively, where n := �log m� and ai, bi ∈ {0, 1},
i = 1, 2, . . . , n. For each i ∈ [n], assume that ai and bi are represented by pairs of
cards αi,lαi,r and βi,lβi,r, respectively, where αi,lαi,r, βi,lβi,r ∈ {♣♥,♥♣}. For
instance, ai = 1 is represented by cards as αi,lαi,r = ♥♣.

Note that, however, such a two-card representation of binary numbers is
redundant in a bit-by-bit comparison since we can represent 0 and 1 by ♣ and
♥, respectively9. In this one-card representation, αi,l and βi,l suffice to represent

8 Private selection of x′
b and making it public are formally realized in this manner.

9 However, we note that a one-card representation cannot express arbitrary binary
numbers. Hence, 4�log m� (i.e., 2�log m� cards for Alice and Bob) cards are at least
necessary when comparing two binary numbers less than m.
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ai and bi, respectively. Further, their negations, ¬ai and ¬bi, are also represented
by αi,r and βi,r, respectively. In the following, we consider a scenario in which
Alice prepares (an, . . . , ai) by using a two-card representation, and then, Alice
and Bob use a one-card representation for comparison.

We compare the bits of Alice and Bob by preparing a device (equipped by
a card) called comparison storage, denoted by cs ∈ {♣,♥}, that records the
bit-by-bit comparison results. Our idea is roughly as follows: We assume that
Bob compares βi,l (i.e., bi) with Alice’s card αi,l (i.e., ai) from i = 1 to n, and
he overwrites cs with βi,l (i.e., bi) if βi,l �= αi,l (i.e., bi �= ai) while cs remains
untouched if this is not the case (i.e., bi = ai). Recalling that Bob overwrites the
comparison storage with his bit, Bob is shown to be richer if the comparison
storage is ♥ (i.e., 1) at the end of the protocol. Similarly, Alice is shown to be
richer if the comparison storage is ♣ (i.e., 0) at the end of the protocol. As is
easily understood, however, this rough idea presents two problems:

(P1) If Bob were to directly compare his bits with those of Alice, such a com-
parison strategy would easily leaks Alice’s bits to Bob.

(P2) The fact of overwriting the comparison result or not leaks Bob’s bits to
Alice.

(P1) can be avoided by considering the following modified randomized strat-
egy: Since Alice prepares (an, . . . , ai) by two-card representations, she sends Bob
αi,l (i.e., ai) or αi,r (i.e., ¬ai) with probability 1/2. Such a randomization is effec-
tive for concealing the value of Alice’s bit from Bob, but we encounter another
problem:

(P3) Since Alice sends αi,w to Bob w ∈ {l, r} with a probability of 1/2, he
cannot tell whether ai �= bi or not.

Problems (P2) and (P3) are simultaneously resolved by introducing another
storage called dummy storage, denoted by ds ∈ {♣,♥}, and communicating the
pair of cs and ds between Alice and Bob. Hereafter, we refer to the pair consisting
of cs and ds as storage.

In order to resolve problem (P2), it suffices for Bob to overwrite cs and ds
corresponding to the results of ai �= bi and ai = bi, respectively, which enables
him to hide his bit from Alice. However, due to (P3), Bob cannot determine
which one of cs and ds should be overwritten. Hence, we focus on how to resolve
problem (P3) hereafter.

Problem (P3) can be rephrased using binary numbers as follows: Let a′
i ∈

{0, 1} be a binary number that Bob receives, but he does not know whether
a′
i = ai (in the case of w = l) or a′

i = ¬ai (in the case of w = r). Our main
object is to find ai �= bi or ai = bi even if either one of a′

i = ai or a′
i = ¬ai is

sent10.
Our basic idea for resolving (P3) is that Bob uses the fact that what he

knows is either αi,w �= βi,l or αi,w = βi,l. Making use of this fact, Alice and Bob
10 This problem is very similar to the well-known logical problem “The Fork in the

Road,” that is remarked upon later.
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treat cs and ds as an ordered pair of face-down cards, and assume that either
(cs, ds) or (ds, cs) is determined by Alice’s private random choice w ∈ {l, r} as
follows:

– If Alice selects w = l and sends Bob αi,l ∈ {♣,♥} (i.e., ai), then she sends
him (cs, ds) with αi,l.

– If Alice selects w = r and sends Bob αi,r ∈ {♣,♥} (i.e., ¬ai), then she sends
him (ds, cs) with αi,r.

We can see that the order of cs and ds is synchronized with w ∈ {l, r} (i.e., ai

and ¬ai) in Alice. Owing to this synchronization, Bob can correctly overwrite cs
only when ai �= bi by implementing the following strategy, even if he does not
know which one of cs and ds should be overwritten. Let (σl, σr) be the storage
Bob receives from Alice.

– If αi,w �= βi,l (i.e., a′
i �= bi) holds, Bob overwrites the left element σl of the

storage (σl, σr) with βi,l (i.e., bi).
– If αi,w = βi,l (i.e., a′

i = bi) holds, Bob overwrites the right element σr of the
storage (σl, σr) with βi,l (i.e., bi).

Let (σ′
l, σ

′
r) be the storage overwritten by Bob, and he returns (σ′

l, σ
′
r) to

Alice. Then, by using w ∈ {l, r} that Alice generated, she privately rearranges
(σ′

l, σ
′
r) so as to place cs and ds on the left and the right, respectively. After

repeating these procedures from i = 1 to n, Bob is shown to be richer if cs = ♥
(i.e., 1) whereas the contrary is true if cs = ♣ (i.e., 0).

Table 2. Synchronization mechanism in the proposed protocol with storage

ai (αi,l) bi (βi,l) (cs, ds), w = l (ds, cs), w = r

a′
i (αi,l) a′

i 
= bi Overwrite a′
i (αi,r) a′

i 
= bi Overwrite

0 (♣) 1 (♥) 0 (♣) True left = cs 1 (♥) False right = cs

1 (♥) 0 (♣) 1 (♥) True left = cs 0 (♣) False right = cs

0 (♣) 0 (♣) 0 (♣) False right = ds 1 (♥) True left = ds

1 (♥) 1 (♥) 1 (♥) False right = ds 0 (♣) True left = ds

It is easy to see from Table 2 that our synchronization strategy for storage
works well. This is best clarified by discussing the proposed protocol by using
binary numbers rather than cards. For instance, consider the case where Alice
compares her bit ai = 1 with Bob’s bit bi = 0 (the second line in Table 2).
If Alice selects w = l, Bob receives a bit ai = 1 and compares it with Bob’s
bit bi = 0. Since a′

i �= bi, the left-hand side element of the storage, i.e., cs, is
overwritten by bi = 0. On the other hand, if Alice selects w = r, Bob receives
a bit a′

i = ¬ai = 0 and compares it with his bit bi = 0. Since a′
i = bi = 0, the

right-hand side element of the storage, i.e., cs, is overwritten by bi = 0. Anyway,
cs is correctly overwritten by bi = 1 (> ai = 0) as expected.
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Remark. It is interesting to note that the logic of the above synchronization
strategy is the same as that of the well-known logical puzzle “The Fork in the
Road,” [6, p. 25] (see footnote 7). Note that the point of the “The Fork in
the Road” is that we need to obtain the correct answer (correct branch) from
“yes-no-questions,” regardless of whether the native bystander tells the truth.
Similarly, in our synchronization strategy, we require the correct compared result
(ai �= bi or ai = bi) from “same-or-different-questions,” regardless of whether
Bob receives αi,l (i.e., ai) or αi,r (i.e., ¬ai).

4.2 Proposed Protocol II

Based on the discussion in the previous section, we propose the card-based cryp-
tographic protocol which uses storage and synchronization between the random
selection w ∈ {l, r} and the order of cs and ds, for the Millionaires’ problem. For
the upper bound m ∈ N of the wealth of Alice and Bob, let n := �log m�.

Proposed Protocol II (Protocol for Millionaires’ Problem with Storage)

(1) Alice prepares a face-down ♣ and a face-down ♥ (This card can be arbi-
trary since it is a dummy card.) as the output storage cs and the dummy
storage ds, respectively. We call the pair consisting of cs and ds storage.
She also prepares a sequence of 2n cards (α1,lα1,r, α2,lα2,r, . . . , αn,lαn,r),
which is a binary representation of her wealth a ∈ [m]. Bob also pre-
pares the sequence of 2n cards (β1,lβ1,r, β2,lβ2,r, . . . , βn,lβn,r), which is
the binary representation of his wealth b ∈ [m].

(2) For i = 1, 2, . . . , n, repeat the following operations (2-i)–(2-v):
(2-i) Alice privately chooses w ∈ {l, r} uniformly at random. Then, execute

the following PP with respect to Ric
2 which is defined in (3) with

v = 1:

(σl, σr) := PP
[2]

Ric
2
((cs, ds), χeq(w, r)) (8)

where χeq(w, r) = 1 if w = r, and χeq(w, r) = 0 otherwise.
(2-ii) Alice sends Bob (σl, σr) in addition to αi,w.
(2-iii) Bob turns αi,w face up, and he compares βi,l with αi,w in his mind.

If they are different, he privately overwrites σl with βi,l, otherwise
he privately overwrites σr with βi,r. This operation can be described
as the following PP with respect to Row1

2 := {π0, π1} where π0 :=
(σl, βi,l, σr) and π1 = (βi,l, σr, σl). :

(σ′
l, σ

′
r, η) := PP

[3]

Row1
2

((σl, σr, βi,l), χeq(βi,l, αi,w)) (9)

where χeq(·, ·) := 1 − χeq(·, ·). The extra card η is discarded without
turning it face up.
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(2-iv) Bob sends Alice (σ′
l, σ

′
r).

(2-v) Alice rearranges the storage cards privately depending on the random
value w chosen in (2-i), i.e., execute the PP such that

PP
[2]

Ric
2
((σ′

l, σ
′
r), χ

eq(w, l)), (10)

which is used for the new storage cards (cs, ds).
(3) Alice turns cs face up to output. If the card is ♣, then a ≥ b. Otherwise,

a < b. After completing the protocol, ds is discarded without revealing.

Example of proposed protocol II. We show a simple example for understand-
ing how the proposed protocol II works correctly. Consider the case where
we compare a = 0 of Alice and b = 2 of Bob, which are represented by
(α1,lα1,r, α2,lα2,r) := (♣♥,♣♥) and (β1,lβ1,r, β2,lβ2,r) := (♥♣,♣♥), respec-
tively, since (a1, a0) = (0, 0) and (b1, b0) = (1, 0). We also set (cs, ds) = (♣,♥).

We first consider the case of i = 1. If Alice chooses w = l in step (2-i),
(8) becomes (σl, σr) = (cs, ds) = (♣,♥) since χeq(w, r) = χeq(l, r) = 0. Then,
she sends Bob (σl, σr) = (♣,♥) and α1,l = ♣ in step (2-ii). In step (2-iii),
Bob compares β1,l = ♣ with α1,l = ♣, which results in χeq(β1,l, α1,l) = 0.
Then, he outputs (σ′

l, σ
′
r) = (σl, β1,l) = (♣,♣) by overwriting the right element

of (σl, σr) = (♣,♥) with β1,l = ♣ privately, since (9) becomes (σ′
l, σ

′
r, η) =

(σl, β1,l, σr) due to χeq(β1,l, α1,l) = 0. Bob discards σr = ♥.
On the other hand, consider the case where Alice chooses w = r in step (2-i);

Then, (8) in step (2-i) becomes (σl, σr) = (ds, cs) = (♥,♣) since χeq(w, r) =
χeq(r, r) = 1. She sends Bob (σl, σr) = (♥,♣) and α1,r = ♥ in step (2-ii). Bob
compares β1,l = ♣ and α1,r = ♥, and outputs (σ′

l, σ
′
r) = (♣,♣) by overwriting

the left element of (σl, σr) = (♥,♣) with β1,l = ♣ privately as a result of (9).
As a result, regardless of the selection of w ∈ {l, r}, storage becomes

(cs, ds) = (♣,♣), which means that the dummy storage is overwritten by the
Bob’s bit since a0 = b0. Then, Bob send it to Alice in step in (2-iv). In step
(2-v), Alice sets (cs, ds) := (♣,♣) due to (10) for the storage sent from Bob.

Next, consider the case of i = 2: If Alice selects w = l in step (2-i), she
generates (σl, σr) = (cs, ds) = (♣,♣) from (8), and sends it with α2,l = ♣ to
Bob in step (2-ii). Then, Bob compares β2,l = ♥ with α2,l = ♣ in step (2-iii).
Since β2,l �= α2,l, he generates (σ′

l, σ
′
r) = (β2,l, σr) = (♥,♣) by overwriting the

left element of (σl, σr) = (♣,♣) with β2,l = ♥ privately according to (9). Bob
sends (σ′

l, σ
′
r) = (♥,♣) to Alice, and she obtains (cs, ds) := (♥,♣) due to (10).

Similar argument holds when Alice selects w = r, which is omitted here.
Finally, the output value correctly becomes cs = ♥ as a < b regardless of

random choices of Alice.

Efficiency of the proposed protocol II. This protocol requires two communications
for every bit therefore it requires 2�log m� communications. We note that the
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sequence of PPs executed in steps (2-iii) and (2-iv) can be regarded as one PP.
Similarly, steps (2-v) and (2-i), when i is incremented, can also be regarded as
one PP. Hence, this protocol requires 2�log m� PPs. The number of cards is
4�log m� + 2.

Theorem 2. The proposed protocol II is perfectly secure; it satisfies (5) in Def-
inition 1.

Proof. First, consider the randomness used by Alice and Bob denoted by RA

and RB , respectively. From step (2-i), the value of RA is the choice of w which is
randomly selected from {l, r} with a probability of 1/2. Hence, RA can obviously
be simulated by SA by using n independent uniform binary numbers. Similar to
proposed protocol I, Bob does not use any randomness, and hence, SA does not
have to simulate RB .

Then, considering the simulation of public information Λ which corresponds
the face-up cards in step (2-iii), it is easy to see that Alice can generate λ by
using a, i.e., her 2n cards, and the selection w. Hence, Λ is easily simulated by
SA. For Bob, αi,w seems to be uniform over {♥,♣} since he does not know the
value of w selected randomly by Alice.

Therefore, simulators SA and SB exist, which completes the proof. ��

5 Concluding Remarks

In this paper, we proposed two efficient card-based cryptographic protocols
(called proposed protocols I and II) for the millionaires’ problem by introducing
a new operation called private permutation (PP). Proposed protocol I is con-
structed based on Yao’s solution. This solution was realized by using public key
encryption instead of logical gates, and hence, it could not be straightforwardly
implemented to card-based cryptographic protocols based on logical gates. How-
ever, we show that Yao’s solution can be easily implemented by using cards if
we do not restrict ourselves by logical gates and use PPs instead. This protocol
could be realized with one communication and two PPs, and is therefore much
more effective than the existing protocol (see Table 1). However, the number of
cards increases. It is worth mentioning that proposed protocol I is not only a
direct transformation of Yao’s protocol, but is also superior to the original pro-
tocol in the sense that randomness and the announcement of the result are not
required as opposed to Yao’s original protocol.

Proposed protocol II is entirely novel. It constitutes the communication of
two types of storage for recording the compared result between two players. This
proposed protocol is superior to the existing protocol based on logical gates with
respect to the number of communications and PPs, whereas the number of cards
is the same as the existing protocol. Furthermore, it is interesting to remark that
proposed protocol II and the well-known logical puzzle known as “The Fork in
the Road,” are deeply related.

In the following, we briefly mention that proposed protocol II can be improved
in two directions. Due to space limitations, the detailed explanation will appear
at in the full version of the paper.
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The first direction of improvement is the following: According to Table 1,
proposed protocol II has not improved in terms of the number of cards. Hence,
the first improvement is that proposed protocol II can be realized with only six
cards. Our idea is that we do not need to represent the input as binary numbers
by using 2�log m� cards, but that it is sufficient to remember the input in the
player’s mind. Then, two cards are sufficient to represent the player’s input since
these two cards can be reused.

The second improvement is as follows: Proposed protocol II cannot be used
for composing the other protocol11 since each player is required to know his/her
inputs. In order to resolve this, we can use an improved technique called selection
and substitution protocols inspired by 6-card AND protocol [9]. Introducing this
idea enables us to propose the card-based millionaires’ problem while concealing
the input and the output where the number of communications and PPs are
almost 1/2 compared to the card-based cryptographic protocol for the million-
aires’ problem based on logical gates.
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Abstract. Recent malware is becoming sophisticated year by year. It
often uses common protocols like HTTP to imitate normal communica-
tions. So, we have to consider activities in common protocols when we
analyze malware. Meanwhile, the number of malware analysts is insuffi-
cient compared to new malware generation speed. To solve this problem,
there is expectation to a malware classification method which classifies
huge number malware with quickness and accurate. With this method,
malware analysts can dedicate to the investigation of new types of mal-
ware. In this paper, we propose a malware classification method using
Session Sequence of common protocols which classifies malware into new
or existing one. Furthermore, if the malware is classified as existing mal-
ware, the proposed method also classifies it into existing malware fam-
ilies. We evaluated our proposed method with traffics of 502 malware
samples. The experimental results shows that our method can correctly
judge and classify in 84.5 % accuracy.

Keywords: Malware classification · Traffic analysis · Similarity calcu-
lation

1 Introduction

Recently, increasing of cyber attacks has been a serious social problem. Typical
cyber attacks effectively use various malware because the expansion of the black
market makes attackers get the source code of the malware. Therefore, to evade
the detection by antivirus software, attackers can easily generate various malware
by modifying a part of the code or combining multiple malware codes. In addi-
tion, the infection technique has been sophisticated year by year (e.g. targeted
email attacks, watering holing, and so on) so that it is difficult to completely pre-
vent the malware infection. So, we have to consider an effective countermeasures
under an assumption that the malware has already intruded [1,2].
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 521–531, 2016.
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To consider the malware analysis as countermeasures, it is important to esti-
mate the behavior, purpose, and impact of malware activity. First, current mal-
ware commonly applies obfuscation and encryption. Second, current malware
changes its activities based on infected terminal environment. As an alternative
malware detection approach, there is a method which analyzes malware spe-
cific communication traffics such as IRC based C&C (Command and Control)
communications. But the latest malware widely utilizes well used protocols. For
example, one malware performs C&C communications with DNS queries. On
the other hand, the number of malware analysts is insufficient absolutely and
it is hard to deal with current large number of various malware with manual
analysis. To solve this problem, we have to prepare a system to classify a large
number of malware with quickness and accuracy.

In this paper, we propose a malware classification method using Session
Sequence of common protocols such as HTTP, HTTPS, DNS, and so on. The pro-
cedure of the proposed method is as follows. First, we extract different features
from individual protocols from malware traffics. Second, we represent malware
traffics as a series of string named Session Sequence. Third, we calculate simi-
larities of Session Sequence to make it possible to judge whether a malware is
new malware or existing malware. Finally, we classify malware that is judged
existing into proper malware families.

2 Related Works

As a malware classification method, dynamic analysis is often used. Dynamic
analysis is divided into system behavior based one and network behavior based
one. Recently, classification methods using network behavior of malware are
receiving a lot of attention. Perdisci et al. proposed malware clustering system
by extracting HTTP traffic traces and analyzing their similarity [3]. This sys-
tem detects malware using signature by the result of clusters generated from
HTTP payload. However, this system cannot detect malware that uses HTTPS.
Morales et al. analyzed network behavior of malware [4]. They focused on behav-
ior of DNS, NetBIOS, TCP, UDP, and ICMP protocols. Rafique et al. proposed
algorithms which classifies malware families by modeling their different network
behaviors on HTTP, SMTP, UDP, and TCP [5]. Both of them extract differ-
ent features from different protocols. However, they did not consider the time
sequences of malware traffics.

Lim et al. proposed a malware classification method based on traffic flow of
malware [6]. They extracted features from not only from protocols ARP, RARP,
IGMP, TCP, and UDP but also the other network layer such as IP address, port
number, and so on. They used traffic flows with arranging these features in time
sequences for classification of malware. As a method which combines dynamic
and static analysis, we proposed a malware classification method based on cluster
sequences and fuzzy hashing result of malware binaries [7]. We extracted per-
packet features from malware traffics, service port number, packet length and
communication protocol. Both of them classified malware by arranging features
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in time sequences. However, they used the same features from different protocols.
It is causing a decrease in accuracy rate.

To achieve high classification accuracy, we utilize information of different
features for individual protocols and features of time sequences, and proposed a
method to classify new malware to new malware class.

3 Proposed Method

3.1 Overview

We propose a method which uses Session Sequence of common protocols to
classify sophisticated malware. To achieve high classification accuracy, we add
new features which is described in Sect. 3.2.

Fig. 1. Overview of proposed method

Figure 1 shows a flow of the proposed method. We apply feature vector
extraction, clustering and labeling to learning data, and stores result to Ses-
sion Sequence DB. We also apply feature vector extraction, clustering, labeling
to testing data. The detail of procedure in the figure is described in the following
sections.

3.2 Feature Vector Extraction (Step 1)

We excepted that network traffic features contain beneficial information for
malware classification. We estimated that similar malware generates partially



524 S. Hiruta et al.

similar traffics because malware with same purpose is usually generated by
same tool. It is also important to extract different feature vectors for indi-
vidual protocols because the latest malware communicates with multiple pro-
tocols. In addition to ICMP, TCP, and UDP which is used in previous
researches, we extracted independent feature vectors from HTTP(80/TCP),
HTTPS(443/TCP), SMTP(25/TCP), DNS(53/UDP), and SSDP(1900/UDP)
because they are communication protocols which are largely related to malware
activities.

HTTP. Recent malware often communicates with HTTP to camouflage as
normal communication. Thus, we generated feature vectors of HTTP as
follows:

Total Size of Transferred Data, Total Size of Received Data,
Duration of Session, Type of Traffic Data,
Entropy of Domain Name, Entropy of URI,
Number of GET Requests, Number of POST Requests,
Number of Errors

We used MIME type for Type of Traffic Data. We converted individual MIME
types to the numbers when we generate feature vectors.
HTTPS. HTTPS is a protocol for communicating with encrypted messages
of HTTP using SSL/TLS protocols. It is too difficult to analyze the encrypted
communication. So, the latest malware communicates with HTTPS instead
of HTTP. We generated feature vectors of HTTPS as follows:

Total Size of Transferred Data, Total Size of Received Data,
Duration of Session, Entropy of Domain Name,
Exit Status of Session, Number of Continuation Data

Exit Status of Session means the status of TLS Handshake. In TLS Hand-
shake, firstly, a client sends the ClientHello to a server. Secondly, the server
sends ServerHello, Certificate, and ServerHelloDone to the client. Thirdly, the
client sends ClientKeyExchange, ChangeChipherSpec and Finished to the server.
Finally, the server sends ChangeChipherSpec and Finished to the client. After
this process, the client and the server start to exchange their data. In feature
vectors, if the session is finished before sending the ClientHello, we gave 0 to
Exit Status of Session. If the session is completed all of this process, we gave
5 to Exit Status of Session.
SMTP. SMTP is often used by malware which sends spam mails. We gener-
ated feature vectors of SMTP as follows:

Total Size of Mails, Number of Mails, Number of Errors
TCP. Malware also uses other TCP protocols excluding listed in above ones.
We treat them as TCP. We generated feature vectors of TCP as follows:

Total Size of Transferred Data, Total Size of Received Data,
Number of Transferred Data, Number of Received Data,
Duration of Session, Entropy of Domain Name

DNS. Recent attackers generate a large number of domain names using
domain generation algorithm in order to avoid detection by the black lists.
Thus, domain name which recent malware uses varies with time because they
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are generated with pseudorandom number. Also, malware performing C&C
communication emerges DNS query to resolve FQDN. So, we thought that
we can get specific features from DNS. We used three states by name resolu-
tion result, Successful Name Resolution, Unsuccessful Name Resolution, and
Error.
SSDP. SSDP is a protocol which is used for searching and responding to
UPnP devices on network. This protocol is often misused in DDoS attack.
For SSDP, we assigned a single traffic label in Session Sequence.
UDP. Malware also uses other UDP protocols excluding listed in above ones.
We treat them as UDP. We generated feature vectors of UDP, Total Size of
Data, Traffic Direction.
ICMP. From [4], malware often communicates with ICMP. For ICMP, we
assigned three states, Echo Message, Echo Reply Message, and Destination
Unreachable Message.

3.3 Clustering and Labeling (Step 2)

First, feature vectors of learning data obtained by feature extraction are classified
by k-means++ [8] for individual protocols, HTTP, HTTPS, SMTP, TCP, and
UDP. k-means++ is a non-hierarchical clustering algorithm and it classifies given
data into k clusters. After the cluster generation, we assign labels to each of
them, convert learning data to Session Sequences and register them into Session
Sequence DB. Other protocols, DNS, SSDP, and ICMP, are not clustered. We
allocated label to individual states of them.

After Session Sequence generation from learning data, we can apply label-
ing to testing data. Firstly, feature vectors of testing data are assigned to the
nearest clusters generated by learning data for individual protocols. After the
assignment, we convert testing data to Session Sequences based on cluster labels.
For DNS, SSDP, and ICMP, we apply the same processes as learning data.

Table 1. Examples of generated session sequence

Malware Family Session Sequence

Win32/FiseriaInstaller 1 !*AI;;=^^^!f!2=f

Win32/FiseriaInstaller 2 !*A7;;=^^!f^=!3f

Win32/TrojanDownloader.Agent 1 !X!;X;X;X;

Win32/TrojanDownloader.Agent 2 !X!;X;X;X;

Table 1 shows Session Sequence of 4 malware traffics as examples. We
assigned DNS to {!, ", #} and HTTP to {), *, ..., Z} in this example. From
this example, it seems that malware can be classified based on them.
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3.4 Similarity Calculation (Step 3)

We calculate similarities between Session Sequences of individual learning data
and testing data obtained in Sect. 3.3. Similarity R of Session Sequence s1 and
s2 is calculated as follows:

R =
c

(t1 + t2) − c
(1)

ti = |si| + (n− 1) (2)

Where ti is the number of tokens given by n-gram of Session Sequence si. Tokens
are {||h, |hi, hir, ..., a||} when a string “hiruta” is converted to tokens
by 3-gram. c is the number of common tokens between s1 and s2. R becomes a
value from 0.0 to 1.0.

3.5 New Malware Judgement (Step 4)

We expected that the malware may contain some characteristic seen in Session
Sequences of past malware even if it is quite new one. However, several new
functions that is adopted by the new malware affect the similarity calculation
with the past one. So, from the results of the similarity calculation, we judge
whether the malware is new malware or existing malware based on the threshold
Th. If the similarity R is smaller than Th, the malware is judged as new malware.
If the R is lager than Th, the malware is judged as existing malware and go to
the next step.

3.6 Classification (Step 5)

If the malware that is judged as existing malware in Sect. 3.5, it is classified
into proper malware families in this step. We classify the malware into families
that the malware shows the highest similarity. If there are multiple malware
families that the malware shows the highest similarity, all of them becomes the
classification results.

4 Evaluation

4.1 Experimental Data

We used 502 malware samples as experimental data which are collected from
November 2013 to October 2014. The traffic data is obtained by executing the
malware samples with the sandbox [9]. We sorted the 502 malware samples in
date order. Then, we divided them into 238 learning data (older ones in timeline)
and 264 testing data (latter ones in timeline). The learning data were classified
into 28 families and the testing data were classified into 23 families by ESET-
NOD32. 10 families are included in both learning and testing data.

If several samples have the same feature values, the clustering assigns them
to one cluster. From the point of performance view, our method threats them as
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one sample. Then we generated clusters by k-means++ for individual protocols,
HTTP, HTTPS, SMTP, TCP, and UDP. Table 2 shows the determined k and
the number of features. We determined the k value by varying k value from 3 to
100 and obtained k value which shows the best result.

Table 2. Number of generated clusters

Protocol HTTP HTTPS SMTP TCP UDP

k 50 3 3 5 5

Number of features 3879 144 44 444 251

We also determined the parameters same way. We obtained 3 for n of n-gram
and 0.75 for threshold Th. We used five criteria for performance evaluation, such
as Accuracy, Precisionnew, Recallnew, Precisionexisting and Recallexisting.
These values are calculated by TruePositive(TP ), FalsePositive(FP ),
FalseNegative(FN) and TrueNegative(TN) which defined as shown in
Table 3.

Table 3. Definition of TP , FP , FN and TN

Result New (R < Th) Existing (R >= Th)

Correct

New TP FN

Existing FP TN

Correct Incorrect

The formulas for the five values are as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

Precisionnew =
TP

TP + FP
(4)

Recallnew =
TP

TP + FN
(5)

Precisionexisting =
TN

FN + TN
(6)

Recallexisting =
TN

FP + TN
(7)

We also use ClassificationAccuracy (CA) for criterion. CA represents the
classification accuracy of existing malware to existing malware class. The formula
is as follows:

CA =
Correct

FP + TN
(8)
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We determined new malware and existing malware as follows. As denoted
above, we sorted all malware in date order of collected day. If the malware
detection name on ESET-NOD32 did not exist when we collected the malware,
we regarded the malware as a new malware because we have to determine it with
information in that day in practical operation. If the malware detection name
existed when we collected, we regarded it as a existing malware. As a result,
149 malware samples were rated as new and 115 malware samples were rated as
existing in 264 testing data.

4.2 Results

Table 4 shows the detailed classification results by the proposed method. As cal-
culated from Table 4, the proposed method achieves 72.7 % Accuracy, 71.5 %
Precisionnew, and 86.0 % Recallnew, 75.3 % Precisionexisting, and 55.7 %
Recallexisting, respectively. From above the result, to reduce FN result, our
proposed method has to sacrifice some FP result even if we tuned parameter so
that Recallexisting result becomes slightly worse. Also, the 60 malware samples
are classified correctly and achieves 52.2 % CA. This result also comes from poor
FP result.

Table 4. Detailed classification results using malware family names granularity

Result New (R < Th) Existing (R >= Th) Total

Correct

New 128 21 149

Existing 51 64 115

60 4

Total 179 85 264

Table 5 shows the execution times of individual steps when we examined 238
learning and 264 testing. The execution times are the average of 10 executions.
Table 6 shows the data amount of learning and testing data. Execution environ-
ment is as follows:

– OS: Ubuntu 14.04
– CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz
– Memory: 2.0 GB

As shown from Tables 5 and 6, the total time to judge and classify the 264
testing data is about 39.9 s. So, the proposed method can judge and classify
malware in real-time.
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Table 5. Average execution
time of each step

Time [sec] Learning Testing

Step

Step 1 12.2 31.8

Step 2 0.3 0.13

Step 3 - 8.0

Table 6. PCAP size and the number
of sessions and features

Learning Testing

PCAP Size [GB] 0.14 0.61

Number of Sessions 35,494 26,084

Number of Features 4,762 5,183

4.3 Consideration

In Sect. 4.2, we used only malware family names and did not consider variant
names. However, there is a possibility that the proposed method regards the
new variant malware as a new malware if it changes its characteristic drasti-
cally. In this case, the proposed method classifies those type of variant mal-
ware to a new malware so that it increases FP rate. For example, there are
Win32/FiseriaInstaller.L in learning data and Win32/FiseriaInstaller.H in test-
ing data. The similarity between them is low so that Win32/FiseriaInstaller.H is
judged as a new malware in testing and the result is treated as FP . Therefore,
we also experimented based variant names of malware. Under this condition,
Win32/FiseriaInstaller.H is treated as a new malware so that the result in above
example is treated as TP .

The malware used in the experiment was the same in Sect. 4.1. On the other
hand, the 238 learning data were classified into 35 types of variants and the
264 testing data were classified into 31 types of variants. 8 types of variants
are included in both learning and testing data. Also, 188 malware samples were
treated as new and 76 malware samples were treated as existing in testing data.

Table 7 shows the detailed classification results based variant names of mal-
ware. The notation of the table is identical to Table 4.

Table 7. Detailed classification results using malware variant names

Result New (R < Th) Existing (R >= Th) Total

Correct

New 163 25 188

Existing 16 60 76

60 0

Total 179 85 264

As shown in Table 7, the proposed method achieved 84.5 % Accuracy,
91.1 % Precisionnew, 86.7 % Recallnew, 70.6 % Presicionexisting, and 78.9 %
Recallexisting, respectively. Also, the number of the malware classified correctly
was 60 so that CA becomes 78.9 %. Almost of them have improved from the value
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in Table 4 excluding Presicionexisting. Especially, Precisionnew and Recallnew
are improved dramatically. As a result, 91.1 % of malware which is rated as new
malware is really new malware and 86.7 % of new malware could be correctly
judged. In Table 4, 128 malware samples were correctly judged as new malware
by using malware family names but 163 malware samples were correctly judged
as new malware using malware variant names. So, we can find that 35 malware
samples were new variant malware in testing data. From above results, the pro-
posed method is further useful under fine grained malware classification because
it can classify the malware into not only new malware family but also new variant
in a family.

5 Conclusion and Future Works

In this paper, we proposed malware classification method using Session Sequence
of common protocols because current malware widely utilize common protocols
to imitate normal traffic. As a common protocol, we used HTTP, HTTPS, SMTP,
TCP, DNS, SSDP, UDP, and ICMP for feature extraction.

We evaluated our method with traffics of 502 malware samples which are
separated into 238 learning data and 264 testing data. The results show that we
achieved 84.5 % Accuracy. Also, this method can judge and classify 264 malware
about 39.9 sec which is enough speed for real-time classification. However, this
method could not classify malware that has exactly the same Session Sequences.
We consider that we have to use the other feature to classify such malware, but
it sometimes requires additional costs.

As our future works, first, we will apply the our proposed method to much
more malware and evaluate the performances. Second, we will refine the extract-
ing feature vectors, especially HTTP, because feature vectors of HTTP often
belonged same clusters even though they were different values. Finally, we will
improve clustering algorithm such as x-means or DBSCAN which are deter-
mine by automatic the optimal number of clusters because it takes some time
to determine them by manually.
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Abstract. TorrentLocker is a ransomware that encrypts sensitive data
located on infected computer systems. Its creators aim to ransom the
victims, if they want to retrieve their data. Unfortunately, antiviruses
have difficulties to detect such polymorphic malware. In this paper, we
propose a novel approach to detect online suspicious processes accessing
a large number of files and encrypting them. Such a behavior corresponds
to the classical scenario of a malicious ransomware. We show that the
Kullback-Liebler divergence can be used to detect with high effectiveness
whether a process transforms structured input files (such as JPEG files)
into unstructured encrypted files, or not. We focus mainly on JPEG files
since irreplaceable pictures represent in many cases the most valuable
data on personal computers or smartphones.

1 Introduction

Scareware are designed to frighten users and force them to quickly purchase soft-
ware to protect their private data or prevent irreversible hardware damages [9].
A particular class of scareware encrypts the data of infected systems, and asks
their user to pay a ransom (usually, in Bitcoins) to re-gain access to their data.
These malware, known as ransomware, follow usually three phases [8]: (1) Seek
a new target; (2) Prevent legitimate access to local information; and (3) Display
ransom message and try to extort some money.

Even if cryptoviruses encrypting the data of infected systems have been con-
ceptualized twenty years ago [21], the number of ransomware attacks has only
dramatically increased in the recent years. Around four million ransomware sam-
ples have been identified in 2015 indicating an upward trend, since fewer than
1.5 millions were analyzed two years before [7]. For example, Cryptolocker has
supposedly infected approximately 250 thousands computer systems around the
world [10]. Some analysts have estimated that may have brought in millions to
its creators. Naturally, such an assertion is hard to verify. TorrentLocker [14]
is another example that currently gains in popularity. Once TorrentLocker has
infected a system, it encrypts the first two megabytes of all the existing files
found on that system. Encrypting partially the files is sufficient to conceal the
information and is more efficient for the malware.

Considering the increasing number of ransomware attacks, proposing novel
detection mechanisms is more crucial than ever. Traditionally, malware detection
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 532–541, 2016.
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solutions are either based on static analyses such as classical signature databases,
or based on dynamic anomaly-based approaches [4]. The latter solutions are the
only ones that can cope with polymorphic malware as TorrentLocker or zero-day
malware.

Many recent security reports (e.g., [1,12]) focus on the advancements of
ransomware attacks and their level of sophistication instead of providing some
insights about effective defense solutions. Our work proposes a novel approach to
detect an abnormal behavior which is typically attributed to ransomware. This
solution is relatively simple to implement and requires only few resources.

Our main contribution presents a solution to identify processes encrypting
large numbers of structured files with high entropy (such as JPEG files). We
propose to use the Kullback-Liebler divergence measure to detect processes which
read structured files with high entropy and overwrite them with unstructured
encrypted files. Detecting the encryption of low entropy files is relatively simple,
since the encryption process would increase the entropy of the resulting files
drastically.

In this paper, we mainly focus on JPEG files, since they represent in many
cases the most valuable data that a user has on his/her personal computer or
smartphone. People may have tens of thousands of pictures on their systems.
They represent usually priceless souvenirs, which cannot be retrieved otherwise
(if proper back-ups have not been done). Therefore, the goal is to detect the
effect of file-encrypting ransomware as soon as possible to prevent that too many
files are lost. On the other hand, detecting the transformation of JPEG files is
relatively challenging due to their internal structure. They are composed of large
compressed blocks, which have high entropy (as if they were encrypted).

2 File Differentiation Measures

Two differentiation measures can be naturally used to distinguish between differ-
ent types of files. The first one is the classical Shannon entropy of the probability
distribution of a random variable, which measures the uncertainty or variability
associated with the variable [6].

Definition 1. The entropy of a discrete random variable X from a sample space
Ω = {x1, x2, · · · , xn}, with its probability distribution p is defined as:

H(X) = −
n∑

i=1

p(xi) log p(xi) (1)

The larger H(X) is, the more unpredictable the outcome of X is. The maxi-
mal value of the entropy is log n. This corresponds to the case where values are
uniformly distributed over the sample space. Shannon entropy has been employed
in the past to detect various types of malware [2,16,20].

The second one is the Kullback-Leibler (KBL) divergence [6], also known
as the relative entropy, which determines the distance between two probability
distributions on a random variable.
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Definition 2. Given two probability distributions p and q over a discrete ran-
dom variable X from a sample space Ω = {x1, x2, · · · , xn}, the KBL divergence
or relative entropy D(p ‖ q) is defined as follows:

D(p ‖ q) =
n∑

i=1

log
(
p(xi)
q(xi)

)
∗ p(xi) (2)

This value is null if and only if both probability distributions are equal. This
criterion has been also used in the past to detect various types of malware [5,11].

In order to define the sample spaces of the selected criteria, the files can be
simply seen as streams of N -grams. For N = 1, the files are interpreted as 8-bit
characters. Similarly, for N = 2, the files are interpreted as 16-bit characters.
In this latter case, the 2-grams can either overlap or not. The former one has
been chosen to avoid any alignment issue. Notice that it is not useful to consider
higher values of N . For example, if N = 3, the sample space would be composed
of 224 elements. Since JPEG files are usually composed of about 224 bytes, the
probability distribution p would be defined by few elements for each value of xi.

3 Related Work

Nowadays, ransomware protection is a security challenge attracting many
researchers. A summary of recent work is presented in this section.

Gazet [8] proposed an analysis of three ransomware families based on their
code quality, functionality, and cryptographic primitives. They showed that these
ransomware succeeded for massive propagation but not for mass extortion. In a
similar way, Kharraz et al. [12] analyzed 1,359 ransomware samples categorized
into fifteen different ransomware families. They showed that a large number of
existing ransomware are not as complex as reported. They mostly use superfi-
cial techniques to lock the victim systems or encrypt their files. Cabaj et al. [3]
analyzed the network behavior of CryptoWall using an honeypot and an auto-
matic malware analysis system. Kim et al. [13] proposed a model based on social
engineering techniques to detect Cryptolocker ransomware. Finally, Léveillé [14]
analyzed in detail the functionality and characteristics of TorrentLocker.

Mobile phones ransomware is another area investigated by researchers. Mer-
caldo et al. [15] proposed a model checking approach to detect Android ran-
somware. In this work, they have mainly used formal models to detect ran-
somware with high efficiency. Andronio et al. [1] developed a proactive ran-
somware detection approach based on machine learning techniques. It includes a
text classifier to identify the threatening messages, an emulator to detect locking
strategies, and the application tracking to detect encryption flows. Finally, Song
et al. [19] proposed to monitor processes and file directories using statistical
methods based on processor and memory usage, and I/O rates.

Differentiation criteria, such as Shannon entropy [6] and Kullback-Liebler
divergence [6] have been used to detect various malware. Perdisci et al. [16]
presented an efficient approach to detect packed executables used by virus
developers. They used Shannon entropy to identify these malicious codes.
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Cooper et al. [5] employed the Kullback-Liebler divergence to differentiate
between legitimate and malicious application behaviors at the source code level in
Android systems. They showed that the divergence between malicious and legit-
imate applications can be significantly high even if they have similar behavior.

Very recently, Scaife et al. [18] presented CryptoLock, which has the same
goal as our solution. In fact, this is the most relevant work to be compared
with. They proposed to identify ransomware by detecting processes that (1)
read large number of files and (2) overwrite them with altered files (most likely,
encrypted). Their solution is mainly based on file fingerprinting [17] that rep-
resents a significant burden on the solution. It selects statistically improbable
features (with respect to the Shannon entropy) of a file and hashes them into a
Bloom filter. Each insertion into the table requires the computation of a hashing
function (e.g., SHA-1). Two given files are similar if and only if the two corre-
sponding Bloom filters are similar (i.e., have almost the same bits set to one).
Hence, CryptoLock identifies a ransomware according to three primary criteria
(file special number, file fingerprinting, and Shannon entropy) and two secondary
criteria (file deletion, and file funnelling – reading a large number of unrelated
files). Notice that the three primary criteria have to be present to declare that a
process is a ransomware. This means that the process under surveillance should
transform the resulting output files significantly with respect to the input files,
and these output files should have high entropy.

In summary, no definite solution to detect or react to file-encrypting ran-
somware exists yet. Motivated by this fact, we propose a novel approach to
detect file-encrypting ransomware such as TorrentLocker based on their inher-
ent behavior, which transforms large numbers of files in a short period of time.

4 The Proposed Approach to Detect TorrentLocker

When a system is infected, TorrentLocker launches a large number of processes to
encrypt the files in parallel. A näıve approach to reveal this infection would sim-
ply be to detect processes showing some abnormal behavior such as (1) opening
a large number of files or, more specifically, (2) opening a large number of JPEG
files (which leaves the other files unprotected). Unfortunately, such a behavior
can be observed for legitimate applications such as iPhoto or PhotoFinder.

We therefore propose to diagnose a potential TorrentLocker (or, in fact, any
file-encrypting ransomware) infection by detecting the following behavior:

Abnormal Behavior. A process has an abnormal behavior if (1) it opens a
large number of files and (2) the structure of the input stream is different from
the structure of the output stream.

The latter criterion of the behavior is rather vague. The objective is to find
a simple criterion to distinguish between JPEG files and encrypted files. Notice
that most parts of the JPEG files are close to encrypted/compressed data. If we
can differentiate between these two cases, it should be simpler to differentiate
between highly structured text files or Word files, and encrypted files. In the next
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sections, two such criteria are considered: Shannon entropy and Kullback-Lieber
divergence.

4.1 Shannon Entropy to Distinguish Files

To evaluate the usefulness of the Shannon entropy to distinguish between raw
JPEG files and encrypted JPEG files, an experiment has been done on a data
set composed of 150 JPEG files. These files were independently encrypted using
the AES-256 encryption algorithm in CBC mode.

Table 1. Comparing entropy values of JPEG files and encrypted files for N -grams

Block size N = 1 N = 2

Encrypted files 7.9998 15.9545

JPEG files 7.9684 15.7201

Table 1 compares the average values of the Shannon entropy of the JPEG
files and the encrypted JPEG files. Analyzing these results, we have to conclude
that it would be difficult (almost impossible) to distinguish JPEG files from
encrypted files using the Shannon entropy as differentiation criterion. The values
are too close to each other. This may lead to a high rate of false positive detection
(blocking a legitimate process) or a high rate of false negative detection (allowing
a malicious ransomware to encrypt as many files as possible). Obviously, this
latter option has the worst impact.

We should notice that this observation on the inappropriateness of Shannon
entropy does not contradict the results presented by Scaife et al. [18]. CryptoLock
uses the Shannon entropy simply to determine if the overwritten files have a
high probability of being encrypted. If a legitimate process reads and overwrites
JPEG files, CryptoLock would not flag this process as a potential ransomware
even though the output files look like encrypted files due to their high entropy.
The similarity function (sdhash) would represent the main criterion in this case.
The input files and the corresponding output files should have a perfect similarity
score, since the legitimate process does not alter the files.

Our objective is to replace the costly similarity function and find a criterion
capturing the transformation made by malicious ransomware. In the following,
we introduce another differentiation criteria, called Kulback-Liebler divergence.

4.2 Kullback-Liebler Divergence to Distinguish Files

The Kullback-Liebler divergence notion is the next obvious choice to distinguish
between encrypted files and other types of files. An ideal encryption algorithm
should produce encrypted files which look liked random files. Hence, the distri-
butions of their N -grams should be close to the uniform distribution.
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For our second experiment, we used a data set of 2000 JPEG files split into
twelve categories, such as sport, animal, landscape, residential, space, etc. These
files have been subsequently encrypted using the AES-256 encryption algorithm
in CBC mode. Table 2 summarizes the results. For both sizes of the N -grams,
the Kullback-Lieber divergence D(p ‖ q) can distinguish between JPEG files
and encrypted files. The distribution of the N -grams q has been compared to
the uniform distribution p.

Table 2. KBL divergence values of JPEG files for N = 1 and 2

File types Block size Minimum Average Maximum Variance

JPEG N = 1 0.007 0.0189 0.1456 1.0044e-04

N = 2 0.0428 0.1737 0.2535 Negligible

Encrypted N = 1 3.4939e-04 0.0013 0.0149 5.4710e-07

N = 2 0.0078 0.1105 0.1497 0.0018

To analyze further the case of 1-grams, Fig. 1 presents the distribution of all
the 2000 Kullback-Lieber divergence values for both the encrypted files and the
JPEG files. It shows clearly that most of the values for the JPEG files are around
0.01 and for the encrypted files are around 0.001. It is important to develop an
approach to differentiate these two types of files as accurate as possible, if we
want to deploy it in some mass market products.

5 Evaluation

5.1 Choosing KBL Threshold Based on the Accuracy Rate

In order to efficiently distinguish JPEG files from encrypted files using Kullback-
Liebler divergence, an appropriate threshold value τ should be determined. Thus,
if the Kullback-Leiber divergence of a input stream is below the threshold τ , the
corresponding file would be assumed to be an encrypted file. Unfortunately, some
files would be misclassified by this detection mechanism. The effectiveness of this
approach can be evaluated with the accuracy equation:

A =
TP + TN

TP + TN + FP + FN
(3)

where a True Positive (TP) is an image detected as an image, a False Negative
(FN) is an image detected as an encrypted file, a True Negative (TN) is an
encrypted file detected as an encrypted file, and, finally, a False Positive (FP) is
an encrypted file detected as an image.

Table 3 lists some threshold values and corresponding results of our tests.
From the results, we can conclude that it is sufficient to analyse the 1-grams of
the input/output streams of any process to detect whether or not the process
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(a) JPEG files – most values around 0.01

(b) Encrypted JPEG files – most values around 0.001

Fig. 1. Clouds of points of the KBL divergence values for the 1-grams.

Table 3. Summary of the results obtained for different KBL thresholds

N = 1 N = 2

Threshold JPEG FN Encrypted FP A Threshold JPEG FN Encrypted FP A
0.005 0 5 99.88% 0.14 24 68 90.1%

0.007 0 1 99.98% 0.15 32 0 96.4%

0.009 27 1 99.3% 0.16 41 0 95.4%

encrypts its input files. The fact that 1-grams are sufficient would have a major
impact on the performance of the detection mechanism. It would simply has
to maintain a 256-position table to compute the divergence value for a given
process.

5.2 Improving Effectiveness by Calculating KBL Values for First
Kilobytes

TorrentLocker only encrypts the first two megabytes of the files. To provide a
more efficient solution to detect TorrentLocker, we have calculated the Kullback-
Liebler divergence values for the first 128, 256 and 512 KB of the files. Only 1000
files satisfy this size limit. Thus, we did the experiments with 1000 JPEG files
and the corresponding encrypted files. Table 4 summarizes the results.

Considering a number of different thresholds, we obtained the results listed
in Table 5 for the first 128, 256 and 512 KB. The results confirm that even by
analyzing the first kilobytes of the files, we are able to differentiate JPEG files
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Table 4. KBL divergence values of truncated JPEG files for N = 1 and 2

File types Block size Minimum Average Maximum Variance

JPEG N = 1 0.007 0.0189 0.1456 1.0044e-04

N = 2 0.0428 0.1737 0.2535 Negligible

Encrypted N = 1 3.4939e-04 0.0013 0.0149 5.4710e-07

N = 2 0.0078 0.1105 0.1497 0.0018

from encrypted files. In fact, considering a threshold of 0.002, Kullback-Liebler
divergence can distinguish JPEG files from encrypted files based only on the
first 128, 256 and 512 KB with a detection rate 99.95%.

Table 5. Detection rate considering only partial files

128Kb 256Kb 512Kb

Threshold JPEG FN Encrypted FP A JPEG FN Encrypted FP A JPEG FN Encrypted FP A
0.0005 - - - 1 467 76% 1 0 99.95%

0.0010 1 474 76% 1 0 99.95% 1 0 99.95%

0.0020 1 0 99.95% 1 0 99.95% 1 0 99.95%

0.0060 3 0 99.85% 3 0 99.85% 2 0 99.85%

6 Conclusions

In this paper, we propose an anomaly-based approach to detect file-encrypting
ransomware such as TorrentLocker in computer systems.

As TorrentLocker encrypts all the files on the infected systems, one solution to
detect its presence is to find processes encrypting a large number of files quickly.
In order to detect encrypted files, we analyzed a number of criteria to differentiate
normal files from encrypted files. We have focused on the JPEG files since they
represent quite often the most valuable files on personal systems. On the other
hand, since JPEG files are already compressed files and have high entropy, they
represent a critical use case for any ransomware detection mechanism.

In our experiments, we used the Kullback-Liebler divergence to analyze a
data set composed of 4000 files: 2000 JPEG and 2000 encrypted files using
AES-256 algorithm in CBC mode. We have accomplished a series of tests to
find the appropriate thresholds giving efficient detection rates. Our experiments
show clearly that we can distinguish JPEG files form encrypted files with a high
accuracy rate. This can be achieved efficiently by the analysis of the 1-grams of
incoming and outgoing flows of a process with the Kullback-Liebler divergence.

Our proof-of-concept has been done offline. The next step is to implement
this approach on a computer system monitoring online the processes running
on a computer system. One way to do this is to develop a file system driver
monitoring the behavior of the processes. As soon as a process seems to transform
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inappropriately its files, the system may chose to slow down the file interaction
while asking to the user whether or not the process is legitimate. Some legitimate
processes may present real challenges. For example, file compression tools may be
particularly at risk. Thus, it may be important that the randomware detection
solution includes a white-list for these legitimate processes.

Malware detection is an arms race between the malware designers and the
anti-malware developers. One way to evade the solution proposed in this paper
is to use an encryption algorithm preserving the distribution function p. Such an
algorithm can be easily found. Any mono-alphabetic substitution would simply
permute the values of incoming files. Such an encryption algorithm may be easily
reversed. We leave this challenge for future works.
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Abstract. Malware is often designed to make analysis difficult – behav-
ing differently if it detects that it is in an analysis environment. We
propose that such anti-analysis malware can be detected by their anti-
analysis behavior in terms of certain signals. Signals form semantic
features of potential anti-analysis techniques and are characterized as:
weak, strong, or composite. We prototype a system to show the viabil-
ity of detection. Experiments on malware and also non-malware show
that both malware and non-malware can exhibit signals, however, anti-
analysis malware tends to have more and stronger signals. We present
the malware with an environment which behaves either like an analysis
environment or not – we find anti-analysis malware behave differently
in both cases. Normal programs, however, do not exhibit such behavior
even when they have some weak signals. Signal detection is shown to have
potential of distinguishing anti-analysis malware from non-malware.

1 Introduction

Understanding or reverse engineering of malware through dynamic analysis is
aided by tools such as sandboxes, debuggers, emulators and virtual machines
(VM). In response, malware authors make it difficult for their malware to be
analysed using measures to hinder such analysis, e.g. the Simda malware detects
various sandbox environments, security tools, VMs, etc. Furthermore, when the
malware detects an analysis environment, it may behave differently such as ter-
minating or executing a benign payload. A 2014 study selected 200 K malware
samples, running each on a real system and VMware [2]. They found that 20 %
of the malware detected the presence of the VM – aborting execution. Thus,
anti-analysis malware makes malware analysis more difficult or renders tools
ineffective [1]. We call malware which detects dynamic analysis environments,
security tools, VMs, etc., as anti-analysis malware.

In this paper, we propose that the use of anti-analysis techniques gives a good
indication that an unknown binary is malware or not. We also want to distinguish
anti-analysis malware from non-malware. We propose to discover anti-analysis
malware by: (i) its use of anti-analysis techniques; and (ii) behavioral differences
when its anti-analysis tests succeed. We differ from other behavioral approaches
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 542–551, 2016.
DOI: 10.1007/978-3-319-48965-0 33



Detecting Malware Through Anti-analysis Signals - A Preliminary Study 543

as we characterize and differentiate the behavior of malware and non-malware
in terms of potential anti-analysis techniques. Note that as shown in the exper-
iments, non-malware may use similar features (weak signals) as malware.

We implement a prototype in PIN [9] for Windows, AADetect, to detect
the use of anti-analysis techniques during execution as signals. We apply run-
time counter-measures to change the perception of the program under test as to
whether a signal usable by anti-analysis is present or not. Contrary to expecta-
tions, experiments show that both malware and non-malware to exhibit signals.
However, malware have stronger signals than normal programs. When anti-
analysis counter-measures are applied, malware can have significant behavior
deviation from when counter-measures are not used. We found that non-malware
do not behave in this way. This suggests our techniques are promising to detect
anti-analysis malware from non-malware. Our techniques can be combined with
existing analysis environments and sandboxes [3–8,10].

1.1 Related Works

Fine-grained instrumentation [6,7] has been used to detect anti-analysis behav-
iors in malware but large-scale deployment of fine-grained instrumentation is
problematic, e.g. a slow emulated environment can have server-side timeouts [10].

The malware can be run in multiple analysis systems to detect differences
in behavior [3–8,10]. Many works focus on malware but not on non-malware,
e.g. Balzarotti et al. [3], show that the malware system call execution trace can
be different under an emulated environment. An important difference with our
work is that although there is a behavioral comparison of differences, we com-
pare signals which are semantically related to potential anti-analysis techniques.
Most of the other works compare behavior in terms of differences at the system
resource, system call or network traffic level, i.e. at the level of the operating
system. Our signals are semantically different since they measure certain kinds
of anti-analysis checks and techniques. We are not restricted by limitations such
as system calls, e.g. IsDebuggerPresent is not a system call. We do not require
deterministic execution requirements [3,8], and the anti-analysis malware can
in-principle behave non-deterministically.

We investigate not only the anti-analysis behavior of malware but also differ-
entiate with non-malware (under different execution environments). Our envi-
ronments however differ in that we turn on and off the signals deliberately. This
is subtly different from running with different execution environments. Rather
having an execution profile which is compared, we focus on comparing the signal
behavioral profile under different environments as a way to differentiate between
anti-analysis malware and normal programs.

We have focused our implementation and experiments on Windows. Malware
can be in other operating systems. Petsas et al. [11] show anti-analysis techniques
can evade dynamic analysis in Android emulated environments. Many of their
anti-analysis heuristics can be treated as signals.
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2 Detecting Anti-analysis Techniques

We believe that most anti-analysis techniques, by their very nature, can
be detected in some fashion if it occurs at runtime. We call a signal
an indicator of whether a certain runtime behavior, which may be associ-
ated with a certain anti-analysis technique, occurs during execution, e.g. the
IsDebuggerPresent API in Windows indicates if a process is being debugged.
A call to IsDebuggerPresent() is a signal, but it might not mean that the
process is anti-analysis malware.

We categorize signals as: strong signals or weak signals. Intuitively, a strong
signal is a feature which is more likely to occur in anti-analysis malware. A weak
signal, however, is a feature which may be used in anti-analysis techniques but
also has legitimate purposes. Thus, it can occur in malware and also normal
programs. We also consider signals which can be considered together as composite
signals. Table 1 gives a possible list of signals – the signals are either Windows
APIs1 or x86 instructions. This list is by no means exhaustive – one can easily
add more. Our preliminary experiments show that this small set already gives
promising results.

Weak Signals. A weak signal is a signal which may be associated with anti-
analysis techniques but also used in normal programs, e.g. our experiments show
that the IsDebuggerPresent API is used in non-malware. Thus, by itself, a weak
signal may not give much evidence that a program is anti-analysis malware. How-
ever, we also consider the accumulated evidence of all detected signals. (See also
the strong form of the IsDebuggerPresent signal).

Another weak signal which occurs in normal programs is FindFirstFileEx
which is used to search through a directory for a file matching a filename or
file attributes. It is typically used to enumerate the files which occurs in normal
programs but malware may combine this with searching for particular filenames.
Thus, a weak signal can be used in combination with other signals, see below.

Some weak signals are requests for information which may appear legiti-
mate, i.e. the API may be used in normal programs. However, there is also a
clear rationale for malware to also want this information. Some examples are:
RegEnumKeyEx (used to enumerate through the registry keys), GetUserNameEx
(gets user name), and RDSTC (reading the processor time stamp counter).

Strong Signals. A strong signal is meant for signals which give a greater like-
lihood that an anti-analysis technique has been used. Some examples of strong
signals follow. VMware provides a specific communication port (it is a side chan-
nel for a program to communicate with VMware). As this is not really a com-
munication port but a backdoor channel, in normal Windows without VMware,
the runtime behavior is different. Detecting I/O to such a port (using the IN
instruction) suggests that the program is trying to perform a VMware backdoor

1 A system call is also a Windows API but not all APIs lead to system calls.
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Table 1. Detection signals

API/Instruction Strong Weak Composite

Registry Checks:

RegOpenKeyEx, RegQueryValueEx *

RegEnumKeyEx * *

Process Checks:

GetProcessImageFileName, GetModuleBaseName * *

Filesystem Checks:

PathFileExist, GetModuleHandleEx,
GetFileAttributes, LdrGetDllHandle, CreateFile

*

LdrGetProcedureAddress *

FindFirstFileEx * *

User Check: GetUserNameEx * *

Debugger Check

IsDebuggerPresent *

IsDebuggerPresent (PEB) *

CheckRemoteDebuggerPresent *

Special Instructions

SLDT, SIDT, SGDT, CPUID, IN *

Timing Checks:

RDTSC, NtDelayExecution *

Comparison Checks

wcsstr, wcscmp, wcsicmp, strstr, strcmp, stricmp,
mbsstr, mbscmp, mbsicmp

*

command which suggests: (i) it is anti-analysis malware; or (ii) the program is
a special program having VMware features, e.g. a VMware utility. Some strong
signals are simply whether the API/instruction has been used but in others, the
values of the parameters are used to determine between a strong signal or no
signal at all, e.g. the port parameter in the x86 IN instruction.

A weak signal may also have a strong version, for example, the
IsDebuggerPresent (PEB) signal in Table 1. In its weak version, it is a call
to the IsDebuggerPresent API. However, in Windows, this information is also
stored as a flag in the PEB (Process Environment Block). The PEB is an
opaque data structure in memory used internally by Windows. We consider
IsDebuggerPresent (PEB) a strong signal as it means that the flag is read
directly, bypassing the recommended IsDebuggerPresent API.2

2 The API implementation reads the flag, so is not a system call.
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Composite Signals. A composite signal consists of two or more other sig-
nals. It is intended to be stronger than its original signals which may be weak.
We do not differentiate between the signal strength of strong and composite
signals other than they are both stronger than weak signals. For example, the
GetUserNameEx API returns the user name associated with the thread which
may be used by normal programs (a weak signal). However, if the data is then
used in a string comparison function to compare special string values associated
with anti-analysis, e.g. “sandbox” or “vmware”, this would appear more likely
to be an anti-analysis behavior. Thus, we consider a weak GetUserNameEx signal
together with checks for specific strings to be a composite signal. In a similar
way, the weak FindFirstFileEx signal combines with specific checks for certain
filenames which exist in a VM, e.g. a driver like vmmouse.sys.

The use of the RegOpenKeyEx API only means that the program is accessing
a registry key - a common operation in Windows, hence, by default a weak
signal. However, specific key values containing VMware as a sub-string, would
be a strong signal of attempting to detect or some interaction with VMware.
For example, if the lpSubKey parameter contains the value “SOFTWARE/VMware,
Inc./VMware Tools”, then we consider it to be a composite signal.

We also treat the number of signals or a program time metric such as instruc-
tion count when we compare the result of two runs, one with anti-analysis coun-
termeasures and one without, to be a composite signal. This is mainly just to
make the treatment more uniform.

3 Implementation

We aim to detect malware which are Windows binaries by executing them.
Packed malware are also handled. We implemented a prototype, AADetect, to
execute binaries using the Intel PIN dynamic binary instrumentation tool [9]
which supports binary files without modification and allows for dynamically
generated or self-modifying code (e.g. unpackers).

Detecting Anti-analysis Signals. The implementation of AADetect in PIN
is mostly straightforward, detecting the signals in Table 1 which are either Win-
dows APIs or particular x86 instructions. It is easy to add to this list. PIN is
used to instrument the code so that our routines are called whenever the par-
ticular instruction is executed or the API is called. Depending on the signal,
the parameters or values for that signal also need to be checked, e.g. the value
of the registry key or sub-keys. In order to detecting the IsDebuggerPresent
(PEB) signal, we additionally instrument memory references to the PEB. We also
count the number of basic blocks which have been JIT-ted by PIN to measure
execution code coverage and the total number of instructions executed.

Anti-analysis Countermeasures. Suppose the anti-analysis malware behaves
differently if its tests detect the presence of some analysis environment or tool.
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Simply monitoring its execution for anti-analysis signals is not enough, rather,
we need to change the semantics of the API or instruction so that its anti-analysis
code gives a certain result.

We employ two different execution modes to expose the malware anti-analysis
behaviors. In countermeasure mode, we want to behave as if the analysis environ-
ment or tool associated with the signals is not present. For example, regardless
of whether the code is running in VMware or not, we will report for the tests
associated with signals for VMware as if we are not running in VMware. We
do this by modifying the API or instruction results appropriately. We assume
that the implementation of the countermeasures succeed in evading the anti-
analysis tests in the malware. As a result, the malware is fooled into expressing
its malicious behavior.

Non-countermeasure mode is the opposite of countermeasure mode, we pre-
tend that the malware succeeds in its anti-analysis tests. Namely, the results
of the API or instruction is similar to when the malware is being run within a
VM, sandbox or debugger, for the implemented signals, regardless of whether
this is the case. Being the opposite of countermeasure mode, we expect that
the malware will execute its (benign) anti-analysis behavior rather than its real
(malicious) payload, i.e. terminate execution.

Once we have signals from runs in countermeasure and non-countermeasure
mode, any difference in behavior can be another composite signal. We count the
number of different basic blocks and instructions executed, and threads created.

Table 2. Non-malware tested & signals found

Non-malware Weak signals detected

CMD shell, Process Explorer, Chrome,
Internet Explorer

RDTSC

SSH Secure Shell Client, Realterm IsDebuggerPresent

Task Manager, Notepad, Calculator,
MSPaint, uTorrent, Visual Studio, Word,
Excel, Daemon Tools Lite

RDTSC, IsDebuggerPresent

Firefox, Avira, Skype, Windows Photo
Viewer, NVIDIA GeForce Experience

RDTSC, IsDebuggerPresent,
NtDelayExecution

Windows Media Player RDTSC, IsDebuggerPresent,
GetUserNameEx

Notepad++ RDTSC, IsDebuggerPresent,
GetUserNameEx,
NtDelayExecution

4 Experiments

We present preliminary experiments with AADetect to test our hypothesis that
evaluating anti-analysis behavior of a program can identify anti-analysis mal-
ware from non-malware. We tested with 69 Windows malware from 39 families
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Table 3. Summary of Detection Results for Malware and Normal Programs Stg:
Strong, Cpx: Complex, Wk: Weak, BB: #Basic Blocks (unit 106), Inst: #Instructions
in M (unit 106), Thr: #Threads

including the well known Simda family. These malware are from Offensive Com-
puting, VirusShare, Malwr and some other sources which are already known to
be anti-analysis malware or ones we checked through manual analysis. For non-
malware programs, we tested with 22 common Windows software in Table 2
which also lists the signals found. We execute all the malware and normal
executables with AADetect in countermeasure and non-countermeasure mode.
AADetect produces signals which can be compared including runtime measures.

The results of signals found by AADetect on the sample malware and the
normal programs tested are summarized in Table 3 – giving the number of strong,
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weak and composite signals detected. We have tested all malware samples but
have only listed some of them (mainly one per family). We also found the sam-
ples not listed to give similar behavior. The first column (#) gives the malware
instance number. Columns 3–8 are the results in countermeasure mode while
columns 9–14 give the corresponding results in non-countermeasure mode. The
signal count is the number of times a strong, complex or weak signal is detected.
Δ gives the difference in number of basic blocks, instructions and threads exe-
cuted between the two modes. Although we present signal and execution statis-
tics, we can also show detailed signal execution trace information (not presented
due to lack of space). The non-malware programs are interactive, so the number
of basic blocks and threads depends on the GUI interaction, hence, statistics are
not given as they are incomparable between modes.

We found anti-analysis malware gives many signals. Many malware have
many strong signals in addition to weak signals. We only detected weak signals
with some malware (Keygen, Nakuru.A, Rebhip, Yuner.A). Complex signals are
fewer but it may be due to the small set of signals used. What is unexpected
is that normal software also exhibit signals. However, we only found only weak
signals, see Tables 2 and 3. In particular, the weak IsDebuggerPresent signal
occurs frequently. Many malware exhibit more and stronger signals than nor-
mal programs but some of them may appear to have similar signals to normal
programs, i.e. Rebhip (2 x IsDebuggerPresent) versus Calculator both with
2 weak signals. However, we will see below there are other and more signal
differences.

We see that anti-analysis malware behave differently depending on whether
they detect the analysis environment or not. In countermeasure mode, where the
signals to measure the analysis environment are masked, the malware usually
executed more basic blocks and instructions with possibly more threads. We
expect this happens when the malware is executing its true behavior. In non-
countermeasure mode, the effect of the signals is to always detect that there is
an analysis environment present, thus, we expect that the malware will hide its
behavior. As expected, there are less basic blocks, instructions and threads. In
one case, Rebhip.A, there are more threads, perhaps this is intended to confuse
malware analysis. We see that in most cases, the number of signals decreases,
which suggests that these malware are all taking evasive action depending on
the results of the anti-analysis techniques.

Normal software (non-malware) have a very different signal and execution
profile from the anti-analysis malware. There are only a few weak signals and
we found signals are unaffected by the execution mode.

Overall we can see that the results show that simply at an overall signal
statistics level, anti-analysis malware already has a clear difference in its signal
profile compared with normal programs. We believe that this shows that our
signal detection under a two mode approach can be effective in giving good evi-
dence that a program is anti-analysis malware simply because normal programs
behave quite differently. For each executable tested, we have the full execution
trace signal profile with signal parameters. This gives further insights and results
but is not presented due to lack of space.
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5 Discussion

Our prototype is only meant to show the viability of anti-analysis detection
through signals and execution modes. We have only implemented some signals,
mainly the well known ones. There are also many different ways to detect the
signals. However, even with the limited signals and prototype implementation,
there is a clear differentiation between the anti-analysis malware and normal
programs evaluated.

A question is whether AADetect PIN can itself be detected. In principle,
multiple implementations using different ways of detecting signals and possibly
different instrumentation systems can be employed. This can also be combined
with different sandboxes or analysis environments as well (e.g. as in [3–8,10]),
giving even more and diverse signals for comparison.

Our focus is malware with anti-analysis features. If the malware is not anti-
analysis, we may not be able to get any good signal differentiation. However, this
can then be regarded a good situation for malware analysts: (a) anti-analysis
malware is detected by its anti-analysis behavior; or (b) if the malware does
not employ anti-analysis, it is likely to be easier to analyse. In either case, it
increases the likelihood of finding the malware.

We now discuss some potential applications of AADetect. AADetect may
be used during malware analysis in order to obtain evidence of anti-analysis
behaviors in known malware. As AADetect uses dynamic binary instrumentation
in the execution of samples, the identification of anti-analysis techniques are
done dynamically instead of statically. This means that we can identify the
anti-analysis techniques which are actually executed during runtime. It may
be useful for the configuration of emulators in order for it to avoid detection
by anti-analysis malware. Additionally, this may also aid malware analysts in
understanding the anti-analysis techniques being employed. In particular, the
signal execution profile shows the sequencing and timing of the signals used by
the program, malware or non-malware.

AADetect may be useful in the discovery of new and unknown malware.
Apart from exhibiting malicious behavior, new malware may also exhibit anti-
analysis behavior. Identification of anti-analysis techniques used in a sample
may give malware analysts an indication of the sample’s possible malicious con-
tents. In other words, we can filter samples which are suspicious from those
that are benign using anti-analysis detection. In contrast, most legitimate soft-
ware applications probably do not attempt to exploit the presence of an analysis
environment.

6 Conclusion

Our initial work shows that analysing malware in terms of signals with under-
lying semantics in how they can be used for anti-analysis has promise to detect
anti-analysis malware without the need of signatures. It is also useful in differ-
entiating anti-analysis malware from non-malware. We present a practical and
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lightweight approach which can be easily extended with more kinds of signals. It
may also be useful to incorporate into antivirus systems. Finally, we remark that
as it is not possible for any analysis, lightweight or heavyweight, to detect all
malware. Thus, our analysis using signals can complement existing techniques
based on operating system behaviors.
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Masaryk University, Brno, Czech Republic
ostadal@mail.muni.cz, {svenda,matyas}@fi.muni.cz

Abstract. Partially compromised network is a pragmatic assumption
in many real-life scenarios. Secrecy amplification protocols provide a sig-
nificant increase in the number of secure communication links by re-
establishing new keys via different communication paths. Our paper
shows that research in the area of secrecy amplification protocols for
ad-hoc networks has been based on rather simplified foundations w. r. t.
attacker models. The attacker does not behave randomly and different
attacker capabilities and behaviour have to be considered. We provide
means to experimental work with parametrisable attacker capabilities
and behaviour in realistic simulations, and evaluate the impact of the
realistic attacker properties on the performance of major amplification
protocols (Full details, paper supplementary material and source codes
can be found at http://crcs.cz/papers/cans2016.).

We also show which secrecy amplification protocols perform best
in different attacker settings and help to select a protocol that exhibits
good results in a prevalent number of inspected scenarios.

1 Introduction

Ad-hoc networks of nodes with varying capabilities (including quite limited ones)
often handle sensitive information and security of such networks is a typical
baseline requirement. Such networks consist of numerous interacting devices,
price of which should often be as low as possible – limiting computational and
storage resources, also avoiding expensive tamper resistance. Lightweight secu-
rity solutions are preferable, providing a low computational and communication
overhead. When considering key management, symmetric cryptography is the
preferred approach, yet with a low number of pre-distributed keys. While all
results we present can be applied to general ad-hoc networks, we present them
directly on wireless sensor networks (WSNs) as typical representatives.

Attackers in such an environment can be categorised into different classes
with respect to link key management. The most prevalent node-compromise
model [5] assumes that the attacker is able to capture a fraction of deployed
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nodes and to extract keying material from captured nodes. No tamper resistance
of nodes is assumed because of their low production cost. A real world attacker
model (also called weakened attacker model) was defined in [1]. In this model, an
attacker is able to monitor only a small proportion of communications within a
network during the deployment phase when the link keys are being established.

Substantial improvements in resilience against node capture or key exchange
eavesdropping can be achieved when a group of neighbouring nodes cooperates
in an additional secrecy amplification (referred to as amplification protocols
hereafter) after the initial key establishment protocol. Amplification protocols
were shown to be very effective, yet for the price of a significant communication
overhead. The overall aim is to provide amplification protocols that can secure
a high number of links yet require only a small number of messages and are easy
to execute and synchronize in parallel executions in the real network. Different
types of amplification protocols were studied – node-oriented protocols, group-
oriented protocols, and hybrid-design protocols.

Previous work on amplification protocols considered the close connection
between the attacker model and a key establishment scheme used [1,5,13]. Par-
tially compromised networks with only two different compromise patterns were
inspected throughout literature – random compromise and key infection patterns.
Random compromise pattern is the result of the node compromise attacker model
together with a probabilistic pre-distribution key establishment scheme [5]. The
key infection pattern assumes the weakened attacker model together with the key
establishment where link keys are being exchanged in plaintext. After an initial
compromise, a global passive attacker that is able to monitor all communication
on the entire network was expected in both cases.

We argue that those scenarios are not sufficient and here we provide a more
realistic setting for the attacker. Firstly, we question the initial compromise
patterns inspected so far, as the attacker presence in the network during the
deployment and a relatively short initial key establishment phase is a strong
assumption. We focus on a network where all neighbours already share unique
link keys, so the key establishment protocol is not important. The attacker is
able to initially compromise several nodes and extract all keys shared with its
neighbours. We inspect multiple compromise patterns resulting from different
attacker strategies, not only the random compromise pattern. Secondly, we do
not expect the global attacker during the amplification phase as this would not
be the case in real life (e.g., wireless receiver sensitivity limiting the attacker
eavesdropping range). A realistic attacker has to be present in the network and
will need to keep her stronghold in the network during the amplification phase.
She has to eavesdrop as many random nonces used during the amplification
process as possible. The attacker is parametrised by her capabilities and behav-
iour (e.g., initial compromise pattern, eavesdropping range, attacker movement
and her speed etc.).

Apart from the attacker characteristics, we want to move the amplification
protocol simulation to a more realistic setting. A significant part of recent work
is based on results from SensorSim, a dedicated simulator developed specifically
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for security analysis of key distribution protocols and message routing by the
authors of [17]. We extend the KMSforWSN framework that was introduced
in [6]. Our extension is available as open source1. The advantages and disadvan-
tages of both simulators are further discussed in the next section.

Our goals are:

1. To evaluate the impact of the realistic attacker properties on the performance
of major amplification protocols.

2. To move the evaluation of amplification protocols to a more realistic environ-
ment (suitable and realistic simulator).

3. To select one (or two) amplification protocols that exhibit good results in
a prevalent number of inspected scenarios for further implementation and
deeper analysis. Those are left for a future work.

The paper roadmap is as follows: the next section provides an overview of
related work on different attacker models, the current state of amplification
protocols research and advantages and disadvantages of different simulators.
Section 3 describes parametrisable attacker capabilities and behaviour together
with experiment settings and network lifetime from deployment up to evaluation.
Section 4 evaluates the impact of attacker parameters on the success rate of 7
major amplification protocols. The best performing amplification protocol is
selected and conclusions are provided in Sect. 5.

2 Related Work

Attacker models: Several different attacker models were defined in the litera-
ture. We differentiate two basic categories based on a level of attacker interaction
with the network. The global passive attacker is able to monitor all communica-
tion around the entire sensor network without influencing it. The global active
attacker is the classic attacker from the Needham-Schroeder model [12]. She is
able to alter and copy any message, replay messages or inject any false material.
She might drop part of the communication at her will. Those attacker models
define the attacker capabilities during the amplification process.

Another two attacker classes were introduced in literature with respect to
initial network compromise – a node compromise model [5] and a real world
attacker model [1]. The node-compromise model is an extension of the Need-
ham-Schroeder model. The attacker is able to capture a fraction of deployed
nodes and extract their keying material as no physical control over deployed
nodes is assumed. Real world attacker model is defined in [1] and assumes that
the attacker does not have physical access to the deployment site and is able to
monitor only a small proportion on the communications of the sensor network
during the deployment phase. Once the key exchange is complete, she is able to
monitor all communication and execute any active attack at will.
Compromise patterns: A compromise pattern provides us with a conditional
probability that link Y is compromised when another link X is compromised
1 Available (with other supplementary materials) at http://crcs.cz/papers/cans2016.

http://crcs.cz/papers/cans2016
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after an attack. The characteristics of a particular compromise pattern may sig-
nificantly influence the success rate of an amplification protocols executed later.
The random compromise pattern arises when a probabilistic key pre-distribution
scheme of [5] and many later variants of [2,4,10,11] are used and an attacker
extracts keys from several randomly captured nodes. The random compromise
pattern exhibits an almost uncorrelated pattern. To the contrary, the key infec-
tion compromise pattern forms a significantly correlated pattern due to an eaves-
dropper locality. During the key establishment, link keys are being exchanged
in plaintext. The original idea of key infection was presented in [1] and later
extended by [3,8,17].
Secrecy amplification: The secrecy amplification (SA) concept was originally
introduced in [1] for the key infection plaintext key exchange, but can be used for
any partially compromised network. An SA protocol can be executed to secure
(again) some of the compromised links, resulting in a less compromised network.
During the amplification protocol, a group of neighbours cooperates together to
exchange random nonces that will be later used to update original link keys.
Nonces have to be securely transported to both nodes to update the mutual key.
A particular amplification protocol specifies the exact way the generated nonces
are transported.

A network owner usually does not know which concrete link key was compro-
mised by an attacker and which was not. SA can be executed as a response to
a (presumed) partial compromise already happened or as a preventive measure
for potential future compromise. SA can be also executed as another layer of
protection even if a particular link key might not be compromised at all.

Amplification protocols can try all possible paths, yet for the price of a huge
communication overhead. Proposed amplification protocols, therefore, aim to
find a good tradeoff between the number of paths tried and the probability of
finding at least one secure path for nonce delivery.

Different classes of amplification protocols use different means to improve
a security throughout the network. Although all amplification protocols aim to
setup new (possibly secure) link key, three main distinct classes of amplification
protocols exist. Details of all inspected protocols are provided in [14].

A node-oriented protocol sends key updates via every possible neighbour or
neighbours by a simple protocol. Note that node-oriented protocol is executed
for all possible k-tuples of neighbours in the network. A number of such k-
tuples can be high, especially for dense networks. We further inspect five
selected node oriented protocols: Pull [3], Push [1], Multi-hop Pull (M-Pull)
[3], Multi-hop Push (M-Push) [1] and NO Best [17].
A group-oriented protocol shares new key values inside a bigger group of
cooperating nodes identified by their geographical areas in a form of relative
distance to selected nodes [17]. Group-oriented protocols have some crucial
disadvantages – problematic synchronisation of parallel executions and com-
plicated security analysis due to a high number of nodes involved. We omit
group-oriented protocols from further analysis.
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A hybrid-design protocol uses sub-protocols (similarly to node-oriented), rel-
ative distances (similarly to group-oriented) and additionally utilise several
repetitions of the whole process to achieve required success rate. We further
inspect two hybrid designed protocols: HD Final and HD Best [13].

Simulation environment: An essential part of amplification protocol evalua-
tion usually is a simulation environment. The evaluation on a real sensor net-
work is usually impossible due to cost and time requirements. We provide a brief
comparison of the SensorSim simulator used during the SA protocol design in
previous work and the KMSforWSN framework used to conduct our research.

The SensorSim simulator is a tool for very fast evaluation of existing ampli-
fication protocols [17]. New amplification protocols can be also generated using
evolutionary algorithms [17]. The main advantage of SensorSim is the speed of
simulation. However, it lacks many essential components for a realistic simu-
lation, like radio signal propagation or MAC layer collisions. All protocols in
SensorSim are evaluated based only on a set of properties, such as a number of
nodes, node positions or defined communication range.

KMSforWSN framework is a tool for an automated evaluation of KMS prop-
erties in WSNs, built on top of MiXiM [9], a WSN framework for the OMNeT++
simulator [16]. We extend it with two new modules to reflect different attacker
models and also to implement an SA capability. The definition of channel and
physical layer settings is based on previous research on real parameters of TelosB
sensors for outdoor environment [15]. In our work, we simulate the network exe-
cution not only as a graph discovery problem (as in SensorSim), but full emu-
lation of code running on virtual nodes is provided, with an application logic
executed and messages passed to the communication stack.

3 Parameterized Attacker

Our aim is to define the attacker with fully parametrisable capabilities and
behaviour. Attacker parameters can be divided into two separate groups – behav-
iour parameters and resource parameters. The behaviour parameters characterise
attacker strategy and behaviour during the attacker activity (e.g., different move-
ment pattern or starting position). The resource parameters define available
resources and attacker capabilities, both initial and extended (e.g., the number
of cooperating attackers or eavesdropping range).

We summarise particular phases of the entire simulation and provide a defi-
nition of all inspected attacker parameters, followed by baseline values.
Network lifetime: The entire attacker simulation for amplification protocols
and its evaluation consist of 5 phases. Firstly, a network consisting of 100 legit-
imate nodes is deployed randomly over the plane of 115× 115 m. The size was
chosen purposefully to have a network with a density of 7.5 neighbours on aver-
age. After the deployment, an attacker conducts the initial compromise. This
initial compromise is done before the actual amplification protocol is executed.
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We evaluate all compromise patterns defined in [7] and the total number of com-
promised links is 50 %. Secondly, the nonce distribution phase of amplification
protocols and attacker eavesdropping take place simultaneously. The nonce dis-
tribution phase should influence network operations just shortly, so we limit the
length to only 100 s. Such length is enough to exchange most messages without
collisions. The attacker is present in the network during the whole nonce distri-
bution phase and she tries to eavesdrop on as much communication as possible.
Her success depends on particular values assigned to examined attacker parame-
ters. Lastly, nonces are mutually confirmed among neighbouring nodes and the
simulation is concluded with a protocol evaluation.
Attacker parameters: Every parameter from both defined groups can be
assigned a value from a specific set of possible values described in this section.
Possible values for attacker behaviour parameters follow.

(I) Initial compromise pattern: We are inspecting four different patterns:
(1) Random nodes are selected and compromised in the random attacker
pattern. (2) The attacker walking around the network and picking outer-
most nodes presents the outermost attacker pattern. (3) The attacker moving
directly to a centre of the network from a random location on an edge of the
network, picking up nodes in a close vicinity of his trajectory, presents a direct
centre attacker pattern. (4) The centre drop attacker pattern simulates the
possibility of parachute drop or digging under the network. The closest nodes
to the centre of the network are compromised up to a selected threshold.
(II) Movement pattern of the attacker: During the nonce distribution phase,
attackers move within the WSN deployment area according to an assigned
pattern. We evaluate several different patterns to see how they influence the
attacker success in eavesdropping nonce messages: (1) The stationary pattern
is characterised by attackers staying in their initial positions and not moving
at all. (2) Attackers move on a straight line with a constant speed in the linear
movement pattern. When the attacker approaches an area border, she reflects
at the same angle. (3) The random pattern is described by attackers choosing
the point within the deployment area randomly (distributed uniformly over
the area) and moving directly to it with constant speed. After reaching the
point, attacker selects the next point, again in a random manner. (4) Attackers
move in a circle of a particular diameter in the circle pattern. We inspect
three different diameters of 10, 20 and 40 m. (5) The square patrol pattern is
characterised by the attacker systematically patrolling a square area with a
side of different length – particularly 10, 20 and 30 m.
(III) Initial location of the attackers: We inspect three different settings for
the initial location of attackers when the nonce distribution phase starts:
(1) All the attackers start from the same place in a corner of the deployment
area. (2) Attackers are at random positions within the area. (3) Attackers
cooperate and choose the suitable places to capture as much communication
as possible (selected coordinates are [57.5, 57.5], [30, 30], [85, 30], [85, 85] and
[30, 85] within the deployment area).



558 R. Ošťádal et al.

(IV) Movement speed of attackers: Attackers move at a constant speed. We
inspect a range of speeds from a very slow walk up to the movement speed
of a car or a flying drone.

The success of the attacker is closely connected with invested resources. The
hypothesis to be verified is whether the more resources available, the more suc-
cessful attacker is. We are also interested in a determination of a limit of attacker
capabilities, where amplification protocols still represent a meaningful strategy.

We inspect three different resource parameters. A number of attackers (para-
meter V) determines the number of cooperating attackers and level of their col-
laboration. Eavesdropping range (parameter VI) defines the radius where attack-
ers are able to intercept the communication. A number of malware infected nodes
(parameter VII) denotes the number of nodes under attacker’s passive control.
More information and respective details are provided in [14], Sect. 3.2.
Experiment setting: Evaluating the impact of particular attacker parameters
on the overall success rate of amplification protocols, we successively inspect
different values for selected parameter, while the rest of parameters are fixed to
baseline values. As so, baseline values should be as little influencing as possible to
have a clear result on the inspected parameter. The following baseline values are
used: random initial compromise pattern, random movement pattern, random
initial location of attackers, movement speed of 1.5 m/s (∼ normal walk), 5
cooperating attackers, eavesdropping range of 30 m, and no malware infected
nodes.

All provided experimental results are an average of one hundred repetitions
with different seeds for a random number generator. The evaluation was con-
ducted on a dedicated machine with 96 cores at 2.00 GHz. The total computation
time was more than 6 core years.

4 Experimental Results

We have determined a ranking of amplification protocols based on their perfor-
mance in a prevalent number of inspected cases. The highest number of secured
link keys is provided by the HD Best protocol, closely followed by the HD Final
protocol. Hybrid designed protocols provide better results than node-oriented
protocols during the evaluation of all parameters. The NO Best protocol outper-
forms the rest of node-oriented protocols. Multi-hop Pull and Multi-hop Push
protocols provide us with similar success rates and both outperform the Push
protocol. The Pull protocol exhibits the worst results. Please note that the Pull
protocol sends only a half of nonces compared to the Push protocol.
Impact of compromise patterns: We have inspected four different initial
compromise patterns (parameter I). In all cases, a compromised portion of link
keys is 50 %. This results in a different number of compromised nodes for every
pattern. Full comparison and exact values are provided in [14], Sect. 4.1. Signif-
icantly worse results are provided by all amplification protocols on direct centre
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and centre drop compromise patterns due to the high concentration of compro-
mised nodes in one area. However, hybrid designed protocols are able to achieve
nearly 95% of secured links from initial 50% even with those unsuitable settings.
The initial compromise pattern is the only parameter where we can observe a
significant difference in performance of HD Final and HD Best protocols.
Impact of movement patterns: Different movement patterns (parameter II)
were examined and results are shown in Fig. 1. The most successful strategy for
the attacker is to stay in the same place (stationary pattern) as she is able to
eavesdrop all communication within a particular area. Comparable results are
achieved by the circle pattern with a small radius of 5 m and by the systematic
patrolling over a small square area. The reason for the attacker’s success is the
same as in the stationary case. The worst movement pattern for the attacker is
linear as the attacker spends a lot of time in a border area where eavesdrops less
communication. Altogether, amplification protocols are able to achieve 75 % of
secured link keys from the initial 50 % even in the worst case of the stationary
pattern.
Impact of position and speed: Evaluating results of different initial start-
ing positions (parameter III) of attackers, all amplification protocols exhibit the
highest success rate for attackers starting in the corner of the deployment area.
Attackers are able to monitor only a small part of the network from the begin-
ning. We observe a constant drop in the success rate of 2 % between random and
suitable attacker’s starting positions for all amplification protocols. Comparing
the corner and random starting positions, the hybrid designed protocols exhibit
the least drop in the success rate whereas the single hop node-oriented protocols
show the highest drop.

Fig. 1. Success rate of amplification protocols for different movement patterns of
attackers. The number in brackets after Patrol and Circle patterns denotes the length
of square area side and the circle diameter respectively. The initial compromise rate is
50% of all link keys

Following observation holds for comparison of different movement speeds of
attackers (parameter IV). The slower movement speed of attackers, the worse
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results achieved by amplification protocols in general. The reason is that the
attacker is able to eavesdrop most of the messages in a particular area and
amplification protocols are not able to secure additional link keys in that region.
This result is in line with the observation of the case of stationary movement
pattern. Hybrid design protocols are able to face the challenge much better than
node-oriented protocols and provide significantly better results for slow attackers
up to a speed 1.5 m/s. For a higher attacker speed, which means decreased
attacker success, hybrid designed protocols provide still better success ratios,
however, the differences are not so eminent as the overall success rate is already
high.
Impact of resource parameters: The evaluation of parameters from the
resource group supports the hypothesis stated at the beginning. The more
resources available to the attacker, the more successful the attacker is. This
holds for the increasing number of attackers, larger eavesdropping range and the
increasing number of malware infected nodes. Hybrid designed protocols are able
to provide reasonable improvement (85 % of secured links from original 50 %) for
up to 10 cooperating attackers, 40 m of attacker eavesdropping range, or up to
7 malware infected nodes out of 29 compromised. Detailed results are provided
in [14], Appendix A.

5 Conclusions

Our work shows how narrow the view of attackers in ad hoc networks has been
so far. We provide a more realistic view of that attacker, with a definition of her
capabilities and behaviour. With respect to the protocols examined, we show
that the hybrid designed protocols outperform the rest in all scenarios we exam-
ined, and that these protocols are quite robust across different attacker behaviour
and capabilities. Note that the NO Best protocol provides almost same results
as the HD Final protocol, yet this comes at the price of an enormous increase
of messages sent. We also demonstrate that the hybrid designed protocols use
a low number of messages and provide a great improvement for the link key
security. Our results do not assume a particular compromise scenario during key
establishment and are concerned only about the final fraction of compromised
links, implying that the results can be generalised. Our work is based on realistic
simulation of all components, which often get overlooked in protocols analyses
coming right from particular protocol designers – we consider network commu-
nication (MAC, collisions), physical layer setting, etc. and we implemented the
application to run directly on virtual nodes.

We found that one of the most significant parameters influencing the final
performance of SA protocols is the initial compromise pattern. This is the first
work with analysis of additional initial compromise patterns apart from the
random one.

Last but not least, we point out that often the most favorable strategy for an
attacker is to stay in one place during the whole secrecy amplification process.
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Abstract. In SAC 2013, Berger et al. defined Extended Generalized
Feistel Networks (EGFN) and analyzed their security. They proposed
designs with 8 or 16 branches. This class of schemes is well-suited for
cryptographic applications. Using the minimal number of active S-boxes,
the authors showed that for 64-bits messages divided into 8 branches,
at least seven rounds are needed for security against differential and
linear cyptanalysis. They proved that 10 rounds are required against
integral attacks and 9 rounds against impossible differential attacks. In
this paper, we propose a method that allows to attack up to 18 rounds
the design with 8 branches. We also mention the results for the 16-branch
design.

Keywords: Generic attacks on feistel type schemes · Pseudo-random
permutations · Differential cryptanalysis on block ciphers

1 Introduction

Many block ciphers are based on Feistel-type constructions. Some of them use
balanced Feistel constructions that divide a 2n-bit plaintext into 2 n-bit branches
and apply a round function from n bits to n bits. DES [3,4], Camellia [1],
Simon [6] are such networks. Generalized Feistel Network divides the plaintext
into k branches of n bits and in that case, there are many more possibilities for
the choice of round functions. There are Unbalanced Feistel Networks with con-
tracting functions where the round functions is from (k−1)n bits to n bits. These
networks are also called Source-Heavy and are used for example in RC2 [17]
or SHA-1 [2]. When the round functions are from n bits to (k − 1)n bits, we
have an unbalanced Feistel Network with expanding functions also known as
Target-Heavy. This design is used in REDOC III [21] for example. Other pos-
sibilities for the round functions lead to other generalized Feistel networks as
Type-1 (CAST 256 [5], Lesamnta [10]), Type-2 (RC6 [16], CLEFIA [18]), Type-
3 (MARS [8]). All these ciphers have been extensively studied on different points
of view: security, diffusion and different kinds of attacks as linear, differential,
impossible differential or even boomerang attacks. A way to evaluate security
against differential or linear cryptanalysis is to count the minimal number of
c© Springer International Publishing AG 2016
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active S-boxes crossed along the cipher by differential and linear characteristics.
In [7], the authors proposed a new class of schemes, called Extended Generalized
Feistel Networks (EGFN) well suited for cryptographic applications. They first
represented Feistel Networks using matrix representation and then they opti-
mized parameters such as diffusion delay, number of round functions per round,
cost of full diffusion to define this new class of schemes. Two examples are given,
with 8 or 16 branches. For EGFN, with 8 branches of 8-bit length, the number
of active S-boxes shows that to prevent differential or linear cryptanalysis, at
least 7 rounds are needed. In order to avoid integral attacks, it is necessary to
perform at least 10 rounds and against impossible differential attacks, one needs
at least 9 rounds. In this paper, using the variance method described in [19], we
show that it is possible to attack up to 18 rounds using differential attacks for
any word length. We provide the numbers of messages needed for NCPA (Non
Adaptive Chosen Plaintext Attack) and KPA (Known Plaintext Attack) up to
18 rounds. The paper is organized as follows. In Sect. 2, we give the notation and
present an overview of the attacks and describe the variance method. In Sect. 3,
we provide examples of computations of expectations and standard deviations
when we have some conditions on the inputs and the outputs and we are test-
ing a random permutation. Section 4 is dedicated to the definition of EGFN and
attacks on these schemes. We prove that looking at the number of active S-boxes
is not enough for security since we can attack more rounds than expected. We
also provide simulation results.

2 Notations - Overview of the Attacks

2.1 Notation

The input is denoted by [I1, I2, . . . , I8] the output by [S1, S2, . . . , S8]. Each Is,
Ss is an element of {0, 1}n. When we have m messages, Is(i) represents part s
of the input of message number i. The same notation is used for the outputs as
well. We use differential attacks, i.e. attacks where we study how differences on
pairs of input variables will propagate following a differential characteristic, and
give relations between pairs of input/output variables. The number of rounds is
denoted by r.
We use plaintext/ciphertext pairs. On the input variables, the notation
[0,0,Δ3

k, . . . ,Δ0
k] means that the pair of messages (i, j) satisfies I1(i) = I1(j),

I2(i) = I2(j), and Is(i) ⊕ Is(j) = Δ0
s, 3 ≤ s ≤ 8. The differential of the outputs

i and j after round t is denoted by [Δt
1,Δ

t
2,Δ

t
3, . . . ,Δ

t
k]. At each round, internal

variables are defined by the structure of the scheme. In our attacks, we deter-
mine equalities that have to be satisfied by the inputs and the outputs. With a
scheme, some equalities on the internal variables on some rounds will allow the
differential path to propagates. On an intermediate round, when equalities on
the internal variables are needed in order to get a differential characteristic, we
use the notation 0 to mean that the corresponding internal variables are equal
in messages i and j. When we write 0, this means that the differential path
propagates without any constraint on the internal functions.
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2.2 Overview of the Attacks

Generic attacks that we will consider on EGFN are distinguishers that allow
to determine the maximal number of rounds needed to distinguish a permuta-
tion computed by the EGNF from a random permutation. Depending on the
number of rounds, it is possible to find some relations between the input and
output variables. These relations hold conditionally to equalities on some inter-
nal variables due to the cipher structure. The attacks consist in using m plain-
text/ciphertexts pairs and counting the number of couples of these pairs that
satisfy the relations between the input and output variables. Then, it is pos-
sible to compare Nperm, the number of such couples obtained with a random
permutation, with NEGFN , the corresponding number for the studied EGFN.
The attacks are successful, i.e. we are able to distinguish a permutation gen-
erated by an EGFN from a random permutation, in three cases. The first
case occurs when NEGFN is significantly greater than Nperm. For example,
attacks on unbalanced Feistel cipher with expanding functions used the fact
that NEGFN is significantly greater than Nperm [13,15,20]. The second case
happens when NEGFN is significantly smaller than Nperm, this is the case for
impossible attacks for example. For the third case, Nperm and NEGFN have
the same order, but the difference |E(NEGFN ) − E(Nperm)| is larger than both
standard deviations σ(Nperm) and σ(NEGFN ), where E denotes the expecta-
tion function. In that case, the attacks work thanks to the Chebychev for-
mula, which states that for any random variable X, and any α > 0, we have
P (|X − E(X)| ≥ ασ(x)) ≤ 1

α2 . Using this formula, it is then possible to con-
struct a prediction interval for NEGFN for example, in which future computa-
tions will fall, with a good probability. It is important to notice that for our
attacks, it is enough to compute E(Nperm), E(NEGFN ) and σ(Nperm). In order
to compute σ(Nperm), we need to take into account the fact that the structures
obtained from the m plaintext/ciphertext tuples are not independent. However,
their mutual dependence is very small. To compute σ(Nperm), we will use this
well-known formula, see [9], p. 97, that we will call the “Covariance Formula”:
if x1, . . . xn, are random variables, then if V represents the variance, we have
V (

∑n
i=1 xi) =

∑n
i=1 V (xi) + 2

∑n−1
i=1

∑n
j=i+1

[
E(xi xj) − E(xi)E(xj)

]
. The com-

putation of standard deviation and the use of the covariance formula usually
allow to attacks more rounds than other attacks. This technique has been used
for classical Feistel schemes in [12], for contracting Feistel schemes in [14] and
for generalized Feistel schemes in [11].

3 Expectations and Standard Deviation for KPA on
Random Permutations

Even number of rounds. In KPA, when attacking an even number of rounds,
we count the number of (i, j) such that I4(i) = I4(j) and S5(i) ⊕ S5(j) =
I5(i) ⊕ I5(j). Then the exact values for the expectation and standard deviation
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obtained thanks the tool developed in [19] are:

E(Nperm) =
m(m − 1)

2
230n − 223n − 222n + 216n

(28n(28n − 1))2

E(Nperm) � m2

2

(
1

22n
− 1

29n
− 1

210n
+ O(

1
210n

)
)

and

V (Nperm) = −E(Nperm)2 +
m(m − 1)

(28n(28n − 1)(28n − 2)(28n − 3))2
P (n,m)

with P (n,m) is a polynomial in m and n obtained by the computer program
and whose expression is quite long. Then we obtain: V (Nperm) � E(Nperm).

Odd number of rounds. In KPA, when the number on rounds is odd, we count
the number of (i, j) such that I4(i) = I4(j), S8(i) = S8(j) and S1(i) ⊕ S1(j) =
I5(i) ⊕ I5(j).

Then the exact values for the expectation and standard deviation obtained
thanks the tool developed in [19] are:

E(Nperm) =
m(m − 1)

2
229n − 2.222n + 216n

(28n(28n − 1))2

E(Nperm) � m2

2

(
1

23n
− 2

1
210n

+ 2
1

211n
+ O(

1
216n

)
)

and where, as previously, P (n,m) is given by the computer program and we get
that V (Nperm) � E(Nperm) as well.

4 Extended Generalized Feistel Networks

4.1 Description

The input is denoted by [I1, I2, . . . , I8]. At each round 4 internal functions from
n bits to n bits are used. For round r, we denote these rounds functions by ft,r,
t = 1, 2, 3, 4. For example, after one round, the output is [S1, S2, . . . , S8] with

⎧
⎪⎪⎨

⎪⎪⎩

S1 = I5 ⊕ f4,1(I4)
S2 = I6 ⊕ I4 ⊕ f3,1(I3)
S3 = I7 ⊕ I4 ⊕ f2,1(I2)
S4 = I8 ⊕ I2 ⊕ I3 ⊕ I4 ⊕ f1,1(I1)

⎧
⎪⎪⎨

⎪⎪⎩

S5 = I1
S6 = I2
S7 = I3
S8 = I4

At round �, four internal variables are introduced on the first four branches. Let
us call them X�, Y �, Z�, T �.
After one round, the output is [X1, Y 1, Z1, T 1, I1, I2, I3, I4]. More generally, after
round �, the output is [X�, Y �, Z�, T �,X�−1, Y �−1, Z�−1, T �−1]. One round of
EGFN with 8 branches is represented in Fig. 1.
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I1

S1

I2

S2

I3

S3

I4

S4

I5

S5

I6

S6

I7

S7

I8

S8

f4,1

f3,1

f2,1

f1,1

Fig. 1. One round of EGFN

4.2 Generic Attacks on EGFN with 8 Branches

We will detail the attacks on EGFN with 8 branches and just state the results
for EGFN with 16 branches.

Simple Attacks on the First Rounds.

Attack one round. After one round, with one message, we get an attack since we
just have to check whether for example S5 = I1. With a random permutation,
this happens with probability 1

2n whereas this is satisfied with probability 1 with
an EGFN.

Attack on two rounds. Here we have a NCPA with 2 messages and a KPA with
2n/2 messages. The attacks proceed as follows. We first choose 2 messages such
that I4(1) = I4(2) and we check if S1(1)⊕S1(2) = I5(1)⊕ I5(2). This is satisfied
with probability 1 for an EGFN and with probability 1

2n for a random permuta-
tion. This NCPA can be transformed into a KPA as follows. If we generate 2n/2

messages, then by the birthday paradox, we will obtain with a good probability
2 indices i, j with i �= j and such that I4(i) = I4(j). Then we just have to check
if S1(i) ⊕ S1(j) = I5(i) ⊕ I5(j).
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Attack on three rounds. After the third round, it is easy to check that S5 =
I1 ⊕ f1,2(I8 ⊕ I2 ⊕ I3 ⊕ I4 ⊕ f4,1(I1)). This allows to mount a NCPA with only 2
messages. We choose them such that I1(1) = I1(2),I2(1) = I2(2), I3(1) = I3(2),
I4(1) = I4(2) and I8(1) = I8(2). The, we check if S5(1) = S5(2). The probability
is 1 for an EGFN and 1

2n for a random permutation. As previously, the NCPA
can be transformed into a KPA needing 25n/2 messages. But there is a better
attack that needs only 2n messages as we will see. We count the number of (i, j)
such that we have: I4(i) = I4(j), S8(i) = S8(j) and S1(i)⊕S1(j) = I5(i)⊕ I5(j).
Here, we have Nperm � m(m−1)

2·23n . With an EFGN, it is easy to see that S8(i) =
S8(j) ⇒ S1(i) ⊕ S1(j) = I5(i) ⊕ I5(j). This show that NEGFN � m(m−1)

2·22n . Thus
with about 2n messages, it is possible to distinguish an EGFN from a random
permutation.

Attack on four rounds. There is a NCPA with about 2
n
2 messages. We choose m

messages such that I4 = 0. Then we count the number of (i, j), such that i �= j
and I5(i) ⊕ I5(j) = S5(i) ⊕ S5(j). With a random permutation, we have that
Nperm � m(m−1)

2·2n . With an EGFN, the equality I5(i) ⊕ I5(j) = S5(i) ⊕ S5(j)
is satisfied either at random or due to the following equality T 2(i) = T 2(j).
E(NEGFN ) � 2E(Nperm). With about 2n/2 messages, it is possible to distinguish
a random permutation from an EGFN in NCPA. We can transform this attack
into a KPA with 2n messages.

Attack on five rounds. For the NCPA, we choose m messages such that ∀i, 1 ≤
i ≤ m, I1(i) = I2(i) = I3(i) = I4(i) = I8(i) = 0. The conditions on the
input imply that for all i, we have T 1(i) = 0. Moreover, we have: S5 = X4 =
I1 ⊕f4,2(T 1)⊕f4,4(T 3). Then we count the number of (i, j), such that i �= j and
S5(i) = S5(j). With a random permutation, we obtain that Nperm � m(m−1)

2·2n .
With an EGFN, the equality S5(i) = S5(j) is satisfied either at random or due
to the following equality T 3(i) = T 3(j). E(NEGFN ) � 2E(Nperm). With about
2n/2 messages, it is possible to distinguish a random permutation from an EGFN
in NCPA. This attack can be transformed into a KPA with 25n/2 messages but
there is a better KPA that we describe now. We will make use of the differential
characteristics described in Table 1. Since these characteristics will be used up to
18 rounds, we provide the differential path up to 18 rounds.
We count the number of indices (i, j), such that i �= j, I4(i) = I4(j),
I5(i) ⊕ I5(j) = S1(i) ⊕ S1(j) and S8(i) = S8(j). With a random permutation,
we have Nperm � m(m−1)

2·23n . With an EGFN, the conditions can be satisfied at
random or because we have: T 2(i) = T 2(j) and T 4(i) = T 4(j). This shows that
E(NEGFN ) � 2E(Nperm) and that with about 23n/2 messages, it is possible to
distinguish an EGFN from a random permutation.

Attacks Using the Computation of Standard deviation When r ≥ 6.
After 6 rounds, we need to compute the standard deviation in order to perform
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Table 1. Characteristics for attacks on EGFN with 8 branches

round Δ0
1 Δ0

2 Δ0
3 0 Δ0

5 Δ0
6 Δ0

7 Δ0
8

1 Δ0
5 0

2 0 Δ0
5

3 Δ0
5 0

4 0 Δ0
5

5 Δ0
5 0

6 0 Δ0
5

7 Δ0
5 0

8 0 Δ0
5

9 Δ0
5 0

10 0 Δ0
5

11 Δ0
5 0

12 0 Δ0
5

13 Δ0
5 0

14 0 Δ0
5

15 Δ0
5 0

16 0 Δ0
5

17 Δ0
5 0

18 0 Δ0
5

our attacks. We use the differential characteristics of Table 1, except for 5 and 7
rounds.

NCPA. For NCPA, when the number of rounds is even, we choose m messages
such that ∀i, 1 ≤ i ≤ mI4(i) = 0. The attacks are shown in Table 2. In order to
determine the number of messages needed for the attack, we use the fact that
the difference of the expectations has to be greater than the standard deviation
as explained in Sect. 2.2. The expectation for EGFN is also computed thanks to
the computer program from [19].
We now give attacks when the number of rounds is odd. For r = 7, 9, we choose
m messages such that ∀i, 1 ≤ i ≤ m, I1(i) = I2(i) = I3(i) = I4(i) = I5(i) = 0.
Notice that with these conditions, there are only 23n available messages. The
conditions on the input imply that for all i, we have T 1(i) = 0. After 7 rounds,

Table 2. NCPA on 2r rounds, r ≥ 3

Differential E(Nperm) E(NEGFN8) σ(Nperm) m

Δ0
5 = Δ2r

5
m2

2·2n
m2

2·2n + m2

2·2(r−1)n + O( m2

2rn
) m√

2·2n 2(r−3/2)n
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we have S5 = X6 = I1 ⊕ f1,2(T 1) ⊕ f1,4(T 3) ⊕ f1,6(T 5) and after 9 rounds, we
have S5 = X8 = I1⊕f1,2(T 1)⊕f1,4(T 3)⊕f1,6(T 5)⊕f1,8(T 7). When the number
of rounds is odd and greater than or equal to 11, the previous attack does not
work anymore, since we will need more than 23n messages. Thus we perform the
attacks described in Table 3.

Table 3. NCPA on 2r + 1 rounds, r ≥ 5

r Differential E(Nperm) E(NEGFN8) σ(Nperm) m

7 Δ0
1 = Δ7

5
m2

2·2n
m2

2·2n + m2

2·22n + +O( m2

23n
) m√

2·2n/2 23n/2

9 Δ0
1 = Δ9

5
m2

2·2n
m2

2·2n + m2

2·23n + O( m2

24n
) m√

2·2n/2 25n/2

2r + 1, r ≥ 5 Δ2r+1
8 = 0 m2

2·22n
m2

2·22n + m2

2·2rn + O( m2

2(r+1)n ) m√
2·2n 2(r−1)n

Δ0
5 = Δ2r+1

1

KPA. Again, we have two kinds of attacks according to the parity of the number
of rounds. The attacks follows the differential characteristics given in Table 1
and are explained in Table 4. For example, for 6 rounds, the computer program
from [19] gives:

E(NEGFN8) =
m(m − 1)
2. · 22n

(1 + 1
2n − 1

22n + 1
24n − 3

25n + 2
26n − 1

27n )
(1 − 1

28n )

Table 4. KPA for more than 6 rounds

Rounds Differential E(Nperm) E(NEGFN8) σ(Nperm) m

2r Δ0
4 = 0

Δ0
5 = Δ2r

5

m2

2·22n
m2

2·22n + m2

2·2rn + O( m2

2(r+1)n ) m√
2·2n 2(r−1)n

2r + 1 Δ0
4 = 0

Δ2r+1
8 = 0

Δ0
5 = Δ2r+1

1

m2

2·23n
m2

2·23n + m2

2·2(r+1)n + O( m2

2(r+2)n ) m√
2·23n/2 2(r− 1

2 )n

4.3 Simulations

We have made simulations of several attacks for small values of n. The results are
consistent with the theoretical study and are provided in Table 5. The process of
the simulations is as follow: we choose a random instance of EGFN and a random
permutation (generated by a classical Feisel scheme with 20 rounds). Then we
start the attack for m messages and we count the number of plaintext/ciphertext
pairs that verify the relations involved for the EGFN and for the permutation.
Finally, we repeat the process 200 times in order to compute the mean value for
EGFN and for the permutation and the standard deviation for the permutation.
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Table 5. Experimental results with 200 tries

r n m E(Nperm) E(NEGFN ) Difference σ(Nperm) % success

10 3 213 524 254 525 376 1 122 752 72

10 4 217 33 554 466 33 562 415 7 949 5 586 73

11 3 215 1 048 469 1 049 971 1 502 991 74

11 4 220 134 218 546 134 261 461 42 915 12 460 82

12 3 216 33 553 817 33 565 842 12 025 5 638 65

4.4 Summary of the Results

As long as the difference of the expectations is smaller than the standard devi-
ations with a number of messages smaller than 28n, we can mount the attacks
provided in Tables 2, 3 and 4. We stop when we reach the whole codebook and
this gives the maximal number of rounds that we can attack with this method.
The results are summarized in Table 6. We provide the number of messages
needed for each attack.

Table 6. Complexity of the attacks on EGFN with 8 branches

Rounds NCPA KPA Rounds NCPA KPA

1 1 1 10 27n/2 24n

2 2 2n/2 11 24n 29n/2

3 2 2n 12 29n/2 25n

4 2n/2 2n 13 25n 211n/2

5 2n/2 23n/2 14 211n/2 26n

6 23n/2 22n 15 26n 213n/2

7 23n/2 25n/2 16 213n/2 27n

8 25n/2 23n 17 27n 215n/2

9 25n/2 27n/2 18 28n 28n

Remark 1. EGFN with 16 branches is described in [7]. The attacks are quite
similar and it is possible to show that there exists attacks up to 34 rounds.

5 Conclusion

In this paper, we described several generic attacks on EGFN. Simulations confirm
the theoretical analysis of this scheme. We were able to attack more rounds than
stated in paper where the EGFN were designed.
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Abstract. The elliptic curve Curve25519 has been presented as pro-
tected against state-of-the-art timing attacks [2]. This paper shows that
a timing attack is still achievable against a particular X25519 implemen-
tation which follows the RFC 7748 requirements [10]. The attack allows
the retrieval of the complete private key used in the ECDH protocol.
This is achieved due to timing leakage during Montgomery ladder execu-
tion and relies on a conditional branch in the Windows runtime library
2015. The attack can be applied remotely.

Keywords: Side-channel · Timing attack · ECC · RFC 7748 · X25519

1 Introduction

Side-channel attacks are a proven practical means of attack against crypto-
graphic implementations [5]. They make use of physical quantities, e.g., electro-
magnetic emanations, power consumption, photon emissions, timing variations,
etc., to retrieve some sensitive information such as a secret key. Timing attacks
were first presented in 1996 by Kocher [8]. They have been shown to be very
effective while easily performed. In particular side-channel timing attacks are not
intrusive and do not require high-end equipment nor necessarily physical access
to the targeted system. Thus they can be applied remotely.

Elliptic curves are increasingly used in cryptography. The asymmetric keys of
an ECC implementation are smaller than those required for an RSA implemen-
tation with the same cryptographic security. RFC 7748 [10] presents an ECC
design that uses regular operations and is thus supposed to be resistant to side-
channel timing attacks. The RFC is intended to prevent use of curves which have
inherent side-channel leakage weaknesses. Classical side-channel attacks against
such poor ECC implementations are published regularly, e.g., [1,6].
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In this paper we show that having regular operations is necessary but not
sufficient. It is not possible to ensure a side-channel attack proof system in a high
level environment. Indeed, we do not have real control over a high performance
ecosystem like a server (high-level programming language, compiler/linker, pre-
processor options, etc.). In the following sections we present a timing attack
capable of retrieving the private key used in the ECDH protocol remotely.

2 State of the Art

In his paper [8], Kocher pointed out that it is common for a cryptosystem to take
different amounts of time to execute the same calculation for different inputs.
This is due to many factors including code architecture, compiler, processor
optimizations, and cache. He showed that rather simple timing attacks could be
perpetrated on implementations of Diffie-Hellman, RSA, and DSS. He partic-
ularly targeted modular exponentiation, which has a secret or sensitive input-
dependent execution.

Later, Brumley and Boneh showed that it was possible to mount remote
timing attacks by implementing an attack against OpenSSL [3]. By measuring
the time between sending a decryption request to a server and the reception
of the response they were able to extract the private key of the server. They
exploited the fact that the sliding window exponentiation (an optimization of
square and multiply) uses Montgomery reduction in order to reduce modulo q.
This reduction uses an extra step (“extra reduction”) in some specific cases and
this creates a difference in timing which can be exploited. They showed that the
noise due to network communication overhead could be eliminated by sampling
several times. Their attacks required however the network to have less than 1ms
of variance.

In 2011, Brumley and Tuveri [4] showed that remote timing attacks were still
feasible on ECC implementations that were meant to be more resistant to this
kind of attack. They showed that the fixed-sequence Montgomery ladder used in
the computation of the scalar multiplication was not sufficient to fully protect
against their attack. They were able to recover the private key remotely, using
a lattice attack [7].

3 Curve25519

The Curve25519 was first presented by Bernstein in 2006 [2]. It is an elliptic
curve of the form y2 = x3 + 486662x2 + x, which is birationally equivalent
to the Edwards curve: 1 · x2 + y2 = 1 + (121665/121666)x2y2. It exists over
the field Fp, with p = 2255 − 19. The order of the base point is the prime
p1 = 2252 + 27742317777372353535851937790883648493. By design, there is no
need for special processing for O (infinite) or points outside the curve and any
32-byte sequence can be used as public key. Only the x-coordinate of the points
is used in the computations.
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The implementation of this curve for ECDH (called X25519 ) makes use of a
32-byte secret key and a 32-byte public key. The secret key begins with the bits
01 and the last three bits are set to 0.

The value of the x-coordinate of the base point is 9 with prime order p1
(written above) over the field Fp.

The exchange works in the following way:

– Each user takes the public string 9 (x-coordinate of the base point on the
curve) and multiplies it by their secret key keyi. The result is in fact the
public key Ki (only the x-coordinate of the point) of each user.

– The public keys are exchanged and both users then compute keyi ∗ Kj , with
Kj a point on the curve and keyi the scalar.

– Each user ends up with the point keyi ∗ keyj ∗ 9 (respectively keyj ∗ keyi ∗ 9),
which is the shared secret.

Curve25519 was presented in 2006 by Bernstein with security in mind.
This curve naturally provides state-of-the-art timing-attack protection. Partic-
ularly the implementation avoids input-dependent branches, input-dependent
array indices, and other instructions with input-dependent timings. Moreover,
by nature, this curve offers high speed computation and free key compression. In
order to speed up the computation the integers are loaded into the floating-point
registers. Some parts of the code are directly written in assembly language.

3.1 Curve25519-donna

Adam Langley implemented this curve (in C) in order to compute ECDH. This
version, called Donna [9], follows the RFC recommendations.

It is based on Bernstein’s implementation and makes use of a modified version
of the Montgomery ladder to compute the point multiplications (for projective
coordinates). This Montgomery ladder allows computation of the addition and
doubling in an interleaved way and is intended to do this in a constant time
regardless of input. It makes use of an accessory swap function whose execution
is also expected to run with constant time. These functions are described in RFC
7748 [10].

The coordinates of the points of the elliptic curve are represented by a
reduced-degree reduced-coefficient polynomial and each polynomial coefficient
is represented over 64 bits.

Representation of the Integers Modulo 2255−19. Elements of Z/(2255−19)
can be seen as elements of R (for x = 1), the ring of polynomials

∑
i uix

i where
ui is an integer multiple of 2�25.5i�.

The coordinates of the points on the curve (integers modulo 2255 − 19) are
represented by such a polynomial with the requirement of being reduced-degree
and reduced-coefficient.

Reduced-degree means that the degree of the polynomial is small. In this
case the maximum degree of the polynomial is 9. Limiting the degree of the
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polynomial allows reduction of the number of coefficient multiplications when
multiplying the integer.

Reduced-coefficient means restricting the highest possible value of a coeffi-
cient. For this implementation, the value of the coefficient ui/2�25.5i� is limited
from 2−25 to 225.

In summary, the coordinates are represented by the 10 coefficients u0, u1/226,
u2/251, u3/277, u4/2102, u5/2128, u6/2153, u7/2179, u8/2204, u9/2230 from the
polynomial u0 + u1x + ... + u9x

9. The value of a coordinate is given by X =
u0 + u1 + ... + u9. Note that this representation is not unique, but is faster to
compute than the smallest representation [2].

4 Attack

4.1 Environment

The attack was performed on two computers running 64-bit Windows 7 OS. The
first computer was equipped with the Intel processor i5-2400 (3.1 GHz, 4 cores, 4
threads, Sandy Bridge architecture), while the processor of the second PC was a
dual Intel Xeon E5-2630v2 (2.6 GHz, 12 cores, 24 threads, Ivy Bridge). The code
was compiled for 32-bit architectures using Visual Studio 2015 (MSVC). It makes
use of the Windows runtime libraries 2015. The program was written in C.

In order to be as close as possible to a real case we did not change the
default enabled options in the BIOS: Hardware Prefetcher, Adjacent Cache Line
Prefetcher, DCU Streamer Prefetcher, and DCU IP Prefetcher.

Counter. In order to measure timings we made use of the assembly instruction
for Intel processors called rdtsc (for Read Time-Stamp Counter) which allows
reading of the time stamp counter of the processor. The time-stamp counter
is contained in a 64-bit MSR (Model-Specific Register). Using this command
before and after the processing, it was possible to determine the elapsed number
of clock cycles. This instruction is not portable as it can only be applied to Intel
processors.

4.2 Timing Leakage Observation

Although the computation of the scalar multiplication should be time-constant,
we spotted some timing differences depending on the value of the key. When
comparing the mean value (over 10,000 measurements) of the execution times
of the multiplication of the base point 9 with either the same key or different
keys, we observed some differences (Fig. 1). We made three observations from
the results shown on Fig. 1.

First, the counter induces some timing differences. Two identical executions
do not take the same number of cycles.

Second, the variance of the timing executions is different for the execution
of the same computation and the computation with different values of key. This
implies some input-dependent instructions.
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Fig. 1. Computation times depending on the key.

Third, the timing difference seen is small. For 256 bits the difference is at
most 4000 clock cycles while the overall computation takes about 1.6 million
clock cycles.

4.3 Timing Leakage Origin

After a careful analysis of the binary code, the observed timing leakage appeared
to be coming from the assembly function llmul.asm found in the Windows run-
time library1. The function llmul.asm is called to compute the multiplication of
two 64-bit integers. It contains a branch condition which causes differences in
execution time (see Fig. 2, line 65). If both operands of the multiplication have
their 32 most significant bits equal to 0 then the multiplication of these words
is avoided as the computation is correctly judged to be 0.

This runtime function is called by the program when executing the mul-
tiplication with a constant in the function fscalar product (Listing 1.1) in the
Montgomery ladder algorithm described in [10]. There was no way to see that
this ordinary multiplication could cause a difference of timing, especially as a
carry is never needed with coefficients being smaller than 225.

Listing 1.1. Code in fscalar product function

for ( i = 0 ; i < 10 ; ++i ) {
output [ i ] = in [ i ] ∗ s c a l a r ;

}
We saw in Sect. 3.1 that the coefficients representing the coordinates are

bounded between −225 and 225, thus smaller than 232 and representable over 32

1 A runtime library is a library for a specific environment. It contains pieces of code
that can be called by a program executed in this environment.
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Fig. 2. Part of the code of the Microsoft llmul function with incriminating line

bits only. However, two’s complement representation is used and negative num-
bers are represented with leading ones. As the choice was made to work with 64-bit
integers, for negative numbers the 32 most significant bits are all ones.

In addition, the scalar (121665) is a positive integer represented over 32 bits
and the 32 most significant bits are therefore all 0. Thus the execution of the
second part of the code of llmul only depends on the sign of the coefficient. We
can say that the computation time of a key bit (ki) in the Montgomery ladder
is dependent on the number of negative coefficients representing the coordinates
of the point being processed.

4.4 Timing Attack

In the Montgomery ladder, the value of the key bit ki only decides which coor-
dinates will be doubled and which ones will be added. Let’s call cij the jth

coefficient of the polynomial representing the intermediate value of the new
Z-coordinate of the point which is multiplied by the scalar for the bit ki in
the Montgomery ladder.

The values of the coefficients cij ’s depend on several parameters: the base
point, the values of the previously processed bits of the key, and ki. For a given
base point and fixing the previous bits (more significant) it is possible to count
the number of negative coefficients among the cij ’s, by executing the code until
ki. Depending on the base point and the key there can be a different number of
negative coefficients when ki = 0 or ki = 1. This difference can go from 0 to 10
which is still a very small difference in terms of clock cycles.

Attack Core Idea. We can see the overall computation time (called F below)
as the time required to process all the previous bits, the attacked bit and the
next bits. For a key k = kl−1kl−2...k1k0 and a base point P , we have:

F (k, P ) =
∑

j>i

f(kj |kl−1, kl−2, ..., kj+1, P )

+ f(ki|kl−1, kl−2, ..., ki+1, P )

+
∑

j<i

f(kj |kl−1, kl−2, ..., ki, ..., kj+1, P )

(1)
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where f is the time of the processing of 1 bit in the Montgomery ladder.
Keeping this in mind, if we choose base points so that there is the same

number of negative coefficients for the ith bit ki, the time due to the processing
of the other bits (before and after) can be assumed to be random from one
execution to another.

Thus taking the mean over n executions with different base points Pj ’s, we
have:

Fµ(k, Pj ’s) =
1
n

n∑

j=1

(
f(ki|kl−1, kl−2, ..., ki+1, Pj) + N(μN , σ2)

)
(2)

where N is some Gaussian noise of mean μN and standard deviation σ. We know
that the average of Gaussian noises tends to the mean:

Fµ(k, Pj ’s) ∼= 1
n

n∑

j=1

f(ki|kl−1, kl−2, ..., ki+1, Pj) + μN (3)

Then, for different sets of base points A and B:

Fµ(k, Pj ’s ∈ A) > Fµ(k, Pj ’s ∈ B) ⇒
1
n

n∑

j=1

f(ki|kl−1, ..., ki+1, Pj ’s ∈ A) >
1
n

n∑

j=1

f(ki|kl−1, ..., ki+1, Pj ’s ∈ B)
(4)

If we select base points causing more negative coefficients when the bit ki is 0
or 1 respectively (let’s call the sets high0 and high1 respectively) and compare
the overall computation times, we are able to find the value of ki:

ki =

{
0, if Fµ(k, P ij ’s ∈ high0) > Fµ(k, P ij ’s ∈ high1)
1, otherwise

(5)

Timing Measurements. The attack procedure is described in Algorithm1.
We maintain a constructed key (keyc) with the bits we found from the unknown
key (keyu). The base points are chosen by picking a point value at random,
executing the scalar multiplication routing and simply counting the number of
negative coefficients for the cases when ki = 0 and ki = 1. We want the difference
between those two values to be at least 8. If we compare the average of the times
to compute the scalar multiplication for base points of high0 with the mean of
the times for base points of high1 then the difference does not depend on the
rest of the bits.

It can be noted that the difference in the number of negative coefficients
between base points of high0 and the ones of the base points of high1 is at least
6 (a high value is at least 8 and a low value can be at most 2, thus the minimum
is 8 − 2 = 6).
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Algorithm 1. Attack Procedure
1: Knowing the i first bits of keyu, set the first bits of keyc to these values
2: Executing the code separately with keyc and a random base point, we count the

number of negative coefficients in the polynomial representation of the point
when multiplying by the bit i + 1, for ki+1 = 0 and ki+1 = 1. We call them
coeff0 and coeff1 respectively.

3: if coeff0 − coeff1 > 7 then
4: Add base point to the set high0

5: else
6: if coeff0 − coeff1 < −7 then
7: Add base point to the set high1

8: Repeat steps 2 to 7 until we have 200 points in each set.
9: For each base point high0 and high1, compute 25,000 times the scalar multiplica-

tion with keyu and measure the overall time of execution.
10: For each base point, take the mean value over the 15 minimum values of timing

measured. We call these means µi’s.
11: Compute the mean (µhigh0) of the µi’s for base points in high0

12: Compute the mean (µhigh1) of the µi’s for base points in high1

13: If µhigh0 > µhigh1 , then ki+1 = 0, otherwise ki+1 = 1
14: Repeat steps 2 to 13 until the same value for ki+1 was found twice.
15: Set ki+1 to the value found twice and go to 1 for the next bit

5 Results

Although the distribution of the μi’s is not a clean Gaussian distribution it is pos-
sible to get some coherent results when taking the minimum values. When com-
paring the average values of the high0 and high1 base points computation times,
we observe a difference as expected (Fig. 3). In order to obtain some more accu-
rate timing measurements, each ECC execution was associated to a specific
core (affinity selection) on the server. It seems that, contrary to Linux systems,
Windows has an aggressive management of power consumption of cores, which
induces bigger variations in the timing measurements.

5.1 Evaluation of the Attack

This attack works but it takes some time to recover all the bits of the key.
The time required to compute one ECC computation is around 1.6 million clock
cycles. 25,000 measurements per base point are needed. There are 400 base points
per bit and this is performed 2 to 3 times per bit. On the Intel Xeon processor,
at 2.6 GHz, this represents about 15 s for the 25,000 measurements. As 5 bits are
fixed, we need to recover 251 bits. Hence, we need about 1 month to recover the
whole key with this method.

The measurements need to be repeated many times because the execution
times can vary significantly and we are looking for a very small difference in
timing. Taking the mean over the 15 minimum values appears to be a good
compromise as the minimum value is more stable than the mean of the measures
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Fig. 3. Comparison of the means of high0 and high1 for ki = 0

but, if this minimum value is rare (e.g., because of what is running on the same
processor), it can lead to errors. This is certainly not the most efficient way.
It is however robust and allows targeting of all sorts of systems which may
have very different behaviors. Creating a precise model of the distribution of the
measurements would take time and would remain specific to a given system.

As the attack requires knowledge of the bits preceding the bit being attacked,
it is not possible to target a specific bit of the key without processing all the
previous bits. Furthermore, once a mistake is made in the presumed value of a
bit, the chance of correctly recovering the subsequent bits is negligible (the attack
makes no sense as we choose the base points high0 and high1 for another key).

Fine tuning the number of measurements and base points could be performed
in order to decrease the time of the attack. Furthermore, when there are only a
few bits left to recover, a brute-force attack might be faster than continuing the
attack until the very last bit of the key.

Other analyses based on the “profiled attack” approach with a parametric
template (on a multi-dimensional Gaussian model) or a machine learning system
could be interesting to investigate.

5.2 Extension to Remote Attacks

As the overall times of computation are measured, the attack was expected to
also be feasible remotely. In order to test this hypothesis we measured response
times of network communications on a local server (ping requests). When we
added the network delays to the timings of the overall computations and applied
the attack, we were still able to retrieve the correct values of the bits.
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6 Conclusion

It has been shown above that simply following the recommendations of the RFC
and having a “constant-time” source code is not sufficient to prevent timing leak-
age. Once a security design is implemented, whatever effort is put into protecting
each part of the code, there still remains a strong possibility of a timing leak.
It is virtually impossible to have control over all the parameters at stake. Com-
piler and processor optimizations, processor specificities, hardware construction,
and runtime libraries are all examples of elements that cannot be predicted when
implementing at a high level.

The attack developed shows that the effects of these low-level actors can be
exploited practically for the curve X25519. It is not only theoretically possible
to find weaknesses, they can be found and exploited in a reasonable amount of
time.

Nevertheless, the idea of ensuring that the design itself is secure by using a
formalized approach such as RFC is however an important step in minimizing
the side-channel leakage of any final system.

This paper also highlights one particular aspect: the potential weakness of
other codes implemented using the Windows runtime library.
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Abstract. In the public-key setting, known constructions of function-
private functional encryption (FPFE) were limited to very restricted
classes of functionalities like inner-product [Agrawal et al. - PKC 2015].
Moreover, its power has not been well investigated. In this paper, we
construct FPFE for general functions and explore its powerful applica-
tions, both for general and specific functionalities.

As warmup, we construct from FPFE a natural generalization of a
signature scheme endowed with functional properties, that we call func-
tional anonymous signature (FAS) scheme. In a FAS, Alice can sign a
circuit C chosen from some distribution D to get a signature σ and can
publish a verification key that allows anybody holding a message m to
verify that (1) σ is a valid signature of Alice for some (possibly unknown
to him) circuit C and (2) C(m) = 1. Beyond unforgeability the security
of FAS guarantees that the signature σ hide as much information as pos-
sible about C except what can be inferred from knowledge of D.

Then, we show that FPFE can be used to construct in a black-box way
functional encryption schemes for randomized functionalities (RFE).

As further application, we show that specific instantiations of FPFE
can be used to achieve adaptively-secure CNF/DNF encryption for
bounded degree formulae (BoolEnc). Though it was known how to imple-
ment BoolEnc from inner-product encryption (IPE) [Katz et al. - EURO-
CRYPT 2008], as already observed by Katz et al. this reduction only
works for selective security and completely breaks down for adaptive
security; however, we show that the reduction works if the IPE scheme
is function-private.

Finally, we present a general picture of the relations among all these
related primitives. One key observation is that Attribute-based Encryp-
tion with function privacy implies FE, a notable fact that sheds light on
the importance of the function privacy property for FE.
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1 Introduction

Functional Encryption (FE) [1] is a sophisticated type of encryption that allows
to finely control the amount of information that can be revealed by a decryption
operation. Progressively, more expressive forms of FE were constructed in a series
of works (see, e.g., [2–6]) culminating in the breakthrough of Garg et al. [7].

The security notion in these works only take in account the privacy of
the message but nothing is guaranteed for the privacy of the function. In
the symmetric-key setting, a preliminary study of FE with function privacy
was initiated by Shen et al. [8] for the inner-product functionality [4], subse-
quently followed by constructions for general functionalities [9]. Boneh et al. [10]
put forward the study of function privacy for FE providing constructions for
the Identity-Based Encryption (IBE) functionality, then followed by works
that considered the subspace membership [11] and the inner-product [12,13]
functionalities.

In the public-key setting, the function can not be hidden completely since
the adversary can always try to infer partial information about it using the
public key. For this reason, Boneh et al. [10] consider functions chosen from high
min-entropy distributions. Precisely, in the context of IBE they propose an IND
style real-or-random definition of function privacy, that stipulates that as long as
the identity id was chosen from a sufficiently high min-entropy distribution, the
adversary should not be able to distinguish the token for id from a token for a
uniformly random identity. Agrawal et al. [13] consider stronger simulation-based
definitions for function privacy but with non-standard simulators (a necessity
motivated by broad impossibility results in the area).

It seems that a meaningful simulation-based security notion of public-key
function-private functional encryption (FPFE) for some expressive enough class
of Boolean circuits would imply virtual black box (VBB) obfuscation for the
same class of circuits and thus it seems unachievable even for NC1 circuits. For
such reasons, we stick with the indistinguishability-based (IND-based) definition
and defer to future works the study of stronger security notions. Specifically, in
the case of Boolean circuits, we consider what we call pairs of ensembles of
efficiently samplable feasible entropy distributions, a strengthening of a notion
defined by Agrawal et al. [13] which abstracts the unpredictability property
of Boneh et al. [10]. Formal definition is given in the full version. Note that
we put the constraint that the distributions be efficiently samplable. This is
because, in the context of function privacy, as well as for functional anonymous
signatures that we will introduce later, users sample the cryptographic objects
from efficiently samplable distributions. This subtle difference turns out to be
very important; indeed it is the key to make such primitives composable.

To our knowledge no previous work in literature considered public-key FPFE
for more general functionalities, like poly-sized circuits or even NC1 circuits. This
leads to the main questions that we study in this work:
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Can we achieve public-key FPFE for more general functionalities, like at
least NC1 or even all poly-sized circuits, from reasonable assumptions?
And what applications and other primitives can we build from FPFE (not
necessarily for general functionalities)?

Based on the existence of quasi-siO proposed by Bitansky, Canetti, Kalai and
Paneth [14],1 we answer affirmatively to the first question. The solution we pro-
pose is conceptually simple and elegant but we believe that the key is in having
discovered and identified quasi-siO as the main building block, a relation that
was not known before in the literature.

Note that quasi-siO is a weakened version of strong iO (siO), which guaran-
tees that no efficient adversary can distinguish two feasible entropy distributions
D0 or D1. The weakening lies in the fact that quasi-siO requires the distributions
to be efficiently samplable.

We answer the second question by mainly demonstrating the implication
with respect to functional anonymous signatures, FE for randomized function-
alities, and adaptive security for efficient Boolean formulae encryption (for this
application we do not require FPFE for general functionalities). Though some
of our results can seem basic, this is a due to our recognition of the power of
these primitives not studied so far, and some applications we derive from them
improve the state of the art in the field or solve known problems. Thus, we deem
the simplicity of our approach a positive feature not a shortcoming.
Our results are not only an example of the power and of the applications of
FPFE but also and mainly of the power siO/quasi-siO, and in the full version
we show equivalences between them.

Public-key FPFE based on Quasi-siO. To the aim of having conceptually
simple and general constructions, we construct a FPFE scheme by nesting a
generic FE scheme (without function privacy) with a siO.
Specifically our FPFE scheme FPFE will use the underlying FE scheme FE as
a black box and will have identical procedures except that a token for a circuit
C will consist of a token of FE for the circuit qsiO(C), where qsiO is a quasi-
siO: that is, setting C ′ = qsiO(C), a token of FPFE for C will be a token of
FE for C ′. Intuitively, even though this token is computed with a non function-
private scheme, as it is built on the top of circuit obfuscated with quasi-siO, it
should leak as little information as possible. In fact, we confirm this intuition
providing formal reductions. Note here that the underlying FE scheme guaran-
tees the privacy of the encrypted messages and quasi-siO is only used to add the
extra layer of function privacy.

The modularity of our approach allows to instantiate a FPFE for a class
of circuits C assuming only a quasi-siO for the same class of circuits until the
class C is enough expressive, specifically includes at least all NC1 circuits. Fur-
thermore, it generalizes easily to multi-inputs FE (MIFE, in short) [15] allowing
to construct the first MIFE scheme with function privacy (FPMIFE, in short).

1 The name quasi-siO is ours. The authors define a weakening of the their notion of
siO (see the following) without explicitly naming it.
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The definition of a FPFE scheme and its security and construction from quasi-
siO is presented in the full version. We observe that the reverse direction also
holds. In fact, a quasi-siO qsiO for class of circuits C can be constructed from
a FPFE scheme FPFE for the same class in the following way. For any input
C the algorithm qsiO(C) outputs the public-key of the FPFE scheme and a
token Tok for C of FPFE. To evaluate such obfuscated circuit on an input x,
the evaluation algorithm associated with qsiO takes as input the public-key and
Tok and encrypts2 x to get Ct and evaluates Tok on Ct to get C(m). The cor-
rectness of FPFE and its INDFP-Security (given in the full version) imply that
such obfuscator is a quasi-siO. This construction also reaffirms that a meaning-
ful simulation-based security notion for FPFE for a class C would imply VBB
obfuscation for C, and thus is unachievable in general. For such reason we stick
with an IND-based definition of function privacy.

Functional Anonymous Signatures. As warmup we construct from FPFE
a new primitive called Functional Anonymous Signature (FAS, in short). Recall
that the Naor’s transformation3 allows to transform an identity-based encryption
(IBE) scheme [16] in a signature scheme. The idea is that the token for an identity
id acts as a signature for it. Such signature can be verified by encrypting the pair
(r, id) for a random string r and testing whether the token (i.e., the signature)
evaluated on such ciphertext returns r. By the security property of IBE, such
signature is unforgeable. We generalize this concept to FE and propose what
we call FAS. With FAS, a user Alice can sign a Boolean circuit C allowing Bob
holding an input m to verify (1) that the signature was issued by Alice and that
(2) C(m) = 1.

We envision a scenario where the signature of Alice of a circuit C hides C if
it is drawn from a feasible entropy distribution. In this case, the intent of Bob
is to verify (1) that Alice signed some circuit C, that is not known to him, and
(2) verify that his input m satisfies the circuit, e.g., C(m) = 1.

We foresee FAS to be a very useful primitive in practice, e.g. in the following
authenticated policy verification mechanism. Alice, the head of a company, can
publish her verification key and with the corresponding secret key can sign an
hidden policy P chosen from some known distribution D and send the signature σ
of P to the server of her company. The secretary of the company, who is assumed
to be honest but curious, can grant Bob access to some private document iff the
access pattern m held by Bob verifies the signature of Alice, and in particular her
hidden policy, i.e., P (m) = 1. If the signature is verified by the access pattern
of Bob, then the secretary has the guarantee that (1) the policy was signed by
Alice and (2) the access pattern of Bob satisfies such policy.

Both Bob and the secretary have no information about the policy except
what can be inferred from the distribution D. Due to the possibility of using

2 Actually, for this implication to hold we only need “data privacy”, i.e., security
of the encryptions. In fact, we could assume that the messages be encrypted in
clear. Precisely, according to the definitions (given in the full version), we only need
INDFP-Security and not also IND-Security.

3 Such transformation was first reported in Boneh and Franklin [16].
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universal circuits in FAS, the role of access pattern and policy can be inverted,
that is Alice can sign an access pattern and Bob holding a policy can verify
whether his policy satisfies her access pattern. It is easy to see that FAS implies
traditional signature schemes.

We define FAS with a notion of unforgeability that we call functional unforge-
ability, that suits for most applications of FAS. The notion does not consider as
valid the forgery of a circuit more restricted than a circuit for which a signature
was seen.4

To see why such condition is not too restrictive, consider the above applica-
tion. In that case, the security of FAS should prevent some unauthorized user
to claim that Alice signed a document who authorizes him. This is exactly what
the condition states. Note also that being Alice semi-trusted we do not consider
a breach of security if she is able to forge a signature for a circuit C ′ more
restricted than the circuit C of which she received a signature from Alice (a cir-
cuit C ′ is said to be more restricted than C if C ′(x) = 1 implies C(x) = 1). Only
malicious users have the interest to forge new signatures and in this case their
scope is to forge signatures for circuits that authorize them, so a forgery for a
more restricted circuit (or a functionally equivalent one) must not be considered
a successful attack.

However, for other applications such security could not suffice but we show
that it is possible to make FAS unforgeable according to the classical notion of
unforgeability (i.e., requiring that any PPT adversary can not forge a signature
for a circuit C ′ different (as bit string) from any circuit C for which it saw a
signature) just adding a traditional unforgeable scheme on the top of it. Beyond
unforgeability, we require anonymity, namely that a signature σ hide as much
information as possible about C except what can be inferred from knowledge of
the distribution from which C is drawn.

FPFE fits perfectly in the picture, and in fact we show that it implies FAS in
a black-box way. Specifically, we show how to extend the Naor’s transformation
to construct FAS for a class of circuits C from Attribute-based Encryption (ABE,
in short) with function privacy, a weaker notion of FPFE, for the same class C.
Related primitives are content-concealing signatures and confidential signatures
([17,18]) that can be viewed as a weak form of FAS schemes without functional
capabilities (or alternatively for the class of equality predicates). The definition
of FAS, its security and construction from ABE with function privacy (FPABE,
in short) are presented in the full version.

We mention that it is possible to construct FAS in a more direct way from
quasi-siO, but our aim is also to show equivalences among FAS, quasi-siO and
FPFE (see Sect. 1).

Functional Encryption for Randomized Functionalities. Goyal et al. [19]
put forward the first construction of FE supporting randomized circuits. In this
setting, the challenge is to guarantee that the circuit be evaluated on fresh

4 That is, it is not considered as a valid forgery if an adversary given a signature of
circuit C can sign another circuit C′ that computes the same function as C or is
more restricted than C.
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randomness that can not be maliciously chosen. A tentative solution to the
problem would be to include the seed of a pseudo-random function in the token.
Unfortunately, this approach fails since the token is not guaranteed to hide the
function that the circuit is supposed to compute.

This leaves open the possibility that this basic idea could work assuming a
FE whose token hides the function (i.e., with function privacy), and in fact we
are able to confirm this intuition by showing a black-box construction of FE for
randomized circuits (RFE, in short) from FPFE for (deterministic) circuits. We
adopt an indistinguishability-based security for RFE, but unlike Goyal et al. we
do not take in account the problem of dishonest encryptors that goes beyond the
scope of our work (and concerns not only RFE but FE and FPE as well). Our
construction of RFE also preserves the function privacy of the underlying FPFE
and thus satisfies the standard notion of function privacy where the adversary
can ask distributions of deterministic circuits. We call this notion FPRFE.

The definition of RFE, its security and its construction from FPFE are pre-
sented in the full version.

Adaptively-secure FE for CNF/DNF formulae of bounded degree. Here
we assume that the reader is familiar with inner-product encryption (IPE) intro-
duced by Katz et al. [4].

Katz et al. show how to implement polynomial evaluation from IPE and
how to build FE for a subclass of Boolean formulae with a bounded number (at
most logarithmic in the security parameter) of variables (BoolEnc). Hereafter,
for simplicity we focus on DNF formulae (of bounded degree) and thus we will
call such FE scheme DNFEnc. Analogous considerations hold for other classes
of Boolean formulae that can be derived from IPE, e.g., CNF formulae.

For instance conjunctions can be handled in the following way. Consider the
predicate ANDI1,I2 where ANDI1,I2(x1, x2)

�
= 1 if both x1 = I1 and x2 = I2.

Then, we can choose a random r ← Zp (here we assume that the coefficient of
the polynomial are over Zp) and letting the token correspond to the polynomial

p(x1, x2)
�
= r · (x1 − I1) + (x2 − I2). If ANDI1,I2(x1, x2) = 1 then p(x1, x2) = 0,

whereas if ANDI1,I2(x1, x2) = 0 then, with all but negligible probability over the
choices of r, it will hold that p(x1, x2) �= 0. Disjunctions can be implemented

by defining a polynomial p′(x1, x2)
�
= (x1 − I1) · (x2 − I2). It is straightforward

that conjunctions and disjunctions can be combined to get DNF formulae but,
as the Katz et al.’s transform from DNF formulae to polynomials grows super-
polynomially in the number of variables, we have to put a bound on it.

As Katz et al. observe, in general the token may leak the value of r in which
case the adversary will be able to find x1, x2 such that ANDI1,I2(x1, x2) = 0 yet
p(x1, x2) = 0. Since, however, they consider the “selective” notion of security
(where the adversary must commit to x1, x2 at the outset of the experiment),
this is not a problem in their setting. On the other hand, disjunctions can be
handled without issues.
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Anyhow, this implies that even adaptively-secure IPE schemes [6] can not be
directly employed in this transformation and thus to construct an adaptively-
secure DNFEnc. FPFE turns out to be useful in this context: assuming that
the underlying IPE satisfies our notion of function privacy, we show that
an adaptively-secure IPE with function privacy implies an adaptively-secure
DNFEnc. The idea is that, being the token function-private, it hides the value r
so that the adversary cannot make the reduction to fail. In the full version [20],
we prove this fact.

It is out of the scope of this work to provide concrete instantiations of
function-private schemes that suit for our scopes but our result emphasizes the
importance of function-privacy even for practical matters. For instance, the IPE
scheme of Agrawal et al. [21] is clearly subject to function-privacy attacks and
thus cannot be employed in the Katz et al.’s transformation whereas, though
not backed by any security proof, the IPE schemes of Katz et al. does not seem
subject to any of such attacks. Thus, our result suggests that care has to be
taken when instantiating the transformation.

Relation Between Primitives. It is easy to see that quasi-siO implies iO
that in turn is known to imply (along with one-way functions) FE [22]. Thus,
quasi-siO implies FPFE. Moreover, FAS can be used to construct a quasi-siO
as follows. An obfuscation of circuit C will consist of a signature for C and the
verification key of the FAS scheme, and to evaluate the obfuscated circuit on an
input x, just run the verification algorithm of FAS with input the verification key,
the signature and the message m. From the anonymity of FAS, such obfuscator
is easily seen to be a quasi-siO. Note that this implication does not assume FAS
with any kind of unforgeability. Since FPFE implies FPABE, that in turn implies
FAS, we have that FAS, FPFE and quasi-siO are equivalent primitives (i.e.,
they imply each other). One of the key points highlighted by our results is that
FPABE implies quasi-siO and thus iO that in turn (assuming in addition one-
way functions) implies FE [22], a notable fact that sheds light on the importance
and power of function privacy for FE. Indeed, even though ABE is not known
to imply FE, our results show that the additional property of function privacy
suffices for it.
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Abstract. Public-key encryption has been generalized to adapt to more
and more practical applications. Broadcast encryption, introduced by
Fiat and Naor in 1993, aims for applications in pay-TV or satellite trans-
mission and allows a sender to securely send private messages to any
subset of users, the target set. Sahai and Waters introduced Attribute-
based Encryption (ABE) to define the target set in a more structural way
via access policies on attributes. Attribute-based Broadcast Encryption
(ABBE) combines the functionalities of both in an efficient way. In the
relevant applications such as pay-TV, the users are given a relatively
small device with very limited secure memory in a smartcard. Therefore,
it is of high interest to construct schemes with compact secret key of
users. Even though extensively studied in the recent years, it is still an
open question of constructing an efficient ABBE with constant-size pri-
vate keys for general forms of access policy such as CNF or DNF forms.
This question was partially solved at ESORICS ’15 where Phuong et al.
introduced a constant secret-key size ABBE. But they manage restric-
tive access policies only supporting AND-gates and wildcards. In this
paper, we solve this open question and propose an efficient constant-
size private key ciphertext-policy attribute-based broadcast encryption
scheme for DNF form. In particular, we also present the optimization in
implementing our proposed scheme.

Keywords: Attribute-based broadcast encryption · Ciphertext-policy ·
DNF

1 Introduction

We are actually in a very active period of development of cryptography. Mod-
ern technologies, namely cloud computing and big data, require the design of
advanced cryptographic schemes supporting new functionalities. In many appli-
cations that involve a large set of users, one needs to have stronger and more
flexible capabilities to encrypt data than the traditional public key encryption:
the encryption should take into account specific policies in such a way that only
receivers with suitable rights can decrypt the encrypted messages.
c© Springer International Publishing AG 2016
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Attribute-Based Encryption. Sahai and Waters [14] introduced the concept of
attribute-based encryption (ABE) in which the encryption and decryption can
be based on the user’s attributes. Since then, there are a lot of development in
this area with many interesting results [7,11,13,14,16], to name a few. Actually,
there are two categories of ABE: ciphertext-policy attribute-based encryption
(CP-ABE) and key-policy attribute-based encryption (KP-ABE). In a CP-ABE
scheme, the secret key is associated with a set of attributes and the ciphertext
is associated with an access policy (structure) over the universe of attributes: a
user can then decrypt a given ciphertext if the set of attributes related to his/her
secret key satisfies the access policy underlying the ciphertext. In contrast, in
a KP-ABE scheme, each secret key corresponds to an access policy and a set
of attributes is associated with the ciphertext. Concerning the access structure,
fine-grained access control is the most desired and also well formalized as boolean
formula in disjunctive normal form (DNF) or in conjunctive normal form (CNF).

Attribute-Based Broadcast Encryption. In some practical cases, one may want
to remove the right to decrypt to some specific users. The notion of attribute-
based broadcast encryption (ABBE) has then been introduced in [10] to address
the problem of user revocation. More precisely, in such a system, the broad-
caster is capable of revoking any receiver and the collusion of revoked users
cannot decrypt any ciphertext even if they possess sufficient attributes to satisfy
the access policy. In traditional attribute-based encryption schemes, the revoca-
tion can be performed based on attributes (resp., negative attributes as some
non-monotonic schemes [11,16]), by adding the AND of a clause containing the
attributes corresponding to non-revoked users (resp., negative attributes corre-
sponding to revoked users). However, this will give an inefficient solution as the
ciphertext grows linearly to the number of non–revoked users (resp., revoked
users), which is large. An attribute-based broadcast encryption (ABBE) scheme
should allow individual receivers to be directly revoked in an efficient way.

Several ABBE schemes have been proposed in [3,7–10]. As in a broadcast
encryption, it is of great importance to construct a scheme with compact secret
key. Such a scheme can have practical applications such as in pay-TV or satellite
transmission where the user’s device are relatively small and the secure memory is
often implemented in a smartcard. While broadcast encryption with constant-size
secret key has been solved by Boneh, Gentry and Waters in [2], the extension of
BGW technique to ABBE setting make the secret key longer, due to the obligation
of combining different attributes in the decryption, as shown in [7]. The problem of
designing constant-size private key ABBE schemes supporting fine-grained access
control was partially solved in ESORICS ’15 [12]. But the problem is still open
since the proposed non-monotonic scheme only manages restrictive access poli-
cies supporting AND-gates and wildcards: they do not treat the case of CNF or
DNF forms. More precisely, if the access policy is A1 ∧ ∗ ∧ A2, where ∗ is a wild-
card, then any user whose attribute set contains exactly three attributes (no more
no less) and two of them are A1, A2 can decrypt the ciphertext. This obliviously
can reduce the ciphertext size, however in exchange, the secret key size now is
3+2(N1 +1) elements, where N1 is the maximal number of wildcards can appear
in an access policy, N1 is fixed at the setup phase.
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Our Contributions. Even though extensively studied in the recent years, it
is still an open question of constructing an efficient ABBE with constant-size
private keys for general forms of access policy such as CNF or DNF. We here
solve this open question for the DNF form by providing several new techniques
in this field.

Our initial new idea is to extend the Delerablée’s technique (for constructing
an IBBE scheme [5]) to our context of CP-ABBE. More precisely, each attribute
in our ABBE corresponds to an identity in Delerablée’s IBBE scheme. To obtain
the “broadcast” property, we also add an additional identity for each user. The
resulting scheme then contains two kinds of “IBBE identities”: one user’s identity
and the additional identities that represent the attributes the user possesses. We
then succeed in combining all these information into a compact secret key. More
intuition behind our construction as well as the security proof of our scheme will
be given further in the paper.

We give in Table 1 a detailed comparison among our scheme and several
other CP-ABE and CP-ABBE schemes supporting fine-grained access control. It
shows that, regarding the efficiency, our CP-ABBE scheme enjoys the following
properties:

– it is the first efficient CP-ABBE scheme which simultaneously achieves
constant-size private key and supports fine-grained access control;

– regarding the decryption, a user in our scheme only needs to compute two par-
ings, in contrast to almost existing CP-ABE and CP-ABBE schemes supporting
fine-grained access control where each user needs to perform at least |I| pair-
ings computations in the decryption, where |I| is the number of attributes
needed to satisfy a ciphertext policy. Moreover, as we will see, one of the two
pairing can be delegated to a third party.

We show at the full version of the paper that our scheme can be truly imple-
mented in a prototype for a smartphone based cloud storage use case. In partic-
ular, we show how to alleviate some parts of our scheme so as to obtain a very
practical system, and we give some concrete benchmarks.

Organization of the Paper. The paper is now organized as follows. The next
section presents the security definitions and the assumptions we need to prove
the security. In Sect. 3, we present our new construction. Section 4 is devoted
to the security proof of the scheme. Finally, in Sect. 5, we talk about our real
implementation.

2 Preliminaries

We give here our main scenario, several preliminaries regarding definition and
security model for a CP-ABBE scheme and the security assumptions we will need.
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Table 1. n is the maximal number of users, N is the maximal number of attributes,
m is the number of clauses in a CNF/DNF access policy, (in some systems from linear
secret sharing matrix framework, � denotes the number of rows of the LSSS matrix (the
number of attributes in an access formula, counting the reused attributes), �∗ denotes
the maximal of � which is equal to the size of the attribute universe, |Su| denotes the
number of attributes of a private key, |I| is the number of attributes of a private key to
satisfy a ciphertext policy, |p| denotes element in Zp, P denotes pairing computation, ex
denotes the exponentiation, mex[v] the multi-exponentiation with v terms, mul denotes
the multiplication, kmax denotes the maximal number of times where one attribute
can be reused in an access formula. Note that [8,9] support fully collusion-resistant
blackbox traceability

|ciphertext| |sk| |pk| Enc time Dec time Assump Revoc

[15] 2� + 1 |Su| + 2 N + 3 (3� + 2)ex (2|I| + 1)P q-type No

[6] (� + 1) kmax|Su| + 2 N + 3 (2� + 2)ex 2P BDHE No

[7] O(m) O(N) O(N) (� + 2m)ex O(|I|)P GDDHE Yes

[13] 3� + 2 2|Su| + 2 6 + N |p| (5� + 2)ex (3|I| + 1)P q-type No

[4] 2�∗ + 2 2�∗ + 4 2�∗ + 3 O(�2)mul 4P SXDH No

[8] 17
√

n + 2� 4 + |Su| 4
√

n + N (O(
√

n) + 3�)ex (10 + 2|I|)P q-type Yes

[9] 16
√

n + 3� 2 +
√

n + 2|Su| 5 + 5
√

n (O(
√

n) + 3�)ex (9 + 3|I|)P q-type Yes

Ours m + 1 1 O(N.n) 2ex+ m·
mex[n + m + N ]

2P GDDHE Yes

2.1 Practical Scenario

All along the paper, we will consider the following scenario. A company wishes
to put in place a CP-ABBE scheme for its staff, so that they can store and share
sensitive documents, using a non-trusted cloud platform for storage (such as e.g.,
Dropbox or GoogleDrive). More precisely, we consider three kinds of attributes
in the studied system.

– The role of the user in the company: boss, manager, developer, expert.
– The team in which the user is: team1, · · · , teamk.
– The project on which the user can work: project1, · · · , project�.
Based on that attributes, and a unique specific identity, anyone can encrypt and
upload documents, using the CP-ABBE scheme and a chosen DNF access control
policy of the form

β = boss ∨ (manager ∧ team4) ∨ (developer ∧ project5) ∨ (expert ∧ project2).

Finally, anyone with the correct attributes will be able to obtain the document
in clear.

2.2 Ciphertext-Policy Attribute-Based Broadcast Encryption

In this paper, we will consider the similar definition and security model for
a CP-ABBE scheme as in [7]. Formally, a CP-ABBE scheme consists of three
probabilistic algorithms as follows.



598 S. Canard et al.

Setup(1λ, n, {Su}u∈[n]): Takes as input the security parameter λ, the maximal
number of users n, and the attribute repartition Su (the user’s attribute set)
for each user u. It returns the public parameters param of the system, and n
private keys sku which will be distributed to each respective user. The set K
corresponds to the key space for session keys.

Encrypt(param,A, S): Takes as input an access policy A, the target set S, and
public parameter param. It outputs the session key K ∈ K, and the header
Hdr which includes the access policy A and the target set S.

Decrypt(sku,Hdr, param): Takes as input the header Hdr, the private key sku

of a user u, together with the parameters param. It outputs the session key
K if and only if Su satisfies A and u ∈ S. Otherwise, it outputs ⊥.

Security Model. This security model is called semantic security with full static
collusions. In fact, a CP-ABBE scheme is said to be secure in this model if
given a challenge header and all private keys of revoked users to an adversary.
It is impossible for the adversary to infer any information about the session
key. Formally, we now recall the security model for a CP-ABBE scheme by the
following probabilistic game between an attacker A and a challenger C.

1. The challenger C and the adversary A are given a system consisting of N
attributes.

2. A outputs a target access policy A, target set S as well as a repartition
{Su}u∈[n] which he intends to attack.

3. C runs the algorithm Setup(1λ, n, {Su}u∈[n]) and gives to A the public para-
meters param and the private keys sku corresponding to the users u that A
may control, i.e., Su doesn’t satisfy A or Su satisfies A but u /∈ S.

4. C runs the algorithm Encrypt(param,A, S) and obtains a header Hdr and a
session key K ∈ K. Next, C draws a bit b uniformly at random, sets K ′ = K

if bit b = 0, K ′ $← K if bit b = 1 and finally gives (K ′,Hdr) to A.
5. The adversary A outputs a guess bit b′.

As usual, A wins the game if b = b′, and its advantage is defined as

Advind(λ, n, {Su}u∈[n],A) = |2Pr[b = b′] − 1|

where the probability is taken over the random bit b and all the bits used in the
simulation of the algorithms Setup(.), and Encrypt(.). The semantic security
against full static collusions is defined as follows.

Definition 1. A CP-ABBE scheme is semantically secure against full static col-
lusions if for all randomized polynomial-time adversaries A and for all access
policies involving at most N attributes defined by {Su}∈[n],

Advind(1λ, n, {Su}u∈[n],A)

is a negligible function of λ when N,n are at most polynomial in λ.
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2.3 Access Structures

Definition 2 (Access Structures). Let {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and
B ⊆ C then C ∈ A. An access structure (respectively, monotone access struc-
ture) is a collection (respectively, monotone collection) A of non-empty subsets
of {P1, P2, . . . , Pn}, i.e,A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In this paper, we consider the monotone access structures. However, as shown
in [15], it is also possible to extend such case to the general access structures, at
the cost of a doubled number of attributes in the system.

2.4 Bilinear Maps and (P,Q, f) − GDDHE Assumptions

Let G, G̃ and GT denote three finite multiplicative abelian groups of large prime
order p > 2λ where λ is the security parameter. Let g be a generator of G and g̃ be
a generator of G̃. We assume that there exists an admissible asymmetric bilinear
map e : G × G̃ → GT , meaning that for all a, b ∈ Zp, (i) e(ga, g̃b) = e(g, g̃)ab,
(ii) e(ga, g̃b) = 1 iff a = 0 or b = 0, and (iii) e(ga, g̃b) is efficiently computable.
In the sequel, the set (p,G, G̃,GT , e) is called a bilinear map group system.

Let (p,G, G̃,GT , e) be a bilinear map group system and g ∈ G (resp. g̃ ∈ G̃)
be a generator of G (resp. G̃). We set gT = e(g, g̃) ∈ GT . Let s, n be positive inte-
gers and P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials
over Fp. Thus, P , Q and R are just three lists containing s multivariate polynomi-
als each. We write P = (p1, p2, . . . , ps), Q = (q1, q2, . . . , qs), R = (r1, r2, . . . , rs)
and impose that p1 = q1 = r1 = 1. For any function h : Fp → Ω and any
vector (x1, . . . , xn) ∈ F

n
p , h(P (x1, . . . , xn)) stands for

(
h(p1(x1, . . . , xn)), . . . ,

h(ps(x1, . . . , xn))
) ∈ Ωs. We use a similar notation for the s-tuples Q and R.

Let f ∈ Fp[X1, . . . , Xn]. It is said that f depends on (P,Q,R), which denotes
f ∈ 〈P,Q,R〉, when there exists a linear decomposition (with an efficient iso-
morphism between G and G̃):

f =
∑

1≤i,j≤s

ai,j · pi · qj +
∑

1≤i,j≤s

bi,j · pi · pj +
∑

1≤i≤s

ci · ri,

where ai,j , bi,j , ci ∈ Zp.
We moreover have bi,j = 0 when there is no efficiently computable homomor-

phism between G and G̃. Let P,Q,R be as above and f ∈ Fp[X1, . . . , Xn]. The
(P,Q,R, f) − GDDHE problem is defined as follows.

Definition 3 ((P,Q,R, f) − GDDHE) [1].
Given the vector H(x1, . . . , xn) = (gP (x1,...,xn), g̃Q(x1,...,xn), g

R(x1,...,xn)
T ) ∈ G

s ×
G̃

s × G
s
T as above and T ∈ GT decide whether T = g

f(x1,...,xn)
T .

The (P,Q,R, f) − GDDHE assumption says that it is hard to solve the
(P,Q,R, f) − GDDHE problem if f is linearly independent of (P,Q,R). In
this paper, we will prove that our scheme is semantically secure under this
assumption.
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3 Construction

3.1 Intuition Behind Our Construction

Delerablée’s technique. In this paper, we extend the Delerablée’s technique of
constructing an IBBE scheme [5] into our CP-ABBE context. In [5], the user’s
private key is of the form g

1
α+IDu , the ciphertext is constructed corresponding to

a target set of identities S = (IDi1 , . . . , IDik
) is of the form

g
∏j=ik

j=i1
(α+IDj)

and as long as user’s identity is “divided” by S (it means IDu ∈ S), she can
decrypt. In our scheme, each user u possesses a set of attributes Su and each
clause in the DNF access policy is a set of attributes βi: as long as there is at
least a set βi which is “divided” by Su then the user u can decrypt.

Our adaptation. When applying the above technique in ABE’s context, the
result is in the reversed form in which a user can decrypt if Su is “divided”
by βi. To deal with this problem, we employ a reversed technique to generate
the user’s private key by using the user’s “reversed” attribute set U \ Su, where
U is the attribute universe. Now, if βi is “divided” by Su then U \Su is “divided”
by U \ βi. We then produce the ciphertext in the same way as in [5] (by using
U \ βi instead of βi).

Re-use randomness vs. collusion. In our ABBE scheme, the access policy contains
many clauses, each clause βi corresponds to a target set in the Delerablée’s IBBE
scheme, and it is related to a ciphertext component Ci. In order to make the
decryption work, all the components Ci are required to use the same randomness
and the collusion can take some advantage in exploiting this point. In order to
neutralize the advantage of the adversary, we will make use of the “dummy
technique” by choosing a random dummy attribute set in creating each Ci.
Consequently, each Ci is randomized since the random dummy attribute set
now plays the role of a fresh randomness.

3.2 Our Scheme

We now describe our scheme which uses the type 3 paring.

Setup(1λ, n, {Su}∈[n]): Assume that the maximum number of attributes is N ,
the maximum number of clauses in an access policy is N ′.
Assume that the attribute universe is U = {A1, . . . , AN} ∈ Z

N
p , the dummy

attribute universe is U ′ = {Bi,j} i∈[N′]
j∈[N′]

∈ Z
N ′×N ′
p , suppose that the set of

identities of users in the system is ID = {ID1, . . . , IDn} ∈ Z
n
p . The algorithm

generates a bilinear map group system D = (p,G, G̃,GT , e), then chooses

h
$← G̃, g

$← G and α, γ
$← Zp. Finally, it outputs:

param = (U ,U ′, ID,D, {hαr·γt} r=0,...,N
t=0,...,n+N′

, h
γ
α , . . . , h

γn+N′
α , gα, e(g, h))
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and

sku = g
1

(γ+IDu)·∏i∈U\Su
(α+Ai) .

Encrypt(param, β = (β1 ∨ β2 ∨ · · · ∨ βm), S): the algorithm first checks that
βi �= βj for all i, j ∈ [m], i �= j, then picks a random k ∈ Zp then computes:

C0 = g−k.α,K = e(g, h)k

C1 = hk.
∏

j∈[m](γ+B1,j).
∏

i∈U\β1
(α+Ai).

∏

i∈S(γ+IDi), . . . ,

Cm = hk.
∏

j∈[m](γ+Bm,j).
∏

i∈U\βm
(α+Ai).

∏

i∈S(γ+IDi)

Finally, it outputs K and Hdr = (C0, C1, . . . , Cm) which includes β and S.

Decrypt(sku,Hdr, param): the algorithm first finds the set βj such that βj ⊂ Su

and checks that u ∈ S, then computes K ′ =

h
1
α
(
∏

i∈[m](γ+Bj,i).
∏

i∈Su\βj
(α+Ai).

∏

i∈S,i�=u(γ+IDi)−
∏

i∈[m] Bj,i.
∏

i∈Su\βj
Ai.

∏

i∈S,i�=u IDi)

Note that it is able to compute K ′ from the param. It finally computes

K = (e(C0,K
′) · e(sku, Cj))

1
∏

i∈[m] Bj,i.
∏

i∈Su\βj
Ai.

∏

i∈S,i�=u IDi .

4 Security

Intuitively, following the security model in the Sect. 2.2 we need to prove that
given all elements corresponding to the public global parameters, the private
decryption keys of corrupted users, and the challenge header, the adversary A
cannot distinguish between a real session key K and a random element in GT .
Therefore, if we define P,Q,R to be the list of polynomials consisting of all
elements corresponding to the public global parameters, the private decryption
keys of corrupted users, and the challenge header, we need to prove that the
following (P,Q,R, f) −GDDHE assumption holds (that means f is independent
to (P,Q,R)), where f corresponds to the real session key. The definition of P ,
Q, R and f for our (P,Q,R, f) − GDDHE instance is given by Fig. 1.

Lemma 1. In the (P,Q,R, f)−GDDHE assumption above, (P,Q,R) and f are
linearly independent.

The semantic security of our scheme now is stated as follows.

Theorem 1. If there exists an adversary A that solves the semantic security of
our scheme with advantage Advind(.), then we can construct a simulator to solve
an instance of the (P,Q,R, f)−GDDHE problem above with the same advantage
Advind(.).

We refer the proofs of the above lemma and theorem to the full version of the
paper.
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P =

{
α, −kα,

(
1

(γ+IDu)
∏

i∈U\Su
(α+Ai)

)
u∈[n′]

}

Q =

{
αr · γt

)
r=0,...,N

t=0,...,n+N′
,
(

γi

α

)
i∈[n+N′]

,

(
k · ∏

j∈[m](γ + Bi,j)
∏

j∈U\βi
(α + Aj) · ∏

j∈S(γ + IDj)
)

i=1,...,m

}

R = {1}, f = k

for all n′ corrupted user u, 1 ≤ n′ < n.

Fig. 1. (P, Q, R, f) − GDDHE instance

5 Implementation and Optimization

We have implemented our CP-ABBE in the scenario given in Sect. 2.1. We have
tested several values for the number n of users and the maximum number of
attributes N , we also give some tricks when implementing to optimize the encryp-
tion phase and decryption phase. We refer the optimization and benchmarks of
our implementation to the full version of the paper.
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Abstract. An important issue of secure multi-party computation
(MPC) is to improve the efficiency of communication. Non-interactive
MPC (NIMPC) introduced by Beimel et al. in Crypto 2014 completely
avoids interaction in the information theoretical setting by allowing a
correlated randomness setup where the parties get correlated random
strings beforehand and locally compute their messages sent to an exter-
nal output server. The goal of this paper is to reduce the communication
complexity in terms of the size of random strings and messages. In this
paper, we present an efficient construction of NIMPC, which is designed
for arbitrary functions. In contrast to the previous NIMPC protocols,
which separately compute each output bit, the proposed protocol simul-
taneously computes all output bits. As a result, the communication com-
plexity of the proposed protocol is �log d�·L

�log d�+L
times smaller than that of

the best known protocol where d and L denote the size of input domain
and the output length. Thus, the proposed protocol is the most efficient
if both input and output lengths are larger than two.

1 Introduction

Secure multiparty computation (MPC for short) is a cryptographic protocol
that enables multiple party Pi (i = 1, . . . , n) to jointly compute various func-
tions without revealing their inputs. The problem is first raised by Yao [11], and
further developed by Goldreich, Micali, Wigderson in the computational setting
[6], and by Ben-Or, Goldwasser, Wigderson in the information theoretical set-
ting [2]. Their seminal works are followed by a large number of literature (e.g.,
[3–5,7–10]), and MPC is still one of the hottest topics in the area of cryptogra-
phy. In CRYPTO 2014 [1], Beimel et al. have introduced a novel type of MPC
called non-interactive multiparty computation (NIMPC for short). In NIMPC
for a function f , given correlated randomness (r1, . . . , rn), each party Pi who
possess a private input xi computes a message mi from xi and ri so that the
output f(x1, . . . , xn) is computed from m1,m2, . . . ,mn. NIMPC completely gets
rid of interaction among parties since the message mi is locally computed by
Pi. Beimel et al. have presented the security model of NIMPC against honest-
but-curious adversaries in the information-theoretical setting. One of the main
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 604–614, 2016.
DOI: 10.1007/978-3-319-48965-0 39
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positive results in [1] is to show the possibility of fully robust NIMPC for various
classes of functions including the class of arbitrary functions. The fully robust-
ness here means that any set of corrupted parties learn nothing about inputs of
uncorrupted parties and the function they aim to evaluate other than the infor-
mation inferred from their inputs and output. On the negative side in [1], the
communication complexity of the proposed protocols are very large (exponential
in the input length) except for special classes of functions. The approach taken
in [1] to realize NIMPC for arbitrary functions h : X → {0, 1}L is as follows.

1. Construct an NIMPC protocol for the set of arbitrary indicator functions
where index function ha(x) outputs 1 if x = a holds, and otherwise 0. Let
δind be the communication complexity of the NIMPC protocol.

2. Express any boolean function as a sum of indicator functions and construct
an NIMPC protocol for the boolean function by using the NIMPC protocols
for each indicator function. The communication complexity of this NIMPC
protocol for boolean functions is δind · |X |.

3. For any function outputting more than one bit, compute each output bit sep-
arately with the NIMPC protocols for the corresponding boolean functions.
The communication complexity of the resulting protocol is δind · L · |X |.

The second step in this approach implies an exponential communication com-
plexity in the input length.

Unfortunately, the inefficiency of NIMPC for arbitrary functions is provably
unavoidable. In [12], Yoshida and Obana derived a lower bound on the communi-
cation complexity that is linear in the number of target functions. Thus, for the
case of NIMPC for arbitrary functions, the communication complexity is L · |X |,
i.e., linear both in the output length and size of input domain, or exponential in
the input length. Although they significantly reduces the communication com-
plexity much closer to the lower bound by presenting a more efficient NIMPC
protocol for indicator functions in the above first step, a quadratic gap still
remains (see Table 1). That is, there is a room to reduce the communication
complexity.

Our contribution: We presents an efficient NIMPC protocol for arbitrary func-
tions h : X → {0, 1}L. Table 1 compares the proposed protocol with the
previous results. The communication complexity of the proposed protocol is
�log2 d� · (�log2 d� + L) · n2 · |X |, which offers the smallest communication com-
plexity known so far.

To improve the efficiency, we modify the three-step approach employed in [1,
12] to compute all output bits simultaneously. The key idea is to introduce
generalized indicator functions ha,v(x) outputting v ∈ {0, 1}L if x = a holds,
and otherwise 0L. More concretely, our approach to realize NIMPC for arbitrary
functions h : X → {0, 1}L is as follows:

1. Construct an NIMPC protocol for the set of arbitrary generalized indicator
functions outputting multiple-bit which are freely defined. Let δgind be the
communication complexity of the NIMPC protocol.
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Table 1. The communication complexity of n-player NIMPC protocols for arbitrary
functions h : X → {0, 1}L where X = X1 × · · · × Xn and |Xi| ≤ d for all 1 ≤ i ≤ n

The communication complexity

Lower bound in [12] L · |X |
Protocol in [1] d2 · L · n2 · |X |
Protocol in [12] �log2 d�2 · L · n2 · |X |
Our protocol (Sect. 3) �log2 d� · (�log2 d� + L) · n2 · |X |

2. Express any function outputting multiple-bit as a sum of generalized indicator
functions and construct an NIMPC protocol for the function by using the
NIMPC protocols for each generalized indicator function. The communication
complexity of the resulting protocol is δgind · |X |.

This approach works fine if δgind is smaller than δind ·L. In the previous protocols
for indicator functions in [1,12], the messages m1,m2, . . . ,mn are vectors whose
summation is zero if and only if the output is one. Thus, the vectors have one-bit
information. To achieve δgind < δind · L, we embed the L-bit output information
into the vectors while keeping the linear (in)dependency of vectors. As a result,
we have δgind = �log2 d� ·(�log2 d�+L) ·n2, which is smaller than the best known
δind · L = �log2 d�2 · L · n2, if both input length �log2 d� and output length L are
larger than two. Thus, the proposed protocol becomes more efficient than the
previous protocols as we have larger input and output domains.

The rest of this paper is organized as follows. In Sect. 2, we recall the notations
and definitions of NIMPC. In Sect. 3, we present a construction of an NIMPC
protocol for arbitrary functions based on an NIMPC protocol for the generalized
indicator functions. Section 4 concludes the paper.

2 Preliminaries

For an integer n, let [n] be the set {1, 2, . . . , n}. For a set X = X1 ×· · ·×Xn and
T ⊆ [n], we denote XT �=

∏
i∈T Xi. For x ∈ X , we denote by xT the restriction

of x to XT , and for a function h : X → Ω, a subset T ⊆ [n], its complement
T ⊆ [n], and xT ∈ XT , we denote by h|T ,xT

: X → Ω the function h where the
inputs of T are fixed to xT . For a set S, let |S| denote its size (i.e., cardinality
of S).

An NIMPC protocol for a family of functions H is defined by three algo-
rithms: (1) a randomness generation function GEN, which given a description of
a function h ∈ H generates n correlated random inputs R1, . . . , Rn, (2) a local
encoding function ENCi (1 ≤ i ≤ n), which takes an input xi and a random input
Ri and outputs a message, and (3) a decoding algorithm DEC that reconstructs
h(x1, . . . , xn) from the n messages. The formal definition is given as follows:
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Definition 1 (NIMPC: Syntax and Correctness [1]). Let X1, . . . ,Xn, R1,
. . ., Rn, M1, . . . ,Mn and Ω be finite domains. Let X �= X1 × · · · × Xn and let
H be a family of functions h : X → Ω. A non-interactive secure multi-party
computation (NIMPC) protocol for H is a triplet Π = (GEN,ENC,DEC) where

– GEN : H → R1 × · · · × Rn is a random function,
– ENC is an n-tuple deterministic functions (ENC1, . . . ,ENCn), where ENCi :

Xi × Ri → Mi,
– DEC : M1 × · · · × Mn → Ω is is a deterministic function satisfying the

following correctness requirement: for any x = (x1, . . . , xn) ∈ X and h ∈ H,

Pr[R = (R1, . . . , Rn) ← GEN(h) : DEC(ENC(x,R)) = h(x)] = 1, (1)

where ENC(x,R) �= (ENC1(x1, R1), . . . ,ENCn(xn, Rn)).

The communication complexity of Π is the summation of log |R1|, . . ., log |Rn|,
log |M1|, . . ., log |Mn|. The individual communication complexity of Π is the
maximum of log |R1|, . . ., log |Rn|, log |M1|, . . ., log |Mn|.

We next show the definition of robustness for NIMPC, which states that
a coalition can only learn the information they should. In the above setting,
a coalition T can repeatedly encode any inputs for T and decode h with the
new encoded inputs and the original encoded inputs of T . Thus, the following
robustness requires that they learn no other information than the information
obtained from oracle access to h|T ,xT

.

Definition 2 (NIMPC: Robustness [1]). For a subset T ⊆ [n], we say that
an NIMPC protocol Π for H is T -robust if there exists a randomized func-
tion SimT (a “simulator”) such that, for every h ∈ H and xT ∈ XT , we have
SimT (h|T ,xT

) ≡ (MT , RT ), where R and M are the joint randomness and mes-
sages defined by R ← GEN(h) and Mi ← ENCi(xi, Ri).

For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is T -robust for every
T ⊆ [n] of size |T | ≤ t. We say that Π is fully robust (or simply refer to Π as an
NIMPC for H) if Π is n-robust. Finally, given a concrete function h : X → Ω,
we say that Π is a (t-robust) NIMPC protocol for h if it is a (t-robust) NIMPC
for H = {h}.
As the same simulator SimT is used for every h ∈ H and the simulator has
only access to h|T ,xT

, NIMPC hides both h and the inputs of T . An NIMPC
protocol is 0-robust if it is ∅-robust. In this case, the only requirement is that
the messages (M1, . . . ,Mn) reveal h(x) and nothing else.

An NIMPC protocol is also described in the language of protocols in [1]. Such
a protocol involves n players P1, . . . , Pn, each holding an input xi ∈ Xi, and an
external “output server,” a player P0 with no input. The protocol may have an
additional input, a function h ∈ H.

Definition 3 (NIMPC: Protocol Description [1]). For an NIMPC protocol
Π for H, let P(Π) denote the protocol that may have an additional input, a
function h ∈ H, and proceeds as follows.
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Protocol P(Π)(h)

– Offline preprocessing: Each player Pi, 1 ≤ i ≤ n, receives the random input
Ri �= GEN(h)i ∈ Ri.

– Online messages: On input Ri, each player Pi, 1 ≤ i ≤ n, sends the message
Mi �= ENCi(xi, Ri) ∈ Mi to P0.

– Output: P0 computes and outputs DEC(M1, . . . ,Mn).

Informally, the relevant properties of protocol P(Π) are given as follows:

– For any h ∈ H and x ∈ X , the output server P0 outputs, with probability 1,
the value h(x1, . . . , xn).

– Fix T ⊆ [n]. Then, Π is T -robust if in P(Π) the set of players {Pi}i∈T ∪ {P0}
can simulate their view of the protocol (i.e., the random inputs {Ri}i∈T and
the messages {Mi}i∈T ) given oracle access to the function h restricted by the
other inputs (i.e., h|T ,xT

).
– Π is 0-robust if and only if in P(Π) the output server P0 learns nothing but

h(x1, . . . , xn).

A lower bound on the communication complexity for any finite set of func-
tions H was derived in [12]. In addition, a lower bound for the set of arbitrary
functions was derived as a corollary. These results state that the communica-
tion complexity cannot be smaller than the logarithm of the size of the target
class, and thus for the set of arbitrary functions, reducing the communication
complexity to polynomial in the input length is impossible.

Proposition 1 (Lower bound for Any Finite Set of Functions, Theorem
1 in [12]). Fix finite domains X1, . . . ,Xn and Ω. Let X �= X1, . . . ,Xn and H a
set of functions h : X → Ω. Then, any fully robust NIMPC protocol Π for H
satisfies

n∑

i=1

log |Ri| ≥ log |H|, and
n∑

i=1

log |Mi| ≥ log |Ω|.

Proposition 2 (Lower Bound for Arbitrary Functions, Corollary 1
in [12]). Fix finite domains X1, . . ., Xn such that |Xi| ≥ d for all 1 ≤ i ≤ n. Let
X �= X1×· · ·×Xn and HL

all the set of all functions h : X → {0, 1}L. Any NIMPC

protocol Π for HL
all satisfies

n∑

i=1

log |Ri| ≥ L · |X | ≥ dn · L, and
n∑

i=1

log |Mi| ≥ L.

We show the definition of indicator functions.

Definition 4 (Indicator Functions [1]). Let X be a finite domain. For n-tuple
a = (a1, . . . , an) ∈ X , let ha : X → {0, 1} be the function defined by ha(a) = 1,
and ha(x) = 0 for all a = x ∈ X . Let h0 : X → {0, 1} be the function that
is identically zero on X . Let Hind �= {ha}a∈X ∪ {h0} be the set of all indicator
functions together with h0.
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We define a function family HL
ind where HL

ind is a generalization of Hind.

Definition 5 (Generalized Indicator Functions). For v ∈ {0, 1}L \ {0L}
and a = (a1, . . . , an) ∈ X , we define a function ha,v as follows.

ha,v(x) =

{
v ifx = a

0L otherwise

Let hL
0 : X → {0, 1}L be the function that is identically 0L on X then we define

the family of function HL
ind = {ha,v}a∈X ,v∈{0,1}L ∪ {h0}.

In [1,12], using the fact that every function h : X → {0, 1} can be expressed
as the sum of indicator functions h =

∑
a∈X ,h(a)=1 ha, NIMPC for arbitrary

function h : X → {0, 1} is realized by |X | independent invocation of NIMPC for
Hind. In contrast, we express arbitrary function h : X → {0, 1}L as the sum of
ha,v ∈ HL

ind, that is, h =
∑

a∈X ,h(a) �=0L ha,h(a), and will use NIMPC for HL
ind to

construct NIMPC for HL
all.

3 Proposed Construction

In this section, we presents NIMPC for HL
all, arbitrary functions with L-bit

output. The communication complexity of the proposed protocol is �log2 d� ·
(�log2 d�+L) ·n2 · |X |, which is the most efficient NIMPC for HL

all known so far.

3.1 A Fully Robust NIMPC for HL
ind

We are going to construct an NIMPC for the function family HL
ind. The pro-

tocol is constructed by slightly modifying NIMPC for Hind given in [12]. More
precisely, we introduce additional L-bit vectors vi,j ∈ F

L
2 to the protocol in [12],

which makes it possible to support L-bit output in NIMPC. Vectors vi,j (for
i ∈ [n], j ∈ [�log2 di�]) are chosen in such a way that linear combination of vi,js
associate with input x = (x1, . . . , xn) will yield output value v if and only if
input x is identical to a. The concrete description of the proposed protocol is
given as follows.

For i ∈ [n], let di = |Xi| and φi a one-to-one mapping from Xi to [di]. Let
li = �log2 di� and s =

∑n
i=1 li. Fix a function h ∈ HL

ind that we want to compute.

– Offline preprocessing: If h = h0 then choose s linearly independent random
vectors {mi,j}i∈[n],j∈[li] ∈ F

s
2 and s random vectors {vi,j}i∈[n],j∈[li] ∈ F

L
2 . If

h = ha,v for some a = (a1, . . . , an) ∈ X and v ∈ {0, 1}L, denote the binary
representation of φi(ai) by bi = (bi,1, . . . , bi,li) and define a set of indices Ii by
Ii = {j ∈ [li] | bi,j = 1}. Choose s random vectors {mi,j}i∈[n],j∈[li] ∈ F

s
2 under

the constraint that
∑n

i=1

∑
j∈Ii

mi,j = 0 and there are no other linear relations
between them. Then choose s random vectors {vi,j}i∈[n],j∈[li] ∈ F

L
2 under the

constraint that
∑n

i=1

∑
j∈Ii

vi,j = v. Define GEN(h) � R = (R1, . . . , Rn),
where Ri = {mi,j , vi,j}j∈[li].
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– Online messages: For an input xi, let b̂i = (b̂i,1, . . . , b̂i,li) be the binary
representation of φi(xi). Let Îi be the set of indices defined by Îi = {j ∈
[li] | b̂i,j = 1}.
ENC(x,R) � (M1, . . . ,Mn) where Mi = (mi, vi) such that mi =

∑
j∈Îi

mi,j ,
and vi =

∑
j∈Îi

vi,j .
– Output h(x1, . . . , xn): DEC(M1, . . . ,Mn) =

∑n
i=1 vi if

∑n
i=1 Mi = 0 holds.

Otherwise DEC(M1, . . . ,Mn) = 0L.

Theorem 1. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n
and let X �= X1 × · · · × Xn. Then, there is an NIMPC protocol for HL

ind with the
communication complexity �log2 d� · (�log2 d� + L) · n2.

Proof. First, we will show the correctness. Let Mi = (mi, vi), then
∑n

i=1 mi =∑n
i=1

∑
j∈Îi

mi,j and
∑n

i=1 vi =
∑n

i=1

∑
j∈Îi

vi,j hold. If h = ha,v for some
a ∈ X , then

∑n
i=1 mi equals 0 if and only if Ii = Îi for all i ∈ [n], i.e.,

a = x. In this case
∑n

i=1

∑
j∈Îi

vi,j =
∑n

i=1

∑
j∈Ii

vi,j = v holds. This means
DEC(M1, . . . ,Mn) = v if and only if x = a. If h = h0, then

∑n
i=1 mi never be

zero since all vectors mi,j were chosen to be linearly independent in this case.
This means DEC(M1, . . . ,Mn) = 0L holds for any x ∈ X .

To prove robustness, fix a subset T ⊆ [n] and xT ∈ XT . The encodings MT of
T consist of the vectors {mi, vi}i∈T . The randomness RT consists of the vectors
{mi,j , vi,j}i∈T,j∈[li]. If h|T ,xT

≡ 0, there are two possible cases. The first case
is h = h0. In this case all mi,j (for i ∈ [n], j ∈ [li]) are uniformly distributed
under the constraint that they are linearly independent, and all vi,j are uniformly
distributed over F

L
2 . Therefore, vectors mi =

∑
j∈li

mi,j (for i ∈ T ) and mi,j

(for i ∈ T, j ∈ [li]) are also uniformly distributed in F
s
2 under the constraint

that they are linearly independent. Further, vectors vi (for i ∈ T ) and vi,j (for
i ∈ T, j ∈ [li]) are uniformly distributed over F

L
2 . The second case to consider is

h = ha,v for some a, v and aT = xT . In this case, mi,j (for i ∈ [n], j ∈ [li]) are
uniformly distributed under the constraint that they are linearly independent
and

∑n
i=1

∑
j∈Ii

mi,j = 0. Likewise, vi,j (for i ∈ [n], j ∈ [li]) are uniformly
distributed under the constraint

∑n
i=1

∑
j∈Ii

vi,j = v. Since aT = xT holds,
Ii = Îi for some i. This means all mi,j (for i ∈ T, j ∈ [li]) and all mi =∑

j∈Îi
mi,j (for i ∈ T ) are uniformly distributed under the constraint that they

are linearly independent since
∑n

i=1

∑
j∈Ii

mi,j = 0 is a only relation holding
among mi,j . Likewise, all vi,j (for i ∈ T, j ∈ [li]) and all vi =

∑
j∈Îi

vi,j (for
i ∈ T ) are uniformly distributed since

∑n
i=1

∑
j∈Ii

mi,j = v is a only relation
holding among vi,j . From the above argument, we conclude that the mi,j (for
i ∈ T, j ∈ [Ii]) and mi (for i ∈ T ) are uniformly distributed under the constraint
that are linearly independent, and vi,j (for i ∈ T, j ∈ [Ii]) and vi (for i ∈ T )
are uniformly distributed in both cases. If h|T ,xT

(xT ) = 1 for some xT ∈ XT ,
then

∑
i∈T mi +

∑
i∈T

∑
j∈Îi

mi,j = 0 and there are no other linear relations
among them. Further,

∑
i∈T vi +

∑
i∈T

∑
j∈Îi

vi,j = v holds and there are no
other relations among them.
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Formally, to prove the robustness, we describe a simulator SimT : the simula-
tor queries h|T ,xT

on all possible inputs in XT . If all answers are zero, this simu-
lator generates random independent vectors {mi, vi}i∈T and {mi,j , vi,j}i∈T,j∈[li].
Otherwise, there is an xT ∈ XT such that h|T ,xT

(xT ) = 1, and the simulator
outputs random vectors {mi, vi}i∈T , {mi,j , vi,j}i∈T,j∈[li] under the constrains
described above, that is, all vectors are independent with the exception that∑

i∈T mi +
∑

i∈T

∑
j∈Îi

mi,j = 0, and
∑

i∈T vi +
∑

i∈T

∑
j∈Îi

vi,j = v,
The correlated randomness Ri is composed of li ≤ �log2 d� binary vectors of

length s ≤ �log2 d� · n and li binary vectors of length L whereas the encoding is
the summation of some of them. Therefore, the communication complexity is at
most �log2 d� · (�log2 d� + L) · n2. ��

The following lemmas that are used to prove Theorem 2 are derived from the
discussion in the proof of Theorem 1.

Lemma 1. Fix a subset T ⊆ [n] and let x = a. Then the distribution of
(RT ,MT ) for h = ha,v and that for h = h0, are identical in the above con-
struction.

Proof. When x = a and h = ha,v, all vectors in {mi,j , vi,j}j∈[lj ] for i ∈ T and
mi =

∑
j∈Îi

mi,j , vi =
∑

j∈Îi
vi,j for i ∈ T are independently and uniformly

distributed since
∑

i∈[n]

∑
j∈Ii

mi,j = 0 and
∑

i∈[n]

∑
j∈Ii

vi,j = v are only rela-
tions held among mi,j and vi,j and Ii = Îi holds. Therefore, the distribution is
identical to that for h = h0. ��
Lemma 2. Fix a subset T ⊆ [n] and let a = (aT , aT ), a′ = (aT , a′

T
). Then the

distribution of (RT ,MT ) for h = ha,v, xT = aT and that for h = ha′,v, xT = a′
T

are identical in the above construction.

Proof. In both cases, all vectors {mi,j , vi,j}j∈[lj ] for i ∈ T and mi for i ∈ T
are independently and uniformly distributed with the exception that

∑
i∈T mi +∑

i∈T

∑
j∈Ii

mi,j = 0, and
∑

i∈T vi +
∑

i∈T

∑
j∈Ii

vi,j = v where Ii for i ∈ T
denotes a set of indices such that the binary representation of φi(ai) is equal
to 1. Since a = (aT , aT ) and a′ = (aT , a′

T
), Ii for a and a′ are identical for any

i ∈ T , which means (RT ,MT ) for h = ha,v, x = a and that for h = ha′,v, x = a′

are identically distributed. ��

3.2 A Fully Robust NIMPC for HL
all

In this section, we present an NIMPC for all boolean functions HL
all with input

domain X = X1 × · · · × Xn and L-bit output. The idea is to express any
h : X → {0, 1}L as a sum of indicator function HL

ind with L-bit output. The
idea is similar to the previous constructions. Though, in contrast to existing
constructions that realize NIMPC for Hall by |X | · L invocation of NIMPC for
H1

all, the proposed construction realize NIMPC for Hall in more direct manner,
that is, |X | invocation of HL

ind to construct Hall. The communication complex-
ity of the resulting construction is much smaller than the existing constructions
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since a single invocation of the proposed NIMPC for HL
ind is much more effi-

cient than L invocation of the existing NIMPC for Hind. The following theorem
presents a compiler to construct Hall from HL

ind.

Theorem 2. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤
n and let X �= X1 × · · · × Xn. Let Hall be the set of all functions h : X →
{0, 1}L. Then, there exists an NIMPC protocol for Hall with the communication
complexity �log2 d� · (�log2 d� + L) · n2 · |X |.
Proof. Let ΠL

ind = (GEN′,ENC′,DEC′) be NIMPC for HL
ind described in Sect. 3.1

and let h : X → {0, 1}L that we want to compute. We construct a protocol
P(Π)(h) for Hall as follows.

– Offline preprocessing: Let I ⊆ X be the set of inputs x ∈ X such that
h(x) = v for some v = 0L. For each a ∈ I, let Ra = (Ra

1 , . . . , R
a
n) ←

GEN′(ha,v). For a ∈ X \ I, let Ra ← GEN′(h0). Then, choose random per-
mutation π of X and let Ri,b = R

π(b)
i for i ∈ [n], b ∈ X . Define GEN(h) �

R = (R1, . . . , Rn), where Ri = {Ri,b}b∈X .
– Online messages: For an input xi, Pi computes Mi,b � ENC′

i(xi, Ri,b) for
every b ∈ X . Define ENC(x,R) � (M1, . . . ,Mn) where Mi = {Mi,b}b∈X .

– Output h(x1, . . . , xn): DEC(M1, . . . ,Mn) = v if and only if there exists b ∈ X
such that DEC′(M1,b, . . . ,Mn,b) = v. Otherwise DEC(M1, . . . ,Mn) = 0L.

First we will show the correctness of the above protocol. Fix x = (x1, . . . , xn) ∈
X . DEC(M1, . . . ,Mn) = v(= 0L) holds if and only if DEC′(M ′

1,b, . . . ,M
′
n,b) = v

holds for some b ∈ X , that is, DEC′(ENC′(x1, R
a
1), . . . ,ENC

′(xn, Ra
n)) = v holds

for a = π(b). Since underlying ΠL
ind = (GEN′,ENC′,DEC′) satisfies correct-

ness, this happens if and only if ha,v(x) = v holds for some a ∈ I, that is,
h(x1, . . . , xn) = v.

Next we will show the robustness of the protocol. We construct a simulator
SimT based on the simulator SimΠL

ind
T (the simulator for ΠL

ind). The simulator
SimT first queries h|T ,xT

(xT ) for every xT ∈ XT . Let I ′ ⊆ XT be the set of
xT ∈ XT such that h|T ,xT

(xT ) = v for some v = 0L. For every aT ∈ I ′, SimT

computes (RaT

T ,MaT

T
) = SimΠL

ind
T (ha,v) where a = (aT , aT ) for arbitrarily chosen

aT ∈ XT . Here (RaT

T ,MaT

T
) completely simulates the distribution of (RT ,MT )

for h = hâ,v, x = â where â = (aT , âT ) and âT are inputs possessed by T
since Lemma 2 proves that (RT ,MT ) for h = ha,v, xT = aT and (RT ,MT )

for h = hâ,v, xT = âT are identically distributed, and SimΠL
ind

T completely simu-
lates the distribution (since ΠindL is fully robust). Then simulator SimT samples

(RT ,MT ) = SimΠL
ind

T (h0) for |X | − |I ′| times. As a result, we obtains |X | output

of the simulator SimΠL
ind

T . Here, distributions of these |X |−|I ′| simulation results
for h = h0 are identical to those for h = ha,v (a ∈ X \ I ′) since Lemma 1 proves
that when x = a holds, (RT ,MT ) for h = h0 and (RT ,MT ) for h = ha,v (for any

a ∈ X and v ∈ F
L
2 ) are identically distributed, and SimΠL

ind
T completely simulates
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the distribution (since ΠindL is fully robust). The simulator SimT then randomly
permutes the order of these outputs, and returns the permuted outputs as its
simulation result. The above discussion shows that distribution of the simulation
result is identical to the distribution of (RT ,MT ).

The communication complexity of the resulting protocol is �log2 d�·(�log2 d�+
L) · n2 · |X | since the protocol is obtained by |X | invocation of ΠL

ind with the
communication complexity �log2 d� · (�log2 d� + L) · n2. ��

4 Conclusion

We have presented a more efficient protocol of n-player NIMPC for the set of
arbitrary functions HL

all, by which the communication complexity is �log d�·L
�log d�+L

times smaller than the best known one in [12].
Though the proposed construction is the most efficient with respect to the

communication complexity, there still remains a gap between the lower bound
in [12] and our upper bound. Therefore, reducing the gap will be a challenging
future work.
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Abstract. This paper proposes a decentralised and privacy-preserving
local electricity trading market. The market employs a bidding proto-
col based on secure multiparty computation and allows users to trade
their excess electricity among themselves. The bid selection and trading
price calculation are performed in a decentralised and privacy-preserving
manner. We implemented the market in C++ and tested its performance
with realistic data sets. Our simulation results show that the market tasks
can be performed for 2500 bids in less than four minutes in the “online”
phase, showing its feasibility for a typical electricity trading period.

Keywords: Secure multiparty computation · Local electricity trading
market · Smart grid · Renewable energy source · Security and Privacy

1 Introduction

The Smart Grid (SG) is an electricity grid supporting bidirectional communica-
tion between components in the grid. An important component of SG is Smart
Meters (SMs) which allow real-time grid management [1]. Potential benefits of
SG include improved grid efficiency and reliability, and seamless integration of
Renewable Energy Sources (RESs), e.g., solar panels, into the grid. When these
RESs generate more electricity than their owners need, the excess electricity is
fed back to the grid. Currently, users get some compensation from their suppliers
for such excess electricity at a regulated (low) price. However, users with such
excess electricity may be interested in selling directly to other users at a compet-
itive price for monetary gains. Enabling that would also incentivise more users
to own RESs. To address this, a local electricity market that allows RES owners
to trade their excess electricity with other households in their neighbourhood
has been proposed in [2]. However, such a market has user privacy risks, since
users’ bids/offers reveal private information about their lifestyle [3].

There are various proposals for an electricity trading market that allows users
to trade with each other or suppliers [4,5]. However, none of these addresses the
privacy concerns. The security and privacy concerns in such a local market have
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 615–625, 2016.
DOI: 10.1007/978-3-319-48965-0 40
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been analysed in [2], and initial ideas (without a concrete solution) for designing
one has been proposed in [6]. In this work, we not only propose a concrete secure
and privacy-preserving solution for such a local market for trading electricity,
but also test it in realistic scenarios.

Contributions. Our contributions are: (i) a concrete decentralised and privacy-
preserving protocol for a local electricity trading market using MPC, (ii) a secu-
rity and complexity analysis of our protocol, and (iii) an implementation, eval-
uation and analysis of the protocol using realistic bidding data sets.

2 Preliminaries

System Model and Market Overview. As shown in Fig. 1, a local electricity
market comprises the following entities: RESs, SMs, users, suppliers and com-
putational servers. The market operation, as proposed in [2], consists of:

– Bid Submission: Prior to each trading period, users submit their bids to the
market to inform the market how much electricity they are willing to sell or
buy during the trading period and for what price per unit.

– Trading Price Computation: The local market performs a double auction
trading and generates the supply and demand curve. The intersection of these
two curves is used to determine the trading price, amount of electricity traded,
as well as which users will trade on the market.

– Informing Users/Suppliers: The market informs (i) the users about the
amount of electricity they traded and the trading price, and (ii) the suppliers
about the amount of electricity agreed to be traded by their respective users.

Fig. 1. A local MPC-based market for trading electricity from RESs

Threat Model and Assumptions. Users and suppliers are malicious. They
may try to modify data sent by SMs in an attempt to gain financial advantage
or influence the trading price on the market. Computational servers are honest-
but-curious. They follow the protocol specifications, but they may attempt to
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learn individual users’ bids. External entities are malicious. They may eavesdrop
data in transit and/or modify the data in an attempt to disrupt the market.
In addition, we make the following assumptions: (i) each entity has a unique
identity, (ii) SMs are tamper-evident, (iii) all entities are time synchronized, (iv)
the communication channels between entities are secure and authentic, and (v)
users are rational, i.e., they try to buy/sell electricity for the best possible price.

Functional and Privacy Requirements. Our protocol should meet the fol-
lowing functional requirements: (i) the local market should receive users’ bids,
calculate the trading price, and inform the users and suppliers of the market
outcome, (ii) each user should learn if their bid was accepted and the vol. of
electricity they traded, as well as the trading price, and (iii) each supplier should
learn the amount of electricity traded by their customers on the market in each
trading period. It should also satisfy the following privacy requirements [2,6]: (i)
confidentiality of users’ bids and amount of electricity traded, (ii) users’ privacy
preservation, i.e., RES and/or trading user identity and location privacy, and
trading session unlinkability, and (iii) minimum data disclosure.

Security Definition Under MPC. MPC allows any set of mutually dis-
trustful parties to compute any function such that no party learns more than
their original input and the computed output, i.e., parties p1, ..., pn can compute
y = f(x1, ..., xn), where xi is the secret input of pi, in a distributed fashion
with guaranteed correctness such that pi learns only y. MPC can be achieved
using secret sharing schemes [7,8], garbled circuits [9] and homomorphic encryp-
tion [10].

On the security notion: a secure protocol over MPC discloses to an adver-
sary the same information as if the computations were carried out by a trusted
(non-corruptible) third party. This definition allows a variety of adversarial and
communication models offering various security levels: perfect, statistical or com-
putational. Seminal results prove that any functionality can be calculated with
perfect security against active and passive adversaries [7,8] under the arithmetic
circuit paradigm. Other relevant recent contributions in the area include [11,12].
Note that any oblivious functionality built in this way would be as secure as the
underlying MPC protocols used for its execution. Finally, note that under this
scenario, functionality, also referred to as sub-protocols, like the ones used in this
work, can be used for modular composition under the hybrid model introduced
by Canetti [13]. We make use of the following existing functionality:

– Secure Comparison: Methods for secure comparison using MPC offer either
perfect or statistical security and are constructed under the same assump-
tions [14]. Moreover, mechanisms as [15] by Catrina and de Hoogh introduced
inequality tests at constant complexity.

– Secure Sorting: Secure Sorting using MPC can be achieved by sorting net-
works and other data-oblivious mechanisms, including the randomize shell-sort
from Goodrich [16]. Moreover, Hamada et al. [17] introduced a technique to
facilitate the use of comparison sorting algorithms. This technique consists of
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Table 1. Notation

Symbol Meaning

ti i-th time slot

[q]j Electricity volume in absolute terms from the j-th bid

[p]j Unit price enclosed in the j-th bid

[d]j Binary value corresponding to the j-th bid: 1 indicates a
demand bid and 0 a supply bid

[s]j Unique supplier identifier s ∈ {1, .., |S|} where S is the set of
all suppliers. Moreover, s is encoded in a {0, 1} vector, i.e.,
[s]jk ← 1 on the k-th position corresponds to the suppliers
unique identifier, and [s]jk ← 0 otherwise, for all j ∈ B.

[b]j Bid’s unique identifier from the j-th bid

[φ] Volume of electricity traded on the market for period ti

[σ] Market’s trading price (price of the lowest supply bid) for ti

[a]i Binary value: 1 indicates the bid i was accepted, 0 otherwise

[S]φ Set of the volume of electricity traded by supplier affiliation
where [s]φi stands for the summation of all the accepted bids
from users affiliated to the supplier i, for all i ∈ S

randomly permuting the vector before sorting, so that the results of some of
the intermediate secure comparisons can be made public.

– Secure Permutation: Leur et al. [18] analysed various permutation mech-
anisms, like the use of vector multiplication by a permutation matrix and
sorting networks. Czumaj et al. [19] proposed alternatives for obliviously per-
muting a vector in (almost) O(n × log(n)), when n is the vector size.

Notation. Square brackets denote encrypted or secretly shared values. Assign-
ments that are a result of any securely implemented operation are represented
by the infix operator: [z] ← [x]+[y]. This extends to any operation over securely
distributed data since its result would be of a secret nature too. Vectors are
denoted by capital letters. For a vector, say B, Bi represents its i-th element
and |B| its size. The bids originated by SMs are considered as the initial input
data. Each bid is a tuple ([q], [p], [d], [s], [b]) and B is the vector of all bids. We
assume that (i) all bid elements belong to ZM , where M is a sufficiently large
number so no overflow occurs, and (ii) the number of bids (or at least their upper
bound) is publicly known. Any other data related to the bid is kept secret. If
the protocol admits a single supply and demand bid per SM, the computation
of this upper bound is trivial. Markets could opt for enforcing all SMs to sub-
mit a bid regardless of whether they participate or not in the market. Let �
be a sufficiently big number such that it is greater than any input value from
the users but � << M . In this scenario, non-participating SMs would have to
replace their input values by [0] and [�] accordingly. Table 1 lists the notations.
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3 Privacy-Preserving Protocol for Electricity Trading

In our protocol, users submit their private inputs to a virtualized entity consist-
ing of multiple computational servers that function as evaluators. The number
of evaluators depend on the application, and it could be as many as the num-
ber of parties involved in the computation. However, this is costly in terms of
performance. In our setting, we assume three computational parties: one comes
from the RES owners, another from the suppliers and a third one from a local
control agency. Depending on the underlying MPC protocol, some randomiza-
tions might be precomputed in an “offline” phase by a trusted dealer who is not
directly involved at any level of the computations [11]. The amount and purpose
of the randomly generated numbers depend on such MPC primitives and the
security model used by the market. Our protocol consists of five steps:

Preprocessing for trading period ti

1. Bidders: Before the start of ti−2, each user prepares and sends his bid to
the computational parties. If a linear secure secret sharing scheme (e.g., [20])
is used, each user generates as many shares as the number of computational
parties, and sends each of the shares to a different computational party.

2. Evaluators: To randomly permute the bidders’ input, upon reception, each
share is multiplied with a column of a randomized permutation matrix which
was precomputed “offline”. This is still performed before the start of ti−2.

Evaluation for trading period ti

3. Evaluation: The evaluation is performed at ti−2. In this phase, the trading
price and traded volume are computed, and accepted and rejected bids are
identified, in a data-oblivious fashion. Algorithm 1 gives a detailed overview of
our secure auction evaluation. It calculates the trading price [σ], the volume
of electricity traded [φ] and the vector of adjudicated demand and supply
bids [A]. It does it by obliviously calculating the aggregation of the demand
bids [δ], and then iterating over the set of all bids in B using their volume
to match [δ]. To access the vector of accepted supply bids, it is enough to
compute [A]j × (1 − [d]j) × [b]j . To find the vector of accepted demand bids,
it is sufficient to calculate (1 − [A]j) × ([d]j) × [b]j .

Inform Bidders and Suppliers (before the end of period ti−2)

4. Bidders: To hide the order of the bids, the vector of all bids [B], together
with the associated vector [A], are shuffled again. Then, the evaluators use
the open operation of the underlying MPC primitive on [σ] (for ti) and [b]j ,
for all j ∈ B. Each evaluator sends the shares corresponding to the tuple
Bbj

to the bidder that originated the bid identified by bj . The bidder then
reconstructs the shares and learns if his bid was accepted or rejected.

5. Suppliers: Evaluators send the shares of the volume aggregation Sφ
j , for all

j ∈ S, to the corresponding supplier. Suppliers also learn the market trading
price. Both, bidders and suppliers are informed of the results at ti−2.
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Algorithm 1. Smart Market Clearance.
Input: Vector of n bid tuples B = ([q], [p], [d], [s], [b])
Output: Clearance price [σ], volume of traded electricity [φ], vector of accepted bids [A] of

size |B|, vector of aggregated volume traded by supplier Sφ of size |S|
1 for i ← 1 to n do
2 [δ] ← [δ] + [q]j × [d]j ;
3 end
4 [ν] ← [0];

5 [Sφ] ← {01, ..., 0|S|};
6 [A] ← {01, ..., 0|B|};
7 for k ← 1 to n do
8 [c] ← [ν] < [δ];
9 [σ] ← ((1 − [d]j) × [c]) × ([p]j − [σ]) + [σ];

10 [φ] ← ((1 − [d]j) × [c]) × [q]j + [φ];
11 for k ← 1 to |S| do

12 [s]φk ← ([s]jk × ((1 − [d]j) × [c]) × [q]j + [s]φk ;

13 end
14 [a]j ← [c];
15 [ν] ← [ν] + [c] × [q]j ;

16 end

Correctness and Complexity. The general goal of the protocol is to find the
trading price and to identify the accepted and rejected bids. Any supply bid
below the trading price, and any demand bid above this price is automatically
accepted and vice versa. The market equilibrium can be identified when the price
of a given supply allocation surpasses the price of the next cheapest available
demand allocation. In other words, when supply equals demand, the market
equilibrium can be identified if the price of supply is at least the price of demand.

In our protocol, we proceed to sort all bids regardless of whether they are
demand or supply bids. Following Algorithm 1, we then proceed to identify and
select bids until the aggregated demand ([δ] ← ∑|B|

i [q]i × [d]i) is matched (note
that to maintain secrecy we iterate over the set of all bids), choosing the bids
in ascending order of price. If a supply bid is selected, this implies that there is
no supply bid that could be allocated to reduce [δ], and hence is not part of the
market clearance. Using [d]i cancels the supply bid’s effect over [δ], and provides
us with sufficient tools to identify it. The opposite occurs when a demand bid is
selected. At the end of Algorithm 1, the bids used to reduce [δ] can be identified,
which correspond to all the supply and demand bids with prices below and above
the trading price, respectively. From this, the set of accepted and rejected bids
follows. The trading price is set to the price of the last selected supply bid. The
protocol complexity grows linearly with the number of bids, which is the main
factor influencing the performance. The number of suppliers rarely varies over
time, and is of limited size. The complexity of Algorithm 1 is O(|B| × |S|). Note
that secure vector permutation can be achieved in O(n× log(n)), where n is the
size of the vector (the vector of the Bids [B], in our case). Moreover, the sorting
methods used by our secure market can achieve O(n × log(n)).

Security Analysis. The MPC mechanisms used in protocol steps 1-5 consti-
tute a unique arithmetic circuit (addition and multiplication) with no leakage,
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making privacy straight forward. Moreover, the protocol can be computed with
perfect security on the information theoretic model against passive and active
adversaries under Canetti’s hybrid model [13] by using available MPC protocols
such as BGW [7]. We refer the reader to [21] for a complete set of proofs of secu-
rity and composability for BGW. Indeed, results in BGW [7] and CDD [8] showed
that any function can be computed using MPC with the aforementioned security
levels by providing secure addition and multiplication under an arithmetic circuit
paradigm. There are also promising results on more restricted models, e.g., dis-
honest majority [11] with computational security. Moreover, there exist privacy-
preserving sub-protocols (arithmetic circuits) for sorting, comparison and vector
permutation over MPC that can be used, and that provide the same security
guarantees with no leakage. These are integrated into a single arithmetic cir-
cuit in a modular fashion, i.e., our protocol. Thus, the security of our protocol
readily follows. In other words, the order of the operations (multiplications and
additions) is predetermined beforehand by the publicly available circuit, i.e., our
protocol simulation can be achieved by invoking the corresponding simulators of
the sub-protocols used, and/or atomic operations in its predefined order.

4 Experimentation and Discussion

We executed our experimentation using the BGW-based MPC Toolkit [22]
which includes all the underlying crypto primitives and sub-protocols we report,
together with our own introduced code. The library was compiled with NTL
(Number Theory Library) [23] that itself was compiled using GMP (GNU Mul-
tiple Precision Library). These two libraries are used for the modulo arithmetic
that is used by the underlying MPC protocols. Each instance of the prototype
comprises two CPU threads: one manages message exchanges and the other exe-
cutes the protocol. Moreover, each instance required little more than 1 MB of
allocated memory during our most memory demanding test.

Data Generation. We generated the data using a realistic data from Belgium.
First we picked a time slot and date, i.e., between 13:00 h and 13:30 h on 5-th of
May 2016, during which 2382 MW solar electricity was generated in Belgium by
Solar Panels (SPs) with total capacity 2953 MW [24], i.e., on average each SP
produced electricity approximately equal to 81.66 % of its capacity. The average
electricity consumption data of a Belgian household for the same time slot was
0.637 kW [25], so for each user we generated a random consumption data for this
slot with mean equal to 0.637 kW, standard deviation equal to 0.20 and variance
equal to 0.04. Then, we randomly chose 30 % of the users to have installed
SPs at their homes, and to each of the SPs we randomly assigned 2.3, 3.6 or
4, 7 kW electricity generation capacity. After that, we randomly generated the
electricity output of each SP during this time slot with a mean equal to the
SP’s capacity multiplied with the efficiency factor for the time slot, i.e., 81.66 %,
standard deviation equal to 0.20 and variance equal to 0.04. Once we generated
the electricity consumption and generation data for each user with a SP, we
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simply subtracted the latter from the first value to find the amount of each
user’s excess electricity.

We assumed that there are 10 suppliers in the market and randomly assigned
one to each user. We set the retail electricity sell price of the suppliers to
0.20e/kWh and the retail buy price to 0.04e/kWh. For the bid price selection,
we divided the retail electricity sell and buy price difference into nine ranges
each including several (overlapping) prices, e.g., range 2 includes three prices:
0.04, 0.05 and 0.06e/kWh, whereas range 7 includes four prices: 0.17, 0.18, 0.19
and 0.20e/kWh. Then, for each user, depending on how much excess electricity
she has for sell (or wants to buy), we picked randomly one of the prices from the
appropriate price range. For selecting the appropriate price range we assumed
that if users have a lot of excess electricity, they would choose a lower asking
price, but if they have a little, they would ask for a higher price. In summary,
for each user we generated: unique user ID, amount of electricity for the bid, bid
price, supply or demand bid indicator, and ID of the user’s contracted supplier.

Security. Our security target was to build a prototype for the classic scenario of
semi-honest adversaries under the information theoretic model (private authen-
ticated channels) and threshold corruption. This is achieved by the underlying
BGW primitives and Shamir Secret Sharing (honest majority). This is a neces-
sary configuration to achieve perfect security as long as the adversary does not
corrupt more than halve of the parties. However, the prototype offers statistical
security on the size of its input given that it uses the same comparison method
as in [15]. The security of such method depends on input parameters l and k, l
is the bit-size of the numbers and k a security parameter. Under the assumption
that the channel is perfect, this task is decoupled from the prototype operation.

Table 2. List of primitives used by secure prototype

Primitive Protocol

Sharing Shamir Secret Sharing [20]

Multiplication Gennaro et al. [26]

Inequality Test Catrina and Hoogh [15]

Random Bit Generation Damg̊ard et al. [14]

Sorting: QuickSort Hamada et al. [17]

Permutation: Sorting Network Lai et al. [18]

Characteristics, Environment and Setting. Our prototype was built in
C++ following an object oriented approach, with modularity and composability
in mind. It has an engine that separates communication and cryptographic tasks.
Table 2 shows the list of the sub-protocols we used. We executed our tests on
a single 64-bit Linux server with 2 ∗ 2 ∗ 10-cores with Intel Xeon E5-2687W
microprocessors at 3.1 GHz and 25 MB of cache available, and with memory of
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Table 3. Overall results

Bids Com. rounds Comparisons CPU time (s) On-line phase (s)

100 ≈1.40 · 105 965 2.96 1.01

500 ≈1.96 · 106 14628 40.40 11.35

1000 ≈7.03 · 106 53508 147.76 39.80

1500 ≈15.61 · 106 118956 320.79 86.14

2000 ≈26.97 · 106 208132 562.50 145.78

2500 ≈43.15 · 106 330912 894.01 235.82

256 GB. All our tests were performed under a 3-party setting, with two available
cores for each instance. We ran our tests starting with a baseline of a realistic
scenario with 100 bids and then monotonically increased the number of bids to
2500. Each test scenario was repeated 10 times to reduce the impact of the noise.

Results. Our prototype requires bit randomization for the comparison methods.
The task of generating such values could be executed beforehand, in an “offline”
phase. The “online” phase would execute the remaining tasks and utilize the
randomization values generated during the “offline” phase. For a case with 2500
bids, the prototype took 678.50 s for either sending or waiting for other parties’
messages (as our prototype is synchronous) and 215.52 s for other computational
tasks (crypto primitives). Hence, ca. 75 % of the computational time was for
transmission related tasks. We have also measured the computational cost at
every test instance. Table 3 shows a more complete break down of our results.
From these results we can conclude the following.

– The 2500-bids instance total time on the “online” phase is less than 4 min,
and less than 15 min with the “offline” phase included, which is still less than
a typical trading period of 30 min.

– The asymptotic behaviour on the growth of the computational time seems to
adjust to the behaviour included in the complexity analysis.

– The performance of the prototype could be improved by the use of techniques
such as, PRSS [27], to reduce the cost of generating random bits. Moreover,
other optimizations can be put in place based on the experimental setting.

– During our tests ca. 95 % of the computational time was spent on sorting the
bids. As suppliers are not involved in this, their influence on the computational
costs is limited, i.e., our prototype can be adjusted to scenarios with larger
supplier sets without much overhead.

5 Conclusions

We proposed a privacy-preserving protocol for a local market that allows users to
trade their excess electricity among themselves. Our protocol employs a bidding
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scheme based on MPC, and the bid selection and the trading price calculation
are performed in a decentralised and privacy-preserving manner. We also imple-
mented the protocol in C++ and tested its performance with realistic data. Our
simulation results show its feasibility for a typical electricity trading period of
30 min as the market tasks are performed (for 2500 bids) in less than 4 min in
the “online” phase. Future work will include balancing suppliers’ accounts based
on the electricity traded by users without violating users’ privacy.
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Abstract. This paper proposes an efficient protocol for verifiable dele-
gation of computation over outsourced set collections. It improves state
of the art protocols by using asymmetric bilinear pairing settings for
improved performance with respect to previous proposals based on sym-
metric settings. Moreover, it extends update operations by supporting
efficient modifications over multiple sets. With respect to previous work
the proposed protocol has a modular design, that clearly identifies its
main building blocks and well-defined interfaces among them. This novel
conceptualization allows easier auditing of the protocol security proper-
ties and serves as the blueprint of a novel implementation that is released
publicly (https://weblab.ing.unimore.it/people/ferretti/versop/). To the
best of our knowledge, this is the first public implementation of a proto-
col for verifiable sets operations.

1 Introduction

Many approaches for securing distributed systems focus on controlling network
and system activities [2,3,9,15], and do not rely on cryptography. Moreover,
most applications of cryptography to data outsourcing scenarios focus on con-
fidentiality [11,12]. On the other hand, the proposed protocol guarantees the
correctness of results in scenarios where data and computation are delegated
to an untrusted server. With respect to previous protocols proposed in litera-
ture [7,19], this paper proposes three main contributions.

This is the first protocol for verifiable set operations that relies on asymmetric
bilinear pairings, while all previous proposals leverage symmetric bilinear par-
ings. Asymmetric settings are preferable, since they are characterized by lower
computational costs, thus resulting in performance optimization for the whole
protocol. Moreover, this is the first protocol for verifiable sets operations that
provides efficient support for insertions, deletions and updates over multiple sets
at once. This is achieved by designing a variant update protocol for accumulation
trees that allows the owner to provide an aggregate proof for multiple update
operations. Finally, while previous works describe a monolithic protocol, with no
high-level components and interfaces among them, in this paper we model the
proposed protocol as a combination of three modular components, each exposing
well-defined interfaces.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-48965-0 41

https://weblab.ing.unimore.it/people/ferretti/versop/


Implementation of Verified Set Operation Protocols 627

We release a public implementation of the protocol described in this paper
based on open-source cryptographic libraries [1,16,22], that we extend and wrap
to obtain modular components with higher-level interfaces. To the best of our
knowledge, this is the first public implementation of a protocol for verifiable
operations over a collection of sets.

The remainder of this paper proceeds as follows. Section 2 provides a short
description of the main cryptographic primitives that form the basis for our
protocol. Section 3 describes the reference scenario, introduces its main actors
and gives an overview of the proposed protocol and of its main modules. Sec-
tions 4 and 5 describe the details of the protocol modules. Finally, Sect. 6 outlines
concluding remarks and propose future work.

2 Cryptographic Building Blocks

Polynomial Representations of Sets. A set X can be represent through a
characteristic polynomial CX(s) =

∏
x∈X(x + s), where s is a formal variable

that is used as secret information in cryptographic protocols, and the elements
of the set x ∈ X are the addition opposite of the polynomial solutions [13,18].
The polynomial is defined over Zp, where p is a large prime number. We denote
as hz(·) and φz(·) hash functions that accept as inputs arbitrary binary strings
and elliptic curve elements, and that produce elements in Zp − {0}. We assume
that those functions are automatically applied when the elements of the input
set X of CX(s) are not in Zp. The polynomial CX(s) can be also represented and
computed through its coefficient form. By denoting the coefficients as {ai}i=[|X|],

the characteristic polynomial of set X is computed as CX(s) =
∑|X|

i=1 ai · si.
Coefficients can be computed efficiently from its roots by using FFT interpolation
algorithms [21]. Our implementation wraps algorithms of the NTL library [22]
and integrates them with hash functions of the Charm framework [1] to provide
high-level interfaces to compute characteristic polynomials of sets defined over
the most common data domains.

Bilinear Pairings. In this paper we focus on asymmetric pairing settings
(either Type 2 or Type 3 pairings [8,14]) that are usually faster than symmet-
ric pairings adopted by previous work [7]. We denote as (p,G1,G2,GT , g1, g2, ê)
the public parameters that define an asymmetric bilinear pairing setting. Let
g1, g2 be generators of cyclic groups G1,G2 of prime order p (that we repre-
sent as multiplicative), GT a multiplicative cyclic group of the same order and
ê : G1 × G2 → GT be the pairing function that satisfies the following prop-
erties: bilinearity: ê(ma, nb) = ê(m,n)ab ∀m,n ∈ G1 × G2,∀a, b ∈ Z

∗
p × Z

∗
p;

non-degeneracy: ê(g1, g2) �= 1; computability: there exists an efficient one-way
algorithm to compute ê(m,n), ∀m,n ∈ G1 × G2. Our implementation is based
on the Charm cryptographic framework [1], that wraps the PBC library [16].
We plan to extend our implementation with faster open source backend libraries,
such as [5,17].
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Bilinear Accumulators. Informally, a cryptographic accumulator is a small
constant size data structure (a digest) that can authenticate an arbitrary num-
ber of values [4]. In this paper we are interested in bilinear (map) accumulators
(BMA) [18] (also set accumulators), that implement valid cryptographic accumu-
lators based on bilinear pairings and characteristic polynomial representations
of sets. Let (p,G1,G2,GT , g1, g2, ê) be the parameters of the asymmetric bilinear
pairing setting, s ∈ Z

∗
p be the secret key and [gs

1, . . . , g
sq

1 , gs
2, . . . , g

sq

2 ] be the public
key, where q is the maximum number of values that can be stored in the accumu-
lator. The BMA of a set X, that we denote as fX , can be computed by using two
algorithms: fsk(X), that uses the secret key s, and fpk(X), that only uses the

public key, as following: fsk(X) = g
CX(s)
1 = g

∏|X|
i=1(xi+s)

1 , fpk(X) =
∏|X|

i=1

(
gsi

1

)ai

.

To prove that a value x ∈ X is stored in the BMA, a party (that knows the whole
set X) must produce a witness wY ∈ G2 such that ê(fpk(x), wY ) ?= ê(fX , g2),
where wY is the BMA of the set Y = X\{x} computed over G2. The equation

to compute wY , that we denote as wpk(Y ), is: wpk(Y ) =
∏|Y |

i=1

(
gsi

2

)ai

, where
{ai}i∈[|Y |] is the set of the coefficients of the characteristic polynomial CY (s).
Both fpk(·) and wpk(·) are BMA functions that are usually represented by the
same notation in symmetric pairing settings. We denote as fX and wX elements
of G1 and G2, respectively. Our implementation of BMAs protocols extends those
of characteristic polynomials and bilinear pairings.

Extractable Collision-Resistant Hash Functions. An extractable colli-
sion resistant hash (ECRH) function is a cryptographic function that can pro-
duce a succinct non-interactive argument-of-knowledge (SNARK) to demon-
strate the correctness of some simple computation [6]. In this paper we are
interested in ECRH functions that prove the correct computation of BMAs.
Let (p,G1,G2,GT , g1, g2, ê) be the parameters of the asymmetric bilinear pair-
ing setting, (s, α) ∈ Z

∗
p × Z

∗
p be the secret key and [gs

1, . . . , g
sq

1 , gs
2, . . . , g

sq

2 ,

gα
1 , gαs

1 , . . . , gαsq

1 , gα
2 , gαs

2 , . . . , gαsq

2 ] be the public key. We denote as FX the
ECRH of set X. It is computed as FX = (fX , f ′

X) [6], where fX is the BMA of
set X and f ′

X is the BMA of set X computed with public key [gαs
1 , . . . , gαsq

1 ],

as fpk
′ (X) =

∏|X|
i=1

(
gαsi

1

)ai

. As discussed in [6], function f ′
X represents a proof

of correct computation for the BMA fX based on security assumptions that
extend the knowledge of exponent assumption [10], first described to guarantee
chosen-ciphertext security of asymmetric encryption. We denote as FX , f ′

X the
black-box output of the functions (fpk(X), fpk

′ (X)) and fpk
′ (X). ECRH func-

tions can be verified publicly through a pairing operation: ê(fX , gα
2 ) ?= ê(f ′

X , g2).
Note that the public key of our protocol does not uses the array of elements
[gα

2 , gαs
2 , . . . , gαsq

2 ]. From an implementation perspective, ECRH functions are
bilinear accumulators. Thus, our implementation adds an additional higher-level
interface to that of BMAs.
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3 Scenario and Protocol Overview

We assume that an organization that owns data (owner) outsources data and
computations to an external server . Outsourced data are in the form of a col-
lection of sets. Each set is associated to a label and can include one or more
elements. Outsourced data can be queried by one or more users, that interact
directly with the server . A query is an arbitrary combination of set operations
expressed over the input sets. Any composition of set operations can be mod-
eled by an abstract syntax tree (AST), where leaves are input sets and inter-
mediate nodes are set operations. The AST corresponding to an example query
“(A∪B∪C)∪(D∩E)” issued by the user is shown in Fig. 1. The leaves represent
the sets involved in the query, referred by their labels, while intermediate nodes
are the three set operations. Each output edge of an intermediate node repre-
sents the intermediate result of the corresponding set operation and the input of
another set operation. The output of the root node represents the plaintext data
returned to the user . The server proves the correctness of the inputs (π′

leaf ) and
of the operations (π′

∩, π′
∪) through different specialized routines that use bilinear

accumulators to represent input and output sets. The proposed protocol builds
a chain of such proofs along the vertexes of the AST, thus proving correctness
of the whole computation. We distinguish three main categories of proofs.

Fig. 1. AST and proofs for a verified hierarchical set operation

Proofs of correctness for the input sets. A user does not know any content stored
in the sets collection, except the set of the available labels used to issue queries.
Given a query by a user, the server returns BMAs for all input sets involved in
the query and proofs of correctness that demonstrate that each BMA represents
the set associated to the requested label. The proposed protocol produces these
proofs by using an accumulation tree, that we describe in Sect. 4.

Proofs of correct computation for single set operations. Given a single set oper-
ation, the server is able to produce proofs of correct computation based on the
BMAs of the input sets. A user can verify the correctness of the output by
knowing the authenticated BMAs that represent the input sets and the proof
for the set operation. We describe single set operation protocols in Sect. 5.
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Proofs of knowledge for all intermediate results. To bind the output of a set
operation as the input of another set operation, the proposed protocol produces
proofs of knowledge for all intermediate results. Sections 4 and 5, describe how
the server produces proof of correctness for intermediate results.

4 Accumulation Tree Protocols

An accumulation trees is an authenticated data structure based on constant size
N-ary trees that allow efficient authentication of data by building many levels of
hierarchical authentication structures, each authenticating the lower one by using
cryptographic accumulators as intermediate nodes [20]. The proposed protocol
leverages accumulation tree based on bilinear accumulators to authenticate all
the input sets involved in a query issued by a user . Accumulation trees support
three operations: setup, update and leaf queries. Setup and update operations are
used to initialize and modify the accumulation tree accordingly with the content
of the sets collection. Leaf queries allow to prove correctness of the inputs used
in queries issued by users. Notation. We refer to an accumulation tree as Ak,
where k is the version of the tree (the number of update operations). The tree has
m = |D| leaves, each representing a set of the sets collection and identified by a
label � ∈ L. Figure 2 shows an example accumulation tree based on an N-ary tree
that authenticates a sets collection of m = 27 sets. We identify a node as v[i, j],
where i is its level (i = 0 is the level of the root, i = 1 of the root’s children, . . . )
and j is its position within the level. We define t as the lowest level of the tree.
The following functions identify relevant sets of nodes: N(v[i, j]) and P(v[i, j])
return the children and the parent of v[i, j]; R(v[i, j]) returns the nodes in the
path from v[i, j] to the root; J(i) returns the number of nodes at the level i.
Setup. The owner computes each leaf of the accumulation tree v[t, �] as the
BMA that contains the elements of the set S� and a unique representative of the
label �:

v[t, �] = fsk(S� ∪ {�}) = g
(hz(�)+s)

∏

x∈S�
(hz(x)+s)

1 , ∀� ∈ L (1)

The owner then computes each non-leaf node as the BMA of its children
N(v[i, j]):

v[i, j] = fsk(N(v[i, j])) = g
∏

x∈N(v[i,j])(φz(x)+s)

1 ,∀i = t − 1, . . . , 0,∀j = 1, . . . , J(i)
(2)

The owner sends the accumulation tree to the server as the authentication struc-
ture A0, and its root v[0, 0] to the users as the digest d0. The owner maintains
the accumulation tree locally to execute updates on the server .

Update. The implemented update protocol improves the one described and
used in [7,19,20] by allowing insertion and deletion of multiple elements on many
sets through a single operation, and producing a single proof demonstrating the
correctness of all updates at once. Since the updated version of the accumulation
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Fig. 2. Example of accumulation tree for m = 27 sets and degree equal to 3 (ε = 1/3)

tree generated by the proposed protocol is equal to that the original protocol,
the security proofs proposed for the original protocol still hold.

We model the update operation U as an associative array {� : (add�, del�)},
where add� is the set of values inserted in S� and del� is the set of values deleted
from S�. To update the leaves of the accumulation tree, the source computes the
characteristic polynomials of inserted (Cadd�

(s)) and deleted values (Cdel�(s))
for each set. These polynomials are used to update each leaf v[t, �] as following:

v′[t, �] = v[t, �]Cadd�
(s)·Cdel�

(s)−1
, ∀� ∈ U (3)

Then the owner updates the intermediate nodes of the accumulation tree in the
path from an updated leaf to the root. All the updated leaves and intermediate
nodes are stored in the upd data structure. The owner maintains locally the new
version of the accumulation tree Ak+1 and sends only upd to the server. After
the server confirms the update, the owner can delete the old version Ak and
distribute its root as the new digest dk+1 to the users.

Leaf query. We distinguish two variants of leaf queries: those used to guar-
antee correctness of plaintext sets returned to users, and those used to guar-
antee correctness of input sets used in hierarchical queries. We denote the rou-
tines that implement the protocols for plaintext results as queryTreePlaintext
and verifyTreePlaintext, and those for intermediate results as queryTreeNode
and verifyTreeNode. Given a label �, the server uses the queryTreePlaintext
(queryTreeNode) protocol to return the set S� (the BMA fS�

) and the proof
πleaf (π′leaf ) that authenticates the set (the BMA) with respect to the accu-
mulation tree Ak. A user that knows the digest dk can execute a protocol
verifyTreePlaintext (verifyTreeNode) to verify the correctness of S� (fS�

).
The server builds πleaf by including all nodes in the path from the requested

leaf to the root, and witnesses that authenticate the chain of nodes. We denote
as vt the leaf corresponding to � (v[t, �]), and vt−1, . . . , v1 the nodes in the path
from the leaf to the root (excluded). We denote as γi the witness that binds vi

to vi+1, computed as the BMA of the children of node vi except the node whose
correctness we must prove, that is vi−1:

γi = fpk(N(vi)\{vi−1}) (4)
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To prove the chain of nodes vt, . . . , v1, the server computes witnesses
γt−1, . . . , γ0. The complete proof πleaf is:

πleaf ≡ π′
leaf = ((vt, γt−1), (vt−1, γt−2), . . . , (v1, γ0)) (5)

The routine for intermediate results queryTreeNode includes all the described
operations, but it also requires the server to compute the BMA of the set fS�

as
fpk(S�). This value differs from vt because it does not include the representative
of the label � (see Eq. (1)).

The verification routines involve three phases: (a) results verification (plain-
text or their BMA) by using the leaf node vt; (b) verification of vt, . . . , v1 by
using the witnesses γt−1, . . . , γ1; (c) verification of v1 by using the witness γ0
and the digest dk (that is v0) trustfully obtained by the owner .

(a) ê(fpk(S�), g
hz(�)
2 · gs

2)
?= ê(vt, g2)

(b) ê(γi, g
φz(vi+1)
2 · gs

2)
?= ê(vi, g2),∀i = t − 1, . . . , 1

(c) ê(γ0, g
φz(v1)
2 · gs

2)
?= ê(dk, g2) (6)

If any of the previous conditions is not verified, the user rejects the results
returned by the server .

5 Verified Set Operations

The proposed protocol supports union and intersection set operations. To
demonstrate the correctness of these operations through BMAs, it is necessary
to express them in terms of operations among their characteristic polynomials.
To solve this issue, we reduce unions and intersections to a combination of prim-
itive operations that we can prove through characteristic polynomials: subset,
multiset union and disjointness.

Subset and multiset union. Let us consider sets A and X such that A ⊂ X.
By construction, CX (the characteristic polynomial of X) is divisible by CA,
thus there exists a witness polynomial W such that CX = CA · W . The proof of
a subset relation is the witness W , computed as the characteristic polynomial of
the set B = X\A. Verification is computed through the bilinear pairing function.

Another operation that we can prove by using a single witness is multiset
union. Let us consider two input sets A and B and their multiset union X =
A + B (informally referred to as multiset concatenation in [7]). The output set
X includes duplicate elements if A and B are not disjoint. Multiset union can
be mapped to a multiplication operation between the characteristic polynomials
of A and B, as CX = CA · CB . Given X, (or its BMA fX), the proof of multiset
union only includes the BMAs of the input sets A and B computed in the correct
bilinear group (G1 or G2). Verification can be computed as ê(fA, wB) ?= ê(fX , g2)
or ê(fB , wA) ?= ê(fX , g2). Subset and multiset union operations only support two
input sets due to the nature of the pairing function ê.
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Set disjointness. The proof for sets disjointness can be reduced to a proof
of divisibility between polynomials: if and only if the intersection between the
sets is the empty set, then the gcd of the characteristic polynomials of the sets
is equal to 1. Consider sets S1, . . . , Sn. If ∩i∈[n]Si = ∅, then the gcd of the
characteristic polynomials CSi

,∀i ∈ [n] is equal to 1. Hence, there exists unique
polynomials q̇i such that

∑
i∈[n](CSi

· q̇i) = 1. Polynomials {q̇i} can be computed
by executing iteratively the extended euclidean algorithm for finite field couples
of polynomials [19]. Our implementation is based on the extended euclidean
algorithms provided by the NTL library [22]. The proof for sets disjointness
π∅(S1, . . . , Sn) and its verification are as following:

π∅(S1, . . . , Sn) = (wq̇1 , . . . , wq̇n
) (7)

verifyDisjoint(π∅, fS1 , . . . , fSn
) :

∏

i∈[n]

ê(fSi
, wq̇i

) ?= ê(g1, g2) (8)

Set intersection. We consider input sets S1, . . . , Sn and a set I that is the
output of set intersection I =

⋂
i∈[n] Si. If I is empty or equal to one of the input

sets, the operation can be reduced to a disjointness or a subset proof. Otherwise,
the proof relies on two properties: I is a subset of all sets: I ⊂ Si,∀i ∈ [n]; the
set complements of each set Si are disjoint to I:

⋂
(Si\I) = ∅. In the following

we distinguish proofs computed for plaintext results (π∩), from those computed
for intermediate results (π′

∩).
Proof π∩ includes the proof of disjointness π∅ for all the set complements,

plus the BMAs of all the set complements:

π∩ = (fS1\I , . . . fSn\I , π∅(S1\I, . . . , Sn\I)) (9)

Proof π′
∩ includes the proof of disjointness π∅ for all the set complements, plus

the ECRH functions of all the set complements. Due to the construction of
ECRH functions we can denote π′

∩ through two equivalent notations:

π′
∩(I, S1, . . . , Sn) = (wI , FS1\I , . . . FSn\I , π∅) ≡ (wI , f

′
S1\I , . . . f

′
Sn\I , π∩) (10)

Verifying π∩ requires verifying the subset and disjunction properties:

verifyIntersectionPlaintext(π∩, I, fS1 , . . . , fSn
) :

∀i ∈ [n], ê(fSi\I , wpk(I)) ?= ê(fSi
, g2),

∏

i∈[n]

ê(fSi
, wq̇i

) ?= ê(g1, g2) (11)

Verifying π′
∩ requires to verify the ECRH functions, the witness of the intersec-

tion and the plaintext intersection proof π∩ (with the small variant of already
having the witness wI = wpk(I) available):

verifyIntersectionNode(π′
∩, fI , fS1 , . . . , fSn

) :

ê(fI , g2)
?= ê(g1, wI), ∀i ∈ [n], ê(fSi\I , g

α
2 ) ?= ê(f ′

Si\I , g2),

verifyIntersectionPlaintext(π∩, wI , fS1 , . . . , fSn
) (12)
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Set union. We consider two input sets A and B and the set U = A ∪ B. It
is possible to prove set union by using the set inclusion-exclusion principle [7]:
A ∪ B = (A + B)\(A ∩ B). Since (A ∩ B) ⊆ (A + B) by construction, the
set difference operation can also be proved as the multiset union A + B =
(A∪B)+(A∩B). Thus, set union proof must include an intermediate intersection
proof (A∩B), knowledge proofs for the intermediate result A∩B) and witnesses
for multiset union.

π′
∪(A,B) = (π′

∩, FA∩B , wA∩B , wB), π∪(A,B) = (π′
∩, FA∩B , wB) (13)

Plaintext and intermediate proofs are verified in similar ways, where verification
of intermediate results require a pairing operation to test the correctness of
element wA∩B:

verifyUnionP laintext(π∪, U, fA, fB) :

ê(fA∩B , gα
2 ) ?= ê(f ′

A∩B , g2), ê(fB , g2)
?= ê(g1, wB),

ê(fA, wB) ?= ê(fA∩B, wpk(U)),
verifyIntersectionNode(π′

∩, fA∩B , fA, fB) (14)

verifyUnionNode(π′
∪, fU , fA, fB) :

ê(fA∩B , gα
2 ) ?= ê(f ′

A∩B, g2), ê(fA∩B, g2)
?= ê(g1, wA∩B),

ê(fB , g2)
?= ê(g1, wB), ê(fA, wB) ?= ê(fU , wA∩B),

verifyIntersectionNode(π′
∩, fA∩B , fA, fB) (15)

Note that set union natively supports only two inputs: in the case of union
operations among multiple sets, the query must be handled as a hierarchical
query composed by multiple binary operations.

6 Conclusions

This paper describes the implementation of a protocol for efficient verifiable del-
egation of set operations based on bilinear accumulators. We extended literature
by detailing a modular implementation that identifies the main building blocks
of the protocol and defines standard interfaces. We extend the original protocols
by proposing a variant for asymmetric bilinear pairings and an improved update
protocol for multiple sets. We implemented the protocol and released it publicly.
This is the first public implementation of a protocol for verifiable sets operations.
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Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over barreto–naehrig curves. In: International Conference on Pairing-Based
Cryptography, 20 July 2016. https://github.com/herumi/ate-pairing

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Proceedings of 2012 ACM Third International Conference on Innovations in The-
oretical Computer Science (2012)

7. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set opera-
tions over outsourced databases. In: Proceedings of 2014 IACR International Con-
ference on Public-Key Cryptography (2014)

8. Chatterjee, S., Hankerson, D., Menezes, A.: On the efficiency and security of
pairing-based protocols in the type 1 and type 4 settings. In: Hasan, M.A., Helle-
seth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 114–134. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13797-6 9

9. Colajanni, M., Gozzi, D., Marchetti, M.: Enhancing interoperability and stateful
analysis of cooperative network intrusion detection systems. In: Proceedings of
ACM Symposium on Architecture for Networking and Communications (2007)

10. Damg̊ard, I.B.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 36

11. Ferretti, L., Colajanni, M., Marchetti, M.: Distributed, concurrent, and indepen-
dent access to encrypted cloud databases. IEEE Trans. Parallel Distrib. Syst. 25(2),
437–446 (2014)

12. Ferretti, L., Pierazzi, F., Colajanni, M., Marchetti, M.: Scalable architecture for
multi-user encrypted sql operations on cloud database services. IEEE Trans. Cloud
Comput. 2(4), 448–458 (2014)

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Proceedings of IACR CRYPTO (2004)

14. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

15. Lodi, G., Querzoni, L., Baldoni, R., Marchetti, M., Colajanni, M., Bortnikov,
V., Chockler, G., Dekel, E., Laventman, G., Roytman, A.: Defending financial
infrastructures through early warning systems: the intelligence cloud approach. In:
Proceedings of 5th ACM Workshop CSIIRW (2009)

16. Lynn, B.: On the implementation of pairing-based cryptosystems. Ph.D. thesis,
Stanford University, 20 July 2016. https://crypto.stanford.edu/pbc/

17. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for
cryptographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT
2010. LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14712-8 7

18. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-30574-3 19

https://github.com/herumi/ate-pairing
http://dx.doi.org/10.1007/978-3-642-13797-6_9
http://dx.doi.org/10.1007/3-540-46766-1_36
https://crypto.stanford.edu/pbc/
http://dx.doi.org/10.1007/978-3-642-14712-8_7
http://dx.doi.org/10.1007/978-3-642-14712-8_7
http://dx.doi.org/10.1007/978-3-540-30574-3_19


636 L. Ferretti et al.

19. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 6

20. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
Proceedings of 15th ACM Conference on Computer and Communications Security
(2008)

21. Preparata, F.P., Sarwate, D.V.: Computational complexity of fourier transforms
over finite fields. Math. Comput. 31(139), 740–751 (1977)

22. Shoup, V.: NTL: a library for doing number theory, 20 July 2016. http://www.
shoup.net/ntl/

http://dx.doi.org/10.1007/978-3-642-22792-9_6
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/


Multi-core FPGA Implementation of ECC with
Homogeneous Co-Z Coordinate Representation

Bo-Yuan Peng1(B), Yuan-Che Hsu2, Yu-Jia Chen2, Di-Chia Chueh2,
Chen-Mou Cheng3, and Bo-Yin Yang1

1 Academia Sinica, Taipei, Taiwan
{bypeng,by}@crypto.tw

2 National Taiwan University, Taipei, Taiwan
{b01901138,b01901017,b01901020}@ntu.edu.tw

3 Osaka University, Suita, Japan
chenmou.cheng@gmail.com

Abstract. Elliptic Curve Cryptography is gaining popularity, and opti-
mization opportunities exist on several different levels: algorithm, archi-
tecture, and/or implementation. To support a wide variety of curves and
at the same time resist timing/power-based side-channel attacks, our
scalar multiplication is implemented using the Co-Z ladder due to Hut-
ter, Joye, and Sierra. We analyze the parallelism of the Co-Z ladder and
show that a 12-core (though inefficient) system can complete a ladder
step with the fastest speed. We also combine optimizations at every level
in an efficient multi-core FPGA implementation. The size of the prime
modulus can also be changed easily, for which we have implemented and
tested up to 528-bits used in the NIST P-521 curve. Based on this build-
ing block, we have developed a multi-core architecture that supports
multiple parallel modular additions, multiplications, and inverses.

Keywords: ECC · Co-Z · Multi-core · FPGA · Montgomery reduction

1 Introduction

Elliptic Curve Cryptography (ECC), invented independently by Koblitz and
Miller [1,2], has seen use for information security in the last decade. The most
important operations in ECC are scalar multiplication and point (group) addi-
tion. Most ECC implementations require many arithmetic operations modulo
a prime (of 256–521 bits, as per security level). These are complex, resource-
intensive operations. Efficient network security solutions become necessaries with
many possible trade-offs among cost, power consumption, security level, and
flexibility.

Flexibility in a security solution can be achieved via FPGAs, a practice that
recently became more fashionable [6]. For networking applications, a functional
unit may be cloned dozens of times on the FPGA such that, properly scheduled,
many similar operations can run simultaneously. We do can the same with big
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integer modular multiplications in ECC. Of course, n copies of the key unit
usually yield less than n times speed-up, due to bottlenecks in the algorithm.

We have developed an architecture with multiple Montgomery Reduction
cores. Each Montgomery Reduction core includes two multipliers and completes
one Montgomery multiplication in 66 cycles. The frequency can be more than
30 MHz at the maximum 528 bits, using the Xilinx R© Zynq-7000TM All Program-
mable SoC. We use this architecture to implement a general high-security ECC
engine compatible with all short Weierstrass curves and prime moduli up to 521
bits. These include the 256-bit secure NIST [13] curves. Without the comfort
afforded by Montgomery or Edwards curves, we use the Co-Z ladder by Hutter
et al. [8] for scalar multiplications to gain some side-channel resilience.

Our design is modular and scalable (in numbers of cores and also bitlength
down to 256); we also describe, to the best of our knowledge, for the first time
how the Co-Z ladder can be flexibly implemented with Montgomery reduction
units. The main ladderstep can be performed in as few as 3 rounds of big integer
multiplications (plus extra modular additions) with 12 Montgomery cores.

The full version (link cf. Sect. 5) has more details and the remainder of the
paper is structured as follows:

– Section 2 surveys the history and related works, including the formulas that
evaluates the scalar multiplications and designs related to what we used.

– Section 3 analyzes the degree of parallelism of the Co-Z ladderstep and
describe the requirements an optimal scheduling of this step.

– Section 4 describes our hardware architecture with modular and flexible Mont-
gomery multipliers, our implementation and test results in detail.

– Section 5 concludes after discussing possible follow-ups.

2 History and Related Work

ECC and Notations. Koblitz and Miller [1,2] independently suggested using
discrete logarithms on the rational points of an elliptic curve group over a finite
field for cryptosystems. In this paper we stick to nonsingular (a, b ∈ Fp with
4a3 + 27b2 �= 0) elliptic curves in short Weierstrass form over prime fields,

E(Fp) := {(x, y) ∈ Fp × Fp| y2 = x3 + ax + b} ∪ {O} (1)

E(Fp) comprises points satisfying the curve equation E : y2 = x3 + ax + b plus a
“point at infinity” O. We can define an abelian group on E(Fp) such that O is
the unit element, and any three co-linear points add up to O.

The scalar multiplication Q = 〈k〉P, is defined as repeated addition on k
copies of a point P. On good curves, it is difficult given P and Q to find k such
that Q = 〈k〉P (takes time Θ(

√
q) with the best methods we know). This is

the elliptic curve discrete logarithm problem (ECDLP). A scalar multiplication
Q = 〈k〉P in contrast takes time polylog(p) given k and P.
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Computing Scalar Multiplication and Coordinates. In the early days of cryp-
tography, exponentiations use the double-and-add approach. However, Kocher
noted that we can break such implementations using side-channel attacks (SCA)
[10], by observing timing or power usage patterns.

An approach to scalar multiplication more resilient to simple SCA is differ-
ential addition chains. The original example, where we can compute 〈2〉Q and
P + Q from P,Q,P − Q, is the Montgomery ladder [4].

Point Representations and Co-Z ladder for NIST Curves. The representation of
(X,Y,Z) denoting the point (X/Z, Y/Z), a homogeneous projective coordinate,
is a scaling factor to avoid computing inverses in Fp. Similarly, in Jacobian coor-
dinates on short Weierstrass curves (X;Y ;Z) denotes the point (X/Z2, Y/Z3).

Usually twisted Edwards curves [3] (birationally equivalent to Montgomery
curves) offers the best all-around performance. The Montgomery curve/ladder
combination is one of the best methods to implement ECC for security and speed
today, illustrating the importance of a good set of choices of algorithm, curve
and representation (cf. [12]). In some cases compatibility for short Weierstrass
curves not equivalent to Montgomery curves (e.g., NIST [13] curves) is required.

In 2011, Hutter et al. described a very good general differential chain imple-
mentation for scalar multiplications on a general short Weierstrass curve [8],
which somehow remained obscure (e.g., omitted by [12]). Like the original
Montgomery chain, only the X-parts of homogeneous projective coordinates are
tracked. A main feature of the new method is that the two points R0 and R1

shares Z coordinates during each ladderstep. The y coordinates can be recon-
structed at the end, enabling compressed public keys and signatures. We call
this the Co-Z ladder.

Co-Z Ladder Formulas. Let P1 = (X1, Y1, Z), P2 = (X2, Y2, Z) and P1 −P2 =
±P where P = (xP , yP ). Further let P1 + P2 = (X ′

1, Y
′
1 , Z

′) and 〈2〉P2 =
(X ′

2, Y
′
2 , Z

′). Given (X1, X2, Z) and xP we can compute U = (X1 − X2)2 and
V = 4X2(X2

2 + aZ2) + 4bZ3 first, and then (X ′
1, X ′

2, Z ′) via
{

X ′
1 = V [(X1 + X2)(X2

1 + X2
2 − U + 2aZ2) + 4bZ3 − xPZU ],

X ′
2 = U [(X2

2 − aZ2)2 − 8bZ3X2], Z ′ = UV Z.
(2)

Algorithm 1 (cf. [8]) evaluates formulas (2). Most of the computation is in 11
big-integer multiplications (denoted as M) and 5 big-integer squarings (denoted
as S), or 11M + 5S. Note that multiplications by either a or 4b may be faster.
Hutter et al. also noted we can forget Z and instead track (TP , Ta, Tb) where
TP = xPZ, Ta = aZ2 and Tb = 4bZ3, with 10M + 5S per ladderstep.

Components of the Co-Z Ladder. A scalar multiplication in the NIST P-521
curve takes about 8000 modular multiplications (treating squaring and multi-
plication as the same), and we are yet to build the requisite multiplier. The
multi-staged Montgomery reduction method [5] is presently the de facto stan-
dard approach for generic modular multiplications. This is well-studied and we
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Algorithm 1. Montgomery Ladderstep in homogeneous Co-Z coordinate.
Input: X1, X2, Z, xP , a, 4b
Output: X ′

1, X
′
2, Z

′

1 R1 ← Z2

2 R2 ← a × R1

3 R3 ← Z × R1

4 R4 ← 4b × R3

5 R5 ← X2
2

6 R6 ← R5 − R2

7 R7 ← R2
6

8 R8 ← R5 + R2

9 R9 ← X2 × R8

10 R10 ← R9 + R9

11 R11 ← R10 + R10

12 R12 ← R11 + R4

13 R13 ← R8 + R2

14 R14 ← X2
1

15 R15 ← R13 + R14

16 R16 ← X1 − X2

17 R17 ← X2 + X2

18 R18 ← R17 × R4

19 R19 ← R7 − R18

20 R20 ← R2
16

21 R21 ← R15 − R20

22 R22 ← R16 + R17

23 R23 ← R22 × R21

24 R24 ← R23 + R4

25 R25 ← Z × R20

26 R26 ← xP × R25

27 R27 ← R24 − R26

28 X ′
1 ← R27 × R12

29 X ′
2 ← R20 × R19

30 Z′ ← R25 × R12

omit details about Montgomery modular multiplier unit. In practice our imple-
mentation need to fit the FPGA platform and the practical requirement.

3 Task Scheduling in the Co-Z Ladder

Whenever multipliers are being added, two questions are inevitably raised. One
question is that if n Montgomery cores can used efficiently. Can formula (2) be
completed within �16/n	 of big-integer multiplications? And the other is the
least number of rounds of big-integer multiplications for formula (2).

These are classical problems in parallel computing, that becomes practical to
those seeking to speed up ECC. To solve this problem, the targeted algorithm
will be transformed into a task schedule graph, which is a directed acyclic graph
(DAG) in which each directed edge implies the causality between the steps (ver-
tices in the graph) in the algorithm. Solving the famous DAG scheduling problem
then gives the answers to the above two questions [16].

Here we analyze the degrees of parallelism of Algorithm 1. Compared with
multiplication, the big-integer addition/subtraction is much faster, so we will
focus on the scheduling of former. Preferably, we would like to have all our Mont-
gomery cores to run and stop (almost) at the same time to ease our scheduling
task. The relationship between the number of Montgomery cores and the number
of rounds of big-integer multiplications required is shown in Table 1.

Table 1. # rounds of big-number multiplications required to perform Co-Z ladderstep
in [8]. In ‘†’ cases, small and fixed a and b may improve the performance by one round.
Also, tracking (TP , Ta, Tb) instead of Z only takes 5 round in the 3-core case

# cores 2 3 4 5 enough

# rounds 8† 6† 5 4 3 (12 cores)

When using 2 or 3 cores, tracking (TP , Ta, Tb) instead of Z has a different
task schedule graph with the critical path of length 5. One can easily construct a
8-round schedule for the 2-core case and 5-round schedule for 3-core case, which
will be found in the full version (cf. Sect. 5).
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3.1 4 and 5 Cores: Critical Paths Evaluating (X1, X2, Z)

The task schedule graph of Algorithm 1 with ADD/SUB blocks omitted is shown
in Fig. 1(a). See the full version to get the full task schedule graphs. Each edge
indicates the causality between the connected blocks (indicating the big-integer
multiplications), where the left block is performed earlier than the right one.

(a) (b)

Fig. 1. The task schedule graph of Algorithm 1, where the ADD/SUB blocks are
omitted. Figure (a) is the original and Fig. (b) is the modified one for the multi-core
purpose

The critical path is 〈1, 3, 4, 18, 28〉, which can be reduced. We can see 4bZ3

which is evaluated at step 4 is originally evaluated as the product of 4b and Z3,
but actually it can be evaluated from the product of 4bZ and Z2, both of which
are of degree 2. Since Z3 is referenced only in step 4, we can modify step 3
and 4 in Algorithm 1, resulting in the modified task schedule graph shown in
Fig. 1(b). Now the critical path length is 4 with respect to rounds of big-integer
multiplications.

This observation may be generalized to more cases. To evaluate the value
of a monomial x = xr0

0 , ..., x
rn−1
n−1 with total degree r =

∑
ri, it is the best to

generate the divisor xa = xa0
0 , ..., x

an−1
n−1 and xb = xb0

0 , ..., x
an−1
n−1 , where x = xaxb,

�r/2	 − 1 ≤ a =
∑

ai ≤ �r/2	 and �r/2	 − 1 ≤ b =
∑

bi ≤ �r/2	 if we want to
shrink the critical path generating x. This will be important in Sect. 3.2.

A 5-Montgomery-core schedule with 4 rounds can be created directly from
Fig. 1(b). Observing that 11M + 5S are required in the algorithm, as well as
that only step 28, 29, and 30 (3 in total) can be performed in the last round,
there will be 13 big-integer multiplications yet to be performed before the last
round. Therefore, there exists a 4-Montgomery-core system that can perform
Algorithm 1 in 5 rounds of big-integer multiplications. An additional note is
that when it is the case that a and 4b are constants, both 2-Montgomery-
core and 3-Montgomery-core systems can perform Algorithm 1 with one round
fewer than original cases. This fact makes it more competitive than evaluating
(X1,X2, TP , Ta, Tb).
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3.2 How Many Cores Are Required for the Fastest Performance?

The next problem in implementing the Co-Z approach is the resource require-
ment if we want to speed up to the extreme. How many rounds of big-integer
multiplications are required at least and thus how many cores are required?

By induction, we can see that to evaluate a monomial of degree n, the best
approach will take �lg n	 rounds of multiplications. To estimate the requirement,
let us analyze formula (2). It is easy to see the degrees of U , V , X ′

1, X ′
2 and

Z ′ in formula (2) with respect to (X1, X2, Z, xP , a, 4b) are 2, 4, 8, 8 and 7,
respectively. It is obvious that evaluating U using one big-integer multiplication
is optimal. It is a good news that X ′

1 = V × fX′
1
(·) where both V and fX′

1
(·)

are of degree 4. We may optimize the evaluation procedure of V and fX′
1
(·)

(with 2 rounds of big-integer multiplications) and then get the optimal flow to
evaluate X ′

1. The fact Z ′ = UV Z = UZ × V makes the optimization procedure
of evaluating Z ′ to depend also on that of evaluating V . X ′

2 = U × fX′
2
(·) brings

a problem, as fX′
2
(·) is of degree 6. It is impossible to factor fX′

2
(·) as a product

of a quadratic polynomial and a quartic polynomial. A second choice is given by

fX′
2

= X2
2 (X2

2 − 2aZ × Z) + Z2[(aZ)2 − 8bX2Z] (3)

We can then evalaute X ′
2 in 3 rounds. To evaluate V and fX′

1
(·), we observe

that
V = 4X2 × X2

2 + 4X2Z × aZ + 4bZ × Z2 (4)

fX′
1

= 2X1X2(X1 + X2) + aZ × 2Z(X1 + X2) + 4bZZ2 − xPZU (5)

Now we can build a 12-Montgomery-core system to perform Algorithm 1, and
the key schedule how to use the Montgomery cores is given as Table 2.

Table 2. Scheduling for Algorithm 1 with 12 cores

R# List of multiplication

1 U , X2
2 , aZ, Z2, X2Z, 4bZ, xPZ, (X1 + X2)Z, X1X2

2 M1 = U · X2
2 , M2 = aZ · Z, M3 = U · Z2, M4 = (aZ)2,

M5 = 4b · X2Z, M6 = X2 · X2
2 , M7 = aZ · X2Z, M8 = 4bZ · Z2,

M9 = U ·Z, M10 = (X1+X2)Z ·aZ, M11 = (X1+X2)X1X2, M12 = U ·xPZ
fX′

1
= 2M11 + 2M10 + M8 − M12, V = 4M6 + 4M7 + M8

3 X ′
1 = V · fX′

1
, Z′ = M9 · V , X ′

2 = M1 · (X2
2 − 2M2) + M3 · (M4 − 2M5)

4 Implementation and Results

We show our result with 5- and 12-Montgomery-core systems. For the 5-core
system, the maximum bit sizes are scalable and we provide the results for 264-
bit (for 256-bit fields) and for 528-bit (for 521-bit or 512-bit fields) operations in
ECC. The Montgomery reduction cores, standing for the big integer multipliers,
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are of base d = 28. The detailed design for the Montgomery reduction cores is
shown in the full version. A remark is given here that additional BRAM blocks
(named as xP−1P pools) are allocated in order to restore pre-evaluated values
that are often used in the Montgomery cores.

Fig. 2. The proposed block diagram

Figure 2 illustrates the hardware architecture of a multi-multiplication-core
system. Each Montgomery multiplier will get two inputs (A, B) and generate one
output R. When there are 2 or more Montgomery multipliers, a typical choice to
use a MUX/deMUX to collect the outputs of the Montgomery multipliers, and to
dispatch the value in the memory to the specified inputs of the multipliers. This
approach will cost more cycles on the MUX/deMUX. A finite state machine or a
controller handles the addresses for the memory pool. There are paths from the
input of the whole system to the write-data buses, and the controller can assign
some pre-defined direct values to the write-data buses. The data buses do not
bother the controller directly, but there are some cases in which we need to check
if the outputs of the large number arithmetic units become 0. One comparator
to zero, whose comparison result is a flag for the controller, is installed from the
output bus of each large number arithmetic unit.

In this work, Xilinx R© Zynq-7000TM All Programmable SoC (APSoC) on
Xilinx R© ZC706 Evaluation Kit is adopted for the 5-core system and the 12-core
system. We also show our result about the resource requirement for multiple
3-core and 5-core ECC engines in one system on ZC706 board, which implies
that to build multiple 3-core engines in one system is better if there are sufficient
resources to build a 12-core system. The DSP slices are not needed — they were
going to be used for multimedia purpose specified by the original client.

In our system, the functions of ECC operations that are often used include:

1. Re-configurable parameters of a, b, p, q = |E|, and the base point G.
2. Scalar multiplication with the scalar k and the element P in E .
3. Group point addition of elements P and Q in the elliptic group E . The classical

approach by Cohen et al. [9] is applied.
4. Big-number MUL/ADD/SUB opperations modulo the group order q = |E|.
5. find the big-number inverse modulo q = |E|. Montgomery inversion [4] is not

in our hardware. Due to its simple state machine, add it should be easy.
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Table 3. Resource used for 5- and 12-Montgomery-core systems on ZC706 Kit. n in
Sm,n implies the maximum n-bit compatibility m-core design. No DSP slices are used

Module S5,264 S5,528 S12,264

fmax = 83.33 MHz fmax = 62.50 MHz fmax = 45 MHz

Slice Slice 18 Kb Slice Slice 18Kb Slice Slice 18Kb

LUT6 Reg BRAM LUT6 Reg BRAM LUT6 Reg BRAM

Mont. mul. (each) 2080 280 0 3455 545 0 2052 280 0

xP−1P pool 1635 559 40 3226 1096 75 1339 559 96

Diff. adder 247 103 0 1288 103 0 5132 165 0

(X,Y, Z) recovery 1395 76 0 1968 76 0 1109 74 0

Other FSM 1630 932 0 2306 1727 0 1613 932 0

Memory pool 7662 2673 8 19554 5324 15 18162 6366 8

Misc. modules 3973 1786 0 656 3412 0 2362 1987 0

Total 26941 7529 48 46269 14458 90 54337 1344 104

4.1 5-Montgomery-Core System

The 5-Montgomery-core system is implemented on ZC706 Evaluation Kit, on
which a Z-7045 APSoC equivalent to a Kintex R©-7 FPGA is used. There are
218600 LUTs and a Dual ARM R© CortexTM-A9 MPCoreTM processor on this
APSoC [7], where the protocols (such as ECDH or ECDSA) is implemented on
the ARM processor. A parameter setting the maximum compatible bit-size is
configured in the 5-core system in our design. Here a 264-bit version and a 528-
bit version are synthesized and tested with NIST curves, Brainpool curve P512

r1 [14], and SEC P256 k1 curve [15] (a.k.a. the Bitcoin curve) are tested in both
of the systems. The resource requirements and time performances of the 264-bit
version and the 528-bit version are given as Tables 3 and 4.

Table 4. Performance of Q = 〈k〉P in various {5, 12}-core systems on ZC706 Kit

Elliptic curve S5,264 @ 83.33 MHz S5,528 @ 62.50 MHz S12,264 @ 45MHz

Cycles Time (ms) Cycles Time (ms) Cycles Time (ms)

NIST P224 95657 1.148 133085 2.129 130513 2.900

NIST P256 109001 1.308 152429 2.439 148721 3.305

SEC P256 k1 (BitCoin) 109001 1.308 152429 2.439 148721 3.305

NIST P384 - - 226432 3.623 - -

Brainpool P512 r1 - - 301421 4.823 - -

NIST P521 - - 306659 4.907 - -
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It should be noticed that there are two similar but different sorts of LUTs,
so the LUT count of each module only implies the size scale of the module, and
varies a little if the module is placed with different floor plans.

4.2 12-Montgomery-Core System

A 12-Montgomery-core system is implemented in our design to show the scal-
ability of customized number of cores. However, we found that we can only
implement a 12-core system with a maximum 264-bit size. 528-bit version can
be synthesized, but will face a routing procedure failure due to routes too con-
gested. Tables 3 and 4 show the test results.

MUX/deMUX problem on the memory pool will be more severe in the 12-
core system, and many Montgomery cores will be frequently useless during the
computation. It is not practical to use a 12-core system as one ECC engine.

4.3 3-Core Vs 5-Core

Our ECC engine is designed as a custom IP to provide the hardware support of
the ARM processor in Zynq-7000. A reasonable idea for the hardware/software
co-design is to provide multiple ECC engines in the embedded system. We have
run the implementation process to test how many ECC engines with our design
can be put in the same system in ZC706 kit. The resource requirement of the
multi-ECC-engine system is shown in Table 5.

Table 5. Resource usage and effectiveness of scalar multiplication for multi-ECC-
engine systems on ZC706 Kit. f = 40MHz and NIST P521 curve applied for Sn,528 and
NIST P256 curve applied for Sn,264. Complete results can be found in the full version

ECC engine Count Average LUT count System LUT count blocks/(s × kLUT)

S3,528 4 38585 159788 3.163

7.913 ms 5 Fail (routes too congested)

S5,528 3 51797 165830 2.360

7.666 ms 4 Fail (more than 218600)

S3,264 10 19596 210083 18.085

2.632 ms 11 Fail (more than 218600)

S5,264 6 26930 190417 11.563

2.725 ms 7 Fail (more than 218600)

S12,264 2 54332 112070 4.7999

3.718 ms 3 Fail (partial conflict)

We may use the throughput-resource ratio blocks/(s×kLUT) to evaluate the
effectiveness of the system we have built. The bigger the ratio is, the more effec-
tive the system is. In a 5-core ECC engine there are sometimes some multipliers
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running dummy operations, so we can see the throughput-resource ratio is much
lower. It is more effective to build 3-core engines in the system. Also we can see
that a 12-core engine system is not effective.

5 Conclusion and Future Work

We have shown the power and the limitation of multiple big-integer multiplica-
tion cores on the implementation of the Co-Z ladders for ECC. The numbers
suggest that a 3-Montgomery-core system achieve the best throughput-resource
ratio. We have also shown that it is possible to build a fast Montgomery ladder
using the Co-Z approach with a 12-Montgomery-core system.

The system in our design can be improved in several ways. For the design
of the block memory restoring the large numbers, the MUX/deMUX approach
may be changed. LaForest et al. [18–20] provide the solution in saving the clock
cycles reading and writing data from or into the memory, with the cost being
duplicated block memory modules used. Also the design of the controller can be
improved. The total finite state machine which constructs the controller is huge.
The controller controls the input and the output flows for all of the multipliers.
It is possible to re-design the controller as several controllers, each of which
controls only one multiplier.

Full version http://precision.moscito.org/by-publ/recent/CoZ-long.pdf.

References

1. Koblitz, N.: Ellptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
2. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.
1007/3-540-39799-X 31

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68164-9 26

4. Peter, L.: Montgomery: speeding the pollard and elliptic curve methods of factor-
ization. Math. Comput. 48(177), 243–264 (1987)

5. Peter, L.: Montgomery: modular multiplication without trial division. Math.
Comput. 44(170), 519–521 (1985)

6. Land, I., Kenny, R., Brown, L., Pelt, R.: Shifting from software to hardware for
network security, White Paper. Altera, February 2016. https://www.altera.com/
content/dam/altera-www/global/en US/pdfs/literature/wp/wp-01261-shifting-
from-software-to-hardware-for-network-security.pdf

7. Zynq-7000 All Programmable SoCs Product Tables and Product Selection Guide.
Xilinx (2015). http://www.xilinx.com/support/documentation/selection-guides/
zynq-7000-product-selection-guide.pdf

8. Hutter, M., Joye, M., Sierra, Y.: Memory-constrained implementations of elliptic
curve cryptography in Co-Z coordinate representation. In: Nitaj, A., Pointcheval,
D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170–187. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21969-6 11

http://precision.moscito.org/by-publ/recent/CoZ-long.pdf
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/978-3-540-68164-9_26
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01261-shifting-from-software-to-hardware-for-network-security.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01261-shifting-from-software-to-hardware-for-network-security.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01261-shifting-from-software-to-hardware-for-network-security.pdf
http://www.xilinx.com/support/documentation/selection-guides/zynq-7000-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/selection-guides/zynq-7000-product-selection-guide.pdf
http://dx.doi.org/10.1007/978-3-642-21969-6_11


MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 647

9. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998). doi:10.1007/3-540-49649-1 6

10. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

11. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
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Abstract. DNSSEC was designed to protect the Domain Name Sys-
tem (DNS) against DNS cache poisoning and domain hijacking. When
widely adopted, DNSSEC is expected to facilitate a multitude of future
applications and systems, as well as security mechanisms, that would use
the DNS for distribution of security tokens, such as, certificates, IP pre-
fix authentication for routing security, anti-spam mechanisms. Multiple
efforts are invested in adopting DNSSEC and in evaluating challenges
towards its deployment.

In this work we perform a study of errors and misconfigurations in
signed domains. To that end, we develop a DNSSEC framework and
a webpage for reporting the most up to date statistics and provide
reports with vulnerabilities and misconfigurations. Our tool also supports
retrieval of historical data and enables to perform long-term studies and
observations of changes in the security landscape of DNS. We make our
tool and the collected data available via an online webservice.

1 Introduction

Domain Name System (DNS), [RFC1034, RFC1035], has a key role in the Inter-
net. The correctness and availability of DNS are critical to the security and
functionality of the Internet. Initially designed to translate domain names to IP
addresses, the DNS infrastructure has evolved into a complex ecosystem, and the
complexity of the DNS infrastructure is continuously growing with the increas-
ing range of purposes and client base. DNS is increasingly utilised to facilitate
a wide range of applications and constitutes an important building block in the
design of scalable network infrastructures.

There is a long history of attacks against DNS, most notably, DNS cache
poisoning, [5–7,12,14,17]. DNS cache poisoning attacks are known to be prac-
ticed by governments, e.g., for censorship [1] or for surveillance [11], as well as
by cyber criminals. In the course of a DNS cache poisoning attack, the attacker
provides spoofed records in DNS responses, in order to redirect the victims to
incorrect hosts for credential theft, malware distribution, censorship and more.

To mitigate the threat from the DNS cache poisoning attacks, the
IETF designed and standardised Domain Name System Security Extensions
(DNSSEC) [RFC4033-RFC4035]. Unfortunately DNSSEC requires significant
changes to the DNS infrastructure as well as to the protocol, and although
proposed and standardised already in 1997, it is still not widely deployed. Stud-
ies show that less than 1% of the domains are signed with DNSSEC, [9,19] and
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 651–660, 2016.
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about 3% of the DNS resolvers validate DNSSEC records, [3,13]. However, the
situation is improving and following the recent ICANN regulation, [15], the reg-
istrars are turning domain signing into an automated task, as the procedures for
automated domain signing by the registrars and hosting providers are becoming
widely supported. Now that the DNSSEC is taking off, tools for evaluating prob-
lems with signed domains are critical, since they can alert the domain owners
as well as clients of the potential pitfalls. Although tools for studying DNSSEC
exist, and we compare them with our tool in Related Work, Sect. 2, our tool
detects and reports misconfigurations and cryptographic vulnerabilities which
were not performed prior to our work.

In this work we perform a study of miconfigurations among DNSSEC-signed
domains. We first collect a list of popular signed domains, and then measure
the different misconfigurations and problems among them. We provide access to
our tool through a webpage, which can be accessed at: https://dnssec.cad.sit.
fraunhofer.de.

Contributions. We designed and implemented a framework, DNSSEC miscon-
figuration validation engine, which collects signed domains from multiple sources,
analyses the misconifgurations among them, and processes them into reports.
Our reports quantify two types of vulnerabilities in signed domains: crypto-
graphic failures (those preventing a DNS resolver from establishing a chain of
trust or domains using vulnerable DNSSEC keys) and transport failures (e.g.,
lack of support of TCP or EDNS). We use our engine to perform Internet-wide
collection of 1349 Top-Level Domains (TLDs) and top-1M Alexa (www.alexa.
com) domains.

We collected statistics between March and September 2016 with our tool,
and report on the current status as well as improvements that we detected over
time. Our study indicates that 90% of TLDs and 1.66% of Alexa domains are
signed. Among signed domains, 0.89% TLDs and 19.46% Alexa domains cannot
establish a chain of trust to the root zone; among those Alexa domains, 85.5%
are Second-Level Domains (SLDs). We also checked for the presence of DNSSEC
keys in domains with a broken chain of trust, in other repositories for DNSSEC
keys distribution. Of the 19.46% of the Alexa domains, only 51 have a DLV
resource record in dlv.isc.org. Namely, majority of the signed domains do not
provide any benefit by signing their records, since the clients anyway cannot
validate the signatures. We find domains with vulnerable DNSSEC keys, using
even RSA modulus. In contrast to February 2016, where 3% of TLDs did not
have support for TCP, all TLDs currently support TCP. However, 12.88% of
Alexa domains have nameservers which still cannot serve DNS responses over
TCP.

The reports and statistics can be accessed at https://dnssec.cad.sit.
fraunhofer.de.

Organisation. In Sect. 2 we compare our research to related work. In Sect. 3 we
describe our DNSSEC configuration validation engine, its components and the
data collection that we performed with. In Sect. 4 we perform a measurement of

https://dnssec.cad.sit.fraunhofer.de
https://dnssec.cad.sit.fraunhofer.de
www.alexa.com
www.alexa.com
https://dlv.isc.org/
https://dnssec.cad.sit.fraunhofer.de
https://dnssec.cad.sit.fraunhofer.de
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signed domains and characterise causes for the misconfigured signed domains.
We conclude this work in Sect. 5.

2 Related Work

The research and operational communities invested significant efforts in gener-
ating online services for studying DNS. We review some of the central services.

OARC’s DNS Reply Size Test Server is an online service for testing responses
size of DNS. The clients can use the tool to evaluate the maximum response size
that their network can support. This test is especially critical for adoption of
DNSSEC, since DNSSEC enabled responses typically exceed the standard size
of 512 bytes.

Multiple online services were designed for evaluating the security of port
selection algorithms, most notably porttest.dns-oarc.net; see survey and analysis
in [6]. The tools study the randomness in ports selected by the DNS resolver.

Recently multiple tools were proposed for checking DNSSEC adoption on
zones. For instance, DNSViz, given a domain name, visualises all the keys the
domain has and signatures over DNS records. It also checks that it is possible to
establish a chain of trust from the root to the target domain. SecSpider provides
overall statistics for DNSSEC deployment on zones, by collecting signed DNS
records and keys from the zones.

Our tool complements the existing tools by allowing to study insecurity or
misconfigurations on a given domain, as well as analysing statistics of the mis-
configurations over a given time period, and for a set of domains. In contrast to
existing tools which provide an analysis for a given domain that they receive in
an input, our tool is invoked periodically over the datasets that it uses, analyses
the data and produces reports with statistics. The reports contain misconfigu-
rations on the transport layer, such as support of TCP, as well as on the cryp-
tographic aspects, such as vulnerable keys and lack of chain of trust. Our tool
provides important insights to clients accessing domains as well as for domain
owners, and allows researchers to study changes in security and configurations
of domains over time.

Prior studies measuring adoption of DNSSEC, investigated validation on the
DNS resolvers’ side, [13], showing that a large fraction of DNS resolvers do
not perform correct validation of DNSSEC signatures. Other works investigated
obstacles towards adoption of DNSSEC, suggesting mitigations and alternative
mechanisms, [8–10].

Our tool provides insights on the status of adoption of DNSSEC among zones
and on misconfigurations within signed domains in DNS hierarchy, as well as on
the failures on nameservers, such as failures to serve responses over TCP.

3 DNSSEC Adoption/Configuration Framework

In this section we present our framework for collecting and processing domains,
illustrated in Fig. 1. In the rest of this section we explain the components of our
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Fig. 1. DNSSEC adoption and configuration evaluation framework.

DNSSEC validation engine, including data sources and data collection, and the
analysis of the data and processing into reports and online web page.

Domains Crawler. We developed a crawler to collect and store DNSSEC-
signed domains.

Data Sources. We collected sources of DNSSEC signed zones that we feed to
the database as ‘crawling seeds’:

(1) the root and Top Level Domain (TLD) zone files – we obtained the root and
TLD zone files (e.g., for com, net, org, info) from the Internet Corpo-
ration for Assigned Names and Numbers (ICANN). In total we study 1301
TLDs.

(2) we scanned the top-1M popular domains according to Alexa www.alexa.
com.

4 Evaluating Vulnerabilities in DNSSEC Adoption

In this section we provide our measurement of adoption of DNSSEC among
the domains in our dataset, i.e., the Top Level Domains (TLDs) and Second
Level Domains (SLDs) (based on the data sources in Sect. 3), and report on
misconfigurations and vulnerabilities.

Quantifying Signed Domains. We define DNSSEC-signed domains as those
with DNSKEY and RRSIG records. To check for the fraction of signed domains, we
checked for existence of DNSKEY and RRSIG records in our dataset. Our results
show that 90% of the TLDs and 1.66% of the SLDs are signed.

In Fig. 2 we plot the results we collected between March and September 2016.
The upper line indicates the total number of TLDs/SLDs, while the lower line
indicates the number of DNSSEC-signed TLDs/SLDs. In that time interval the
number of new TLDs increased by 250 and we observe roughly the same increase
in the number of signed TLDs. The graph also shows a growth in a number of new

www.alexa.com
www.alexa.com
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Fig. 2. All TLDs vs. signed TLDs (left). All SLDs vs. signed SLDs (right).

SLDs. However, in contrast to the steady increase in signed TLDs, the results
indicate a negligible increase in newly signed SLDs. The significant and constant
growth in the number of signed TLDs indicates that there is an increased aware-
ness to DNSSEC adoption. One of the main reason for lack of increase in SLDs
is that many registrars still do not support automated procedures for DNSSEC.

Crypto-Algorithms in Signed Domains. The signed zones can use
an arbitrary number of DNSSEC-standardised algorithms1. In addition,
[RFC4641,RFC6781] list mandatory support for RSA and recommend avoiding
large keys (specifying a range of 512–2048 bits for (ZSK) key size and recom-
mending a default value of 1024 bits); in order to avoid fragmentation, com-
munication and computation overhead and other problems with large keys and
signatures. In particular, [RFC6781] states “it is estimated that most zones can
safely use 1024-bit keys for at least the next ten years”.

We analysed our dataset of signed domains, and plot the results in Fig. 3.
For TLDs, the upper two lines are RSA-SHA256 and RSA-SHA1-NSEC3 corre-
spondingly. The two lines in the bottom are RSA-SHA512 and RSA-SHA1. For
SLDs, the upper four lines correspond to RSA-SHA256, RSA-SHA1-NSEC3,
RSA-SHA1 and ECDSA-P256-SHA256. DSA, RSA-SHA512 and ECDSA-P384-
SHA384 are in the bottom.

Our measurement shows that there is hardly any support for other crypto-
graphic algorithms, e.g., those that produce short signatures, such as ECC, since
the motivation to add more overhead to the transmitted data is low. Indeed,
most domains adopt different versions of RSA, which produces larger keys and
signatures.

RSA, with different digest implementations (SHA1, SHA256, SHA512), dom-
inates among the signed TLDs, and there is no support for other algorithms
among the TLDs, Fig. 4. In contrast, there is some, albeit still limited, attempt
to adopt also other cryptographic algorithms, such as DSA and EC in SLDs,
see Fig. 3. Indeed, ECDSA-P256 is ranked third among the cryptographic

1 http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.
xhtml.

http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
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Fig. 3. DNSSEC algorithms adoption between March-September 2016 in signed TLDs
(left) and signed SLDs (right).

Fig. 4. DNSSEC algorithms in signed TLDs (left), in signed SLDs (right).

algorithms, just behind RSA-SHA1 (including RSA-SHA1 and RSA-SHA1-
NSEC3) and RSA-SHA256. ECDSA-P256 is gaining more popularity and grows
steadily. This also shows that more and more admins are adopting new algo-
rithms to improve DNSSEC performance.

We measured the key sizes in use by the different variations of RSA algo-
rithms, we plot our results in Fig. 5 on the right. It’s a CDF of key size in signed
domains. We can see about 34% of TLDs and 52% of SLDs are still using keys
shorter than or equal to 1024 bits. As for keys only, almost 1.4M keys are below
1024 bits, and 10 K keys are 512 bits long. These are really vulnerable. [18]
showed that factoring 512 bit keys on a cloud is a practical task. For updated
statistics on keys and DNSSEC algorithms see our webpage.

We also checked the digest algorithms used in DNSSEC. There are mainly
three digest algorithms employed by DNSSEC, SHA1, SHA256 and SHA512.
SHA1 has been known to be considerably weak. [16] showed a collision attack
against SHA1. Google also announced that they would completely block SHA1
certificates in 2017 [2]. Digests are used in three ways in DNSSEC. First, in digital
signature RRSIG along with RSA or ECC. Second, for authenticated proof of the
non-existence, in NSEC3. Third, as anchor for Key Signing Key, in DS.
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Fig. 5. Keys with even RSA moduli (left) and key sizes in TLDs and SLDs (right).

For digests in signature RRSIG as can be seen in Fig. 3 on the left for TLDs,
SHA256 is still the most popular and grows faster than the others. The growth
in adoption of SHA1 slows down. And there’s almost no increase in SHA512.
This indicates that there is an increased awareness to sunset SHA1 and promote
SHA256, while SHA512 is still not essential. When we look at the SLDs on the
right, SHA1 (including RSA-SHA1 and RSA-SHA1-NSEC3, 2nd and 3rd lines)
has almost the same share as SHA256 (including RSA-SHA256 and ECDSA-
P256, 1st and 4th lines). The good point is that SHA256 is growing faster than
SHA1. But it still needs time to move from SHA1 to SHA256.

Fig. 6. DNSSEC DS digest algorithms between March-September 2016 in signed TLDs
(left), in signed SLDs (right).

For digests in DS this is even more important, since a DS RR is the entry point
of a zone. As can be seen in Fig. 6, SHA256 overwhelms SHA1 in TLDs. Among
SLDs, number of domains using DS with SHA256 grows much faster than that
using SHA1 only. This indicates the increased awareness of vulnerability of SHA1.

Broken Chain of Trust. Finally we evaluate whether the DNS resolvers
can establish a chain of trust from the root to the signed domains (i.e., those



658 T. Dai et al.

with DNSKEY and RRSIG records). We perform this measurement for TLDs and
SLDs and report the results in Fig. 7. We use the terminology of [RFC3090],
where locally signed means that a chain of trust cannot be established from
the root (and the keys are also not present in external repositories, such as
DLV dlv.isc.org). The problems include wrong (or missing) DS records in parent
domain, incorrect (or missing) signatures, expired keys, DNSKEY and DS do not
match and more. There are 0.89% of domains among TLDs and 19.46% among
the SLDs to which we could not establish a chain of trust from the root, nor
could we locate their keys in DNSKEY repositories.

Fig. 7. TLDs with broken chain of trust vs. secure (left). SLDs with broken chain of
trust vs. secure (right).

In both domain types there is an increase in the number of signed domains
that cannot be validated. The increase is aligned with the increase in newly
signed domains.

We checked for the factors behind the large fraction of signed domains with
a broken chain of trust. The most common case of broken chain of trust is
an existence of DNSKEY but no DS in parent. This may happen when a domain
owner wants to enable DNSSEC but his registrar does not support DNSSEC,
which is common. Alternately, the same obstacle occurs when the registrar does
not support DNSSEC for a TLD under which the domain is registered, e.g.,
GoDaddy supports DNSSEC only for 10 TLDs. Other common cause is a faulty
DS record. This may happen when the domain operator transfers/updates the
domain/key or changes the name servers.

To fix these problems, it is recommended to move domains to the registrars
that support DNSSEC. If the TLD is not supported by the registrar, the DLV
service should be utilised. To track for misconfigurations, we provide our tool
for a public use, which can be accessed at: https://dnssec.cad.sit.fraunhofer.de.

RSA Keys with Even Moduli. Distinct moduli that share a prime factor will
result in public keys that appear different but whose private keys are efficiently
computable by calculating the greatest common divisor (GCD). For calculation
of GCD of every pair of keys we followed the approach in [4] and used the fast

https://dlv.isc.org/
https://dnssec.cad.sit.fraunhofer.de
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pairwise GCD quasilinear-time algorithm for factoring a collection of integers
into coprimes; we compiled and used the source code (https://factorable.net/
resources.html) provided by [4].

After calculating group-GCD on all the DNSKEY records, we found 16 even
RSA moduli.

The keys with even RSA moduli belonged to domains hosted or registered
by known registrars, such as Network Solutions, GoDaddy, OnlineNic. In Fig. 5
we plot our measurements of factorable RSA keys, collected over a period of
March-September 2016.

5 Conclusion

In this work we measured adoption of DNSSEC among TLDs and SLDs, and
then studied the security of the signed domains. To that end, we designed and
developed a tool that periodically collects data from signed domains, analyses
it and produces reports with statistics. Our data collection indicates that a
large fraction of signed domains have cryptographic misconfigurations, leading
to insecurity. The misconfigurations are either due to a broken chain of trust,
preventing the DNS resolver from validating the supplied DNS records, or due
to vulnerable cryptographic keys.

We developed an online service for providing updated reports and statistics
on adoption of DNSSEC, vulnerabilities and misconfigurations: https://dnssec.
cad.sit.fraunhofer.de.
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Abstract. When considering data provenance some problems arise from
the need to safely handle provenance related functionality. If some mod-
ifications have to be performed in a data set due to provenance related
requirements, e.g. remove data from a given user or source, this will affect
not only the data itself but also all related models and aggregated infor-
mation obtained from the data. This is specially aggravated when the
data are protected using a privacy method (e.g. masking method), since
modification in the data and the model can leak information originally
protected by the privacy method. To be able to evaluate privacy related
problems in data provenance we introduce the notion of integral privacy
as compared to the well known definition of differential privacy.

1 Introduction

Data provenance permits to track where data come from and how these data
have been combined in order to produce new data elements. Data provenance is
used to improve data quality, and have been used in a quite number of different
areas including scientific data, e-science, accounting (financial data), and medical
data [1,3,9].

Data privacy is the area that studies methods and techniques to avoid the
involuntary release of sensitive data [5,10,11]. Methods are used because of com-
panies own interest to keep their information private, but also because of existing
regulations. In 2016 the new EU General Data Protection Regulation was entered
into force, a regulation that shall apply from 25 May 2018. This regulation con-
solidates two rights: the right to be forgotten and the right to amend.

Companies need appropriate software so that they can guarantee these two
rights to their customers. Note that the right to be forgotten does not only imply
that customers can force the deletion of records with their data, but also that
aggregated data and inferences extracted from their data need to be reconsidered
and eventually modified or also deleted.

Data provenance has a tight relation with data privacy. On the one hand,
data provenance is essential to implement these two rights. We need to keep
track of how data is processed and aggregated in order to know what needs
to be deleted, amended or reconsidered when records are deleted or amended.
c© Springer International Publishing AG 2016
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Otherwise, we will need to delete all what follows from a record once there is a
requirement to delete such record.

On the other hand, data provenance poses specific questions to data privacy.
Note that provenance information may be confidential, provenance information
cannot be modified at will, etc. See e.g. [2,7], for a review of problems and
solutions related to data provenance and data privacy.

In this paper we discuss privacy models. We present a new privacy model
insipired on data provenance, on the two mentioned rights, and how all these
aspects relate to data privacy.

We call this model integral privacy, to compare it with differential privacy [6].
As we will see later, while differential privacy focus on the output of a function
from the data (a computation), this model focus on the input. While differ-
ential privacy computes differences between outputs, here we consider a set of
modifications of the input.

The structure of the paper is as follows. In Sect. 2 we review the notation we
use in the paper. In Sect. 3 we present our definition and in Sect. 4 we compare
integral privacy with differential privacy. The paper finishes with a summary
and a discussion of future work.

2 Notation and Problem Set up

We will consider a set X (a file or a database) to which we have applied some
modifications μ to reach a data set X ′. We will denote the fact that X ′ is
constructed from X with some modifications μ by the expression X ′ = X + μ.

Then, using algorithm A we extract knowledge G and G′ from X and X ′,
respectively. If we apply a masking method ρ to X and X ′ we get χ and χ′ from
which we obtain knowledge Γ and Γ ′ using algorithm A. Figure 1 represents
these data sets, methods and algorithms. This conforms the full picture of our
scenario. Provenance data are included in all the data sets and the figure shows
all possible cases one can find in processing the original data set X.

3 Integral Privacy

In this section we propose our definition for privacy. It focuses on the modifi-
cation μ that apply to the original dataset X following the notation introduced
in Sect. 2. We make explicit our assumptions on what an intruder may know.
We then state the intruders goal. We consider that the intruder can be a person
that is working outside the data holder (the company with the database X) or
an insider with partial access to the data and the knowledge extracted (either
from the database or possibly also using some information obtained from other
sources).



Integral Privacy 663

X X

χ χ
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Γ Γ

ρ ρ
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Fig. 1. Original file X with protected file χ and knowledge/models G and Γ extracted
from X and χ, respectively. Updated file X ′ and protected file χ′ with knowl-
edge/models G′ and Γ ′ extracted from X and χ′, respectively. Protection method
ρ and knowledge discovery algorithm A.

3.1 Specific Scenario #1

To introduce the notion of integral privacy we first consider an scenario where
the intruder knows: S ⊂ X, G, G′. That is, the intruder has partial knowledge
of the data in the database (the worst case scenario is when S = X, the best
case scenario is when S = ∅).

The privacy requirements are that intruders cannot be able to determine μ
and S′ ⊆ X \ S with certainty. That is, that the intruder cannot find neither
records from the file, nor information about the modifications.

3.2 Intruder’s Goal

The main goal of the intruder can be summarized as follows. Given S ⊂ X, G,
G′, find the set of possible modifications μ that are consistent with data S ⊆ X
and knowledge G and G′, and find elements in X\S. Under the transparency
principle, we may assume that the intruder knows the algorithm A used to
generate G.

We illustrate this problem with an example. The example uses ID3, one of
the simplest decision tree learning algorithms for categorical data and with no
pruning. In the worst case scenario (i.e., when S = X), and assuming that G is
obtained by means of the application of the ID3 algorithm to X, this problem
is to find the modifications μ such that G = ID3(X) and G′ = ID3(X + μ). In
the general setting, the problem is to find the following set of modifications, for
a given algorithm A

M = {μ|G = A(X) and G′ = A(X + μ)}.

On the Set of Modifications. For a large number of machine learning algo-
rithms, the set of modifications M is not a singleton. To support this statement,
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let us consider Gen and Gen′ the set of generators of G and G′, respectively.
That is, the set of data that lead to G and G′ when we apply to them the algo-
rithm A. Then, note that when there are several generators Gen and Gen′, the
set of possible transformations μ is not a singleton. Note that

∪g∈Gen,g∈Gen′{g′ − g} ⊆ M.

Now we consider a few cases in which algorithms ensure that a model has
different generators. In all these cases, due to the result above, we will have sets
M that are not a singleton.

We first consider that A is the algorithm for 1-nearest neighbor. It is known
that the model built can be represented with a Voronoi tesselation. Let X be
defined in a domain D. When all regions are open (i.e., as in Fig. 2 (left)), then
we can construct sets X̂ with X̂ ∩ X = ∅ and such that generate the same map.
They consist of displacing the points in X out of the map. See Fig. 2 (center).
When there are closed regions (i.e., as in Fig. 2 (right)), the points of closed
regions cannot be changed. So, in case that another set X̂ can generate the
same map, there will be points that cannot be changed X̂ ∩ X �= ∅.

Fig. 2. Three Voronoi maps. The first one (left) containing only open regions, the
second one (center) with the same regions but with the original generators and a new
set of generators. The third one (right) with a closed region.

In these constructions, we were considering that X and X̂ had the same
number of points (records). We will consider a more general case now in which
X and X̂ have a different number of records. This causes that the model from
X and the model from X̂ have a different number of regions.

In a classification problem, what is rellevant for our model is the class associ-
ated to each element. In the case of Voronoi tesselations for a 1-nearest neighbor
this can be modeled with colors (or assignments) to each region. Let Gc(p) be
the color assigned to position p in the map. We say that two Voronoi tesselations
G and G′ are color-equivalent if Gc(p) = G′

c(p) for all p even in the case that
the number of regions is different.

Let us consider the case of a Voronoi tesselation in which the color of adjacent
regions is all different. Then, the question is whether there exist a set X̂ (with
more records than X) such that the Voronoi tesselation generated from X̂ is
color-equivalent to the one in X.
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Let x be the points in X. Let a, c be two points of X such that they generate
a border in G. Let z be the point, z = (a+ c)/2. Then, the points ac = (a+ z)/2
and the point ca = (c + z)/2 are included in X̂.

We can prove that all p that are at the same distance from a and c, they
are also at the same distance from ac and ca. This can be proven as the two
right triangles defined by the points (ac, z, p) and (ca, z, p) have two sides with
the same length. So, the third should also have the same length. This implies
that, at least for some examples, the border of the regions we have in X are also
border of regions in X̂. In such cases the procedure results into another set X̂
(with a different number of elements) that represents the same map. That is,
the model built from X and X̂ is the same: G = A(X) = Ĝ = A(X̂).

Decision tree learning returns a decision tree from a data set. In the case of
ID3, the tree is built for categorical data recursively selecting at each point the
attribute that maximizes the information gain (or minimizes the entropy). Data
sets that lead to the same entropy will produce the same trees. Nevertheless,
even in the case of different entropies, the trees will be the same if the set of
attributes that maximize the entropy are the same.

For any linear regression model, the number of sets that can generate the
model is infinite. However, when constraints exist for the generators (e.g. integer
data in a given domain) this may not be the case.

We have shown that when different datasets can generate the same knowl-
edge, M is not a singleton. In addition to that, for some algorithms, when μ is
a set of valid modifications, then there is another set μ ⊆ μ′ that is also a valid
set of modifications. The following example illustrates this case.

Example 1. Let X be a set of n records where n−1 of them are of class + and 1
is of class −. Then, let G = A(X) be a decision tree with two branches and one
question. Let G′ = A(X ′) be a decision tree with a single node and no question
assigning always the class +. Then, it is clear that all modifications in M include
the deletion of the record in class −.

Therefore, if μ corresponds to the deletion of the record in class − and μ′ are
all other possible modifications, then μ′ includes μ. In this framework, we can
consider the set (or sets) of possible transformations, and the lattice defined from
this set of transformations and the subset inclusion. Note that it is also rellevant
to consider the intersection of all m ∈ M. In the example, this intersection
corresponds to the deletion of the record of class −. Similarly, it is relevant to
consider the minimal elements of the lattice. That is, the modifications that
are minimal with respect to the set inclusion. The minimal modifications are
rellevant for an intruder.

We finish this discussion with the following remarks.

– When we only allow deletions, the number of modifications is finite (for a
finite database). Therefore, the set of minimal modifications is also finite.

– The set of generators of a real data set is smaller than the set of possible
generators. In real applications, not all modifications are possible, and not all
possible modifications are equally plausible.
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3.3 Privacy Problem

In order to take into account the intruder goal described in Sect. 3.2 we consider
the following privacy problem.

Find algorithms A that maximize the uncertainty of the intruder (with
respect to the set of possible modifications). That is, we are interested in machine
learning methods A such that the set

M = {μ|G = A(X) and G′ = A(X + μ)}. (1)

is large, and such that
∩m∈M m = ∅. (2)

The rational of this definition is that intruders cannot use their knowledge
on the set of possible modifications to infer that a particular modification has
taken place. The larger the set of modifications, the larger the uncertainty of
the intruder. In addition, we do not want that even in the case of a large set,
all modifications agree on a small set. This is to avoid situations as the one in
Example 1.

3.4 Integral Privacy Definitions

On the basis of the previous discussion we introduce some definitions for privacy.
We define i-integral privacy when M defined according to Eq. 1 is large and

such that the intersection in Eq. 2 is empty.
We define integral privacy à la k-anonymity, when the set M contains at

least k alternatives.
We define k-anonymous integral privacy when the set M has at least k min-

imal elements.
With these definitions, we can consider solving the privacy problem above

(for integral privacy) combining machine learning algorithms with data privacy
algorithms. In this case, we define Â(X) = A(ρ(X)). Then, the scenario is similar
to the one above but permits us to find good masking methods for a given
algorithm A. The formulation is as follows.

Given X, G, G′, and an algorithm A, a good masking method ρ is the one
that makes the set

M = {μ|G = A(ρ(X))andG′ = A(ρ(X + μ))}

large and such that ∩m∈Mm = ∅.
We can consider additional restrictions for the set M as above.

3.5 Other Specific Scenarios

Section 3.1 introduced the main scenario that motivates the definition of integral
privacy, but one can find other cases and possible scenarios. Here we provide a
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brief description of 4 more cases that can arise from the main problem description
from Sect. 2.

– Scenario #2. Known by the intruder: χ, χ′. Intruders should not determine
neither S ⊆ X nor μ with certainty. That is, the intruder cannot find neither
records from the file, nor information about the modifications.

– Scenario #3. Known by the intruder: X ′, G, G′. Similar to the first scenario
from Sect. 3.1 but with X ′ instead of X.

– Scenario #4 and #5. Similar to cases #1 and #3 but knowledge is gener-
ated from ρ(X). That is, we are considering Γ and Γ ′. Under the transparency
principle, we can also presume that the intruder is aware of methods ρ and A.

These three scenarios complement the one introduced previously and can
contribute with more examples of the utility of our definition of integral privacy.
It is important to note that some of these scenarios are equivalent to already
existing problems in data privacy. For instance, scenario #2 can be considered
as the problem of publishing protected dynamic data. Note also that when in
scenario #1 we have that the algorithm A is a masking method ρ, it can be seen
as equivalent to the second scenario.

4 Integral Privacy and Differential Privacy

Our model can be considered as related to differential privacy. Nevertheless, the
focus of our model differs to the focus in differential privacy.

In differential privacy, the main issue is to compute a query in a way that the
output is insensitive to addition (or removal) of a single element of the database.
This is achieved considering this computation as randomized and requiring that
the distributions of the two outputs (the output of the computation on the
original data set and the one of adding an element to it) are approximately the
same. That is, for all X and x,

Distr(G(X)) ∼ Distr(G(X + x)).

Note that this is for all databases X and for all possible elements that can
be added into a database. Algorithms exist for achieving this goal, although for
some type of data the noise required to ensure enough similarity may be very
large. See e.g. [8].

Let us consider this problem from a different perspective. Let us assume
that we know G(X) and G(X + x) (or their distribution) and that we know X.
Consider for example the case of applying a decision tree learning algorithm to
a data set. So G(X) is a decision tree obtained from X using the algorithm.
Then, G(X +x) is also a decision tree. It can be the case that this other decision
tree is quite different to G(X) but that the set of possible records x that have
generated G(X + x) is very large.

For example, let X be a set with all records in the same class + and then any
record in class − expands the tree. Alternatively, let X + μ be a set of records
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with classes + and − but with most of the records in + and only a few in − (so
few that the deletion of one by a decision tree learning with pruning removes
the − class). For this example, we can consider that privacy is guaranteed at
an appropriate level. Note that, in general, differential privacy (on G(X) vs.
G(X + x)) would not consider the process safe.

If we are interested in both types of privacy, we can define the concept of dif-
ferintegral privacy that forces the data to satisfy differential privacy and integral
privacy at appropriate levels. The term differintegral is borrowed from fractional
calculus [4].

5 Conclusions

In this paper we have introduced the definition of integral privacy. The main
goal is to provide tools for researchers to study data privacy when provenance
data is present. We have provided a motivating scenario that yields the concept
of integral privacy. This definition can be further developed in future works to
comprise a framework for evaluating privacy in data provenance. Further work is
needed to compute the set of modifications in different scenarios. This will permit
us to evaluate methods with respect to disclosure risk and utility. Another line
of future research corresponds to the case when instead of a single method A
for extracting knowledge, we apply several of them A1, A2, . . . , An and thus we
need to consider G1 and G′

1, G2 and G′
2, . . . , Gn and G′

n.
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Abstract. The practice of third-party applications (social apps) on
social networks sites (SNSs) to collect information about users’ friends
has raised awareness of the problem known as interdependent privacy.
Although studies have quantified the value which app users place on their
friends’ personal information, i.e., interdependent privacy value, few have
investigated factors that affect the valuation of interdependent privacy.
In particular, research indicates that social capital, which is an immate-
rial resource that can yield positive social outcomes, plays an important
role in individuals’ decision-making. Motivated by these works, we study
the complex and yet undetermined relationship between interdependent
privacy value and social capital. In addition, in order to gain a thor-
ough understanding of interdependent privacy valuation, our study also
examines its relationships with factors such as app data collection con-
text (i.e., whether or not data collection is relevant to app performance),
individuals’ number of friends within SNSs, and demographics.

Keywords: Interdependent privacy · Social app adoption · Social cap-
ital · Social network sites · App data collection context

1 Introduction

Privacy risks associated with third-party applications (apps) on social network
sites (SNSs) are increasing commensurate with apps’ popularity. In addition,
the growing relevance of interdependent privacy issues has introduced a new
dimension of privacy concerns in the context of social apps. In a nutshell, inter-
dependency of privacy refers to the phenomenon that within a networked system,
privacy of individuals not only depends on their own behaviors, but is also influ-
enced by decisions of others [1]. In particular, in the interconnected setting of
SNSs we can observe that sharing decisions of users allow apps to easily collect
personal information about their friends, thereby emphasizing the problem of
interdependent privacy [13].

In our previous work, we have investigated the monetary value app users
place on information about their friends within SNSs [14,15], which we referred
to as the value of interdependent privacy. We further conducted an exploratory
study to build a model about the formation process of interdependent privacy
valuation [14]. However, several questions remained about factors serving as
c© Springer International Publishing AG 2016
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antecedents of interdependent privacy value, and the impact of some factors
was only partially examined [14]. The current study reports the results from a
secondary data analysis of our previously collected data (from [14]) capturing
additional in-depth analysis of several explanatory factors of the valuation of
interdependent privacy in the context of social app adoption.

A particular key motivator for our study is the complex and yet still empir-
ically undetermined relationship between social capital and interdependent pri-
vacy [8]. Broadly speaking, social capital is a resource accumulated through
individuals’ interactions with others [5]. In particular, there are two kinds of
social capital: bridging social capital and bonding social capital [16]. Bridging
social capital, which is linked to loose connections between acquaintances, helps
individuals to broaden world views and opens up opportunities for information
gathering [22]. Bonding social capital, which derives from close-knit relationships
between family members and close friends, is associated with trust and reci-
procity, and provides strong emotional or substantive support for one another
[16,22].

In this study, we aim to empirically investigate how social capital, both bridg-
ing social capital and bonding social capital, influences the value of interdepen-
dent privacy in the context of social app adoption. In addition, in order to gain
a thorough understanding of interdependent privacy valuation, we also want to
explore how it is affected by other factors such as app data collection context,
number of friends, concern for friends’ privacy, and demographics. We conduct a
series of regression analyses on data obtained from our previous work to address
these research goals.

Although we fail to find a significant association between bridging social
capital and interdependent privacy value, our analysis suggests that the value
app users place on their friends’ information is reversely related to their perceived
level of bonding social capital. In addition, we find the impact of bonding social
capital on interdependent privacy value varies with app data collection context.
We further detect a cross-over interaction between number of friends and data
collection context on interdependent privacy valuation. In particular, we find
when app users notice data collection about friends is useful for app performance,
the more friends they have, the less value they place on their friends’ information.

2 Related Work

The emergence of SNSs provides individuals with many new ways to interact
with a wide variety of others, ranging from close contacts to strangers [22], which
raises the question how engaging with SNSs influences one’s ability to form and
maintain social capital. A stream of research provides empirical support for the
positive relationship between the use of SNSs and accumulation of social capital
[6,18]. In contrast to these studies which treat SNS use as a monolithic activity,
other works address how social capital is affected by different types of SNS use
[2,3,7], finding that not all usage of SNSs results in social capital growth.

Only a few academic works explore how privacy is related to social capital.
Particularly, Ellison et al. [8] argue that in order to accumulate social capital
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from interactions within SNSs, one must be willing to disclose information about
the self. Stutzman et al. [19] demonstrate that the relationship between privacy
concern and social capital is mediated by one’s willingness to disclose on SNSs.

These studies investigate how disclosure behaviors and privacy concerns influ-
ence social capital outcomes, but not the other way around. Our study examines
whether and how social capital can be used to predict privacy valuation. Applied
to our context of interest, we aim to uncover the impact of social capital on the
value app users place on their friends’ information.

3 Development of Research Question

Social capital and privacy have a complex relationship [8]. Considering also inter-
dependent privacy, its relationship with social capital adds an additional layer
of complexity. On the one hand, previous research indicates disclosure behaviors
are positively related to social capital perceptions [8,19]. In other words, the
more information one releases online, the more likely one is going to accumulate
social capital. In our study’s context, app users who have a higher level of social
capital might be more open to disclose information about themselves. However,
it remains unknown as to which degree such individuals are also more willing
to share others’ information. In fact, we may posit the existence of a spill-over
effect such that when individuals are more open to share their own information,
they are also more likely to engage in disclosure behaviors about their friends’
information. Applying this reasoning to the valuation of interdependent privacy,
app users with a higher level of social capital may be more likely to value their
friends’ privacy less.

On the other hand, social capital, which is accumulated through interactions
within communities, is an immaterial resource from which individuals gain bene-
fits such as emotional support [16], exposure to diverse ideas [22], and chances of
accessing non-redundant information [12]. In order to maintain such immaterial
resources and continue to enjoy their benefits, individuals, including app users
in our context, would likely think twice before taking actions that are harmful to
other community members. In this manner, the higher the level of social capital
app users have, the less likely they are going to reveal their friends’ information
to apps, i.e., they place a higher monetary value on their friends privacy. These
two contradictory perspectives motivate us to investigate what role social capital
plays in the valuation process of interdependent privacy.

In addition, prior research reveals that individuals’ privacy concerns are influ-
enced by whether or not information requests are context-relevant [10]. For exam-
ple, Wang et al. [21] find users are typically unconcerned about giving away their
friends’ birthday information to a birthday app, but become uncomfortable when
that app also tries to get access to information unrelated to its stated purpose.
Therefore, in our study, we also examine how app data collection context impacts
the value social app users place on their friends’ information.

When we refer to the interdependent privacy value, we mean the monetary
value an app user places on the profile information of all his/her friends within
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SNSs. As different app users have a different number of friends on SNSs, we are
interested in investigating the impact of the self-reported number of friends on
interdependent privacy valuation. Further, our previous research reveals indi-
viduals’ privacy concerns are significantly associated with privacy values [14].
Our secondary analysis aims to confirm this relationship. In addition, we study
whether interdependent privacy values vary with demographic information such
as app users’ gender, age, education level, and income level.

To sum up, in order to better explain the valuation process of interdependent
privacy in app adoption contexts, our study empirically addresses the following
two-part research question:

RQ a: What roles do bridging and bonding social capital play in individuals’
valuation of interdependent privacy in the scenario of social app adoption?
RQ b: What roles do app data collection context, number of friends within
SNSs, concern for friends’ privacy, and demographics play in individuals’
valuation of interdependent privacy in the scenario of social app adoption?

4 Method

To address our two-part research question, we are conducting a secondary analy-
sis of our collected data from an online survey with a population of social app
users [14]. The survey included three parts.

In the first part, we collected participants’ demographic information such as
gender, age, education level, as well as income level. In addition, we also asked
participants to report the number of friends they have on their primary SNS.

The second part implemented a conjoint analysis study to elicit the value
participants place on their friends’ information. In addition, in order to explore
how app users’ valuation of their friends’ privacy is affected by different app
data collection contexts, we introduced the following two treatment scenarios
which were part of the conjoint study instructions:

T1: The information the app collects about user’s friends is not useful for
app’s functionality.
T2: The information the app collects about user’s friends is useful for app’s
functionality.

In the second part of our survey, we first randomly placed participants in one
of the two treatment scenarios. Following the methodology of conjoint analysis
(see details in [14]), we then asked participants to rank 9 different versions of
an app which differed in the levels of four app attributes. Through analyzing
participants’ rankings of these app versions, we were able to quantify the value
participants place on their friends’ information (see details in [14]).

The last part of the survey included items that measure participants’ per-
ceptions of social capital, as well as concerns for interdependent privacy. To the
extent possible, these items were based upon or motivated by previously vali-
dated instruments in order to increase reliability. With respect to social capital,
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both bridging social capital and bonding social capital were measured by five
questions based on scales proposed by Williams [22]. Adapting from 4 items in
Smith et al. [17] that measure own privacy concern, a similar set of questions
was developed to assess individuals’ concerns for friends’ privacy. All items were
measured on a Likert-type scale with 1 = strongly disagree to 5 = strongly agree.

5 Data Description

Data collection was conducted in June 2015. Our final sample includes responses
of 295 participants for data analysis. Of the participants, 50.2 % are male and
49.8 % are female. Our sample covers a wide range of age categories, from 18
to over 50, as well as education levels, ranging from less than high school to
higher education degrees such as PhD. In terms of income level, our participants
have yearly incomes that range from less than $25,000 to more than $100,000. A
majority of participants reported to have 201–500 friends on their primary SNS.

In the sample, 144 participants were assigned to T1 (app-irrelevant data
collection context), and 151 were assigned to T2 (app-relevant data collection
context). Following the methodology of conjoint analysis (see details in [14]),
we calculated the interdependent privacy value for each treatment. On aver-
age, participants in T1 value their friends’ information at $1.01 (SD = 2.00),
which is slightly larger than the monetary value, $0.68 (SD = 1.56), that their
counterparts in T2 place on friends’ privacy.

We established three instruments to measure bridging social capital (Mean =
3.57, SD = 0.66), bonding social capital (Mean = 3.07, SD = 0.87), and inter-
dependent privacy concern (Mean = 4.37, SD = 0.72). Each of these three
instruments demonstrates a high value of Cronbach’s alpha (0.78 for bridging
social capital, 0.82 for bonding social capital, and 0.92 for interdependent privacy
concern), indicating high reliability of these survey instruments.

6 Results

To investigate the two-part research question as to how the measured factors
affect the value of interdependent privacy in social app adoption scenarios, we
conduct a series of regression analyses. Specifically, we treat the value of interde-
pendent privacy as the dependent variable, gender and treatment as categorical
independent variables, and age, income level, education level, number of friends,
privacy concern, bridging and bonding social capital as continuous independent
variables.

Besides studying main effects of each independent variable, we also explore
the possible interactions between these variables. Following the methodology
used by Steinfield et al. [18], we analyze each new interaction term with a
different regression model, i.e., Model 1 & 2. Specifically, besides independent
variables, Model 1 explores how number of friends interacts with treatment.
By including another interaction term, Model 2 considers both the interaction
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between number of friends and treatment, and the interaction between bond-
ing social capital and treatment. We show results of both regression models in
Table 1.

6.1 Model 1

Regarding the effects of demographic factors in Model 1, female participants
value friends’ information higher than male (p < 0.05); and older individuals are
more likely to express a higher interdependent privacy valuation than younger
participants (p < 0.01). However, neither education level nor income level are
significantly related to the value of friends’ information.

When it comes to main effects of social capital, we find both bridging and
bonding social capital have negative effects on privacy valuation. However, only
the impact of bonding social capital is significant (p < 0.1). The influence of
bridging social capital on interdependent privacy valuation is not only small,
i.e., β = −0.02, but also insignificant.

In addition, interdependent privacy concern is positively and significantly
associated with the value of interdependent privacy (p < 0.05), which is in line
with our previous findings [14].

For treatment and number of friends, we not only observe significant main
effects (p < 0.1 and p < 0.05, respectively), but we also notice a significant
interaction between them (p < 0.05). We plot the interaction effect in Fig. 1,
where a larger value on the horizontal line indicates a higher self-reported number
of friends. We notice that for individuals in T1, where friends’ data is irrelevant
for apps’ functionality, the more friends participants have, the higher the value
they place on interdependent privacy. However, in the case of relevant data
collection, social app users with a larger number of friends on their primary SNS
tend to value the privacy of all their friends less.

6.2 Model 2

Model 2 extends the previous model by also exploring the interaction between
bonding social capital and treatment. Compared with the results in Model 1,
significances of all variables (except treatment) remain the same or improve when
the new interaction term is added. Since the newly introduced interaction term
involves treatment, we are not surprised at the change of the significance level
associated with the treatment main effect. In terms of the direction of impact,
only that of bridging social capital changes from negative to positive. Since the
influence of bridging social capital on interdependent privacy value is very small
and not significant, we believe its direction to be influenced by chance.

As expected, the interaction between bonding social capital and treatment is
significant (p < 0.1), indicating the relationship between bonding social capital
and interdependent privacy value varies with app data collection context. We
visualize the interaction effect in Fig. 2. The horizontal line marks a Likert-type
scale of bonding social capital, where a larger scale value indicates a higher
level of bonding social capital. We observe that although in both treatments
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Table 1. Regressions explaining value of interdependent privacy

Independent variables Coefficients

Model 1 Model 2

Intercept −1.47 −1.00

Gender:

–Male −0.50∗∗ −0.48∗∗

–Female 0.50∗∗ 0.48∗∗

Age 0.20∗∗∗ 0.20∗∗∗

Education level −0.01 −0.01

Income level 0.04 0.06

Number of friends 0.27∗∗ 0.30∗∗∗

Treatment:

–T1 −1.32∗ −0.15

–T2 1.32∗ 0.15

Bridging social capital −0.02 0.002

Bonding social capital −0.24∗ −0.47∗∗∗

Interdependent privacy concern 0.30∗∗ 0.30∗∗

Number of friends × Treatment:

–Number of friends × T1 0.39∗∗ 0.42∗∗∗

–Number of friends × T2 −0.39∗∗ −0.42∗∗∗

Bonding social capital × Treatment:

–Bonding social capital × T1 – −0.42∗

–Bonding social capital × T2 – 0.42∗

N = 295 R2 = 0.12 R2 = 0.13

F = 4.03∗∗∗ F = 3.99∗∗∗
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01
−Variable not included in regression model

Fig. 1. Interaction of number of friends
and treatment

Fig. 2. Interaction of bonding social
capital and treatment
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interdependent privacy value decreases with an increase of bonding social capital,
the value changes more quickly in T1 than in T2.

7 Discussion

Our regression analysis first contributes to uncover the relationship between
bonding social capital and interdependent privacy value. Specifically, we find
that the value social app users place on friends’ personal information is reversely
related to their perceptions of bonding social capital. Recall the two contradic-
tory views we have discussed regarding the association between interdependent
privacy value and social capital. Our finding partly supports the view that indi-
viduals with a high level of social capital (in our case only bonding social capital)
express a lower valuation for interdependent privacy; perhaps because they are
more used to and are more willing to engage in disclosure behaviors. As to the
other view that individuals are reluctant to reveal information about others in
order to maintain and protect social capital, we believe such reluctance either
does not exist or is outweighed by individuals’ eagerness to grow bonding social
capital through information disclosure behaviors.

Bonding social capital also significantly interacts with our treatment manipu-
lation, i.e., app data collection context. Specifically, the difference as to the value
of interdependent privacy between people with a high level of bonding social cap-
ital and others is larger in T1 (irrelevant data collection) than in T2 (relevant
data collection). One possible explanation is that compared with app users with
a high level of bonding social capital, the willingness to disclose friends’ data by
those with low bonding social capital perceptions is more sensitive to app data
collection context. In particular, although individuals with a low level of bonding
social capital are reluctant to disclose friends’ data in the situation where such
information is not useful to apps’ functionality, they nevertheless become will-
ing to reveal friends’ data to apps when they believe such disclosure behaviors
improve app performance. In contrast, individuals with a perceived high level of
bonding social capital may assume that bonding social capital can consistently
be gained through disclosure behaviors and may therefore be more used to and
more prone to reveal information to others even if such information sharing is
not useful to an app’s functionality.

Although bonding social capital significantly impacts the valuation of inter-
dependent privacy, our work suggests that bridging social capital does not. A
possible explanation might be that bridging social capital is valued less or can
be much more easily gained than bonding social capital [6]. As such, individuals
are less likely to disclose information or to sacrifice privacy for gaining weak ties
that correspond to bridging social capital.

We further find that the impact of number of friends on how much individuals
value friends’ information depends on app data collection context. Specifically,
we detect a significant cross-over interaction between number of friends and
treatment. As anticipated, when data collection is not useful for an app’s func-
tionality (T1), the more friends individuals have, the more value they place on
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information of all their friends. However, we observe an opposite association in
T2, i.e., individuals with more friends actually value their friends’ information
less. One possible explanation of this seemingly counter-intuitive finding is that
in the case where shared data is relevant for an app’s functionality, individu-
als might believe that sharing information about more friends results in even
better app performance. As such, under this particular data collection context,
individuals with more friends would be more willing to share all their friends’
information, thereby reducing the value they place on such information. This fur-
ther indicates that people might trade off friends’ privacy for benefits they gain
from apps, suggesting individuals can be considered as “privacy egoists” [15].

8 Conclusions

By conducting a secondary data analysis on data collected from a comprehensive
online survey, our paper contributes to a better understanding of the valuation of
interdependent privacy in social app adoption contexts, which in turn benefits
the policy discussion on app privacy. Our results suggest that app users are
“privacy egoists” [15] not only because they appear to trade off their friends’
information for accruing social capital, but also due to the fact that they seem
eager to reveal friends’ data when they believe such disclosure behaviors result in
better app performance. Given that, it seems to be unwise to rely on individuals
themselves to protect their friends’ privacy. Rather, interventions need to be
considered for the problem space of interdependent privacy in social app adoption
scenarios. For example, it is important that baseline policies are introduced to
rigorously limit apps’ unfettered access to friends’ personal information [20].

Several limitations should be considered. Although our paper empirically
detects the negative association between interdependent privacy value and bond-
ing social capital, additional work is needed to further examine the relationship
between social capital and the valuation of other types of personal information.
Further, we restrict our investigation of interdependent privacy valuation to app
adoption scenarios. To contribute to the generalizability of our findings, it is
prudent to also study the valuation process of interdependent privacy in other
settings (e.g., genetic privacy [9], location privacy [11] or data analytics [4]).

Acknowledgments. We thank the anonymous reviewers for their valuable comments.
All remaining errors are our own.
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Abstract. Secure mix networks consider the presence of multiple nodes
that relay encrypted messages from one node to another in such a way
that anonymous communication can be achieved. We consider the Sphinx
mix formatting protocol by Danezis and Goldberg (IEEE Security and
Privacy 2009), and analyze its use of symmetric-key cryptographic prim-
itives. We scrutinize the reliance on multiple distinct primitives, as well
as the use of the ancient LIONESS cipher, and suggest various paths
towards improving the security and efficiency of the protocol.

Keywords: Sphinx · Mix network · Authenticated encryption · Sponge

1 Introduction

With the large growth of Internet services, modern users rely more on digital
and ubiquitous communications. In this digital domain, privacy needs to be
protected against the very nature of the communications, which tend to be
easily traceable and produce massive amounts of metadata. Hiding the metadata
of communications is hard, but there are systems, called mix networks, that
provide such capabilities. One example is the Sphinx [15] mix network, that is
used in privacy protecting applications. The Sphinx mix network format provides
security against powerful adversaries and good communications possibilities such
as replies, which are not easily available in other such systems.

The Sphinx protocol (see Sect. 2) uses internally many symmetric-key prim-
itives. At first, there is the SHA-2 hash function for hashing. It also includes
a HMAC mode [6] to support message authentication. Then, Sphinx uses the
LIONESS blockcipher [1], an encryption functionality that is made out of the
SEAL stream cipher [28] and a keyed version of the SHA-1 hash function, and
evaluates these functions on the message via a Feistel structure. In addition,
Sphinx uses a pseudorandom generator to generate entropy for the key. All of
these are used in a strongly intertwined manner.

LIONESS is proven to be secure, assuming that SEAL and SHA-1 are suf-
ficiently secure [1], making it particularly useful for Sphinx because of its goal
to achieve provable security. However, LIONESS has been outpaced by reality.
Attacks on SEAL [17] and SHA-1 [29], the most recent result being a free-start
collision attack on the full SHA-1, show weaknesses in the security of LIONESS.
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 681–691, 2016.
DOI: 10.1007/978-3-319-48965-0 46
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Contribution. We suggest to replace the encryption and authentication func-
tionalities by one authenticated encryption (AE) functionality. This optimiza-
tion allows for improved security as the payload now gets authenticated without
any efficiency cost. There are existing solutions to AE (see Sect. 1.1), but not all
schemes are suitable. We suggest two approaches for AE suited for Sphinx that
allow for an elimination of many symmetric-key primitive calls, or more formally,
for merging these calls into one, contributing for simplicity and efficiency of the
design.

First proposal (Sect. 4) is based on the keyed version of the sponge as an adap-
tion of the full-state SpongeWrap [10,11,25]. It internally uses a large unkeyed
permutation, the state of which is separated into a capacity and a rate. The
capacity determines the security bound, and the rate determines the speed at
which data is processed. By using a large permutation, one can make a proper
balance between the capacity and the rate, and achieve a high level of security.
Second proposal (Sect. 5) is blockcipher based, and is resistant to nonce reuse
with an unconventional nonce reuse resistant AE schemes such as [3,20]: while
other designs consist of a mode built on top of AES, we follow a “tweakable
tweakable blockcipher” approach. We give a powerful construction of a tweak-
able blockcipher mode on top of a tweakable blockcipher, in such a way that the
scheme allows for sufficiently large message and associated data, while still being
simple and nonce reuse resistant. For a specific instantiation of the construction,
we suggest Threefish, a tweakable blockcipher with 1024-bit state by Ferguson
et al. used for the Skein hash function family [16]. (Less suitable alternatives
are discussed in the full version of the paper.) Threefish has withstood a wide
variety of cryptanalysis [5,22,23].

In Sect. 6, we apply our schemes of Sect. 4 and Sect. 5 to the Sphinx for-
mat. The new Sphinx format of Fig. 4 improves over the earlier one in terms of
simplicity, efficiency and security.

1.1 Related Work on Authenticated Encryption

AE enjoys a long and steady line of research, which is continued in the ongoing
CAESAR competition [13]. The classical approach to design AE schemes is to
build the generic mode of operation on top of a blockcipher in order to process
data blocks iteratively [3,8,20]. A more novel approach is to design AE based
on permutations. The most well-known approach is SpongeWrap by Bertoni
et al. [10] which got recently generalized by Jovanovic et al. [21] and Mennink
et al. [25], and many CAESAR submissions follow this idea. Different permuta-
tion based approaches include APE [2] and PAEQ [12].

The sponge based proposal in this work follows the literature. Regarding our
blockcipher based approach, we have deviated from the state of the art. The
reason is that conventional modes often entail overhead and the security level is
then dominated by what the underlying primitive offers. For blockcipher based
modes, using AES internally delivers at most 128-bit security, and often there
exist already distinguishability attacks in complexity of about 264 (cf. Bellare
et al. [7]). Note that for messages of, say, 1024 bits, a classical AES based mode
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still requires at least 8 AES evaluations. We remark that also AEZ [20], or more
detailed the latest version v4 in the CAESAR competition [19], is also inherently
a mode based on 4 and 10 rounds of AES, and has 64-bit security as well. Recent
cryptanalysis on AEZ [14,18] has moreover shined a negative light on its security.

2 Sphinx Mix Format

Mix networks rely on mix message formats that provide efficiency and security
properties. Sphinx [15] is the most compact mix message format, which is prov-
ably secure and efficient. Sphinx relies on the Sphinx blinding logic technique
for generating a session key with nested MAC computations over the public
pseudonyms of each predecessor mix. The private key associated to the public
key (i.e., pseudonym) is only known by the user, while the session key is used
for the encryption of the message. Figure 1 is a high-level depiction of Sphinx.

Sphinx Header

α β γ

Payload

δ

Sphinx Mix Header

MAC

Encryption
module

α′ β′ γ′

Route to Mix n′

δ′

Mix n
secret xn session key sn

Check
MAC

β′

Fig. 1. High-level description of Sphinx [15]

Internally, Sphinx uses many cryptographic primitives. First, there are five
hash functions, which are used to hash group elements to key bit strings. Then, it
uses a pseudorandom generator PRG and a MAC function for the computation
of the nested MAC. Finally, an encryption scheme ENC encrypts the payload
at every mix. The hash functions are instantiated using appropriately truncated
SHA256 hash functions, and SHA256-HMAC-128 is used as the MAC function.
For the encryption, Sphinx relies on the LIONESS blockcipher by Anderson and
Biham [1]. This blockcipher is made out of the SEAL stream cipher and a keyed
version of the SHA-1 hash function, and evaluates these functions on the message
via a Feistel structure. In more detail, denote the stream cipher by Sk and the
keyed hash function by Hk. Consider a LIONESS key k = (k1, k2, k3, k4), where
k1, k3 will be used to key the stream cipher and k2, k4 to key the hash function.
To encrypt a message m, LIONESS first splits it into two blocks ml‖mr ← m.
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These blocks are then transformed using a 4-round Feistel structure: mr ←
mr ⊕ Sk1(ml), ml ← ml ⊕ Hk2(mr), mr ← mr ⊕ Sk3(ml), ml ← ml ⊕ Hk4(mr).
The updated ml‖mr constitutes the ciphertext c.

Due to the security parameter choices, the Sphinx construction needs an
encryption scheme with a state of at least 1408 bits plus the message length.
Based on this, LIONESS appears to be a good option as it has the potential
to have a large state and thus act as the permutation required by the Sphinx
system. In addition, LIONESS enjoys a security proof if the underlying hash
function SHA-1 and stream cipher SEAL are secure [1]. However, the security
of LIONESS is undermined by the results mentioned in the introduction.

Besides the doubtful use of LIONESS in the first place, it is noteworthy that
Sphinx uses different symmetric-key primitives for various purposes: i.e., SHA-1
is used in LIONESS and SHA-2 for hashing and MACing. These functions are
often intertwined, and particularly, three of the cryptographic hash functions
are used to transform a secret non-identity group element s to secret keys to the
PRG, MAC, and ENC. In other words, denoting these three hash functions as
HPRG, HMAC, and HENC, Sphinx calls the PRG, MAC, and ENC functionalities
with PRG(HPRG(s)), MAC(HMAC(s),m) and ENC(HENC(s),m), where s is the
secret group element, the secret session key, and m denotes the data to be MACed
or ENCed. The synergy between MAC and HMAC is striking, given the designers’
choice to instantiate those with SHA256-HMAC-128, and SHA256, respectively.
For the case of encryption, the situation is not much clearer, given that LIONESS
uses SHA-1 while HENC is instantiated with SHA256.

Finally, from Fig. 1, it becomes apparent that γ is a MAC of β (using session
key s), and δ is the encryption of the payload (under session key s). By merging
these two functionalities into one authenticated encryption scheme that authen-
ticates β and δ and that encrypts δ, one obtains the following improvements:
Authentication of β and encryption of δ still persists, but authentication of δ is
for free, the session key needs to be processed only once and there is no need to
implement two distinct algorithms.

As such, our main goal in this work is to introduce an AE scheme that suits
Sphinx, which will be done in Sects. 3, 4 and 5. The potential employment of
the new schemes in Sphinx will be considered in Sect. 6 in such a way that the
remaining above-mentioned issues (such as the redundant usage of cryptographic
primitives) are resolved on the fly.

3 Authenticated Encryption

For n ∈ N, {0, 1}n is the set of n-bit strings, and {0, 1}≤n =
⋃n

i=0{0, 1}i. For
two bit strings M,N , their concatenation is denoted by M‖N and M ⊕ N
denotes their bitwise XOR. Furthermore, if M ∈ {0, 1}≤n−1, then padn(M) =
M‖10n−1−|M |. For a string N ∈ {0, 1}n, we define by unpadn(N) the unique
string M ∈ {0, 1}≤n−1 such that padn(M) = N . For m ≤ n and N ∈ {0, 1}n, we
denote by �N�m the leftmost m bits and by 	N
n−m the rightmost n − m bits
of N , in such a way that N = �N�m‖	N
n−m.
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Authenticated Encryption (AE). Let μ, ν, α, τ, σ ∈ N be size values that satisfy
μ ≤ ν. Here, μ denotes the size of the message, ν the size of the ciphertext, τ the
size of the associated data, and σ the size of the nonce. The value α determines
the size of the authentication tag. If no authentication is needed, we have α = 0.

An authenticated encryption scheme AE is composed of three algorithms:
KeyGen, Enc, and Dec. KeyGen is a randomized algorithm that gets as input
κ ∈ N and outputs a random key key ← {0, 1}κ. The Enc and Dec algorithms
are defined as follows:

Enc : {0, 1}κ × {0, 1}≤μ × {0, 1}≤τ × {0, 1}σ → {0, 1}≤ν × {0, 1}α ,

(key ,msg ,meta,nonce) �→ (ctxt , auth) ,

Dec : {0, 1}κ × {0, 1}≤ν × {0, 1}α × {0, 1}≤τ × {0, 1}σ → {0, 1}≤μ ∪ {⊥} ,

(key , ctxt , auth,meta,nonce) �→ msg/⊥ .

Dec outputs the unique msg satisfying Enc(key ,msg ,meta,nonce) = (ctxt , auth),
or it returns ⊥ if no such message exists. Enc also outputs meta and nonce. We
allow for a small amount of ciphertext expansion (from μ to ν bits), as long as
the encrypted ciphertext (ctxt , auth,meta,nonce) is of size at most λmax.

Threat Model. We consider an adversary A to be any entity attempting to pas-
sively access the shared information by monitoring the communication channel,
with no incentive to tamper with the content. A is allowed to generate encryp-
tions under a secret and unknown key. In this case, A should not learn the
encrypted content, beyond that revealed in the associated data.

More technically, adversary A has query access to Enc under a secret key
key , and it tries to find irregularities among the queries, i.e., some relation that
is not likely to hold for a random function. For a function F , let Func(F ) be the
set of all functions f with the same interface as F . The advantage Advcpa

AE (A) of
an adversary A in breaking the secrecy of an authenticated encryption scheme
AE is defined as

∣
∣
∣Pr

(
key $←− KeyGen(κ) : AEnckey = 1

)
− Pr

(
$ $←− Func(Enckey) : A$ = 1

)∣
∣
∣

We denote by Advcpa
AE (Q,T ) the maximum advantage over all adversaries that

make at most Q encryption queries and operate in time T . Depending on the
scheme, the adversary A may be limited to being nonce respecting, so that every
query must be made under a different nonce.

For the authenticity of AE, we consider A to have access to the encryption
functionality Enc under a secret key key , and say that A forges an authentication
tag if it manages to output a tuple (ctxt , auth,meta,nonce) ∈ {0, 1}≤ν×{0, 1}α×
{0, 1}≤τ × {0, 1}σ such that Dec(key , ctxt , auth,meta,nonce) = msg �= ⊥
and (msg ,meta,nonce) was never queried to Enc before. The forgery attempt
may be made under a nonce nonce that has appeared before. The advantage
of A in breaking the authenticity of authenticated encryption scheme AE is
defined as Advauth

AE (A) = Pr
(
key $←− KeyGen(κ) : AEnckey forges

)
. We denote
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by Advauth
AE (Q,R, T ) the maximum advantage over all adversaries that make at

most Q encryption queries, R forgery attempts, and operate in time T .

4 Solution 1: Sponge

The Sponge functions introduced by Bertoni et al. [11] specifically for crypto-
graphic hashing can also be used in a broad spectrum of keyed applications,
including message authentication [4,9,26,27] and stream encryption [10,25]. We
will use the keyed sponge in the full-state duplex mode [25], to describe an AE
scheme that is suited for the use in Sphinx. As keyed Sponges are merely stream
based encryption, a unique nonce is required for every encryption.

Fig. 2. AE based on a Sponge. Padding of data is excluded from the figure

The realization of our AE scheme using the sponge is dubbed AEπ,�,n and
indexed by a permutation π of width b and parameters � and n ≤ b which specify
the parsing of the message blocks: it considers at most � message blocks of n
bits. The parameter � can be arbitrarily large, but it is used to show how the
length affects the security bound. AEπ,�,n operates on keys of size κ ≤ b − n
bits, messages and ciphertexts can be of length at most μ = � ·n−1 (the scheme
does not use ciphertext expansion, hence μ = ν), and the sizes of the associated
data and nonce should satisfy σ + τ ≤ n − 1. The size of the authentication
tag is α ≤ n (this is for simplicity, the scheme generalizes to α > n). AEπ,�,n is
depicted in Fig. 2. The algorithms are in the full version of this paper.

Security. AEπ,�,n is a full-state duplex construction [25]. In the full version of
this paper, we prove that if π is an ideal permutation, we have security against
nonce-respecting adversaries up to bounds Advcpa

AEπ,�,n(Q,T ) ≤ (�αQ)2

2b−n + �αQS
2κ

and Advauth
AEπ,�,n(Q,R, T ) ≤ (�αQ)2

2b−n + �αQS
2κ + R

2α , where �α as �, if α = 0, and
� + 1 otherwise, S is the maximal number of evaluations of π that can be made
in time T .

5 Solution 2: Tweakable Blockcipher Based

The second approach is to apply a large tweakable blockcipher. A tweakable
blockcipher Ẽ : K × T × M → M takes as input a key k ∈ K, a tweak t ∈ T ,
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and a message m ∈ M, and outputs a ciphertext c ∈ M. It is a permutation for
every choice of (k, t).

For our AE functionality AE, we need a tweakable blockcipher with a large
state M. We suggest Threefish, a tweakable blockcipher by Ferguson et al. used
for the Skein hash function family [16]. Threefish supports block sizes of 256,
512, and 1024 bits. The key size equals the block size, and the tweak size is 128
bits. We focus on the largest variant, Threefish-1024, which for readability we
simply denote 3fish:

3fish : {0, 1}1024 × {0, 1}128 × {0, 1}1024 → {0, 1}1024 ,

(k, t,m) �→ c .

3fish can be used for AE directly by placing the associated data and nonce into
the tweak and encrypting based on the key and this tweak. While the state size
of 3fish is large enough, the tag size is not. One way to resolve this is to employ
a random oracle that maps the associated data and nonce to a string of size
128 bits, but this would degrade the security of the construction as forgeries can
be found in a complexity 264. Another way to enlarge the tweak space without
adjusting the cipher itself is by using it in a tweakable mode of operation.

3fish 3fish

key key

msg ctxt‖auth

nonce nonce

meta

Fig. 3. AE based on LRW[3fish]. Padding of data is excluded from the figure

Liskov et al. [24] introduced two tweakable modes of operation: while these
constructions are originally designed to add a tweak input to a blockcipher,
they can equally well be applied to tweakable blockciphers themselves to enlarge
the tweak space. We will consider one of these constructions, which makes two
evaluations of the underlying cipher:

LRW[3fish] : {0, 1}1024 × {0, 1}1024 × {0, 1}128 × {0, 1}1024 → {0, 1}1024 ,

(k, t, t′,m) �→ 3fish(k, t′, 3fish(k, t′,m) ⊕ t) .

This construction can be used to realize AELRW[3fish] as illustrated in Fig. 3 and
a formal description is given in the full version of the paper. It operates on keys
of size κ = 1024 bits, messages can be of arbitrary length but of size at most
μ = 1023−α, the nonce should be of size σ ≤ 127, and the associated data should
be of size at most τ ≤ 1023. The ciphertexts are of size exactly ν = 1024 − α
bits, where α is the size of the authentication tag. The latter is required to make
decryption possible.
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Security. In the full version of this paper, we prove that AELRW[3fish] is secure
against nonce reusing adversaries under the assumption that 3fish is a secure
tweakable blockcipher. Formally, we prove that

Advcpa

AELRW[3fish](Q,T ) ≤ Θ

(
Q2

2n

)
+ Advs̃prp

3fish(2Q,T ′) and

Advauth
AELRW[3fish](Q,R, T ) ≤ Θ

(
(Q + R)2

2n

)
+ Advs̃prp

3fish(2(Q + R), T ′) +
R2n−α

2n − Q

where Advs̃prp
˜E

(Q,T ) denotes the maximum security advantage of any tweakable
blockcipher adversary that makes Q queries, runs in time T and T ′ ≈ T .

6 Improving the Sphinx

A naive solution to the state of affairs for Sphinx (Sect. 2) would be to replace
SEAL by a more modern stream cipher and to replace SHA-1 by SHA-3, but
there is little point in doing so: versatility of Sponges in general and SHA-3
in particular enables encryption using SHA-3 on the fly; putting a four-round
Feistel construction on top of it is overkill. Instead, it makes more sense to simply
replace LIONESS by a keyed version of the SHA-3. The construction of Sect. 4
is particularly suited for this purpose, as it is an AE scheme based on the SHA-3
permutation. As the construction offers AE, it can also be used to replace the
MAC. In other words, where the original Sphinx MACs β into authentication
tag γ and encrypts the payload into δ (both using secret session key s), the
construction of Sect. 4 neatly merges those into (δ, γ) = AE(s,payload, β)

where β now represents the associated data and the nonce. We have hence-
forth obtained the security and efficiency improvement promised in Sect. 2.

It seems logical to also replace the remaining cryptographic functionalities
in Sphinx by SHA-3. However, a second thought reveals that there is little point
in doing so: first hashing a key through SHA-3 and then considering the keyed
version of the SHA-3 based on this key is less efficient and less secure than
considering the keyed version of the SHA-3 based on the original key. Therefore,
it suffices to have a mapping transforming the secret session key into a bit string.

The downside of the SHA-3 based approach is that the AE scheme of Sect. 4
does not offer security against nonce reusing adversaries, and in the solution
above, β represents the associated data as well as the nonce. In Sphinx, the
β values are generated using the PRG, and thus random, but collisions may
appear. One can also use the Threefish based mode of Sect. 5, and use the Skein
hash function family [16] to serve for hashing, as it uses Threefish natively.

Either approach makes the encryption functionality of Sphinx more secure
and more efficient. Figure 4 depicts our proposal of using AE in Sphinx. Our AE
solutions support associated data as input which could be used for the processing
of the header, it natively allows for authentication, and could potentially be used
as MAC function. These advantages could be used to integrate part of the nested
MAC functionality of Sphinx within the AE. Using our AE schemes in Sphinx
additionally authenticates the payload for free.
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Sphinx Header

α β γ

Payload

δ

Sphinx Mix Header AE module

α′ β′ γ′

Route to Mix n′

δ′

Mix n
secret xn session key sn

Check
MAC

auth tag
β′

Fig. 4. Using the AE scheme of Sects. 4 or 5 in Sphinx
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Abstract. This paper presents a robust user authentication system by gleaning
raw mouse movement data. The data was collected using a publicly available
tool called Recording User Input (RUI) from 23 subjects analyzed for three
types of mouse actions - Mouse Move, Point-and-Click on Left or Right mouse
button, and Drag-and-Drop. Samples are broken down to unit blocks comprising
a certain number of actions and from each block seventy-four features are
extracted to construct feature vectors. The proposed system was rigorously
tested against public benchmark data. Experiment results generated by using the
Support Vector Machine (SVM) classifier shows a False Rejection Rate
(FRR) of 1.1594 % and a False Acceptance Rate (FAR) of 1.9053 % when the
block size was set for 600 actions. After reducing dimensions using Principle
Component Analysis (PCA), SVM classifier shows FRR of 1.2081 % and FAR
of 2.3604 %. Compared with the existing methods based on mouse movements,
our method shows significantly lower error rates, which we opine are viable
enough to become an alternate to conventional authentication systems.

Keywords: Biometric � Cyber behavioral biometrics � Mouse dynamics �
Person identification � SVM

1 Introduction

One of the preliminary tasks in the field of information security is to make sure that the
person who is accessing the system which may contain sensitive and confidential
information, is the right person. To ensure so, a person can be classified genuine or
intruder by the method of user authentication which in general falls into two categories
- (1) to authenticate a person by something he/she possesses such as tokens, ID and
(2) to authenticate by something he/she knows, for example, by knowing a password or
PIN number. However, there are limitations in these traditional approaches. For
instance, tokens or IDs can be lost, stolen or misplaced and a person may forget his PIN
number or password. Alternatively, it is possible that an intruder may acquire one’s
password using automated password cracking tools. To deal with these issues,
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biometrics [1] are introduced to identifies a person by using unique physical or
behavioral characteristics that the person possesses.

Although a physical biometric system such as fingerprint, retina, and iris scan
provide stronger security, it also requires expensive hardware to record user’s biometric
data. On the other hand, cyber behavioral biometric such as keystroke or mouse
dynamics which are generated naturally when a user interacts in cyberspace; (1) do not
require specialized hardware and therefore, is inexpensive and (2) unobtrusive. For
these reasons research in these fields has been gaining momentum in recent days.

In this research work, we focused on mouse dynamics that means the characteristics
of a user which are collected by analyzing the inputs performed by a pointing device
such as mouse. In this system, only the availability of a mouse is required. Based on a
user’s mouse actions, some features are extracted and stored for every user profile.
When the user uses the system again, the system matches his actions with his profile
and determines whether it is a genuine user or an intruder.

Contribution of the paper follows:

• 48 new features are proposed and 74 total features has been defined and processed
for the experiments. This rich feature set, combined with the data processing and
classification methods we adopted, was the key to achieving impressively low FRR
of 1.1594 % and FAR of 1.9053 %.

• Performances comparison (see in Sect. 3) between our method and other existing
methods has been compiled. The comparison clearly indicates the merits of our
system.

The rest of the paper is organized as follows: Sect. 2 describes the proposed sys-
tem. Section 3 presents experimental results with performances of the proposed system
and Sect. 4 describes the contributions, limitations and future plan for improvement.

2 Proposed System Description

The proposed system is divided into three major components. The components are
(I) Data Acquisition, Processing, and Segmentation, (II) Feature Extraction and Nor-
malization, and (III) Training and Classification.

2.1 Data Acquisition, Processing, and Segmentation

Mouse data are collected by using a publicly available logging tool named Recording
User Input (RUI) [2] where different mouse actions are observed and recorded for 23
volunteers. The dataset contains 284 h of raw mouse data with an average of 45
sessions per user. Users are given with an individual choice of operating environments
and applications. Users were asked to use their computer and mouse in a normal,
everyday fashion.

For each action (listed below), data are formatted as Elapsed Time (in millisec-
onds), Action Type, X-Coordinate, and Y-Coordinate. Elapsed time means the time
difference in milliseconds between the start time of monitoring the system and the time
after the specific action has occurred. Action types are:
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(I) Mouse Move, (II) Press Left Button, (III) Release Left Button, (IV) Press Right
Button and (V) Release Right Button. X-Coordinate and Y-Coordinate are pixel
location values of x and y coordinates of the mouse on the screen respectively. Table 1
shows four sample actions recorded by the tool RUI. Raw mouse data are then pro-
cessed into three upper level mouse actions: Mouse Move, Point-and-Click on left or
right mouse button and Drag-and-Drop.

In segmentation step, the processed data is divided into different block sizes based
on the number of mouse actions. A block consists of a set of aforementioned mouse
actions. Block sizes of 350, 400, 450, 500, 550, and 600 are used. From each block, a
set of features are extracted.

2.2 Feature Extraction and Normalization

In this step, features are extracted from the preprocessed dataset. Features are selected
in a way that makes the system compact, efficient and at the same time consist of some
unique characteristics of an individual.

For each action type, twenty-two features are calculated from each block. These
are; Mean and Standard Deviation of time (in milliseconds) to perform a specific type
of action in a block, Mean and Standard Deviation of travel distance (in pixels) to
perform a specific type of action in a block, Number of a specific type of mouse action
(N) in a block, Ratio of number of mouse actions (N) and total number of actions in

Table 1. Example of four mouse action instances recorded by the mouse logging tool RUI.

Elapsed time (in ms) Action X-coordinate (in pixels) Y-coordinate (in pixels)

0.33 Moved 204 492
0.338 Moved 206 479
0.354 Pressed Left 206 479
0.394 Released Left 206 479

Fig. 1. Direction of mouse movement divided by octants of 45° intervals.

694 B.A. Anima et al.



block (NB), proposed direction specific mean time (�XK
tj ) and proposed direction specific

mean mouse movement distance (�XK
dj). Here, direction of the mouse movement is

described by octant of 45° intervals with 0° to 360° spans [see in Fig. 1] for every
mouse action. Thus, there are 66 features for three mouse action type. The newly
proposed features are described below.

Proposed direction specific mean time to perform a specific type of action in a
block (�XK

tj ) is a ratio between total time to perform a type of action in K direction and
total time to perform the same type of action throughout the block.

X
K
tj ¼

PM
j¼1 X

K
tj

PN
i¼1 Xti

ð1Þ

XK
tj is the time to perform an action of J 1; 2; . . .; Mð Þ samples in K 1; 2; . . .; 8ð Þ direc-

tions, Xti is the time to perform an action of I 1; 2; . . .; Nð Þ samples.
Proposed direction specific mean mouse movement distance to perform a specific

type of action in a block (�XK
dj) is a ratio between total travel distance to perform a type

of action in K direction and total travel distance to perform the same type of action
throughout the block.

X
K
dj ¼

PM
j¼1 X

K
dj

PN
i¼1 Xdi

ð2Þ

Where XK
dj is the mouse movement distance of J 1; 2; . . .;Mð Þ samples in K 1; 2; . . .; 8ð Þ

directions, Xdi is the mouse movement distance of I 1; 2; . . .; Nð Þ samples.
Eight more features are also calculated which are the total mouse movement dis-

tance in each direction,
PM

j¼1 X
K
dj where XK

dj is the mouse movement distance of
J 1; 2; . . .;Mð Þ samples in K 1; 2; . . .; 8ð Þ directions. Therefore, the total number of
features is 74 where the total number of proposed features is 48 for three mouse action
type. See Table 2 for the full list of features. These features are used to construct a

Table 2. List of features extracted from each block.

Features Number of features

Mean of Time 3
Standard Deviation of Time 3
Mean of Travel Distance 3
Standard Deviation of Travel Distance 3
Number of Mouse Actions 3
Ratio of Mouse Action and Total Number of Actions 3
Direction Specific Mean Time 24
Direction Specific Mean Mouse Movement Distance 24
Total Mouse Movement Distance in each direction 8
Total Features 74
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feature vector for each user. The dimension of each feature vector is the number of
selected features which is 74. Before classifying, data of the feature vector are nor-
malized in a scale. This helps to avoid attributes in greater numeric ranges overshad-
owing those in smaller numeric ranges. By doing this, training and testing data will be
in the same scale. In this proposed system, data is normalized into the scale of zero to
one by using Min-Max Normalization.

2.3 Training and Classification

To analyze how the classifier is checking a genuine user, at first the classifier is trained
with a set of randomly selected data for a selected user from the dataset. The training data
pattern contains patterns of the legitimate user. The classifier is also trained with imposter
patterns labeled with the legitimate patterns. Then the other portions of the dataset which
are treated as testing patterns are applied to the classifier. After testing, it is analyzed that
how the system is classifying genuine data by examining the predicted label.

In this proposed system, Support Vector Machine (SVM) [3] classifier is used for
training and testing purposes. We adopted the classifier SVM since it has been widely
used in the field of object recognition, speech recognition, biometrics, image retrieval,
image regression etc. It is highly accepted classifiers since it offers a result with good
performances. Sometimes it outperformed other classifiers, such as neural network.

In case of SVM, two techniques are applied. One is using original feature vector
(with 74 features) and the other is using dimensionally reduced feature vector by
applying Principal Component Analysis (PCA) [4]. PCA is a mathematical technique
of matching patterns in high dimensions of data. It helps to reduce the dimension of the
data, so when the dataset is larger, PCA plays an important role by reducing the
dimensions and selecting a subset.

To implement the system using SVM classifier, an open source package LIBSVM
[5] is used. The popular choice of Kernel function is Gaussian Radial Basis Function
(RBF). Kernel parameters are obtained by applying fivefold cross validation technique.
The system applies SVM on original feature space as well as SVM on dimensionally
reduced feature space using PCA.

3 Experimental Results and Discussion

The proposed system is implemented in a Windows 7 system with 1.70 GHz Intel Core
i3 4005U CPU with 4.00 GB of RAM. Other remaining part of the system such as
processing, segmentation, scaling, and classification were performed with MATLAB
R2013a.

The proposed system is tested by using a public benchmark data [6, 7]. In the
public benchmark dataset, four types of actions are defined which are; (1) Mouse
Movement (MM) which means normal mouse movement, (2) Silence which means the
time when the mouse does not move, (3) Point and Click (PC) which defines mouse
movement which is followed by mouse button press and release, and (4) Drag and
Drop (DD) which relates with the combination of mouse actions such as mouse
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movement, mouse button press and then release sequentially. Before experimenting
data for silence action are deducted from the benchmark dataset. Note that from these
four actions, three upper level actions are derived as mentioned in Sect. 2.1.

Performance is measured by computing False Acceptance Rate (FAR) and False
Rejection Rate (FRR).

3.1 Results of Classification

Experiments are performed on different sizes of blocks (350, 400, 450, 500, 550, and
600 actions) each with 74 features derived from the public dataset. Table 3 shows that
among different block sizes of actions, block size of 600 actions provides better result.
In case of block size of 600 actions, SVM and SVM (+PCA) show FRR of 1.1594 %
and 1.2081 % respectively. Again, for block size of 600 actions, SVM and SVM
(+PCA) show FAR of 1.9053 % and 2.3604 % respectively.

Table 3. Performance for different block sizes using SVM and SVM (+PCA).

Block size (number of action) SVM SVM (+PCA)
FRR (%) FAR (%) FRR (%) FAR (%)

350 1.4631 2.3358 1.5291 2.6496
400 1.3685 2.2234 1.4616 2.5512
450 1.2917 2.2114 1.3746 2.4789
500 1.1902 2.0379 1.3030 2.3574
550 1.1619 2.0020 1.2327 2.3941
600 1.1594 1.9053 1.2081 2.3604

Fig. 2. Comparison of SVM and SVM (+PCA) Classifiers based on FRR.
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After studying the performance result for different classification techniques, it is
observed that the performance rate of the SVM with original feature space offers better
result.

The comparison based on the performance rate of FRR and FAR shown in Figs. 2
and 3 respectively.

3.2 Comparison with Related Works

The results found in our experiments are compared with the results found by Ahmed
et al. in [7], which is considered as benchmark in the field of mouse dynamics. Features
of an existing system by Ahmed et al. [7] are extracted from the public benchmark
dataset and applied to the proposed system. These features are Movement Speed
compared to Travelled Distance (MSD) curve, Average Movement Speed per Move-
ment Direction (MDA), Movement Direction Histogram (MDH), Average Movement
Speed per Type of Action (ATA), Action Type Histogram (ATH), Travelled Distance
Histogram (TDH) and Movement elapsed Time Histogram (MTH). Twelve points are
computed through periodic sampling over the MSD curve. In case of TDH, values in
the range of 0–100 pixels and 100–200 pixels are used. In case of MTH, values within
the range of 0.0–0.5 s, 0.5–1.0 s, and 1.0–1.5 s are collected. In total, the number of
features is 39.

For block size of 600 actions, SVM and SVM (+PCA) offer FRR of 1.6001 % and
1.7851 % respectively by using existing set of features proposed in [7] which are
higher than FRRs showed by our proposed system with the same set of data and block
size. Likewise, for block size of 600 actions, SVM and SVM (+PCA) offer FAR of
2.9798 % and 2.9042 % respectively by using existing features in [7] which are higher
than ours. This clearly indicates the merits of our newly proposed features.

Several other researches showed impressive results in recent times. Below we
mention the notable works and compare their outcomes with ours.

Fig. 3. Comparison of SVM and SVM (+PCA) Classifiers based on FAR.
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(1) In the work of Ahmed et al. [7], they offer FRR of 2.4614 % and FAR of
2.4649 %. To gain this performance the number of required actions is 2000 where
the actions include point and click, drag and drop, mouse move and silence.

(2) Nakkabi et al. [6] also show FRR of 0.36 % and FAR of 0 for same number of
mouse actions. However, the number of mouse action is large and not always
practical to play a tile game to use the system.

(3) Pusara and Bordley [8] offered a web based authentication system where decision
tree is used as a classifier. It shows good result where false negative rate is 1.75 %
and false positive rate is 0.43 %. However, it only consists of eleven users’
involvement.

(4) In the works of Muthumari et al. [9] they proposed 6.25 % FRR and 7.25 % FAR
using Learning Vector Quantization (LVQ) method.

(5) In their other work [10], Kernel Principle Component Analysis (KPCA) method is
used to reduce the dimension of the feature vector and one class support vector
machine is used as a classifier which offered 8.25 % FRR and 8.98 % FAR.

(6) In the method of Lakshmipriya et al. [11], holistic and procedural features are
used and Nearest Neighbor Algorithm is applied to extract the features. It offers
FRR of 7.70 % and FAR of 8.75 %.

(7) In the method of Rahman et al. [12], similarity score method has been used which
is based on statistical normal distribution. They found equal error rate (EER) to be
6.7 %.

Compared with the above existing methods, our method shows significantly lower
error rates by processing even fewer number of actions (maximum 600 for instance). The
works which show lower error rates than ours, suffers from either inadequate population
size (such as in [8]) or impractical due to restricted testing environment (see in [6]).

4 Conclusion

In this system, three types of mouse actions: Mouse Move, Point-and-Click on left or
right mouse buttons and Drag-and-Drop are obtained. The processed data is divided into
blocks where block means a set of specific number of mouse actions. Seventy-four
features are extracted from each block to form a feature vector where the number of new
features is forty-eight. For each type of mouse action, the features are calculated from
mean and standard deviation of travel distance, mean and standard deviation of elapsed
time to perform an action, mean number of mouse actions, proposed direction specific
mean time of an action and direction specific mean travel distance. The direction of the
mouse movement action is described by an octant of 45° intervals. Using these features a
person’s mouse movement distance and total time to perform an action are described
with eight values instead of one direction. The data of the feature vector is normalized
into the scale of zero to one. After normalizing the feature vector is applied to classifiers.
Support Vector Machine (SVM) with original feature space and Support Vector
Machine (SVM) with dimensionally reduced feature space by Principal Component
Analysis (PCA) are used in the system. To test the system, public benchmark dataset is
used. Performances are measured and analyzed for six different block sizes. After
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experimenting it is observed that the system provides better performance of the block
size of 600. Experiment result shows that, in case of original feature space SVM offers
1.1594 % FRR and 1.9053 % FAR. In case of dimensionally reduced feature space by
PCA, SVM classifier offers 1.2081 % FRR and 2.3604 % FAR.

This system did not consider some actions due to inadequacy of benchmark dataset.
In future, more types of actions such as Double Click, Mouse Wheel etc., will be
considered. A larger dataset is expected to be gathered and tested against our system.
With some impressive initial results, we believe this system could be used with other
conventional authentication systems to build a multi-modal authentication system.
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Abstract. Distance Bounding (DB) is designed to mitigate relay
attacks. This paper provides a complete study of the DB protocol of
Kleber et al. based on Physical Unclonable Functions (PUFs). We con-
tradict the claim that it resists to Terrorist Fraud (TF). We propose some
slight modifications to increase the security of the protocol and formally
prove TF-resistance, as well as resistance to Distance Fraud (DF), and
Man-In-the-Middle attacks (MiM) which include relay attacks.

1 Introduction

Wireless devices are subject to relay attacks. It is problematic because these
devices are at the basis for authentication in many domains like payment with
credit cards, building access control, or biometric passports [15,16]. To ensure
the security of wireless devices against relay attacks, Brands and Chaum [8]
introduced the notion of Distance Bounding (DB) protocols in 1993. The idea is
that a prover P must prove that he is close to a verifier V. Several attack models
exist to make the verifier accept with a prover too far away from the verifier. The
attacks described in the literature are: 1. Distance Fraud attacks (DF) [8]: A far
away prover P tries to make V accept. No participant is close to V . 2. Mafia
Fraud attacks (MF) [10]: A malicious actor A who does not hold the secret tries
to make V accept using an honest but far away prover P. 3. Terrorist Fraud
(TF) [10]: A malicious actor A who does not hold the secret tries to make V
accept by colluding with a malicious far away prover P who holds the secret.

Avoine et al. [1] proposed the complete but rather informal ABKLM model.
Dürholz et al. [11] provided a formal model to prove the security of the protocols.
However, this model is too strong as admitted by the authors [12], and it is
difficult to prove TF security in this model. Another model was proposed by
Boureanu et al. [4].

Most of the proposed protocols are vulnerable to TF attacks but a few pro-
tocols provide security against all types of threats: the protocol of Fischlin and
Onete [13], the SKI protocol [5,6], DBopt protocols [7], the public-key DB proto-
cols ProProx [26] and eProProx [25], and the anonymous DB protocol SPADE [9].
However, all these proofs are made on the assumption that in TF, the prover
does not want to give his credential to the adversary for further application. This
assumption is weak and does not correspond to reality. None of the DB proto-
cols in the plain model can provide TF security without this assumption, so,
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 701–710, 2016.
DOI: 10.1007/978-3-319-48965-0 48
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we should consider alternate models. DF and TF security are easier to provide
using tamper resistant hardware on the prover side because the prover cannot
access his secret. Kılınç and Vaudenay [19] provide a new model for distance
bounding protocols with secure hardware. In this model, the game consists of
several verifier instances including a distinguished one V, hardware with their
instances, instances of provers and actors. There is one distinguished hardware
h with instances far away from V. The winning condition of this game is that V
accepts.

– The DB protocol is DF-secure if the winning probability is negligible whenever
there is no instance close to V.

– The DB protocol is MiM-secure if the winning probability is negligible when-
ever an honest prover is holding h (i.e. it can only be accessed by an honest
and far away prover).

– The DB protocol is TF-secure if the winning probability is negligible.

PUFs are tamper resistant hardware used in counterfeiting detection [22,23] and
authentication protocols [3,14]. A PUF is a physical component which maps a
challenge to a response. By definition, a PUF, as it is described in [21], has the
following properties: non clonable, non emulable, a response Ri gives negligible
information on a response Rj with Ri �= Rj and a PUF cannot be distinguished
from a random oracle (as discussed in [2]). For simplicity reasons, we will treat
PUFs as random oracles with access limited to their holder. The aim of our
work is to provide a provably secure protocol using PUF in DB protocols. A
TF-secure DB protocol based on PUF was proposed in [18]. Nevertheless, this
protocol assumes that provers implement their protocol while using a PUF. In
the model of Kleber et al. [20], the prover can implement any malicious protocol
while accessing to the PUF, the protocol in [18] is trivially TF-insecure in this
stronger model.1 Kleber et al. design a protocol in [20] which is claimed to be
secure in their model. However we contradict that fact in this paper and propose
to modify it in order to improve the security.

Our contribution in this paper is as follows: 1. We show that the protocol
proposed by Kleber et al. [20] is not secure against Terrorist Fraud which contra-
dicts the claims from their authors; 2. We provide some slight modifications of
this protocol which we call pufDB to improve its security; 3. We provide proofs
of security for this pufDB protocol for the following attacks: Distance Fraud and
Mafia Fraud ; 4. We prove the security of pufDB protocol against Terrorist Fraud
when the prover is limited in the amount of bits per round he can send. The
security strengthens when the distance from the prover to the verifier increases.
To the best of our knowledge, pufDB is the first protocol which provides TF
security even when the prover is allowed to leak his secret.

Due to limited space, proofs of our results are deferred to the full version of
this paper [17]. The full version includes the analysis for two other threat models:
impersonation fraud and distance hijacking. It also describes some attacks to
lower bound the necessary number of rounds for security.
1 In this protocol, the PUF is not used during the fast phase, so the malicious prover

can give whatever is needed to complete the protocol to a close-by adversary.
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2 The Kleber et al. Protocol

2.1 Details of the Protocol

The verifier is called V and the prover P. The main idea of the protocol proposed
by Kleber et al. [20] is to replace the PRF in P of conventional Distance Bound-
ing protocols by a PUF. In this protocol, it is possible to use both Challenge-
response PUF and a public PUF.2 The protocol is made of two distinct phases:
the preparation phase and the time critical phase.

Prior to the protocol, it is assumed that V can query the PUF and store a
number of challenge-response pairs (CRP ), at a round i such that ri = PUF (Ci).
A CRP is defined as (Ci, ri), 0 ≤ i < n with n the number of rounds. There is
always a set of CRPs corresponding to PC to complete the run. A set of CRPs
shall not be used in protocols more than once.

In the time critical phase, only one bit can be sent from V to P in a round.
However the PUF needs a big space of challenges to be secure. Therefore V
transmits a pre-challenge PC to P during the preparation phase. Then, in the
time critical phase, the pre-challenge is combined with the challenges ci received
by P to generate a challenge Ci = PC0...PCn−2−i||c0c1 . . . ci for the PUF. It is
assumed that the hardware is such that the PUF can precompute Ci and when
the prover receives the last bit of Ci he can return the response ri in almost
no time. The time critical phase consists of n transmission rounds. The verifier
V starts the clock when he sends a challenge ci and stops the clock when he
receives the response ri. In the paper, Tmax and Emax are defined. Tmax is the
maximal number of responses which can arrive too late. Emax is the maximal
number of errors admitted in the responses. (A late response is not checked.)

We note that if one ci is incorrectly received by P , then all subsequent PUF
computations will produce random outputs, independently from the expected
ri. So, this protocol is not tolerant to reception errors by P .

The protocol is claimed to be provably secure for all types of Fraud by Kleber
et al. [20]. They prove the security of their protocol using the model of Dürholz
et al. [11]. They only give a proof of security against Terrorist Fraud attacks. In
fact, in the model defined by Kılınç et al. [19], when the protocol uses hardware,
the proof that the protocol is secure against Terrorist Fraud attacks gives a proof
of security against all the other types of attacks. However, when there is no
additional restriction in the protocol, this protocol is insecure against Terrorist
Fraud attack as we show in the Sect. 2.2. To prove the security against Terrorist
Fraud, Kleber et al. assume that the probability for the adversary to win the
game is equal to

(
1
2

)n−Emax−Tmax . We contradict this assumption.

2 Normally, a PUF is non emulable so the verifier should first borrow the PUF to get
input-output pairs. To avoid it, we can use Public-PUF also called SIMPL system
(SIMulation Possible but Laborious). SIMPL systems guarantee that the response
to a challenge cannot be computed faster with a simulator of the PUF than with
the real PUF. Anyone can compute the right response but it takes much more time
with the simulator of the PUF.
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2.2 A Terrorist Fraud Attack

Notations. dV P is the distance between V and the far away prover P, tV P is the
signal propagation time between V and P (it is assume that dV P

tV P
is a constant

such as the speed of light); Similarly, dAP is the distance between A and the far
away prover P, tAP is the signal propagation time between A and P ; B is the
maximal distance allowed by the protocol, tB is the maximal signal propagation
time over the distance B; Finally, T is the time between sending two consecutive
challenges ci and ci+1.

In this scenario a malicious far away prover colludes with an adversary close
to the verifier. In the protocol of Kleber et al. the adversary receives PC from
the verifier. He can send it to the malicious prover who holds the PUF. There
is no information concerning the distance dAP between P and A nor about the
time T in between rounds. A forwards every message from V to P . To answer
a challenge ci on time, P is missing m bits. He computes 2m PUF values and
sends them to A so that A will always be able to respond on time. For instance,
if tm denotes the time it takes for P to compute the 2m values and to transmit
them to A (without time of flight), the attack works if

tAP + tV A ≤ tB +
(mT − tm)

2
(1)

As an example, with m = 1, P has two PUF values to compute and to send
and the condition is tAP + tV A ≤ tB + T−t1

2 . Since there is no information on
dAP , dV A and T , we can have dAP = B, dV A = B and T ≥ t1 + 2tB , in that
configuration Eq. (1) is true. Then A can pass the round if he is in the previous
configuration. He can pass all rounds with high probability, so the protocol is
not secure against Terrorist Fraud.

More concretely, we assume m = 1, B = 3 m and tB = 10 ns. We consider
V running at 1 GHz and have one clock cycle between rounds, so T = 1µs. We
consider a faster malicious prover P running at 10 GHz so that he can evaluate
two challenges with the PUF (corresponding to the possible challenges for m =1)
in tm = 200 ns. With dV A = B, the attack succeeds for tAP = 400 ns i.e. dV P =
120 m. The attack is possible because there is a huge amount of time between
the reception of ri and the emission of ci+1, but these figures clearly show it is
a quite realistic scenario.

2.3 Slight Modifications of the Protocol

We choose to slightly modify the protocol of Kleber et al. [20] to improve its
security. We call pufDB the new protocol. pufDB is presented on Fig. 1. First,
we impose a regular rhythm for sending the challenges, second, the (n − 1) bits
of PC are sent with the same rhythm as if there were challenges in the time
critical phase but expecting no answer. The prover begins to send responses
when he receives the first bit of challenge c0. With this slight change, we make
sure there is no more time left for attacks in between the transmission of PC and
c0 than there is in between the transmission of each ci and this time is bounded.
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Fig. 1. The pufDB protocol

Moreover, we assume that P cannot accept consecutive challenges separated by
time lower than T

2 , so, we cannot speed up P by sending challenges too fast.3

Finally, another modification is that we concatenate PC with the challenges
without dropping any bit. So, Ci = PC||c0...ci is of n + i bits. This guarantees
domain separation for the functions computing the responses. So, to summarize,
we use the three following requirements: 1. The elapsed time between sending
each bit of PC||c0...cn−1 by V is exactly T ; 2. The elapsed time in between
receiving two consecutive bits by P is at least T

2 ; 3. PC is concatenated to c0...ci
without dropping any bit.

We denote by t0 the time when the verifier sends c0 to the prover. So ci is
sent at time t0 + iT and PCi is sent at time t0 + (i − n + 1)T .

Lemma 1 (Number of missing bits). For each round i, the number of chal-
lenges which did not arrive yet to the far away prover P when it becomes critical
to send the response ri is m = �2( tV P −tB

T )�. The number of possible Ci is 2m.

3 Distance Fraud Analysis of PufDB

To prove resistance against Distance Fraud attacks, it is necessary to prove that
a far away prover P who holds the PUF has a negligible probability to win the
game presented in Sect. 2. The idea of a Distance Fraud attack is to find a way
for the far away prover P to send ri such that it arrives on time to V. To arrive
on time, the response ri should be sent before receiving the challenge ci. So,
there are chances for the response to be wrong.
3 We allow challenges to arrive faster than a period T to capture the Doppler effect

when P moves towards V . With T
2

as a limit, P can move at 20 % of the light speed!.
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Theorem 1. We use m from Lemma 1. We define qm =
∏m

l=1 pl
1
m for pl =

1
2 + 1

2 × 1

22l

(
2l

2l−1

)
, in a DF-attack, we have that

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
qm

n

For 2(Emax + Tmax) ≤ n any DF-attack is bounded by

Pr(win the game) ≤ e
−n×

(

2( 1
2−Emax+Tmax

n )2−ln(2qm)
)

= boundDF

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn and α + β < 0.049
then, boundDF is negligible.

Here is the table of the first values of qm:

m 1 2 3 4 5 6 7 8 9
qm 0.75 0.7181 0.6899 0.6657 0.6454 0.6283 0.6141 0.6022 0.5921

So depending on m, qm smoothly goes from 3
4 to 1

2 as m grows. pl decreases and
tends towards 1

2 , so qm decreases and tends towards 1
2 as well.

For m ≥ 2n − 1, we can have a better bound. The adversary has no bit to
compute the PUF (not even the bits of PC), so we can redo the analysis and
obtain

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
pn

n ≤ e
−n×

(

2( 1
2−Emax+Tmax

n )2−ln(2pn)
)

These results are unchanged when using a public PUF.

4 Mafia Fraud Analysis of PufDB

To prove resistance against Mafia Fraud attacks it is necessary to prove that
if an honest far away prover P holds the PUF, an adversary close to V has a
negligible probability to win the game presented in Sect. 2.

We prove security against Man-in-the-Middle (MiM) attacks. We first infor-
mally describe what is the best possible attack. A is a malicious actor. Before
receiving a challenge ci from the verifier V, he sends a guessed challenge c′

i to
a far away prover P. He receives r′

i from the prover. If c′
i = ci then the adver-

sary sends r′
i to the verifier. In this case, the adversary wins the round with

probability 1.
Pre-asking gives an extra chance to pass a round. But if one ci is incorrectly

guessed, any subsequent pre-asking request will return some useless random bits.
So the best strategy is to start pre-asking until there exists a round i such that
c′
i �= ci, then to continue with the impersonation attack strategy.

We have not considered replay attacks because A has no time to begin any
other instance of the protocol if P does not answer at frequency larger than T

2 .
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Actually, let V be the distinguisher verifier in a MiM attack and PC the value
that he sends. As the PUF is held by a single participant, there are no concurrent
sessions for P . Sending ci to P takes at least (n+1)T

2 time but during this time,
the session for V terminates. So, only one session of P receives ci, for each i.

Theorem 2. In any MiM attack, we have

Pr(win the game) ≤
(

1
2

)n+1−Tmax

×
Emax+1∑

i=0

(
n + 1 − Tmax

i

)

This is bounded by e−2(n+1−Tmax)×( 1
2− Emax+1

n+1−Tmax
)2 when 2Emax + Tmax ≤ n + 1.

For Emax ≤ αn, Tmax ≤ βn, and 2α + β < 1, this is negligible.

Using a public PUF just adds a negligible term in the bound.

5 Terrorist Fraud Analysis of PufDB

In Terrorist Fraud attacks, an adversary A colludes with a far away malicious
prover P to make V accept. Without any limitation on the power of the verifier
the protocol is insecure against TF. In our model, the prover is limited on the
communication complexity. With this limitation, the prover can compute all the
challenges but he has a limitation on the amount of bits he can send to A. He
can compress the 2m bits of the table of responses for each round into s bits and
send to A the compressed version. From the s bits received and the challenge
sent by V , A can try to recover the response.

Lemma 2. Let s and l be two positive integers and N = 2l. We define pl,s =
1 − 1

N E(minC d(f, C)) where f is a random boolean function of l-bit input and
the minimum is over sets C of up to 2s elements. We define

p∗
l,s = 1 − 1

2N

R+1∑

i=0

i

N
N ′

i , p̄l,s =
1
2

+
1√
N

×
(√

s ln 2
2

+

√
2
2s

+
1
N

)

+
1
N

where R is the maximum value such that
∑R

i=0 2s
(
N
i

) ≤ 2N and N ′
i = 2s

(
N
i

)
for

0 ≤ i ≤ R, N ′
i = 0 for i > R+1, and N ′

R+1 = 2N −2s
∑R

i=0

(
N
i

)
. We have pl,s ≤

p∗
l,s. For s ≤ 2l

2 , we also have p∗
l,s ≤ p̄l,s.

Theorem 3. We use m as defined in Lemma 1. We assume that the malicious
prover is limited to s bits of transmission per round to the adversary in a TF-
attack. We use qm,s =

∏m
l=1 pl,s

1
m and we have

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
qm,s

n
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where pl,s is defined in Lemma 2. For 2(Emax + Tmax) ≤ n a TF-attack has a
success probability bounded by

Pr(win the game) ≤ e
−n×

(

2( 1
2−Emax+Tmax

n )2−ln(2qm,s)
)

= boundTF

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn then the protocol is

secure when α + β < 1
2 −

√
ln(2qm)

2 .

Using a public PUF just adds a negligible term in the bound.
We have the following relation:

Packet transmission time =
Packet size

Bit rate

The adversary succeeds to send s bits when dAP

c + s
Bit rate ≤ T with dAP

c the
packet traveling time is in ns, this is negligible compared to T in μs. So, we get
the relation s ≤ Bit rate × T . For wireless communication, the maximal bit rate
is of order 1 Gbps and we define T = 1µs. So the prover can send maximum
s = 1000 bits to the adversary. So the maximal s is s = 210.

For a noisy communication such that Emax = 5%n and Tmax = 0 with
s = 210, if the prover is close to the verifier (m ≤ 18), pufDB cannot be proven
secure against TF-attacks.

If the prover is close to the verifier then he can help the adversary in doing
the authentication himself or in giving directly the device to the adversary. So,
we can assume that the prover is quite far from the adversary proportionally to
the distance allowed. For instance, if we consider that dV P = 3000 m, B = 3 m,
T = 1µs and the speed of the light c = 3.108 m.s−1 we get tB = 10 ns and
m = 20. For s = 210, we obtain qm,s = 0.7917 so the protocol achieves a security
level of 2−10 in 110 rounds, and 2−20 in 307 rounds.

If we can lower T to T = 100 ns and tB = 10 ns then the prover can send at
most s = 27 bits to the adversary and we have security for a noisy communication
with Emax = 5%n and Tmax = 0 for m ≥ 15 which corresponds to tV P > 71tB .

Table 1. Efficiency of the protocols against DF and MF for completeness 99% under
noise 5% (Tmax = 0)

Protocol n (security level of 2−10) n (security level of 2−20)

SKI 48 91

FO 84 151

DBopt (DB2,DB3) 24 43

pufDB (m = 1) 345 474

pufDB (m > 2n− 1) 26 45
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6 Conclusion

Until pufDB, none of the existing protocol has provided Terrorist Fraud resis-
tance in the plain model without assuming that the adversary would not share
his secret, which is not a realistic assumption. The protocol of Kleber et al. is
not secure against Terrorist Fraud attacks. pufDB is an improvement of this pro-
tocol. We prove security against Distance Fraud and Mafia Fraud. We further
prove the security against TF using a reasonable limitations on the number of
transmission per round.

We compare with other distance bounding protocols. The parameters in
pufDB, SKI [5,6], FO [13,24] and DBopt [7] are taken such that the proto-
cols achieve 99% completeness with a noise of 5 % as it is described in [7]. If
we take the worst case for pufDB (i.e. m = 1), pufDB needs more rounds than
the previous protocols to achieve the same security level. However, for m large,
pufBD is more efficient than SKI and FO to achieve security against DF and
MF and it almost reaches the optimal bounds of DBopt (Table 1).

Acknowledgments. The authors thank Negar Kiyvash and Daniel Cullina for their
valuable help in the proof of Lemma 2.
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Abstract. Location Based Services (LBS) is often used in applications
that allow users to interact with the environment and query for the
location of persons, objects and services. However, such systems may
undermine user privacy since the frequent collection of location data
may reveal considerable information about an individual’s daily habits
and profile. In this work, we present our Deniable-LBS scheme which
gives users the ability to deny being in a particular location even if this
location has been monitored by an internal or external party.

1 Introduction

The rapid progression of mobile computing technologies, wireless communica-
tion, and location-sensing in recent years have inspired the development of appli-
cations that involve Location Based Services (LBS). Examples of such applica-
tions include navigation, finding places of interest, locating your friends, keeping
track of your pet or children, and so on. However, while these applications help
users with their day-to-day activities, they also raise serious privacy concerns
due to continuous tracking of a user’s location [1,2].

Typical LBS systems work by having clients log in to some server which then
pushes location updates to registered users. However, from a privacy point of
view such centralized solutions are unacceptable, as they give complete access
to user sensitive location information. Although decentralized solutions exist [3],
here we argue that a new level of privacy is needed to secure social interactions
offered by LBS systems. Consider for example the scenario where Eve, a friend of
Bob, records and subsequently distributes the complete location traces received
from Bob (who he met, where, when, etc.) to his wife Alice. Or the case where a
government agency, after collecting all (encrypted) transcripts of communication,
obtain access to user’s cryptographic keys, thus being able to tie a person to a
particular location [4].

As existing solutions (see [5] for a more general survey) focus on securing
the interactions between a user and the service provider and/or between the
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users themselves, they implicitly consider a person’s communication partners as
trusted. While such interactions need remain personal, the use of cryptographic
mechanisms that lack repudiation may lead to privacy breaches as explained
above. Hence our main focus is towards providing deniability in LBS services.
Our contributions can be summarized as follows:

– We developed a protocol “Deniable-LBS” that allows users to share live loca-
tion data without the privacy implications mentioned above.

– Our protocol does not rely on Trusted Third Parties (TTPs). This is achieved
by using a P2P network topology. Members of our LBS System, connect with
each other by using online users as a reference instead of a central server.

– We guarantee privacy against internal and external threats.
– We ensure that when communication between parties is over, no one (not even

the parties involved) can (re)produce a transcript of this interaction.
– We optimize the protocol by allowing users to join and leave an existing session

without the need to re-run the protocol from scratch.

The rest of this paper is organized as follows: Our proposed scheme is intro-
duced in Sect. 2. We evaluate its properties from both a security and efficiency
point of view in Sect. 3. Finally, Sect. 4 concludes this work.

2 Deniable-LBS Scheme

We start by modeling our system by denoting P the set of protocol participants
{U1, U2, U3, ...Un}, where at anytime, a subset of P may decide to create a
group in order to exchange location information. We assume the existence of a
broadcast channel that can be used to exchange protocol messages among users.
Once a message is broadcasted, anybody can read it. Thus, this public channel
acts like a bulletin board where messages can be read by protocol participants.
Alternatively, arbitrary point-to-point connections among participants can be
assumed. However, in both cases, the network is considered to be non-private
and asynchronous. In the sequel, we assume that each user Ui ∈ P has a set
of public-private keys (PKi, SKi), where the public key PKi is available to
other protocol participants in a trustworthy manner. To obtain our Deniable-
LBS system, the following key properties need to be ensured:

– Only users participating in a particular session should be able to see each
other’s location data. After executing our protocol, a shared group key will be
derived, which can be used to ensure confidentiality.

– Authentication is required in order for participants to have a consistent view of
entities taking part in a protocol run. Group members should be authenticated
directly and not with the help of any third party.

– Ephemeral public/private keys will be used to authenticate a user to others,
help distinguish messages coming from different participants and successfully
authenticate location data.
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– Most importantly, in the context of Deniable-LBS users should have the ability
to repudiate being in a particular location even if everyone in the system is
saying otherwise.

Our proposed scheme functions in a straightforward manner. Any user that
would like to share his/her location with other users would have to create a
group. We provide confidentiality and authentication among different groups
by using a shared group key and ephemeral private/public keys which will be
derived by group members using the Deniable-AKE protocol. This protocol is
based on a protocol originally proposed by Bohli and Steinwandt [6] along with
improvements from Van Gundy [7]. Our protocol extends these results by allow-
ing users to leave and join the group dynamically without having to re-run the
whole protocol again. Each location sent by a user will be signed with his/her
ephemeral key and encrypted using the session group key. Finally upon dispers-
ing of the group, members will publish their ephemeral keys to create plausible
deniability. The protocol is structured in four main phases.

Deniable-AKE [6]: In the first stage (Deniable Authenticated Key Exchange),
users will agree and authenticate all parameters that will be used in the protocol.
Additionally, a shared group key Ski for a subset of participants Pi will be
derived along with the generation, exchange, and authentication of ephemeral
keys. A snapshot of the protocol is shown in Algorithm 1.

Location Sharing: The majority of communications takes place in the second
phase. The main objective in this stage is to ensure that current group members
can share confidential information (location, messages, etc.) with the assurance of
origin authentication. Any member who wants to share his/her location L would
have to do the following: encrypt the location using the group key Ski, sign the
encrypted location using his/her ephemeral signing key si, and finally broadcast
the resulting message to the group. Any member who receives a message from
a group participant would have to check first if the location received has been
tampered with, then proceeds to decrypt the location.

Joins and Leaves: The objectives of this stage are to allow members to join and
leave existing groups dynamically. In both cases, the session key for the group
must be updated in order to protect previous transcripts from the users who are
about to join and future transcripts from the users who are about to leave.

The Join procedure starts by selecting two neighboring members p and q from
the old session group to act as representatives in order to establish a new session
group key. The representatives and the new members will form a new group by
structuring themselves on a ring topology, requiring that the representatives also
remain as immediate neighbors in the new group.

More formally, we consider a group of m+2 users {Û1, Û2, . . . , Ûm+2}, where
(Û1, Û2) = (p, q) and Ûi+2 = Ui+n, for i = 1, . . . ,m. This new set of users
will invoke Deniable Key Agreement previously mentioned to establish a new
intermediate group NG. Thus, each user Ûi will generate a new key share k̂i,
an ephemeral private-public keypair (ŝi, Ŝi), and a Diffie-Hellman key for the
circular key agreement (x̂i, ŷi = gx̂i) as per the requirements of the algorithm.
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Algorithm 1. Deniable-AKE(P )
Input: Group of participants P , Participant identities pid, generator g, secure hash
function H(x)
Output: Session Key Sk, Session Identifier Sid and Ephemeral Public Keys Si.

1: for all Ui ∈ P do
2: (Si, si) = Sig.GEN() � Ephemeral public-private key pair

3: ki
R←− {0, 1}k � k-bit random number

4: xi
R←− Zq, yi = gxi

5: Send: M1
i = (H(ki), yi, Si, Ui) � To all participants

6: for all Ui ∈ P do
7: Sidi = H(pidi ‖H(k1)‖H(k2)‖ H(k3)‖ · · ·‖H(kn))

8: ri
R←− Zq, zi = gri

9: Send: M2
i = (Sidi , Ui, zi) � To all participants

10: for all Ui ∈ P do
11: tli = H(yxi

i−1) = H(gxixi−1)
12: tri = H(yxi

i+1) = H(gxixi+1)

13: Ti = tli ⊕ tri
14: Send: M3

i = (ki ⊕ tri , Ti, Ui) � To all participants

15: for all Ui ∈ P do
16: Compute Q = T1 ⊕ T2 ⊕ ... ⊕ Tn. If Q �= 0 then abort
17: Extract( ) � Extract ki from all members
18: if not (S1 �= Sj . . . �= Sn for all j ∈ {2, . . . n − 1}) then
19: abort � Ephemeral public keys not different

20: Ski = H(pidi ‖k1 ‖k2 ‖· · ·‖kn)
21: Sconfi = H((y1, S1, k1)‖· · ·‖(yn, Sn, kn))
22: ci = H(Ski||Sconfi) mod q
23: σi = Sig.Sign(si, ci) � Proving knowledge of ephemeral signing key si
24: di = ri − ci · αi � Schnorr signature of challenge ci
25: Send: M4

i = (di, Ui, σi) � To all participants

26: Verify: zj = gdj (PKj)
ci , ∀j ∈ {1, 2, 3, . . . , n}\{i}

27: Verify: Sig.V erify(Sj , ci, σj), ∀j ∈ {1, 2, 3, . . . , n}\{i}

However, one of the representatives (the one who is the right neighbor of the
other representative in the old group – in this case Û1), will use the hash of the
previous session key skold for its Diffie-Hellman key: x̂1 = H(skold), ŷ1 = gx̂1 .
Users {Û1, Û2, . . . , Ûm+2} will then follow the steps dictated by Deniable-AKE to
create a new deniable session with a new group key sknew. The only requirement
needed in order to allow old members U2, . . . , Un−1 to recover sknew is that
when a broadcast takes place, we consider this information to be available to
the old members as well. Hence old members can verify proper execution of the
steps, check the signatures and obtain the ephemeral keys of the new members.
Additionally, from the values transmitted they now have: the Diffie-Hellman
public key ŷi = gx̂i , T̂i = t̂li ⊕ t̂ri and k̂i ⊕ t̂ri , for all users Ûi.

The Leave procedure starts by first updating the ring topology to reflect the
new neighborhood structure of nodes. The intuition behind this procedure is
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that existing members only have to agree on a new group key to ensure privacy
of future interactions. Hence, they don’t have to run the deniable agreement
protocol again since they already possess deniable but authenticated credentials
(e.g. their ephemeral keys – details omitted due to space restrictions).

Closure: Finally, an implicit fourth phase takes care of group dispersing when
all members decide to leave the group or when there is a time limit for keeping a
session alive. In that case all members will just have to publish their ephemeral
private keys, thus ensuring plausible deniability of their whereabouts.

3 Analysis and Evaluation

We start by analyzing the complexity of the different procedures in terms of mes-
sages transmitted, exponentiations computed and hash operations performed.
Deniable-AKE: Assuming a total of n users, Algorithm 1 exerts a total of 7n
hash operations, 6n exponentiations and 4n message broadcasts.
Join: The Join algorithm requires only n − 1 hash operations and n − 1 expo-
nentiations, where n is the number of participants in the old group. Assuming
m new members and n old members calling the Join procedure, the total cost,
including the execution of Deniable-AKE on m+2 users, amounts to 7m+n−13
hash operations, 6m+n+11 exponentiations and 4(m+2) message broadcasts.
Leave: Since the Leave procedure only requires remaining group members to
generate a new group key, it can be shown that Leave will require at most 8m
hash operations, 8m exponentiations and 5m message broadcasts.

Finally, Table 1 illustrates a comparison of our proposed protocol with
mpOTR, showing the number of operations each participant must perform.

Table 1. Comparison with mpOTR [8]

Protocol Messages Hash Symmetric Symmetric Signature Scalability

generation encryption

Deniable-LBS O(n) O(1) O(1) O(1) O(1) Yes

mpOTR O(n) O(n) O(n) O(n) O(n) No

We implemented a prototype of our proposed Deniable-LBS scheme in Java.
We relied on SHA256, the Java built-in secure random number generator, and
we set |q| = 224 bits, i.e. the order of the cyclic group and the size of the random
numbers used throughout. For exchanging authenticated information during the
actual communication of location data, we relied on ephemeral keys based on
RSA with a modulus of size 1024 bits. Figure 1 shows the latency in seconds of
our Join procedure over different group sizes. We measure latency as the time
required by Join so that all group members agree on the common key. The figure
demonstrates the savings obtained over re-running Deniable-AKE from scratch.
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Fig. 1. Performance evaluation of our Join protocol. Each data point in the plots is
averaged over 500 independent runs

4 Conclusions

In this work we presented Deniable-LBS, a proposal that offers privacy and
deniability in Location-Based Services against external entities, system providers
and also between communicating parties themselves. Our system complements
the usual privacy guarantees of typical LBS systems by ensuring that when
communication is over nobody can (re)produce a transcript of this interaction.
Thus, no group member can be linked to information that has been leaked or
illegally obtained. Hence, our protocol provides plausible deniability.

Acknowledgments. The authors would like to thank the reviewers for their useful
comments.
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Abstract. Cloud computing provides users with the possibility to store
their data in third-party servers. These data centers may be untrusted
or susceptible to attacks, hence they could return compromised query
results once interrogated. Query integrity has been widely investigated
in the literature, and a number of methods have been proposed to allow
users to verify that query results are complete (i.e., no qualifying tuples
are omitted), fresh (i.e., the newest version of the results are returned),
and correct (i.e., the result values are not corrupted). In this paper,
we identify a specific scenario in which classical techniques for query
integrity appear little suitable and we propose a new solution to overcome
these drawbacks. The scenario considered, instantiated in a realistic video
surveillance setting, is that of data streams in which append operations
and range queries are dominant, and the efficiency is a critical factor.

Keywords: Cloud computing · Range queries · Integrity

1 Introduction

Cloud computing has recently emerged as an innovative paradigm leading
towards the availability of ubiquitous access to resources and computation capa-
bilities to everyone. This raises significant drawbacks in terms of data security
and privacy [1,3,10]. Indeed, users cannot have any assurance about the integrity
of query results on data saved in the cloud, because servers can be malicious,
hacked or lazy [6,7,11].

The term integrity means that results has to be (i) complete, i.e., no record
satisfying the query conditions is omitted in the response, (ii) fresh, i.e., the
results refer to the latest version of the database, and (iii) correct, i.e., the
result records are not corrupted.

In the literature, all the existing solutions for query integrity mainly belong
to two kinds of families: probabilistic and deterministic [10]. The first family is
composed of techniques providing probabilistic models to detect integrity viola-
tions [2,4,12]. As for the deterministic approaches, which our proposal belongs
to, they detect integrity violations with certainty relying on some additional data
that the server should add to the response [5,8,9,13].
c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 719–724, 2016.
DOI: 10.1007/978-3-319-48965-0 50
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In this work, we propose a new approach for the verification of query result
integrity in cloud. In our work, we make explicit reference to a scenario with
a network of battery-powered cameras (such as drones, micro-drones, insect spy
drones) that monitor a high size area and store images into a cloud server.
Besides allowing data storage, this server provides an interface to access data
and to perform query processing on behalf of the data owner, who adminis-
trates and analyzes query results in accordance to specific application-related
requirements. Due to the battery-powered nature of the cameras, the recording
is enabled only on request to allow battery saving. As battery saving assumes
a very important aspect, excessive computation on recording sensors should be
avoided. Our proposal reduces from logarithmic to constant the space and time
complexity of insertion operations, yet maintaining the same complexity as the
approaches of the state of the art for verifying the integrity of query results.

In the next section, we briefly present the core of the approach. Due to space
limitations, we do not include in this paper the security analysis showing that
query completeness, freshness, and correctness are guaranteed.

2 Description of the Approach

Our approach to verify query-result integrity can be classified as a deterministic
technique [10]. This type of approach makes use of authenticated data structure
and allows the verification of a query result through verification objects that
should be included in the results. In the following of this section, we will present
our scheme in detail. We start by introducing some basic definitions.

Definition 1. Given a camera device si, we define the image sequence generated
by si as: F i = {f i

t1 , f
i
t2 , . . . , f

i
tn}, where: (i) f i

tj is the image captured at the instant
tj for each 1 ≤ j ≤ n and (ii) tj < tj+1 (i.e., the instant tj comes before tj+1 in
time) for each 1 ≤ j < n. f i

tj is a tuple 〈a1, . . . , ap〉, where a1 = tj is the tuple
timestamp, and a2, . . . , ap are further attributes1. In words, an image sequence
represents a track associated with a camera device and independent sequences for
different devices are maintained. Each image together with all support attribute
is stored as a new tuple in the database. Therefore, throughout the paper, we
will refer to a tuple as an element of an image sequence.

Definition 2. Given two instants tl and tu with t1 ≤ tl ≤ tu ≤ tn, a range query
Qi(tl, tu) on F i asks for all the images f i

tx such that tl ≤ tx ≤ tu.

Basically, a range query is defined as a request to obtain all the images
recorded by a given device si during the interval [tl, tu], where tl and tu, with
tl ≤ tu, are valid timestamps during the device recording lifecycle, i.e., its total
recording interval [t1, tn].

Given a device image sequence F i, our approach works by organizing tuples
associated with F i in a chain. The link between two elements is built so that
1 Examples of such attributes are geographic coordinates, coding, and resolution (their

exact definition is out of the scope of this paper).
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the owner can always verify the chain validity. Specifically, given an image
f i
tj = 〈a1, . . . , ap〉, our approach modifies it by adding an attribute encoding

a link towards the next tuple in our database according to the timestamp
value. Therefore, the modified tuple has now the following structure f̂ i

tj =
〈tj , attr2, . . . , attrp,MAC〉, where the attribute MAC is a message authentica-
tion code and is computed by means of the function HMAC(v,Ki) implementing
the HMAC protocol with SHA-256 as cryptographic hash function, v = (f i

tj ||e),
Ki is a secret shared by the si camera and the data owner, and e can be either
the next tuple f i

tj+1
of si, or a special element defined hereafter. Indeed, the

chain is completed with the insertion of dummy entries representing markers
that are used to both validate the head of the chain and to reduce the integrity
verification costs by splitting F i in time buckets. These elements are pre-added
in the database and are known to all the actors involved in our scenario (i.e.,
they are part of the public scheme of our protocol). Figure 1 shows the structure
of the chain where dashed elements dTw

. . . dTw+1 represent markers, whereas the
grey ones are normal tuples.

Fig. 1. An example of the chain of a single device image sequence

Concerning the markers, they have the following basic structure: dTw
=

〈Tw, IDb〉, where Tw is the marker pre-fixed time (i.e., Tw is chosen by the
owner during the system initialization phase), and IDb is the bucket iden-
tifier. Clearly, each marker has also to maintain different attributes, namely
MAC1, . . . ,MACn, representing links to devices s1, . . . , sn, to complete the
integrity chain described above. Therefore, the complete structure of markers
will be: d̂Tw

= 〈Tw, IDb,MAC1, . . . ,MACn〉, where MACi is a message authen-
tication code associated with the device si and is computed by means of the
function HMAC(vi,Ki) implementing the HMAC protocol with SHA-256 as
cryptographic hash function, vi = Tw||IDb||e, Ki is a secret shared by the si
camera and the data owner, and e can be either the next si tuple f i

tj+1
(the first

tuple in the corresponding bucket) or the next marker dTw+1 .
According to our scheme, the number of markers and their time position

(Tw) are established on the basis of the database life period: the marker time
positions can be simply uniformly distributed in the whole database life period
or can follow specific patterns decided by the owner. For instance, he may
decide to intensify the number of markers during specific time intervals, such as
rush hours or critical daily moments. Initial marker values are stored in m tab.
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During this phase, all system entities are informed of the exact position of each
marker. Observe that, in this initialization phase, the values of each attribute
MACi is set to null.

Now, if the camera si wants to insert a new tuple, the procedure is as follows.
In the initial phase, no previous tuples have been inserted so the table associated
with the camera sequence F i, say si tab, is empty. In this case, si has to
link the new tuple to the marker with the higher time position Tw such that
tj ≥ Tw, where tj is the tuple timestamp. Therefore, once the right marker has
been found, si will perform an update on m tab to set the attribute MACi =
HMAC(dTw

||f i
tj ,Ki) of the marker d̂Tw

. After this, it inserts the new tuple in
si tab with its MAC attribute set to null and also stores it altogether with the
time position Tw+1 of the next marker in its local memory. The memorization of
these parameters is useful for future insertions as will be clearer in the following.
Observe that, we assume that the data owner can always read the device on-
board memory, thus at every moment he can know the timestamp of the last
tuple inserted by each device.

Consider now the case in which a device, say si, has to insert a new tuple
in a non-empty table. Let tj be the timestamp of the last inserted tuple and tz
be the timestamp of the tuple being inserted. Moreover let Tw+1 be the marker
time that si stored in its local memory during the previous insertion and Tw+2

be the next marker, we can identify three possibilities:

1. tz < Tw+1. In this case, the new tuple will belong to the existing bucket
delimited by markers with time position Tw and Tw+1. Therefore, to maintain
the chain, the tuple will be linked to the previous inserted element. To do so,
the device performs an update on si tab to change the MAC attribute of the
previous inserted tuple from MAC =null to MAC = HMAC(f i

tj ||f i
tz ,Ki)

and insert the new tuple in the database. Finally, it update the last inserted
tuple in its local memory.

2. Tw+1 ≤ tz < Tw+2. The tuple will belong to a new bucket right next the
current one; then, si will perform an update on si tab to change the MAC
attribute of the previous inserted tuple from null to HMAC(f i

tj ||dTw+1 ,Ki),
an update on m tab to set MACi = HMAC(dTw+1 ||f i

tz ,Ki) for the row cor-
responding to the marker with time position Tw+1. Finally, it inserts the new
tuple in si tab with the MAC attribute set to null and also stores it alto-
gether with the time position Tw+2 of the next marker in its local memory.

3. tz ≥ Tw+2. In this case, the tuple will belong to a new non-adjacent bucket;
therefore, starting from the marker with time Tw+1, si has to find the marker
with the higher time position Tw+q (with q > 1) such that tz ≥ Tw+q. Then,
si will perform an update on si tab to change the MAC attribute of the
previous inserted tuple from null to HMAC(f i

tj ||dTw+1 ,Ki), two updates
on m tab, the first to set the attribute MACi = HMAC(dTw+1 ||dTw+q

,Ki)
for the row corresponding to the marker d̂Tw+1 and the second to set the
attribute MACi = HMAC(dTw+q

||f i
tz ,Ki) for the row corresponding to the

marker d̂Tw+q
. Finally, it inserts the new tuple in si tab with the MAC
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attribute set to null and also stores it altogether with the time position
Tw+q+1 of the next marker in its local memory.

Our approach implements also an aging mechanism for automatically deleting
older tuples to limit the database size. Deletion is carried out only on discrete
time intervals, i.e., only the removal of an entire non-empty bucket at a time is
allowed. In this mechanism, the markers play a key role. Indeed, as only discrete
deletion is allowed, each marker represents a milestone maintaining device chains
when previous elements are removed. Data owner can always compute the first
marker in the database still valid.

Suppose the data owner submits the range query Qi(tl, tu), meaning that all
snapshots recorded by the device si in the time interval [tl, tu] should be returned
intact as result. Our protocol enforces that the query processor module, cloud-
side located, returns the tuples belonging to all the buckets involved in the
interval [tl, tu] along with all the markers linked to elements of such buckets.
Moreover, as additional information, the data owner knows the time position of
each marker and, for each device, knows the last tuple inserted in the database.
Observe that, this requirement is easy to satisfy because all devices have an
internal memory in which this information is stored and we assume that the
data owner can access it at every moment. To verify the integrity of the result
obtained, the data owner performs the following steps.

(1) First, he verifies the head and tail of the chain. Specifically, as for the head
he verifies if the time value of the first marker, say Tf , is lower than or equal
to tl. Concerning the tail, instead, we can identify two cases: (i) tu is lower
than or equal to the time value of the last marker of the query result. In this
case the tail is verified and no further checks are required. (ii) tu is greater
than the time value of the last marker of the query result. In this case the
owner has also to verify if the last tuple stored by si is present in the query
result.

(2) Then, starting from the first marker, he verifies each chain link by iteratively
computing the MAC attribute of each element and comparing it with the
value returned by the cloud.

3 Conclusion

In this paper, we presented a scheme for the verification of range queries done
on untrusted servers of a cloud computing scenario. Our scheme enables users to
have proof of the integrity of query results in terms of completeness, correctness
and freshness. In the referred scenario, typical solutions, which are based on
digital signature schemes or Merkle Hash Tree, have drawbacks related to the
cost of data insertions, which our proposal overcomes. As a future development,
we plan to extend our work considering a more general case in which the insertion
and deletion of tuples in the database is not sequential w.r.t. the chosen attribute.
This enhancement will introduce further security issues to investigate.
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Abstract. There is a continuously increasing number of attacks on pub-
licly available systems in the internet. This requires an intensified con-
sideration of security issues and vulnerabilities of IT systems by security
responsibles and service providers. Beside classical methods and tools
for penetration testing, there exist additional approaches using publicly
available search engines. In this paper we present an alternative app-
roach for vulnerability analysis with both classical as well as subject-
specific engines. Based on an extension and combination of their func-
tionality, this approach provides a method for obtaining promising results
for audits of IT systems, both quantitatively and qualitatively.

1 Introduction

There is an continuously increasing number of attacks on publicly available sys-
tems throughout the last years.1 This results in a growing demand for security
audits of IT systems, both corporate internal as well as by external service con-
tractors. For this purpose, primarily classical tools such as Nmap or Nessus are
used. These tools share the common technique of directly contacting the tar-
get system. Depending on the test configuration, the tests passively scan for
existing vulnerabilities or actively try to exploit them. Information on potential
vulnerabilities are provided in terms of plugins.

The beforehand mentioned tools and services directly contact target systems
to scan for vulnerabilities. These days, there exists also indirect test techniques.
In preparation for eventual user (i.e., any internet user) search queries, exist-
ing internet websites are accessed in advance and the obtained information is
processed and indexed. Furthermore, beside classical search engines (e.g. Google
or Bing) there also exist so called subject-specific alternatives. Instead of index-
ing the main content of the websites, they specifically process the retrieved meta
information about systems, involved software and their versions. Hence, they
provide an interesting opportunity for collecting data for security auditors as
well as attackers, without revealing their identity.

In the following, classical search engines as well as subject area focused alter-
natives are presented and evaluated for the purpose of vulnerability analysis. On
one side, they are evaluated separately and on the other hand in combination to
each other. Finally the results are measured with respect to quality and quantity
and potential optimization opportunities are presented.
1 http://www.pwc.com/gsiss.
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2 Related Work

The usage of specially crafted queries for classic search engines with the inten-
tion to collect vulnerability information, so called “Dorks”, was presented by
Johnny Long in [2] as dork-analysis. Zhang et al. describe in [7] their work on
the quantitative evaluation of Google dorks. The evaluation carried out is pri-
marily concerned with the identifiable vulnerability types, their distribution and
potential countermeasures. The method used is not reproducible because raw
data used are no longer available. Several authors discovered the widespread
and daily usage of these dork analysis techniques predominately by botnets in
the underground.2

Shodan, a subject-specific search engine, was used by Radvanovsky und Brod-
sky in the SHINE project (SHodan INtelligence Extraction). The purpose of
SHINE was the investigation of vulnerabilities in industrial control systems (ICS)
systems. We optimized the detection rate of vulnerabilities based on Shodan raw
data. Here, an approach is used, that extracts identification information from
Shodan banner information and matches this information to existing vulner-
ability databases. This approach is also used by ShoVAT (Shodan-based vul-
nerability assessment tool), which was developed by Genge und Enǎchescu [1].
However, their primary focus is on runtime performance optimization and less
on qualitative aspects. For qualitative verification, only 40 university addresses
have been used as reference set. In addition, only an incomprehensible amount
of Nessus results were used for their comparison. Finally, banner information
retrieved from their test servers and routers, seem to be beyond the default
configuration of those devices with respect to vulnerability information.

Further related work in this area such as [3–6] was done by students under
our supervision.

3 Classical Search Engines

Information on the internet consists of more than 45 billion webpages3. Finding
relevant web pages and information is often not that trivial. For improving the
traceability of information and usability for users, the contents of individual
websites are systematically and automatically structured. This task is performed
by classical search engines such as Google or Bing. The world-wide dominance
of the search engine Google is more than 90 %4.

This section describes our approach and tool for evaluating vulnerability tests
with google dorks using the Google search engine. Beside the base search request
to the search engine, this comprises further post-processing of the retrieved
results for both improving the quality of detected vulnerabilities as well as a
reduction of false positives.
2 http://www.imperva.com/docs/HII The Convergence of Google and Bots
Searching for Security Vulnerabilities using Automated Botnets.pdf.

3 http://www.worldwidewebsize.com.
4 http://gs.statcounter.com.

http://www.imperva.com/docs/HII_The_Convergence_of_Google_and_Bots_Searching_for_Security_Vulnerabilities_using_Automated_Botnets.pdf
http://www.imperva.com/docs/HII_The_Convergence_of_Google_and_Bots_Searching_for_Security_Vulnerabilities_using_Automated_Botnets.pdf
http://www.worldwidewebsize.com
http://gs.statcounter.com
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Figure 1 shows the schematic structure of the implementation. The imple-
mentation requires as input the name of the domain to check. In the following
the individual stages of our tool are described in detail:

– Stage 1 requests the results from Google for a given dork list and the specified
domain as input. Basically, the list of dorks used for testing was created from
scratch, as existing Dork databases turned out to be outdated.

– Stage 2 processes the results obtained by Google. For this purpose, we devel-
oped filters using regular expressions to reduce the number of false positives.
As search engines ignore particular characters and returns also many findings
belonging to just one host, that only vary in the concerned subpath.

– Stage 3 finally reviews obtained results. Only for verification purposes, the
server is automatically contacted directly and the banner is retrieved. Sub-
sequently, the corresponding dork filter is reapplied to the banner data. This
provides confirmed vulnerability results.

Fig. 1. Google-based tool

We evaluated Precision and Recall of our results to provide a measurable
assessment of the approach. For evaluating the Precision, no domain filter was
used to limit the observation scope. This yielded 1,070 result entries from Google.
With the post-processing in stage 2 an amount of 686 entries could be eliminated
by the extended regular expression filter and 24 entries were identified as dupli-
cates. Ultimately, 360 vulnerabilities could be extracted, that were automatically
examined in stage 3. In this step, 200 results were confirmed as true positive
and 160 results as false positive, resulting in a Precision of the Google-based
tool of 55.6 %, as shown in Eq. 1.

Precision =
true positives

true positives + false positives
=

200
200 + 160

= 0.556 (1)

For evaluating the Recall of our approach, a second verification run with the
Google-based tool was executed. As described, this test was limited to the men-
tioned German domain scope, because here the vulnerabilities could be verified
manually.
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Recall =
true positives

true positives + false negatives
=

34
605 + 419

= 0.033 (2)

In summary, our optimized test approach archived a Precision of 55.6 %.
However, the Recall of only 3.3 % is rather small. According to our observa-
tions, we assume that a more comprehensive dork list will slightly increase the
Recall of the method. Another negative impact is indepted to counter-measures
of the Google search engine. Basically, this testing approach for vulnerabilities is
not promising as comprehensive penetration testing tool due to the insufficient
accuracy rate. Nevertheless, as complement to traditional penetration testing or
for the purpose of a fast detection of zero-day vulnerabilities, this methods is
still of interest.

4 Subject-Specific Search Engines

In contrast to previously introduced classical search engines, this type scan the
internet specifically in a defined subject area, such as hosted services, SSL/TLS
vulnerabilities up to concrete vulnerabilities in the involved software. Similar
to classical search engines, the obtained information is internally processed and
aggregated to provide users a fast and comprehensive response for their queries.
Shodan developed by John Matherly is the most famous search engine in this
area.

As part of our work, an approach has been developed to improve the detec-
tion of CPEs from Shodan banner information. Using CPEs, appropriate vul-
nerabilities are extracted based on Common Vulnerability and Exposure (CVE)
databases. Figure 2 shows an overview of this approach.

Fig. 2. Shodan-based approach

Figure 3 illustrates the schematic structure of the developed tool for detecting
and classifying vulnerabilities. Based on the input of the target domain, the final
result will be prepared containing vulnerabilities and their criticality level with
reference to IP address and port. Following, the tool are explained in more detail:
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– Stages 1 requests all information stored in Shodan for a particular domain.
This search query is called “host-search” request. The response is grouped by
IP address and port.

– Stage 2 extracts the IP address from the responses of stage 1 and perform
a “host” request at Shodan for each address. Tests have shown that these
requests contain further information about the IP address, such as vulnera-
bilities (based on CVEs).

– Stage 3 determines CPEs from raw data retrieved in stage 2, based on our own
self prepared data base. Compared to Shodan about 50 % more CPEs could be
retrieved. Additionally, more Level 4 CPEs could be determined; containing
not only product identifier but also its version information.

– Stage 4 loades available CVE information from NIST and processed for future
usages. This enables a mapping from CPE to CVE/CVSS in stage 5.

– Stage 5 links the obtained CPE information of stage 3 with information about
vulnerabilities (CVE/CVSS) from stage 4.

– Stage 6 is involved in the quality evaluation and prepares the comparison
results of an appropriate Nessus test run.

– Stage 7 finally automatically performs a quality evaluation based on the inputs
from stage 5 and 6, i.e., the information of the manually improved Shodan
results and the Nessus vulnerabilities.

For evaluating the Precision, a subdomain with 768 IP addresses was used.
The restriction resulted in 137 potential CVE findings, which were validated
manually against a targeted penetration test using Tenable Nessus. This con-
firmed all 137 results (true positives) and no refuted results (false positives),

Fig. 3. Shodan-based tool



730 K. Simon

eventuating in a accuracy of 100 % for the observed test range, shown in Eq. 3:

Precision =
true positives

true positives + false positives
=

137
137 + 0

= 1 (3)

The determination of the Recall is challenging as the actual number of exist-
ing vulnerabilities of the target systems is unknown and cannot be determined
with certainty. In addition, the findings of the Shodan-based tool are difficult
to quantitatively compare directly with Nessus. Therefore, several estimations
have to be considered for the following evaluation:

Recall =
true positives

relevant elements
=

79
401

= 0.197 (4)

The method revealed a maximum Precision of 100 %. The Recall rate of
19.7 % is acceptable, however, currently represents only an estimation and is
yet to be verified. In summary, the results are encouraging and better than
expected. Overall, with our Shodan-based tool a fast and inexpensive test for
vulnerabilities can be performed.

5 Conclusion

In this work, an alternative approach for vulnerability analysis using publicly
available classical as well as subject-specific search engines was presented. A
quality model and the consequent evaluation of the search engines enables the
categorization of these data sources with respect to result quality as well as
coverage. This provides a rating scale and an opportunity for future analysis.

In summary, potential vulnerabilities can be determined fast and efficient
using the presented approach. This method is also used by potential attackers.
Therefore, it should be considered to use this approach in combination with con-
ventional penetration tests and vulnerability analysis to provide a better detec-
tion of zero day attacks and a subsequent establishment of counter-measures.
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Abstract. We describe how to build a Language-Based Hypervisor
(LBH) that can run untrusted applications (or modules) inside secure
containers within a single language runtime instance. The LBH allows
execution of untrusted code at a fine-grained level while controlling access
to APIs, data, and resources. The LBH and untrusted applications are
written in the same language and run together as one process on top of a
single language interpreter or runtime. We use JavaScript as an example
and describe how LBH can be implemented at the language level without
modification to the runtime itself.

Keywords: JavaScript · Security · Containers · Isolation

1 Introduction

While JavaScript has long been used to build popular web applications and
browser extensions, JavaScript now has expanded to HTML5 mobile applica-
tions (e.g., WebView, Windows 8 Metro Apps), server-side applications (built
with Node.js, an extension of Chrome’s V8 JavaScript engine), and emerging
Internet-of-Things applications. The universality of JavaScript has accelerated
its popularity as JavaScript developers can now code everything from small IoT
devices on the front end to giant server farms on the back end.

The traditional client-side web has isolated web applications with mecha-
nisms provided by the browser (for instance, iframes). These mechanisms, how-
ever, do not exist in server and IoT JavaScript platforms like Node.js.

Furthermore, as JavaScript development is modular in nature it is common
to rely on third-party components and libraries. For instance, at the time of this
writing the npm registry (for the Node.js platform) hosts over a quarter million
packages. External modules run with the same privilege as the JavaScript inter-
preter as there is no good way to sandbox these modules within an application.
Needless to say, these modules may be malicious or vulnerable. Script injection
also is a problem on these newer platforms. Finally, applications running on these
JavaScript platforms run with same privileges as the platforms themselves.

In memoriam of Enrico, who passed away after this work, done as an intern at Intel.
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In some use cases, a single device may need to run JavaScript applica-
tions from different, mutually untrusting sources. Running these applications
on separate interpreters (or OS-level containers) is possible but would be
resource-intensive, and may be infeasible on smaller devices. However, running
such applications on a single interpreter instance exposes them to attack. These
issues are not unique to JavaScript – other scripting languages such as Python
also lack mechanisms for application confinement and isolation, let alone con-
finement of modules within an application.

In this paper, we propose a mechanism to isolate modules running inside
a single interpreter. We describe how to build a Language-Based Hypervisor
(LBH) entirely from the features provided in an interpreted or scripted lan-
guage. In terms of JavaScript, an LBH is a JavaScript application that can
transparently run multiple “worker” JavaScript applications and can securely
isolate them from each other and from the system, and can also monitor their
resource consumption. LBH also enables privileged code to run safely, according
to user-defined policy.

2 Background and Related Work

One way to achieve isolation is to run JavaScript applications or modules in
different processes and let the operating system provide the secure isolation.
There are two difficulties here. The first is the performance overhead of support-
ing multiple JavaScript interpreters. The second is that the initial attraction
of the JavaScript programming model lies in its program-once-runs-anywhere
nature. Relying on operating system constructs breaks this model as JavaScript
calls have to be replaced by inter-process communication mechanisms. Similar
solutions, but even more heavyweight, are running JavaScript applications in
different virtual machines, containers (e.g., Docker), or TEEs.

The Caja compiler is a tool by Google to securely embed third-party HTML,
CSS, and JavaScript in a website. To achieve application isolation, they build
containers similar to our containers. However, there are two differences. First,
Caja uses a web component called an iframe to securely load its code. An iframe
is an isolation component specific to web browsers and does not exist as a built-in
JavaScript feature. Second, the concept of a “hypervisor” that manages commu-
nication between multiple embedded scripts does not exist in Caja. Typically,
embedded third-party web pages run individually with minimum communica-
tion to the main web page or each other. In contrast, our LBH is designed to
control – but not eliminate – the interfaces between connected applications and
modules. Inter-component communication is essential.

In the academic literature, previous work has also concentrated on JavaScript
isolation in the web browser context. Akhawe et al. [1] describe JavaScript con-
tainers; similar to Caja, however, their work relies on HTML5 primitives, such as
iframe and windows.postMessage. These features do not exist in most JavaScript
device platforms. Bhargavan et al. [2] also describe some features of a secure
JavaScript container, but the containers described are limited in usefulness, for
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instance, the code cannot communicate with the other parties. Similarly, Maffeis
et al. [4] applies fully only to the web environment and can be implemented only
partially on most JavaScript platforms. Their work also does not discuss how
to securely communicate between two pieces of code without using an existing
HTML5 framework.

3 Design and Approach

Here we explain the conceptual design of LBH and its implementation for one
scripting language, JavaScript. LBH is designed as a container-based solution.
Each container confines a piece of worker code and isolates itself from being
accessed by any other worker code, much like an iframe for HTML5-based web
applications. In our design, we introduce a privileged container, code that is
responsible for carrying out privileged instructions (e.g., secure updates, secure
outgoing communication) on behalf of worker applications, as well as code to
store and protect sensitive information. We design the LBH to have one privi-
leged container with one-way access to the non-privileged containers. Applica-
tions running within a non-privileged container do not have access outside their
own container aside from certain, publicly defined APIs (see Sect. 3.1).

LBH is a framework that, given a set of JavaScript applications S running
on the same device, will transform S into a packaged application P that consists
of S and additional JavaScript logic to isolate applications in S from each other.
During the pre-deployment phase, LBH statically analyzes applications in S to
(1) detect and remove any global instances in the applications and (2) determines
privileged JavaScript APIs that are being used. This analysis is important to
build an API policy that controls which APIs are being used by the application.
During deployment the policy ensures that only those APIs are allowed to be
accessed and no others.

After statically analyzing the applications, LBH rewrites the applications in
S to perform certain operations. First, LBH generates shim code to redefine
functions that perform external module inclusion (e.g., require function). This
guarantees that access to resources via JavaScript APIs is always obtained via
downcall to the trusted container – hence enforcing the notion of least privilege.
Second, LBH rewrites the application to redefine certain JavaScript functions
used to carry out sensitive operations, such as creating outgoing HTTP requests
such as XMLHttpRequest(). By redefining such functions, any outgoing request
will now be equipped with a token to guarantee integrity and authority of the
request – the code added through rewriting will make sure the privileged con-
tainer intercepts each outgoing request and attaches a token to each request.

Once the application rewriting for S is done, LBH auto-generates the logic for
the privileged container. LBH also generates the code for the worker containers:
function wrappers with empty content. As a final step, LBH copies the rewritten
application code in S into corresponding containers. The execution order of the
applications can be specified, if desired. At this point, the whole process results
in a packaged application P and is ready to be deployed into a device.
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3.1 Design Details

As a proof-of-concept, we show an approach for how LBH might be built with
the JavaScript language. The specific techniques used are highly specialized to
JavaScript, but we expect analogous techniques could be used with other lan-
guages. However, the main challenge is that this is a tricky area (see [3]), and
more analysis and testing is needed to build confidence that our specific tech-
niques block all possible ways to “break out” of a container. In this section, we
discuss container design for JavaScript, some of the possible ways of escaping
containers, and technical mitigations. Our discussion in this section is related
to, but different from, work by Bhargavan et al. [2] or Maffeis et al. [3].

One of the key challenges of building a logical container for these applica-
tions is to ensure memory safety. The JavaScript engine runs entire scripts in
the same execution environment, and therefore there is no in-built notion of
memory or process separation between two pieces of code. However, we can
isolate by leveraging existing JavaScript language features. The first step is to
provide separate namespaces by putting two pieces of code in two different func-
tion wrappers. Figure 1a shows how two pieces of code can be transformed to
protect their local namespaces from each other. The function wrapper acts as
a container for the application which automatically offers separate namespacing
for non-global objects in the code. However, this technique is not sufficient to
protect JavaScript code running in a container from being accessed by applica-
tions running in other containers. For example, malicious code could access all
the properties of the object using the keyword this, see Fig. 1b. This is harmful
because code in other containers can enumerate all the functions, get the source
code, or even execute targeted functions.

var obj = {
containerApp1 : function (){

// Application logic for App1
},

containerApp2 : function (){
// Application logic for App2

},
};

obj.containerApp1 ();
obj.containerApp2 ();

(a) Memory safety of code through
functions

var obj = {
containerApp1 : function (){

// Application logic for App1
},

containerApp2 : function (){
// list functions within obj
for(var x in this){
...
}

// Access App1
this.containerApp1 ();

},
};

obj.containerApp1 ();
obj.containerApp2 ();

(b) App2 accesses App1 using keyword
this

Fig. 1. Code examples
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To mitigate this problem, we first randomize the name of the function wrap-
per associated to each application. This way, the attacker cannot learn the func-
tion names of other applications. Second, we prevent all JavaScript code inside
the container from accessing the properties of variable obj in Fig. 1a using an
ECMAScript feature called Object.defineProperty. This feature defines acces-
sibility of a property in an object. For example, if a flag value of enumerable is
set to false for a property p, the property p will not be visible to the other scripts
during the enumeration process (e.g., enumerate properties using for-in).

Finally, we address global variables in workers. Global variables can be used
by the attacker as a channel to influence the value of non-global objects being
used in an application container or in the privileged container, breaking the
isolation between containers. To handle this problem, we randomize the variable
names used in applications before deployment. In addition, we can “monkey-
patch” every function call so that all calls are tied to the local this context,
using Function.prototype.apply instead of a direct function call. For non-
dynamically-generated code this can be done statically during a pre-deployment
phase and therefore will not affect the overall performance of the applications.

An application running in a non-privileged container should not have access
to JavaScript objects outside its container. Having an external reference could
potentially lead to an attack on the entire codebase through control of certain
critical JavaScript objects. The first line of defense against external references is
by restricting access to global variables, which we discussed previously. Next, our
bootstrap code executes a piece of JavaScript logic that performs an external ref-
erence cleanup process in order to prevent confined applications from obtaining
illegal external references.

Scoping rules in JavaScript by default let variables in the global context and
functions that wrap the container be accessible from the confined application.
Therefore, we need to place container variables and functions in a different func-
tion scope, not in the global context. However, there are certain objects that need
to be put in global context, such as an object message used as a messaging inter-
face for containers. For these kinds of objects, we make sure that properties of
those objects are not enumerable and writable using Object.defineProperty.

Another way of bypassing the external reference restriction is by making use
of the arguments.callee.caller property. This property gives access to all the
functions preceding an attacker’s function – and in particular, this includes func-
tions located in the privileged LBH container. We solve this issue by inserting one
line at the top of eachworker function.This line assignsnull toarguments.callee
so that the container code cannot access external references, see Fig. 2.

// rewritten code to hide arguments.callee
function f_in_worker (){

arguments.callee = null; // inserted during rewriting

// rest of the code
};

Fig. 2. Prevent recursive caller access from within a container
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JavaScript can dynamically create code at runtime through eval and new
Function(), and such code cannot be re-written in a pre-deployment analysis.
In particular, dynamically created global variables will not be handled by our
randomization and global variable removal process, which is done statically on
the source code. Global variables in general are not a recommended practice,
but dynamically creating variables can occur with obfuscated JavaScript code.
JavaScript obfuscation can use functions to dynamically create objects.

To address dynamically created global variables, one option is for the LBH,
during the re-writing process, to replace calls to eval and new Function()
with versions that would perform the re-writing process recursively at runtime
on strings passed into eval and new Function(). This would convert the global
objects to local objects and re-write invocations of arguments.callee.caller.
Of course, the simplest option would be to simply block dynamically created
code, although this breaks full compatibility.

4 Summary and Future Work

We have introduced the concept of Language-based Hypervisors (LBH), a priv-
ileged program for runtimes such as Node.js that can run multiple applications
and modules and securely isolate them from each other based on policy. Our app-
roach is rooted on concepts of language-based security, where language features
are used to add security to applications.

We see several areas for future study. Performance analysis of LBH is a key
concern, both for memory and execution time. Also, JavaScript containers are
very difficult to build (see [3] for examples of subtle problems in client-side web
JavaScript containers), and our proposed LBH would benefit from community
analysis and testing. We also plan to address the problem of denial-of-service
by a worker application “using up” the finite resources on the platform, such
as CPU time or memory. One idea is that LBH can insert code in loops and
function headers to instrument and control resource consumption. Finally, we
plan to extend the LBH concept to other languages such as Python.
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Abstract. The techniques used to enforce Internet Censorship vary, and
as a consequence the users can experience different results while access-
ing the same censored content in different contexts. While the corpus of
Internet censorship studies is growing, to the best of our knowledge we
are the first to focus on censorship detection on 3G/4G (hereafter mobile)
network operators. After an introduction on the censorship detection
platform and tests we adopted, we report the preliminary results of an
experimental campaign we performed in Italy using the five major mobile
operators. Our analysis shows that there is no homogeneity of treatment
for a censored resource across different mobile operators, with 99.5 %
of resources showing at least two different treatments, and the pairs of
operators differing in the treatment of 32.5 % up to 99.5 % of censored
resources. These results have significance regarding the transparency and
precision of censorship, and the possibilities for circumvention and detec-
tion strategies.

Keywords: Internet censorship · Censorship detection · Active mea-
surements · Mobile networks · Italy

1 Introduction

The regulatory action of governments over the access to online information has
fostered the practice of Internet Censorship, i.e. the intentional impairing of a
client application in reaching a requested resource or service, enforced by a third
party (neither the user, nor the server operator) [5]. Such action can produce
different effects, depending on the censoring technique, and often directly or indi-
rectly causes a communication error, giving the user the false impression that an
outage of some kind is the cause of inaccessibility. Moreover, the effectiveness,
the side effects, and the means for circumventing the censorship are all dependent
on the specific censoring technique that is applied. Finally, Internet Censorship

This work is partially funded by art. 11 DM 593/2000 for NM2 srl (Italy). This work
has been also carried out thanks to a Google Faculty Research Award for the project
UBICA (User-Based Internet Censorship Analysis).
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varies over time, national borders, and network infrastructure (access provider,
backbone networks). We have researched Internet Censorship in previous mea-
surement campaigns [3,4], and a corpus of experimental studies on this topic is
growing [6–10], often including detection methods and tools, but to the best of
our knowledge none has focused on censorship detection from mobile phones,
before this work. We refer to [5] for the definitions and an in-depth analysis of
the state-of-art of Internet Censorship detection. In this poster we present the
platform used, our methodology, and the preliminary results of our analysis of
censorship as enacted by five major 3G/4G Mobile Network Operators (MNOs)
in Italy, during a measurement campaign. More specifically, we characterize the
results of the tests according to four different parameters, whose combination
(or aggregated behavior) affects both the final outcome that a mobile user would
experience, and the circumvention method that is effective in that case. In the
preliminary results we report how variably a censored resource is managed, vary-
ing the operator, and a pairwise comparison of MNOs in terms of targets with
the same aggregated. The results clearly show how there is a significant variation
across different MNOs. We are performing further analyses on the dataset (not
shown in this abstract), namely:

• detailing the most common aggregated behavior;
• reporting the distribution of behaviors per operator;
• deriving the circumvention techniques that are most likely to succeed with

each MNO;
• evaluating the stability over time of the observed behaviors.

2 UBICA

UBICA (User-Based Internet Censorship Analysis) is a platform that provides
users with a censorship monitoring system. Figure 1 shows the main components
of UBICA architecture. The platform leverages a globally distributed deployment
of probes belonging to different kinds (router-based, headless client, GUI-client)
that are orchestrated by a central Management Server. The platform provides:
(i) dynamically updated censorship tests; (ii) dynamically updated targets to
be verified; (iii) support for different types of probing clients; (iv) automatic
censorship detection and censorship technique identification. The client has been
designed to be highly portable, composed of a core measurement-related part and
leverages standard UNIX utilities and mature network diagnostic tools.

The probes perform active measurements to collect evidences of censorship,
periodically retrieving a list of test requirements (i.e. target lists and code) from
the Management Server. After the evidence collection, each probe packs all the
results in a report file and uploads it back to the Management Server. The
reports are asynchronously parsed by such server and the significant information
is stored in a SQL database. The Analysis Engine periodically processes data in
the database, performing the censorship detection analyses through the following
measurements.
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Fig. 1. UBICA architecture diagram.

DNS resolution. Given a fully qualified domain name, a DNS request of type
A is issued from the probe towards its default resolver. The tool used to issue
the request is nslookup. To distinguish among different DNS tampering tech-
niques [5], the same request is issued also towards one or more open resolvers,
used as control resolvers from inside the censored network.

TCP reachability. This test tries to set up a TCP connection to verify a possi-
ble filtering triggered by IP:port, starting a three-way handshake with a given
timeout. The input parameters are targetIP:port and a timeout value in seconds.

HTTP reachability. An HTTP GET request is issued by this test: the response—
or lack of it—and additional application level values are collected from the server.
The HTTP header field User-Agent (UA) is conveniently set choosing it from
a list previously defined (see Table 1). The tool used to issue the request and
collect application level information is curl. The report from this test includes
several values, such as content type, HTTP response code, number of redirects,
etc., not reported for the sake of brevity.

3 Methodology

Experimental campaigns conducted in this work by mean of UBICA leverages
headless clients equipped with Kubuntu 14.04 and connected to Internet through
smartphones—tethering USB—acting as gateways. In Table 1 a summary of the
factors taken into account is provided. Notably, selected MNOs account for the
96.6% of the Italian market, and PosteMobile owns the 52.1% of the Mobile Vir-
tual Network Operators’ market share [1]. An up-to-date list of possibly censored
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targets has been obtained from [2], containing websites both blocked from judi-
cial authority and suggested by the community of users. Since DNS-tampering
is a widely used censorship technique, name resolutions are performed through
both the MNO-provided (default) and the Google Public DNS (open) resolver.
Finally, the list of UAs has been conveniently chosen for testing both mobile and
desktop agents.

Table 1. Summary of factors and considered values.

Factor Values

MNO H3G, PosteMobile, TIM, Vodafone, Wind

Target 200 censored targets from [2]

DNS Default (MNO-provided), Open (Google Public DNS)

User-Agent (UA) Safari 5.1 (iPhone - iOS 5.0),

IEMobile 7.11 (HTC Touch 3G - Windows Mobile 6.1),

Google Chrome 41.0 (Desktop - Windows 7)

When a user requests a resource from a target, he experiences a number of
different behaviors depending on the specific combination of the factors reported
in Table 1. In order to facilitate their description, the possible outcomes a user
can experience have been clustered into aggregated behaviors. In more detail,
for each combination of MNOs and targets taken into account: (i) default and
open DNS resolutions can be equal or different, (ii) the redirections a request is
possibly subjected to, can be dependent on the UA or not, (iii) default and (iv)
open DNS resolutions can return various outcomes.

Indeed, when the default resolver is leveraged, the DNS server could reply
with a forged response not corresponding to the legitimate DNS database entry
(i.e. DNS hijacking). More specifically, a forged response is a Resource Record
of type A containing an IP address that does not correspond to the actual IP
address obtained from the legit resolution of the requested resource [5].

Since in this case the DNS resolver acts as the censoring device, changing the
default resolver with an open resolver will bypass the censoring device and thus
allow open access to the Internet. Even though a user can correctly obtain the
requested content leveraging the Google Public DNS, he could also experience
a number of erroneous outcomes. Instead of the expected Resource Record, the
open resolver might return an error response NXDOMAIN of type “no such domain”.
Moreover the request could incur a connection timeout, a connection termination
by TCP reset, or an HTTP error response (i.e. 4xx and 5xx status codes).

4 Preliminary Results

In this section we provide an overview of the factors that mostly influence the
browsing experience of a general user requesting a resource from a censored tar-
get. The dataset introduced in this work has been collected through preliminary
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Fig. 2. Percentage of targets exhibiting a different number of aggregated behaviors
when MNO is changed.

experimentations conducted in February 2016. An interesting result stemming
out from these experimentations is the relationship existing between the MNO
leveraged to access to the Internet and the aggregated behaviors observed. More
in details, given a target, the number of different behaviors experienced by a
user when he changes the MNO used to connect to the network, is an index of
how differently each MNO treats various targets possibly censored. As shown in
Fig. 2, 0.5% of the targets (i.e. only 1 target) have the same aggregated behavior
for all the MNOs, whilst the majority of them (100 out of 200 targets) exhibits 3
different behaviors. These results confirm that varying the MNO that offers con-
nectivity, a user might experience distinct outcomes even in the case he wanted
to retrieve the same content. However, 95% of the targets exhibit at most 4
aggregated behaviors, showing at least 1 behavior in common between 2 MNOs.

Table 2. Pair-wise variation in censorship application between MNOs. A 100% vari-
ation means that all targets have different behaviors between considered MNOs.

MNO PosteMobile TIM Vodafone Wind

H3G 92.5 % 32.5 % 94% 75 %

PosteMobile 99 % 60% 95 %

TIM 99.5 % 65.5 %

Vodafone 65 %

Table 2 summarizes the variation in the aggregated behaviors obtained
between analyzed MNOs. Lowest pair-wise variation has been observed for H3G
and TIM, that show different behaviors only for 32.5% of the targets. On the
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contrary, TIM and Vodafone have almost always distinct aggregated behaviors
(99.5%). Notably, although PosteMobile is a Mobile Virtual Network Opera-
tor (MVNO) and offers its services leasing the radio spectrum and network
infrastructures from Wind, they exhibit the same aggregated behaviors for only
10 out of 200 targets.
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Abstract. Biometric designs have attracted attention in practical tech-
nological schemes with high requirements in terms of accuracy, security
and privacy. Nevertheless, multimodalities have been approached with
skepticism, as fusion deployments are affected by performance metrics.
In this paper, we introduce a basic fusion model blueprint for a privacy-
preserving cloud-based user verification/authentication. We consider the
case of three modalities, permanently “located” in different databases of
semi-honest providers, being combined according to their strength per-
formance parameters, in a user-specific weighted score level fusion. Secure
multiparty computation techniques are utilized for protecting confiden-
tiality and privacy among the parties.

Keywords: Biometrics · Multimodalities · Fusion · Performance met-
rics · Identity authentication · Reliability · Cloud computing · Secure
multiparty computation · Applied cryptography · Privacy

1 Introduction

Over the last decade, biometric-based systems have been part of the daily rou-
tine for identity verification. This is specially true for online services. Moving the
existing technology to cloud-based platforms could be proven effective for many
access control or surveillance applications with millions of users. Nevertheless,
with all eyes on security, privacy challenges encountered in the transmission of
personal data across the parties could be characterized as extremely serious. The
reader could take into account the following attacking scenarios [1,2]. Addition-
ally, to store several biometric templates under the same user’s identity in one
database could not only be a difficult feat, considering the restricted access on
templates from competing biometric suppliers, but also discouraged or illegal [3].
Multibiometrics were originally introduced to alleviate the inherent limitations
of single biometric modalities that render them unable to correspond at the high
security requirements. Furthermore, the confidence on the functionality of a bio-
metric scheme is determined by some specific metrics: False Acceptance Rate
(FAR) shows if a system incorrectly recognizes an intruder while False Rejec-
tion Rate (FRR), the percentage of valid inputs which are incorrectly rejected
c© Springer International Publishing AG 2016
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for an authorized person. Being inspired by biometric applications on cloud we
introduce a model for a verification protocol based on fusion and designed to
operate in a cloud environment for privacy-preserving biometric recognition and
identification purposes.

To reduce privacy threats, we employ Secure Multiparty Computation
(MPC), thus avoiding any centralized repository and using the stored templates
by the service providers in a decentralized manner. That way we can authenticate
an individual based on his/her biometric characteristics, searching, matching and
combining the results, and return a reliable decision guaranteeing the secrecy of
the new (fresh/raw) and old (stored) biometric templates. Applications include a
cloud-based border control system that integrates stored unimodal biometrics by
a set of different recognition services, evaluating them accordingly to their FAR
to prevent access to unauthorized individuals. Contrary, a cloud-based surveil-
lance solution, operating to automatically screen the crowd in order to identify a
person sets up a FRR respective fusion mechanism. We refer the reader to [4–7]
for a more detailed treatment on MPC.
Contribution: We provide a view of a decentralized cloud based mechanism for
multimodal user verification, using distrustful database providers. The service is
provided under strong privacy-preserving constraints, where the only thing the
involved entity learns is the final output.

Our main contribution includes the following:

• Design uses previously stored unimodals, providing the advantage of handling
information without extra unnecessarily storage of fused data.

• We incorporate FAR and FRR rates of uncorrelated biometrics in a user-
specific transformation-based score level fusion. Weights are assigned to each
trait according to its strength performance.

• Since biometric data transmitted across the network and design involves var-
ious distrustful service providers, MPC is considered to be a suitable mecha-
nism for the execution of our protocols. In this way, no information related to
the raw, stored traits or the final output is revealed to the cloud parties.

Motivation: Even though several proposals on multimodal fusion, performance
rates and secure cloud-based biometric applications can be found in the litera-
ture, the combination of these results seems to be a challenging task. Given that
utilizing more than two biometrics offers improved identification efficiency [8],
we make use of the three most popular and robust biometric body traits (face,
iris and fingerprint) for our model. However, the concept of integration is con-
sidered as an open problem [9], and it is an undeniable admission since that we
assume a cloud-based setting, many privacy risks arise. Thus, it is necessary to
enhance security between the non-trust parties, protecting intermediate compu-
tations and user’s information. The novelty of our model lies on bridging the
gaps of cloud-based biometric identification, ensuring the privacy between the
involved entities and the user, whenever data transmitted across the network.
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2 Environment and Settings

The scenario is as follows: an involved entity provides the fresh biometric tem-
plates to three unimodal cloud biometric service providers that store old tem-
plates of faces, irides and fingerprints, separately. The involved entity needs to
verify/authenticate a user’s identity with better accuracy than when operat-
ing with single modal module. The verification process takes place in the cloud
and has to guarantee the privacy of the user’s data (fresh and old templates).
Figure 1 illustrates the generic form of the proposed biometric authentication
access control system.

Fig. 1. Proposed model for multimodal verification.

Parties and Roles: Parties involved in our protocol fulfill at least one or more
of the following roles during the verification process:

– Dealers: Any subset of parties that provide the private inputs for the compu-
tation in shared/encrypted to the parties responsible of the computation (com-
putational parties). In our case, an involved entity delivers the fresh extracted
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templates, and the service providers are the owners of the stored templates.
Both have also to provide other metrics, the proportions, thresholds and rates
in shared form as well.

– Computational Parties: Any subset of parties in charge of the computa-
tion. They are also in charge of communicating the necessary results of the
computation to the output parties in shared form. Typically, the computa-
tional parties are distrustful parties with competing interests, in this case,
for instance, they could be represented by the service providers (3) or any
coalition composed by control agencies, service providers and civil entities.

– Output Parties: Any subset of parties in charge of the reconstruction the
output. These parties are the only ones who learn the output and what can
be inferred from it. In our setting, this role is occupied by the involved entity.

On privacy and security: it follows from the underlying MPC primitives used
(for instance perfect security with BGW [4]), and the oblivious nature of the
future protocol.

3 System Outline

1. The involved entity needs to verify a user’s identity based obligingly on three
biometric inputs. It obtains the user’s data (a physical presentation of an
identification document). Features are acquired sequentially and processed in
a cascade mode.

2. The three new biometric templates and the identity references are transmitted
across the network. Service providers then use this information to extract and
secretly share the old templates, or return a dummy instead.

3. During the next phase, a feature matching algorithm i.e., Hamming distance,
or similarity measurement methods are used to give a degree of comparison
between the new and old templates.

4. Next, service providers choose the specified value of the reference thresholds.
These calculations on unibiometric features come from the service providers.
The process can be improved from genuine and impostor training sam-
ples distributions available from the enrolled users in monomodal verifica-
tion/identification functions of their systems. Note that this undertaking is
out of the scope of the current work.

5. On the basis of the selected thresholds, where monomodal system performs
better in a such a way that the corresponding FAR is as low as possible
and respecting the requirements of the application that operates in verifica-
tion/authentication mode, the matching score that mostly reflects the simi-
larity between the new and one of the old stored template set is selected from
the generated vector for each modality, respectively.

6. The matching module output by three non-homogeneous biometrics and con-
sequently scores have to be transformed into a common domain, before com-
bination. The application has to normalize the results in the cloud by placing
the three obtained matching scores in the same numerical range varied over
{0, .., 1}. Fractional representation can be utilized for its MPC adaptation.
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7. Weights are selected by the involved entity (according to the FAR, FRR that
each service provider considers to be permissible). These weights, assigned
to the three modalities, are in the range of {0, ..., 1} for the user u as
wface,u, wiris,u and wfingerprint,u, such that the constraint wface,u+wiris,u+
wfingerprint,u = 1 is satisfied. As before, fractional representation can be used
during our MPC adaptation.

8. Normalized matching scores are fused in ideally to output one from three. A
user-specific weighted sum rule is then applied in order to determine the final
result of the score level fusion for multimodal identity verification.

9. Finally, the involved entity determines a threshold ⊥ and communicates it
to the computational parties. The final acceptance happens in case of an
individual has been authenticated as a previously successfully enrolled user.
Regarding rejection, this simply means that the system failed to surpass the
threshold ⊥, not leaking whether the user is enrolled or not on any or all the
databases.

4 Usability and Limitations

Usability: The generic verification model introduced by this paper incorpo-
rates three popular and well studied modalities into a fusion method, operating
in cloud. Note that the system could operate in identification mode, without
requesting the presence of an ID by the user, where the biometric templates
are contrasted against the hole database. Thus, the proposal could be used in
identity management applications and surveillance oriented models. The authen-
tication accuracy is based on utilizing physically uncorrelated biometrics that
can present significant improvements at performance, even when the quality of
the samples is sub-optimal.
Limitations: One clear limitation of our model is related to interoperability
issues, regarding the matching sensors of the involved service providers. This is
due to the fact that biometric data is usually matched by sensors produced by
different manufactures, this proposal is restricted in its ability to fuse templates
originating from disparate sensors. For that reason, one of the major challenges
in the biometrics recognition domain is the use of similar types of sensors, estab-
lishing a common technological behavior, something that reflects effort and cost
ineffectiveness. Moreover, the system might be affected by the restrictions put in
place by the use of MPC, for instance, a viable protocol might prefer the use of
Hamming distance for simplicity and avoid the use of floating point arithmetic.

5 Conclusion and Discussion

We present a model for privacy-preserving fusion in a non-traditional, but real-
ity representative distrustful environment. We incorporate multiple biometric
traits, for cloud-based identity authentication, and make use of MPC techniques
to offer privacy. Moreover, multimodal fusion gives better results than using a
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single matching module in the context of security and reliability. In general, it
is indisputable that biometrics fusion has a critical role to play in identification
systems and different fusion mechanisms work differently for every combina-
tion of data, rules and tools, while optimality is conflicting with regard to the
retrieval performance rates. Furthermore, identity-purposed databases for online
authentication mechanisms, seriously enhance risks from different perspectives
and for each assessment separately. MPC restricts the misuses of private biomet-
ric information at the levels required by realistic applications. Future solutions
for these major issues can support the feasibility of large-scale privacy enhancing
biometric identity management technologies.
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Abstract. White-box cryptography aims at providing security against
an adversary that has access to the encryption process. Numerous white-
box encryption schemes were proposed since the introduction of white-
box cryptography by Chow et al. in 2002. However, most of them are
slow, and thus, can be used in practice only to protect very small amounts
of information, such as encryption keys.

In this extended abstract we present a new threat model for white-
box cryptography which corresponds to the practical abilities of the
adversary in a wide range of applications. Furthermore, we study design
criteria for white-box primitives that are important from the industry
point of view. Finally, we propose a class of new primitives that combine
a white-box algorithm with a standard block cipher to obtain white-box
protection for encrypting long messages, with high security and reason-
able performance.

1 Introduction

The white-box threat model in secret-key cryptography, introduced by Chow et
al. [4] in 2002, considers an adversary that is accessible to the entire informa-
tion on the encryption process, and can even change parts of it at will. The
range of applications in which the white-box threat model is relevant is already
extensive and continues to grow rapidly. One example is the Digital Rights Man-
agement (DRM) realm, where the legitimate user (who, of course, has full access
to the encryption process), may be adversarial. Another example is resource-
constrained Internet-of-Things (IoT) devices applied in an insecure environment
(like RFID tags on the products in a supermarket). Yet another example is
smartphones and public cloud services. While certain security-critical services
in such devices are provided with support of hardware security features, such as
‘secure element’ or TrustZone in mobile devices or ‘hardware security modules’
in the cloud, most services are implemented as software operating within Rich
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OS. The main reasons for that are low cost, development efficiency and compli-
cated ecosystems. As a result, the cryptographic implementations are vulnerable
to a wide variety of attacks in which the adversary has ‘white-box’ capabilities.

The ever-growing range of applications where the white-box threat model is
relevant necessitates devising secure and efficient solutions for white-box cryp-
tography. And indeed, numerous white-box primitives were proposed since the
introduction of white-box cryptography in 2002. These primitives can be roughly
divided into two classes.

The first class includes algorithms which take an existing block cipher (usu-
ally AES or DES), and use various methods to ‘obfuscate’ the encryption process,
so that a white-box adversary will not be able to extract the secret key. Pio-
neered by Chow et al. [4], this approach was followed by quite a few designers.
An advantage of these designs is their relation to the original ciphers, which
makes transition to the white-box primitive and compatibility with other sys-
tems much easier. Unfortunately, most of these designs were broken by practical
attacks a short time after their presentation. In addition, all designs of this class
are orders of magnitude slower than the ‘black-box’ primitives they are based
upon.

The second class includes new block ciphers designed especially with white-
box protection in mind, like the ASASA and SPACE families [1,2]. An impor-
tant advantage of these designs is their better performance and higher security
(though, some of them were also broken, see [5]). On the other hand, transition
from existing designs to the entirely new ciphers is not an easy task, and so,
quite often commercial users will be reluctant to make such a major change in
the design.

In this extended abstract we propose a class of new primitives which provide
strong security with respect to a ‘real-life’ white-box adversary, and on the other
hand, are convenient for practical use – meaning that the performance is reason-
able and that transition from currently used primitives to the new primitives is
relatively easy. To this end, in Sect. 2 we present a new threat model for white-
box cryptography which corresponds to the practical abilities of the adversary
in a wide range of applications. Once the security model is set, we study design
criteria for white-box primitives that are important from the industry point of
view. In Sect. 3 we propose a class of new primitives that combine a white-
box algorithm with a standard block cipher to obtain white-box protection for
encrypting long messages, with high security and reasonable performance. Pre-
liminary security analysis of the new primitives, along with a comparison with
previous works, can be found in the full version of this paper [3].

2 Practical Requirements and Design Strategy

2.1 Security Requirements – A New Threat Model

Unlike the classical black-box model, in white-box cryptography the abilities of
the adversary are not clearly defined, and different threat models are implicitly
used by different authors.
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The works of Chow et al. [4] and their successors implicitly assume that there
is a part of the encryption process, called external encoding, which is performed
outside of the encryption device and cannot be accessed by the white-box adver-
sary. Such an assumption is not realistic in scenarios where the entire encryption
process is implemented in software.

Instead, we propose the following threat model, which is relevant in a wide
variety in realistic scenarios. Assume that the same white-box encryption scheme
is used in many devices, with at most a small difference between them (e.g., a
unique identification number that is used in the encryption process). Further,
assume that the adversary can mount an ‘expensive’ white-box attack on at
most a few devices (e.g., by purchasing them and then analyzing in depth), and
he is willing to break the encryption of all other devices. Formally, we assume
that the adversary has a white-box access to several devices from the family and
only black-box access to all devices in the family. Using the white-box access,
the adversary can obtain full information on the devices he took control of. His
goal is to break the encryption schemes of all other devices. Thus, the security
goal in this model can be thought of as minimizing the damage from one-time
compromise.

Our threat model is well suited for IoT environment. IoT devices are usu-
ally manufactured in a production line simply assembling flash memories with
the same binary programmed including cryptographic keys, i.e. the same crypto-
graphic keys are shared across multiple devices. This is because it would be quite
expensive to embed separate keys into each device either in production lines or
by consumers; additional key-embedding process and related key management,
as well as adding UX layers to IoT devices, generally require considerable cost.
In such an IoT environment, an adversary may implement the white-box attack
for a single device, and try to compromise the whole system using the obtained
key or any critical information, along with capabilities from the conventional
black-box model.

We note that this threat model does not fit for all applications of white-box
cryptography. However, it seems relevant in sufficiently many scenarios for being
considered specifically.

2.2 Performance and Cost Requirements

While industry accepts the need in strong security of the algorithms, it is often
the case that practical efficiency considerations are prioritized by commercial
users over security considerations. Hence, if we want to design a primitive that
will be employed in practice, we should take into account the main practical
requirements from the industry point of view.

The main two design criteria we concentrate on are the following:
Reasonable performance. Previously suggested white-box algorithms except
the SPACE family are 12 to 55 times slower than AES. White-box primitives
have thus been used to protect relatively small sizes of data. We aim at using
the white-box primitive to protect large amounts of data, and so, the encryption
speed must be reasonably fast – ideally, almost as fast as the AES.
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Low transition cost. The new architecture should be designed so as to min-
imize the modification of the existing development or manufacturing process
related to cryptographic implementations. Interestingly, this may be the most
important factor for commercial adoption in reality.

2.3 Design Strategies

The practical requirements listed above lead to the following design considera-
tions.

First, if we use a white-box algorithm to encrypt each block of the message
then the performance of the resulting encryption scheme is the same as that of the
white-box algorithm. For most of the currently existing white-box algorithms,
this means that the scheme is very slow. Moreover, even for the SPACE family
whose members are not so slow, standard ‘software obfuscation techniques’ aimed
at protecting the security of the running code, make the encryption process much
slower, and thus too slow for our purposes. As a result, it is desirable to use the
white-box algorithm to encrypt only part of the message blocks, and encrypt
most blocks with a ‘classical’ algorithm.

Second, almost all existing solutions for data protection in data communi-
cation such as SSL, TLS and SSH are based on a shared secret (e.g. session
key). Designers of some solutions for data communication want to apply this
session key in white-box encryption with minimum modification of their crypto-
graphic implementation. However, they cannot use this key directly in a white-
box scheme since the initiation of a white-box algorithm is slow and in general
is separate from running environment. In addition, in many cases users request
a certificate algorithm to be used in their implementation. Hence, we aim at
applying a session key directly in the components of our scheme, except the
white-box algorithm.

Third, the most effective way to minimize the damage from one-time com-
promise is to encrypt each message by a one-time key which is protected by
white-box algorithms. However, managing these one-time keys is a big burden
and existing key exchange protocols do not provide a one-time session key. Thus,
we will encrypt the nonce by a white-box algorithm and use it in the encryption
process as a replacement for a one-time key.

3 The New Primitives

3.1 General Structure and Security Goals

Our primitives use two separate keys – one for a white-box primitive and another
for a ‘classical’ encryption algorithm (e.g., AES), where the white-box algorithm
is only used for encryption of a nonce (e.g. initial vector (IV) or a counter) while
the classical algorithm is used for encryption of plaintexts. The keys K1 and K2

are assumed to be permanent and may be shared by many devices, while the
nonce in changed in every encryption session.
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We restrict the use of our scheme to encrypting messages of length at most
264 blocks in a single session (i.e. without rekeying). Furthermore, as common
in nonce-based algorithms, we do not allow re-use of the nonce.

The security level we aim at is data complexity of 264 and memory and time
complexities of 280. That is, any white-box attack that can recover the secret
key K1, or distinguish our scheme from random, or recover part of the plaintext
in a non-compromised session, should require either more than 264 messages, or
more than 280 time or more than 280 memory.

3.2 The New Hybrid White-Box Schemes

In this subsection we present two new hybrid white-box schemes, which – accord-
ing to our preliminary analysis – are secure in the white-box model.

Fig. 1. F-CTR-WBC: a white-box variant of AES-CTR with a 256-bit block and a
feed-forward operation

The first scheme, called F-CTR-WBC and presented in Fig. 1, is similar to
the standard CTR mode of operation using the AES block cipher, but with three
differences. First, a counter CTR is encrypted using a white-box primitive (e.g.,
white-box-AES or a member of the SPACE family). Second, the scheme contains
a feed-forward operation (in order to thwart a trivial attack in the white-box
model presented in [3]). Third, the block length is increased to 256 bits (e.g., by
using Rijndael-256 instead of AES), in order to make a time-memory tradeoff
attack presented in [3] infeasible. Our experiments show that this scheme is only
1.3 times slower than AES-CTR.

The second scheme we propose, presented in Fig. 2, is a bit more complex,
using AES with feed-forward also in the counter update function. If the full
AES is used in both layers of the scheme, it is almost two times slower than
F-CTR-WBC with Rijndael-256. However, as the upper layer is used mainly
to reduce the relation between consecutive inputs to the second-layer AES and
their relation to the initial CTR, it is actually sufficient to use 3-round AES-128
in the upper layer. As a result, this scheme has roughly the same performance
like F-CTR-WBC presented above.

Initial security analysis of both schemes is presented in [3].
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Fig. 2. UF-CTR-WBC: a two-layered variant with feed-forwards
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Abstract. Co-locating multiple tenants’ virtual machines (VMs) on the
same host underpins public clouds’ affordability, but sharing physical
hardware also exposes consumer VMs to side channel attacks from adver-
sarial co-residents. We demonstrate passive bandwidth measurement to
perform traffic analysis attacks on co-located VMs. Our attacks do not
assume a privileged position in the network or require any communica-
tion between adversarial and victim VMs. Using a single feature in the
observed bandwidth data, our algorithm can identify which of 3 poten-
tial YouTube videos a co-resident VM streamed with 66% accuracy. We
discuss defense from both a cloud provider’s and a consumer’s perspec-
tive, showing that effective defense is difficult to achieve without costly
under-utilization on the part of the cloud provider or over-utilization on
the part of the consumer.

Keywords: Cloud privacy · Encrypted communication analysis · Net-
work virtualization · Side channel · Traffic analysis

1 Introduction

In response to an increasingly digital age, researchers have developed crypto-
graphic protocols to protect cyber-privacy. However, the gap between protocols’
physical implementations and the theoretical context in which they are usu-
ally considered introduces the potential for side channel attacks. Side channels
are flows of information exposed by the physical implementation of a system
and typically not included in any proofs of security [8]. For example, despite
the encryption SSH performs on each keystroke, Song et al. extracted about 1
bit of information per pair of keystrokes from timing information on when the
keystrokes were sent [9].
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The rise of cloud computing exacerbates the threat that side channels pose.
Cloud providers issue customers virtual machines (VMs), often co-locating differ-
ent customers’ VMs to increase resource utilization and amortize costs. Thus, a
customer’s VM may be placed on the same host as a different, potentially adver-
sarial VM. Ristenpart et al. and others have shown that a co-resident adversary
can leverage this sharing of a physical platform, particularly the shared caches,
to compromise the isolation of a victim’s VM [5,7].

Our contributions. This paper examines the network interface side channel. We
empirically demonstrate load measurement and behavior profiling on two com-
mercial cloud environments: DigitalOcean and the Massachusetts Open Cloud.
Our raw data collection component is available in an open-source repository.1

Our experimental setup involves a malicious VM, denoted Flooder, that
saturates the network interface to put its bandwidth in contention with that of
the targeted co-resident customer’s VM, Victim. Data from test trials helped
calibrate Flooder’s observations to estimate Victim’s load over time. Such
data can be used to determine when a competitor’s traffic spikes or learn statis-
tics about a cloud environment that doesn’t publish its utilization.

The raw data becomes more valuable when paired with encrypted commu-
nications analyses to determine, for example, which website Victim is visiting.
After test trials had trained a classification algorithm, we showed the algorithm
could identify which YouTube video Victim was streaming with 66 % accuracy
compared to 33 % for random guessing. This result represents a macro-approach
relying on estimating bandwidth instead of the usual micro-approach of collect-
ing individual packets. Thus, we do not require Flooder to have a privileged
position on the network or any kind of affiliation with the cloud provider.

By contrast, previous work was conducted on local testbeds and furthermore
required a malicious client to remain connected to Victim on the order of seconds
to reliably measure throughput [1]. This limited potential targets to web or media
servers that offered large downloads publicly. The single long connection cannot
be substituted simply with short, repeated ones if Victim uses DDoS protection.
Our threat model imposes no such restriction.

2 Environments

We consider two cloud tenants: an honest Victim and a malicious Flooder. As
the name suggests, Flooder sends as many packets as the network can process;
various choices for packet sizes, sleep times, and internet protocols are described
in Sect. 3.

We assume that the cloud provider is a trusted entity whose switch usage
data isn’t directly published. Additionally, we assume that the cloud provider is
unaffiliated with adversaries, so Flooder cannot directly request co-residency
with Victim. However, researchers have demonstrated indirect achievement of
co-residency with specific victims on commercial clouds [1,4,7]. Therefore, we
1 https://github.com/YatharthROCK/primes-data-collection.

https://github.com/YatharthROCK/primes-data-collection
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presume here that co-residency is achievable and build from there. We consider
4 scenarios.

Environment A. Victim and Flooder occupied different MacBook Pros
connected via ethernet to the same LAN network. Both Victim and
Flooder connected to clients over the internet via a 10 MB/s downlink.
Environment B. Victim and Flooder occupied different physical Sun
v20z servers running Ubuntu 16.04 x64, and both connected to clients on the
same LAN via a dedicated switch capable of a throughput of 12 MB/s.
Environment C. Victim and Flooder ran as different processes on a
$10/mo VM running Ubuntu 14.04 x64 on DigitalOcean, a production cloud.
Both connected to clients on different VMs in the same data center, NYC-2.
Environment D. Victim and Flooder occupied co-located m1.medium
VMs running Ubuntu 14.04 x64 on the Massachusetts Open Cloud (MOC),
a production cloud environment. Both connected to different clients with a
throughput on the order of 40 MB/s.

3 Load Measurement

With an increase in Victim’s network activity, we observed a corresponding
decrease in Flooder’s throughput in all four environments described above,
including two production clouds. We confirmed an inversely linear relationship
and, on the basis of test runs, calibrated a tool to output an estimate for Victim’s
load based on Flooder’s observations (see Fig. 1).

Data collection used TCP instead of UDP. UDP sent packets fast enough
to congest the network and thus achieved very low goodput. Having Flooder

sleep between transmissions of UDP packets improved goodput until a point,

Fig. 1. Inverse linear relationship between Victim’s and Flooder’s throughput (in
green and blue respectively). Left shows data collected in Environment C; Right
shows data collected in Environment D. Right additionally overlays (in red) Flooder

throughput in a follow-up trial without Victim activity. Note that the fluctuations in
Flooder’s throughput due to Victim’s activity are distinguishably larger than those
caused by unrelated environmental factors. (Color figure online)
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after which goodput decreased again. We were not able to saturate the network
interface enough with UDP for Victim’s and Flooder’s bandwidth to be in
contention.

Data was collected using 4000-byte packets as we determined this packet
size resulted in the most consistent bandwidth across trials. Consistency in the
bandwidth aids in distinguishing fluctuations in Flooder’s bandwidth caused
by Victim’s activity from those caused by unrelated environmental factors. Even
then, environmental noise was significantly higher in Environment D than in
Environments A, B, and C.

4 Profiling

Correlating data gathered from side channels with known behaviors makes the
data much more meaningful. We demonstrate that the continuous estimate of
Victim’s load from our tool in the previous section can serve as a foundation
for encrypted communication analysis.

We considered the case of streaming 4K YouTube videos and observed ‘band-
width fingerprints’ unique to the video being streamed (see Fig. 2(a)). Variable
bitrate (VBR) technology, which lets a higher bitrate be allocated to more com-
plex segments of media files, contributes to this phenomenon [2].

We trained our classification algorithm on 60 trials of 3 different videos using
the feature of delays between bandwidth dips. After recursively weighing the
importance of the dips, we fit the learning data with 75 % accuracy. On a new
set of 60 trials, the trained algorithm achieved an accuracy of 66 % compared to
the 33 % accuracy of random guessing (see Fig. 2(b)).

(a) Victim load while streaming the same
video in multiple trials.

(b) ROC curves for our algorithm (“33-66”
curve represents random classification).

Fig. 2. Classification of YouTube video in environment A.

This result attests to the feasibility of determining which YouTube video
Victim streamed with passive load measurement in the cloud as well as of apply-
ing other encrypted communication analysis attacks like those demonstrated by
Dyer, Miller and others [3,6,9,10].
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5 Counter-Measures and Future Vision

Each of the three agents that participate in this paper’s threat model (the cloud
provider, the victim, and the adversary) face trade-offs in defending or executing
the presented attack.

A Cloud Provider’s Perspective. A provider has incentive to protect the privacy
of customers’ information as loss of trust translates into loss of business. However,
this can be at odds with overall utilization and thus the economies of scale offered
by the cloud. Perfect co-resident isolation could be achieved, for example, by
dedicating a network port to each VM, but this would be prohibitively expensive,
especially for VMs that are relatively small compared to the host. Future work
exploring this tradeoff would seek to identify what level of network isolation
is required (such as switch- or hypervisor-based methods) to render network
flooding attacks ineffective in specific scenarios.

A second approach would be to automatically detect flooding activity within
the cloud. Cloud providers could then thwart the attack by terminating suspi-
cious VMs, migrating them to another host, or rate limiting their traffic. Each
option comes with its own tradeoffs: terminating a VM without notice could vio-
late service level agreements, migrating VMs could be prohibitively costly and
would not prevent the VM from attacking any tenants on its new host, and rate
limiting would need to balance network utilization with privacy protection.

A Customer’s Perspective. A tenant on a cloud can thwart attackers’ attempts
by preventing them from becoming co-located with his or her VMs [7]. To achieve
this, he or she can provision VMs so as to consume the resources of an entire
physical host or take advantage of host isolation options like Amazon EC2’s
Dedicated Hosts. Many clouds including the MOC allow customers to create
affinity groups which preferentially co-locate their own machines. Alternatively,
customers can try to mask their signal by adding bandwidth noise, though this
can be difficult to do efficiently and might incur additional costs [3].

An Adversary’s Perspective. Improving the presented attack encompasses
increasing the accuracy and precision of the data gathered via the flooding
technique as well as improving the analysis of that data. Using UDP instead
of TCP to flood Victim promises improvements due to UDP’s statelessness,
allowing increased control over packet timing and size. Additionally, having a
malicious client connect directly to Victim, as done in [1], would help to con-
trol for environmental fluctuation in Flooder’s client’s throughput. To work
around provider rate limits, a promising avenue of research includes micro-bursts,
flooding for brief periods of time, as well as using multiple Flooders working
together. In terms of analysis, a more intelligent classifier trained on a greater
number of features would allow for more accurate YouTube video identifica-
tion, especially as the number of videos Victim could potentially have streamed
increases.
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