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Preface

It is well known that linear dynamical systems cannot adequately describe many
phenomena commonly observed in the real world. With the advancement of science
and technology, practical systems are becoming more complex in order to complete
more advanced tasks. With the increasing requirements for system performance,
linear system theory based study cannot satisfy the practical requirements, and the
mathematical equations used to model real physical and engineering systems have
become more and more complex. In reality, there are many factors which will affect
system performance. To describe and explore various natural phenomena, it is
necessary to consider these factors and thus to investigate complex systems as a
means to model real systems more accurately. This book systemises aspects of the
authors’ recent achievements in the area of variable structure control alongside with
some fundamental knowledge in the area.

This book focuses on the study of complex control systems in which the
complexity mainly stems from nonlinearities, uncertainties, time-delay, faults
and/or coupling among subsystems. It provides rigorous theoretical solutions to the
problem of control of complex systems but has potential application in practical
systems. It should be emphasised that many theoretical studies on control systems
often assume that all system states are available for control design. This assumption
is not valid for real systems in many cases. To implement such control schemes, a
pertinent way forward is to construct an appropriate dynamical system which is
called an observer, to estimate the state variables. Unfortunately, the traditional
separation principle for linear control systems usually does not hold for the non-
linear counterpart, which implies that for nonlinear systems, the properties of a state
feedback control law may not be achieved when the control law is implemented
with the estimated states. In connection with this, this book focuses on output
feedback control design: both static output feedback and dynamical output feedback
strategies, including reduced order dynamical output feedback strategies, are pro-
posed to control complex systems such that the closed-loop systems have the
desired performance.

Variable structure control techniques have been extensively studied, and widely
applied to theoretical research and practical engineering systems due to their high
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robustness. Specifically, as one special case of variable structure controllers, sliding
mode controllers are completely robust to matched uncertainties. Moreover, the
sliding motion is determined by reduced order dynamics, which facilitates the
reduction of the effects of mismatched uncertainties on the whole systems when
compared with other methods. A key development in this book considers variable
structure control for complex systems based on only output information, using
mainly the Lyapunov direct method and sliding mode techniques, with the objective
of enhancing the robustness against uncertainties, reduction of conservatism and
enlargement of the admissible systems. Rigorous stability analysis and design
methodologies are provided from a theoretical perspective for this theme.
Nonlinearities appear in all the considered systems throughout the book. Both the
matched and mismatched uncertainties covered in this book are nonlinear and
bounded by nonlinear functions. Since the considered systems are complex and all
the results are rigorous, the conditions developed for all the main results in this
book are sufficient. As there is no general way to obtain the design parameters for
an output feedback controller, trying to determine ‘easy’ test conditions with low
conservatism, by separating possible known information from the system and then
employing them in the design to reduce the effects of factors such as uncertainties
and time-delay on the system, is one of the main targets throughout this book. The
book also presents novel contributions to deal with nonlinear uncertainties for
time-delay systems by combining the Lyapunov–Razumikhin approach and vari-
able structure techniques for different cases when delay is known and unknown
respectively. It is shown that for interconnected systems, decentralised control
schemes are available to cancel/reduce the effects of the interconnections on the
whole system performance, under certain conditions. One of the characteristics of
this monograph is that many examples and case studies with simulations are given
to help readers understand the developed theoretical results and the proposed
approaches.

The first two chapters present fundamental knowledge used in later develop-
ments. Chapter 1 develops some preliminary ideas regarding variable structure
control. Specifically, the basic concepts and fundamental methodologies for sliding
mode control and decentralised control are provided. Some of them are clarified for
the first time based on the authors’ understanding as a result of the authors’ many
years of research work in the areas. Several practical examples are given to show
the potential application of complex systems. This helps readers understand the
main methods used in the book intuitively from both mathematical and practical
points of view. Chapter 2 presents some preliminary mathematical results and some
results developed by the authors.

Chapter 3 considers static output feedback control design for both nonlinear
systems and interconnected systems. For a class of fully nonlinear systems, a
variable structure control based on Lyapunov methods is designed to drive and
maintain the system in a ‘small’ region of the origin. Then, in the region, the
nonlinear system is linearised and a sliding mode control is designed to stabilise the
system asymptotically. Both controllers combined together stabilise the system
globally. For interconnected systems, decentralised control schemes are developed

viii Preface



and output variables embedded in the nonlinearity are separated and used in the
control design to reduce conservatism. Case studies relating to a mass–spring
system, coupled inverted pendulums and a flight control system are provided to
illustrate the developed control methodologies.

Chapter 4 considers dynamical output feedback control design for systems with
mismatched uncertainties/disturbances such that the corresponding closed-loop
systems are asymptotically stable. Compared with Chap. 3, all the uncertainties
involved in this chapter are bounded by nonlinear functions of the system state
variables instead of the output variables. The bounding functions are assumed to be
known and thus it is possible to use them for control design and system analysis to
reduce the effects of uncertainties. In Sect. 4.2, a sliding surface is designed which
is independent of the designed observer, and then a sliding mode control is syn-
thesised based on the estimated states from the designed observer and the system
outputs. The controller design and the observer design are separated. The designed
control can be implemented with any appropriate observer but the developed
approach requires that the considered system is minimum phase. In Sect. 4.3, a
dynamical compensator is designed first. A sliding surface is then designed for the
augmented system formed by the considered system and error dynamics. It is not
required that the nominal system is minimum phase. Applications to control of the
High Incidence Research Model (HIRM) aircraft are given in Sect. 4.4. Both
longitudinal and lateral aircraft dynamics based on different trim values of Mach
number and height are employed in the simulation study.

Chapter 5 continues to consider dynamical output feedback controller design. It
focuses on large-scale interconnected systems and uses reduced order compensators
to form the feedback loop which is particularly important for large-scale systems as it
may avoid ‘the curse of dimensionality’. In Sect. 5.2, sliding mode dynamics are
established and the stability is analysed using an equivalent control approach and a
local coordinate transformation. A robust decentralised output feedback sliding
mode control scheme is synthesised such that the interconnected system can be
driven to the predesigned sliding surface. This approach allows both the nominal
isolated subsystem and the whole nominal system to be nonminimum phase. In Sect.
5.3, a similar structure is introduced to identify a class of nonlinear large-scale
interconnected systems. By exploiting the system structure of similarity, the pro-
posed nonlinear reduced order control schemes allow more general forms of
uncertainties. Specifically, based on a constrained Lyapunov equation, the effect of
matched uncertainties is canceled completely. The study shows that a similar
structure can simplify the analysis and reduce the amount of computation. Numerical
simulation examples and a case study on river pollution control are provided to
illustrate the results developed.

Chapters 6 and 7 consider complex systems with time-delay. A Lyapunov–
Razumikhin approach is employed to deal with time-delay throughout the two
chapters. All the developed results are suitable for time-varying delay and there is
no limitation to the rate of change of the time-varying delay as with the Lyapunov–
Krasovskii approach. Chapter 6 requires that the time-delay is known and thus the
time-delay can be used in the design to reduce conservatism. Therefore the

Preface ix



controllers are delay dependent. Chapter 7 removes the assumption that the time-
delay is known but the results obtained are usually conservative when compared
with Chap. 6. In Chap. 6, both static and dynamical output feedback control
schemes are presented for complex time-delay systems; decentralised static output
feedback sliding mode controllers are designed to stabilise complex interconnected
time-delay systems where delay exists in both the interconnections and the isolated
subsystems. In Chap. 7, local stabilisation is considered for affine nonlinear control
systems with uncertainties involving time-varying delay. It is not assumed that the
nominal system is either linearisable or partially linearisable. Section 7.4 focuses on
the stabilisation problem for a class of large-scale systems with nonlinear inter-
connections. A decentralised static output feedback variable structure control is
synthesised and a set of conditions is developed to guarantee that the considered
large scale interconnected systems are stabilised uniformly asymptotically.
Section 7.5 provides some examples to demonstrate the results developed in Sects.
7.2–7.4. Numerical simulation examples and a case study on a mass–spring system
are provided to demonstrate the theoretical results.

Chapter 8 considers fault detection and isolation (FDI) for nonlinear systems with
uncertainties using particular sliding mode observers for which the design param-
eters can be obtained using LMI techniques. In Sect. 8.2, a sliding mode observer
based approach is presented to estimate system faults using bounds on the uncer-
tainties, and as a special case, a fault reconstruction scheme is available where the
reconstructed signal can approximate the fault signal to any accuracy. Section 8.3
considers sensor FDI for nonlinear systems where a nonlinear diffeomorphism is
introduced to explore the system structure and a simple filter is presented to
‘transform’ the sensor fault into a pseudo-actuator fault scenario. Both fault esti-
mation and reconstruction are considered. Case studies on a robotic arm system and
a mass–spring system demonstrate the effectiveness of the proposed FDI schemes.

Chapter 9 provides a decentralised strategy for the excitation control problem of
multimachine power systems which are formed from an interconnected set of lower
order subsystems through a network transmission. Both mismatched uncertainties
in the interconnections and parametric uncertainties in the direct axis transient short
circuit time constants, which affect the subsystem input distribution matrix, are
considered. The proposed approach can deal with interconnection terms and
parametric disturbances with large magnitude. The results obtained hold in a large
region of operation if the control gain is high enough. This allows the operating
point of the multimachine power system to vary to satisfy different load demands.
Simulations based on a three-machine power system are presented to illustrate the
proposed control scheme.

Chapter 10 makes some concluding remarks. Several specific examples are
presented to show the complexity of the systems considered in this book. Some
comments offer suggestions for future work. Finally, Appendixes A to D provide
some results (with rigorous proofs), which are used in the book, and Appendix E
presents notation and the parameters of the multimachine power system considered
in Chap. 9.
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The book aims to disseminate recent results in the area of variable structure
control of complex systems. It is suitable for scientists and engineers in academia
and industry who are interested in either variable structure techniques or complex
systems including nonlinear control, decentralised control, time-delay systems,
robust control and fault detection and isolation. It is particularly valuable to have a
combined set of references at the end of the book for ease of access to many
important theoretical and practical applications. It contains many case studies and
numerical examples with simulations to help readers understand and apply the
developed theoretical results. The analysis and design methodologies are also useful
for both undergraduate and postgraduate students in the field of nonlinear control
systems design. We believe mathematicians and control engineers will find this
book useful.

Last but not least, we would like to point out that this book only attempts to
present part of the authors’ recent achievements in the area of complex variable
structure control, which is obviously built on many other previous results. Although
we have tried to cover most of the recent important ideas and results in the area, the
exposition is far from a complete overview of the associated subjects. The bibli-
ography includes only the literature which has been actually used in the book. We
sincerely apologise for any serious omissions, large or small.

Canterbury, UK Xing-Gang Yan
Canterbury, UK Sarah K. Spurgeon
Exeter, UK Christopher Edwards
April 2016
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Chapter 1
Introduction

Control systems widely exist in the real world. Increasing requirements for system
performance and reliability have resulted in increasing complexity in the dynamic
systems used to model reality. Control engineers are faced with increasingly com-
plex control systems. The development of computer science and technology coupled
with developments in mathematical theory has provided the possibility for study of
complex systems from both theoretical and practical viewpoint.

This book systemises some of the authors’ recent research works along with fun-
damental concepts and methodologies in the area of variable structure control for
complex systems. The complexity resulting fromnonlinearities, uncertainties includ-
ing modelling error, time-delay, and interconnections between subsystems is con-
sidered. For various complex systems, theoretical analysis and control design using
static output feedback, observer-based output feedback, and decentralised control
ideas is presented based on variable structure techniques. The fault detection and
isolation problem is also investigated, using sliding mode observers, where recon-
struction and estimation schemes for both system faults and sensor faults will be
presented. Numerous numerical examples and case studies with accompanying sim-
ulations are provided to help readers understand and apply the developed strategies
and approaches.

1.1 System Complexity

Linear dynamical systems cannot describe many commonly observed phenomena
well. In the real world, nearly all systems exhibit nonlinearity. In order to reveal
complex phenomena and study complex systems, it is necessary to investigate non-
linear dynamical systems as a means to model real systems more accurately.

A dynamical control system usually can be expressed by the following differential
equation

© Springer International Publishing AG 2017
X.-G. Yan et al., Variable Structure Control of Complex Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-48962-9_1
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ẋ = f (t, x, u) (1.1)

where x ∈ R
n denotes the system state, u ∈ R

m represents the system input/control
and t ∈ R

+ is time. If a particular system output is of interest, then an algebraic
equation

y = h(t, x) (1.2)

or
y = h(t, x, u) (1.3)

is used, where y ∈ R
p represents the system output. Equation (1.1) is called the state

equation while Eq. (1.2) or (1.3) is said to be the output equation.
In this book, only the output Eq. (1.2) is considered which means that the output

equation considered in this book does not involve the control variable u. The system
(1.1)–(1.2) is called a single-input single-output (SISO) system if both u and y are
scalars. It is called a multi-input multi-output (MIMO) system if the dimensions of
either u or y are bigger than one.

The complexity of a control system depends on the controlled plant and the
environment. Higher requirements on the controlled system’s performance usually
require more advanced control techniques, which will introduce additional com-
plexity. There are many factors which may affect control system’s performance and
result in complex phenomena, such as nonlinearities, uncertainties/modelling errors,
time-delay and any interconnections existing in the system.

• Nonlinearity: Compared with linear systems, the study of nonlinear systems is
much more difficult. Analysis and design of nonlinear control systems usually
involve more advanced mathematics. Due to the existence of nonlinearities in
dynamical systems, phenomena such as finite time escape, multiple isolated equi-
libria, limit cycles, harmonic oscillation, chaos and multiple modes of behaviour
may appear [91]. These rich behaviours which exist in nonlinear dynamical sys-
tems greatly increase the complexity of the problem.

• Uncertainty/modelling error: Real systems unavoidably experience various
uncertainties such as mechanical wear and changes in the external environment.
The former may result in parametric uncertainties while the latter may result in
unstructured uncertainties. Moreover, it may be impossible to model a system
accurately. If these modelling errors and uncertainties or disturbances are not con-
sidered, the developed strategies may not work well or may even fail to meet the
design objective. Specifically, for a large-scale interconnected system, a perturba-
tion of one subsystem can affect other subsystems and the overall performance of
the network. This increases the complexity in the problem.

• Time-delay:With the increasing expectations for the closed-loop system’s dynam-
ical performance, it is required that the established systemmodel behavesmore like
the real process. Thus time-delay has to be considered as many processes include
after effect phenomena in their inner dynamics: for example, biology, population
dynamics, economics, viscoelasticity and engineering science [130, 141]. For a
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time-delay system, the future evolution, usually, not only depends on the present
state but also on its history. Even a small delay may greatly affect the performance
of a system; a stable system may become unstable, or chaotic behaviour may
appear due to delay in the system [126].

• Interconnection: In order to complete a complex task, systems have to be com-
bined together to provide the desired performance. For example, in amanufacturing
process, in order to produce the same engineering components in sufficiently large
quantities, many machine tools (isolated subsystems) are interconnected together
and monitored to form a large-scale system to complete the task [202]. A complex
system may also be formed by interconnections between a collection of simple
systems. In this case, although each subsystem may exhibit good performance in
isolation, the whole system may not work well due to the interactions between the
subsystems. To reduce, minimise or even employ the effects of the interconnec-
tions on the whole system is challenging. Moreover, these subsystems are usually
distributed geographically in space, which results in problems such as data trans-
fer, the reliability of the network communication channels and economic cost etc.
[2, 210].

In this book, the factors mentioned above will be considered. In order to deal with
the effects of uncertainties, variable structure control techniques will be employed.
The Lyapunov–Razumikhin approach will be used to deal with time-delay. For inter-
connected systems, decentralised strategies will be developed whenever possible to
avoid the reliability problem caused by network links.

1.2 Variable Structure Control

Consider the control system (1.1) in the domain D ∈ R
n . A corresponding variable

structure control can be expressed as

u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t, x), (t, x) ∈ R
+ × D1

u2(t, x), (t, x) ∈ R
+ × D2

...
...

uq(t, x), (t, x) ∈ R
+ × Dq

(1.4)

where the functions ui (t, x) are continuous for i = 1, 2, . . . , q. The structures of the
functions ui (t, x) and u j (t, x) are different for i �= j and i, j = 1, 2, . . . , q (q ≥ 2).
The domains Di ∈ R

n for i = 1, 2, . . . , q satisfy

(i) D1 ∪ D2 ∪ · · · ∪ Dq = D;
(ii) Di ∩ Dj = ∅ if i �= j for i, j = 1, 2, . . . , q.

When the variable structure control in (1.4) is applied to the system (1.1), the
corresponding closed-loop system becomes a variable structure system. Literally
speaking, variable structure control is a control whose structure is changed or keeps
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changing in order to obtain and maintain the desired system performance during the
control process.

For example, in real control design, when the response error/accuracy e(t) is over
the threshold, a proportional control is used to increase the response speed; when the
response error/accuracy e(t) is within the threshold, an integral control is employed
to guarantee that the steady error requirement is satisfied. In this case, the control
law may be described by

u =
{
kpe(t), ‖e(t)‖ > k
ki
∫
e(t)dt, ‖e(t)‖ < k.

Here the positive constants kp and ki are called the proportional gain and integral
gain respectively which are tuning parameters, and the positive constant k is called
the threshold.

This example shows that sometimes it is desirable to change the control structure
in order to get the desired system performance. As pointed out in [12], nonholo-
nomic systems cannot be stabilised by continuously differentiable, time invariant
state feedback control laws. However, a discontinuous control law is available to
stabilise nonholonomic systems (see, e.g., [1]). This motivates the need for discon-
tinuous control.

When the variable structure controller (1.4) is applied to the system (1.1), it usually
produces a discontinuous right-hand side in the corresponding closed-loop dynamical
system which consists of a set of ordinary differential equations. This produces an
interesting mathematical problem: the traditional definition and existence conditions
for the solutions of the closed-loop system are not applicable. It is necessary to
extend the classical solution. In this case the solution of the equations is defined in
the Filippov sense [46] throughout the book.

In order to reject/reduce the effects of uncertainties and disturbances, different
variable structure approaches have been proposed, for example, the approach based
on the direct Lyaponov method in [202, 210, 214] and a discontinuous control law
for nonholonomic systems in [1]. However, variable structure control which leads to
a sliding motion, has underpinned the development of a systematic research method-
ology, which is the well-known slidingmode control paradigm. Slidingmode control
has dominated the literature in the area of variable structure control and thus when
people talk about variable structure control, they usually mean sliding mode control.
Here, it should be pointed out that not all variable structure control will lead to a
sliding motion.

1.3 Sliding Mode Control

Sliding mode control, as a particular type of variable structure control, evolved from
the pioneering work in Russia of Emel’yanov and Barbashin in the early 1960s. The
ideas did not appear outside of Russia until the mid 1970s when a book by Itkis [81]
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and a survey paper by Utkin were published in English [175]. The ideas underlying
the modern analysis and design of sliding mode controllers may be further dated
back to publications in the early 1930s. At that time, concerns on relay systems with
sliding modes for controlling the course of a ship had been proposed [55] where the
terms phase plane, switching line, and even sliding mode appear [172].

Relay systems have been found in many control engineering systems. Relay con-
trol systems are a simple nonlinear system which is effective and has low cost.
Sometimes they have better dynamical performance than linear systems [171]. Early
rigorous studies on relay systems are found in contributions in the 1960s which were
presented celebrating Filippov’s achievement for differential equations with discon-
tinuous right-hand sides [47]. The study of relay systems stimulated the study of
sliding mode control.

In the initial stage (before 1962), nearly all studies focused on second-order lin-
ear systems. Later work was extended to higher order systems (i.e., systems with
order greater than 2) but most work was still limited to linear systems with single
input control. The study of nonlinear systems in state space form commenced in
1970 and multi-input control systems have been widely considered since then. The
development of this state space description and multivariable control system theory
greatly promoted the development of sliding mode controllers, which also motivated
the application of sliding mode techniques in practical systems [172].

In recent decades, various control approaches have been proposed and research
on sliding mode control has become very active. Due to its high robustness against
uncertainties/disturbances, sliding mode control has been widely combined with
other approaches to provide better results in both theoretical research and practical
engineering.Many interesting results have been created in adaptive slidingmode con-
trol [4, 18, 176], fuzzy sliding mode control [168, 178], backstepping based sliding
mode control [162] and decentralised sliding mode control [200, 201] with appli-
cations in wide areas such as engineering systems, aircraft control, energy systems,
communication networks and biology [7, 77, 82, 129, 153, 172].

1.3.1 Sliding Mode Control Methodology

Sliding mode control changes the system dynamics by employing a discontinuous
control signal. This approach has been well developed and extensively used in theo-
retical research and practical engineering design. It has been successfully employed
to solve various control problems in combination with other control approaches.

The sliding mode control method consists of two steps:

• the design of a sliding surface such that the system considered possesses the desired
performance when it is restricted to the surface;

• the design of a variable structure control which drives the system trajectory to the
sliding surface in finite time and maintains a sliding motion on it thereafter.
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A concise description is available in [38, 173]. In view of these two steps, the system
motion can be separated into two phases: the reaching phase and the sliding phase.
The former refers to themotionwhen the system trajectorymoves towards the sliding
surface and the latter concerns the motion when the system trajectory moves on the
sliding surface.

1.3.1.1 Sliding Phase

Consider System (1.1). In order to design a proper switching/sliding function

s = s(x)

such that the resulting sliding motion has the desired performance, one way is to find
the dynamical equationswhichwill govern the slidingmotion, and then synthesise the
sliding surface based on the characteristics of the sliding mode dynamics or sliding
motion. It is assumed that the slidingmotion exists. The following two approaches are
usually employed to find the sliding mode dynamics and in this way the stability of
the sliding motion is transformed to the problem of ensuring stability of an unforced
system.

• Equivalent control: When the considered system (1.1) is limited to and moving
on the sliding surface,

s(x) = 0, and ṡ(x) = 0.

The time derivative of s(x) along the system (1.1) is given by

ṡ = ∂s

∂x
ẋ = ∂s

∂x
f (t, x, u).

In the sliding motion,
∂s

∂x
f (t, x, u) = 0. (1.5)

Suppose there is a solution for u to the Eq. (1.5) denoted by

ueq = ueq(t, x)

which is the so-called equivalent control (see, p. 14 in [174]). Then, the sliding
mode dynamics governing the sliding motion may be obtained by

{
ẋ = f (t, x, ueq(t, x))

s(x) = 0
. (1.6)
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Now, assume that System (1.1) is in the following affine nonlinear form,

ẋ = F(t, x) + G(t, x)u. (1.7)

Then, for the sliding surface s(x) = 0, it follows from ṡ(x) = 0 that the corre-
sponding equivalent control is given by

ueq = −(s(x)G(x, t))−1s(x)F(t, x) (1.8)

where s(x) should be chosen such that s(x)G(x, t) is nonsingular for all x in the
considered domain and t ∈ R

+. Substitute ueq from (1.8) into the system (1.1), it
follows that the corresponding sliding motion can be described by

{
ẋ = F(t, x) − G(t, x)(s(x)G(x, t))−1s(x)F(t, x)

s(x) = 0
.

Remark 1.1 It should be noted that the equivalent control is used only to analyse
the sliding motion. It is not the control signal which is actually applied to the system
but it may be thought of as the control signal which must be applied “on average” to
maintain the sliding motion [38, 174].

• Regular form: Another approach to find the sliding mode dynamics relating to
the sliding function s = s(x) for System (1.1) is to employ the well-known regular
form. Suppose that there exists a coordinate transformation z = T (x) such that in
the new coordinate system z, the sliding surface s(x) = 0 can be described in the
form

z2 = σ(z1)

where z1 ∈ R
n−m , z2 ∈ R

m , z := col(z1, z2) and System (1.1) can be described by

ż1 = F1(t, z1, z2) (1.9)

ż2 = F2(t, z1, z2, u) (1.10)

where u ∈ R
m is the control. The Jacobian matrix ∂F2(t,z1,z2,u)

∂u is assumed to be
nonsingular in the considered domain. Note that System (1.9) is independent of
the control signal and the dimension of z2 is the same as the dimension of the
control u. System (1.9)–(1.10) is the so-called regular form.
Based on the regular form in (1.9)–(1.10), it is clear to see that the corresponding
sliding mode dynamics of System (1.1) is described by

ż1 = F1(t, z1, σ (z1)) (1.11)

which is a reduced-order system when compared with System (1.1).
Note, if System (1.1) is in the following affine form as given in (1.7), then, the
corresponding regular form can be described by
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ż1 = F1(t, z1, z2) (1.12)

ż2 = F2(t, z1, z2) + G2(t, z1, z2)u (1.13)

where the functions F1(·) and F2(·), and G2(·) are dependent on the coordinate
transformation z = T (x) and the functions F(·) and G(·) respectively.

1.3.1.2 Reaching Phase

In order to guarantee that the system trajectory can be driven to the sliding surface
s(x) = 0 in finite time and a sliding motion can be maintained on it thereafter, a
proper discontinuous control

u = u(t, x)

needs to be designed such that the following condition is satisfied [38, 173]

sT (x)ṡ(x) ≤ −η‖s(x)‖ (1.14)

for some constant η > 0. The inequality (1.14) is the so-called reachability condition
and η is called the reachability constant.

From Eq. (1.1), it follows that

ṡ = ∂s

∂x
ẋ = ∂s

∂x
f (t, x, u).

Therefore, Inequality (1.14) is equivalent to

sT (x)
∂s

∂x
f (t, x, u) ≤ −η‖s(x)‖ (1.15)

which explicitly contains the variable u. The sliding mode controller guaranteeing
reachability can usually be synthesised from (1.15).

The following condition
sT (x)ṡ(x) < 0

is also called a reachability condition but it cannot guarantee that a sliding motion
takes place in finite time and thus a sliding motion may not occur in this case.

It should be emphasised that, when the designed sliding/switching function is
time varying, for example,

s = s(t, x)

it is straightforward to see that the condition (1.15) used to synthesise the sliding
mode control law should be updated to
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sT (t, x)

(
∂s

∂t
+ ∂s

∂x
f (t, x, u)

)

≤ −η‖s(t, x)‖.

For this case, a design approach has been provided in [27].

1.3.2 Sliding Mode Control of a Mass–Spring Damper System

In order to illustrate the sliding mode control methodology, consider the simple
mass–spring damper mechanical system in Fig. 1.1 where the mass M slides on a
smooth surface. In Fig. 1.1, X denotes the displacement from the reference position,
m is the mass of the object M sliding on a horizontal surface, k is the coefficient of
spring K , b is the coefficient of the damper B and F is an external force which is
considered as the control input u (u = F).

It is assumed that the mass–spring damper system experiences a hardening spring
which produces a restoring force described by (see [91])

k(1 + a2X2)X.

The simple viscous damper produces a damping force described by bẊ . From New-
ton’s second law, the motion of the object M can be described by

mẌ = −bẊ − k(1 + a2X2)X + u. (1.16)

Let x = col(x1, x2) = (X, Ẋ). Then, ẋ1 = x2 and ẋ2 = Ẍ . FromEq. (1.16), it follows
that

ẋ2 = − b

m
x2 − k

m
x1 − k

m
a2x31 + u

which can be rewritten by

ẋ2 = −
( k

m
+ k

m
a2x21

)
x1 − b

m
x2 + u.

Fig. 1.1 A mass–spring damper mechanical system
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Choosem = b = k = a = 1 for simplicity. Then, the system (1.16) can be described
in the form of (1.1) by

ẋ =
[

x2
−(1 + x21 )x1 − x2 + u

]

︸ ︷︷ ︸
f (x,u)

(1.17)

which is a nonlinear system.
The objective is to design a sliding mode control law such that the system (1.17)

is asymptotically stable.

(i) Sliding phase: Design a linear switching function

s(x) = γ x1 + x2 (1.18)

where γ is a design parameter. When System (1.17) is limited to the sliding
surface, s(x) = 0. It follows from (1.18) that

x2 = −γ x1.

Considering the structure of System (1.17), it is straightforward to see that the
corresponding sliding mode dynamics are

ẋ1 = −γ x1. (1.19)

Therefore, the sliding motion governed by the sliding mode dynamics (1.19) is
asymptotically stable if the parameter γ is chosen to satisfy γ > 0.

(ii) Reaching phase: Consider the sliding mode controller

u = (1 + x21 )x1 + x2 − γ x2 − ηsgn(γ x1 + x2) (1.20)

where η > 0 is a constant. Then the closed-loop system obtained by applying
the control in (1.20) to System (1.17) is given by

ẋ1 = x2 (1.21)

ẋ2 = −γ x2 − ηsgn(γ x1 + x2). (1.22)

By direct computation, it follows from Eqs. (1.21)–(1.22) that

s(x)ṡ(x) = −s(x)(γ ẋ1 + ẋ2)
= −ηs(x)sgn(s(x)) ≤ −η|s|.

This guarantees that the control (1.20) can drive the trajectories of System (1.17)
to the sliding surface s(x) = 0 with s(·) defined in (1.18), in finite time and
maintain a sliding motion on it thereafter.
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From sliding mode control theory, (i) and (ii) above together show that the cor-
responding closed-loop system is asymptotically stable. For simulation purposes,
choose

γ = 0.5, η = 1

and the initial condition x0 = col(2, 1).
Figure1.2 shows the phase plane portrait of the displacement x1 and velocity x2.

From Fig. 1.2, the system states (x1, x2) are driven to the sliding surface from the
initial point x0 = (2, 1), and then move along the sliding surface to converge to the
origin.

The time responses of the displacement and velocity of the object are shown in
Fig. 1.3. Figure1.4 shows the control signal imposed on the system.

It is clear to see that chattering appears due to the discontinuity in the control.
Chattering may be undesirable in practice because it may result in unnecessary

wear and tear on the actuator components and result in unnecessary energy consump-
tion. One way of overcoming this drawback is to introduce a boundary layer about
the discontinuous surfaces (see [13]) which may affect the control accuracy. Another
way is to use higher order sliding mode techniques but this requires the considered
system to have a certain structure.

In this book, higher order sliding mode techniques will not be discussed. Detailed
information about higher order sliding mode control can be found in [5, 45, 100,
153] and the references therein.

Fig. 1.2 The phase plane portrait
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Fig. 1.3 The time responses of the displacement x1 and velocity x2
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Fig. 1.4 The time response of the control signal

1.3.3 Characteristics of Sliding Mode Control

It is observed that sliding mode control has the following characteristics:

• The sliding mode dynamics are a reduced-order system when compared with the
original system dynamics.
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For System (1.1) with sliding surface s = s(x), the corresponding sliding mode
dynamics can be described by (1.6) or (1.11). It is clear to see that the order of the
system (1.6) or (1.11) is n − m where n is the dimension of the original system
and m is the dimension of the control. Therefore, during the sliding motion, the
system exhibits reduced-order dynamics when compared with the original system.

• The sliding motion is insensitive to matched uncertainty.
Suppose System (1.1) experiences an uncertainty/disturbance. If the uncertainty
or disturbance acts in the input/control channel or the effects are equivalent to an
uncertainty acting in the input channel, it is calledmatched uncertainty. Otherwise
it is called mismatched uncertainty. For example, assume that the nonlinear affine
control system (1.7) experiences uncertainties φ(t, x) and ψ(t, x) described by

ẋ = F(t, x) + G(t, x)(u + φ(t, x)) + ψ(t, x). (1.23)

Then, the term φ(t, x) is called matched uncertainty. In addition, if the uncertainty
ψ(t, x) can be modelled as

ψ(t, x) = G(t, x)χ(t, x)

where χ(·) represents the uncertainty, it is clear to see that the uncertainty of the
term ψ(·) is reflected by the uncertainty χ(·) which is exactly acting in the input
channel. In this case ψ(t, x) is also called matched uncertainty.
From Eq. (1.6) or (1.11), it is straightforward to see that the dynamics governing
the sliding motion are completely independent of the control and thus the system
is robust to matched uncertainty.

• Uncertainties/disturbances will affect reachability.
In order to guarantee that the trajectory of the considered system is driven to
the predesigned sliding surface, the reachability condition must be satisfied—
which is interpreted as (1.15). It is clear that (1.15) involves all of the right-hand
side of Eq. (1.1). Therefore, uncertainties/disturbances may affect the reaching
phase no matter whether they are matched or mismatched, but the effects of some
uncertainties may be completely rejected by an appropriate control.

• The process of designing the sliding surface and sliding mode control can be
‘separated’.
The main target of sliding surface design is to ensure that the resulting sliding
motion has the required performance. The main objective of the control design is
that the reachability condition is satisfied so that the system can be driven to the
sliding surface. In view of this, sliding surface design and sliding mode control
design can be completed separately. This property is called the design ‘separation’
property in this book.
The design of a sliding surface is usually not dependent on the process of the
sliding mode control design. Once the sliding surface is specified, the study of the
stability of the sliding motion and the reachability can be carried out separately.
This has advantages when compared with other control approaches. For exam-
ple, the steady-state response is totally dependent on the sliding mode dynamics
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which is independent of the control. Therefore, in order to improve the steady-
state response of the control system, it is only necessary to consider the sliding
mode dynamics instead of the original system. In the reaching phase, by adjusting
the parameters in the sliding mode control law, the reaching time can be reduced
which may produce a fast time response, and will also maximise robustness.

1.4 Decentralised Control

In the real world, there are a number of important systems which can be mod-
elled as dynamical equations composed of interconnections between a collection of
lower-dimensional subsystems. Such classes of systems are called large-scale inter-
connected systems, which are often widely distributed in space [111, 117, 145]. A
fundamental property of an interconnected system is that a perturbation of one sub-
system can affect the other subsystems as well as the overall performance of the
entire network. Decentralised control has been recognised as an effective method to
control such systems.

1.4.1 Background

Large-scale interconnected systems widely exist in society. A typical large-scale
interconnected system is the multimachine power system [182, 201]. Other exam-
ples of large-scale interconnected systems that present a great challenge to both
system analysts and control designers include power networks, ecological systems,
biological systems and energy systems [117, 158].

For interconnected systems, the presupposition of centrality fails to hold due
to either the lack of centralised information or the lack of centralised computing
capability. When the number of subsystems is large, the computation time increases
significantly if centralised control is employed. In the extreme case when informa-
tion transfer among the subsystems is blocked, centralised control schemes simply
cannot be applied. Even with engineered systems, issues such as the economic cost
and reliability of communication links, particularly when systems are characterised
by geographical separation, limit the appetite to develop centralised systems. From
the perspective of economics and reliability, decentralised strategies are pertinent
for large-scale interconnected systems. This has motivated the application of decen-
tralised control methodologies to interconnected systems [87, 106, 192]. A survey
paper [2] has covered several decomposition approaches such as disjoint subsystems,
overlapping subsystems, symmetric composite systems, multi-time scale systems
and hierarchically structured systems to simplify the analysis and synthesis tasks for
large-scale systems to reduce the computational complexity.

Decentralised control for large-scale interconnected systems has been studied
extensively. Research on large-scale interconnected systems analysis and synthesis
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can be traced back to at least the 1970s, and the survey paper [145] clearly shows the
development of this topic at that time, when almost all of the work focused on linear
cases. With the advancement of technology and increasing requirements for high
levels of performance, specifically in recent years, the dynamic systems used tomodel
reality have becomemore complex involving nonlinearities, uncertainties, time-delay
and interconnection. Therefore, the study of complex interconnected systems has
become increasingly important. The interest in this subject has been revived by new
developments in nonlinear systems and control. The recent survey paper [216] has
shown the progress made in the area of decentralised control where some of the work
associated with sliding mode control, adaptive control and backstepping control has
been covered.

1.4.2 Fundamental Concept

From the mathematical point of view, a nonlinear large-scale interconnected system
composed of N ni -th order subsystems can be described by

ẋi = fi (t, xi ) + gi (t, xi )
(
ui + Δgi

(
t, xi )

)+ Δ fi (t, xi ) +∑N
j=1
j �=i

ζi j (t, x j )

(1.24)

yi = hi (xi ), i = 1, 2, . . . , N , (1.25)

where xi ∈ Ωi ⊆ R
ni (Ωi is a neighbourhood of the origin), ui ∈ R

mi and yi ∈
R

pi are the states, inputs and outputs of the i-th subsystem respectively for i =
1, 2, . . . , N . All the matrix functions gi (·) ∈ R

ni×mi and the nonlinear vectors
fi (·) ∈ R

ni and hi (·) ∈ R
pi with hi (0) = 0 are known. The terms Δgi (·) and Δ fi (·)

represent the matched and the mismatched uncertainties respectively. The term

N∑

j=1
j �=i

ζi j (t, x j )

represents the interconnection of the i-th subsystem with the other subsystems. It is
assumed that all the nonlinear functions are smooth enough such that the unforced
systems have unique continuous solutions.

Definition 1.1 Consider System (1.24)–(1.25). The system

ẋi = fi (t, xi ) + gi (t, xi )
(
ui + Δgi

(
t, xi )

)+ Δ fi (t, xi ) (1.26)

yi = hi (xi ), i = 1, 2, . . . , N , (1.27)
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is called the i-th isolated subsystem of System (1.24)–(1.25), and the system

ẋi = fi (t, xi ) + gi (t, xi )ui (1.28)

yi = hi (xi ), i = 1, 2, . . . , N , (1.29)

is called the i-th nominal isolated subsystem of System (1.24)–(1.25).

It is well known that one of the main problems for interconnected systems is to
establish under what conditions the interconnected system (1.24)–(1.25) exhibits the
desired performance if all the isolated subsystems (1.26)–(1.27) or all the nominal
isolated subsystems (1.28)–(1.29) exhibit the required performance. Therefore, how
to deal with interconnections is a key problem of interest in decentralised control.

Definition 1.2 Consider System (1.24)–(1.25). If the designed controllers ui for the
i-th subsystems depend on the time t and states xi of the i-th subsystem only, i.e.,

ui = ui (t, xi ), i = 1, 2, . . . , N (1.30)

then (1.30) is called decentralised state feedback control. If the controllers in (1.30)
have the form

ui = ui (t, yi ), i = 1, 2, . . . , N (1.31)

that is, each local controller depends upon the time t and the outputs of the local
subsystem only, then they are called decentralised static output feedback control.
Furthermore, if the designed controllers consist of the dynamical systems

˙̂xi = φi (t, x̂i , ui , yi ), i = 1, 2, . . . , N (1.32)

and controllers
ui = ui (t, x̂i , yi ), i = 1, 2, . . . , N (1.33)

then (1.32)–(1.33) is calleddecentralised dynamical output feedback control. Specifi-
cally, if (1.32) is anobserver of the system (1.24)–(1.25), then it is calleddecentralised
observer-based feedback control.

It is straightforward to see, according to Definition 1.2 above, that it is required
that the dynamical systems (1.32) are decoupled in a decentralised dynamical output
feedback scheme. It should be mentioned that in some of the existing work, see
for example [203, 215], the designed dynamical systems (1.32) are not decoupled
(in fact they are interconnected systems). In this case, the developed controllers are
sometimes still called a decentralised control. However, in precise terms, such a class
of controllers is not decentralised because there exists information transfer between
subsystems of the designed dynamical system (see e.g., [203, 215]).

Several decades ago, most work on decentralised control focused on linear inter-
connected systems due to the limitation of available control paradigms that were
able to deal with nonlinearity. However, the dynamics of large-scale natural and
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engineered interconnected systems are usually highly nonlinear. It is not only the
structure of the system and interconnections which produce complexity but also the
nonlinearity of the dynamics themselves. It is clear that although linear dynamics
may approximate the orbit of a nonlinear system locally, it does not permit the exis-
tence of the multiple states observed in real networks and does not accommodate
global properties of the system. Such global properties can be crucial because they
may become significant when the system is perturbed or a subsystem enters a failure
state. Increasing requirements on system performance coupled with the ability to
model and simulate reality by means of complex, possibly nonlinear, interconnected
systems models has motivated increasing contributions in the study of such systems.
This interest has been further stimulated by the simultaneous development of nonlin-
ear systems theory and the emergence of powerful mathematical and computational
tools which render the formal and constructive study of nonlinear large-scale systems
increasingly possible [210].

In order to help readers to understand the ‘decentralised’ concept, the following
schematic diagram in which the interconnected system has three subsystems, is
produced to show that in static decentralised output feedback control scheme, the
local controller ui of the i-th subsystem only uses the local output information yi ;
no output information y j ( j �= i) is involved in the design of ui . From Fig. 1.5, it is
clear that there is no local output information transfer between the local controllers
ui and u j (i �= j) for i, j = 1, 2, 3.

Fig. 1.5 Decentralised static output feedback schematic diagram
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1.5 Examples of Complex Systems

In this section, some practical examples will be presented to show that complex
systems widely exist in the real world.

1.5.1 One-Machine Infinite-Bus System

Consider a simple power system where a large-turbine generator set connects with
an infinite bus. The motion equation of the machine’s rotor can be described by (see,
for example, [107])

H
d2δ

dt2
= Mm(t) − EqVs

Xδ

sin δ(t) (1.34)

where δ(t) is the generator’s rotor angle, Mm is the mechanical input torque, H is
the moment of inertia of the machine, Eq is the transient potential of the q-axis of
the generator, Vs is the voltage of the infinite bus which is constant, Xδ is the sum of
the transient inductance of the shaft of generator, the inductance of the transformer
and the inductance of the transmission line.

For simplicity, assume that Eq is constant. Let

x1 = δ and x2 = δ̇

where x2 represents the angular velocity. The letter Mm denotes the control input u.
Then the system (1.34) modelling the one-machine infinite-bus is described by

ẋ =
[

x2
−a1 sin x1 + a2u

]

(1.35)

where x := col(x1, x2), and
a1 := EqVs

H Xδ

a2 := 1
H .

System (1.35) is a nonlinear affine system as it can be described by

ẋ =
[

x2
−a1 sin x1

]

+
[
0
a2

]

u

where the input distribution is a constant matrix.
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1.5.2 PVTOL Aircraft

The well-known planar vertical take-off and landing (PVTOL) represents a chal-
lenging nonlinear control problem. It is motivated by the need to stabilise an aircraft
which is able to take-off vertically such as helicopters and some special aircraft.

The mathematical model describing an aircraft that evolves in a vertical plane
usually has three degrees of freedom (X,Y, φ) corresponding to its position (X,Y )

and orientation in the plane φ. The PVTOL is composed of two independent thrusters
that produce a force and a moment on the aircraft. The dynamical model of the
PVTOL aircraft can be obtained using the Lagrangian approach or Newtons laws,
which are given in [191], as follows

mẌ = −(sin φ)U1 + ε0(cosφ)U2

mŸ = (cosφ)U1 + ε0(cosφ)U2 − mg

J φ̈ = U2

where (X,Y ) is the centre of mass of the aircraft, θ is the roll angle,mg is the gravity
force imposed at the aircraft’s centre of mass and J is the mass moment of inertia
around the axis through the aircraft’s centre of the mass and along the fuselage,
the control U1 is the thrust directed to the bottom of aircraft and the control U2 the
moment around the aircraft’s centre of the mass, ε0 is the quantity of lateral force
induced by the rolling moment which characterises the coupling between the rolling
moment and the lateral acceleration of the aircraft.

Let
x̄ = −X/g, ȳ = −Y/g, u1 = U1/mg

U2 = U2/mg, ε = ε0 J/mg.

Then the normalised PVTOL aircraft dynamics can be described by [16, 191]

¨̄x = −(sin φ)u1 + ε(cosφ)u2 (1.36)
¨̄y = (cosφ)u1 + ε(cosφ)u2 − 1 (1.37)

φ̈ = u2. (1.38)

The dynamical equations (1.36)–(1.38) can be described in (1.1) as follows

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2
−(sin x5)u1 + ε(cos x5)u2

x4
(cos x5)u1 + ε(cos x5)u2 − 1

x6
u2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.39)
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where
x1 := x̄, x2 := ˙̄x, x3 := ȳ

x4 := ˙̄y, x5 := φ, x6 := φ̇.

System (1.39) can be rewritten by

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2
0
x4
−1
x6
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
−sinx5 ε cos x5

0 0
cos x5 ε cos x5
0 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
u1
u2

]

where x := col(x1, x2, . . . , x6), and thus it represents an affine nonlinear control
system. In general, ε is unknown but it is very small and can be neglected. In this
case, the model can be simplified as

ẋ1 = x2
ẋ2 = −(sin x5)u1
ẋ3 = x4
ẋ4 = (cos x5)u1 − 1

ẋ5 = x6
ẋ6 = u2.

This is a nonlinear system.

1.5.3 Stirred Tank Reactor

Consider an industrial jacketed continuous stirred tank reactor (JCSTR) with a
delayed recycle stream [116]. The reactions within the JCSTR are assumed uni-
molecular and irreversible (exothermic). Perfect mixing is assumed and the heat
losses are neglected. The reactor accepts a feed of reactant which contains a sub-
stance A with initial concentration CA0 . Cooling of the tank is achieved by a flow of
water around the jacket and the water flow in the jacket FJ is controlled by actuating
a valve.

Suppose that a fresh feed of pure substance A is to be mixed with a recycled
stream of unreacted substance A with a recycle flow rate

1 − c, (0 ≤ c ≤ 1)
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where c is the coefficient of recirculation.
The change of concentration arises from three terms: the amount of substance A

that is added with feed under recycling, the amount of substance A that leaves with
the product flow, and the amount of the substance A that is used up in the reaction. The
change in the temperature of the fluid comes from the following four factors: the heat
that enters with the feed flow under recycling, the heat that leaves with the product
flow, the heat created by the reaction and the heat that is transferred to the cooling
jacket. There are three terms associated with the changes of the temperature of the
fluid in the jacket: one term representing the heat entering the jacket with the cooling
fluid flow, another term accounting for the heat leaving the jacket with the outflow
of cooling liquid and a third term representing the heat transferred from the fluid in
the reaction tank to the fluid in the jacket.

Under conditions of constant hold-up, constant densities and perfect mixing, the
energy and material balances can be expressed mathematically as [116]:

ĊA = (FV )−1
(
cCA0 − cCA − cCA(t − d)

)− k1CAe
− k2

T

Ṫ = (FV )−1 (cT0 − cT − cT (t − d)) − k1k3CAe
− k2

T − k4(T − TJ (t))

ṪJ = (FJ VJ )
−1
(
TJ0 − TJ

)− k5(T − TJ ) (1.40)

where CA is the concentration of the substance A, T is the temperature of the fluid
in the tank, TJ is the temperature of the jacket, V is the volume of the tank (gallons),
F is the feed entry rate, the initial temperature is T0, and d represents the transport
delay in the recycled stream.

It is straightforward to see that System (1.40) is a nonlinear time-delay control
system and can be described in the form of (1.1) as

ẋ =
⎛

⎜
⎝

(FV )−1
(
cCA0 − cx1 − cx1(t − d)

)− k1x1e
− k2

x2

(FV )−1 (cT0 − cx2 − cx2(t − d)) − k1k3x1e
− k2

x2 − k4(x2 − x3(t))
(uVJ )

−1
(
TJ0 − x3

)− k5(x2 − x3)

⎞

⎟
⎠

where x1 = CA, x2 = T , x3 = TJ , x = col(x1, x2, x3) is the systemstates andu = FJ

is the system input. The letter d represents the time-delay.

1.5.4 Coupled Inverted Pendula on Carts

Consider a coupled inverted pendulum connected by a moving spring mounted on
two carts as shown in Fig. 1.6. It is assumed that the pivot position of the moving
spring is a function of time which can change along the full length l of the pendula.
The input to each pendulum is the torque ui applied at the pivot which is produced
by the external forces F1 and F2 applied to the carts.
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Fig. 1.6 Two coupled
inverted pendula on carts

Let
z1 = col(θ1, θ̇1)

T , and z2 = col(θ2, θ̇2)
T .

Then the dynamical model for the two coupled inverted pendulum systems is given
by (see [149]):

ẋ1 =
[

0 1
g

cl
− ka(t)(a(t) − cl)

cml2
0

]

x1 +
[

0
1

cml2

]

u1 +
[

0 0
ka(t)(a(t) − cl)

cml2
0

]

x2

−
[

0
m

M
(sin θ1)θ̇

2
1 + ka(t)(a(t) − cl)

cml2
(s1 − s2)

]

(1.41)

ẋ2 =
[

0 1
g

cl
− ka(t)(a(t) − cl)

cml2
0

]

x2 +
[

0
1

cml2

]

u2 +
[

0 0
ka(t)(a(t) − cl)

cml2
0

]

x1

−
[

0
m

M
(sin θ2)θ̇

2
2 + ka(t)(a(t) − cl)

cml2
(s2 − s1)

]

(1.42)

where s1 and s2 are the positions of the two carts,

c = M/(M + m)

and k and g are the spring and gravity constants, respectively. The system (1.41)–
(1.42) is a nonlinear interconnected control system.

1.5.5 Multimachine Power Systems

Power systems play an important role in the practical world. The classical model of
power systemswas given byBergen [8], and based on this, amultimachine power sys-



1.5 Examples of Complex Systems 23

tem consisting of N synchronous generators interconnected through a transmission
network is described by the following equations [67]:

• Mechanical equations

δ̇i = ωi , (1.43)

ω̇i = − Di

2Hi
ωi + ω0

2Hi
(Pmi0 − Pei ). (1.44)

• Generator electrical dynamics:

Ė ′
qi = 1

T ′
doi

(E f i − Eqi ). (1.45)

• Electrical equations

Eqi = E ′
qi − (xdi − x ′

di )Idi , (1.46)

E f i = Kciu f i (1.47)

Pei =
N∑

j=1

E ′
qi E

′
q j Bi j sin(δi − δ j ) (1.48)

Qei = −
N∑

j=1

E ′
qi E

′
q j Bi j cos(δi − δ j ) (1.49)

Iqi =
N∑

j=1

E ′
q j Bi j sin(δi − δ j ) (1.50)

Idi =
N∑

j=1

E ′
q j Bi j cos(δi − δ j ) (1.51)

Eqi = xadi I f i (1.52)

Vti =
√

(E ′
qi − x ′

di Idi )
2 + (x ′

di Iqi )
2 (1.53)

where δi is the i-th generator power angle [rad], and ωi is the relative speed [rad/s],
E ′
qi represents the transient EMF in the quadrature axis [p.u.], and u f i is the input

of the amplifier of the i-th generator for i = 1, 2, . . . , N . The physical meanings of
all the other symbols/notation used above are shown in Appendix E.1.

This model has been used by many authors to study multimachine power systems
[67, 108, 182, 193]. The multimachine power system shown above can be expressed
in the form of (1.24) (see, for example, Chap. 9).

http://dx.doi.org/10.1007/978-3-319-48962-9_9
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1.5.6 A Biochemical System—Peroxidase–Oxidase Reaction

As a biochemical system, the peroxidase–oxidase (PO) reaction exhibits many com-
plex dynamical behaviours. A great deal of experimental and theoretical work has
been devoted to determining the mechanism by which oscillations and chaos arise
in the PO reaction.

In addition to oscillatory and chaotic behaviour, the PO reaction exhibits bista-
bility. Due to its suspected kinetic source: the inhibition of the enzyme by molecular
oxygen, both autocatalysis and inhibition, i.e., positive and negative feedback are
needed in the reaction mechanism for this system. A simple model for the PO reac-
tion is described in [30, 181] as follows

Ȧ = −k1ABX − k3ABY + k7 − k9A

Ḃ = −k1ABX − k3ABY + k8
Ẋ = k1ABX − 2k2X

2 + 2k3ABY − k4X + k6
Ẏ = −k3ABY + 2k2X

2 − k5Y

where A is the concentration of dissolved O2, B is the concentration of nicotinamide
adenine dinucleotide, and X and Y are concentrations of two critical intermediates,
X and Y .

Typically all parameters except k1 are constant. The parameter k1 can be con-
sidered as a bifurcation parameter. Chaos is found only within a certain range of
parameter values. Variations in k1 reproduce the experimental behaviour observed
when the enzyme concentration is changed. Thus k1 can be considered as being
related to the enzyme catalyst concentration [30, 181].

This section has provided practical examples of complex systems. Some will be
used to demonstrate the developed results later in the text and additional examples
will be given in the subsequent chapters.

1.6 Outline of This Book

This monograph systematically summarises the authors’ recent results in the area
of variable structure systems. It will focus on the analysis and design of complex
systems where slidingmode techniques and the Lyapunov approach are the twomain
methods used throughout the monograph. Simulation examples and/or case studies
are presented in each chapter to help readers understand the obtained theoretical
results and utilise the proposed design approaches.

The book is organised as follows. First, the fundamental mathematical knowledge
and basic control theory employed in the subsequent analysis and design in this
monograph will be presented in Chap.2. Considering that static output feedback
control design is more convenient for real implementation when compared with

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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state feedback control, in Chap.3, robust static output controllers are designed to
globally asymptotically stabilise the system, and then a decentralised static output
feedback slidingmode control scheme follows for a class of nonlinear interconnected
systems.

As static output feedback control imposes strong limitations on the considered
system, dynamical feedback control is investigated in Chap.4 where both minimum
phase and non-minimum phase systems are considered. Chapter 4 studies dynami-
cal output feedback control for nonlinear interconnected systems. Since large-scale
interconnected systems have higher dimension, and dynamical output feedback will
greatly increase the dimension of the closed-loop system, reduced-order observer-
based feedback controllers are considered in Chap.5.

Time-delay is a factor which increases system complexity. Chapters6 and 7
concentrate on the study of nonlinear time-delay systems where the Lyapunov–
Razumikhin approach is used to deal with the time-delay. Under the assumption that
the time-delays are known, control schemes for nonlinear time-delay systems, and a
decentralised control strategy for interconnected systems are proposed in Chap.6. In
practice, knowledge of the time-delay is not always available for design. In connec-
tion with this, memoryless variable structure controllers are presented in Chap. 7.

Chapter 8 discusses model based fault detection and isolation for nonlinear sys-
tems with uncertainties. The reconstruction and/or estimation of both system faults
and sensor faults are considered based on a sliding mode observer scheme. LMI
techniques are employed to facilitate the design of the parameters. A coordinate
transformation is employed to explore the system structure when the considered
system is fully nonlinear.

Applications of decentralised sliding mode control schemes to multimachine
power systems are presented in Chap. 9. Simulation studies on three machine power
systems confirm the theoretical results.

Finally, Chap. 10 concludes the book by providing some comments on the devel-
oped methods, some specific examples to show the complexity of control systems,
and some suggestions for future developments in the area of variable structure
control.

http://dx.doi.org/10.1007/978-3-319-48962-9_3
http://dx.doi.org/10.1007/978-3-319-48962-9_4
http://dx.doi.org/10.1007/978-3-319-48962-9_4
http://dx.doi.org/10.1007/978-3-319-48962-9_5
http://dx.doi.org/10.1007/978-3-319-48962-9_6
http://dx.doi.org/10.1007/978-3-319-48962-9_7
http://dx.doi.org/10.1007/978-3-319-48962-9_6
http://dx.doi.org/10.1007/978-3-319-48962-9_7
http://dx.doi.org/10.1007/978-3-319-48962-9_8
http://dx.doi.org/10.1007/978-3-319-48962-9_9
http://dx.doi.org/10.1007/978-3-319-48962-9_10


Chapter 2
Mathematical Background

This chapter presents some fundamental mathematical knowledge and basic results
which facilitate the analysis and design in the subsequent chapters. The motivation
is to help readers understand the theoretical work presented in this book.

2.1 Lipschitz Function

This section will present the well-known Lipschitz condition and the generalised
Lipschitz condition.

2.1.1 Lipschitz Condition

Definition 2.1 A function f (x) : R
n �→ R

m is said to satisfy theLipschitz condition
in the domainΩ ⊂ R

n if there exists a nonnegative constant L such that the inequality

‖ f (x) − f (x̂)‖ ≤ L‖x − x̂‖ (2.1)

holds for any x ∈ Ω and x̂ ∈ Ω . Then L is called the Lipschitz constant and f (x) is
called a Lipschitz function in Ω . If Ω = R

n , then f (x) is said to satisfy the global
Lipschitz condition.

From Definition 2.1, it is clear that a Lipschitz function must be continuous.
However, the converse is not true and a typical example is the scalar function

f (x) = x1/3

© Springer International Publishing AG 2017
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in a neighbourhoodof the origin x = 0.ALipschitz functionmaynot bedifferentiable
and a simple example is the scalar function

f (x) = |x |

at the origin x = 0 in x ∈ R.Moreover, a differentiable functionmay not be Lipschitz
on a compact set, for example the function

f (x) =
{

xα sin
1

x
, 0 < x ≤ 1

0, x = 0
(2.2)

is not Lipschitz in the compact set x ∈ [0, 1] for any constantα satisfying 1 < α < 2.
The reason is that the derivative of the function f (x) defined in (2.2) is not bounded
in the interval [0, 1].
Lemma 2.1 ([91]) Consider a function f (x) : R

n �→ R
m which is differentiable in

the domain Ω . If its Jacobian matrix is bounded in Ω , that is, there exists a constant
L such that

‖J f ‖ ≤ L

for any x ∈ Ω , then f (x) satisfies the Lipschitz condition, and the inequality (2.1)
holds.

2.1.2 Generalised Lipschitz Condition

The well-known Lipschitz condition in Sect. 2.1.1 will be extended to a more general
case which will be used later in the analysis.

Definition 2.2 A function f (x1, x2, x3) : Ω1 × Ω2 × Ω3 �→ R
n is said to satisfy

a generalised Lipschitz condition with respect to (w.r.t.) the variables x1 ∈ Ω1 ⊂
R

n1 and x2 ∈ Ω2 ⊂ R
n2 uniformly for x3 in Ω3 ⊂ R

n3 if there exist nonnegative
continuous functionsL f 1(·) andL f 2(·) defined in Ω3 such that for any x̂1, x1 ∈ Ω1

and x̂2, x2 ∈ Ω2, the inequality

∥
∥ f (x1, x2, x3) − f (x̂1, x̂2, x3)

∥
∥ ≤ L f 1(x3)

∥
∥x1 − x̂1

∥
∥ + L f 2(x3)

∥
∥x2 − x̂2

∥
∥

holds for any x3 ∈ Ω3. Then, f (·) is called a generalised Lipschitz function, and
L f 1(·) andL f 2(·) are called generalised Lipschitz bounds. Further, ifΩ1 = R

n1 and
Ω2 = R

n2 , then, it is said that f (·) satisfies a global generalised Lipschitz condition
w.r.t. x1 and x2 uniformly for x3 in Ω3.

Remark 2.1 The symbolsL f 1(·) andL f 2(·) introduced above are usually nonneg-
ative functions instead of constants. This is different from the Lipschitz condition.
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Thus, the nonnegative continuous functionsL f 1(x3) andL f 2(x3) are called gener-
alised Lipschitz bounds which correspond to the Lipschitz constant for the Lipschitz
condition.

Clearly, the generalised Lipschitz condition is more relaxed than the Lipschitz
condition. For example, the function

f (x1, x2, x3) := x1x
2
3 + x2x3

with x1, x2, x3 ∈ R does not satisfy the global Lipschitz condition. However, from
the inequality that for any col(x1, x2, x3) ∈ R

3 and col(x̂1, x̂2, x3) ∈ R
3

| f (x1, x2, x3) − f
(
x̂1, x̂2, x3

) | ≤ |x1 − x̂1|x23 + |x2 − x̂2| |x3|

it is clear to see that f (·) satisfies the global generalised Lipschitz condition w.r.t. x1
and x2, uniformly for x3 ∈ R.

2.2 Comparison Functions

This section will present the definitions and properties of the class K function and
related functions.

Definition 2.3 (see [91]) A continuous function α : [0, a) �→ R
+ is said to belong

to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞
if a = ∞ and limr→∞ α(r) = ∞.

Definition 2.4 (see [91]) A continuous function β : [0, a) × R
+ �→ R

+ is said to
belong to classK L if, for any given s ∈ R

+, the mapping β(r, s) belongs to class
K with respect to the variable r , and for any given r ∈ [0, a), the mapping β(r, s)
is decreasing with respect to the variable s and lims→∞ β(r, s) = 0.

Definition 2.5 If a class K function is a C1 function, then it is said to belong to
class K C1. A continuous function β : Rn × R

+ �→ R
+ is said to be a class K I

function if for any given x ∈ R
n the function β(x, s) is increasing with respect to

the variable s in R+, that is, β(x, s1) ≤ β(x, s2) for any 0 ≤ s1 ≤ s2.

The functions defined in Definitions 2.3 and 2.4 above are directly from [91].
The new concepts of class K C1 functions and class K I functions introduced in
Definition 2.5 will be used for later analysis.

The following new concept is introduced, which will be termed as a class W S
function and will be used in Sect. 7.3.

Definition 2.6 A continuous function β(t, x1, x2) : R+ × R
+ × R

+ �→ R
+ with

β(t, 0, 0) = 0 is said to be weak w.r.t the variable x1 and strong w.r.t. the variable x2
if there exist functions χ1(t, x1, x2) and χ2(t, x1, x2) such that

http://dx.doi.org/10.1007/978-3-319-48962-9_7
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β(t, x1, x2) = χ1(t, x1, x2)x1 + χ2(t, x1, x2)x2, (2.3)

where both χ1(·, ·, x2) and χ2(·, ·, x2) are continuous and nondecreasing w.r.t. the
variable x2. Further, the function β(t, x1, x2) is said to be a classW S function w.r.t.
the variables x1 and x2.

Remark 2.2 It should be noted that if a function β(t, x1, x2) : R+ × R
+ × R

+ �→
R

+ with β(t, 0, 0) = 0 is smooth enough, then it follows from [3] that there exist
continuous functions β1(·) and β2(·) such that the expression

β(t, x1, x2) = β1(t, x1, x2)x1 + β2(t, x1, x2)x2

holds. Moreover, if β1(t, x1, x2) and β2(t, x1, x2) are nondecreasing w.r.t. x2, then
β(t, x1, x2) is a class W S function w.r.t. x1 and x2.

Lemma 2.2 (see [91]) Assume that α1(·) and α2(·) are classK functions in [0, a),
α3(·) and α4(·) are classK∞ functions, and β(·) is a classK L function defined in
[0, a) × R

+. Then, the following results hold:

• the inverse function α−1
1 (·) is a classK function defined in [0, α1(a)).

• the inverse function α−1
3 (·) is a classK∞ function defined in [0, ∞).

• the composite function α1 ◦ α2 is a classK function.
• the composite function α3 ◦ α4 is a class K∞ function.
• the function σ(r, s) = α1 (β(α2(r), s)) is a class K L function.

Lemma 2.3 The following results hold:

(i) If β(x, s) : Rn × R+ �→ R
+ is a classK I function, then β2(x, s) is a classK I

function.
(ii) Suppose that a function φ1 : [0, a) �→ R

+ is a C1 function with φ1(0) = 0. Then
there exists a continuous function φ2(·) in [0, a) such that

φ1(s) = φ2(s)s, s ∈ [0, a)

Proof (i) Suppose that β(x, s) : Rn × R+ �→ R
+ is a class K I function. Then for

any 0 ≤ s1 ≤ s2 and x ∈ R
n ,

β(x, s1) ≤ β(x, s2)

Since β(x, s) ≥ 0 for any (x, s) ∈ R
n × R

+

β2(x, s1) − β2(x, s2)

= (β(x, s1) + β(x, s2))(β(x, s1) − β(x, s2))

≤ 0

This shows that β2(x, s) is a class K I function
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(ii) Since the function φ1(·) is a C1 function in [0, a), its derivative dφ1(s)
ds is

continuous in [0, a). For any s ∈ [0, a), construct a function

φ2(s) :=

⎧
⎪⎨

⎪⎩

φ1(s)

s
, s �= 0

dφ1(s)

ds
|s=0, s = 0

(2.4)

From the definition of φ2(·), it is clear to see that
(1) if s �= 0, then φ1(s) = φ2(s)s;
(2) if s = 0, then from φ1(0) = 0, φ1(s) = φ2(s)s.

Therefore, the expression
φ1(s) = φ2(s)s

holds for s ∈ [0, a). It remains to prove that the function φ2(·) defined in (2.4) is
continuous in [0, a).

It is clear that φ2(s) is continuous in (0, a). Since φ1 is a C1 function in [0, a),
from the continuity of dφ1(s)

ds at s = 0,

lim
s→0+

φ2(s) = lim
s→0+

φ1(s)

s
= dφ1(s)

ds
|s=0= φ2(0)

which implies that φ2(·) is continuous at s = 0. Therefore, φ2(·) is continuous in
[0, a).

Hence the conclusion follows. ∇

2.3 Lyapunov Stability Theorems

The results given in this section are available in [91].
Consider the nonlinear system

ẋ(t) = f (t, x(t)), (2.5)

where the function f : R+ × D �→ R
n is continuous and D ⊂ R

n is a domain which
contains the origin x = 0. It is assumed that

f (t, 0) = 0, t ∈ R
+

which implies that the origin is an equilibrium point of the system.

Definition 2.7 The equilibrium point x = 0 of System (2.5) is called exponentially
stable if there exist positive constants ci for i = 1, 2, 3 such that for any x(t0) satis-
fying ‖x(t0)‖ ≤ c1,
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‖x(t)‖ ≤ c2‖x(t0)‖e−c3(t−t0) (2.6)

If Inequality (2.6) holds for any x(t0) ∈ R
n , then, the equilibrium point x = 0 of

System (2.5) is called globally exponentially stable.

2.3.1 Asymptotic Stability

Theorem 2.1 Consider System (2.5). Let V : R+ × D �→ R
+ be a continuously

differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x)
∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −W3(x)

for any t ∈ R
+ and x ∈ D, where Wi (x) for i = 1, 2, 3 are continuous positive

definite functions in D. Then x = 0 is uniformly asymptotically stable. Further if D =
R

n, and w(x) is radially unbounded, then x = 0 is globally uniformly asymptotically
stable.

2.3.2 Exponential Stability

Theorem 2.2 Consider System (2.5). Let V : R+ × D �→ R
+ be a continuously

differentiable function such that for t ∈ R
+ and x ∈ D,

k1‖x‖a ≤ V (t, x) ≤ k2‖x‖a
∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −k3‖x‖a,

where ki for i = 1, 2, 3 and a are positive constants. Then x = 0 is exponentially
stable. Further if D = R

n, then x = 0 is global exponentially stable.

Comparing Theorems 2.1 and 2.2 above, it is straightforward to see that expo-
nential stability implies uniform asymptotic stability.

2.3.3 Converse Lyapunov Theorem

The following result is the well-known converse Lyapunov theorem.

Theorem 2.3 Consider System (2.5) in domain D := Br = {x ∈ R
n | ‖x‖ < r}.

Let β(·) be a class K L function and r0 be a positive constant such that
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β(r0, 0) < r and Br0 := {x | ‖x‖ < r0}

Assume that the Jacobian matrix ∂ f
∂x is bounded1 in domain D uniformly for t ∈ R

+,
and that the trajectory of System (2.5) satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), x(t0) ∈ Br0 , t ≥ t0 ≥ 0

Then, there exists a continuously differentiable function V : R+ × Br0 �→ R
+ such

that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)
∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −α3(‖x‖)
∥
∥
∥
∥
∂V

∂x

∥
∥
∥
∥ ≤ α4(‖x‖),

where αi for i = 1, 2, 3, 4 are class K functions defined on the interval [0, r0].
The function V (·) can be chosen independent of time t if f (·) in System (2.5) is
independent of the time t.

2.4 Uniformly Ultimate Boundedness

For a given System (2.5), if asymptotic stability is not possible, uniform ultimate
bounded stability can be considered. This is very useful in practical cases.

Theorem 2.4 Consider System (2.5). Let V : R+ × D �→ R
+ be a continuously

differentiable function such that in t ∈ R
+ and x ∈ R

n,

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)
∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −W3(x), for any ‖x‖ ≥ μ > 0,

where α1(·) and α2(·) are class K functions and W3(·) is a continuous positive
definite function in domain D. Then x = 0 is uniformly ultimately bounded.2 Further
if D = R

n, andα1(·)belongs to classK∞, then x = 0 is globally uniformly ultimately
bounded.

Proof See the reference [91] (Theorem 4.18, p. 172). #

From Theorem 2.4, the following result is ready to be presented:

1If the function f (·) in (2.5) is continuously differentiable in the ballBr , then
∂ f
∂x is bounded in the

domain D = Br .
2The ultimate bound depends on the parameters μ, which can be estimated using the result given
in Theorem 4.18 in [91].
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Lemma 2.4 Consider the nonlinear system

ẋ = ω(x), (2.7)

where x ∈ R
n is the system state, and the function ω(·) is continuous in R

n. Let
V : Rn �→ R

+ be a continuously differentiable class K∞ function of ‖x‖ such that
the inequality

∂V

∂x
ω(x) ≤ −ϑ(‖x‖), x ∈ R

n \ Bμ (2.8)

holds for some domain Bμ, where ϑ is a class K function, and μ is a positive
constant. Then, the trajectory of System (2.7) enters into the domain Bμ in finite
time.

Proof From the condition of Lemma 2.4, there exists a classK∞ function ϑ1(·) such
that

V (x) = ϑ1(‖x‖). (2.9)

Then, from (2.8), (2.9) and using Theorem 2.4, the trajectory of System (2.7) is
driven to the domainBμ in a finite time, and remains there. That means there exists
t1 such that x ∈ Bμ for t ≥ t1.

The aim now is to prove that the trajectory of System (2.7) enters into Bμ in a
finite time. Suppose for a contradiction that this is not the case, then there exists
some time t2 such that the solution x(x0, t) of System (2.7) starting from some point
x0 satisfies x(x0, t) ∈ ∂Bμ after t2. This is equivalent to

‖x(x0, t)‖ = μ, t ≥ t2. (2.10)

By (2.9) and (2.10), it follows that

V (x(x0, t)) = ϑ1(‖x(x0, t)‖) = ϑ1(μ), t ≥ t2, (2.11)

where μ is a positive constant. This shows that V̇ |(2.7)≡ 0 after t2, and it contradicts
(2.8). Hence, the conclusion follows. #

Remark 2.3 Lemma 2.4 demonstrates that the solution enters the open set Bμ in
finite time and remains on Bμ. It does not claim that the solution subsequently
remains in Bμ.

2.5 Razumikhin Theorem

Consider a time-delay system

ẋ(t) = f (t, x(t − d(t)) (2.12)
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with an initial condition

x(t) = φ(t), t ∈ [−d, 0],

where the function vector f : R+ × C[−d,0] �→ R
n takes R × (bounded sets of

C[−d,0]) into bounded sets in Rn; d(t) > 0 is the time-delay and

d := sup
t∈R+

{d(t)} < ∞

which implies that the time-delay d(t) has a finite upper bound in t ∈ R
+.

Theorem 2.5 (Razumikhin Theorem) If there exist class K∞ functions ζ1(·) and
ζ2(·), a classK function ζ3(·) and a continuous function V1(·) : [−d,∞] × R

n �→
R

+ satisfying

ζ1(‖x‖) ≤ V1(t, x) ≤ ζ2(‖x‖), t ∈ R
+, x ∈ R

n

such that the time derivative of V1 along the solution of System (2.12) satisfies

V̇1(t, x) ≤ −ζ3(‖x‖) if V1(t − d, x(t − d)) ≤ V1(t, x(t)) (2.13)

for any d ∈ [0, d], then the System (2.12) is uniformly stable. If in addition, ζ3(τ ) > 0
for τ > 0 and there exists a continuous nondecreasing function ξ(τ ) > τ for τ > 0
such that (2.13) is strengthened to

V̇1(t, x) ≤ −ζ3(‖x‖) if V1(t − d, x(t − d)) ≤ ξ(V1(t, x(t))) (2.14)

for d ∈ [0, d], then the System (2.12) is uniformly asymptotic stable.

Proof See pages 14–15 in [65]. ∇
From the Razumikhin Theorem 2.5, the following conclusion can be obtained

directly:

Lemma 2.5 Consider the time-delay system (2.12). If there exist constants γ > 0
and ζ > 1 and a function

V2(x(t)) = xT P̃x

with P̃ > 0 such that the time derivative of V2(·) along the solution of System (2.12)
satisfies

V̇2 |(2.12)≤ −γ

∥
∥
∥P̃

1
2 x(t)

∥
∥
∥
2

(2.15)

whenever
‖P̃ 1

2 x(t + θ)‖ ≤ ζ‖P̃ 1
2 x(t)‖

for any θ ∈ [−d, 0], then, System (2.12) is uniformly asymptotic stable.
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Proof From the definition of V2(·) it follows that

λmin(P̃)‖x‖2 ≤ V2(t, x(t)) ≤ λmax(P̃)‖x‖2

and from (2.15)

V̇2 |(2.12)≤ −γ x(t)T P̃x(t) ≤ −γ λmax(P̃)‖x‖2.

It is clear that the inequality

V2(x(t + θ)) ≤ ζ 2V2(x(t))

is equivalent to the inequality

‖P̃ 1
2 x(t + θ)‖ ≤ ζ‖P̃ 1

2 x(t)‖

Then, from Razumikhin Theorem 2.5 and P̃ > 0, the conclusion follows by letting

γ1(τ ) = λmin(P̃)τ 2, γ2(τ ) = λmax(P̃)τ 2

γ3(τ ) = γ λmin(P̃)τ 2, γ4(τ ) = ζ 2τ

in Theorem 2.5. #

2.6 Output Sliding Surface Design

In order to formanoutput feedback slidingmode control scheme, it is usually required
that the designed switching function is a function of the system outputs. The corre-
sponding sliding surface is called an output sliding surface in this book. The output
sliding surface algorithm proposed in [37, 38] is outlined here, and this will be
frequently used in the sequel.

Consider initially a linear system

ẋ = Ax + Bu (2.16)

y = Cx, (2.17)

where x ∈ R
n , u ∈ R

m , y ∈ R
p are the states, inputs and outputs, respectively, and

assumem ≤ p < n. The triple (A, B,C) comprises constant matrices of appropriate
dimensions with B and C both being of full rank.

For System (2.16) and (2.17), it is assumed that

rank(CB) = m
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Then, from [37] it can be shown that a coordinate transformation x̃ = T̃ x exists
such that the system triple (A, B,C) with respect to the new coordinate x̃ has the
following structure [

Ã11 Ã12

Ã21 Ã22

]

,

[
0
B2

]

,
[
0 T̆

]
, (2.18)

where Ã11 ∈ R
(n−m)×(n−m), B2 ∈ R

m×m and T̆ ∈ R
p×p is orthogonal. Further, it is

assumed that the system ( Ã11, Ã12, C̃1) with C̃1 defined by

C̃1 = [
0(p−m)×(n−m) Ip−m

]
(2.19)

is output feedback stabilisable, i.e., there exists a matrix K ∈ R
m×(p−m) such that

Ã11 − Ã12KC̃1

is stable. It is shown in [37, 38] that a necessary condition for ( Ã11, Ã12, C̃1) to be
stabilisable is that the invariant zeros of (A, B,C) lie in the open left-half plane. In
[37, 38] a sliding surface of the form

FCx = 0 (2.20)

is proposed, where
F = F2

[
K Im

]
T̆ τ (2.21)

and F2 ∈ R
m×m is any nonsingular matrix.

If a further coordinate change is introduced based on the nonsingular transforma-
tion z = T̂ x̃ with T̂ defined by

T̂ =
[
In−m 0
KC̃1 Im

]

then in the new coordinates z, System (2.16) and (2.17) has the following form

[
A11 A12

A21 A22

]

,

[
0
B2

]

, Ĉ,

where A11 = Ã11 − Ã12KC̃1 is stable and Ĉ satisfies

FĈ = [
0 F2

]

with F2 nonsingular. From the analysis above, the following conclusion is obtained
directly:

Lemma 2.6 Consider System (2.16) and (2.17). Suppose that

(i) rank(CB) = m;



38 2 Mathematical Background

(ii) the invariant zeros of (A, B,C) lie in the open left-half plane;
(iii) thematrix triple ( Ã11, Ã12, C̃1) is output feedback stabilisable,where ( Ã11, Ã12)

and C̃1 are defined, respectively, by (2.18) and (2.19).

Then,

(i) there exists a transformation z = T x such that the new coordinate z system
(2.16) and (2.17) has the following form

ż =
[
A11 A12

A21 A22

]

z +
[
0
B2

]

u (2.22)

y = [
0 C2

]
z, (2.23)

where A11 ∈ R
(n−m)×(n−m) is stable. Both matrices B2 ∈ R

m×m and C2 ∈ R
p×p

are nonsingular;
(ii) there exists a matrix F such that FCx = 0 provides a stable sliding motion

for System (2.16) and (2.17) and F
[
0 C2

] = [
0 F2

]
, where F2 ∈ R

m×m is
nonsingular.

Proof All that remains to be shown is that the output distribution matrix has the form
given in (2.23) and that C2 is nonsingular. The output distribution matrix in the new
coordinates is given by

[
0 T̆

]
T̂−1 = [

0 T̆
]

[
In−m 0

−KC̃1 Im

]

= [
0 T̆

]

⎡

⎣
In−p 0 0
0 Ip−m 0
0 −K Im

⎤

⎦

= [
0 T̆

]

⎡

⎣
In−m 0

0

[
Ip−m 0
−K Im

]

⎤

⎦

=
[

0 T̆

[
Ip−m 0
−K Im

]]

.

and so by inspection,

C2 = T̆

[
Ip−m 0
−K Im

]

which is nonsingular. Hence the result follows. #

From the analysis above, it is clear to see that the coordinate transformation

z = T x,

where T := T̂ T̃ , transfers the system (2.16) and (2.17) to the regular form (2.22)
and (2.23). Choose the sliding surface
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S = {x | FCx = 0, x ∈ R
n} (2.24)

Then, the analysis above shows that the sliding motion of System (2.16) and (2.17)
corresponding to the sliding surface (2.24) is asymptotically stable. The sliding sur-
face (2.24) can be described by

S = {y | Fy = 0, y ∈ R
p} (2.25)

which is a subspace of the output space. Therefore, S in (2.24) or (2.25) denote
output sliding surfaces.

Remark 2.4 Lemma 2.6 gives a condition for the existence of the output switching
surface (2.20) on which system (2.16) is stable. It should be emphasised that the slid-
ing surface given byLemma2.6 can be obtained from a systematic algorithm together
with any output feedback pole placement algorithm of choice. Details of appropriate
algorithms and how to determine the switching surface (2.20) are described in [37,
38], where the necessary and sufficient condition to guarantee the existence of the
matrix F is available in Proposition 5.2 of [38]. If p = m then there is no design
freedom and the sliding motion is governed by the invariant zeros of (A, B,C).

2.7 Geometric Structure of Nonlinear System

Consider the nonlinear system

ẋ(t) = F(x(t), u(t)) (2.26)

y(t) = h(x(t)), x0 = x(0), (2.27)

where x ∈ Ω ⊂ Rn (and Ω is a neighbourhood of x0), u = col(u1, u2, . . . , um) ∈
U ∈ Rm, and y = col(y1, y2, . . . , yp) ∈ R p are the state variables, inputs and out-
puts, respectively, whereU is an admissible control set. F(x, u) is a known smooth
vector field in Ω × U and the known function h : Ω �→ R p is smooth. For conve-
nience, the system (2.26) and (2.27) is also denoted by the pair (F(x, u), h(x)).

Definition 2.8 (See, e.g., [58]) System (2.26) and (2.27) is said to be observable at
(x0, u0) ∈ Ω × U if there exists a neighbourhood N of (x0, u0) in Ω × U and a
set of nonnegative integer numbers {r1, r2, · · · , rp} with ∑p

i=1 ri = n such that

(1) for all (x, u) ∈ N
∂

∂u j
Lk
F(x,u)hi (x) = 0 (2.28)

for indices i = 1, 2, . . . , p, k = 0, 1, 2, . . . , ri − 1 and j = 1, 2, . . . ,m;
(2) the p × m matrix M(x, u) := { ∂

∂u j
Lri
F(x,u)hi (x)} has rank p in (x0, u0)
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Then, {r1, r2, · · · , rp} is called the observability index of System (2.26) and (2.27)
at (x0, u0). Further, System (2.26) and (2.27) is said to be uniformly observable in
Ω × U if for any (x0, u0) ∈ Ω × U , the system is observable and the observability
indices are fixed.

Assume the pair (F(x, u), h(x)) has uniform observability index {r1, r2, · · · ,

rp} with ∑p
i=1 ri = n in the domain Ω × U . Construct a nonlinear transformation

T : x �→ z as follows:

zi1 = hi (x) (2.29)

zi2 = LF(x,u)hi (x) (2.30)
...

ziri = Lri−1
F(x,u)hi (x), (2.31)

where zi := col(zi1, zi2, · · · , ziri ) for i = 1, 2, . . . , p and z := col(z1, z2, · · · , z p).
It follows fromDefinition 2.8 thatM(x, u) has rank p inΩ × U , implying that all

zi are independent of the control u, which combined with the restriction
∑p

i=1 ri = n
means that the corresponding Jacobianmatrix of T (x), ∂T

∂x , is nonsingular. Therefore,
(2.29) and (2.31) is a diffeomorphism in the domain Ω , and z = col(z1, z2, . . . , z p)
forms a new coordinate system which can be obtained by direct computation from
(2.29) to (2.31).

Since L j
F(x,u)hi (x) is independent of u for all i = 1, 2, . . . , p and j = 1, 2, . . . ,

ri − 1, it follows by direct computation that for i = 1, 2, . . . , p

żi1 = ∂hi
∂x F(x, u) = LF(x,u)hi (x) = zi2

żi2 = ∂(LF(x,u)hi (x))
∂x F(x, u) = L2

F(x,u)hi (x) = zi3
...

żiri−1 = Lri−1
F(x,u)hi (x) = ziri

żiri = Lri
F(x,u)hi (x)

Therefore, in the new coordinates z defined by (2.29) and (2.31), System (2.26) and
(2.27) has the following form:

ż = Az + BΦ(z, u)

y = Cz,

where

A = diag{A1, . . . , Ap}, B = diag{B1, . . . , Bp} and C = diag{C1, . . . ,Cp},

where Ai ∈ Rri×ri , Bi ∈ Rri×1 and Ci ∈ R1×ri for i = 1, 2, . . . , p are defined by
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Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Ci = [
1 0 · · · 0 ]

(2.32)

and

Φ(z, u) :=

⎡

⎢
⎢
⎢
⎣

φ1(z, u)

φ2(z, u)
...

φp(z, u)

⎤

⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Lr1
F(x,u)h1(x)

Lr2
F(x,u)h2(x)

...

L
rp
F(x,u)h p(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

x=T−1(z)

, (2.33)

where φi : T (Ω) × U �→ R for i = 1, 2, . . . , p.

2.8 Summary

This chapter has presented the fundamental concepts and results which underpin
the theoretical analysis in this book. Some of the results are taken from the existing
literature and others are developed by the authors, but with rigorous proofs pro-
vided. The content covers Lipschitz conditions, comparison functions, stability of
nonlinear systems, the converse Lyapunov theorem and uniform ultimate bound-
edness. The well-known Razumikhin theorem has been presented, for the readers’
convenience, and will be employed to deal with time-delay systems throughout the
book. Section2.5 summarises the output sliding surface design approach proposed
in [38] which will be frequently used in the sequel. Finally, the geometric structure
of nonlinear systems with uniform observability index has been provided.



Chapter 3
Static Output Feedback Variable Structure
Control

In this chapter, static output feedback variable structure controllers are designed
to stabilise a class of nonlinear systems globally. Then a decentralised strategy is
proposed for a class of nonlinear large-scale interconnected systems. Finally, case
studies are provided to show the application of the proposed design methods.

3.1 Introduction

It is well known that knowledge of all the system state variables is often not available
in practice. Some state variables may be difficult or costly to measure whilst some
may have no physical meaning and thus cannot be measured. Sometimes it may be
possible to use an observer to estimate unknown states, but this approach not only
requires more hardware resources, but also increases the system dimension. This
may result in further difficulties, especially for large-scale interconnected systems.
Therefore, it is pertinent to apply static output feedback control whenever possible.

Static output feedback control has advantages in that it is convenient for real
implementation when compared with state feedback, as usually only partial state
information is available for design, and schemes do not need extra resources for
practical implementationwhen comparedwith observer-based feedback.However, as
static output feedback can only use a subset of the system state information and cannot
employ extra dynamical information, strong theoretical limitations are required on
the considered systems.

Compared with state feedback, static output feedback control is much more com-
plex. The well-known static output feedback problem is to design a static feedback
control law only using output information such that the corresponding closed-loop
system has the desired performance, or to show that such a feedback does not exist
[165]. For a linear system described by a triple (A, B, C), the static output feedback
problem is to find a matrix K such that the matrix A + BKC is Hurwitz stable, or

© Springer International Publishing AG 2017
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to show that such a matrix K does not exist. This is still an open problem even for
SISO linear systems as the fundamental problem of the existence of static output
controllers is not solved for SISO systems [102, 165].

It should be noted that many problems associated with system analysis and con-
trol design can be formulated as a convex linear matrix inequality (LMI) problem
which can be tackled using standard convex optimisation techniques [11]. However,
this is not the case for the static output feedback problem even for linear control
systems since the most general characterisation of the static output feedback design
involves bilinear matrix inequalities for which complete/systemised and efficient
methods/algorithms are currently not available [102].

Formulating the design problem to establish stability with respect to a quadratic
Lyapunov function (so-called quadratic stabilisability), a problem occurs which was
termed by Galimidi and Barmish as the constrained Lyapunov problem (CLP) [57].
This problem commonly occurs in uncertain linear systems, where the so-called
matching condition is assumed to be satisfied and when full state availability does
not exist. In the static output feedback framework, the CLP can be stated as follows:

• For a given triple (A, B, C), find a static output feedback control gain K such that

(A + BKC)T P + P(A + BKC) < 0,

where P > 0 is a symmetric positive definite matrix and subject to the linear
constraint

BT P = FC.

In this problem, the matrix parameters K , P and F are treated as variables which
must be selected appropriately.

This CLP problem has appeared in different guises in the control systems literature
over several decades [24, 29, 57, 214]. The solvability of constrained Lyapunov
equations is therefore an interesting problem of practical significance. Many authors
have considered this problem. The CLP was posed and solved in [57] for both square
and nonsquare systems in the sense that necessary and sufficient algebraic conditions
were given to enable its solution. The conditions in [57] are given in algebraic terms,
and there is no suggestion as to when they are solvable in system theoretic terms.
For square systems, Kim and Park [92] drew parallels between the CLP and the
robust output feedback work of Gu [64]. Later the results in [92] are extended to the
nonsquare case in [41].

In this chapter, both nonlinear systems and nonlinear interconnected systems
are considered. The problem to be addressed is that, under the assumption that the
nominal systems are stabilisable with predesigned static output feedback controllers,
how can updated static output controllers be designed for nonlinear systems and
decentralised static output feedback controllers for interconnected systems such that
the corresponding closed-loop systems are asymptotically stable in the presence of
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uncertainties. The problem of stabilisation of the nominal systems, which is the well-
known static output feedback problem as discussed above, is not considered in this
book. Applications of the developed results are presented in Sect. 3.4.

3.2 Robust Global Stabilisation of Nonlinear Systems

Stabilisation, particularly robust global stabilisation, has always been a challenging
problem for nonlinear systems. With the development of nonlinear theory and com-
puter science, a period of significant progress has been experienced in the nonlinear
control area over the last two decades. This section focuses on global stabilisation
control combining Lyapunov methods and sliding mode techniques.

3.2.1 Background

Lyapunov analysis often plays an important role in the study of nonlinear systems.
What is more, many control techniques and methods such as adaptive control, the
geometric method, passivity tools, small gain theory and sliding mode control have
been widely and successfully used in nonlinear control. Many valuable results have
been achieved in the global stabilisation of nonlinear systems (see [14, 88] and the
references therein). Notably, most work focuses on special classes of systems such
as partially linear composite systems, globally linearisable systems or globally min-
imum phase systems, and it is assumed that all system state information is available
in the majority of results.

In practical engineering systems, however, state variables are not always acces-
sible and only a subset of them is available. In consideration of this, dynamical
output feedback control schemes have been considered (see e.g., [95, 157]). Some
authors also focus on establishing an observer to measure or estimate the system
state: associated work can be found in [40, 43, 203]. Notably the separation principle
is no longer true for nonlinear systems. This means that different or even converse
results may occur even if the same controller is used for the same nonlinear system
using estimated states and true states [203]. Therefore, static output feedback control
should be considered if possible.

Work using static output feedback control has been presented in [196, 214, 220].
In the approach proposed by Zak and Hui [220], geometric conditions are presented
for the existence of a slidingmode and an associated design algorithm is also derived.
However, as pointed out by Kwan [95] and Shyu et al. [157], there are two major
assumptions which restrict the application of the corresponding results. In order to
overcome these shortcomings, a class of SISO system is considered in [95], and later,
Shyu et al. [157] proposed an approach which is applicable to MIMO systems with
mismatched uncertainty based on the work of Kwan [95]. This work is based on
dynamical output feedback although the results report that the two major limitations
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in [220] are overcome. Static output feedback control strategies based on Lyapunov
techniques proposed in [196, 214] can also avoid the two major limitations in [220].
However, the results place strong limitations on the bounds of the uncertainty, and
in most cases are only valid in a small region of the origin. For example, when the
bounding function of the uncertainty takes the form

�(x) =

⎧
⎪⎨

⎪⎩

1

ε
, ‖x‖ ≤ ε

1

‖x‖ , ‖x‖ > ε

with very small positive constant ε, then, the conclusion in [196, 214] may not hold
or may only be satisfied in a very small domain which is contained in {x | ‖x‖ < ε}.

In this section, a global robust stabilisation problem for a class of nonlinear sys-
tems whose nominal system is linearisable locally is considered. The design frame-
work may be described as follows. First, using a Lyapunov technique and knowledge
of the desired performance of the nominal subsystem, a nonlinear robust control is
designed so that the system is driven to a domain of the origin and remains there
even in the presence of matched and mismatched uncertainties. Then, the sliding
mode technique is applied to the system such that its trajectories are driven to the
predesigned sliding surface on which the system is asymptotically stable. Finally, a
variable structure control is synthesised to stabilise the system globally. It should be
noted that only static output feedback is used here, and the two major assumptions in
Zak and Hui [220] are alleviated. This is in comparison with other reported work in
[95, 157] where dynamic output feedback is employed, and in [196, 203, 214] where
the results are often valid only in a small region of the origin. Theoretically, the goal
is to develop an approach to study the global stabilisation problem for a wide class
of nonlinear systems.

3.2.2 System Description and Assumptions

Consider a nonlinear system

ẋ = f (x) + g(x)[u + Δg(x)] + Δf (x) (3.1)

y = h(x), (3.2)

where x ∈ R
n, u ∈ R

m, y ∈ R
p (p ≥ m) are the system state variables, input and

output, respectively; f (x) and g(x) with f (0) = 0 are both known functions; Δg(x)
and Δf (x) are respectively matched and mismatched uncertainties, and they are all
continuous in their arguments. It is assumed that the existence and the uniqueness of
the system solution are guaranteed globally.
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For System (3.1)–(3.2), its nominal System is described by

ẋ = f (x) + g(x)u (3.3)

y = h(x). (3.4)

One fundamental problem of robust control is to design a controller so that the
controlled signals have some desired properties even in the presence of uncertainties.
In this section, it is assumed that the controllers for the nominal system (3.3)–(3.4)
have been well designed and the controlled nominal system has desired performance.
Then, a variable structure control scheme is to be synthesised to stabilise the system
(3.1)–(3.2) globally.

Assumption 3.1 There exist known continuous functions φ1, φ2 and ψ such that

(i) ‖Δg(x)‖ ≤ φ1(y)φ2(x);
(ii) ‖Δf (x)‖ ≤ ψ(y),

where φ1(0) = 0 and ψ is sufficiently smooth with ψ(0) = 0.

Remark 3.1 Assumption3.1 implies that the origin is an equilibrium point of system
(3.1)–(3.2) in the presence of uncertainties. Condition (ii) of Assumption3.1, that
the mismatched uncertainty is bounded by a function of the output, is not essential.
It can be extended to a function of the system state variable. This can be seen in the
subsequent analysis.

Assumption 3.2 There exists a continuous function uI
1(y) with uI

1(0) = 0, a C1

function V (x) : Rn �→ Rwhich is a classK∞ function of ‖x‖, and classK functions
αi for i = 1, 2 such that for x ∈ R

n \ Br

∂V

∂x

(
f (x) + g(x)uI

1(y)
) ≤ −α1(‖x‖) (3.5)

∥
∥
∥
∥
∂V

∂x

∥
∥
∥
∥ ≤ α2(‖x‖), (3.6)

where r is a positive constant, and ∂V
∂x ≡:

(
∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

)
.

Remark 3.2 Assumption3.2 requires that V (x) is a class K∞ function of ‖x‖. It
should be noted that if there exists a quadratic Lyapunov function xT Px (P > 0) for
a system ẋ = F (x), then there exists a Lyapunov function zT z which is a classK∞
function of ‖z‖ for system

ż = P
1
2F (P− 1

2 z).

Therefore, such a limitation is trivial for any system which has a quadratic Lyapunov
function. Furthermore, the conditions (3.5) and (3.6) of Assumption3.2 are satisfied
automatically if the nominal system is exponentially stabilisable using output feed-
back, or the resulting closed-loop system has a quadratic Lyapunov function. These
conditions have been used bymany authors in papers on nonlinear analysis [91, 196].



48 3 Static Output Feedback Variable Structure Control

Assumption 3.3 The function V defined in Assumption3.2 satisfies

∂V

∂x
g(x) = R(y),

where R(y) ∈ R
m is continuous in its domain of definition.

Remark 3.3 Assumption3.3 is similar to the structural condition

BT P = FC

for the linear system (A, B, C) possessing a quadratic Lyapunov function xT Px (see
e.g., [24, 214]). Yan et al. [196] proposed a condition for the nonlinear case which
is a direct extension of the linear one. However, the current consideration renders all
previous settings as special cases in this regard.

In the following, Lyapunov approach based controllers are initially designed such
that the considered system can be driven to the specific domain of the origin, in which
the nominal system can be linearised. Then, a sliding mode controller is designed
such that the corresponding closed-loop system is asymptotically stable. Finally the
globally stabilising controllers are synthesised.

3.2.3 Lyapunov Approach Based Control Design

Consider an output feedback control

uI (y) = uI
1(y) + uI

2(y), (3.7)

where uI
1 is given by Assumption3.2, and uI

2 is defined as

uI
2(y) =

⎧
⎨

⎩

−φ2
1(y)R

T (y)

2ε‖R(y)‖ , R(y) 
= 0

0, R(y) = 0,
(3.8)

where ε is an adjustable positive constant, R(·) is given in Assumption3.3 and the
function φ1(·) is determined by Assumption3.1.

Theorem 3.1 Consider the closed-loop system (3.1)–(3.2) and (3.7). Under Assump-
tions3.1–3.3, the trajectories of System (3.1)–(3.2) enter intoBr in finite time if there
exists a class K function α3(·) such that

α1(‖x‖) − ε

2
‖R(y)‖φ2

2(x) − α2(‖x‖)ψ(y) ≥ α3(‖x‖), x ∈ Br (3.9)

for some positive constant ε.
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Proof Consider the system (3.1)–(3.2). The closed-loop systemobtained by applying
the control (3.7) to System (3.1)–(3.2) is described by

ẋ = f (x) + g(x)
[
uI
1(y) + uI

2(y) + Δg(x)
]+ Δf (x) (3.10)

y = h(x). (3.11)

For System (3.10)–(3.11), consider the Lyapunov function candidate V (x) given by
Assumption3.2. Then, the time derivative of V (x) along the trajectories of System
(3.10)–(3.11) is given by

V̇ |(3.10)−(3.11) = ∂V

∂x

[
f (x) + g(x)uI

1(y)
]+ ∂V

∂x
g(x)

[
uI
2(y) + Δg(x)

]

+∂V

∂x
Δf (x). (3.12)

From the structure of uI
2 in (3.8) and Assumptions3.1 and 3.3, it follows that

(i) if R(y) = 0, then

∂V

∂x
g(x)

[
uI
2(y) + Δg(x)

] = ∂V

∂x
g(x)Δg(x) = R(y)Δg(x) = 0;

(ii) if R(y) 
= 0, then

∂V

∂x
g(x)

[
uI
2(y) + Δg(x)

] = −R(y)
φ2
1(y)R

T (y)

2ε‖R(y)‖ + R(y)Δg(x)

≤ −‖R(y)‖φ2
2(y)/(2ε) + ‖R(y)‖φ1(y)φ2(x)

≤ −‖R(y)‖
(

1

2ε
φ2
1(y) − ε

2
φ2
2(x) − 1

2ε
φ2
1(y)

)

= ε

2
φ2
2(x)‖R(y)‖,

where the special case of Young’s inequality

ab ≤ ε

2
a2 + 1

2ε
b2

for ε > 0 is used in the implication above.
Consequently,

∂V

∂x
g(x)

[
uI
2(y) + Δg(x)

] ≤ ε

2
φ2
2(x)‖R(y)‖. (3.13)

From Assumption3.1 and (3.6), it also follows that
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∂V

∂x
Δf (x) ≤

∥
∥
∥
∥
∂V

∂x

∥
∥
∥
∥ ‖Δf (x)‖ ≤ α2(‖x‖)ψ(y). (3.14)

Substituting (3.5), (3.13) and (3.14) into (3.12), it can be shown that for x ∈ Br ,

V̇ |(3.10)−(3.11)≤ −α1(‖x‖) + ε

2
φ2
2(x)‖R(y)‖ + α2(‖x‖)ψ(y) ≤ −α3(‖x‖),

where the condition (3.9) is used in the last implication. Since V (x) is a class K∞
function of ‖x‖ by Assumption3.2, the conclusion follows directly from Lemma 2.4
in Sect. 2.4. #

Theorem3.1 shows that under some conditions, the state of System (3.1)–(3.2)
can be driven into the domain Br by the control (3.7) in a finite time. The focus is
now to analyse the characteristics of the system (3.1)–(3.2) in the domain Br .

3.2.4 Local Output Sliding Surface Design

It is assumed that System (3.1)–(3.2) is limited to the domainBr . In order to design
a control law such that the system is asymptotically stabilised, some assumptions are
imposed.

Assumption 3.4 InBr , there exists a diffeomorphism z = T(x)with T(0) = 0, and
an output feedback

uII = α(y) + β(y)v, (3.15)

where v is a new input, α(·) with α(0) = 0 and β(·) are smooth such that the closed-
loop system (3.3)–(3.4) and (3.15) has the following form in the new coordinates z

ż = Az + Bv (3.16)

y = Cz, (3.17)

where the triple (A, B, C) is observable and controllable with rank(CB) = m.

Under Assumption3.4, it is observed that in the new coordinates z, System (3.1)–
(3.2) in the domain

T(Br) ≡: {z | z = T(x), x ∈ Br}

is described by

ż = Az + B
(
v + Δg(T−1(z))

)+
[
∂T

∂x

]

x=T−1(z)

Δf (T−1(z)) (3.18)

y = Cz, (3.19)

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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where the triple (A, B, C) is controllable and observable with rank(CB) = m.

Remark 3.4 The analysis above shows that under Assumption3.4, system (3.1)–
(3.2) can be exactly linearised to be (3.18)–(3.19). However, sometimes Assump-
tion3.4 may not be satisfied, and in this case some other approaches such as the
approximate linearisation technique [62] can also be employed to transfer system
(3.1)–(3.2) to (3.18)–(3.19).

Remark 3.5 Notably, in Assumption3.4, it is required that the system (3.1)–(3.2) is
output feedback linearisable only in the domainBr instead of the entire state space.
Furthermore, Assumption3.4 does not imply that the nominal system (3.3)–(3.4) is
output feedback stabilisable and this is in comparison with the work in [24, 196,
214].

Assumption 3.5 Consider System (3.18)–(3.19). For a given group of distinct nega-
tive real values {λ1, λ2, . . . , λn−m}, there exist full rank matrices W ∈ R

n×(n−m), and
W g ∈ R

(n−m)×n such that
(i) W gW = In−m, W gB = 0 and W gAW = diag{λ1, λ2, . . . , λn−m};
(ii) rank(CW ) = p − m.

Notably, Assumption3.5 combined with the controllability and observability of
the system (A, B, C), yields from [220] that there exists a matrix S ∈ R

m×n such that
the sliding motion associated with {z | Sz = 0} is governed by {λ1, λ2, . . . , λn−m}.
Furthermore, matrix S has a decomposition S = FC. In the following analysis, the
same sliding surface can be used

σ(z) = Sz = 0 (3.20)

with S = FC for System (3.18)–(3.19). The choice of matrices S and F is contained
in the reference [220]. Once the matrix S or F is obtained, the sliding surface (3.20)
is designed, which, due to the constraint S = FC, can be described by

{y | Fy = 0, y ∈ R
p}

and the designed sliding surface (3.20) is an output sliding surface which helps to
form an output feedback control scheme.

3.2.5 Local Stability of Sliding Motion

It is assumed that System (3.1)–(3.2) is limited to the domain Br . In order to study
the stability of the sliding mode dynamics of the system (3.18)–(3.19), the following
linear transformation is introduced to derive the sliding mode dynamics associated
with the designed sliding surface (3.20)
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η ≡: Dz ≡:
[

W g

Bg

]

z, (3.21)

where W g is defined by Assumption3.5 and Bg is a generalised inverse of B. It is
obvious by Assumption3.5 and [220] that (3.21) is a nonsingular transformation and
the matrix SB is also nonsingular.

By direct computation, it is observed that in the new coordinates η, the system
(3.18)–(3.19) inT(Br), that is, system (3.1)–(3.2) in the domainBr has the following
form

η̇1 = diag{λ1, λ2, . . . , λn−m}η1 + W gABη2 + W gΔΘ(η), (3.22)

η̇2 = BgAWη1 + BgABη2 + v + ΔΥ (η) + BgΔΘ(η), (3.23)

y = CD−1η, (3.24)

where η1 ∈ R
n−m, η2 ∈ R

m, η = col(η1, η2) and

ΔΘ(η) ≡:
[
∂T

∂x

]

x=T−1◦D−1(η)

Δf
(
T−1 ◦ D−1(η)

)
(3.25)

ΔΥ (η) =Δg
(
T−1 ◦ D−1(η)

)
. (3.26)

Notably, in terms of the new coordinate η, the sliding surface (3.20) is described by
η2 = 0 due to SW = 0 and the nonsingularity of SB. The sliding mode dynamics are
prescribed by

η̇1 = diag{λ1, λ2, . . . , λn−m}η1 + W gΔΘ(η1, 0). (3.27)

with ΔΘ defined by (3.25). Since z = T(x) (with T(0) = 0) is a diffeomorphism
defined inBr and η = Dz is linear, it follows from Assumption3.1 and (3.25) that

‖ΔΘ(η1, 0)‖ ≤ κ(η1)‖η1‖, (3.28)

where κ(η1) is continuous in its domain of definition and it can be obtained using
Assumption3.1.

Theorem 3.2 Consider System (3.18)–(3.19). Under Assumptions3.1 and 3.5, the
sliding mode dynamics (3.27) are asymptotically stable if

‖W g‖κ(η1) < γ, (3.29)

for any η1 ∈ D ◦ T(Br)
⋂

R
n−m, where

γ =: min{|λ1|, |λ2|, . . . , |λn−m|}.

W and W g are determined by Assumption3.5, and κ satisfies (3.28).
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Proof For the slidingmode dynamics (3.27), consider aLyapunov function candidate
as

Ṽ (η1) = ητ
1η1.

Then, the time derivative of Ṽ along the trajectories of the dynamic System (3.27)
is given by

˙̃V |(3.27) = 2ητ
1diag{λ1, λ2, . . . , λn−m}η1 + 2ητ

1W gΔΘ(η1, 0)

≤ −2γ ‖η1‖2 + 2‖η1‖ ‖W g‖κ(η1)‖η1‖
= −2

[
γ − ‖W g‖κ(η1)

]
‖η1‖2.

Then, Ṽ (η1) is negative definite if (3.29) is satisfied.
Hence, the conclusion follows. #

Remark 3.6 Theorem3.2 shows that the values of λ1, λ2, . . . , λn−m in Assump-
tion3.5 directly govern the slidingmotion if the bound on themismatched uncertainty
satisfies (3.29). It should be noted that W g (see Assumption3.5) is closely related to
the value of λi and thus the value of γ in (3.29). From Inequality (3.29), to find an
appropriate matrix W g to maximise the value γ

‖W g‖ will reduce the conservatism of
the result in Theorem3.2. It shows that mismatched uncertainty affects the sliding
motion.

3.2.6 Local Sliding Mode Controller

The objective now is to design a sliding mode control such that the corresponding
closed-loop system is driven to the sliding surface (3.20) in a finite time and remains
on it.

Consider the system (3.18)–(3.19). Since the transformation T is a diffeomor-
phism in the domainBr , T−1 and ∂T

∂x are both bounded in their domain of definition.
Therefore, it is straightforward to see fromAssumption3.1 that there exist continuous
functions φ̃2 and ψ̃ defined in T(Br) such that for any z ∈ T(Br)

∥
∥Δg

(
T−1(z)

)∥
∥ ≤ φ1(y)φ̃2(z) (3.30)

∥
∥
∥
∥
∥

[
∂T

∂x

]

x=T−1(z)

Δf (T−1(z))

∥
∥
∥
∥
∥

≤ ψ̃(y) (3.31)

with ψ̃(0) = 0. It should be noted that the functions φ̃2 and ψ̃ can be obtained by
estimation using Assumption3.1.
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An output feedback control for the system (3.18)–(3.19) is:

v = −(SB)−1 Fy

‖Fy‖
(
1

2
‖SB‖φ2

1(y) + ‖S‖ψ̃(y) + K(y)

)

, (3.32)

where K(y) is a control gain to be defined later and S is defined by (3.20).
Now, applying the control (3.32) to System (3.18)–(3.19), the following closed-

loop system is provided

ż = Az − B(SB)−1 Fy

‖Fy‖
(
1
2‖SB‖φ2

1(y) + ‖S‖ψ̃(y) + K(y)
)

+BΔg(T−1(z)) + [
∂T
∂x

]

x=T−1(z)
Δf (T−1(z)) (3.33)

y = Cz. (3.34)

The following result is now ready to be presented:

Theorem 3.3 Under Assumptions3.1 and 3.5, System (3.18)–(3.19) driven by the
control (3.32) converges to the sliding surface (3.20) in finite time and remains on it
if the control gain K(y) satisfies

K(y) ≥ ‖SAz‖ + 1

2
‖SB‖φ̃2

2(z) + ρ (3.35)

for some positive constant ρ, where φ̃2 is determined by (3.30) and F satisfies
S = FC.

Proof From Assumption3.1, it is observed that (3.30) and (3.31) are satisfied. It
follows from (3.20) that

σ̇ (z) = SAz − Fy

‖Fy‖
(
1
2‖SB‖φ2

1(y) + ‖S‖ψ̃(y) + K(y)
)

+SBΔg(T−1(z)) + S
[

∂T
∂x

]

x=T−1(z)
Δf (T−1(z)). (3.36)

Then, since S = FC

σ T (z)σ̇ (z) = (Fy)T SAz − ‖Fy‖ ( 12‖SB‖φ2
1(y) + ‖S‖ψ̃(y) + K(y)

)

+(Fy)T SBΔg(T−1(z))

+(Fy)T S

[
∂T

∂x

]

x=T−1(z)

Δf (T−1(z)). (3.37)

From the inequality ab ≤ 1
2a2 + 1

2b2, it follows from (3.30) that

(Fy)T SBΔg(T−1(z)) ≤ ‖Fy‖ ‖SB‖φ1(y)φ̃2(z)

≤ 1

2
‖Fy‖ ‖SB‖(φ2

1(y) + φ̃2
2(z)). (3.38)
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From (3.31),

(Fy)T S

[
∂T

∂x

]

x=T−1(z)

Δf (T−1(z)) ≤ ‖Fy‖ ‖S‖ψ̃(y). (3.39)

Substituting (3.38) and (3.39) into (3.37), it follows that

σ T (z)σ̇ (z) ≤
(

−K(y) + ‖SAz‖ + 1

2
‖SB‖φ̃2

2(z)

)

‖Fy‖.

Then, by condition (3.35),

σ T (z)σ̇ (z) ≤ −ρ‖σ(z)‖.

This shows that the reachability condition is satisfied, and thus the conclusion
follows. #

Remark 3.7 Generally speaking, Inequality (3.35) cannot be satisfied in the entire
state space since the left-hand side is a function of the output y but the right-hand side
is a function of the state variables. However, it is always satisfied in T(Br) because
the right-hand side of (3.35) is continuous in T(Br) which is a compact set. In fact,
a conservative choice is

K(y) = max
z∈T(Br)

{

‖SAz‖ + 1

2
‖SB‖φ̃2

2(z)

}

+ ρ.

Remark 3.8 The proof of Theorems3.1 and 3.3 shows that the effect of uncertainty
may be cancelled completely by designing an appropriate control if the uncertainty
is bounded by a function of the output. It also demonstrates that the mismatched
uncertainty can be dealt with in the same way as for matched uncertainty even if it
is bounded by a function of the state variables. However, in this case, the effect of
the mismatched uncertainty may not be cancelled completely if only static output
feedback control is available.

3.2.7 Global Variable Structure Control Synthesis

In this section, based on the conclusions provided in Sects. 3.2.3–3.2.6, the synthesis
of a control which makes the corresponding closed-loop system globally asymptot-
ically stable is sought.

Consider the control

u(y) =
{

uI ( y), x ∈ R
n \ Br

uI I ( y), otherwise
(3.40)
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where y = h(x) defined by (3.2), is the system output, uI is defined by (3.7) and uI I

is defined as
uI I = α(y) + β(y)v(y) (3.41)

with α, β defined by Assumption3.4 and v defined by (3.32). Then, from the results
given in Sects. 3.2.3–3.2.6, the following conclusion is immediate.

Theorem 3.4 It is assumed that the conditions of Theorems3.1–3.3 are satisfied.
Then under Assumption3.4, System (3.1)–(3.2) is asymptotically stable globally if
T(Br) is an invariant set with respect to the system (3.33)–(3.34).

Proof Consider the structure of the control (3.40). From Theorem3.1, it follows that
for any x0 ∈ R

n, the control uI can drive the trajectories of the system (3.1)–(3.2) to
the domain Br in a finite time. Since T(Br) is invariant with respect to the system
(3.33)–(3.34), once the trajectories of System (3.33)–(3.34) enter into T(Br) it is
seen that they will stay there and in this case the control uI I will drive the system
to the sliding surface in finite time by Theorem3.3. Based on the theory of sliding
mode control, the slidingmotion takes place once the system state reaches the sliding
surface. Theorem3.2 has shown that the sliding mode is asymptotically stable.

Note that T is a diffeomorphism defined on Br , and the closed-loop system
obtained by applying (3.41) to System (3.1)–(3.2) in the z coordinates has the form
(3.33)–(3.34). Hence, the conclusion follows from the relationship between systems
(3.1)–(3.2) and (3.18)–(3.19). #

A sufficient condition under which the system (3.1)–(3.2) can be stabilised glob-
ally even in the presence of uncertainties, is presented in Theorem3.4, where the
condition that T(Br) is invariant with respect to the system (3.33)–(3.34) is neces-
sary.

3.3 Decentralised Sliding Mode Control for Large-Scale
Interconnected Systems

Large-scale interconnected systems are often modelled as dynamic equations com-
posed of interconnections between lower dimensional subsystems. One of the char-
acteristics of these systems is that they are often widely distributed geographically,
and thus the information transfer among subsystems may be very difficult due to
high cost, or even impossible due to practical limitations. The lack of centralised
information or the lack of centralised computing capacity often makes centralised
control difficult to implement. As a valid control method for interconnected sys-
tems, decentralised control can avoid such disadvantages, and it has been widely
used in practical engineering problems such as interconnected inverted pendula sys-
tem [59], flight control systems [177], electric power systems and chemical process
plants [119].



3.3 Decentralised Sliding Mode Control for Large-Scale Interconnected Systems 57

This section focuses on decentralised static output feedback control design using
sliding mode techniques.

3.3.1 Introduction

Decentralised output feedback control has received much attention and many inter-
esting results have been obtained. Many of these methods are based on a Lyapunov
approach or involve adaptive control. In [196, 214, 215], Lyapunov analysis methods
are used to form the control scheme and strict structural conditions are imposed on
the system together with some strong limitations on the admissible interconnections.
Adaptive control techniques are employed by [83, 86] for the control of intercon-
nected systems, but only parametric uncertainty is considered. The corresponding
results can only be applied to certain systems with special structure.

Sliding mode control has been used successfully by many authors [38, 39, 160,
173], and indeed sliding mode control schemes for large-scale systems have been
proposed (see for example [69, 97, 124, 170]). In these sliding mode control schemes
for interconnected systems, it is required that the uncertainties or the interconnections
are matched, or else have linear or polynomials bounds. In addition, unfortunately,
most of them focus on state feedback control. Much less attention has been paid
to the output feedback case. Lee proposed a decentralised output feedback control
scheme using sliding mode techniques in [97] but only the linear case is dealt with.
Also all uncertainties and interconnections are required to be matched.

In this section, a class of nonlinear large-scale interconnected systems with both
matched and mismatched uncertainties are considered. No statistical information
about the uncertainties is imposed. Furthermore, the bounding functions on the
uncertainties and interconnections take a more general structure than in the other
literature in this area. Not only are nonlinear interconnections considered, but non-
linear nominal subsystems are also treated in this work. Based on the sliding surface
design method proposed by Edwards and Spurgeon in [37, 38], a composite sliding
surface is synthesised for the interconnected system so that the closed-loop system is
asymptotically stable when restricted to the surface. A sliding mode control strategy
which can eliminate the major limitations of [219] (pointed out by [96]) is proposed,
to drive the system to the sliding surface. Under certain conditions, a global result
can be derived. Compared with the previous results [97, 196, 203, 214], it is only
necessary to solve an ni − mi order instead of a ni -order Lyapunov equation, which is
especially useful for large-scale interconnected systems. The robustness is enhanced
and the conservatism is reduced because the system output information and bounds
on the uncertainties are used fully. The restriction on the interconnections is also
relaxed.
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3.3.2 System Description and Problem Formulation

Consider a nonlinear large-scale system formed by N interconnected subsystems as
follows

ẋi = Ai xi + fi (xi ) + Bi (ui + Δgi (xi )) + Hi (x), (3.42)

yi = Ci xi , i = 1, 2, . . . , N, (3.43)

where x = col(x1, x2, . . . , xN ), xi ∈ R
ni , ui ∈ R

mi , yi ∈ R
pi are the states, inputs and

outputs of the i-th subsystem respectively and mi ≤ pi < ni . The triples (Ai , Bi , Ci )

represent constantmatrices of appropriate dimensionswithBi andCi of full rank. The
function fi (xi ) represents known nonlinearities in the i-th subsystem. The matched
uncertainty of the i-th isolated subsystem is denoted byΔgi (xi ) and Hi (x) represents
system interconnections including all mismatched uncertainties. The functions are
all assumed to be continuous in their arguments.

It is clear that the nominal subsystems of System (3.42)–(3.43) are described by

ẋi = Ai xi + fi (xi ) + Bi ui (3.44)

yi = Ci xi , i = 1, 2, . . . , N, (3.45)

and the isolated subsystems of System (3.42)–(3.43) are given by

ẋi = Ai xi + fi (xi ) + Bi (ui + Δgi (xi )), (3.46)

yi = Ci xi , i = 1, 2, . . . , N . (3.47)

It should be pointed out that the sliding motion of System (3.44)–(3.45) will be the
same as the sliding motion of (3.46)–(3.47).

The object is to find some limitations on the nonlinearities and uncertainties
associated with the interconnected system, under which a decentralised sliding mode
output feedback control scheme can be established for (3.42)–(3.43) such that the
corresponding closed-loop system is asymptotically stable.

3.3.3 Basic Assumptions

In order to solve the problems proposed in Sect. 3.3.2, it is necessary to impose the
following basic assumptions on System (3.42)–(3.43).

Assumption 3.6 The equations rank(Ci Bi ) = mi hold for i = 1, 2, . . . , N .

Under Assumption3.6, as reviewed in Sect. 2.6, there exists a nonsingular linear
coordinate transformation such that the triple (Ai , Bi , Ci ) with respect to the new
coordinates has the structure

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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[
Ãi11 Ãi12

Ãi21 Ãi22

]

,

[
0

B̃i2

]

,
[
0 C̃i2

]
, (3.48)

where Ãi11 ∈ R
(ni −mi )×(ni −mi ), B̃i2 ∈ R

mi ×mi and C̃i2 ∈ R
pi ×pi for i = 1, 2, . . . , N .

Assumption 3.7 The invariant zeros of (Ai , Bi , Ci ) lie in the open left-half plane,
and the triple (̃Ai11, Ãi12, C̃i2) given by (3.48) is output feedback stabilisable for
i = 1, 2, . . . , N .

Remark 3.9 Assumptions3.6 and 3.7 are based on the linear part of the nominal
system (3.44)–(3.45). They guarantee the existence of the output sliding surface (see
Sect. 2.6). Notably, Assumption3.7 requires (̃Ai11, Ãi12, C̃i2), instead of (Ai , Bi , Ci )

to be output feedback stabilisable. It should be emphasised that all the matrices in
(3.48) can be obtained directly from (Ai , Bi , Ci ) using the algorithm given in [37,
38].

From Assumption3.7, there exist matrices Ki such that

Ãi11 − Ãi12Ki C̃i2 =: Ai11

are stable for i = 1 . . . N .

Assumption 3.8 Suppose that fi (xi ) has the decomposition

fi (xi ) = Γi (yi )xi , i = 1, 2, . . . , N, (3.49)

where Γi ∈ R
ni ×ni is a continuous function matrix for i = 1, 2, . . . , N .

Assumption 3.9 There exist known continuous functions ρi (·) and ηi (·) such that

(i) ‖Δgi (xi )‖ ≤ ρi (yi ),

(ii) ‖Hi (x)‖ ≤ ηi (x)

for i = 1, 2, . . . , N , where ηi (·) satisfies

ηi (x) ≤ βi (x)‖x‖

for some continuous function βi .

Remark 3.10 Assumption3.9 ensures that all uncertainties in (3.42)–(3.43) are
bounded by known functions, and the matched uncertainty is bounded by a function
of the output. It should be emphasised that the approach proposed in this work allows
more general bounds for ‖Δgi (xi )‖. In this section, the assumption is only used to
show that the effect of the matched uncertainty can be eliminated completely if it is
bounded by a function of the output.

Clearly, there are no special requirements imposed on the structure of the uncer-
tainties and interconnections. As such the assumption above follows the work

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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described in [196, 203, 214, 215]. The bounds on the uncertainties are allowed to
take more general forms compared with other work in this area, where it is required
that the interconnections are the functions of the output or have linear or polynomial
bounds (see for example [69, 97, 143, 170]).

It has been seen that the slidingmode control technique consists of two steps: (i) the
design of the sliding surface such that the system possesses the required performance
when it is restricted to the surface; (ii) the design of a variable structure control law
which drives the system trajectory to, and maintains motion on, the sliding surface.
Based on the preliminaries above, a control strategy for System (3.42)–(3.43) will
now be developed.

3.3.4 Stability Analysis of Sliding Mode Dynamics

In this section, a sliding surface will first be chosen, and then the stability of system
(3.42)–(3.43) when constrained to the chosen surface will be studied.

Under Assumptions3.6 and 3.7, it is observed from Lemma2.6 in Sect. 2.6 that
there exist matrices such that the system

ẋi = Ai xi + Bi ui

when restricted to the surface Fi Ci xi = 0 is stable for i = 1, 2, . . . , N .
The composite sliding surface for the interconnected system (3.42)–(3.43) is cho-

sen as
σ(x) = 0, (3.50)

where σ(x) ≡: col(σ1(x1), σ2(x2), . . . σN (xN )) and

σi (xi ) = Fi Ci xi = Fi yi , (3.51)

where the Fi are obtained from the algorithm given in [37, 38].
Under Assumptions3.6–3.8, and using Lemma2.6 in Sect. 2.6, there exists a

nonsingular coordinate transformation zi = Ti xi such that in the new coordinates
z = col(z1, z2, . . . , zN ), System (3.42)–(3.43) has the following form

żi =
[

Ai11 Ai12

Ai21 Ai22

]

zi + TiΓi (yi )T
−1
i zi +

[
0

Bi2

]
(
ui + Δgi (T

−1
i zi )

)

+Ti Hi (T
−1z) (3.52)

yi = [
0 Ci2

]
zi , i = 1, 2, . . . , N, (3.53)

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
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where Ai11 is stable and Bi2 ∈ R
mi ×mi and Ci2 ∈ R

pi ×pi are both nonsingular with

Ci2 = T̆i

[
Ipi −mi 0
−Ki Imi

]

, T̆i ∈ R
pi ×pi . (3.54)

Furthermore
Fi
[
0 Ci2

] = [
0 Fi2

]
, (3.55)

whereFi2 ∈ R
mi ×mi is nonsingular. The overall coordinate transformation is given by

T−1 ≡: diag {T−1
1 , T−1

2 , . . . , T−1
N

}
. It should be noted that the regular form (3.52)–

(3.53) can easily be obtained from the algorithm given in [37, 38].
Since Ai11 is stable for i = 1, . . . N , for any Qi > 0, the following Lyapunov

equation has a unique solution Pi > 0 such that

Aτ
i11Pi + Pi Ai11 = −Qi , i = 1, 2, . . . , N . (3.56)

For convenience, partition

TiΓi (yi )T
−1
i ≡:

[
Γi11(yi ) Γi12(yi )

Γi21(yi ) Γi22(yi )

]

, Ti ≡:
[

Ti1

Ti2

]

, T−1
i ≡: [Wi1 Wi2

]
,

(3.57)

where Γi11 ∈ R
(ni −mi )×(ni −mi ), Ti1 ∈ R

(ni −mi )×ni and Wi1 ∈ R
ni ×(ni −mi ).

Then, System (3.52)–(3.53) can be rewritten as

ż I
i = Ai11zI

i + Γi11(yi )z
I
i +

[
Ai12 + Γi12(yi )

]
zI I

i + Ti1Hi (T
−1z), (3.58)

ż I I
i =

[
Ai21 + Γi21(yi )

]
zI

i + Ai22zI I
i + Γi22(yi )z

I I
i + Bi2

[
ui + Δgi (T

−1
i zi )

]

+Ti2Hi (T
−1z) (3.59)

yi = [
0 Ci2

]
zi , i = 1, 2, . . . , N, (3.60)

where zI
i ∈ R

ni −mi , zI I
i ∈ R

mi and zi = col(zI
i , zI I

i ).
Now, consider the sliding surface (3.51) in the new coordinate system. From (3.55)

it follows

Fi
[
0 Ci2

]
zi = [

0 Fi2
]
[

zI
i

zI I
i

]

= Fi2zI I
i i = 1, 2 . . . , N

and from the nonsingularity of Fi2, it follows that the sliding surface (3.51) becomes

zI I
i = 0, i = 1, 2, . . . , N . (3.61)
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Partition Ci2 and zI
i as

Ci2 = [
Ci21 Ci22

]
, zI

i = col(zI1
i , zI2

i ),

where Ci21 ∈ R
pi ×(pi −mi ), Ci22 ∈ R

pi ×mi , zI1
i ∈ R

pi −mi . Then it is straightforward to
see that

yi = Ci21zI2
i + Ci22zI I

i .

When System (3.58)–(3.60) is restricted to the sliding surface (3.61), the sliding
mode has the following form

ż I
i = Ai11zI

i + Γi11(Ci21zI2
i )zI

i + Ti1Hi (W zI ), i = 1, 2, . . . , N, (3.62)

where

zI ≡: col(zI
1, zI

2, . . . , zI
N ), and W ≡: diag{W11, W12, . . . , W1N }.

From (3.62), it can be observed that all themismatched uncertainties andmismatched
nonlinearities affect the dynamics of the sliding mode and may destroy its stability. It
is thus necessary to impose some constraints so that the stability of the sliding mode
dynamics is guaranteed.

Theorem 3.5 Consider the nonlinear interconnected system (3.42)–(3.43). Under
Assumptions3.6–3.9, the sliding mode is asymptotically stable if there exists a domain
Ω of the origin (Ω ⊂ R

∑N
i=1(ni −mi )) such that

Mτ (·) + M(·) > 0

in Ω \ {0}, where M(·) = (mij(·))N×N and the functions mij with i, j = 1, 2, . . . , N
are defined by

mij =
{

λmin(Qi ) − ‖Ri (Ci21zI2
i )‖ − 2‖Pi Ti1‖ ‖Wi1‖βi (W zI ), i = j

−2‖Pi Ti1‖ ‖Wj1‖βi (W zI ), i 
= j
,

where Pi and Qi are defined in (3.56), Γi11(·) and Ti1 are defined by (3.57) and

Ri (·) := PiΓi11(·) + Γ τ
i11(·)Pi i = 1, . . . N

and βi (·) is determined by Assumption3.9.

Proof From the analysis above, all that needs to be proved is that System (3.62) is
asymptotically stable. For System (3.62), consider the Lyapunov function candidate

V (zI
1, zI

2, . . . , zI
N ) =

N∑

i=1

(
zI

i

)τ
Pi z

I
i . (3.63)
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Then, the time derivative of V (zI
1, zI

2, . . . , zI
N ) along the trajectories of System (3.62)

is given by

V̇ |(3.62) =
N∑

i=1

{
− (

zI
i

)τ
Qi z

I
i + (

zI
i

)τ
[
PiΓi11(Ci21zI2

i ) + Γ τ
i11(Ci21zI2

i )Pi

]
zI

i

+2
(
zI

i

)τ
Pi Ti1Hi (W zI )

}
, (3.64)

where (3.56) is used above. From Assumption3.9 and the inequality

‖W zI ‖ ≤ ‖W11zI
1‖ + ‖W12zI

2‖ + · · · + ‖W1N zI
N‖

it follows that

V̇ ≤
N∑

i=1

{
− λmin(Qi )‖zI

i ‖2 +
∥
∥
∥PiΓi11(Ci21zI2

i ) + Γ τ
i11(Ci21zI2

i )Pi

∥
∥
∥ ‖zI

i ‖2

+2‖zI
i ‖ ‖Pi Ti1‖ ηi (W zI )

}

≤
N∑

i=1

{
− λmin(Qi )‖zI

i ‖2 + ‖Ri (Ci21zI2
i )‖ ‖zI

i ‖2
}

+2
N∑

i=1

{

‖zI
i ‖‖PTi1‖βi (W zI )

N∑

j=1

‖W1j‖ ‖zI
j ‖
}

= −
N∑

i=1

{
λmin(Qi ) − ‖Ri (Ci21zI2

i )‖ − 2‖Pi Ti1‖ ‖W1i‖βi (W zI )
}
‖zI

i ‖2

+2
N∑

i=1

N∑

j=1
j 
=i

‖PTi1‖ ‖W1j‖βi (W zI )‖zI
i ‖ ‖zI

j ‖

= −1

2

[ ‖zI
1‖ ‖zI

2‖ · · · ‖zI
N‖ ] (Mτ + M)

⎡

⎢
⎢
⎢
⎣

‖zI
1‖‖zI
2‖
...

‖zI
N‖

⎤

⎥
⎥
⎥
⎦

. (3.65)

Since by assumption Mτ + M > 0 in Ω \ {0}, the result follows. #

Remark 3.11 The result given above is in accordance with the fact that sliding mode
control is insensitive to matched uncertainty. It also shows that the stability of the
sliding mode (3.62) is closely related to the mismatched uncertain interconnections
and mismatched nonlinearities.
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Remark 3.12 It should be noted that the function matrix M in Theorem3.5 is only
connected with the sliding mode which is therefore of reduced order. The sliding
mode is globally stable if all the bounds on the mismatched uncertainty and mis-
matched nonlinearity are zero when restricted to the sliding surface. Furthermore,
the function matrix Ri reduces to a null matrix if p = m. Compared with the results
given in [196, 203, 214, 215], the limitations on M here are much weaker.

3.3.5 Decentralised Output Feedback Sliding Mode Control

The objective is now to design a decentralised output feedback sliding mode control
such that the system state is driven to the sliding surface (3.50). Traditionally, the
reachability condition [38, 173] is described by

Sτ (t)Ṡ(t) < 0

for small scale systemswith switching surfaces S(t). However, for the interconnected
system (3.42)–(3.43), the corresponding condition is described by

N∑

i=1

σ τ
i (xi )σ̇i (xi )

‖σi (xi )‖ < 0, (3.66)

where σi (xi ) is defined by (3.51). For details see [69].
In order to fully use system output information, consider the output matrix Ci .

Comparing System (3.42)–(3.43) with (3.52)–(3.53), it follows that

Ci = [
0 Ci2

]
Ti = Ci2

[
0 Ip

]
Ti , i = 1, 2, . . . , N, (3.67)

where Ci2 is given by (3.54). Then

xi = T−1
i Ti xi = T−1

i

[
(Ti xi )

I

(Ti xi )
I I

]

= T−1
i

[
(Ti xi )

I

C−1
i2 yi

]

, (3.68)

where Ti xi ≡:
[

(Ti xi )
I

(Ti xi )
I I

]

with (Ti xi )
I being the first ni − pi components of Ti xi .

The objective is now to try to satisfy the composite reachability condition
(3.66). Consider System (3.42)–(3.43) in domainΘ ≡: Θ1 × Θ2 × · · · × ΘN ,where
Θi ∈ R

ni and explicitly

Θi ≡: {xi | xi ∈ R
ni , ‖(Ti xi )

I ‖ ≤ μi
}
, i = 1, 2, . . . , N (3.69)

for some positive constant μi for i = 1, 2, . . . , N . Let
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Fi Ci (Ai + Γi (yi ))T
−1
i ≡: [Υ I

i (yi ) Υ I I
i (yi )

]
, (3.70)

where Υ I
i is the first ni − pi columns of the matrix Fi Ci (Ai + Γ (yi ))T

−1
i for i =

1, 2, . . . , N . Since

Fi Ci Bi = Fi Ci T
−1
i Ti Bi = Fi

[
0 Ci2

]
[

0
Bi2

]

= [
0 Fi2

]
[

0
Bi2

]

= Fi2Bi2

it follows Fi Ci Bi is nonsingular due to the nonsingularity of Fi2 and Bi2 for i =
1, 2, . . . , N .

The following control law is proposed

ui = −(Fi Ci Bi )
−1 Fi yi

‖Fi yi‖
[

‖Υ I I
i (yi )C

−1
i2 yi‖ + εi

2
‖Υ I

i (yi )‖2 + μ2
i

2εi

+‖Fi Ci Bi‖ρi (yi ) + ki (yi )

]

(3.71)

for i = 1, 2, . . . , N , where εi > 0 is an adjustable constant; Fi and ρi are defined by
(3.51) and Assumption3.9, respectively; and ki (yi ) is the control gain to be designed
later. Obviously, the control law (3.71) depends only on output information and is
decentralised.

Theorem 3.6 Consider the nonlinear interconnected system (3.42)–(3.43). Under
Assumptions3.6–3.9, the decentralised sliding mode control (3.71) drives the system
(3.42)–(3.43) to the composite sliding surface (3.50) and maintains a sliding motion
in the domain Θ \ {0} if the control gain function ki (yi ) satisfies

N∑

i=1

ki (yi ) −
N∑

i=1

ηi (x)‖Fi Ci‖ > 0, (3.72)

where Fi and ηi are determined by (3.51) and Assumption3.9 respectively and Θ is
defined by (3.69).

Proof It is observed from the analysis above, all that needs to be proved is that the
composite reachability condition (3.66) is satisfied.

From (3.51) and Assumption3.8, the sliding mode dynamics may be described
by

σ̇i (xi ) = Fi Ci [Ai + Γi (yi )]xi + Fi Ci Bi [ui + Δgi (xi )] + Fi Ci Hi (x), (3.73)
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for i = 1, 2 . . . , N . Substituting (3.71) into (3.73), it follows that

N∑

i=1

στ
i (xi )σ̇i (xi )

‖σi (xi )‖ =
N∑

i=1

(Fi yi )
τ

‖Fi yi ‖
{

Fi Ci [Ai + Γi (yi )]xi − Fi yi

‖Fi yi ‖
[(

‖Υ I I
i (yi )C

−1
i2 yi ‖

+εi

2
‖Υ I

i (yi )‖2 + μ2
i

2εi

)

+ ‖Fi Ci Bi ‖ρi (yi ) + ki (yi )

]

+Fi Ci Bi Δgi (xi ) + Fi Ci Hi (x)

}

. (3.74)

From (3.68) and Young’s inequality ab ≤ ε
2a2 + b2

2ε for ε > 0, for i = 1, 2, . . . , N

‖Fi Ci [Ai + Γi (yi )]xi ‖ =
∥
∥
∥
∥Fi Ci [Ai + Γi (yi )]T−1

i

[
(Ti xi )

I

C−1
i2 yi

]∥
∥
∥
∥

= ‖Υ I
i (yi )(Ti xi )

I + Υ I I
i (yi )C

−1
i2 yi ‖

≤ ‖Υ I I
i (yi )C

−1
i2 yi ‖ + εi

2
‖Υ I

i (yi )‖2 + ‖(Ti xi )
I ‖2

2εi
. (3.75)

Then it follows from (3.75) that in the domain Θi

(Fi yi )
τ

‖Fi yi ‖

{

Fi Ci [Ai + Γi (yi )]xi − (Fi yi )
τ

‖Fi yi ‖
(

‖Υ I I
i (yi )C

−1
i2 yi ‖ + εi

2
‖Υ I

i (yi )‖2 + μ2
i

2εi

)}

= (Fi yi )
τ

‖Fi yi ‖ Fi Ci [Ai + Γi (yi )]xi − (Fi yi )
τ Fi yi

‖Fi yi ‖2
[

‖Υ I I
i (yi )C

−1
i2 yi ‖ + εi

2
‖Υ I

i (yi )‖2 + μ2
i

2εi

]

≤ ‖Fi Ci [Ai + Γi (yi )]xi ‖ −
[

‖Υ I I
i (yi )C

−1
i2 yi ‖ + εi

2
‖Υ I

i (yi )‖2 + μ2
i

2εi

]

≤ 0, (3.76)

where i = 1, 2, . . . , N . From Assumption3.9,

(Fi yi )
τ

‖Fi yi‖
[

− Fi yi

‖Fi yi‖‖Fi Ci Bi‖ρi (yi ) + Fi Ci BiΔgi (xi )

]

= −‖Fi Ci Bi‖ρi (yi ) + (Fi yi )
τ

‖Fi yi‖ Fi Ci BiΔgi (xi )

≤ −‖Fi Ci Bi‖ρi (yi ) + ‖Fi Ci Bi‖ ‖Δgi (xi )‖
≤ 0. (3.77)

Substituting (3.76) and (3.77) into (3.74)
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N∑

i=1

σ τ
i (xi )σ̇i (xi )

‖σi (xi )‖ ≤ −
( N∑

i=1

ki (yi ) −
N∑

i=1

(Fi yi )
τ

‖Fi yi‖ Fi Ci Hi (x)

)

≤ −
( N∑

i=1

ki (yi ) −
N∑

i=1

‖Fi Ci Hi (x)‖
)

≤ −
[ N∑

i=1

ki (yi ) −
N∑

i=1

ηi (x)‖Fi Ci‖
]

.

Then, if ki (yi ) is chosen to satisfy (3.72), it follows that in the domain Θ

N∑

i=1

σ τ
i (xi )σ̇i (xi )

‖σi (xi )‖ < 0.

Hence, the result follows. #

Remark 3.13 It should be noted that Inequality (3.72) can always be satisfied in the
domain Θ with μi < +∞ for i = 1, 2, . . . , N if

ηi (x) ≤
N∑

j=1

ξji (xj)

for some continuous ξi j with i, j = 1, 2, . . . , N . In this case one conservative choice
of ki (yi ) is

ki (yi ) >

N∑

j=1

‖FjCj‖ξi j

(
T−1

i col
(
(Ti xi )

I , C−1
i2 yi

) )

for i = 1, 2, . . . , N .

Remark 3.14 From the structure of the control law in (3.71) and the reachability
condition (3.72), it can be concluded that the reaching condition is satisfied theoret-
ically in any compact domain of the origin if high gain control is allowed. Generally
speaking, the larger the domain that is required, the higher the required control gain.
This is in contrast with the work in [196, 203, 214, 215], where some stringent
restrictions on the interconnections and uncertainties are necessary (which can only
be satisfied in a small domain about the origin). It shows that in this regard, sliding
mode control possesses good robustness, not only to the uncertainties present in the
isolated subsystem, but also to the effects of the interconnections.

From Theorems3.5 and 3.6 above, the following conclusions can be obtained
directly:
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Corollary 3.1 For system (3.42)–(3.43), suppose that Assumptions3.6–3.9 are sat-
isfied, and Mτ + M with M defined by Theorem3.5 is positive definite. Then,

(i) The sliding mode dynamics (3.62) are globally asymptotically stable.
(ii) The closed-loop system composed of (3.42)–(3.43) and the control law

ui (yi ) = −(Fi Ci Bi )
−1 Fi yi

‖Fi yi‖
[
‖Υ I I

i (yi )C
−1
i2 yi‖

+‖Fi Ci Bi‖ρi (yi ) + ki (yi )
]

(3.78)

is globally asymptotically stable if Υ I
i (yi ) = 0 and

‖Hi (x)‖ ≤
N∑

j=1

ϑji (yj)

for some continuous ϑi j with i = 1, 2, . . . , N.

Proof (i) From the structure of the Lyapunov function (3.63), the result is obtained
directly from Theorem3.5.

(ii) From the proof of Theorem3.6, it can be seen that with the control law (3.71),
the expressions

εi

2
‖Υ I

i (yi )‖2 + μ2
i

2εi

are introducedmainly to cancel the effects ofΥ I
i (yi )(Ti xi )

I . Obviously, this is unnec-
essary if Υ I

i (yi ) = 0. In this case, (3.71) becomes (3.78). Under these circumstances
it is only necessary to choose ki (yi ) such that

ki (yi ) >

N∑

j=1

‖FjCj‖ϑi j(yi ), i = 1, 2, . . . , N .

Using the same reasoning as in Theorem3.6, it can be seen that the corresponding
reachability condition is satisfied. Therefore, the controlled trajectories of system
(3.42)–(3.43) are driven to the sliding surface (3.50) globally and remain on the
surface thereafter. Combining with (i), the result (ii) is obtained immediately. #

It should be noted that in the local case, the domainΘ given in (3.69) is universal.
However, for a specific practical problem, other ways could also be employed to
estimate the domain Θ such that it is as large as possible by combining (3.72) with
other requirements.
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3.4 Case Studies—Implementation of Static Output
Control

In this section, case studies on amass–spring system, coupled inverted pendulums and
flight control systems will be used to demonstrate the results developed in Sects. 3.2
and 3.3.

3.4.1 Application to a Forced Mass–Spring System

Consider a mass–spring system with a hardening spring, linear viscous friction and
an external force described by (see, [91])

ms̈ + cṡ + ks + ka2s3 = u + Δg, (3.79)

where s denotes the displacement from the reference position, m is the mass of the
object sliding on a horizontal surface, k is the spring constant and u is an external
force. The term Δg includes all uncertainties present in the system. Let

x = col(x1, x2) = (s, ṡ)

be the system state. As in [179], the system output is assumed to be

y = x1 + x2.

The parameters are chosen as in [91], pages 172–173. Then, the system is described
by

ẋ =
[

x2
−(1 + x21)x1 − x2

]

+
[
0
1

]

(u + Δg(x)) (3.80)

y = x1 + x2. (3.81)

It is assumed that
‖Δg‖ ≤ 0.1| sin(y)| ‖x‖.

Then, consider an output feedback control

uI
1(y) = −y + 0.1 sin(y). (3.82)

For the closed-loop system composed of (3.82) and (3.80)–(3.81), construct
a Lyapunov function candidate
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V = xτ

[
4 1
1 1

]

x + 1

2
x41 .

Let
α1(ν) = ν2, α2(ν) = 8.6056ν + 2ν3,

r = 0.2
√
2 φ1(y) = | sin y|

φ2(x) = 0.1‖x‖, ε = 0.5.

By similar reasoning as in [91], it is observed that Assumptions3.1 and 3.2 are both
satisfied. Further from

∂V

∂x

[
0
1

]

= 2(x1 + x2) = 2y.

It is clear that Assumption3.3 is satisfied with

R(y) = 2y.

By direct computation, it is observed that the conditions of Theorem3.1 are satisfied
with

α3(ν) = 1.35ν2.

Then, consider System (3.80)–(3.81) in Br with r = 0.2
√
2. The system can be

rewritten as

ẋ =
[

0 1
−1 − 1

]

x +
[
0
1

]

(u + Δg(x) − x31) (3.83)

y = [1 1]x. (3.84)

Let
λ = {−1}, W = [1 − 1]τ
W g = [1 0], Bg = [1 1].

Then, it is observed that Assumption3.5 is satisfied. According to [220], the sliding
surface is chosen as

σ(x) = [1 1]x = y, (F = 1).

Since all nonlinearities are matched and the sliding mode dynamics are completely
insensitive to matched uncertainty, Theorem3.2 is satisfied. From Theorem3.3, the
following control can stabilise the system (3.83)–(3.84)

uI I = − y

|y|
(
1

2
(0.1| sin y| + 0.5)2 + K

)

, (3.85)

where K = 4.5. Then, it follows from [114] thatBr is an estimate of the domain of
attraction of the closed-loop system formed by (3.83) and the control (3.85).
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Fig. 3.1 The x1–x2 phase plane portrait
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Fig. 3.2 The time response of displacement and velocity

Using Theorem3.4, it follows that System (3.80)–(3.81) is globally stabilised
by the control (3.40) with uI (·) and uI I defined by (3.82) and (3.85), respectively.
Simulation results with the initial condition (2.5,−0.5) are given in Figs. 3.1 and 3.2
which demonstrate that the proposed results are effective.
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Fig. 3.3 Coupled inverted
pendula

3.4.2 Application to Control of Coupled Inverted Pendula

Consider the system given in Fig. 3.3 formed from two identical inverted pendula
which are connected by a spring and subject to two distinct inputs u1 and u2 (see,
e.g., [59]).

A salient feature of the system is that the point of attachment of the spring (a)
can change along the full length (l) of the pendula. The input to each pendulum is
the torque ui applied at the pivot point. The two payloads are assumed to be both
known and equal to m. Let xi = col(xi1, xi2) = col(θi , θi − ωi ) for i = 1, 2, where
ωi := θ̇i is the corresponding angle velocity. From [59], the dynamic equations of
the pendula can be described by

ẋ1 =
[

1 −1

1 − g

l
−1

]

x1 +
[

0

− 1

ml2

]

u1 +
⎡

⎣
0

ka2

ml2
x11

⎤

⎦+
⎡

⎣
0 0

− ka2

ml2
0

⎤

⎦ x2 (3.86)

ẋ2 =
[

1 −1

1 − g

l
−1

]

x2 +
[

0

− 1

ml2

]

u2 +
⎡

⎣
0

− ka2

ml2
x21

⎤

⎦+
⎡

⎣
0 0

ka2

ml2
0

⎤

⎦ x1, (3.87)

where k and g are the spring and gravity constants, and a is an uncertain parameter
bounded by l. As in [59], assume the only measurable variable is

yi = [−2 1
]

xi , i = 1, 2.

The parameters are chosen as

g

l
= 1,

1

ml2
= 1,

k

m
= 1.

Comparing (3.42)–(3.43), it follows that
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A1 = A2 =
[
1 −1
0 −1

]

, B1 = B2 =
[

0
−1

]

C1 = C2 = [−2 1
]
, f1(y1) = f2(y2) = 0

Δg1(x1) =
[

0
(a

l

)2
x11

]

, Δg2(x2) =
[

0
(a

l

)2
x21

]

and

H12(x) =
[

0

−
(a

l

)2
x21

]

, H21(x) =
[

0

−
(a

l

)2
x11

]

.

As a result of these definitions,

‖Δgi (xi )‖ ≤ |xi1|, ‖Hij(xj)‖ ≤ |xj1| (i 
= j)

for i, j = 1, 2. Because both subsystems are square there is no design freedom in the
choice of sliding mode dynamics. So without loss of generality choose

F1 = F2 = 1.

Using the algorithm given in [37, 38], it follows that Assumption3.7 is satisfied and
using

T1 = T2 =
[

1 0
−2 1

]

yields
[

A111 A112

A121 A122

]

=
[

A211 A212

A221 A222

]

=
[−1 −1

0 1

]

.

Then, the composite sliding surface is given by

[
y1 y2

]τ = 0.

Obviously, the sliding mode is asymptotically stable because all uncertainties and
interconnections of System (3.86)–(3.87) are matched. One choice of control law is

ui = yi + yi

|yi |ki (yi ), i = 1, 2. (3.88)

It is observed that in the domain

Θ = {(x11, x12, x21, x22) | |x11| + |x21| ≤ μ} .
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Theorem3.6 is satisfied if the control gain

ki (yi ) > μ

for i = 1, 2, where μ is a positive constant, and therefore the closed-loop system is
asymptotically stable. For simulation purposes, let

μ = 2.3 and ki (yi ) = 2.5, i = 1, 2.

With the chosen parameter settings, simulations with initial state

x0 = (−1.0, −3.5, 1.2, 5.0
)

are shown in Figs. 3.4 and 3.5. The effectiveness of the proposed control approach
is demonstrated by the simulation results.

Remark 3.15 It should be noted that in this case study, the triple (Ai , Bi , Ci ) is not
observable. In fact in thework presented in Sect. 3.3, it is not required that the nominal
linear system is observable. This is in contrast with the work described in [219].
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Fig. 3.4 The time responses of the angles θ1 and θ2 and the angular velocities ω1 and ω2
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Fig. 3.5 The time responses of the sliding function σ1 and σ2 (upper) and the control signals u1
and u2 (bottom)

3.4.3 Application to Flight Control Systems

Consider a lateral flight control system described in [190]. As in [177], the objective
is to design a decentralised scheme to control an (integrated) aircraft system. Let

x̂ = col(̂x1, x̂2, x̂3, . . . , x̂7),

where x̂1, x̂2, . . . , x̂7 denote roll rate, bank angle, aileron deflection, sideslip angle,
yaw rate, washout filter output and rudder deflection, respectively.

According to [190], the nominal aircraft lateral mode at the cruising flight condi-
tion is described by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.5880 0 −0.8830 −4.9670 −0.7930 0 −0.9710
1.0000 0 0 0 0 0 0

0 0 −25.0000 0 0 0 0
0.0348 0.0353 0 −0.1613 1.0000 0 −0.0523
0.0057 0 0 −5.4460 −0.3860 0 −2.1850
0.0057 0 0 −5.4460 −0.3860 −0.5000 −2.1850

0 0 0 0 0 0 −20.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Bτ =
[
0 0 25 0 0 0 0
0 0 0 0 0 0 20

]

,
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where the (lateral) dynamic coefficients represent a Boeing 707 aircraft cruising at
an altitude of 8km at Mach Speed 0.8. Now, Let

x1 =: col(x11, x12, x13) =: col(̂x1, x̂2, x̂3)

x2 =: col(x21, x22, x23, x24) =: col(̂x4, x̂5, x̂6, x̂7).

In this way, the system can be rewritten as

ẋ1 =
⎡

⎣
−1.588 0 −0.883
1.000 0 0
0 0 −25.000

⎤

⎦ x1 +
⎡

⎣
0
0
25

⎤

⎦ u1 −
⎡

⎣
4.967x21 + 0.793x22 + 0.971x24

0
0

⎤

⎦

+ΔH1(x)

y1 =
[
0 1 0
0 0 1

]

x1

and

ẋ2 =

⎡

⎢
⎢
⎣

−0.161 1.000 0 −0.052
−5.446 −0.386 0 −2.185
−5.446 −0.386 −0.500 −2.185

0 0 0 −20.000

⎤

⎥
⎥
⎦ x2 +

⎡

⎢
⎢
⎣

0
0
0
20

⎤

⎥
⎥
⎦ u2

+

⎡

⎢
⎢
⎣

0.035x11 + 0.035x12
0.006x11
0.006x11

0

⎤

⎥
⎥
⎦+ ΔH2(x)

y2 =
[
0 0 1 0
0 0 0 1

]

x2,

where y1 = col(y11, y12) and y2 = col(y21, y22) are system outputs and ΔHi (x) rep-
resents all the uncertainties in the i-th subsystem for i = 1, 2. According to [190],

‖ΔHi (x)‖ ≤ βi‖x‖

where βi is some positive constant for i = 1, 2.
Choose

K1 = −0.6 and K2 = −1.3.

Then using the algorithm given in [37, 38], it follows that Assumption3.7 is satisfied
and choosing

T1 =
⎡

⎣
1.0000 0 0

0 1.0000 0
0 −0.6000 1.0000

⎤

⎦
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yields
[

A111 A112

A121 A122

]

=
⎡

⎣
−1.5880 −0.5298 −0.8830
1.0000 0 0

−0.6000 −15.0000 −25.0000

⎤

⎦

with

F1 = [−0.6 1
]

and C12 =
[

1 0
0.6 1

]

whilst

T2 =

⎡

⎢
⎢
⎣

1.0000 0 0 0
0 1.0000 0 0
0 0 1.0000 0
0 0 −1.3000 1.0000

⎤

⎥
⎥
⎦

gives

[
A211 A212

A221 A222

]

=

⎡

⎢
⎢
⎣

−0.1613 1.0000 −0.0680 −0.0523
−5.4460 −0.3860 −2.8405 −2.1850
−5.4460 −0.3860 −3.3405 −2.1850
7.0798 0.5018 −21.6574 −17.1595

⎤

⎥
⎥
⎦

with

F2 = [−1.3000 1.0000
]

and C22 =
[

1 0
1.3 1

]

.

Let
β1 = 0.035 and β2 = 0.0628.

By direct computation, it can be shown that the sliding mode is globally stable. Now
consider the system in the domain Θ = Θ1 × Θ2, where

Θ1 ≡: {x1 | x12, x13 ∈ R, |x11| ≤ μ1}
Θ2 ≡: {x2 | x23, x24 ∈ R, |x21| + |x22| ≤ μ2} .

Choose the control gains as

k1(y1) = 6(μ1 + ‖y1‖), k2(y2) = 0.1(μ2 + ‖y2‖). (3.89)

It can be shown that the reachability condition is satisfied in the domainΘ . Therefore,
under the control law

u1 = − −0.6y11 + y12
25|0.6y11 − y12|

[

25|y12| + 0.18ε1 + μ2
1

2ε1
+ k1(y1)

]

u2 = − −1.3y21 + y22
20|1.3y21 − y22|

[

|2.2536y21 + 0.1597y22| + 14.9383ε2 + μ2
2

2ε2
+ k2(y2)

]

,
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Fig. 3.6 The time responses of some variables of aircraft system

where k1, k2 are defined in (3.89), the corresponding closed-loop system is asymp-
totically stable.

For simulation purposes, the parameters are chosen as

ε1 = ε2 = 0.5, μ1 = μ2 = 5

and the initial conditions are x0 = (0, 0, 0, 0, 2, 0, 0). Simulation results are shown
in Fig. 3.6 and are as expected.

3.5 Summary

This chapter has discussed static output feedback control design for both nonlinear
systems and interconnected systems. The results developed for nonlinear systems
are global. It is expected that the approach proposed in Sect. 3.2 will form the basis
for a new technique for further exploring the problem of global stabilisation using
static output feedback control for fully nonlinear systems. The study in Sect. 3.3
provides an approach to design a decentralised static output feedback sliding mode
control for nonlinear interconnected systems when mismatched uncertainties are
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involved. Based on themethod proposed by Edwards and Spurgeon [38], a composite
sliding surface is formed for nonlinear interconnected systems with linear nominal
subsystems. The control law eliminates the major limitations of [219]. In certain
situations, global results have also been obtained for the interconnected systems in
Sect. 3.3. The case studies in Sect. 3.4 have illustrated the approaches developed and
simulation results have demonstrated that the approaches developed in Sects. 3.2 and
3.3 are effective and feasible for practical design.



Chapter 4
Dynamical Output Feedback Variable
Structure Control

The focus of this chapter is dynamical output feedback controller design for
nonlinear systems with nonlinear disturbances using sliding mode techniques. Non-
linear control systems with both minimum phase and nonminimum phase nominal
systems are considered.

4.1 Introduction

As dynamical feedback can use both information about the designed dynamics and
system outputs for control design, the limitation on the considered system can be
relaxedwhen comparedwith the static output feedbackmethods discussed inChap.3.
However, extra hardware and/or software is required to build the dynamical com-
pensator for implementation and the dimension of the corresponding closed-loop
systems may increase by a factor of two—which may produce other problems.

In view of this, this chapter considers the development of control schemes to pro-
vide asymptotic stabilisation based on designed dynamical systems. The considered
systems are permitted to have mismatched disturbances/uncertainties. In contrast
to Chap.3, all the uncertainties involved in this chapter are bounded by nonlinear
functions of the system state variables, instead of the output variables. The bounding
functions are assumed to be known and thus it is possible to use them for sliding
mode control design and system analysis to reduce the effects of the uncertainties.

In Sect. 4.2, a sliding surface is designed based on the approach which has been
outlined in Sect. 2.6. This sliding surface is independent of any observer design. A
sliding mode control is synthesised based on estimated states from an observer and
the system outputs. The controller design and the observer design are separated. The
designed control can be used with any observer but the developed approach requires
that the considered system is minimum phase.

© Springer International Publishing AG 2017
X.-G. Yan et al., Variable Structure Control of Complex Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-48962-9_4
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In Sect. 4.3, a dynamical compensator is designed first. Then, the considered
system and the error dynamics between the system and the compensator form an
augmented system. A sliding surface is designed for the augmented system based
on the equivalent control approach. Therefore, the sliding motion analysis is closely
related to the designed compensator and limitations on the compensator are necessary
to guarantee the stability of the sliding motion and the satisfaction of a reachability
condition. However, it is not required that the nominal system is minimum phase.

Applications to control the High Incidence Research Model (HIRM) aircraft are
given in Sect. 4.4. Both longitudinal and lateral aircraft dynamics based on different
trim values of Mach and Height are employed in the simulation study.

4.2 Control of Nonlinear Systems with Matched
and Mismatched Uncertainties

This section considers a class of nonlinear systems with minimum phase nominal
systems.

4.2.1 Introduction

There has been significantworkwhich focuses on output feedback control [25, 95, 96,
157, 200, 219]. In the approach proposed by Zak and Hui [219] geometric conditions
were presented for the existence of a slidingmode and an associated design algorithm
was also derived.

This section considers a class of nonlinear systems involving both matched and
mismatched uncertainties. No statistical information is required about the uncertain-
ties. The bounds on the matched and mismatched uncertainties, which take more
general forms, are both fully used in the observer design and in the sliding mode
control design. By employing the sliding surface prescribed in Sect. 2.6, the stabil-
ity of the sliding mode is shown first. Then, an asymptotic observer is established
to estimate the state variables based on a constrained Lyapunov equation. Further,
provided that the observer has been well designed, a variable structure control is pro-
posed using the estimated state and system output to stabilise the considered systems
asymptotically.

4.2.2 System Description and Preliminaries

Consider the system

ẋ(t) = Ax(t) + B(u + Δg(x, t)) + Δ f (x, t) + Φ(x) (4.1)

y(t) = Cx(t), (4.2)

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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where x ∈ R
n , u ∈ R

m , y ∈ R
p (m ≤ p < n) are state variables, inputs and outputs,

respectively; the triple (A, B, C) comprises constant matrices of appropriate dimen-
sions with B and C both being of full rank; Δg(x, t) and Δ f (x, t) are the matched
and the mismatched uncertainties, respectively, which are continuous in their argu-
ments; the known nonlinear vectorΦ(x) is sufficiently smooth withΦ(0) = 0. Since
Φ(x) is smooth and Φ(0) = 0, there exists a matrix H(x) ∈ R

n×n such that

Φ(x) = H(x)x .

The following basic assumptions are imposed on the system (4.1)–(4.2):

Assumption 4.1 rank(C B) = m.

Under Assumption 4.1, it can be shown from [37] that a coordinate transformation
x̃ = T̃ x exists such that the triple (A, B, C) with respect to the new coordinates x̃
has the following structure:

Ã =
[

Ã11 Ã12

Ã21 Ã22

]

, B̃ =
[
0
B̃2

]

, C̃ = [
0 T̆

]
, (4.3)

where Ã11 ∈ R
(n−m)×(n−m), B̃2 ∈ R

m×m is nonsingular and T̆ ∈ R
p×p is orthogonal.

Assumption 4.2 For the triple ( Ã11, Ã12, C1) with C1 = [
0(p−m)×(n−p) I(p−m)

]
,

there exists a matrix K such that Ã11 − Ã12K C1 is stable.

Remark 4.1 Assumptions 4.1 and 4.2 are based on the linear part of the nominal
system. They guarantee the existence of the output sliding surface (see Sect. 2.6). A
necessary condition for this is that the triple (A, B, C) is minimum phase [38].

Assumption 4.3 The pair (A, C) is observable, and the nonlinear function Φ(x) is
Lipschitz in its defined domain.

In view of the observability of (A, C), there exists a gain L ∈ R
n×p such that A −

LC is Hurwitz stable. Therefore, for Q > 0, there exists a unique P > 0 satisfying
the Lyapunov equation

(A − LC)τ P + P(A − LC) = −Q. (4.4)

Assumption 4.4 There exist known continuous functions ξ1, ξ2 and γ in a domain
Ω × R

+ (0 ∈ Ω ⊂ R
n) such that

‖Δg(x, t)‖ ≤ ξ1(y, t)ξ2(x, t), (4.5)

Δ f (x, t) = EΔη(x, t) (4.6)

with
‖Δη(x, t)‖ ≤ γ (x, t)‖y‖,

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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where ξ2 and γ are both Lipschitz about x in Ω uniformly for t ∈ R
+, and E is a

structural matrix for Δ f (x, t).

Remark 4.2 The approachproposed byZak andHui [219] has the following stringent
assumptions as pointed out in [95, 96]:

• the uncertainty is bounded by a function of the output y;
• there exists a matrix M such that S A = MC , where S is the sliding matrix.

An example in [95] shows that the former condition is quite restrictive, and another
example and some analysis in [219] also show that the latter limitation is relatively
strong.

The objective is to propose a control scheme such that the two limitations in
Remark 4.2 are eliminated. In view of this, a sliding surface will be designed and the
stability of the corresponding slidingmotion will be studied first. Then an asymptotic
observer will be provided, and based on the estimated state from the observer and
the system output, a sliding mode controller will be described to complete the task.

4.2.3 Stability Analysis of the Sliding Mode

Under Assumptions 4.1 and 4.2, it follows from Sect. 2.6 that there exists a matrix
F ∈ R

m×p to form a sliding surface

σ(x) =: Sx = FCx = 0 (4.7)

for the triple (A, B, C) given in (4.1)–(4.2), and a coordinate transformation

z = T x (4.8)

such that the triple (A, B, C) has the following structure:

[
A11 A12

A21 A22

]

,

[
0
B2

]

, C = [0 C2],

where A11 is stable, and the matrices B2 ∈ R
m×m and C2 ∈ R

p×p are both nonsin-
gular.

Now, consider the sliding surface (4.7) for System (4.1)–(4.2). From Sect. 2.6, the
existence of the sliding surface (4.7) is guaranteed by Assumptions 4.1 and 4.2. The
objective now is to derive the sliding mode dynamics and analyse its stability.

It is straightforward to see that in the new coordinates z defined in (4.8), system
(4.1)–(4.2) is described by

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
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ż =
[

A11 A12

A21 A22

]

z +
[
0
B2

]
(
u + Δg(T −1z, t)

) + T Δ f (T −1z, t)

+
[

R(z) ∗
∗ ∗

]

z (4.9)

y = [
0 C2

]
z, (4.10)

where A11 is stable, R(·) ∈ R
(n−m)×(n−m) and the ∗’s are subblocks of T H(·)T −1

which play no part in the subsequent analysis. Furthermore,

F
[
0 C2

] = [
0 F2

]
,

where F2 ∈ R
m×m is nonsingular.

Remark 4.3 It should be emphasised that the regular form in (2.22)–(2.23) or system
(4.9)–(4.10) can be obtained from a systematic algorithm together with any output
feedback pole placement algorithm of choice. To check the output feedback stabilis-
ability of a triple is far from trivial problem [165] but it is well studied. Further details
of the algorithms and how to determine the switching surface (4.7) are available in
[37, 38].

Since A11 is stable, for any Q1 > 0, the following Lyapunov equation has a unique
solution P1 > 0 such that

Aτ
11P1 + P1A11 = −Q1. (4.11)

Partition z = col(z1, z2) with z1 ∈ R
n−m . It follows from Sect. 2.6 that in the new

coordinate z, the switching function FCx can be described by

F
[
0 C2

]
z = F2z2,

where F2 is nonsingular. From the nonsingularity of F2, it follows that the sliding
surface (4.7) becomes z2 = 0. Then, when System (4.9)–(4.10) is restricted to the
sliding surface z2 = 0, the sliding mode takes the following form:

ż1 = A11z1 + ΔΨ (z1, t) + R(z1, 0)z1, (4.12)

where ΔΨ (z1, t) is the first (n − m) components of T Δ f (T −1z, t)|z2=0. From
Assumption 4.4, it is easy to assert the existence of a continuous function χ(z1, t)
depending on γ and T such that

‖ΔΨ (z1, t)‖ ≤ χ(z1, t)‖z1‖. (4.13)

Theorem 4.1 Consider System (4.1)–(4.2). Under Assumptions 4.1–4.4, the sliding
mode (4.12) is asymptotically stable if there exists a neighbourhood of the origin
such that

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
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χ(z1, t)‖P1‖ + ‖P1R(z1, 0)‖ <
1

2
λmin(Q1), (4.14)

where P1 and Q1 satisfies (4.11) and χ is determined by (4.13).

Proof For the slidingmode system (4.12), consider the Lyapunov function candidate
V1 = zτ

1 P1z1. The time derivative of V1 along the trajectories of the dynamic system
(4.12) is given by

V̇1 |(4.12) = −zτ
1 Q1z1 + 2zτ

1 P1ΔΨ (z1, t) + 2zτ
1 P1R(z1, 0)z1,

where (4.11) is used above. Further, from (4.13), it follows that

V̇1 |(4.12) ≤ −λmin(Q1)‖z1‖2 + 2χ(z1, t)‖P1‖ ‖z1‖2 + 2‖P1R(z1, 0)‖ ‖z1‖2

≤ −2
(1

2
λmin(Q1) − χ(z1, t)‖P1‖ − ‖P1R(z1, 0)‖

)
‖z1‖2.

From the condition (4.14), it is observed that V̇1 |(4.12) is negative definite. Hence,
the conclusion follows. #

Remark 4.4 It is observed from (4.12) that the matched uncertainty does not affect
the stability of the sliding mode. However, the mismatched uncertainty affects the
behaviour of the dynamics of the sliding mode directly. It is therefore necessary to
impose some constraints on the mismatched part. The limitation (4.14) on the bound
of the mismatched component is used to guarantee the stability of the sliding mode.

Remark 4.5 In most cases, Theorem 4.1 is local due to (4.14). From the proof above,
however, a global conclusion is available if condition (4.14) is satisfied globally.
Specifically, Theorem 1 is global if the bounds on all the mismatched uncertainties
degenerate to the linear case as in [95, 157].

4.2.4 Variable Structure Observer Design

In this section, an asymptotic variable structure observer is established to estimate
the state variables of the system (4.1)–(4.2). The following assumption is required:

Assumption 4.5 There exist constant matrices Γ and Υ such that the solution of
the Lyapunov equation (4.4) satisfies the following constraints:

(i) Bτ P = Γ C ;
(ii) Eτ P = Υ C ,

where E is defined as in (4.6).

Remark 4.6 It should be noted that if there exists a matrix L such that (A −
LC, B, C) is passive, then Assumption 4.5 (i) is satisfied with Γ = I . Similarly,
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if (A − LC, E, C) is passive, then, Assumption 4.5 (ii) is also satisfied. Similar con-
ditions are adopted by Yan et al. and many other authors (see [214] and reference
therein).

Construct the following dynamical system associatedwith the system (4.1)–(4.2):

˙̂x = Ax̂ + L(y − Cx̂) + B
(
u + Ξ1(x̂, y, t)

) + Π2(x̂, y, t) + Φ(x̂), (4.15)

where L is determined by (4.4), and Π1 and Π2 are defined by

Π1(x̂, y, t) =: Γ (y − Cx̂)

‖Γ (y − Cx̂)‖ξ1(y, t)ξ2(x̂, t), (4.16)

Π2(x̂, y, t) =: E
Υ (y − Cx̂)

‖Υ (y − Cx̂)‖γ (x̂, t)‖y‖. (4.17)

The following result can be presented:

Theorem 4.2 Consider the dynamical system (4.15). Under Assumptions 4.3–4.5,
there exists a nonnegative constant α1 and a positive constant α2 such that the state
estimation error satisfies

‖x − x̂‖ ≤ α1 exp{−α2t}

if there exists a neighbourhood of the origin Ωq ⊂ Ω such that

sup
x∈Ωq ,t∈R+

{
Lξ2ξ1(y, t)‖Γ C‖ + Lγ ‖y‖ ‖Υ C‖ + LΦ‖P‖}

<
1

2
λmin(Q). (4.18)

Proof Let e = x − x̂ . It follows from (4.1) and (4.15) that the state estimation error
equation is described by

ė(t) = (A − LC)e(t) + B
(−Π1(x̂, y, t) + Δg(x, t)

) − Π2(x̂, y, t)

+Δ f (x, t) + Φ(x) − Φ(x̂). (4.19)

For System (4.19), consider a Lyapunov function candidate

V = eτ Pe.

Then, the time derivative of V along the trajectories of System (4.19) is given as

V̇ |(4.19) = −eτ Qe + 2eτ P B
(−Π1(x̂, y, t) + Δg(x, t)

)

+ 2eτ P
(−Π2(x̂, y, t) + Δ f (x, t)

) + 2eτ P
(
Φ(x) − Φ(x̂)

)
. (4.20)
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From Assumptions 4.4 and 4.5, and (4.16), it follows that

eτ P B
( − Π1(x̂, y, t) + Δg(x, t)

)

≤ −‖Γ Ce‖ξ1(y, t)ξ2(x̂, t) + ‖Γ Ce‖ξ1(y, t)ξ2(x, t)

≤ Lξ2ξ1(y, t)‖Γ C‖ ‖e‖2.

Therefore,

eτ P B
(

− Π1(x̂, y, t) + Δg(x, t)
)

≤ Lξ2ξ1(y, t)‖Γ C‖ ‖e‖2. (4.21)

By the same reasoning as above, it is observed from (4.17) and Assumptions 4.4 and
4.5 that

eτ P
(

− Π2(x̂, y, t) + Δ f (x, t)
)

≤ ‖y‖Lγ ‖Υ C‖ ‖e‖2. (4.22)

From Assumption 4.3, Φ(x) is Lipschitz, and thus

eτ P
(
Φ(x) − Φ(x̂)

) ≤ LΦ‖P‖ ‖e‖2. (4.23)

Substituting (4.21)–(4.23) into (4.20), it follows that

V̇ |(4.19) ≤ −eτ Qe + 2
(
Lξ2ξ1(y, t)‖Γ C‖ + Lγ ‖y‖ ‖Υ C‖ + LΦ‖P‖

)
‖e‖2

≤ −2
(1

2
λmin(Q) − Lξ2ξ1(y, t)‖Γ C‖ − Lγ ‖y‖ ‖Υ C‖

−LΦ‖P‖
)
‖e‖2. (4.24)

Define

κ = λmin(Q) − 2 sup
x∈Ω,t∈R+

{
Lξ2ξ1(y, t)‖Γ C‖ + Lγ ‖y‖ ‖Υ C‖ + LΦ‖P‖}

.

It follows from (4.24) and (4.18) that κ > 0 and

V̇ ≤ −κ‖e‖2 ≤ − κ

λmax(P)
eτ Pe = − κ

λmax(P)
V .

Consequently,

V (t) ≤ V (0) exp

{

− κ

λmax(P)
t

}

and using the inequality

‖e‖ ≤
√

V

λmin(P)
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it follows that

‖e(t)‖ ≤
√

V (0)

λmin(P)
exp

{

− κ

2λmax(P)
t

}

.

Hence, choosing

α1 =
√

V (0)

λmin(P)
and α2 = κ

2λmax(P)

the conclusion follows. #

Remark 4.7 It should be noted that the injection signals defined by (4.16) and (4.17)
may be discontinuous, and thus the classical solution of the dynamical system (4.15)
may no longer exist due to the discontinuity in the right-hand side. In this case,
a solution of equation (4.15) is defined in the Filippov sense [46]. Formally, the
injection signals in (4.16) and (4.17) have only been defined for motion away from
the switching surface. In practice, ideal motion along the switching surface cannot
be achieved and so this does not pose a problem.

Remark 4.8 From the proof above, it is clear that the functions Π1 and Π2 are
introduced to reject the effect of the uncertaintiesΔg(x, t) andΔ f (x, t), respectively.
It is obvious that Assumption 4.5 (i) is unnecessary ifΔg = 0. Similarly, Assumption
4.5 (ii) is redundant if the system does not suffer from any mismatched uncertainty.
Theorem 4.2 shows that under some conditions, the observer error converges to zero
exponentially.

Remark 4.9 The observer defined in (4.15) with the injection signals in (4.16) and
(4.17) may be discontinuous. In practical implementation, the system trajectories
may not stay on the associated manifolds and consequently chattering may occur.
One way of overcoming this is to introduce a boundary layer about the manifolds: a
detailed discussion along these lines is available in [13].

4.2.5 Sliding Mode Control Design

In this section, a control is to be designed based on the output and the estimated
states so that the system is driven to the sliding surface and forced to remain there.

Consider the following output feedback sliding mode controller:

u = −(SB)−1
{

S(Ax̂ + Φ(x̂)) + Fy
‖Fy‖

(
‖SB‖ξ1(y, t)ξ2(x̂, t)

+‖SE‖ ‖y‖γ (x̂, t) + k(y, t)
)}

, (4.25)

where x̂ is given by (4.15), and the control gain k(y, t) is to be developed to satisfy
the reachability condition
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σ τ (x)σ̇ (x) < −β‖σ(x)‖ (4.26)

with β a positive constant.

Theorem 4.3 Suppose that (4.18) is satisfied. Under Assumptions 4.1–4.5, system
(4.1)–(4.2), driven by the control law (4.25), converges to the sliding surface (4.7)
and remains on it if the control gain k(y, t) is chosen such that

k(y, t) > α1 exp {−α2t} (‖S A‖ + ‖S‖LΦ + ξ1(y, t)Lξ2‖SB‖
+Lγ ‖y‖ ‖SE‖) + β, (4.27)

where β is chosen as a positive constant, α1 and α2 are given as in Theorem 4.2, and
ξ1, ξ2 and γ are defined by Assumption 4.4.

Proof From (4.1)–(4.2) and (4.7), it is observed that the sliding dynamics can be
written as

σ̇ (x) = S
(

Ax + B(u + Δg(x, t)) + Δ f (x, t) + Φ(x)
)
. (4.28)

Then, from (4.25) and (4.28), it follows that

σ τ (x)σ̇ (x) = −(Sx)τ
Fy

‖Fy‖k(y, t) + (
(Sx)τ SBΔg(x, t)

−(Sx)τ
Fy

‖Fy‖‖SB‖ξ1(y, t)ξ2(x̂, t)
)

+(
(Sx)τ SΔ f (x, t) − (Sx)τ

Fy

‖Fy‖‖SE‖ ‖y‖γ (x̂, t)
)

+(
(Sx)τ S Ax − (Sx)τ S Ax̂

)

+(
(Sx)τ SΦ(x) − (Sx)τ SΦ(x̂)

)
. (4.29)

From Assumption 4.4, S = FC and Theorem 4.2, it follows that

(Sx)τ SBΔg(x, t) − (Sx)τ
Fy

‖Fy‖‖SB‖ξ1(y, t)ξ2(x̂, t)

≤ ‖Fy‖ ‖SB‖ξ1(y, t)ξ2(x, t) − (Fy)τ
Fy

‖Fy‖‖SB‖ξ1(y, t)ξ2(x̂, t)

= ‖Fy‖ ‖SB‖ξ1(y, t)
(
ξ2(x, t) − ξ2(x̂, t)

)

≤ α1‖Fy‖ ‖SB‖ξ1(y, t)Lξ2 exp{−α2t} (4.30)

and
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(Sx)τ SΔ f (x, t) − (Sx)τ
Fy

‖Fy‖‖SE‖ ‖y‖γ (x̂, t)

= (Fy)τ SEΔη(x, t) − (Fy)τ
Fy

‖Fy‖‖SE‖ ‖y‖γ (x̂, t)

≤ ‖Fy‖ ‖SE‖ ‖y‖γ (x, t) − ‖Fy‖ ‖SE‖ ‖y‖γ (x̂, t)

≤ α1‖Fy‖ ‖SE‖ ‖y‖Lγ exp{−α2t}. (4.31)

Further,

(Sx)τ S Ax − (Sx)τ S Ax̂ = (Fy)τ S A(x − x̂) ≤ α1‖Fy‖ ‖S A‖ exp{−α2t} (4.32)

and
(Sx)τ SΦ(x) − (Sx)τ SΦ(x̂) ≤ α1‖Fy‖ ‖S‖LΦ exp{−α2t}. (4.33)

Substituting (4.30)–(4.33) into (4.29), it yields

σ τ (x)σ̇ (x) ≤ −‖Fy‖
{

k(y, t) − α1 exp {−α2t} (‖S A‖ + ‖S‖LΦ

+ξ1(y, t)Lξ2‖SB‖ + ‖y‖Lγ ‖SE‖)}
. (4.34)

Then by (4.27) it follows that σ τ (x)σ̇ (x) < −β‖σ(x)‖ if σ(x) �= 0. Hence the result
follows. #

Remark 4.10 It should be noted that the bounds on the matched and mismatched
uncertainties are both used in the control analysis and design. The uncertain nonlin-
earityΔ f (x, t) and the knownnonlinearityΦ(x) are dealt with separately throughout
the section. Therefore, conservatism is reduced as seen from the proof of the the-
orems above. The class of system considered includes those discussed in previous
work [95, 157, 219] as special cases.

4.3 Control of Nonminimum Phase Systems with Nonlinear
Disturbances

This section considers the stabilisation of a class of nonlinear systems, using sliding
mode techniques, where the nominal systems are allowed to be nonminimum phase.

4.3.1 Introduction

In many cases, the disturbance suffered by practical systems does not act in the input
channel. Unlike the matched case, any mismatched disturbance impinges on the
sliding mode dynamics and affects the behaviour of the sliding mode directly. Based
on the work in [219], some dynamical output feedback control schemes are proposed
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in [96, 157], where it is required that the bound on the mismatched uncertainty is a
linear function of ‖x‖. An approach given by [25] also requires that the mismatched
uncertainty is linear due to the limitation of the LMI technique used. However,
disturbances experienced by practical systems may be structurally unknown or have
nonlinear bounds [155]. In view of this, output feedback sliding mode control is
considered in [200, 205], where more general mismatched uncertainty is considered.
Unfortunately, in [37, 96, 157, 200, 205, 219] it is required that the system under
consideration is minimum phase and relative degree one. The presence of right half-
plane transmission zeros also limits the application of many existing results [25, 37,
38, 42, 96, 157, 200, 205, 219].

Results on output feedback stabilisation of nonminimum phase systems have
appeared in the literature (see, e.g., [31, 32, 80, 169]). A control scheme is proposed
for nonminimumphase systemswithout disturbances in [31]. Themethod is extended
to systems with uncertainties possessing linear bounds using LMI techniques in [32].
Using geometric approaches and Lyapunov techniques, output feedback stabilisation
results have been obtained for SISO systems in [80, 169] but the nominal system
needs to have a special structure. Uncertainty is not dealt with in [169] while only
parametric uncertainty is considered in [80]. Recently, a robust stabilisation scheme
for nonminimum phase nonlinear systems has been proposed based on high-gain
observers in [128], where the considered system is required to have a relative degree
which guarantees that the considered system can be partially linearisable.

Sliding mode control can deal with uncertainty with unknown structure. During
the sliding mode, a reduction in system order occurs, and this makes it possible to
reduce the conservatism in the stability analysis of the reduced order sliding motion
when compared with a direct Lyapunov approach [214, 215]. This has motivated
some authors to apply sliding mode techniques to nonminimum phase systems and
some interesting results have been obtained; see, e.g., [152, 160] and the references
therein. However, most results focus on the tracking problem for specific signals.
Thus sliding mode stabilisation of nonminimum phase systems based only on output
information is essentially an open problem.

In this section, sliding mode techniques are employed to study a robust output
feedback stabilisation problem for a class of systems in the presence of a nonlinear
disturbance. The approach allows the nominal system to be nonminimum phase.
The disturbance considered is mismatched and has a nonlinear bound. The strong
limitation that the nominal system is relative degree one, employed in Sect. 4.2, is
eliminated. The effect of the disturbance is rejected using the disturbance bound in
the controller design.

4.3.2 System Description and Preliminaries

Consider the system

ẋ = Ax + Bu + f (x, t) (4.35)

y = Cx, (4.36)
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where x ∈ R
n , u ∈ R

m and y ∈ R
p are the state variables, input and output, respec-

tively; A, B, C are constant matrices with appropriate dimensions, and B is assumed
to be full rank. The function f (x, t) is a mismatched nonlinear disturbance which is
continuous in its arguments.Without loss of generality it is assumed thatC is full row
rank. The problem which is considered in this section is one of robust stabilisation
using only the measured output.

The following further assumptions are imposed on the system (4.35)–(4.36).

Assumption 4.6 The nonlinear disturbance f (x, t) has a structural decomposition:

f (x, t) = EΔξ(x, t),

where E is a known constant matrix, and

‖Δξ(x, t)‖ ≤ ζ(x, t) ≤ η(x, t)‖x‖,

where ζ(x, t) is Lipschitz with respect to x in the domain Ω ⊂ R
n (including the

origin) and uniformly about t ∈ R
+, and η(x, t) is continuous in Ω × R

+.

Remark 4.11 In Assumption 4.6, the matrix E is employed to describe the structural
characteristics of the nonlinear disturbance f (x, t). The term Δξ(x, t) represents
unstructured uncertainty with known bounds and this will be used in the control
design later. It is not necessary to assume E = B: this implies that the nonlinear
disturbance in this section is allowed to be mismatched.

Assumption 4.7 The matrix pair (A, B) is controllable and (A, C) is observable.

FromAssumption 4.7, there exists a matrix L such that A − LC has n eigenvalues
which lie in the open left-half plane. Then, for any Q1 > 0, the Lyapunov equation

(A − LC)T P1 + P1(A − LC) = −Q1 (4.37)

has a unique solution P1 > 0.

Assumption 4.8 There exist (known) matrices F and P1 such that E T P1 = FC
holds, where E is given by Assumption 4.6, and P1 satisfies (4.37).

Remark 4.12 It should be noted that a similar condition to Assumption 4.8 has also
been imposed in [29, 215]. This constraint can be viewed from a system theoretic
point of view as a requirement for the map from the uncertainty Δξ to the linear
combination of the output Fy to be passive. Thus the constraint ET P1 = FC is a
structural characteristic associated with the system (A, B, E) and is independent of
the choice of coordinate system. The associated condition for nonlinear case has
been used in Chap.3 (see Assumption 3.3).

http://dx.doi.org/10.1007/978-3-319-48962-9_3
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4.3.3 Dynamical Compensator Design

Based on the assumptions above, the following dynamical system is constructed for
the system (4.35)–(4.36):

˙̂x = Ax̂ + Bu + L(y − Cx̂) + Φ(x̂, y, t), (4.38)

where x̂ ∈ R
n , L ∈ R

n×p satisfying (4.37) is the design gain, and

Φ(x̂, y, t) =
{

E F(y−Cx̂)

‖F(y−Cx̂)‖ζ(x̂, t), F(y − Cx̂) �= 0
0, F(y − Cx̂) = 0

, (4.39)

where the matrices E and F satisfy Assumption 4.8, and the function ζ is given in
Assumption 4.6.

Theorem 4.4 Suppose that Assumptions 4.6–4.8 are satisfied. Then, for the system
(4.35)–(4.36) and (4.38), in Ω × R

+, the following are true:

(i) (x − x̂)T P1

(
f (x, t) − Φ(·)

)
≤ Lζ‖FC‖ ‖x − x̂‖2;

(ii) there exist positive constants α1 and α2 such that

‖x − x̂‖ ≤ α1 exp{−α2t}

if the symmetric positive definite matrix Q1 satisfies

λmin(Q1) > 2Lζ ‖FC‖,

where P1 and Q1 satisfy (4.37).

Proof For convenience, let e = x − x̂ . It follows from (4.35) and (4.38) that

ė = (A − LC)e + f (x, t) − Φ(x̂, y, t). (4.40)

If FCe �= 0, then using Eτ P1 = FC :

(x − x̂)T P1
(

f (x, t) − Φ(x̂, y, t)
) = (FCe)T Δξ(x, t) − (FCe)T FCe

‖FCe‖ ζ(x̂, t)

≤ ‖FCe‖ζ(x, t) − ‖FCe‖ζ(x̂, t)

≤ Lζ ‖FC‖ ‖x − x̂‖2.
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otherwise if FCe = 0 then

(x − x̂)T P1
(

f (x, t) − Φ(x̂, y, t)
) = 0 ≤ Lζ ‖FC‖ ‖x − x̂‖2

and hence conclusion (i) follows.
For the system in (4.40), consider a Lyapunov function candidate

V1 = eT P1e.

Then, the time derivative of V1 along the trajectories of System (4.40) is given by

V̇1 = −eT Q1e + 2eT P1
(

f (x, t) − Φ(x̂, y, t)
)
,

where (4.37) is used to obtain the above. From conclusion (i), it follows that

V̇1 ≤ −(λmin(Q1) − 2Lζ‖FC‖)‖e‖2

≤ −λmin(Q1) − 2Lζ ‖FC‖
λmax(P1)

eT P1e

= −2α2V1, (4.41)

where
α2 =: (

λmin(Q1) − 2Lζ‖FC‖)
/ (2λmax(P1)) > 0

if
λmin(Q1) > 2Lζ ‖FC‖.

It follows that
V1(t) ≤ V1(t0) exp{2α2t0} exp{−2α2t}. (4.42)

Since V1 ≥ λmin(P1)‖e‖2, from (4.42),

‖e‖ ≤
√

V1(t)

λmin(P1)
≤

√
V1(t0)

λmin(P1)
exp{α2t0}

︸ ︷︷ ︸
α1

exp{−α2t}. (4.43)

Hence, conclusion (ii) follows. #

Remark 4.13 Conclusion (ii) of Theorem 4.4 shows that under certain conditions
the dynamical compensator (4.38) is an exponential observer of the system (4.35)–
(4.36). The proof above also shows how to determine the values of α1 and α2.

Remark 4.14 In this section, discontinuous terms are introduced into both the
observer and the control law. The ‘solutions’ of the resulting systems are under-
stood to mean solutions in the sense of Filippov [46].
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Generally speaking, sliding mode control design is composed of two steps as
stated in Sect. 1.3.1: The first step is the establishment of the switching surface such
that the associated reduced order system has the desired performance. The second is
the development of a sliding mode controller which drives the system to the sliding
surface and maintains a stable sliding motion thereafter. The subsequent study will
follow this procedure.

4.3.4 Stability of the Reduced Order Sliding Motion

In this section, the objective is first to design a sliding surface based on the system
output y and the estimated state x̂ given by (4.38). Then, the stability of the reduced
order sliding motion will be analysed.

Let N ∈ R
(n−p)×n be any matrix such that

[
CT N T

]
is nonsingular. Now, for

System (4.35)–(4.36) with the compensator (4.38), consider the switching function
described by

σ(y, x̂) = S1y + S2N x̂, (4.44)

where the matrices S1 ∈ R
m×p and S2 ∈ R

m×(n−p) are both design parameters.
Let S ∈ R

m×n be anymatrix such that det(SB) �= 0 and the n − m nonzero eigen-
values of (I − B(SB)−1S)A are in the open left-half plane. Such a matrix S can be
designed using any existing state feedback sliding mode design methodology [38].
Let

[
S1 S2

] = S

[
C
N

]−1

. (4.45)

Such a definition is well-defined by choice of N . Then, by construction S1 and S2
are such that

• (S1C + S2N )B = SB is nonsingular;
• Aeq =: A − B((S1C + S2N )B)−1(S1C + S2N )A = (I − B(SB)−1S)A has n −

m eigenvalues which lie in the open left-half plane.

Remark 4.15 It should be emphasised that these constructions do not require that
(A, B, C) is minimum phase or that rank(C B) = m. These requirements underpin
most of the output feedback results for uncertain systems developed in [38] and
so this greatly increases the class of systems for which the robust output feedback
sliding mode approach is applicable.

It follows that in the (x, e) coordinate system with e = x − x̂ , the system (4.35)–
(4.36) and (4.38) can be described by

[
ẋ
ė

]

=
[

A 0
0 A − LC

] [
x
e

]

+
[

B
0

]

u +
[

f
f − Φ

]

(4.46)

y = Cx (4.47)

http://dx.doi.org/10.1007/978-3-319-48962-9_1
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and the sliding surface can be written as

[
S1C + S2N −S2N

]
[

x
e

]

= 0. (4.48)

From [38, 173], it is observed that the equivalent control for the system (4.46) is
given by

ueq = −(SB)−1
(
(S1C + S2N )Ax − S2N (A − LC)e + S1C f (x, t)

+ S2NΦ(x − e, y, t)
)
. (4.49)

When the system (4.46)–(4.47) is restricted to the sliding surface (4.48), the sliding
mode dynamics are described by

[
ẋ
ė

]

=
[

Aeq B(SB)−1S2N (A − LC)

0 A − LC

] [
x
e

]

+
[ (

In − B(SB)−1S1C
)

f (x, t) − B(SB)−1S2NΦ(x − e, y, t)

f (x, t) − Φ(x − e, y, t)

]

(4.50)

which is the so-called equivalent system.

Remark 4.16 From the structure of the matrix,

[
Aeq B(SB)−1S2N (A − LC)

0 A − LC

]

it follows that Aeq has 2n − m eigenvalues which lie in the open left-half plane since
A − LC has n negative eigenvalues. If E ∈ span{B}, then Φ ∈ span{B} and in this
case the corresponding sliding mode is asymptotically stable.

In this section, the focus is the mismatched case, where E /∈ span{B}. It is
observed from sliding mode theory that mismatched uncertainty can enter the sliding
mode and may affect/destroy its performance directly. Therefore, some restrictions
on the mismatched disturbance f (x, t) are necessary to guarantee the stability of the
reduced order sliding motion associated with (4.50).

The matrix S1C + S2N is full row rank, and thus there exist nonsingular matrices
T1 ∈ R

n×n and T2 ∈ R
m×m such that

T2(S1C + S2N )T1 = [
Im 0

]
. (4.51)

Introduce a nonsingular transformation z = T −1
1 x . It follows that in the new coordi-

nate system (z, e), the equivalent system (4.50) becomes
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[
ż
ė

]

=
[

T −1
1 Aeq T1 T −1

1 B(SB)−1S2N (A − LC)

0 A − LC

] [
z
e

]

+
[

T −1
1

(
In − B(SB)−1S1C

)
f − T −1

1 B(SB)−1S2NΦ

f − Φ

]

. (4.52)

From (4.51), it follows that

(S1C + S2N )x − S2Ne = T −1
2 z1 − S2Ne,

where z = col(z1, z2)with z1 ∈ R
m . The sliding surface (4.48) in the newcoordinates

becomes
z1 = T2S2Ne. (4.53)

Partition

T −1
1 Aeq T1 =

[
A11 A12
A21 A22

]

and T −1
1 B(SB)−1S2N (A − LC) =

[
D1
D2

]

, (4.54)

where A11 ∈ R
m×m , D1 ∈ R

m×n . Then, it follows from (4.53) and (4.52) that the
corresponding sliding mode dynamics are described by

[
ż2
ė

]

=
[

A22 A21T2S2N + D2

0 A − LC

] [
z2
e

]

+
[

f2
Ψ

]

, (4.55)

where z2 ∈ R
n−m , f2(z2, e, t) is the last n − m components of

[
T −1
1

(
In − B(SB)−1S1C

)
f − T −1

1 B(SB)−1S2NΦ
]

z1=T2S2Ne (4.56)

and
Ψ (z2, e, y, t) =: [ f (T1z, t) − Φ(T1z − e, y, t)]z1=T2S2Ne (4.57)

with Φ defined by (4.39).
It is observed from Remark 4.16 and the relationship between (4.52) and (4.55)

that A22 is stable. This implies that for any Q2 > 0, the Lyapunov equation

AT
22P2 + P2 A22 = −Q2 (4.58)

has a unique solution P2 > 0. From Assumption 4.6 and (4.39), it follows that

∥
∥T −1

1

(
In − B(SB)−1S1C

)
f (·) − T −1

1 B(SB)−1S2NΦ(·)∥∥
≤ ‖T −1

1

(
In − B(SB)−1S1C

) ‖ ‖E‖η‖T1z‖
+‖T −1

1 B(SB)−1S2N‖ ‖E‖η(‖T1z‖ + ‖e‖). (4.59)

Then, from the definition of f2, (4.56), (4.59) and the inequality
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∥
∥[T1z]z1=T2S2Ne

∥
∥ =

∥
∥
∥
∥T1

[
T2S2Ne

z2

]∥
∥
∥
∥ ≤ ‖T1‖ (‖T2S2N‖ ‖e‖ + ‖z2‖)

it is straightforward to see that there exist functions χ1 and χ2 (dependent on η, T1,
T2, S1 and S2) such that

‖ f2(z2, e, t)‖ ≤ χ1(z2, e, t) ‖z2‖ + χ2(z2, e, t)‖e‖. (4.60)

Then, the following conclusion is ready to be presented.

Theorem 4.5 Suppose Assumptions 4.6–4.8 are satisfied. Then, the reduced order
sliding motion dynamics (4.55) are asymptotically stable if there exists a domain

Ω ′ =
{
(z2, e, t) | ‖z2‖ ≤ d, ‖e‖ ≤ d, t ∈ R

+
}

for some positive constant d such that in Ω ′ \ {0}, the matrix

M =
[

λmin(Q2) − 2λmax(P2)χ1 −Π

−Π λmin(Q1) − 2‖FC‖Lζ

]

,

is positive definite, where

Π := ‖P2(A21T2S2N + D2)‖ + λmax(P2)χ2

and
χ1 = χ1(z2, e, t) and χ2 = χ2(z2, e, t)

satisfy (4.60).

Proof It is only required to prove that the system (4.55) is asymptotically stable. For
system (4.55), consider the Lyapunov function candidate

V (z2, e) = eT P1e + zT
2 P2z2.

Then, the time derivative of V along the trajectories of the dynamic System (4.55)
is given as

V̇ = −eT Q1e − zT
2 Q2z22zT

2 P2(A21T2S2N + D2)e + 2zT
2 P2 f2(·) + 2eT P1Ψ (·).

(4.61)

From conclusion (i) of Theorem 4.4 and the definition (4.57) of Ψ , it follows that

2eT P1Ψ (z2, e, y, t) ≤ Lζ‖FC‖ ‖e‖2. (4.62)

Then, substituting (4.62) into (4.61), it follows from (4.60) that
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V̇ = −
(
λmin(Q1) − 2‖FC‖Lζ

)
‖e‖2 −

(
λmin(Q2) − 2λmax(P2)χ1

)
‖z2‖2

+2
(
‖P2(A21T2S2N + D2)‖ + λmax(P2)χ2

)
‖z2‖ ‖e‖

= − [ ‖z2‖ ‖e‖ ]
M

[ ‖z2‖
‖e‖

]

.

Hence, the conclusion follows from M > 0. #

Remark 4.17 It should be pointed out that M > 0 implies that

λmin(Q1) > 2‖FC‖Lζ

which, together with Assumptions 4.6–4.8, guarantees the convergence of the com-
pensator (4.38).

Remark 4.18 Note that the sliding motion only depends on the partial state variable
col(z2, e) instead of col(z, e), and thus M is independent on the variables z1.

4.3.5 Sliding Mode Control Design

The objective now is to find a control law such that the reachability condition

σ T (y, x̂)σ̇ (y, x̂) ≤ −β‖σ(y, x̂)‖ (4.63)

is satisfied for some positive constant β, where σ(·) is the sliding function given in
(4.44). If condition (4.63) is satisfied by some control, then the system (4.35)–(4.36)
is driven to the sliding surface by the control and maintained in a sliding mode.

Based on the estimated state x̂ given by (4.38) and the system output y, the
following sliding mode control is proposed:

u = −(SB)−1
{

(S1C + S2N )Ax̂ + S2N L(y − Cx̂) + σ

‖σ‖ K (x̂, y, t)

}

, (4.64)

where K (x̂, y, t) is a control gain and is to be determined.

Theorem 4.6 Suppose Assumptions 4.6–4.8 are satisfied together with the assump-
tions of Theorem 4.4. Then, the control in (4.64) drives the system (4.35)–(4.36) to
the sliding surface and maintains a sliding motion if

K (x̂, y, t) ≥
(
‖S1C E‖ + ‖S2N E‖

)
ζ(x̂, t) + α1

(
Lζ‖S1C E‖

+‖S1C A‖
)

e−α2t + β, (4.65)
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where ζ is given in Assumption 4.6, α1 and α2 are given in Theorem 4.4, and β is a
positive constant.

Proof From the analysis above, it is necessary to prove that the reachability condition
(4.63) is satisfied when applying the control given in (4.64).

It follows from (4.44), (4.35) and (4.38) that

σ̇ (y, x̂) = (S1C + S2N )Ax̂ + S2N LCe + (SB)u + S1C f (x, t)

+S2NΦ(·) + S1C Ae. (4.66)

By applying the control (4.64) into (4.66), it follows that

σ̇ = − σ

‖σ‖ K (x̂, y, t) + S1C f (x, t) + S2NΦ(·) + S1C A(x − x̂).

Therefore,

σ T σ̇ ≤ −‖σ‖ {
K (x̂, y, t) − S1C f (·) − S2NΦ −S1C Ae} . (4.67)

From Assumption 4.6:

S1C f (·) ≤ ‖S1C E‖
(
ζ(x, t) − ζ(x̂, t)

)
+ ‖S1C E‖ζ(x̂, t)

≤ Lζ ‖S1C E‖‖e‖ + ‖S1C E‖ζ(x̂, t). (4.68)

From the definition of Φ in (4.39) and Assumption 4.6

S2NΦ(x̂, y, t) ≤ ‖S2N E‖ζ(x̂, t). (4.69)

Substituting (4.68) and (4.69) into (4.67), and using conclusion (ii) of Theorem 4.4:

σ T σ̇ ≤ −‖σ‖
{

K (x̂, y, t) −
(
‖S1C E‖ + ‖S2N E‖

)
ζ(x̂, t) −

(
Lζ‖S1C E‖ + ‖S1C A‖

)
‖e‖

}

= −‖σ‖
{

K (x̂, y, t) −
(
‖S1C E‖ + ‖S2N E‖

)
ζ(x̂, t)

−α1

(
Lζ ‖S1C E‖ + ‖S1C A‖

)
exp{−α2t}

}
.

Then, by (4.65), it follows that the reaching condition is satisfied. #

The results in Theorems 4.5 and 4.6 together show that the corresponding closed-
loop systems are asymptotically stable.
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4.4 Case Study: Control of HIRM Aircraft

In this section, both the longitudinal and lateral dynamics of the High Incidence
Research Model (HIRM) aircraft are to be employed to test the results developed in
Sects. 4.2 and 4.3 to demonstrate the approaches proposed.

4.4.1 Control of Longitudinal Dynamics

Consider the simplified longitudinal dynamics of the HIRMaircraft at the trim values
Mach: 0.8, Height: 5000 ft taken from [115]:

A =

⎡

⎢
⎢
⎣

−0.0318 0.0831 −0.0008 −0.0367
−0.0716 −1.4850 0.9848 0
−0.2797 −5.6725 −1.0253 0

0 0 1.0000 0

⎤

⎥
⎥
⎦ (4.70)

B =

⎡

⎢
⎢
⎣

0.0120 −0.0071
−0.3058 −0.0223
−22.4293 7.8777

0 0

⎤

⎥
⎥
⎦ (4.71)

C =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ . (4.72)

This system has four states col(x1, x2, x3, x4) = x : (v − v0)/v0 with v and v0 =
267.51, respectively, the current airspeed (m/s) and the desired airspeed (m/s), angle
of attack (rad), pitch rate (rad/s) and pitch angle (rad), two inputs col(u1, u2) = u:
symmetrical tailplane deflection (rad) and symmetrical canard deflection (rad), and
three outputs col(y1, y2, y3) = y: (v − v0)/v0, angle of attack (rad) and pitch rate
(rad/s). Suppose that the aircraft flies at constant altitude and the associated engine
thrust is constant. Based on the model given in [76], the nonlinear term is described
by

Φ(x) = [
0 Fe

M (sin x2)/(1 + x1) 0 0
]τ

,

where the parameters Fe and M are the engine thrust and the aircraft mass, respec-
tively, and their values are chosen from [115]. Further suppose

Δ f (x, t) = [
0.010 Δη(x, t) −0.0512Δη(x, t) 0 0

]τ
,

where
‖Δη(x, t)‖ ≤ 0.001‖y‖ sin2 x4
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which is the uncertainty caused by the aerodynamic drag and the modelling error
from the lift term.

From (4.70)–(4.72), it is straightforward to see that rank(C B) = 2 and soAssump-
tion 4.1 is satisfied. Then, from the algorithm given by Edwards and Spurgeon [38],
the coordinate transformation x̃ = T̃ x with

T̃ =

⎡

⎢
⎢
⎣

0 0 0 1.0000
0.9998 −0.0222 0.0008 0

−0.0222 −0.9997 0.0136 0
−0.0005 0.0136 0.9999 0

⎤

⎥
⎥
⎦

yields the canonical form (4.3) as follows

Ã =

⎡

⎢
⎢
⎣

0 0.0008 0.0136 0.9999
−0.0366 −0.0329 −0.1109 −0.0220
0.0008 0.0364 −1.4200 −0.9792
0.0000 −0.1550 5.6828 −1.0891

⎤

⎥
⎥
⎦ (4.73)

B̃ =

⎡

⎢
⎢
⎣

0 0
−0.0000 −0.0000
0.0000 0.1297

−22.4313 7.8767

⎤

⎥
⎥
⎦ (4.74)

C̃ =
⎡

⎣
0 0.9998 −0.0222 −0.0005
0 −0.0222 −0.9997 0.0136
0 0.0008 0.0136 0.9999

⎤

⎦ . (4.75)

It is straightforward to check that Assumption 4.2 is satisfied with the choice K τ =
[−10 − 25]. Let

γ (x, t) = 0.001 sin2 x4

φ(x2) =
{ sin x2

x2
x2 �= 0

1 x2 = 0

Υ = [−0.0293 −0.1327 0
]

E =

⎡

⎢
⎢
⎣

0.0010
−0.0512

0
0

⎤

⎥
⎥
⎦ , L =

⎡

⎢
⎢
⎣

2.1682 0.0940 −0.0008
−0.0714 −1.2850 0.9848
−0.2797 −5.6725 −0.5253
−32.7346 −0.3223 1.0000

⎤

⎥
⎥
⎦

H(x) =

⎡

⎢
⎢
⎣

0 0 0 0
0 Fφ(x2)

m(x1+1) 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ .

Obviously, Φ(x) = H(x)x , and the Lyapunov equation (4.4) has the solution
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P =

⎡

⎢
⎢
⎣

203.1738 4.5427 0 13.6395
4.5427 2.6815 0 0.2666

0 0 1.0000 0
13.6395 0.2666 0 1.1442

⎤

⎥
⎥
⎦ .

Then, consider the domain

Ωq =
{

(x1, x2, x3, x4)

∣
∣
∣
∣

|x1| < 0.1869, x2 > −0.1745
|x3| < 0.1745, x4 < 0.5236

}

.

Bydirect verification,Assumptions 4.3–4.5 are all satisfied. Then using the algorithm
given by Edwards and Spurgeon in [38],

F =
[ −10.0197 −0.7777 0.0053

−24.9944 0.5687 0.9790

]

(4.76)

and

T̂ =

⎡

⎢
⎢
⎣

0 0 0 1
0.9998 −0.0222 0.0008 0

−10.0197 −0.7777 0.0053 0
−24.9944 0.5687 0.9790 0

⎤

⎥
⎥
⎦ . (4.77)

Therefore, the designed sliding surface FCx = 0 is well-defined, and the canonical
form (2.22)–(2.23) can be obtained as follows:

[
A11 A12

A21 A22

]

=

⎡

⎢
⎢
⎣

0 25.1347 0.0136 0.9999
−0.0366 −1.6924 −0.1109 −0.0220
0.3673 −21.7200 −0.3107 −0.7592
0.9163 71.7542 8.4561 −0.5390

⎤

⎥
⎥
⎦

[
0
B2

]

=

⎡

⎢
⎢
⎣

0 0
0 0

0.0000 0.1297
−22.4313 7.8767

⎤

⎥
⎥
⎦

[
0 C2

] =
⎡

⎣
0 0.7643 −0.0222 −0.0005
0 −9.6780 −0.9997 0.0136
0 25.1347 0.0136 0.9999

⎤

⎦ .

Let Q1 = I2. Then, the solution of the Lyapunov equation (4.11) is

P1 =
[
1.2145 13.6428
13.6428 202.9155

]

.

It follows that χ(z1, t) = 0.0017 and

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
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R(z1, 0) =
[
0 0
0 0.000215φ(x2)/x1)

]

.

Direct computation shows the conditions of Theorems 4.1 and 4.2 are both satisfied
in domainΩq .With the given L and E above, the compensator (4.15) is well-defined.
Then according to (4.25), design the control

u = −(FC B)τ
{

FC Ax̂ +
[−0.0006

0.0005

]

(sin x̂2)/(1 + x̂1)

+ Fy

‖Fy‖ (0.0617‖y‖ sin2 x̂4 + K (y, t))
}
, (4.78)

where the matrices A, B, C are defined in (4.70)–(4.72) and the matrix F is given
in (4.76). The scalar gain

K (y, t) = α1 exp{−α2t}(8.5842 + 1.2349 × 10−4‖y‖) + β.

In order to illustrate the effectiveness of the designed controller in (4.78), simu-
lations on the corresponding closed-loop system are carried out to show its perfor-
mance. For simulation purposes, the initial condition is chosen as

col(x0, x̂0) = (0, 0, 0.1, 0, 0, 0, 0.1, 0)

and
β = 0.1, α1 = 0.2099, α2 = 50.7754.

The results in Figs. 4.1 and 4.2 show the effectiveness of the controller.

4.4.2 Control of Lateral Dynamics

Consider the lateral dynamics of the HIRM aircraft at the trim values of Mach 0.2
and height 5000 ft taken from [94]. The system matrices are given by

A =

⎡

⎢
⎢
⎣

−0.0080 0.4100 −0.9047 0.1334
−7.3235 −0.4278 2.6462 0
−0.1460 −0.0247 −0.1544 0

0 1.0000 0.4558 0

⎤

⎥
⎥
⎦ (4.79)

B =

⎡

⎢
⎢
⎣

0.0181 −0.0094
−3.1026 0.4024
−0.4096 −0.0833

0 0

⎤

⎥
⎥
⎦ C =

[
1 0 0 0
0 0 1 0

]

. (4.80)
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Fig. 4.1 The time response of the simplified system (4.70)–(4.72) of HIRM
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Fig. 4.2 The response of control (top) and the sliding functions (bottom)
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The system has four states col(x1, x2, x3, x4) = x : sideslip angle (rad), roll rate
(rad/s), yaw rate (rad/s) and bank angle (rad), two inputs col(u1, u2) = u: differen-
tial tailplane deflection (rad) and differential canard deflection (rad), and two outputs
col(y1, y2) = y: sideslip angle (rad) and yaw rate (rad/s). This system has zeros at
32.3257 and −0.3254 and thus (A, B, C) is nonminimum phase. Suppose that the
system suffers from a perturbation

f (x, t) =

⎡

⎢
⎢
⎣

0
−0.0341Δξ1(x, t) + 0.01851Δξ2(x, t)

−0.9217Δξ1(x, t) + 0.5Δξ2(x, t)
0.05Δξ1(x, t) − 0.02713Δξ2(x, t)

⎤

⎥
⎥
⎦ , (4.81)

where the unknown signal

Δξ(x, t) =:
[

Δξ1(x, t)
Δξ2(x, t)

]

satisfies

‖Δξ(x, t)‖ ≤ 1

9
(sin2 x4 + |x1|).

Consider the system (4.79)–(4.80) in the presence of the perturbation (4.81). It is
observed that (A, C) is observable. Choose

L =

⎡

⎢
⎢
⎣

4.7197 −0.9285
−7.7057 2.6708
−0.1659 0.3401
8.8887 0.3748

⎤

⎥
⎥
⎦ .

Then, A − LC is stable and for Q1 = I4, the solution of Lyapunov equation (4.37)
is

P1 =

⎡

⎢
⎢
⎣

7.0232 −1.5951 − 0.1564 −3.7481
−1.5951 1.7522 − 0.0159 0.9032
−0.1564 −0.0159 1.0178 0.0825
−3.7481 0.9032 0.0825 2.1379

⎤

⎥
⎥
⎦ .

Let

E =

⎡

⎢
⎢
⎣

0 0
−0.0341 0.01851
−0.9217 0.5

0.05 −0.02713

⎤

⎥
⎥
⎦ and F =

[
0.01115 − 0.9335

−0.00605 0.5064

]

(4.82)

with

ζ(x, t) = 1

9
(sin2 x4 + |x1|), η(x, t) = 1

9
(| sin x4| + 1), Lζ = 1

3
. (4.83)
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It is straightforward to check that Assumptions 4.6–4.8 and the inequality

λmin(Q1) > 2Lζ ‖FC‖

are satisfied globally. The compensator from (4.38)–(4.39) is now completely spec-
ified. Let

N =
[
0 1 0 0
0 0 0 1

]

(4.84)

from which it is obvious that
[

CT N T
]
is invertible.

The ideal sliding mode dynamics is defined by the poles {−4,−1} with the asso-
ciated eigenvectors specified to have the structure

[∗ 1 0 ∗ ]τ
and

[∗ 0 1 ∗ ]τ
,

where ∗ denotes that the corresponding entry of the eigenvector is arbitrary. This
choice of eigenstructure will ensure the rolling and yawing motions of the aircraft
are decoupled.According to the algorithmgiven by [38], the corresponding switching
surface is determined as

S =
[−0.6710 − 0.0640 0.7378 0.0347

0.2227 0.2550 0.1812 0.9233

]

which yields the following nonzero eigenvalues of Aeq , {−4,−1}with corresponding
eigenvectors:

[−0.1083 1 0 −0.2500
]τ

and
[
1.0760 0 1 −0.4558

]τ
,

respectively. It follows from (4.45) that

[
S1 S2

] =
[ −0.6710 0.7378

0.2227 0.1812
−0.0640 0.0347
0.2550 0.9233

]

. (4.85)

Choosing T2 = 0.1I2 and

T1 =

⎡

⎢
⎢
⎣

6.7105 2.2270 7.0224 − 0.8345
0.6401 2.5495 −2.5268 − 9.3116

−7.3783 1.8124 6.2723 − 1.7129
−0.3469 9.2334 −2.2272 3.1087

⎤

⎥
⎥
⎦

after some algebra, it can be shown that

A21 =
[

0.8600 0.2369
−0.2598 1.2556

]

, A22 =
[−1.2070 − 0.7628

−0.7579 − 3.7930

]
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and

D2 =
[
0.5960 − 0.0565 − 0.0049 0
2.8395 − 0.2830 − 0.0239 0

]

.

Choose Q2 = I2, then the solution of the Lyapunov equation (4.58) is

P2 =
[

0.4742 − 0.0949
−0.0949 0.1508

]

.

By direct computation, it follows that χ1 and χ2 can be chosen as 4.8833e − 004 and
0.0034, respectively, and

M =
[

0.9995 − 0.3754
−0.3754 0.2919

]

is positive definite and thus the conditions of Theorem 4.5 are satisfied globally.
Now, from (4.65), K (x̂, y, t) is chosen as

K (x̂, y, t) = 0.0933
(
sin2 x̂4 + |x̂1|

) + 0.9010α1e−α2t + β. (4.86)
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Fig. 4.3 The time responses of the simplified system (4.79)–(4.81) of HIRM
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Fig. 4.4 The evolution of the control signal (top) and the corresponding sliding functions (bottom)

This completes the controller design.
For simulation, the initial condition is chosen as

col(x0, x̂0) = (0, 0, 0.1, 0, 0, 0, 0.1, 0)

while
β = 0.1, α1 = 0.3101 and α2 = 1.3855.

The results in Figs. 4.3 and 4.4 show the effectiveness of the controller. A perturbation
of the yaw subsystem has very little effect on the bank angle and roll rate responses.

4.5 Summary

This chapter has studied slidingmode control design for nonlinear and linear systems
with nonlinear disturbances using dynamical output feedback.

In Sect. 4.2, the sliding surface employed is as originally proposed by Edwards
and Spurgeon in [38]. A nonlinear asymptotic observer has been proposed which
has been shown to give exponential state estimation error convergence based on
the solution to a constrained Lyapunov equation. Using the estimated states and the
system output, a dynamic variable structure control has been developed which has
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been shown to satisfy the reachability condition. In Sect. 4.3, a dynamical sliding
mode control strategy based on the equivalent control approach has been developed
which is applicable to a class of nonminimumphase systemswithmismatched distur-
bances. Compared with the Lyapunov technique, the results obtained in this section
have lower conservatism using the property that the sliding mode is a reduced order
system. In comparison with the geometric approach, this method does not require
the nominal system to have a special structure. Moreover, the approach proposed
in Sect. 4.3 is constructive which makes it convenient to use for practical controller
design.

The schemes developed in Sects. 4.2 and 4.3 have been used to control a simplified
nonlinear HIRM aircraft model. A nonlinear model of the longitudinal dynamics has
been considered under the assumption that the engine thrust is fixed. The uncertainty
caused by the aerodynamic drag and the error present in the modelling of the aircraft
lift has been considered. Control of the lateral dynamics of aHIRMaircraftmodel has
also been considered at the trim values of Mach 0.2 and Height 5000 ft. Simulation
results have been given which demonstrate the practicality of the proposed schemes
and their effectiveness in achieving robust closed-loop performance.



Chapter 5
Reduced-Order Compensator-Based
Feedback Control of Large-Scale Systems

This chapter will focus on control design for a class of large-scale interconnected
systems using reduced-order compensators. Large-scale systems with nonminimum
phase isolated subsystems and similar structure are considered in Sects. 5.2 and 5.3,
respectively.

5.1 Introduction

It is well known that full-order compensator-based feedback control doubles the
order of the dynamical systems. For large-scale systems, the implications of such
growth in system order for both design and implementation are severe. However,
dynamical output feedback can be employed to reduce the limitations on the system
class when compared with static output feedback control. In connection with this,
control of large-scale interconnected systems using reduced-order compensators is
considered in this chapter.

Decentralised sliding mode controllers are synthesised for a class of nonlinear
large-scale systems in Sect. 5.2. It is shown that minimum phaseness of the nominal
isolated subsystems is not required if dynamical feedback is employed. Then, con-
trol design for nonlinear large-scale systems with similar structure is considered in
Sect. 5.3. The study shows that exploiting similar structure can greatly simplify the
controller design and system analysis. Section5.4 provides examples to demonstrate
the developed results by simulation.

© Springer International Publishing AG 2017
X.-G. Yan et al., Variable Structure Control of Complex Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-48962-9_5
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5.2 Decentralised Sliding Mode Control for Nonminimum
Phase Interconnected Systems

In this section, a class of interconnected systems with nonlinear interconnections and
nonlinear disturbances is considered.A continuous nonlinear reduced-order compen-
sator is established by exploiting the structure of the uncertainties and using sliding
mode techniques. The proposed approach allows both the isolated nominal sub-
system and the nominal interconnected system to be nonminimum phase, and the
uncertainties to be mismatched with nonlinear bounds.

5.2.1 Introduction

Sliding mode techniques are employed for the stabilisation of a class of nonlinear
interconnected systems. Mismatched uncertainties and nonlinear interconnections
are both considered, and the bounds on the uncertainties take more general forms as
in [200, 215]. Using the structure of the uncertainties, a continuous reduced-order
compensator is proposed based on the constrained Lyapunov equations. Then, a
sliding surface is proposed in the augmented space formed by the compensator and
system output. Using an equivalent control approach and local coordinate transfor-
mations, the sliding mode dynamics are established and the stability is analysed.
A robust decentralised output feedback sliding mode control scheme is synthesised
such that the interconnected system can be driven to the predesigned sliding surface.
This approach allows both the nominal isolated subsystem and the whole nominal
system to be nonminimum phase. It should be emphasised that methods to deal with
nonlinear interconnections are a key issue in the control of interconnected systems.
So far nearly all associated work treated such interconnections as a disturbance and
then used an extra stability margin to reject the effect of the interconnections. By
dealing with uncertain interconnections and known interconnections separately, the
conservatism is reduced to some extent as claimed in [214, 215]. However, the inter-
connections are still treated as a disturbance since the interconnections are not used
in the control design. It is shown that by employing sliding mode techniques, the
interconnections are directly used in the control design, which together with the fact
that the sliding mode dynamics are reduced-order systems, reduces the conservatism
and enhances the robustness. A simulation for a HIRM aircraft system is used to
show the effectiveness of the proposed control schemes in Sect. 5.4.
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5.2.2 Interconnected System Description

Consider a nonlinear interconnected system composed of N subsystems as follows:

ẋi = Ai xi + Bi ui + Δ fi (xi ) +
N∑

j=1
j �=i

(
Hi j (x j ) + ΔHi j (x j , t)

)
, (5.1)

yi = Ci xi , i = 1, 2, . . . , N , (5.2)

where xi ∈ Ωi ⊂ R
ni (0 ∈ Ωi ), ui ∈ R

mi and yi ∈ R
pi are the states, inputs and

outputs of the i-th subsystem, respectively, with mi < ni ; The triple (Ai , Bi , Ci )

comprises constant matrices of appropriate dimensions with Bi and Ci of full rank;
Δ fi is the mismatched uncertainty of the i-th isolated subsystem, whilst the terms

N∑

j=1
j �=i

Hi j (x j ) and
N∑

j=1
j �=i

ΔHi j (x j , t)

are the known and the uncertain interconnections of the i-th subsystemwith Hi j (0) =
0. The functions are all assumed to be continuous in their arguments.

Remark 5.1 It should be pointed out that matched uncertainty does not affect the
stability of sliding mode. As for the reachability, there are many standard techniques
(see, e.g., [35, 36, 38, 69, 97, 200]) which can be applied to deal with matched
uncertainty. In view of this, matched uncertainty is not considered in systems (5.1)–
(5.2).

Without loss of generality, suppose that the nonlinear functions Hi j (·) can be
decomposed as

Hi j (x j ) = Φi j (x j )x j , i �= j, i, j = 1, 2 . . . , N , (5.3)

where Φi j (·) are continuous. The decomposition (5.3) is always true for Hi j (·) sat-
isfying Hi j (0) = 0 which are smooth enough in their domain of definition.

In order to facilitate the analysis, the following framework is used throughout this
section:

• All equations and inequalities involving the indexes i and/or j are satisfied for all
i, j = 1, 2, . . . , N (i �= j);

• The considered domain is x = col(x1, x2, . . . , xN ) ∈ Ω ≡: Ω1 × Ω2 × · · · × ΩN

with xi ∈ Ωi ⊂ R
ni ;

• Output matrices Ci have the structure Ci = [
Ipi 0

]
.

It should be emphasised that the framework above does not reduce the generality of
the work. First, the considered system is nonlinear, and thus the obtained conclusion
is, generally speaking, local but sometimes a global result is available. In addition,
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since Ci is full row rank, there always exist nonsingular matrices Ti ∈ R
ni ×ni such

that CiTi = [Ipi 0]. Then the new system with state variables zi = T −1
i xi has the

output matrix
[

Ipi 0
]
.

The following assumptions are imposed on the nonlinear large-scale intercon-
nected system (5.1)–(5.2):

Assumption 5.1 The matrix pairs (Ai , Bi ) and (Ai , Ci ) are controllable and
detectable, respectively, and the function Hi j (x j ) (i �= j) satisfies Lipschitz
condition in the considered domain.

In view of the detectability of the matrix pair (Ai , Ci ), there exists a matrix Li

such that (Ai − Li Ci ) is stable and thus for any Qi > 0 the following Lyapunov
equation has a unique solution Pi > 0

(Ai − Li Ci )
τ Pi + Pi (Ai − Li Ci ) = −Qi . (5.4)

Assumption 5.2 The uncertainties have structural decompositions of the following
form:

Δ fi (xi , t) = DiΔ f̃i (xi , t), ΔHi j (x j , t) = Ei jΔH̃i j (x j , t), (5.5)

where Di and Ei j (i �= j) are constant matrices, and

‖Δ f̃i (xi , t)‖ ≤ ρi (yi , t)γi (xi , t), ‖ΔH̃i j (x j , t)‖ ≤ ϑi j (y j , t)ζi j (x j , t), (5.6)

where
γi ≤ γ̃i (xi , t)‖xi‖ and ζi j ≤ ζ̃i j (x j , t)‖x j‖, (i �= j)

are Lipschitz with γ̃i (·) and ζ̃i j (·) continuous.
Remark 5.2 Assumption 5.1 is a basic requirement for the nominal system of the
interconnected system (5.1)–(5.2). Assumption 5.1 limits the uncertainties affect-
ing the isolated subsystems and the interconnections. The matrices Di and Ei j are
employed to describe the structure of the uncertainties Δ fi and ΔHi j , respectively.

Assumption 5.3 There exist matrices Gi and Fi j (i �= j) such that

Dτ
i Pi = Gi Ci , Eτ

i j Pi = Fi j Ci , (5.7)

where Pi satisfies (5.4); Di and Ei j (i �= j) satisfy (5.5).

Remark 5.3 Assumption 5.3 implies that the Lyapunov equations (5.4) obey the
constraint (5.7). Similar limitations have been used in [24, 214, 215].

In this section, the interconnected system given in (5.1)–(5.2) is such that the
nominal system and/or any isolated nominal subsystem can be nonminimum phase.
The objective is to use the sliding mode techniques to develop an output feedback
control scheme based on a continuous reduced-order compensator such that the
corresponding closed-loop system is asymptotically stable.
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5.2.3 Reduced-Order Compensator Design

Consider System (5.1)–(5.2). Following the partition of Ci = [
Ipi 0

]
, the system

can be rewritten by

[
ẋi1

ẋi2

]

=
[

Ai1 Ai2

Ai3 Ai4

] [
xi1

xi2

]

+
[

Bi1

Bi2

]

ui +
[

Di1

Di2

]

Δ f̃i (xi , t)

+
⎡

⎣

∑N
j=1
j �=i

(
Hi j1(x j ) + Ei j1ΔH̃i j (x j , t)

)

∑N
j=1
j �=i

(
Hi j2(x j ) + Ei j2ΔH̃i j (x j , t)

)

⎤

⎦ (5.8)

yi = xi1, (5.9)

where xi = col(xi1, xi2) with xi1 ∈ R
pi , Ai1 ∈ R

pi ×pi , Bi1 ∈ R
pi ×mi ; Di1, Ei j1 and

Hi j1 are the first pi rows of Di , Ei j and Hi j (x j ), respectively.
Partition Pi , Qi and Li conformably with the decomposition (5.8)–(5.9) as

Pi =
[

Pi1 Pi2

Pτ
i2 Pi3

]

, Qi =
[

Qi1 Qi2

Qτ
i2 Qi3

]

, Li =
[

Li1

Li2

]

. (5.10)

Then, construct a reduced-order dynamical compensator

˙̂zi2 = (Ai4 + P−1
i3 Pτ

i2 Ai2)ẑi2 +
(

P−1
i3 Pτ

i2(Ai1 − Ai2P−1
i3 Pτ

i2) + Ai3 − Ai4P−1
i3 Pτ

i2

)
yi

+ (
P−1

i3 Pτ
i2Bi1 + Bi2

)
ui +

N∑

j=1
j �=i

{
P−1

i3 Pτ
i2Hi j1(y j , ν̂ j )

+Hi j2(y j , ν̂ j )
}

ν̂ j =ẑ j2−P−1
j3 Pj2 y j

, (5.11)

where ẑi2 ∈ R
ni −pi . The following conclusion can be drawn:

Theorem 5.1 Let x̂i2 = −P−1
i3 Pτ

i2yi + ẑi2 with ẑi2 given by (5.11). Then, under
Assumptions 5.1–5.3 there exist positive constants α1 and α2 such that

‖xi2(t) − x̂i2(t)‖ ≤ α1 exp{−α2t} (5.12)

if W T + W is a positive definite matrix with W = (wi j )N×N defined by

wi j =
{

λmin(Qi3), i = j
−2

(‖Pi2‖LHi j1 + ‖Pi3‖LHi j2

)
, i �= j

,

where Hi j1 and Hi j2 are, respectively, the first pi and the last ni − pi components
of Hi j (x j ), and Pi2, Pi3 and Qi3 are defined by (5.10).
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Proof From Assumption 5.3, Ci = [Ipi 0] and the partition (5.10) of Pi , it is
observed that

Pτ
i2Di1 + Pi3Di2 = 0, Pτ

i2Ei j1 + Pi3Ei j2 = 0 (i �= j). (5.13)

Introduce a nonsingular coordinate transformation zi = T̂i xi defined by

T̂i :
{

zi1 = xi1

zi2 = P−1
i3 Pτ

i2xi1 + xi2
. (5.14)

Since (5.13) implies

P−1
i3 Pτ

i2Di1 + Di2 = 0 and P−1
i3 Pτ

i2Ei j1 + Ei j2 = 0

then it follows from (5.8)–(5.9) that in the new coordinates z = col(zi1, . . . , zi N ),
System (5.1)–(5.2) is described by

żi1 =
(

Ai1 − Ai2P−1
i3 Pτ

i2

)
zi1 + Ai2zi2 + Bi1ui + Di1Δ f̃i +

N∑

j=1
j �=i

{
Hi j1(x j )

+ Ei j1ΔH̃i j (t, x j )
}

(5.15)

żi2 =
(

P−1
i3 Pτ

i2(Ai1 − Ai2P−1
i3 Pτ

i2) + Ai3 − Ai4P−1
i3 Pτ

i2

)
zi1 + (Ai4 + P−1

i3 Pτ
i2Ai2)zi2

+
(

P−1
i3 Pτ

i2Bi1 + Bi2

)
ui +

N∑

j=1
j �=i

{
P−1

i3 Pτ
i2Hi j1(y j , ν j )

+ Hi j2(y j , ν j )
}

ν j =z j2−P−1
j3 Pτ

j2z j1
(5.16)

yi = zi1. (5.17)

From (5.14), (5.17) and x̂i2 = −P−1
i3 Pτ

i2yi + ẑi2, it follows that

xi2 − x̂i2 = xi2 + P−1
i3 Pτ

i2yi − ẑi2 = zi2 − ẑi2.

Therefore, it is only required to prove that

‖zi2 − ẑi2‖ ≤ α1 exp{−α2t}

for some positive constants α1 and α2.
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Let ei = zi2 − ẑi2. From (5.11), (5.16) and yi = zi1,

ėi = (
Ai4 + P−1

i3 Pτ
i2 Ai2

)
ei + ∑N

j=1
j �=i

{
P−1

i3 Pτ
i2

[
Hi j1(y j , ν j ) − Hi j1(y j , ν̂ j )

]

+ Hi j2(y j , ν j ) − Hi j2(y j , ν̂ j )
}
, (5.18)

where
ν j = z j2 − P−1

j3 P−1
j2 y j and ν̂ j = ẑ j2 − P−1

j3 P−1
j2 y j .

For System (5.18), consider a Lyapunov function candidate

V1 =
N∑

i=1

eτ
i Pi3ei .

Then, the time derivative of V1 along the trajectories of System (5.18) is described
by

V̇1 |(5.18) =
N∑

i=1

eτ
i

((
Ai4 + P−1

i3 Pτ
i2 Ai2

)τ
Pi3 + Pi3

(
Ai4 + P−1

i3 Pτ
i2 Ai2

))
ei

+ 2
N∑

i=1

N∑

j=1
j �=i

eτ
i

(
Pτ

i2

[
Hi j1(y j , ν j ) − Hi j1(y j , ν̂ j )

]

+ Pi3
[
Hi j2(y j , ν j ) − Hi j2(y j , ν̂ j )

] )
. (5.19)

From (5.4), (5.10) and Ci = [Ipi 0], it follows that
(
P−1

i3 Pτ
i2 Ai2 + Ai4

)τ
Pi3 + Pi3

(
P−1

i3 Pτ
i2 Ai2 + Ai4

) = −Qi3. (5.20)

Since Assumption 5.2 implies that both Hi j1 and Hi j2 are Lipschitz in their domain
of definition,LHi j1 andLHi j2 are well-defined. Then, substituting (5.20) into (5.19),
it is observed from νi − ν̂i = ei that

V̇1 ≤ −
N∑

i=1

eτ
i Qi3ei + 2

N∑

i=1

N∑

j=1
j �=i

(
‖Pi2‖LHi j1 + ‖Pi3‖LHi j2

)
‖ei‖ ‖e j‖

≤ −1

2
[‖e1‖ ‖e2‖ · · · ‖eN ‖](W + W τ )[‖e1‖ ‖e2‖ · · · ‖eN ‖]τ

≤ − λmin(W + W τ )

2maxi {λmax(Pi3)} V1.
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This implies that

V1 ≤ (V1 |t=0) exp

{

− λmin(W + W τ )

2maxi {λmax(Pi3)} t

}

.

Let

α1 >

√
V1 |t=0

maxi {λmin(Pi3)} and α2 ≥ λmin(W + W τ )

2maxi {λmax(Pi3)} .

Then, from

min
i

{λmin(Pi3)}‖ei‖2 ≤ eτ
i Pi3ei ≤

N∑

i=1

eτ
i Pi3ei = V1

the conclusion follows. �

Remark 5.4 The inequalities (5.12) show that x̂i2 converges to xi2 exponentially. It
should be noted that the proof of Theorem 5.1 is constructive and shows how the
constants α1 and α2 can be determined.

Remark 5.5 From the proof of Theorem 5.1, it follows that in the elements of matrix
W , LHi j1 and LHi j2 represent the Lipchitz constants only associated with the vari-
ables xi2. Therefore, LHi j1 and LHi j2 can be replaced by the Lipschitz constants
of the functions Hi j1(y j , x j2) and Hi j2(y j , x j2) corresponding to the variables x j2,
respectively, which can reduce conservatism.

5.2.4 Sliding Mode Design and Stability Analysis

For System (5.1)–(5.2), consider the following sliding surface:

σ ≡: col(σ1, σ2, . . . , σN ) = 0, (5.21)

where
σi (yi , x̂i2) = Si1yi + Si2 x̂i2, (5.22)

where x̂i2 is the compensator state given by Theorem 5.1, and Si1 ∈ R
mi ×pi and

Si2 ∈ R
mi ×(ni −pi ) are the design parameters.

As in the proof of Theorem 5.1, let ei = xi2 − x̂i2 and define Si = [Si1 Si2]. In
the new coordinate system (xi , ei ), the sliding function matrices

σi = [
Si1 Si2

]
xi − Si2ei = Si xi − Si2ei . (5.23)

The matrices Si can be chosen using any existing state feedback sliding mode design
approach for the pairs (Ai , Bi ) such that
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(i) the matrices Si Bi are nonsingular;
(ii) the matrices Aeqi ≡: Ai − Bi (Si Bi )

−1 Si Ai have ni − mi eigenvalues which lie
in the open left-half plane.

Remark 5.6 It should be noted that the two requirements above can always be sat-
isfied by choosing appropriate parameters Si . In fact, condition (i) is satisfied from
the fact that Bi is full column rank. Condition (ii) is satisfied from the controllability
of (Ai , Bi ) in Assumption 5.1. Algorithms detailing how to design the parameters
Si satisfying conditions (i) and (ii) are available in [38].

The following analysis is based on the assumption that the design parameters Si

satisfying the conditions (i) and (ii) have been well chosen.
During a sliding motion, both σi = 0 and σ̇i = 0. From (5.1), (5.18), (5.23) and

σ̇i = 0, the equivalent control [173] necessary to maintain sliding is given by

uieq = −(Si Bi )
−1

{

Si Ai xi − Si2

(
Ai4 + P−1

i3 Pτ
i2Ai2

)
ei + Si Δ fi (·) + ∑N

j=1
j �=i

Si

(
Hi j (x j )

+ΔHi j (t, x j )
)

− Si2
∑N

j=1
j �=i

(
P−1

i3 Pτ
i2

(
Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)

)

+ Hi j2(y j , x j2) − Hi j2(y j , x̂ j2)
)
}

. (5.24)

Remark 5.7 It should be noted that the equivalent control uieq in (5.24) cannot be
used as the applied control since the uncertainties are explicitly involved. Here, it is
introduced to derive the sliding dynamics and analyse their stability.

When System (5.1)–(5.2) is restricted to the sliding surface (5.21), it follows by
applying (5.24) to System (5.1) that the associated sliding mode dynamics can be
described by

[
ẋi

ėi

]

=
[

Aeqi Bi (Si Bi )
−1Si2

(
Ai4 + P−1

i3 Pτ
i2 Ai2

)

0 Ai4 + P−1
i3 Pτ

i2 Ai2

] [
xi

ei

]

+
[(

Ini − Bi (Si Bi )
−1Si

) (
Δ fi + ∑N

j=1
j �=i

(
Hi j + ΔHi j

) )

0

]

+
[

Bi (Si Bi )
−1Si2

Ini −pi

] N∑

j=1
j �=i

{
P−1

i3 Pτ
i2

(
Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)

)

+Hi j2(y j , x j2) − Hi j2(y j , x̂ j2)
}
, (5.25)

where Aeqi = Ai − Bi (Si Bi )
−1Si Ai . Since Si Bi is nonsingular, matrix Si is full row

rank and thus there exist nonsingular matrices Ti1 ∈ R
ni ×ni and Ti2 ∈ R

mi ×mi such
that
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Ti2Si Ti1 = [
Imi 0

]
. (5.26)

In order to further analyse the stability of sliding mode (5.25), it is required to
derive the reduced-order representation. The coordinate transformation col(ξi , ηi ) =
T −1

i1 xi is introduced, where ξi ∈ R
mi and Ti1 is determined by (5.26). Then, noticing

condition (ii), it is observed that in the new coordinates (ξi , ηi , ei ), System (5.25) is
described by

⎡

⎣
ξ̇i

η̇i

ėi

⎤

⎦ =
⎡

⎣
0 0 ∗

Ãi1 Ãi2 Ãi3

0 0 Ai4 + P−1
i3 Pτ

i2 Ai2

⎤

⎦

⎡

⎣
ξi

ηi

ei

⎤

⎦ +
⎡

⎣
∗

Δ fi1(t, xi )

0

⎤

⎦

+
N∑

j=1
j �=i

⎡

⎣
∗

Πi j (·)
0

⎤

⎦ +
N∑

j=1
j �=i

⎡

⎣
∗

Θi j1(·)
Θi j2(·)

⎤

⎦ , (5.27)

where Ãi2 ∈ R
(ni −mi )×(ni −mi ), Ãi3 ∈ R

(ni −mi )×(ni −pi ), and

[
0 0

Ãi1 Ãi2

]

= T −1
i1 Aeqi Ti1. (5.28)

The notation ∗ denotes items which are not used in the subsequent analysis; Δ fi1,
Πi j and Θi j1 are the last ni − mi components of

T −1
i1

(
Ini − Bi (Si Bi )

−1Si
)
Δ fi

T −1
i1

(
Ini − Bi (Si Bi )

−1Si
)
(Hi j + ΔHi j )

and
T −1

i1 Bi (Si Bi )
−1Si2{P−1

i3 Pτ
i2

(
Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)

)

+Hi j2(y j , x j2) − Hi j2(y j , x̂ j2)},

respectively, and

Θi j2 = P−1
i3 Pτ

i2

(
Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)

) + Hi j2(y j , x j2) − Hi j2(y j , x̂ j2).

(5.29)

From (5.26), it follows that

σi = Si xi − Si2ei = T −1
i2

[
Imi 0

]
[

ξi

ηi

]

− Si2ei = T −1
i2 ξi − Si2ei .

This implies that in the new coordinate system (ξi , ηi , ei ), σi = 0 can be depicted
by ξi = Ti2Si2ei . Consequently, when the system (5.25) is restricted to the sliding
surface (5.21), it can be described in coordinate system (ξi , ηi , ei ) by
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[
η̇i

ėi

]

=
[

Ãi2 Ãi3 + Ãi1Ti2Si2

0 Ai4 + P−1
i3 Pτ

i2 Ai2

] [
ηi

ei

]

+
[

Δ fi1

0

]

+
N∑

j=1
j �=i

[
Πi j

0

]

+
N∑

j=1
j �=i

[
Θi j1

Θi j2

]

.

(5.30)

From condition (ii) and (5.28), it is observed that the matrix Ãi2 has ni − mi negative
eigenvalues. This implies that for any Q̃i > 0, the Lyapunov equations

Ãτ
i2 P̃i + P̃i Ãi2 = −Q̃i (5.31)

have unique solutions P̃i > 0.
From (5.3) andAssumption 5.2, it is observed that there exist continuous functions

ϕi1, ϕi2, ψi j and χi j such that

‖P̃iΔ fi1‖ ≤ ϕi1(ηi , ei , t)‖ηi‖ + ϕi2(ηi , ei , t)‖ei‖ (5.32)

‖P̃i
(
Πi j + Θi j1

) ‖ ≤ ψi j (η j , e j , t)‖η j‖ + χi j (η j , e j , t)‖e j‖, (5.33)

where P̃i satisfies (5.31).

Remark 5.8 Since Ti1 and Ti2 in (5.26) can be easily obtained from linear system
theory, the sliding mode dynamics (5.27) are obtained directly from System (5.25)
through the coordinate transformation col(ξi , ηi ) = T −1

i1 xi . Then from ξi = Ti2Si2ei ,
the reduced-order sliding mode dynamics (5.30) can be obtained as well. With
Ti1, and Ti2, the inequalities (5.32) and (5.33) can easily be established using
Assumption 5.2.

Theorem 5.2 Under Assumptions 5.1–5.3, the sliding mode dynamics (5.30) are
asymptotically stable if there exists a domain of origin in col(ηi , ei ) ∈ R

2ni −mi −pi

such that the matrix Mτ + M is positive definite with M ∈ R
2N×2N defined by

M :=
[

M11 M12

M21 M22

]

,

where

M11 :=

⎡

⎢
⎢
⎢
⎢
⎣

λmin(Q̃1) − 2ϕ11 −2ψ12 · · · −2ψ1N

−2ψ21 λmin(Q̃2) − 2ϕ21
. . .

...
...

. . .
. . . −2ψ(N−1)N

−2ψN1 · · · · · · − 2ψN (N−1) λmin(Q̃N ) − 2ϕN1

⎤

⎥
⎥
⎥
⎥
⎦
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M12 :=

⎡

⎢
⎢
⎢
⎢
⎣

−2(ϕ12 + �1) −2χ12 · · · −2χ1N

−2χ21 −2(ϕ22 + �2)
. . .

...
...

. . .
. . . −2χ(N−1)N

−2χN1 · · · · · · − 2χN (N−1) −2(φN2 + �N )

⎤

⎥
⎥
⎥
⎥
⎦

M21 :=

⎡

⎢
⎢
⎢
⎢
⎣

−2(ϕ12 + �1) −2χ12 · · · −2χ1N

−2χ21 −2(ϕ22 + �2)
. . .

...
...

. . .
. . . −2χ(N−1)N

−2χN1 · · · · · · − 2χN (N−1) −2(ϕN2 + �N )

⎤

⎥
⎥
⎥
⎥
⎦

M22 :=

⎡

⎢
⎢
⎢
⎢
⎣

λmin(Q13) −2κ12 · · · −2κ1N

−2κ21 λmin(Q23)
. . .

...
...

. . .
. . . −2κ(N−1)N

−2κN1 · · · · · · − 2κN (N−1) λmin(QN3)

⎤

⎥
⎥
⎥
⎥
⎦

,

where ϕi1, ϕi2, ψi j and χi j are determined by (5.32) and (5.33), and

κi j :≡ (‖Pi2‖LHi j1 + ‖Pi3‖LHi j2) and �i :≡ ‖P̃i ( Ãi3 + Ãi1Ti2Si2)‖,

where Pi2 and Pi3 are defined in (5.11), and the P̃i satisfy (5.31) for i = 1, 2, . . . , N.

Proof For System (5.30), construct the candidate Lyapunov function

V =
N∑

i=1

(
ητ

i P̃iηi + eτ
i Pi3ei

)
.

Then, the time derivative of V along the trajectories of System (5.30) is given by

V̇ |(5.30) = −
N∑

i=1

ητ
i Q̃iηi + 2

N∑

i=1

ητ
i P̃i

(
Ãi3 + Ãi1Ti2Si2

)
ei

+2
N∑

i=1

N∑

j=1
j �=i

ητ
i P̃i

(
Πi j + Θi j1

)

−
N∑

i=1

eτ
i Qi3ei + 2

N∑

i=1

N∑

j=1
j �=i

eτ
i Pi3Θi j2 + 2

N∑

i=1

ητ
i P̃iΔ fi1

≤ −
N∑

i=1

(
λmin(Q̃i )‖ηi‖2 + λmin(Qi3)‖ei‖2

)
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+2
N∑

i=1

∥
∥P̃i

(
Ãi3 + Ãi1Ti2Si2

)∥
∥ ‖ei‖ ‖ηi‖

+2
N∑

i=1

∥
∥P̃iΔ fi1

∥
∥ ‖ηi‖ + 2

N∑

i=1

N∑

j=1
j �=i

{ ∥
∥P̃i

(
Πi j + Θi j1

)∥
∥ ‖ηi‖

+ ∥
∥Pi3Θi j2

∥
∥ ‖ei‖

}
, (5.34)

where (5.20) and (5.31) are used above. From (5.29), it follows that

∥
∥Pi3Θi j2

∥
∥ = ∥

∥Pτ
i2

(
Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)

) + Pi3
(
Hi j2(y j , x j2) − Hi j2(y j , x̂ j2)

)∥
∥

≤ (‖Pi2‖LHi j1 + ‖Pi3‖LHi j2 )‖e j ‖ = κi j‖e j ‖. (5.35)

Then, from (5.35), (5.32) and (5.33) it is obtained that

V̇ |(5.30) ≤ −
N∑

i=1

(λmin(Q̃i ) − 2ϕi1)‖ηi‖2 −
N∑

i=1

λmin(Qi3)‖ei‖2

+ 2
N∑

i=1

(ϕi2 + �i )‖ηi ‖ ‖ei‖

+ 2
N∑

i=1

N∑

j=1
j �=i

{
ψi j‖ηi‖ ‖η j ‖ + χi j‖ηi‖ ‖e j ‖ + κi j‖ei‖ ‖e j‖

}

= 1

2
[‖η1‖ · · · ‖ηN ‖ ‖e1‖ · · · ‖eN ‖] (Mτ + M) [‖η1‖ · · · ‖ηN ‖ ‖e1‖ · · · ‖eN ‖]τ .

Hence, the conclusion follows by the positive definiteness of Mτ + M . �

Remark 5.9 It should be noted that the matrix M in Theorem 5.2 only involves the
partial state variables (ηi , ei ). Actually, it is only required that M + Mτ is positive
definite in a range of the origin in the sliding surface. This is in comparison with the
work [214, 215], where it is required that the associated matrix is positive definite in
the domain of the origin of the whole state space.

5.2.5 Sliding Mode Controller Synthesis

For the system (5.1)–(5.2) with the designed composite sliding surface (5.21), con-
struct the following sliding mode control:
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ui = − (Si Bi )
−1

{

(Si1Ai1 + Si2 Ai3) yi + (Si1Ai2 + Si2 Ai4) x̂i2

+ (‖Si Di‖ρi (yi , t)γi (yi , x̂i2, t) + Ki (yi , t) + ∑N
j=1
j �=i

(‖S j E ji‖ϑ j i (yi , t)ζ j i (yi , x̂i2, t)

+‖S j Hji (yi , x̂i2)‖
)) σi

‖σi‖
}

, (5.36)

where σi is defined by (5.22), and Ki (yi , t) is the control gain to be determined
later. Obviously, the control law is decentralised and only depends on the x̂i2 and the
system output yi .

The objective now is to show that the control (5.36) can drive the system (5.1)–
(5.2) to the sliding surface (5.21) and maintain a sliding motion on it thereafter.
From sliding mode theory, it is only required to prove that the composite reachability
condition (see [69])

N∑

i=1

σ τ
i (yi , x̂i2)σ̇i (yi , x̂i2)

‖σi (yi , x̂i2)‖ < 0. (5.37)

is satisfied, where σi (yi , x̂i2) defined by (5.22) is the sliding function for the i-th
subsystem.

Theorem 5.3 Under Assumptions 5.1–5.3 with (5.12) satisfied, the controllers
(5.36) drive the system (5.1)–(5.2) to the composite sliding surface (5.21) and main-
tain a sliding motion thereafter if the control gains Ki are chosen such that

Ki (yi , t) > α1 exp{−α2t}
{
‖Si1 Ai2 + Si2 Ai4‖ + Lγi ‖Si Di‖ρi (yi , t)

+‖Si2P−1
i3 (Pτ

i2 Ai2 + Pi3Ai4)‖ + ∑N
j=1
j �=i

(
‖Sj‖LHji + ‖Sj E jiϑ j i‖Lζ j i

+‖Si2P−1
i3 ‖ (‖Pi2‖LHi j1 + ‖Pi3‖LHi j2

) )}
, (5.38)

where the constants α1 and α2 are both determined by (5.12).

Proof It is observed from the proof of Theorem 5.1 that the error dynamics in (5.18)
can be rewritten by

ėi = P−1
i3

(
Pτ

i2 Ai2 + Pi3Ai4
)

ei + ∑N
j=1
j �=i

P−1
i3

{
Pτ

i2

(
Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)

)

+Pi3
(
Hi j2(y j , x j2) − Hi j2(y j , x̂ j2)

) }
. (5.39)
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From (5.23), (5.1) and (5.39)

σ̇i = Si Ai xi + Si Bi ui + SiΔ fi + ∑N
j=1
j �=i

Si
(
Hi j (x j ) + ΔHi j (x j , t)

)

−Si2P−1
i3

(
Pτ

i2 Ai2 + Pi3Ai4
)

ei − ∑N
j=1
j �=i

Si2P−1
i3

{
Pτ

i2

(
Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)

)

+Pi3
(
Hi j2(y j , x j2) − Hi j2(y j , x̂ j2)

) }
. (5.40)

Then, substituting ui in (5.36) into (5.40),

N∑

i=1

στ
i σ̇i

‖σi ‖ =
N∑

i=1

στ
i

‖σi ‖
{(

Si Ai xi − (Si1Ai1 + Si2Ai3)yi − (Si1Ai2 + Si2Ai4)x̂i2

)

−Si2P−1
i3 (Pτ

i2Ai2 + Pi3Ai4)ei

}
+

N∑

i=1

(
στ

i
‖σi ‖ Si Δ fi (t, xi )

−‖Si Di ‖ρi (t, yi )γi (yi , x̂i2, t)
) −

N∑

i=1

Ki +
N∑

i=1

N∑

j=1
j �=i

στ
i

‖σi ‖
(
Si

[
Hi j + ΔHi j

]

− σi

‖σi ‖
[‖S j H ji (yi , x̂i2)‖ + ‖S j E ji ‖ϑ j i (yi , t)ζ j i (yi , x̂i2, t)

]
)

−
N∑

i=1

N∑

j=1
j �=i

Si2P−1
i3

{
Pτ

i2[Hi j1(y j , x j2) − Hi j1(y j , x̂ j2)]

+Pi3
[
Hi j2(y j , x j2) − Hi j2(y j , x̂ j2)

] }
. (5.41)

Using the previous partition of Ai in (5.8) and

Si = [Si1 Si2]

it follows that

Si Ai xi − (Si1Ai1 + Si2 Ai3)yi − (Si1Ai2 + Si2 Ai4)x̂i2

= [Si1 Si2]
[

Ai1 Ai2

Ai3 Ai4

] [
xi1

xi2

]

− (Si1Ai1 + Si2 Ai3)xi1 − (Si1 Ai2 + Si2 Ai4)x̂i2

= (Si1Ai2 + Si2 Ai4)ei . (5.42)

From Assumption 5.2

σ τ
i

‖σi ‖ SiΔ fi − ‖Si Di‖ρi (yi , t)γi (yi , x̂i2, t)

≤ ‖Si Di‖ ‖Δ f̃i‖ − ‖Si Di‖ρi (yi , t)γi (yi , x̂i2, t)

≤ ρi (yi , t)Lγi ‖Si Di‖ ‖ei‖ (5.43)
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and further from the fact
∑N

i=1

∑N
j=1
j �=i

ai j = ∑N
i=1

∑N
j=1
j �=i

a ji ,

N∑

i=1

N∑

j=1
j �=i

στ
i

‖σi ‖
(

Si
[
Hi j (x j ) + ΔHi j (x j , t)

] − σi

‖σi ‖ [‖S j H ji (yi , x̂i2)‖

+ ‖S j E ji ‖ϑ j i ζ j i (yi , x̂i2, t)]
)

=
N∑

i=1

N∑

j=1
j �=i

{
στ

i
‖σi ‖ Si Hi j (x j ) − ‖S j H ji (yi , x̂i2)‖ + στ

i
‖σi ‖ Si Ei j ΔH̃i j

− ‖S j E ji ‖ϑ j i ζ j i (yi , x̂i2, t)

}

≤
N∑

i=1

N∑

j=1
j �=i

{
LHi j ‖Si ‖ ‖e j ‖ + ‖S j E ji ‖ϑ j i (yi , t)ζ j i (xi , t) − ‖S j E ji ‖ ϑ j i ζ j i (yi , x̂i2, t)

}

≤
N∑

i=1

N∑

j=1
j �=i

(
‖S j ‖LHji + ‖S j E ji ‖ϑ j i (yi , t)Lζ j i

)
‖ei ‖. (5.44)

Substituting (5.42)–(5.44) into (5.41), it follows from (5.12) that

N∑

i=1

σ τ
i σ̇i

‖σi‖ ≤
N∑

i=1

{
α1 exp{−α2t}

(
‖Si1 Ai2 + Si2 Ai4‖ + Lγi ρi‖Si Di‖

+‖Si2P−1
i3 (Pτ

i2 Ai2 + Pi3Ai4)‖ +
N∑

j=1
j �=i

[
‖Sj‖LHji + ‖Sj E ji‖ϑ j iLζ j i

+‖Si2P−1
i3 ‖ (‖Pi2‖LHi j1 + ‖Pi3‖LHi j2

) ]) − Ki (yi , t)
}
. (5.45)

Hence, from (5.38) the conclusion follows. �

Remark 5.10 From (5.36), it is observed that the known interconnections Hi j (x j )

and the bounds on the uncertain interconnections ϑi j (y j , t)ζi j (x j , t) are both used
in the control design directly, which can reduce conservatism and avoid unnecessary
control energy consumption. This is in contrast to the existingwork [69, 97, 124, 196,
170, 200, 214, 215]. From Theorem 5.3, it is observed that the reachability condition
is always satisfied if the control gains Ki (yi , t) are allowed to be arbitrarily large.
This shows the robustness of the sliding mode control.
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5.3 Reduced-Order Control Design for Interconnected
Systems with Similar Structure

In this section, reduced-order dynamical control schemes are proposed for a class of
nonlinear interconnected systems with similar structure.

5.3.1 Introduction

As claimed earlier, reduced-order control design is very important specifically for
large-scale interconnected systems. In view of this, a form of nonlinear reduced-order
controller is presented by Chen [23] for a class of nonlinear large-scale systems.
However, it is required that the nominal subsystem is stabilisable via static output
feedback and practical stability instead of asymptotic stability is achieved. The inter-
connection is treated as a disturbance bounded by the norm of the state variables
in [23]. It is worth noting that in existing work on decentralised control, the system
structure has not been explored for tackling uncertainty, which renders unavoidable
restrictions on uncertainty and also higher design conservatism.

In this section, a class of nonlinear large-scale interconnected systems with
matched andmismatched uncertainties is considered.No statistical information about
the uncertainties is imposed while only their bounds are assumed to be known. The
bounding functions of the uncertain interconnections take more general forms than
those previously considered. By exploiting the system structure of similarity, the
proposed nonlinear reduced-order control schemes allow more general forms of
uncertainties. Specifically, based on a constrained Lyapunov equation, the effect of
the matched uncertainties is cancelled completely. This allows the uncertainties to
take arbitrarily large values. Further, the general known interconnections are treated
separately from the uncertain interconnections as in [196, 203, 214], which is in
contrast with other existing results where all interconnections are treated as distur-
bances. Therefore, the proposed control schemes possess the advantage of better
robustness. Since a reduced-order controller is designed, the order of the intercon-
nected system is reduced, which avoids the dimensionality problems associated with
large-scale systems, and makes system analysis and implementation easier. It should
be noticed that the amount of computation for solving the Lyapunov equation is
reduced greatly by exploiting the similar structure and the reduced-order property,
and this is particularly important especially for large-scale systems with high-order
subsystems.
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5.3.2 System Description and Assumptions

Consider a nonlinear large-scale interconnected system described by

ẋi = Ai xi + fi (xi ) + Bi [ui + ΔΨi (xi )] +
N∑

j=1
j �=i

Hi j (x j ) + ΔHi (x), (5.46)

yi = Ci xi , i = 1, 2, . . . , N , (5.47)

where xi ∈ Ωi ⊂ R
n , ui , yi ∈ R

m are the state vector, input and output of the i-th
subsystem, respectively, Ai , Bi , Ci are constant matrices of appropriate dimensions
with Ci of full row rank, fi (xi ) is a continuous nonlinear function with fi (0) = 0,
ΔΨi (xi ) is the matched uncertainty of the i-th isolated subsystem, the term

N∑

j=1
j �=i

Hi j (x j ), Hi j (0) = 0 for j �= i

is the known interconnection while ΔHi (x) includes all interconnected uncertainty,
which are all continuous in their arguments.

First, the similar structure considered for the interconnected systems (5.46)–(5.47)
is defined mathematically as follows:

Definition 5.1 System (5.46)–(5.47) is said to be a similar interconnected large-
scale system via static output feedback or possesses a similar structure if there exist
matrices Ei and nonsingular matrices Di for i = 1, 2, . . . , N such that

D−1
1 (A1 + B1E1C1)D1 = D−1

2 (A2 + B2E2C2)D2 = · · · =
D−1

N (AN + BN EN CN )DN = A (5.48)

D−1
1 B1 = D−1

2 B2 = · · · = D−1
N BN = B (5.49)

C1D1 = C2D2 = · · · = CN DN = C, (5.50)

where A, B and C are constant matrices. Then, (Ei , Di ) is called a similar transfor-
mation parameter (STP) of the i-th subsystem for i = 1, 2, . . . , N .

Remark 5.11 System (5.46)–(5.47) possessing STP (Ei , Di ) implies that its nominal
subsystems are all equivalent via static output feedback. This is an extension of the
systems dealt with in [110, 163, 214]. However, it should be emphasised that the
method proposed in this work is not only applicable to the interconnected system
with such a similar structure but can also be extended to more general large-scale
systems because the introduced similar structure is only for the simplification of the
technical presentation.
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It should be noted that the similar large-scale system introduced here possesses
nominal subsystems which are equivalent to one another through static output feed-
back, and the corresponding STP may be obtained by linear system theory.

Remark 5.12 In manufacturing processes, in order to produce the same or similar
engineering components in batches, many identical or similar machines (nominal
subsystems) are interconnected to form a large-scale system which is referred to as
a similar interconnected system in Sect. 5.3.

The following assumptions are imposed on the system (5.46)–(5.47) with the
similar structure (5.48)–(5.50).

Assumption 5.4 The nonlinear function Hi j (x j ) ( j �= i) is Lipschitz in Ωi with
Lipschitz constants LHi j , and it has the following decomposition:

Hi j (x j ) = Γi j (x j )x j , (5.51)

with Γi j (x j ) ∈ R
n×n for i, j = 1, 2, . . . , N with j �= i .

Remark 5.13 Generally speaking, the function matrix Γi j satisfying (5.51) is not
unique. A similar decomposition is also used in [3, 214, 225]. Since Hi j (0) = 0, it
follows that the constraint (5.51) for Hi j is not strong. In fact, (5.51) is satisfied as
long as Hi j (x j ) is sufficiently smooth. �

Assumption 5.5 There exist known continuous functions ρi (·) with ρi (0) = 0 and
γi (·) such that for xi ∈ Ωi

(i) ‖ΔΨi (xi )‖ ≤ ρi (yi ),

(ii) ‖ΔHi (x)‖ ≤ γi (x)‖x‖,
for i = 1, 2, . . . , N .

Assumption 5.6 The matrix pairs (A, B) and (A, C) are, respectively, stabilisable
and detectable.

System (5.46)–(5.47) possessing STP (Ei , Di ) implies that its nominal subsys-
tems are all equivalent via static output feedback. It should be noted that Assumption
5.6 does not imply the realisation (A, B, C) is output feedback stabilisable. In fact,
it is not required that any nominal subsystem of (5.46)–(5.47) is output feedback
stabilisable in this work: this is in comparison with the previous work [23].

Under the transformation
xi = Di xi

and the feedback
ui = Ei Ci xi + vi , i = 1, 2, . . . , N

System (5.46)–(5.47) in the new coordinates x =: col(x1, x2, . . . , x N ) is described
by
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ẋ i = Axi + D−1
i fi (Di xi ) + B [vi + ΔΨi (Di xi )] + D−1

i

N∑

j=1
j �=i

Hi j (D j x j )

+D−1
i ΔHi (Dx), (5.52)

yi = Cxi , i = 1, 2, . . . , N , (5.53)

where D = diag{D1, D2, . . . , DN }, and C is of full row rank as is each of the Ci .
Under Assumption 5.6, it is observed that there exist matrices K and L such that,

for any Q > 0 and S > 0, the following Lyapunov equations

(A − BK )τ P + P(A − BK ) = −Q (5.54)

(A − LC)τ R + R(A − LC) = −S (5.55)

have unique solutions P > 0 and R > 0, respectively.

Assumption 5.7 There exist matrices F1 and F2 with appropriate dimensions such
that

(i) Bτ P = F1C ;
(ii) Bτ R = F2C ,

where F1 is nonsingular.

Remark 5.14 It should be noted that similar conditions as Assumption 5.7 have also
been imposed in [24, 29, 214]. Note that if there exists a matrix K such that the
system (A − BK , B, C) is passive, then Assumption 5.7 (i) is satisfied by F1 = I
[68]. Similarly, if (A − LC, B, C) is passive, then Assumption 5.7 (ii) is satisfied by
F2 = I .

Assumption 5.8 The nonlinear function fi (xi ) of the i-th isolated subsystems is
Lipschitz in its definition domain with Lipschitz constant L fi , and satisfies

‖ fi (xi )‖ ≤ βi (‖yi‖),

where the bounding function βi (·) with βi (0) = 0 is known continuous and differ-
entiable at the origin for i = 1, 2, . . . , N .

From βi (0) = 0 and the differentiability of βi (·) at the origin, it is observed that
there exists a continuous function ξi (·) such that for i = 1, 2, . . . , N

βi (‖yi‖) = ξi (‖yi‖)‖yi‖, (5.56)
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In fact, ξi (·) may be chosen as

ξi (τ ) =

⎧
⎪⎨

⎪⎩

dβ

dτ
(0), τ = 0

1

τ
β(τ), τ �= 0

for i = 1, 2, . . . , N .

5.3.3 Preliminaries

In this section, some preliminaries are presented which are used in the later devel-
opment.

Consider the system (5.52)–(5.53). Since C is of full row rank, without loss of
generality, it is assumed that

C = [Im 0]

with Im the identity matrix of dimension m × m. Next, introduce the following
decompositions conformable with the matrix C :

A =
[

A11 A12

A21 A22

]

, B =
[

B11

B21

]

, (5.57)

K = [
K1 K2

]
, L =

[
L1

L2

]

, (5.58)

P =
[

P1 P2

Pτ
2 P3

]

, Q =
[

Q1 Q2

Qτ
2 Q3

]

, (5.59)

R =
[

R1 R2

Rτ
2 R3

]

, S =
[

S1 S2
Sτ
2 S3

]

, (5.60)

where P , Q, R, S, K and L are given as in (5.54)–(5.55), and A11, K1, L1, P1, Q1,
R1, S1 ∈ R

m×m . Then, it is observed that System (5.52)–(5.53) can be rewritten as

ẋ
I
i = A11x I

i + A12x I I
i + f

I
i (xi ) + B11(vi + ΔΨi (Di xi )) +

N∑

j=1
j �=i

H
I
i j (x j )

+ΔH
I
i (x), (5.61)
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ẋ
I I
i = A21x I

i + A22x I I
i + f

I I
i (xi ) + B21(vi + ΔΨi (Di xi )) +

N∑

j=1
j �=i

H
I I
i j (x j )

+ΔH
I I
i (x), (5.62)

yi = x I
i , i = 1, 2, . . . , N , (5.63)

where xi = col(x I
i , x I I

i ) with x I
i ∈ R

m and x I I
i ∈ R

n−m , while f
I
i (xi ) and f

I I
i (xi ),

H
I
i j (x j ) and H

I I
i j (x j ), and ΔH

I
i (x) and ΔH

I I
i (x) are the first m and last n − m

components of D−1
i fi (Di xi ), D−1

i Hi j (D j x j ) and ΔHi (diag{D1, D2, . . . , DN }x),
respectively.

Lemma 5.1 Assume that there exist matrices L such that the Lyapunov equation
(5.55) is solvable. Then,

(A22 + R−1
3 Rτ

2 A12)
τ R3 + R3(A22 + R−1

3 Rτ
2 A12) = −S3,

where A12, A22, S3, and Ri with i = 2, 3 are defined by (5.57)–(5.60).

Proof By exploiting the block matrix representation (5.57)–(5.60), it is observed
that (5.55) can be rewritten as

([
A11 A12

A21 A22

]

−
[

L1

L2

]
[

Im 0
]
)τ [

R1 R2

Rτ
2 R3

]

+
[

R1 R2

Rτ
2 R3

]([
A11 A12

A21 A22

]

−
[

L1

L2

]
[

Im 0
]
)

= −
[

S1 S2
Sτ
2 S3

]

.

and therefore,
Aτ
12R2 + Aτ

22R3 + Rτ
2 A12 + R3A22 = −S3.

It follows that

(Aτ
12R2R−1

3 + Aτ
22)R3 + R3(R−1

3 Rτ
2 A12 + A22) = −S3.

Then, by noting that R−τ
3 = R−1

3 , the result follows. #

Next, introduce the nonsingular coordinate transformation

zi =:
[

z I
i

z I I
i

]

=
[

Im 0
R−1
3 Rτ

2 In−m

] [
x I

i

x I I
i

]

=: E xi = E D−1
i xi =: Ti xi . (5.64)
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From Assumption 5.7, it follows that

Rτ
2 B11 + R3B21 = 0, R2B21 + Rτ

1 B11 = F τ
2 . (5.65)

Then, from Assumptions 5.6 and 5.7, it follows that in the new coordinates z =
col(z1, z2, . . . , zN ), the system (5.52)–(5.53) or the system (5.61)–(5.63) is described
by

żi = Ãzi + E D−1
i fi (T

−1
i zi ) + B̃

[
vi + ΔΨi (T

−1
i zi )

] + E D−1
i

N∑

j=1
j �=i

Hi j (T
−1
j z j )

+E D−1
i ΔHi (T

−1z), (5.66)

yi = C̃zi , i = 1, 2, . . . , N , (5.67)

where zi = col(z I
i , z I I

i ) ∈ Ω i =: {T −1
i xi | xi ∈ Ωi

}
for i = 1, 2, . . . , N , T = diag

{T1, T2, . . . , TN }, and

Ã =
[

A11 − A12R−1
3 Rτ

2 A12

R−1
3 Rτ

2 A11 + A21 − (R−1
3 R−τ

2 A12 + A22)R−1
3 Rτ

2 R−1
3 Rτ

2 A12 + A22

]

(5.68)

B̃ =
[

B11

0

]

, C̃ = [
Im 0

]
. (5.69)

Lemma 5.2 If the Lyapunov equation (5.54) is satisfied, then

( Ã − B̃KE −1)τE −τ PE −1 + E −τ PE −1( Ã − B̃KE −1) = −E −τ QE −1,

where Ã, B̃ and C̃ are defined by (5.68)–(5.69), and E is as given in (5.64).

Proof From the relationship between the system (5.52)–(5.53) and the system (5.66)–
(5.67), it is observed that

Ã = E AE −1, B̃ = E B, C̃ = CE −1 = [
Im 0

]
, (5.70)

Then, from (5.54), it follows that

( Ã − B̃KE −1)τE −τ PE −1 + E −τ PE −1( Ã − B̃KE −1)

= (E AE −1 − E BKE −1)τE −τ PE −1 + E −τ PE −1(E AE −1 − E BKE −1)

= E −τ (A − BK )−τ PE −1 + E −τ P(A − BK )E −1

= −E −τ QE −1. (5.71)

Hence the result follows. #
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Some of the characteristics of the considered similar structure have been shown
above. With the preliminaries provided in this section, it is now possible to consider
the controller design and present the main results.

5.3.4 Reduced-Order Controller Design

In this section, a reduced-order output feedback control scheme is presented for the
interconnected similar system.

First, observe that the system (5.66)–(5.67) can be rewritten as

ż I
i =

[
A11 − A12R−1

3 Rτ
2

]
z I

i + A12z I I
i + f

I
i (E zi ) + B11(vi + ΔΨi (T

−1
i zi ))

+
N∑

j=1
j �=i

M I
i j (z j ) + ΔM I

i (z), (5.72)

ż I I
i =

[
R−1
3 Rτ

2 (A11 − A12R−1
3 Rτ

2 ) + A21 − A22R−1
3 Rτ

2

]
z I

i + (A22 + R−1
3 Rτ

2 A12)z
I I
i

+ [
R−1
3 Rτ

2 In−m
]

D−1
i fi (T

−1
i zi ) +

N∑

j=1
j �=i

[
R−1
3 Rτ

2 M I
i j (z j ) + M I I

i j (z j )
]

+R−1
3 Rτ

2ΔM I
i (z) + ΔM I I

i (z), (5.73)

yi = z I
i , i = 1, 2, . . . , N , (5.74)

where f
I
i (E zi ) denotes the first m components of D−1

i fi (T
−1

i zi ) and

Mi j (z j ) :=
[

M I
i j (z j )

M I I
i j (z j )

]

≡ Ti Hi j (T
−1
j z j ), (5.75)

ΔMi (z) :=
[

ΔM I
i (z)

ΔM I I
i (z)

]

≡ TiΔHi (T
−1z) (5.76)

with M I
i j (z j ) and ΔM I

i (z), respectively, the first m components of Mi j (z j ) and
ΔMi (z).

Now, for the system (5.66)–(5.67) or (5.72)–(5.74), construct a reduced-order
controller described by

˙̂z I I
i = (A22 + R−1

3 Rτ
2 A12)ẑ

I I
i +

[
R−1
3 Rτ

2 (A11 − A12R−1
3 Rτ

2 ) + A21 − A22R−1
3 Rτ

2

]
yi

+ [
R−1
3 Rτ

2 In−m
]

D−1
i fi (T

−1
i (yi , ẑ I I

i ))

+
N∑

j=1
j �=i

[
R−1
3 Rτ

2 M I
i j (y j , ẑ I I

j ) + M I I
i j (y j , ẑ I I

j )
]

(5.77)
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vi = −KE−1
[

yi

ẑ I I
i

]

+ μi (yi ) + ζi (yi ), i = 1, 2, . . . , N , (5.78)

where ẑ I I
i ∈ R

n−m , Ri (i = 1, 2, 3), Ai j (i, j = 1, 2) and K = [
K1 K2

]
are defined

in (5.57)–(5.60), and μi (yi ) and ζi (yi ) for i = 1, 2, . . . , N are defined by

μi (yi ) =
⎧
⎨

⎩

− F1yi

‖F1yi‖ρi (yi ), F1yi �= 0

0, F1yi = 0
, (5.79)

ζi (yi ) = − 1

2ε
σ 2

(
P D−1

i

)
ξ 2

i (‖yi‖)F−τ
1 yi , (5.80)

where F1 satisfies Assumption 5.7, and ε is a positive constant.
From the nonsingularity of F1, it is known that F1yi = 0 if and only if yi = 0 for

i = 1, 2, . . . , N . Then, μi (yi ) is continuous in its domain of definition due to

0 ≤ |μi (yi )| ≤ ρi (yi )

withρi (0) = 0 and the continuity ofρi for i = 1, 2, . . . , N . It follows that the dynam-
ical output feedback controller (5.77)–(5.78) is continuous.

Remark 5.15 The system (5.61)–(5.63) is transformed to the system (5.72)–(5.74)
through the transformation

zi = E xi .

It should be noted that one of the important differences between the two systems is
that the control variable vi disappears in (5.73). This greatly simplifies the control
design since vi no longer appears in the dynamical error equation and does not affect
the dynamic part (5.77) of the controller (5.77)–(5.78). Thus it is possible to focus
on designing the control vi to reduce or even cancel the effects of uncertainties. �

The main result can now be presented.

Theorem 5.4 Suppose that system (5.46)–(5.47) possesses a similar structure with
STP (Ei , Di ) for i = 1, 2, . . . , N. Then, under Assumptions 5.4–5.8, there exists
a continuous reduced-order controller to stabilise the system (5.46)–(5.47) if there
exist a positive constant ε and a neighbourhood Ω ′ of the origin in Ω such that
W τ + W > 0 in Ω ′ \ {0}, where W = [wi j ]2N×2N is defined by
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wi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(Q) − ε − 2σ(P D−1
i )σ (Di )γi , 1 ≤ i ≤ N , i = j

λ(S3) − 2σ(Di )σ (
[

Rτ
2 R3

]
D−1

i )L fi , N + 1 ≤ i ≤ 2N , i = j
−2λ(P)σ (Γ i j) − 2σ(P D−1

j )σ (D j )γi , 1 ≤ i, j ≤ N , j �= i
−2

[
σ(R2) + λ(R3)

]
LTi−N H(i−N )( j−N )

, N + 1 ≤ i, j ≤ 2N ,

j �= i
−2σ(P BK2) − 2[σ(R2) + λ(R3)]σ(Ti )σ (Di )γi , j = N + i, 1 ≤ i ≤ N
−2

[
σ(R2) + λ(R3)

]
σ(Tj−N )σ (Di )γ j−N j �= N + i, 1 ≤ i ≤ N

N ≤ j ≤ 2N
−2σ(P BK2) − 2[σ(R2) + λ(R3)]σ(Ti )σ (D j )γ j , i = N + j, 1 ≤ j ≤ N
−2

[
σ(R2) + λ(R3)

]
σ(Tj )σ (Di−N )γi−N i �= N + j, 1 ≤ j ≤ N ,

N ≤ i ≤ 2N

with P, Q, R2, R3 and S3 as given in (5.57)–(5.60).

Proof From the analysis above, it is observed that the system (5.46)–(5.47) is equiv-
alent to the system (5.66)–(5.67) through feedback

ui = Ei Ci xi + vi

and the nonsingular transformation

zi = Ti xi

for i = 1, 2, . . . , N . Therefore, it is only required to prove that System (5.66)–(5.67)
is stabilisable using a reduced-order control.

By applying (5.77)–(5.78) to the system (5.66)–(5.67), the following closed-loop
system is obtained

żi = Ãzi + E D−1
i fi (T −1

i zi ) + B̃
[

− KE−1
(

yi
ẑ I I

i

)

+ μi (yi ) + ζi (yi ) + ΔΨi (T −1
i zi )

]

+
N∑

j=1
j �=i

E D−1
i Hi j (T −1

j z j ) + E D−1
i ΔHi (T −1z) (5.81)

˙̂z I I
i = (A22 + R−1

3 Rτ
2 A12)ẑ

I I
i +

[
R−1
3 Rτ

2 (A11 − A12R−1
3 Rτ

2 ) + A21 − A22R−1
3 Rτ

2

]
yi

+
[

R−1
3 Rτ

2 In−m

]
D−1

i fi (T −1
i (yi , ẑ I I

i ))

+
N∑

j=1
j �=i

[
R−1
3 Rτ

2 M I
i j (y j , ẑ I I

j ) + M I I
i j (y j , ẑ I I

j )
]

(5.82)

yi = z I
i , i = 1, 2, . . . , N . (5.83)
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For the system (5.81)–(5.83), consider the Lyapunov function candidate:

V (z1, z2, . . . , zN , ẑ I I
1 , ẑ I I

2 , . . . , ẑ I I
N )

= ∑N
i=1 zτ

i E
−τ PE −1zi + ∑N

i=1(z
I I
i − ẑ I I

i )τ R3(z I I
i − ẑ I I

i ),

where P and R3 are given, respectively, by (5.54) and (5.60).
Let ei = z I I

i − ẑ I I
i . Noticing that yi = z I

i , it is easy to see from (5.73) and (5.82)
that

ėi = (A22 + R−1
3 Rτ

2 A12)ei + [
R−1
3 Rτ

2 In−m
]

D−1
i

(
fi (T

−1
i zi ) − fi (T

−1
i (yi , ẑ I I

i ))
)

+
N∑

j=1
j �=i

{[
R−1
3 Rτ

2 M I
i j (y j , z I I

j ) + M I I
i j (y j , z I I

j )
]

−
[

R−1
3 Rτ

2 M I
i j (y j , ẑ I I

j ) + M I I
i j (y j , ẑ I I

j )
]}

+R−1
3 Rτ

2ΔM I
i (z) + ΔM I I

i (z). (5.84)

In addition, it follows from (5.70) and yi = z I
i that

E −τ PE −1 B̃KE −1

[
yi

ẑ I I
i

]

(5.85)

= E −τ P BKE −1

[
yi

z I I
i

]

+ E −τ P BKE −1

{[
yi

ẑ I I
i

]

−
[

z I
i

z I I
i

]}

= E −τ P BKE −1zi + E −τ P BK2ei . (5.86)

Therefore, the time derivative of V along the trajectories of System (5.81)–(5.82) is
given by

V̇ |(5.81)−(5.82)

= −
N∑

i=1

zτ
i E

−τ QE−1zi + 2
N∑

i=1

zτ
i E

−τ P B
[

K2ei + ΔΨi (T −1
i zi ) + μi (yi )

]

+2
N∑

i=1

zτ
i E

−τ P
[

D−1
i fi (T −1

i zi ) + Bζi (yi )
]

+2
N∑

i=1

zτ
i E

−τ P D−1
i

⎧
⎪⎪⎨

⎪⎪⎩

N∑

j=1
j �=i

Hi j (T −1
j z j ) + ΔHi (T −1z)

⎫
⎪⎪⎬

⎪⎪⎭

+2
N∑

i=1

eτ
i

[
Rτ
2 R3

]
D−1

i

(
fi (T −1

i zi ) − fi (T −1
i (yi , ẑ I I

i ))
)

−
N∑

i=1

eτ
i S3ei +
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2
N∑

i=1

eτ
i R3

N∑

j=1
j �=i

{
R−1
3 Rτ

2

(
M I

i j (y j , z I I
j ) − M I

i j (y j , ẑ I I
j )

)
+

[
M I I

i j (y j , z I I
j ) − M I I

i j (y j , ẑ I I
j )

] }

+2
N∑

i=1

eτ
i R3

[
R−1
3 Rτ

2ΔM I
i (z) + ΔM I I

i (z)
]
, (5.87)

where Lemmas 5.1, 5.2 and (5.86) are employed in the implication above.
From the structure (5.79) of μi (yi ) and Assumption 5.7, it is observed that

(i) if F1yi = 0, then, for i = 1, 2, . . . , N

zτ
i E

−τ P B
[
ΔΨi (T

−1
i zi ) + μi (yi )

] = (F1CE −1zi )
τΔΨi (T

−1
i zi )

= (F1yi )
τΔΨi (T

−1
i zi )

= 0

(ii) if F1yi �= 0, then, by Assumption 5.5 it follows that for i = 1, 2, . . . , N

zτ
i E

−τ P B
[
ΔΨi (T

−1
i zi ) + μi (yi )

]

= (F1CE −1zi )
τΔΨi (T

−1
i zi ) − (F1CE −1zi )

τ F1yi

‖F1yi‖ρi (yi )

≤ ‖F1yi‖ρi (yi ) − (F1yi )
τ F1yi

‖F1yi‖ ρi (yi )

= 0.

Therefore, for i = 1, 2, . . . , N ,

zτ
i E

−τ P B[K2ei + ΔΨi (T
−1

i zi ) + μi (yi )] ≤ σ(P BK2)‖E −1zi‖ ‖ei‖. (5.88)

From (5.56), (5.80), the inequality 2ab ≤ 1
ε
a2 + εb2 with ε > 0, andAssumptions

5.7 and 5.8, it follows that

zτ
i E

−τ P D−1
i fi (T −1

i zi ) + zτ
i E

−τ P Bζi (yi )

= (E −1zi )
τ P D−1

i fi (T −1
i zi ) + (E −1zi )

τ Cτ Fτ
1 ζi (yi )

≤ ‖E −1zi‖σ(P D−1
i )βi (‖yi‖) + (CE −1zi )

τ Fτ
1 ζi (yi )

≤ 1

2
ε‖E −1zi‖2 + 1

2ε
σ 2

(
P D−1

i

)
β2

i (‖yi‖) − yτ
i Fτ

1

(
1

2ε
F−τ
1 yiσ

2(P D−1
i )ξ2i (‖yi‖)

)

= 1

2
ε‖E −1zi‖2 + 1

2ε
σ 2

(
P D−1

i

)
ξ2i (‖yi‖)‖yi‖2 − 1

2ε
yτ

i yiσ
2
(

P D−1
i

)
ξ2i (‖yi‖)

= 1

2
ε‖E −1zi‖2, (5.89)

where ε is a positive constant.
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From Assumptions 5.5 and 5.6,

zτ
i E

−τ P D−1
i

⎛

⎜
⎝

N∑

j=1
j �=i

Hi j (T
−1
j z j ) + ΔHi (T

−1z)

⎞

⎟
⎠

= (E −1zi )
τ

⎛

⎜
⎝

N∑

j=1
j �=i

P D−1
i Γi j (T

−1
j z j )D jE

−1z j + P D−1
i ΔHi (T

−1z)

⎞

⎟
⎠

≤ ‖E −1zi‖
⎛

⎜
⎝

N∑

j=1
j �=i

σ(P D−1
i Γi j (T

−1
j z j )D j )‖E −1z j‖ + σ(P D−1

i )γi (x)‖T −1z‖
⎞

⎟
⎠

≤
N∑

j=1
j �=i

[
λ(P)σ (Γi j ) + σ(P D−1

j )σ (D j )γi (x)
]
‖E −1zi‖ ‖E −1z j‖

+σ(P D−1
i )σ (Di )γi (x)‖E −1zi‖2, (5.90)

where the inequality

‖T −1z‖ ≤
N∑

j=1

σ(D j )‖E −1z j‖

is used in the last implication. In addition, from Assumption 5.7, it follows that

eτ
i

[
Rτ
2 R3

]
D−1

i

(
fi (T

−1
i zi ) − fi (T

−1
i (yi , ẑ I I

i ))
)

≤ ‖ei‖σ
([

Rτ
2 R3

]
D−1

i

)
L fi σ(Di )

∥
∥
∥
∥

[
0

z I I
i − ẑ I I

i

]∥
∥
∥
∥

= σ(Di )σ
([

Rτ
2 R3

]
D−1

i

)
L fi ‖ei‖2. (5.91)

As Mi j (z j ) is Lipschitz in Ω j , it follows that for i = 1, 2, . . . , N ,

eτ
i R3

N∑

j=1
j �=i

{
R−1
3 Rτ

2

(
M I

i j (yi , z I I
j ) − M I

i j (yi , ẑ I I
j )

)
+

(
M I I

i j (yi , z I I
j ) − M I I

i j (yi , ẑ I I
j )

) }

=
N∑

j=1
j �=i

[
eτ

i Rτ
2

(
M I

i j (yi , z I I
j ) − M I

i j (yi , ẑ I I
j )

)
+ eτ

i R3

(
M I I

i j (yi , z I I
j ) − M I I

i j (yi , ẑ I I
j )

) ]

≤
N∑

j=1
j �=i

[
σ(R2)LM I

i j
‖z I I

j − ẑ I I
j ‖ ‖ei‖ + λ(R3)LM I I

i j
‖z I I

j − ẑ I I
j ‖ ‖ei‖

]
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=
N∑

j=1
j �=i

[
σ(R2)LM I

i j
+ λ(R3)LM I I

i j

]
‖ei‖ ‖e j‖

≤
N∑

j=1
j �=i

[
σ(R2) + λ(R3)

]
LTi Hi j ‖ei‖ ‖e j‖. (5.92)

From Assumption 5.5, it follows that for i = 1, 2, . . . , N ,

eτ
i R3

[
R−1
3 Rτ

2ΔM I
i (z) + ΔM I I

i (z)
]

= eτ
i Rτ

2ΔM I
i (z) + eτ

i R3ΔM I I
i (z)

≤
[
σ(R2) + λ(R3)

]
‖ΔMi (z)‖ ‖ei‖

=
[
σ(R2) + λ(R3)

]
‖TiΔHi (T

−1z)‖ ‖ei‖

≤
N∑

j=1

[
σ(R2) + λ(R3)

]
σ(Ti )σ (D j )γi (x)‖E −1z j‖ ‖ei‖. (5.93)

Substituting (5.88)–(5.93) into (5.87) yields

V̇ |(5.77)−(5.78)

≤ −
N∑

i=1

[(
λ(Q) − ε − 2σ(P D−1

i )σ (Di )γi (x)
)
‖E −1zi‖2 + λ(S3)‖ei‖2

]

+2
N∑

i=1

[
σ(P BK2) + (

σ(R2) + λ(R3)
)
σ(Ti )σ (Di )γi (x)

]
‖E −1zi‖ ‖ei‖

+2
N∑

i=1

N∑

j=1
j �=i

{
[λ(P)σ (Γi j ) + σ(P D−1

j )σ (D j )γ j (x)]‖E −1zi‖ ‖E −1z j‖

+2
N∑

i=1

N∑

j=1
j �=i

[σ(R2) + λmax(R3)]LTi Hi j ‖ei‖ ‖e j‖

+2
N∑

i=1

N∑

j=1
j �=i

[σ(R2) + λmax(R3)]σ(Tj )σ (Di )γ j (x)‖E −1zi‖ ‖e j‖

= −1

2
Y τ (W τ + W )Y,
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where Y = (‖E −1z1‖, ‖E −1z2‖, . . . , ‖E −1zN ‖, ‖e1‖, ‖e2‖, . . . , ‖eN ‖)τ . From
the positive definitiveness of W τ + W , it follows that System (5.72)–(5.74) is asymp-
totically stable. Hence the result follows. #

Remark 5.16 It should be noted that in the case of dynamical output feedback con-
trol, the effect of uncertainty, even matched uncertainty, is difficult to cancel com-
pletely. In this section, by exploiting Assumption 5.7 and the transformation (5.64),
the effect of thematched uncertainties in isolated subsystems is cancelled completely
in the proposed control design. Thus the bounding functions of the uncertainties
appearing in isolated subsystems are allowed to be arbitrarily large. This greatly
reduces the conservatism of the control design and improves the robustness of the
designed system. �

From the relationship between state variables x and z, it is easily observed from
Theorem 5.4 that under Assumptions 5.4–5.8, the continuous reduced-order dynami-
cal output feedback control for the system (5.46)–(5.47)may be presented as follows:

˙̂z I I
i = (A22 + R−1

3 Rτ
2 A12)ẑ

I I
i +

[
R−1
3 Rτ

2 (A11 − A12R−1
3 Rτ

2 ) + A21 − A22R−1
3 Rτ

2

]
yi

+ [
R−1
3 Rτ

2 In−m
]

D−1
i fi (T

−1
i (yi , ẑ I I

i ))

+
N∑

j=1
j �=i

[
R−1
3 Rτ

2 M I
i j (y j , ẑ I I

j ) + M I I
i j (y j , ẑ I I

j )
]

(5.94)

ui = Ei yi − KE−1
[

yi

ẑ I I
i

]

+ μi (yi ) + ζi (yi ), (5.95)

yi = Ci xi , (5.96)

where μi and ζi are, respectively, defined by (5.79) and (5.80) for i = 1, 2, . . . , N .
It should be noticed that Assumptions 5.7 and 5.8 will be redundant if there is

no uncertainty in the isolated subsystems of (5.46)–(5.47) or if all uncertainty is
treated as uncertain interconnections. In this case, a result which is easier to verify
can be obtained but at the cost of more conservatism. For the sake of simplification
of notation, consider the following system:

żi = Azi + Bui +
N∑

j=1
j �=i

Mi j (z j ) + ΔMi (z), (5.97)

yi = Czi , i = 1, 2, . . . , N , (5.98)

where zi ∈ R
n , ui , yi ∈ R

m , the terms

N∑

j=1
j �=i

Mi j (z j ) and ΔMi (z)
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are the continuous known interconnections and uncertain interconnections, A and B
have the same block decomposition as (5.57), and

C = [
Im 0

]
.

Then, the system (5.97)–(5.98) may be rewritten as

ż I
i = A11z I

i + A12z I I
i + B1ui +

N∑

j=1
j �=i

M I
i j (z j ) + ΔM I

i (z), (5.99)

ż I I
i = A21z I

i + A22z I I
i + B2ui +

N∑

j=1
j �=i

M I I
i j (z j ) + ΔM I I

i (z), (5.100)

yi = z I
i , i = 1, 2, . . . , N , (5.101)

Consider the system (5.99)–(5.101). Let A22 beHurwitz stable. Then, for any positive
definite matrix S̄ ∈ R(n−m)×(n−m), there exists a unique R̄ > 0 such that

Aτ
22 R̄ + R̄ A22 = −S̄. (5.102)

Then, the following result can be presented.

Theorem 5.5 Consider the system (5.97)–(5.98). Suppose that

(i) (A, B) is detectable and A22 is Hurwitz stable;
(ii) ‖ΔMi‖ ≤ γi (z)‖z‖ with i = 1, 2, . . . , N for z ∈ Ω;

(iii) M I I
i j (y j , z I I

j ) is Lipschitz about z I I
j with Lipschitz constant LM I I

i j
and

Mi j (z j ) = Γi j (z j )z j .

Then, the system is stabilised by the reduced-order control

˙̂z I I
i = A22 ẑ I I

i + A21yi + B2ui +
N∑

j=1
j �=i

M I I
i j (y j , ẑ I I

j ), (5.103)

ui = −K1yi − K2 ẑ I I
i , i = 1, 2, . . . , N (5.104)

if there exists a positive constant α and a neighbourhood Ω ′ of the origin in Ω such
that in Ω ′ \ {0},

W1 + W τ
1 > 0 and W2 + W τ

2 > 0,

where W1 = (w1
i j )N×N , W2 = (w2

i j )N×N and for i, j = 1, 2, . . . , N
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w1
i j =

{
λ(Q) − 1

2α λmax(R)γ 2
i − λmax(P)γi , i = j

−σ̄ (PΓi j ) − λmax(P)γi , i �= j
,

w2
i j =

⎧
⎨

⎩

λ(S̄) − 1

2
αλmax(R), i = j

−λmax(R̄)LM I I
i j

, i �= j

with P, Q and K = [
K1 K2

]
as given in (5.54).

Proof Let ei = z I I
i − ẑ I I

i with i = 1, 2, . . . , N . It follows from (5.100) and (5.103)
that

ėi = A22ei +
N∑

j=1

[
M I I

i j (z j ) − M I I
i j (ẑ j )

] + ΔM I I
i (z).

Then, it is observed from conditions (ii) and (iii) that

zτ
i P

[∑N
j=1
j �=i

Mi j (z j ) + ΔMi (z)
]

≤ ∑N
j=1
j �=i

σ(PΓi j (z j ))‖zi‖ ‖z j‖ + ∑N
j=1 λmax(P)γi (z)‖zi‖ ‖z j‖

and

eτ
i R̄

[ ∑N
j=1
j �=i

(
M I I

i j (y j , z I I
j ) − M I I

i j (y j , ẑ I I
j )

)
+ ΔM I I

i (z)
]

≤ ∑N
j=1
j �=i

λmax(R̄)LM I I
i j

‖ei‖ ‖e j‖ + 1
2λmax(R̄)

[
α‖ei‖2 + 1

α
γ 2

i (z)
∑N

j=1 ‖z j‖2
]
.

Now, for the closed-loop system resulting from (5.99)–(5.101) and (5.103)–(5.104),
consider the Lyapunov function candidate

V =
N∑

i=1

(
zτ

i Pzi + eτ
i R̄ei

)
.

By similar arguments as those in Theorem 5.4, the result can be established
directly. #

Remark 5.17 It is worth noting that the proof of both Theorems 5.4 and 5.5 is
constructive and gives explicit control design procedures. The conditions in Theorem
5.5 are easier to verify when compared with those of Theorem 5.4. But it is at the cost
of more conservatism. It should be noted that the adjustable parameter α in Theorem
5.5 may be used to reduce the conservatism. �
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5.4 Simulation Examples

In this section, the approaches proposed in Sects. 5.3 and 5.4 are illustrated by sim-
ulation. Case studies on the high incidence research model (HIRM) aircraft system
and a coupled inverted pendula system are presented.

5.4.1 Case Study on HIRM Aircraft

Consider the dynamics of the HIRMaircraft at the trim values ofMach 0.2 and height
6000 ft taken from [115]. The system matrices are given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0836 −4.9911 −0.7190 −9.8066
−0.0038 −0.2788 0.9772 0
−0.0030 −0.5466 −0.2960 0

0 0 1.0000 0
0 0.0072 0 0
0 0.0861 −0.0011 0
0 0.3320 0.0005 0
0 0 0 0.0016

0.0981 0 0 0
0 0 0 0
0 0.0013 −0.0007 0
0 0 0 −0.0013

−0.0113 0.4223 −0.8991 0.1330
−7.5964 −0.3604 2.2864 0
−0.2419 −0.0313 −0.1489 0

0 1.0000 0.4732 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.105)

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.2536 −2.4223 0 0
0.0008 −0.0761 0 0
0.5247 −1.4718 0 0

0 0 0 0
0 −0.0006 −0.0091 0.0175

0.0126 0.0498 0.2502 −3.0279
−0.0001 0.0233 −0.0762 −0.3929

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.106)

C =

⎡

⎢
⎢
⎣

0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎦ . (5.107)
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This system has eight states: airspeed (m/s), angle of attack (rad), pitch rate (rad/s),
pitch angle (rad), sideslip angle (rad), roll rate (rad/s), yaw rate (rad/s) and bank
angle (rad); four inputs: symmetrical canard deflection (rad), symmetrical tailplane
deflection (rad), differential tailplane deflection (rad) and differential canard deflec-
tion (rad); four outputs: pitch rate (rad/s), airspeed (m/s), pitch angle (rad) and bank
angle (rad). The system has a zero at 1.9938 and poles at 0.0425±1.7614i and
0.0107±0.1399i , and thus the (A, B, C) is nonminimum phase and unstable.

As in the work described in [148, 177], a decentralised control strategy will be
used to control the integratedHIRMaircraft. Introduce the coordinate transformation
matrix ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1.0000 0 0 0 0 0 0
0 0.0314 0.0402 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0.0003 0.0003 0 0 0 0 1
0 − 0.0205 − 0.0131 0 0 1 0 0
0 −0.0096 −0.0122 0 0 0 1 0
0 0 0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the new coordinate system, the system (5.105)–(5.107) can be described in the
form of (5.1)–(5.2) as follows:

A1 =
⎡

⎣
−0.2960 − 0.0202 −0.0220
−0.7190 −0.2404 −0.2006
24.8696 −0.1251 −0.1220

⎤

⎦

B1 =
⎡

⎣
0.5247 −1.4718

−1.2536 − 2.4223
1.0000 0.0000

⎤

⎦ , C1 = [
I2 02×1

]

A2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 −0.0013 0 0 0
0.0016 0 1.0000 0.4732 0

−0.1010 0 − 0.3604 2.2864 −7.5954
−0.0011 0 −0.0313 −0.1489 −0.2419
0.0001 0.1330 0.4223 −0.8991 −0.0113

⎤

⎥
⎥
⎥
⎥
⎦

B2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0
0 0

0.2502 − 3.0279
−0.0762 −0.3929
−0.0091 0.0175

⎤

⎥
⎥
⎥
⎥
⎦

, C2 = [
I2 02×3

]
,

where the nominal isolated subsystem (A1, B1, C1) is stable andminimumphasewith
two inputs: symmetrical canard deflection (rad) and symmetrical tailplane deflection
(rad); two outputs: pitch rate (rad/s) and airspeed (m/s), and (A2, B2, C2) is unstable
and nonminimum phase with two inputs: differential tailplane deflection (rad) and
differential canard deflection (rad); two outputs: pitch angle (rad) and bank angle
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(rad). The interconnection terms are

H12 =
⎡

⎣
0.0013x23 − 0.0007x24

−9.8066x21 + 0.0981x25
7.6624x21 − 0.0767x25

⎤

⎦

H21 =

⎡

⎢
⎢
⎢
⎢
⎣

x11
−0.0251x12 − 0.0189x13

0.3103x11 − 0.0204x12 − 0.0278x13
0.2964x11 + 0.0086x12 + 0.0121x13

−0.0077x11 + 0.0003x12 + 0.0058x13

⎤

⎥
⎥
⎥
⎥
⎦

.

Suppose that the system sufferers from disturbances

ΔH12(x2, t) =
⎡

⎣
ΔH̃2(x2, t)
ΔH̃1(x2, t)

−0.5846ΔH̃1(x2, t) − 0.0652ΔH̃2(x2, t)

⎤

⎦

Δ f2(x2, t) =

⎡

⎢
⎢
⎢
⎢
⎣

0.01Δ f̃ (x2, t)
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

,

where the unknown signals satisfy

‖Δ f̃ ‖ ≤ exp{−2 − t}|x25|3
∥
∥
∥
∥

[
ΔH̃1

ΔH̃2

]∥
∥
∥
∥ ≤ sin2 x22 + |x23|.

The domain Ω is given by

Ω =
{

(x11, x12, x13, x21, . . . , x25)

∣
∣
∣
∣

xi j ∈ R (i �= 2 and j �= 5)
|x25| < 0.53

}

which implies that the limitation on the pitch angle is from −30◦ to +30◦.
Assumption 5.1 is satisfied. Choose the ‘compensator’ gains as

L1 =
⎡

⎣
99.6998 −0.3800
−0.3800 99.8798
18.1370 −58.7751

⎤

⎦
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L2 =

⎡

⎢
⎢
⎢
⎢
⎣

100.0000 −0.0004
−0.0004 103.8401
−0.1040 349.8709
−0.0019 87.7352
0.0004 −78.7022

⎤

⎥
⎥
⎥
⎥
⎦

.

The corresponding solutions of Lyapunov equation (5.4) for Q1 = 100I3 and Q2 =
100I5 are

P1 =
⎡

⎣
1.3847 7.9342 13.5392
7.9342 71.6549 121.4193
13.5392 121.4193 207.6899

⎤

⎦

P2 =

⎡

⎢
⎢
⎢
⎢
⎣

0.5000 0.0029 −0.0004 −0.0002 0.0015
0.0029 237.7960 − 46.2122 −20.6196 84.5487

−0.0004 −46.2122 18.8694 −11.5992 6.2753
−0.0002 −20.6196 −11.5992 72.7900 3.2090
0.0015 84.5487 6.2753 3.2090 138.2835

⎤

⎥
⎥
⎥
⎥
⎦

.

Let the matrices which determine the structure of the uncertainties in (5.5) be

D2 =

⎡

⎢
⎢
⎢
⎢
⎣

0.01
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

, E12 =
⎡

⎣
0 1
1 0

−0.5846 −0.0652

⎤

⎦

and the bounds on the uncertainties from (5.6) are

γ2 = exp{−2 − t} |x25|3 and ζ12 = sin2 x22 + |x23|.

It is straightforward to check that Assumption 5.2 is satisfied with

G2 = [
0.005 0

]
, F12 =

[
0.0189 0.6709
0.5021 0.0189

]

.

Thedynamical compensator (5.11) is completely specified andbydirect computation,

W τ + W =
[

200 −68.1072
−68.1072 200

]

is positive definite. Thus from Theorem 5.1, the partial state estimate x̂i2 satisfies
(5.12). Suppose the desired eigenvalues of Aeq1 and Aeq2 are {−0.25} and {−3 ±
2i,−2}, respectively. According to the algorithm given by Edwards and Spurgeon
[38], the designed sliding surfaces are given by
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S1 = [
S11 S12

] =
[
0.4326 0.8128 −0.3901
0.9016 −0.3901 0.1872

]

, (5.108)

S2 = [
S21 S22

] =
[−0.7659 0.2488 −0.0121 0.3246 −0.4961

−0.6430 −0.2955 0.0146 −0.3868 0.5911

]

. (5.109)

It follows that (5.26) is satisfied if

T11 =
⎡

⎣
−4.3264 9.0157 0.0000
−8.1282 −3.9005 4.3264
3.9005 1.8718 9.0157

⎤

⎦

T12 =
[−0.1 0

0 0.1

]

and

T21 =

⎡

⎢
⎢
⎢
⎢
⎣

7.6586 −6.4301 0.0011 −0.0030 0.0045
−2.4877 −2.9552 0.1900 −5.0491 7.7168
0.1213 0.1460 9.9974 0.0693 −0.1059

−3.2457 −3.8677 0.0691 8.1610 2.8106
4.9606 5.9111 −0.1056 2.8106 5.7044

⎤

⎥
⎥
⎥
⎥
⎦

T22 =
[−0.1 0

0 0.1

]

.

Let
Q̃1 = 1 and Q̃2 = I3.

The solutions of the Lyapunov equations (5.31) are

P̃1 = 2, P̃2 =
⎡

⎣
0.0934 − 0.0245 0.0630

−0.0245 0.3594 −0.3211
0.0630 −0.3211 1.1631

⎤

⎦ .

By direct computation

Mτ + M =

⎡

⎢
⎢
⎣

2.0000 − 0.4700 − 0.0410 −0.1242
−0.4700 1.4693 −0.1242 −0.3698
−0.0410 −0.1242 200.0000 −55.8311
−0.1242 −0.3698 −55.8311 200.0000

⎤

⎥
⎥
⎦

which can be shown to be positive definite. Therefore, the requirements of Theorem
5.2 are satisfied. According to (5.36), the controller is now completely specified. For
simulation purposes, suppose that only the bank angle has an initial deviation 0.1 rad
while

α1 = 0.3359 and α2 = 0.286
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Fig. 5.1 The response of the nonlinear HIRM aircraft system: airspeed (m/s), angle of attack (rad),
pitch rate (rad/s) and pitch angle (rad)
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Fig. 5.2 The response of the nonlinear HIRM aircraft system: sideslip angle (rad), roll rate (rad/s),
yaw rate (rad/s) and bank angle (rad)
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Fig. 5.3 The response of the switching functions

The simulation results in Figs. 5.1 and5.2 show the effectiveness of the controller. The
airspeed is almost unaffected by the system control variables. This is in accordance
with practice since airspeed is mainly controlled by engine thrust. Figure5.3 shows
the time responses of the switching functions.

5.4.2 Case Study on Coupled Inverted Pendula

Consider two identical inverted pendula coupled by a moving spring and subject to
two distinct inputs (see [59]). The salient feature of the system is that the position
a of the spring can change along the full length l of the pendula. The input to each
pendulum is the torque ui applied at the pivot point. The two payloads are supposed
to be both known and equal to m [59]. Let

xi = col(xi1, xi2) = col(θi , θi − θ̇i )

for i = 1, 2.Then, according to [59], the dynamic equation of the pendula is described
by
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ẋ1 =
[

1 − 1

1 − g

l
− 1

]

x1 +
[

0

− 1

ml2

]

u1 +
⎡

⎣
0 0

ka2

ml2
0

⎤

⎦ x1

+
⎡

⎣
0 0

− ka2

ml2
0

⎤

⎦ x2 (5.110)

ẋ2 =
[

1 − 1

1 − g

l
− 1

]

x2 +
[

0

− 1

ml2

]

u2 +
⎡

⎣
0 0

− ka2

ml2
0

⎤

⎦ x1

+
⎡

⎣
0 0

ka2

ml2
0

⎤

⎦ x2, (5.111)

where k and g are the spring and gravity constants. The system output is chosen as

yi = [
1 0

]
xi for i = 1, 2.

In order to illustrate our scheme, assume that the uncertainty in the interconnections
is represented by making a an unknown function of the state vector, that is

|a| ≤ �(x).

According to [59], the parameters are chosen as

g = l = m = k = 1.

It is obvious that (5.110)–(5.111) is a similar interconnected system. Comparing
(5.97)–(5.98), it follows that

A =
[
1 − 1
0 − 1

]

, B =
[

0
−1

]

, C = [
1 0

]

Φ1(x1) = Φ2(x2) = 0, M12 = M21 = 0,

ΔMi (x) = diag

{[
0 0

(−1)i+1 ka2

ml2 0

]

,

[
0 0

(−1)i ka2

ml2 0

]}

x, (i = 1, 2).

Let
K = [

115 −47.5
]
, Q = 2I, S̄ = 2, α = 2.

It follows that

P =
[
4.9525 − 0.0518
−0.0518 0.0217

]

and
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R̄ = 1, γ1 = γ2 = � 2(x).

By direct computation,

W1 =
[
2 − 1.25� 4(x) − 4.5531� 2(x) − 4.5531� 2(x)

−4.5531� 2(x) 2 − 1.25� 4(x) − 4.5531� 2(x)

]

W2 =
[
1 0
0 1

]

.

Then, it is observed that in domain

Ω ′ = {(x11, x12, x21, x22) | �(x) ≤ 0.46}

all conditions of Theorem 5.5 are satisfied, and thus the system (5.110)–(5.111) is
stabilised by the reduced-order controller

˙̂x12 = −x̂12 − u1, (5.112)
˙̂x22 = −x̂22 − u2, (5.113)

ui = −115yi + 47.5x̂i2, i = 1, 2. (5.114)
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Fig. 5.4 Evolution of state variables of System (5.110)–(5.111) under control (5.112)–(5.114):
x11(t); − − − − − x12(t); · − · − · − · x21(t); · · · · · · · · · · · x22(t)
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With the chosen parameter settings, a simulation with initial state

x0 = (−0.8, 1.0, 0.35, 2.3)

is shown in Fig. 5.4.

5.4.3 A Numerical Simulation Example

In this section, a numerical example is given to demonstrate the result presented in
Theorem 5.4.

Consider the interconnected system composed of two second-order subsystems
described by

ẋ1 =
[

0 1
−1 − 2

]

x1 +
[

0.2x11
0.1x11 sin x12

]

+
[

1
−1

]

(u1 + ΔΨ1(x1))

+ΔH1(x) (5.115)

ẋ2 =
[

1 1
−2 − 2

]

x2 +
[

1
−1

]

(u2 + ΔΨ2(x2)) + 1

8

[
0.5x2

11
x12

]

(5.116)

y1 = [
1 0

]
x1 (5.117)

y2 = [
1 0

]
x2, (5.118)

where xi = col(xi1, xi2) for i = 1, 2, and x = col(x1, x2) are the system state vari-
ables, ui , yi are, respectively, the system inputs and outputs of the i-th subsystem,
and the uncertainties satisfy

|ΔΨ1(x1)| ≤ y21 sin
2 y1

|ΔΨ2(x2)| ≤ |y2|ey2

‖ΔH1(x)‖ ≤ 0.1(x12 + x21)2 sin
‖x‖
5 .

Let {
u1 = v1
u2 = −[1 0]x2 + v2

.

It follows that

ẋ1 =
[

0 1
−1 −2

]

x1 +
[

0.2x11
0.1x11 sin x12

]

+
[

1
−1

]

(v1 + ΔΨ1(x1))

+ΔH1(x) (5.119)

ẋ2 =
[

0 1
−1 −2

]

x2 +
[

1
−1

]

(v2 + Ψ2(x2)) + 1

8

[
0.5x2

11
x12

]

(5.120)
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y1 = [
1 0

]
x1 (5.121)

y2 = [
1 0

]
x2. (5.122)

Therefore, the system (5.115)–(5.118) is a similar interconnected system with the
STP (Ei , Di ) for i = 1, 2 defined by

D1 = D2 = I, E1 = 0, E2 = −1.

Now, choose

K =
[

1
1

8

]

, L = 0, S = 2I

and

Q =
[

6 0.25
0.25 2

]

.

It follows that

P = R =
[
3 1
1 1

]

.

By direct calculation, in the domain

Ω = {x | |x11| ≤ 2, x12, x21, x22 ∈ R}

the corresponding parameters are given by

F1 = F2 = 2, ξ1(r) = √
5/10, ξ2(r) = 0

ρ1(r) = r2 sin2 r, ρ2(r) = |r |er

γ1 = 0.02(x12 + x21)2, γ2 = 0, Γ12 = 0

Γ21 =
[

1
16 x11 0
0 1/8

]

, L f1 = 0.3, L f2 = 0

LT1H12 = 0, LT2H21 = 1

8
, K2 = 1

8
.

Then,

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.9844 − ε − 0.04(2 + √
2)ϑ −0.04(2 + √

2)ϑ − 1
2 − 0.08

√
3+√

5
2 ϑ 0

− 2+√
2

4 1.9844 − ε −0.08
√

3+√
5

2 ϑ − 1
2

− 1
2 − 0.08

√
3+√

5
2 ϑ −0.08

√
3+√

5
2 ϑ 2 − 0.6

√
3 0

0 − 1
2 − 1

2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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whereϑ = (x12 + x21)2. It can be verified that W τ + W is positive definite in domain

Ω ′ = {(x11, x12, x21, x22) | |x11| ≤ 2, |x12 + x21| ≤ 1.3, x22 ∈ R}

for the chosen ε = 0.01. Therefore, from Theorem 5.4, System (5.115)–(5.118) is
stabilised by the reduced-order control

ω̇1 = −ω1 + 0.2y1 + 0.1y1 sin(ω1 − y1) (5.123)

ω̇2 = −ω2 + 1

8
ω1 + 1

8
y21 − 1

8
y1 (5.124)

u1 = −1

8
ω1 − y1|y1| sin2 y1 −

(
67

8
+ 5

2

√
2

)

y1 (5.125)

u2 = −1

8
ω2 − 15

8
y2 − y2ey2 . (5.126)

The state responses corresponding to the initial condition

x(0) = (−1.8, 2.5,−3.5, 4.0)

are shown in Fig. 5.5.
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Fig. 5.5 Evolution of state variables of System (5.115)–(5.118) under the control (5.123)–
(5.126): x11(t); − − − − − x12(t); · − · − · − · x21(t); · · · · · · · · · · · x22(t)
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5.5 Summary

In this chapter, reduced-order compensator-based controllers have been synthesised
for nonlinear interconnected systems in which the uncertainties are mismatched and
have nonlinear bounds. Section5.2 has presented a dynamical decentralised output
feedback control strategy using slidingmode techniques. The notion of the equivalent
control and local coordinate transformations are exploited to establish and analyse
the stability of the reduced-order sliding mode. The known interconnections are
used in the control design which insures the composite reachability condition can be
satisfied by the designed controllers. Some remarks have illustrated the advantages
of the proposed control scheme. Therefore, the developed results can be applied to a
wide class of systems. Section5.3 has presented two reduced-order control schemes
to stabilise a class of nonlinear interconnected systems with mismatched uncertainty.
Based on the constrained Lyapunov equations, the conservatism of the developed
result has been greatly reduced. The role of coordinate transformations is clearly
shown in the analysis.

It has been shown that dynamical feedback can remove the requirements of min-
imum phaseness of the nominal isolated subsystems. It has also been demonstrated
that the system structure plays an important role in simplifying the analysis and
design of large-scale interconnected systems. The methods proposed in this chapter
may be extended to a wider class of interconnected systems.



Chapter 6
Delay Dependent Output Feedback
Control

In this chapter, nonlinear time-delay systems are considered. Under the assumption
that all the time-delays experienced by the systemare completely known, static output
feedback control, reduced-order observer-based control and decentralised control is
investigated using sliding mode techniques. The Lyapunov–Razumikhin approach
will be employed to deal with the time-delay. Simulation examples are provided to
demonstrate the developed theoretical results.

6.1 Introduction

In the mathematical modelling of a real system, it is often assumed that the system’s
future behaviour depends only on the current state. However, such an assumption
is not always true due to the existence of time-delay elements such as material or
information transfer. If the delay is neglected, sometimes themodel cannot reflect the
system sufficiently well, which may lead to poor performance. This has motivated
the study of time-delay systems [141].

Time-delay widely exists in the real world. In economic systems, delays appear
in a natural way since the decisions and the effects (caused by the decision) are
separated by some time interval. In communication systems, data transmission is
always accompanied by a nonzero time between the receiver and transmitter of
a message or a signal. Such systems belong to the class of differential-difference
equations which are infinite-dimensional when compared with ordinary differential
equations.

Sometimes the delay may greatly affect the system performance: for example,
a small delay may destabilise a system while a large delay may stabilise a system;
chaotic behaviour may appear if the delayed state involves a nonlinear function but
in other cases, chaotic systems may be stabilised by a delayed feedback [130]. This
shows that time-delay systems are complicated especially when the delay exists in

© Springer International Publishing AG 2017
X.-G. Yan et al., Variable Structure Control of Complex Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-48962-9_6
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nonlinear terms. Therefore, the study of time-delay systems is pertinent and valuable
both from a theoretical and applications perspective.

As early as the eighteenth century, time-delay systems have been studied (see
the survey paper [66]). Since Krasovskii extended Lyapunov theory to time-delay
systems [93] and Razumikhin proposed a method to avoid the use of functionals in
the Lyapunov stability analysis [140], great progress has been made, but most of the
early work focused on the analysis of unforced time-delay systems. In more recent
years, the advancement of control theory has motivated the study of time-delay and
control systems. For systems affected by time-delay, contributions have considered
cases where the delay may appear in the system state, input, output and disturbances
experienced by the system [53, 63, 98]. A variety of control approaches such as
sliding mode control, H∞ control, backstepping techniques and adaptive control,
etc. have been applied to the control of systems with time-delay and many important
results have been achieved [53, 60, 63, 125].

It is well known that sliding mode control, as one of the discontinuous control
approaches, is completely robust to so-called matched disturbances [38, 174]. This
has motivated the application of sliding mode techniques to time-delay systems with
disturbances [53, 63, 84, 112, 132, 154]. It should be noted that most of the existing
results are based on the fact that all of the system state variables are accessible
[53, 63]. However, system state variables are often not fully available. Therefore,
it is essential to study output feedback control which is more convenient for real
implementation.

In the following sections, both static output feedback control and dynamical output
feedback control schemes will be formulated for a class of nonlinear time-delay
systems, and a decentralised static output control strategy is proposed for a class of
interconnected time-delay systems.

6.2 Static Output Feedback Control of Time-Delay Systems

Many results associated with different types of delay such as state delay, input delay,
and output delay have been produced [98, 154, 184]. Most results for linear time-
delay control systems will finally produce linear matrix inequalities (LMIs) [52, 101,
164]. When a time-delay system is nonlinear and has nonlinear uncertainties, the
problem becomes more complicated. Although many results have been obtained for
time-delay systems, the problem of output feedback control of time-delay nonlinear
systems is much less mature.

It has been established that when compared with state feedback, the static output
feedback control problem is much more difficult, even for systems without delay
[165]. Much less attention has been paid to time-delay systems with delayed dis-
turbances using static output feedback sliding mode control and only a very limited
literature is available [84, 112]. A slidingmode control is given in [154]where an out-
put tracking problem is considered. Luo et al. studied a class of time-delay systems
where static and dynamic output feedback strategies are both considered [112] but it
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is required that all of the uncertainty is matched. Janardhanan and Bandyopadhyay
[84] proposed a static output sliding mode control scheme for time-delay systems
involving a class of linear discrete-time system.

In this section, a static output feedback sliding mode control strategy is proposed
to stabilise a class of time-varying delay systems with time-delayed nonlinear dis-
turbances. Both matched and mismatched uncertainties are considered where the
bounds on the uncertainties involving time-delay are employed in the control design.
A sliding surface is designed and the system structure is analysed and employed in the
stability analysis of the sliding motion using the Lyapunov–Razumikhin approach.
Then, a sliding mode control with time-delay based on only output information is
proposed to drive the system to the designed sliding surface in finite time and main-
tain a sliding motion on it thereafter. As in [200, 214], the bounds on the unstructured
disturbances are allowed to be nonlinear, but unlike [200, 214] time-varying delay
exists in the system considered, the disturbances and the bounds on the disturbances.

6.2.1 Preliminaries

To develop the time-delay framework, first consider the linear system

ẋ = Ax + Bu (6.1)

y = Cx, (6.2)

where x ∈ R
n,u ∈ R

m, y ∈ R
p are the states, inputs andoutputs respectivelywithm ≤

p < n. The triple (A, B, C) comprises constant matrices of appropriate dimensions,
where both B and C are of full rank.

For System (6.1)–(6.2), it is assumed that rank(CB) = m. A coordinate transfor-
mation x̃ = T̃x exists such that the system triple (A, B, C) with respect to the new
coordinates x̃ has the following structure:

Ã =
[

Ã11 Ã12

Ã21 Ã22

]

, B̃ =
[
0

B̃2

]

, C̃ = [
0 C̃2

]
, (6.3)

where Ã11 ∈ R
(n−m)×(n−m), B̃2 ∈ R

m×m is nonsingular and C̃2 ∈ R
p×p is orthogonal.

Assumed that system (̃A11, Ã12, C̃1) with C̃1 defined by

C̃1 = [
0(p−m)×(n−p) Ip−m

]
(6.4)

is output feedback stabilizable, i.e., there exists a matrix K ∈ R
m×(p−m) such that

Ã11 − Ã12KC̃1
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is stable. A necessary condition for (̃A11, Ã12, C̃1) to be stabilizable is that the invari-
ant zeros of (A, B, C) lie in the open left-half plane.

For the convenience, the following definition is introduced:

Definition 6.1 The matrix triple (A, B, C) or linear system (6.1)–(6.2) is called nor-
malisable if there exists a nonsingular transformation z = Tx such that in the new
coordinate system z, the system (6.1)–(6.2) has the following form

ż1 = A11z1 + A12z2 (6.5)

ż2 = A21z1 + A22z2 + B2u (6.6)

y = [
0 C2

]
z, (6.7)

where z1 ∈ R
n−m, z2 ∈ R

m, A11 is stable, and B2 ∈ R
m×m and C2 ∈ R

p×p are nonsin-
gular. Then, (6.5)–(6.7) is called the regular form of System (6.1)–(6.2).

From Lemma 2.6, the following result is obtained directly.

Lemma 6.1 System (6.1)–(6.2) is normalisable if

(i) rank(CB) = m;
(ii) for the triple (̃A11, Ã12, C̃1) defined by (6.3) and (6.4), there exists a matrix K

such that Ã11 − Ã12KC̃1 is stable.

Remark 6.1 Lemma 6.1 gives a sufficient condition under which System (6.1)–(6.2)
is normalisable. If the conditions (i) and (ii) in Lemma 6.1 hold, then the regular
form (6.5)–(6.7) can be obtained from a systematic algorithm [38] together with any
output feedback pole placement algorithm of choice.

6.2.2 System Description and Problem Formulation

Consider a time-varying delay system with time-delayed disturbance described by

ẋ(t) = Ax(t) + A0x(t − d(t)) + B (u(t) + g(t, x(t), x(t − d(t))))

+f (t, x(t), x(t − d(t))) (6.8)

y(t) = Cx(t) (6.9)

where x ∈ Ω ⊂ R
n (Ω is a neighbourhood of the origin), u ∈ R

m and y ∈ R
p are

system states, inputs and outputs respectively with m ≤ p < n. The matrices A, A0,
B and C represents constant matrices of appropriate dimensions with B and C of full
rank. The vectors g(·) and f (·) represent the matched and mismatched disturbances
affecting the system respectively. The known function d(t) is a time-varying delay
which is assumed to be continuous, nonnegative and bounded in R+, that is

d := sup
t∈R+

{d(t)} < ∞.

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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The initial condition for the system is given by

x(t) = φ(t), t ∈ [−d, 0]

where φ(·) is continuous in [−d, 0]. It is assumed that the nonlinear functions g(·)
and f (·) are smooth enough in their domain of definition such that the system has
unique continuous solutions for the given initial condition.

First, it is necessary to impose some basic assumptions on the system (6.8)–(6.9):

Assumption 6.1 The triple (A, B, C) is normalisable, and Im(A0) ⊂ Im(B).

Remark 6.2 Assumption 6.1 is a limitation on the linear part of System (6.8)–(6.9). It
guarantees that the triple (A, B, C) can be transformed to the regular form (6.5)–(6.7).
The assumption

Im(A0) ⊂ Im(B)

means that the time-delay term A0x(t − d(t)) is matched and thus it will not affect
the sliding motion.

Assumption 6.2 There exist known continuous nonnegative functions ρi(·)R+ ×
R

p × R
p �→ R

+ with i = 1, 2 and �(·) : R+ × R
p × R

p �→ R
+ such that for t ∈

R
+, and x(t), x(t − d) ∈ Ω

‖f (t, x(t), x(t − d(t))‖ ≤ ρ1(t, y(t), y(t − d(t)))‖x(t)‖ +
ρ2
(
t, y(t), y(t − d(t))

)‖x(t − d(t))‖ (6.10)

‖g(t, x(t), x(t − d(t))‖ ≤ �(t, y(t), y(t − d(t))). (6.11)

Remark 6.3 Assumption 6.2 requires that the uncertainties are bounded by some
known continuous functions. It is an extension of the existing results [84, 112, 186]
where it is required that the uncertainty is bounded by the linear combination of
‖y(t)‖ and ‖y(t − d)‖ which is called the linear growth condition.

The objective now is to design a static output feedback control with time-delay
of the form

u = u(t, y(t), y(t − d)) (6.12)

based on sliding mode techniques such that the closed-loop system formed by the
control (6.12) and the system (6.8)–(6.9) is uniformly asymptotically stable in a
domain of the origin even in the presence of the disturbances. Notably the control
(6.12) only depends on the system output y(t) and time-delay d(t). Since d(t) is
assumed to be known, the term y(t − d(t)) is available and thus the control (6.12) is
called static output feedback control with time-delay.

Remark 6.4 As in the work in [10, 112, 125, 144], the delay experienced by the
system is assumed to be known, which may limit its application. However, in some
important industrial systems such as flow through pipes and web-forming processes,
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the delay existing in the process is known, and can thus be employed in the control
design and/or the compensator design [144]. Furthermore, the approach proposed in
[33] enables the time-delay to be identified in some cases even when the delay is
unknown.

6.2.3 Sliding Motion Analysis and Control Design

The main results will be presented in this section. From Sect. 6.2.2, Im(A0) ⊂ Im(B)

(Assumption 6.1), i.e., there exists amatrixD ∈ R
m×n such thatA0 = BD. Then, from

Sects. 6.2.1 and 2.6, it follows that under Assumption 6.1 there exists a coordinate
transformation z = Tx such that in the new coordinate system z, System (6.8)–(6.9)
is described by

ż1 = A11z1 + A12z2 + f1(t, z(t), z(t − d(t))) (6.13)

ż2 = A21z1 + A22z2 + B2DT−1z(t − d(t)) + B2(u + g(t, T−1z(t), T−1z(t − d(t)))

+f2(t, z(t), z(t − d(t)) (6.14)

y = [
0 C2

]
z, (6.15)

where A11 ∈ R
(n−m)×(n−m) is stable, B2 ∈ R

m×m and C2 ∈ R
p×p are nonsingular, and

[
f1(t, z(t), z(t − d(t)))
f2(t, z(t), z(t − d(t)))

]

:= T
[
f (t, x(t), x(t − d(t)))

]

x=T−1z (6.16)

where f1(·) ∈ R
n−m and f2(·) ∈ R

m.

Remark 6.5 Since the coordinate transformation matrix T can be obtained using a
systematic approach given in [38], the system in (6.13)–(6.15) is well defined and
can be directly obtained from System (6.8)–(6.9).

Based on the analysis in Sect. 2.6, consider the following sliding surface for sys-
tem: (6.8)–(6.9)

S = {x | FCx = 0} , (6.17)

where F is defined in (2.21). Then from Lemma 2.6, it follows that in z coordinate
system, the sliding surface (6.17) can be described by equation

z2 = 0. (6.18)

Then from the regular form (6.13)–(6.15), the sliding dynamics associated with the
sliding surface (6.17) are described by

ż1 = A11z1 + [f1(t, z(t), z(t − d(t))]z2(t)=0 (6.19)

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2


6.2 Static Output Feedback Control of Time-Delay Systems 165

where z1 ∈ R
n−m are the sliding mode state variables and A11 is stable. It is clear that

the mismatched disturbance affects the sliding motion directly. Obviously System
(6.19) which describes the sliding motion involves time-delay. The following further
assumption is required:

Assumption 6.3 There exist known continuous functions φ1(·) and φ2(·) such that
∥
∥[f1(t, z(t), z(t − d(t)))]z2(t)=0

∥
∥ ≤ φ1(t, z1(t), ‖z1(t − d)‖)‖z1(t)‖

+φ2(t, z1(t), ‖z1(t − d)‖)‖z1(t − d(t))‖, (6.20)

where the functions φ1(t, r1, r2) and φ2(t, r1, r2) are both nondecreasing w.r.t. r2.

Remark 6.6 Assumption 6.3 is a limitation to themismatched disturbance. It implies
that when a sliding motion takes place, the uncertainty f1 can be bounded by a
known continuous function of states z1(t) and z1(t − d(t)). It should be noted that
Assumption 6.3 is unnecessary if the disturbance f (·) in (6.8) does not include time-
delay [200].

Since the matrix A11 in (6.19) is stable, it follows that for any Q > 0 (Q ∈ R
m×m),

there exists an unique matrix P > 0 such that

AT
11P + PA11 = −Q. (6.21)

For the later analysis, the following lemma is presented:

Lemma 6.2 If Assumption 6.3 holds, then there exist known continuous functions
ψ1(·) and ψ2(·) such that

∥
∥
∥P

1
2 [f1(t, z(t), z(t − d(t)))]z2(t)=0

∥
∥
∥ ≤ ψ1(t, z1(t), ‖z1(t − d)‖)‖P

1
2 z1(t)‖

+ψ2(t, z1(t), ‖z1(t − d)‖)‖P
1
2 z1(t − d(t))‖ (6.22)

where the functions ψ1(t, r1, r2) and ψ2(t, r1, r2) are both nondecreasing w.r.t. vari-
ables r2.

Proof It follows from the fact

‖z1(t)‖ ≤ λmax(P
− 1

2 )‖P
1
2 z1(t)‖ (6.23)

‖z1(t − d(t))‖ ≤ λmax(P
− 1

2 )‖P
1
2 z1(t − d(t))‖ (6.24)

that under Assumption 6.3

∥
∥
∥P

1
2 [f1(t, z(t), z(t − d(t)))]z2(t)=0

∥
∥
∥

≤ λmax(P
1
2 )
(
φ1(t, z1(t), ‖z1(t − d)‖)‖z1(t)‖

+φ2(t, z1(t), ‖z1(t − d)‖)‖z1(t − d(t))‖)
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≤ λmax(P
1
2 )
(
φ1 (t, z1(t), ‖z1(t − d(t))‖) λmax(P

− 1
2 )‖P

1
2 z1(t)‖

+φ2 (t, z1(t), ‖z1(t − d(t))‖) λmax(P
− 1

2 )‖P
1
2 z1(t − d(t))‖

)
. (6.25)

Let
ψ1(t, r1, r2) = λmax(P

1
2 )λmax(P

− 1
2 )φ1(t, r1, r2)

and
ψ2(t, r1, r2) = λmax(P

1
2 )λmax(P

− 1
2 )φ2(t, r1, r2).

Then it follows that (6.20) is true and the functions ψ1(t, r1, r2) and ψ2(t, r1, r2)
are both nondecreasing w.r.t. variable r2 since φ1(t, r1, r2) and φ2(t, r1, r2) are both
nondecreasing w.r.t. variable r2. Hence the conclusion follows. �

The followingTheoremgives a sufficient conditionunderwhich the slidingmotion
is asymptotically stable.

Theorem 6.1 Under Assumption 6.3, the sliding mode dynamics (6.19) are uni-
formly asymptotically stable if there exists a domain Ω0 = {z1 | z1 ∈ R

n−m} of the
origin in T(Ω) and a constant ζ > 1 such that for any z1(t) ∈ Ω0 and t ∈ R

+

γ := λmin(P
− 1

2 QP− 1
2 ) − sup

t∈R+,z1(t)∈Ω0

{Θ(t, z1(t))} > 0, (6.26)

where

Θ(t, z1(t)) := ψ1

(
t, z1(t), ζλmax(P

− 1
2 ) ‖P

1
2 z1(t)‖

)

+ ζψ2

(
t, z1(t), ζλmax(P

− 1
2 ) ‖P

1
2 z1(t)‖

)
(6.27)

and where ψ1(·) and ψ2(·) satisfy (6.22), and P and Q satisfy (6.21).

Proof For System (6.19), consider as a Lyapunov function candidate V (z1(t)) =
(z1(t))T Pz1(t). It follows from (6.20) and (6.21) that the time derivative of V along
the trajectories of System (6.19) is given as

V̇ (z1(t)) |(6.20)
= (z1(t))

T
(
AT
11P + PA11

)
z1(t) + 2(z1(t))

T P[f1(t, z(t), z(t − d(t)))]z2(t)=0

= −(z1(t))
T P

1
2

(
P− 1

2 QP− 1
2

)
P

1
2 z1(t)

+ 2(z1(t))
T P

1
2 P

1
2 [f1(t, z(t), z(t − d(t)))]z2(t)=0

≤ −λmin(P
− 1

2 QP− 1
2 )‖P

1
2 z1(t)‖2 + ‖P

1
2 z1‖

(
ψ1(t, z1(t), ‖z1(t − d)‖)‖P

1
2 z1(t)‖

+ψ2(t, z1(t), ‖z1(t − d)‖)‖P
1
2 z1(t − d(t))‖

)
(6.28)
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where Lemma 6.2 has been used to obtain the above. Since ψ1(t, r1, r2) and
ψ2(t, r1, r2) are both nondecreasing w.r.t. variable r2, it follows from (6.23)–(6.24)
that

ψ1(t, z1(t), ‖z1(t − d)‖) ≤ ψ1

(
t, z1(t), λmax(P

− 1
2 )‖P

1
2 z1(t − d(t))‖

)

(6.29)

ψ2(t, z1(t), ‖z1(t − d)‖) ≤ ψ2

(
t, z1(t), λmax(P

− 1
2 )‖P

1
2 z1(t − d(t))‖

)
. (6.30)

When
‖P

1
2 z1(t + θ)‖ ≤ ζ‖P

1
2 z1(t)‖

for any θ ∈ [−d, 0] and some ζ > 1, by substituting (6.29) and (6.30) to (6.28), it
follows that

V̇ (z1(t)) |(6.20)
≤ −λmin(P

− 1
2 QP− 1

2 )‖P
1
2 z1(t)‖2

+ψ1

(
t, z1(t), λmax(P

− 1
2 )‖P

1
2 z1(t − d(t))‖

)
‖P

1
2 z1(t)‖2

+ψ2

(
t, z1(t), λmax(P

− 1
2 )‖P

1
2 z1(t − d(t))‖

)
‖P

1
2 z1(t)‖ ‖P

1
2 z1(t − d(t))‖

≤ −λmin

(
P− 1

2 QP− 1
2

)
‖P

1
2 z1(t)‖2

+ψ1

(
t, z1(t), ζλmax(P

− 1
2 ) ‖P

1
2 z1(t)‖

)
‖P

1
2 z1(t)‖2

+ ζψ2

(
t, z1(t), ζλmax(P

− 1
2 )‖P

1
2 z1(t)‖

)
‖P

1
2 z1(t)‖2

= −
(
λmin(P

− 1
2 QP− 1

2 ) − Θ(t, z1(t))
)

‖P
1
2 z1(t)‖2

≤ −γ ‖P
1
2 z1(t)‖2. (6.31)

Hence, the conclusion follows directly from Lemma 2.5. #

Remark 6.7 From Theorem 6.1, it follows that the stability of the sliding motion is
completely robust to the matched uncertainty g(·) but is affected by the mismatched
uncertainty f (·). Since the slidingmode is a reduced-order system, it is clear that only
f1(·) affects the sliding mode and thus in the proposed configuration the limitation
on the mismatched uncertainty is weaker than in other work [60, 125, 186] where a
similar limitation is imposed on f (·) instead of f1(·).
Remark 6.8 From the proof of Theorem 6.1, it follows that in order to establish the
stability of the sliding motion, it is necessary to estimate

P
1
2 [f1(t, z(t), z(t − d(t)))]z2(t)=0

which involves uncertainty and a time-varying delay. It should be pointed out that
when the structure of f1 is available, (6.22) may give a less conservative bound than
(6.20).

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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Theorem 6.1 above has shown that, under appropriate conditions, the sliding
motion on sliding surface (6.17) is stable. The objective now is to design a controller
to drive the system to the sliding surface in finite time. Comparing the linear part of
System (6.8)–(6.9) with the linear part of System (6.13)–(6.15), it follows that

CT−1 = [0 C2], TB =
[
0
B2

]

where C2 ∈ R
p×p and B2 ∈ R

m×m are nonsingular. From the discussion in Sect. 2.6,
it follows that

FCB = FCT−1TB = F [0 C2]︸ ︷︷ ︸
Ĉ

[
0
B2

]

= [0 F2]
[
0
B2

]

= F2B2

is nonsingular since both F2 ∈ R
m×m and B2 ∈ R

m×m are nonsingular. Partition the
matrices AT−1, A0T−1 and T as

AT−1 := [
Λ1 Λ2

]
, A0T−1 := [

Υ1 Υ2
]
, T :=

[
T1

T2

]

(6.32)

whereΛ1 ∈ R
n×m andΥ1 ∈ R

n×m are the firstm columns ofAT−1 andA0T−1 respec-
tively; and T1 ∈ R

m×n and T2 ∈ R
(n−m)×n are the first m and the last n − m rows of

T . Then, from the analysis above,

Tx =
[

T1x
T2x

]

=
[

z1
z2

]

=
[

T1x
C−1
2 y

]

. (6.33)

Now, consider the system (6.8)–(6.9) in Ω1 × Ω2 where

Ω1 := {x(t) | ‖T1x‖ ≤ μ1} ⊂ Ω (6.34)

Ω2 := {x(t − d(t)) | ‖T1x(t − d(t))‖ ≤ μ2} ⊂ Ω (6.35)

and T1 is defined in (6.32). Then the following output feedback sliding mode con-
troller with time-delay is proposed for the system

u = −k(t, y(t), y(t − d(t)))(FCB)−1sgn(Fy(t)) (6.36)

where sgn is the usual signum function and the scalar function k(·) is defined by

k(t, y(t), y(t − d(t)))

= ‖Λ1‖μ1 + ‖Λ2C−1
2 y‖ + ‖FCB‖�(t, y(t), y(t − d(t)))

+, ‖FC‖ ‖T−1‖
(
ρ1(t, y(t), y(t − d(t)))

(
μ1 + ‖C−1

2 y(t))‖)

http://dx.doi.org/10.1007/978-3-319-48962-9_2


6.2 Static Output Feedback Control of Time-Delay Systems 169

+ ρ2
(
t, y(t), y(t − d(t))

) (
μ2 + ‖C−1

2 y(t − d(t))
) ‖
)

+ η (6.37)

for someη > 0wherematricesΛ1 andΛ2 are definedby (6.32), the positive constants
μ1 andμ2 are given in (6.34)–(6.35), and the functions�(·), ρ1(·) and ρ2(·) are given
in Assumption 6.2.

Remark 6.9 It is clear to see that the sliding mode controller (6.36) with k(·) defined
by (6.37) is well defined since the matrix FCB is nonsingular and the functions
�(·), ρ1(·) and ρ2(·) are assumed to be known. Obviously, the proposed control
only depends on the time t, the known time-delay d(t) and the system output y(t).

Theorem 6.2 Consider System (6.8)–(6.9) in Ω1 × Ω2. Under Assumptions 6.1 and
6.2, the controller (6.36) with the gain k(·) defined by (6.37) drives the system (6.8)–
(6.9) to the sliding surface (6.17) in finite time and maintains a sliding motion on it
thereafter.

Proof Let σ(x) := FCx. Then the sliding surface (6.17) can be described by equation
σ(x) = 0. From (6.8) and (6.36), it follows that

σ T σ̇

= σ T (x)FC
(

Ax(t) + A0x(t − d(t)) + B (u(t) + g(t, x(t), x(t − d(t))))

+f (t, x(t), x(t − d(t)))
)

≤ ‖σ(x)‖
(
‖FC(Ax(t) + A0x(t − d))‖ + ‖FCB‖ ‖g(t, x(t), x(t − d(t)))‖

+‖FC‖ ‖f (t, x(t), x(t − d(t)))‖
)

− k(t, y(t), y(t − d(t)))‖σ(x)‖ (6.38)

where the fact that
σ T (x)sgn(σ (x)) ≥ ‖σ(x)‖

is used. From (6.33) it follows that in Ω1 × Ω2 defined by (6.34)–(6.35),

‖Tx(t)‖ ≤ μ1 + ‖C−1
2 y(t)‖ (6.39)

‖Tx(t − d(t))‖ ≤ μ2 + ‖C−1
2 y(t − d(t))‖. (6.40)

From (6.32) and (6.33),

FC(Ax(t) + A0x(t − d(t)))

= FC
(
AT−1Tx(t) + A0T−1Tx(t − d(t))

)

= FC
( [

Λ1 Λ2
]
[

T1x
C−1
2 y

]

+ [
Υ1 Υ2

]
[

T1x(t − d)

C−1
2 y(t − d)

] )

= FCΛ1T1x + FCΛ2C−1
2 y + FCΥ1T1x(t − d) + FCΥ2C−1

2 y(t − d).

Therefore, from (6.39)–(6.40),
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‖FC(Ax(t) + A0x(t − d(t)))‖ ≤ ‖FCΛ1‖μ1 + ‖FCΛ2C−1
2 y(t)‖

+‖FCΥ1‖μ2 + ‖FCΥ2C−1
2 y(t − d)‖. (6.41)

From (6.10) and (6.39)–(6.40)

‖f (t, x(t), x(t − d(t)))‖
≤ ρ1(t, y(t), y(t − d(t)))

∥
∥T−1

∥
∥ ‖Tx(t)‖

+ ρ2
(
t, y(t), y(t − d(t))

) ∥
∥T−1

∥
∥ ‖Tx(t − d(t))‖

≤ ∥
∥T−1

∥
∥
(
ρ1(t, y(t), y(t − d(t)))

(
μ1 + ‖C−1

2 y(t)‖)

+ ρ2
(
t, y(t), y(t − d(t))

) (
μ2 + ‖C−1

2 y(t − d(t))‖)
)
. (6.42)

Substituting (6.11), (6.41), (6.42) and (6.37) into (6.38), yields

σ T (x)σ̇ (x) ≤ −η‖σ(x)‖.

This shows that the reachability condition [38, 174] is satisfied and thus the conclu-
sion follows. #

Theorems 6.1 and 6.2 together show that the closed-loop system formed by apply-
ing control (6.36) with k(·) defined by (6.37) to System (6.8)–(6.9) is uniformly
asymptotically stable.

Remark 6.10 In this section, coordinate transformations are employed to derive the
regular form and the sliding mode dynamics, enabling the stability of the sliding
motion to be analysed. It should be noted that only static output feedback control
is considered in this section. In the control design, a state transformation (6.33) is
introduced to separate the known parts C−1

2 y(t) and C−1
2 y(t − d(t)) from Tx(t) and

Tx(t − d(t)) respectively, so that they can be used in the control design to reduce
conservatism and avoid unnecessary control action. This ensures the conclusion
holds, possibly in an unbounded domain, since the constraint (6.34)–(6.35) only
corresponds to a subset of the state variables.

6.3 Reduced-Order Observer-Based Sliding Mode Control

In this section, a stabilisation problem for a class of nonlinear time-delay systems
with time-delay disturbances is considered based on a reduced-order observer. Both
the observer and the controller are based on a slidingmode approach and the proposed
scheme is robust.
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6.3.1 Introduction

A static output feedback sliding mode control scheme has been proposed in Sect. 6.2.
However, strong conditions are necessarily imposed on the considered system given
the system dynamical information is not available. Therefore, static output control
may not be appropriate for some systems. This has motivated the study of dynamical
output feedback control in which not only the system output, but also additional
dynamics are employed [112, 133].

In this section, a reduced-order observer is designed for a time-delay nonlinear
system using structural characteristics. Based on the estimated states and system out-
puts, a sliding surface is proposed and the associated sliding mode dynamics, which
are nonlinear and time-delayed, are derived using an equivalent control approach and
an appropriate coordinate transformation. A sufficient condition is developed, based
on the Lyapunov–Razumikhin approach, such that the sliding motion is uniformly
asymptotically stable. A sliding mode control law dependent only on the time, the
system output and the designed reduced-order dynamical system states, is developed
to drive the system to the sliding surface in finite time and maintains a sliding motion
thereafter.

Although the delay is assumed to be known, it is allowed to be time varying and
the limitation that the time derivative of the delay is less than unity, which is required
when the Lyapunov–Karasovskii approach is employed, is not necessary.

6.3.2 System Description

Consider a time-varying delay system

ẋ = Ax + Bu + f
(
t, x, xd

) + EΔf (t, x, xd) (6.43)

y = Cx (6.44)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are states, inputs and outputs respectively; xd :=

x(t − d) denotes the delayed state, for simplicity, where d := d(t) is the time-varying
delay which is assumed to be known, nonnegative and bounded in R+, and thus

d := sup
t∈R+

{d(t)} < ∞.

The initial condition associated with the delay is given by

x(t) = φ(t), t ∈ [−d̄, 0] (6.45)

where φ(t) ∈ Θ with Θ the admissible initial condition set defined by

Θ = {φ(t) | φ(t) ∈ C[−d̄,0], ‖φ(t)‖ ≤ l0} (6.46)
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for some constant l0 > 0. The matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and E ∈

R
n×q (m ≤ p < n) are constant with both B and C of full rank. The vector func-

tions f (·) ∈ R
n and Δf (·) ∈ R

q are, respectively, the known nonlinear term and the
nonlinear uncertainty experienced by the system. It is assumed that all the nonlinear
functions are smooth enough such that the unforced system has unique continuous
solutions.

Assumption 6.4 The pair (A, B) is controllable and the pair (A, C) is observable.

From the fact that (A, C) is observable, there exists a matrix L0 such that A − L0C
has n eigenvalues which lie in the open left-half plane. Then, the inequality

(A − L0C)T P0 + P0(A − L0C) < 0 (6.47)

is solvable for P0 > 0.

Assumption 6.5 The matrix equation

ET P0 = FC (6.48)

is solvable for F ∈ R
q×p where P0 satisfies (6.47).

Remark 6.11 Assumption 6.5 implies that (6.47) obeys the constraint (6.48), which
can be considered as the standardConstrainedLyapunovProblem (CLP) [57]. Similar
limitations have been employed in [24, 26, 206, 214]. Several algorithms to solve
the CLP have been discussed in [41, 57]. In particular, recently in [41], it has been
shown that with special parameterisations of the variables L0, P0 and F, this observer
version of the CLP can be written in the form of strict LMIs and solved using any of
the convex solvers commonly available.

In this section, local results are sought for the time-delayed system (6.43)–(6.44).
In order to avoid difficulties in describing the domain under consideration, the term
“a neighbourhood of the origin” is used to express the domain throughout the section.
Also, since the output matrix C is full row rank, without loss of generality, it is
assumed that C = [Ip 0] at the outset.
Assumption 6.6 The nonlinear function f

(
t, x, xd

)
is Lipschitz with respect to x and

xd uniformly for t ∈ R
+, and has the decomposition

f
(
t, x, xd

) = Φ(t, x)xd (6.49)

where Φ(·) ∈ R
n×n is continuous and Lipschitz with respect to x and uniformly for

t ∈ R
+.

Assumption 6.7 The uncertainty satisfies

‖Δf (t, x, xd)‖ ≤ ρ(t, x)‖xd‖
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where the functionρ(·) is knowncontinuous andLipschitzwith respect to x uniformly
for t ∈ R

+.

Remark 6.12 Assumptions 6.6 and 6.7 require that the nonlinear terms f (·) and
Δf (·) are affine about the delayed variable xd , which limits the class of nonlinear
functions f (·) and uncertaintiesΔf (·). However, they include the linear situation as a
special case. Moreover, the assumption that the delay is not involved in the functions
Φ(·) and ρ(·) is employed mainly for the simplification of the presentation of the
subsequent analysis, and is not an inherent limitation. The approach proposed can be
extended to the case when Φ(·) and ρ(·) have time-delay in the form of Φ(t, x, xd)

and ρ(t, x, xd).

6.3.3 Reduced-Order Observer Design

In this section, a reduced-order dynamical system is proposed and a sufficient con-
dition in terms of simple LMIs is developed.

Partition System (6.43)–(6.44) in a compatible way to C = [Ip 0]. The system
can be rewritten as

[
ẋ1
ẋ2

]

=
[

A1 A2

A3 A4

] [
x1
x2

]

+
[

B1

B2

]

u +
[

f1(t, x, xd)

f2(t, x, xd)

]

+
[

E1

E2

]

Δf (t, x, xd) (6.50)

y = x1 (6.51)

where x = col(x1, x2) with x1 ∈ R
p, A1 ∈ R

p×p, B1 ∈ R
p×m; f1(·) is the first p com-

ponents of f (·) and E1 is the first p rows of the matrix E.
Consider Inequality (6.47). Partition P0 and L0 conformably with the decompo-

sition (6.50)–(6.51) as

P0 =
[

P1 P2

PT
2 P3

]

and L0 =
[

L1

L2

]

. (6.52)

Applying the partition above to the matrix equation ET P0 = FC in Assumption 6.5,
it follows from C = [Ip 0] that

ET
1 P2 + ET

2 P3 = 0

and thus from P3 > 0,
P−1
3 PT

2 E1 + E2 = 0.
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Then, introduce a nonsingular coordinate transformation w = T̂x defined by

w1 = x1
w2 = P−1

3 PT
2 x1 + x2

(6.53)

where w = col(w1, w2) with w1 ∈ R
p. Then, in the new coordinates system w, the

system (6.50)–(6.51) is described by

ẇ1 = (A1 − A2P−1
3 PT

2 )w1 + A2w2 + B1u + F1(t, w, wd) + E1ΔF(t, w, wd) (6.54)

ẇ2 = (P−1
3 PT

2 (A1 − A2P−1
3 PT

2 ) + A3 − A4P−1
3 PT

2 )w1

+ (A4 + P−1
3 PT

2 A2)w2 +
[
P−1
3 PT

2 In−p

]
Bu

+
[
P−1
3 PT

2 In−p

]
F(t, w, wd) (6.55)

y = w1 (6.56)

where w1d ∈ R
p, wd = col(w1d, w2d),

F(t, w, wd) := [
f (t, x, xd)

]

x=T̂−1w (6.57)

ΔF(t, w, wd) := [
Δf (t, x, xd)

]

x=T̂−1w (6.58)

and F1(·) in (6.54) is the first p components of the vector F(·) in (6.57). Construct a
dynamical system

˙̂w2 = (A4 + P−1
3 PT

2 A2)ŵ2 + (
P−1
3 PT

2 (A1 − A2P−1
3 PT

2 ) + A3 − A4P−1
3 PT

2

)
y

+ [
P−1
3 PT

2 In−p
]

Bu + [
P−1
3 PT

2 In−p
]

F(t, y, ŵ2, yd, ŵ2d) (6.59)

where ŵ2 ∈ R
n−p and F(·) is defined in (6.57). The initial condition associated with

the delay d(t) is given by

ŵ2(t) = [P−1
3 PT

2 In−p]φ(t)

for t ∈ [−d̄, 0] where φ(t) is given in (6.45).

Theorem 6.3 Suppose that Assumptions 6.4–6.7 are satisfied in a neighbourhood
of the origin. Then, there exist positive constants α1 and α2 such that in the neigh-
bourhood of the origin

‖w2(t) − ŵ2(t)‖ ≤ α1 exp{−α2t} (6.60)

if there exists a constant ε > 0 such that

ĀT P̄T + P̄Ā + 1

ε
P̄P̄T + 2P3 < 0 (6.61)

εL 2
f In−p − P3 ≤ 0 (6.62)
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hold where
Ā = [

AT
2 AT

4

]T
, P̄ = [

PT
2 P3

]
. (6.63)

Proof Let e(t) = w2(t) − ŵ2(t). From (6.55) and (6.59),

ė = (
A4 + P−1

3 PT
2 A2

)
e + [

P−1
3 PT

2 In−p
]
δ(F, F̂) (6.64)

where the symbol

δ(F, F̂) := F(t, w, wd) − F(t, y, ŵ2, yd, ŵ2d) (6.65)

is introduced to simplify the notation. Since P0 > 0, it follows from (6.52) that
P3 > 0. For System (6.64), consider a Lyapunov function candidate

V1 = eT (t)P3e(t).

Then, the time derivative of V1 along the trajectories of System (6.64) is described
by

V̇1 = eT (t)
(
ĀT P̄T + P̄Ā

)
e(t) + 2eT (t)P̄δ(F, F̂) (6.66)

where Ā and P̄ are defined in (6.63). ExploitingYoung’s inequality 2XT Y ≤ 1
ε
XT X +

εYT Y for any scalar ε > 0,

2eT (t)P̄δ(F, F̂) ≤ 1

ε
eT (t)P̄P̄T e(t) + ε‖δ(F, F̂)‖2

= 1

ε
eT (t)P̄P̄T e(t) + εL 2

f

(
eT (t)e(t) + eT

d (t)ed(t)
)

(6.67)

where Lemma A.3 in Appendix A.2 is used. Substituting (6.67) into (6.66),

V̇1 ≤ eT (t)
(

ĀT P̄T + P̄Ā + 1

ε
P̄P̄T + εL 2

f In−p

)
e(t) + εL 2

f eT
d (t)ed(t). (6.68)

If (6.61) holds, then there exists a constant γ > 0 such that

Γ := −
(

ĀT P̄T + P̄Ā + 1

ε
P̄P̄T + 2P3 + γ P3

)
> 0. (6.69)

Consequently, when V1(e(t − d)) ≤ (1 + γ )V1(e(t)) for any d ∈ [0, d], the inequal-
ity

(1 + γ )eT (t)P3e(t) − eT
d (t)P3ed(t) ≥ 0

holds and thus from (6.62),



176 6 Delay Dependent Output Feedback Control

V̇1 ≤ eT
(

ĀT P̄T + P̄Ā + 1

ε
P̄P̄T + εL 2

f In−p

)
e + εL 2

f eT
d ed

+ (1 + γ )eT P3e − eT
d P3ed

≤ eT
(

ĀT P̄T + P̄Ā + 1

ε
P̄P̄T + 2P3 + γ P3

)
e

≤ −eTΓ e ≤ − λmin(Γ )

λmax(P3)
V1 (6.70)

where Γ is defined in (6.69). Inequality (6.70) implies that

V1(e(t)) ≤ e(0)T P3e(0) exp{− λmin(Γ )

λmax(P3)
t}. (6.71)

Notably, there exists a neighbourhood of the origin such that for any initial value
w2(0) in the neighbourhood of the origin, there exists a constant b > 0 and the initial
value ŵ2(0) for the designed dynamical system (6.59) such that

‖e(0)‖ = ‖w2(0) − ŵ2(0)‖ ≤ b.

Then, from (6.71)

λmin(P3)‖e(t)‖2 ≤ b2λmax(P3) exp{− λmin(Γ )

λmax(P3)
t}. (6.72)

Let
α1 = √

λmax(P3)/λmin(P3) b and α2 = 1
2

λmin(Γ )

λmax(P3)
. (6.73)

Then it is clear from (6.72) that (6.60) holds. Hence the conclusion follows. �
Remark 6.13 A necessary condition for Inequality (6.61) to hold is that

ĀT P̄T + P̄Ā < 0. (6.74)

However, from partitions (6.50) and (6.52) and the fact that C = [Ip 0], it follows
that

(A − L0C)T P0 + P0(A − L0C) =
[∗ ∗

∗ ĀT P̄T + P̄Ā

]

where ∗ represents entries which do not need to be shown. It follows from (6.47)
that (6.74) holds.

Corollary 6.1 Let x̂2 := ŵ2 − P−1
3 PT

2 y where ŵ2 is the state of System (6.59). Then,
under the conditions of Theorem 6.3, the inequality

‖x2(t) − x̂2(t)‖ ≤ α1 exp{−α2t}

holds in a neighbourhood of the origin, where the constants α1 and α2 are those in
(6.60).
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Proof From transformation (6.53) and y = x1,

x2 − x̂2 = w2 − P−1
3 PT

2 x1 − ŵ2 + P−1
3 PT

2 y
= w2 − ŵ2.

Hence, the conclusion follows from Theorem 6.3. �

6.3.4 Sliding Surface Design

In this section, a sliding surface based on the system output y and the estimated state
x̂2 given in Corollary 6.1 will be designed.

From sliding mode control theory, for a controllable pair (A, B), there exists a
matrix S ∈ R

m×n such that

• the matrix SB is nonsingular;
• the matrix A − B(SB)−1SA has n − m eigenvalues which lie in the open left-half
plane.

Such a matrix S can be designed using any existing state feedback sliding mode
control design methodology [38, 174]. Then, partition the matrix S as S = [S1 S2]
where S1 ∈ R

m×p and S2 ∈ R
m×(n−p). Choose a switching function as

σ(y, x̂2) = S1y + S2x̂2 (6.75)

then, the sliding surface, which is defined in an augmented space, is described by

{
(x1, x2, x̂2) | S1y + S2x̂2 = 0

}
. (6.76)

In coordinates (x, e)where e = x2 − x̂2, System (6.43) and the error dynamics (6.64)
can be written as

ẋ = Ax + Bu + f (t, x, xd) + EΔf (t, x, xd) (6.77)

ė = (
A4 + P−1

3 PT
2 A2

)
e + [

P−1
3 PT

2 In−p
]
δe(f , f̂ ) (6.78)

y = x1 (6.79)

where
δe(f , f̂ ) := f (t, x, xd) − f (t, y, x2 + e, yd, x2d + ed). (6.80)

From x2 − x̂2 = e, it follows that

S1y + S2x̂2 = S1x1 + S2x2 − S2e = Sx − S2e.

Therefore, in the augmented space (x, e), the sliding surface (6.76) can be
described by {

(x, e) | Sx − S2e = 0
}
. (6.81)
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6.3.5 Equivalent System and Sliding Mode Dynamics

Asufficient conditionwill be developed to guarantee the uniform asymptotic stability
of the corresponding sliding motion in this section.

Consider System (6.77)–(6.79) with the sliding surface given in (6.81). During a
sliding motion, Sẋ − S2ė = 0. From equivalent control theory [38, 174], it follows
that

SAx + SBueq + Sf (·) + SEΔf (·) − S2
(
A4 + P−1

3 PT
2 A2

)
e

−S2P−1
3

[
PT
2 P3

]
δe(f , f̂ ) = 0 (6.82)

where ueq is the equivalent control. Since SB is nonsingular by design, ueq can be
described by

ueq = −(SB)−1SAx − (SB)−1S(f (·) + EΔf (·)) + (SB)−1S2
(
A4 + P−1

3 PT
2 A2

)
e

+ (SB)−1S2P−1
3

[
PT
2 P3

]
δe(f , f̂ ). (6.83)

The equivalent control ueq, involves the uncertainty Δf (·), and is not the real control
signal applied to the plant but is used to analyse the sliding mode dynamics. It can
be thought of as the average effect of the applied discontinuous injection signal.
Substituting ueq in (6.83) into Eqs. (6.77)–(6.78), the equivalent system governing
the sliding motion is given by

ẋ = (A − B(SB)−1SA)x + B(SB)−1S2(A4 + P−1
3 PT

2 A2)e

+ (
In − B(SB)−1S

) (
f (t, x, xd) + EΔf (·))

+ B(SB)−1S2P−1
3

[
PT
2 P3

]
δe(f , f̂ ) (6.84)

ė = (A4 + P−1
3 PT

2 A2)e + [
P−1
3 PT

2 In−p
]
δe(f , f̂ ) (6.85)

y = x1 (6.86)

where δe(f , f̂ ) is defined in (6.80). From sliding mode control theory, the reduced-
order sliding mode dynamics are given by Eqs. (6.84)–(6.85) limited to the sliding
surface (6.81). Since by design SB is nonsingular, the matrix S is full row rank, and
thus there exists a nonsingular matrix T such that

ST = [Im 0] (6.87)

where T can be obtained using elementary column operations. Introduce a coordinate
transformation z = T−1x. Then, in the new coordinates (z, e), System (6.84)–(6.85)
can be described by
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ż = T−1(A − B(SB)−1SA)Tz + T−1B(SB)−1S2(A4 + P−1
3 PT

2 A2)e

+ T−1 (In − B(SB)−1S
) (

f (t, Tz, Tzd) + EΔf (t, Tz, Tzd)
)

+ T−1B(SB)−1S2P−1
3

[
PT
2 P3

] [δe(f , f̂ )]x=Tz

ė = (A4 + P−1
3 PT

2 A2)e + P−1
3

[
PT
2 P3

] [δe(f , f̂ )]x=Tz.

Partitioning appropriately

T−1(A − B(SB)−1SA)T =
[

D1 D2

D3 D4

]

T−1B(SB)−1S2(A4 + P−1
3 PT

2 A2) =
[

M1

M2

]

T−1
(
In − B(SB)−1S

) =
[

N1

N2

]

T−1B(SB)−1S2P−1
3 [PT

2 P3] =
[

H1

H2

]

where D4 ∈ R
(n−m)×(n−m), M2 ∈ R

(n−m)×n, H2 ∈ R
(n−m)×n and N2 ∈ R

(n−m)×n.
Then, System (6.88)–(6.88) can be rewritten as

ż1 = D1z1 + D2z2 + M1e + N1f (t, Tz, Tzd) + N1EΔf (t, Tz, Tzd)

+ H1[δe(f , f̂ )]x=Tz (6.88)

ż2 = D3z1 + D4z2 + M2e + N2f (t, Tz, Tzd) + N2EΔf (t, Tz, Tzd)

+ H2[δe(f , f̂ )]x=Tz (6.89)

ė = (A4 + P−1
3 PT

2 A2)e + P−1
3

[
PT
2 P3

] [δe(f , f̂ )]x=Tz (6.90)

where z = col(z1, z2)with z1 ∈ R
m and z2 ∈ R

n−m. Comparing System (6.88)–(6.90)
with System (6.84)–(6.85), it follows that the matrix

⎡

⎣
D1 D2 M1

D3 D4 M2

0 0 A4 + P−1
3 PT

2 A2

⎤

⎦ =: Aeq (6.91)

has 2n − p − m eigenvalues which lie in the open left-half plane. From (6.87) and
z = T−1x,

Sx − S2e = z1 − S2e.

Then, in the new coordinates (z, e), the sliding surface (6.81) is described by

{
(z1, z2, e) | z1 − S2e = 0

}
. (6.92)
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Partition T as T = [T1 T2] where T1 ∈ R
n×m and T2 ∈ R

n×(n−m). On the sliding
surface (6.92),

x = [T1 T2]
[

S2e
z2

]

= T1S2e + T2z2. (6.93)

Thus, by using (6.93), the reduced-order sliding mode dynamics is the equivalent
system (6.88)–(6.90) restricted to the sliding surface (6.92), which is described by

ż2 = D4z2 + (M2 + D3S2)e + N2f (t, T1S2e + T2z2, T1S2ed + T2z2d)

+ N2EΔf (t, T1S2e + T2z2, T1S2ed + T2z2d) + H2δT (f , f̂ ) (6.94)

ė = (A4 + P−1
3 PT

2 A2)e + P−1
3

[
PT
2 P3

]
δT (f , f̂ ) (6.95)

where

δT (f , f̂ ) := [f (t, x, xd) − f (t, y, x2 + e, yd, x2d + ed)]x=T
[
S2e
z2

] (6.96)

6.3.6 Stability of Sliding Motion

A sufficient condition which guarantees the stability of the sliding motion will be
proposed in terms of a set of matrix inequalities.

Theorem 6.4 Suppose that Assumptions 6.4–6.7 are satisfied in a neighbourhood of
the origin. Then, System (6.43)–(6.44) has a uniformly asymptotically stable sliding
motion with respect to the sliding surface (6.76) if there exists a matrix P > 0 such
that in a neighbourhood of the origin in the state space (z2, e), the matrix inequality

W :=

⎡

⎢
⎢
⎣

X1 Λ PN2Φ(·)T2 PN2Φ(·)T1S2
∗ X2 0 0
∗ ∗ X3 ε1ρ

2(·)TT
2 T1S2

∗ ∗ ∗ X4

⎤

⎥
⎥
⎦ < 0

holds with q0 := inf{λmax(W (·))} < 0, where

Λ := P

(

M2 + D3S2 + 1

ε2
H2P̄T

)

.

In the above W is symmetric, the ∗s represent the corresponding symmetric entries,
and

X1 : = DT
4 P + PD4 + 1

ε1
PN2EET NT

2 P + 1
ε2

PH2HT
2 P + q2P

X2 : = ĀT P̄T + P̄Ā + 1
ε2

P̄P̄T + ε2L
2

f In−p + q2P3

X3 : = ε1ρ
2(·)TT

2 T2 − P
X4 : = ε1ρ

2(·)(T1S2)T T1S2 + ε2L
2

f In−p − P3
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where the constants q2 > 1, ε1 > 0 and ε2 > 0, P3 is defined in (6.52), and Ā and P̄
are defined by (6.63).

Proof The analysis above shows that (6.94)–(6.95) represents the sliding mode
dynamics in the coordinates (z, e). It is only required to prove that System (6.94)–
(6.95) is uniformly asymptotically stable. Consider a Lyapunov function candidate

V (z2(t), e(t)) = zT
2 (t)Pz2(t) + eT (t)P3e(t). (6.97)

Then, the time derivative of V (·) along the trajectories of the dynamic system (6.94)–
(6.95) is given as

V̇ = zT
2 (DT

4 P + PD4)z2 + 2zT
2 P(M2 + D3S2)e + 2zT

2 PN2f (·)
+ 2zT

2 PN2EΔf (·) + eT
(
ĀT P̄T + P̄Ā

)
e

+ 2
(
eT P̄ + zT

2 PH2
)
δT (f , f̂ ) (6.98)

where Ā and P̄ are defined in (6.63). From (6.49),

zT
2 PN2f (·) = zT

2 PN2Φ(t, T1S2e + T2z2)(T1S2ed

+ T2z2d) = zT
2 PN2Φ(·)T1S2ed + zT

2 PN2Φ(·)T2z2d . (6.99)

From Assumption 6.7 and Young’s inequality 2XT Y ≤ 1
ε
XT X + εYT Y for any

ε > 0, it follows that

2zT
2 PN2EΔf (·) ≤ 1

ε1
zT
2 PN2E(PN2E)T z2

+ ε1‖Δf (t, T1S2e + T2z2, T1S2ed + T2z2d)‖2

≤ 1

ε1
zT
2 PN2E(PN2E)T z2 + ε1ρ

2(·)(eT
d (T1S2)

T T1S2ed

+ 2zT
2dTT

2 T1S2ed
)

(6.100)

and from (A.6) in Appendix A.2,

2
(
eT P̄ + zT

2 PH2
)
δT (f , f̂ ) ≤ 1

ε2
(eT P̄P̄T e + zT

2 PH2(PH2)
T z2 + 2zT

2 PH2P̄T e)

+ ε2L
2

f (eT e + eT
d ed). (6.101)

If
V (z2d, ed) ≤ q2V (z2, e)

for some q2 > 1, then from the definition of V (·) in (6.97)

q2
(
zT
2 (t)Pz2(t) + eT (t)P3e(t)

) − zT
2d(t)Pz2d(t) − eT

d (t)P3ed(t) ≥ 0. (6.102)
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Substituting (6.99)–(6.101) into (6.98) and employing (6.102),

V̇ ≤ zT
2 (DT

4 P + PD4)z2 + 2zT
2 P(M2 + D3S2)e + 2zT

2 PN2Φ(·)T1S2ed

+ 2zT
2 PN2Φ(·)T2z2d + 1

ε1
zT
2 PN2E(PN2E)T z2

+ ε1ρ
2(·)

(
eT

d (T1S2)
T T1S2ed + zT

2dTT
2 T2z2d + 2zT

2dTT
2 T1S2ed

)

+ eT
(
ĀT P̄T + P̄Ā

)
e + 1

ε2

(
eT P̄P̄T e + zT

2 PH2(PH2)
T z2 + 2zT

2 PH2P̄T e
)

+ ε2L
2

f (eT e + eT
d ed) + q2

(
zT
2 (t)Pz2(t) + eT (t)P3e(t)

)

− zT
2d(t)Pz2d(t) − eT

d (t)P3ed(t)

= Y W YT ≤ q0
(‖z2‖2 + ‖e‖2)

where Y := [z2 e z2d ed], and q0 < 0 is used in the last inequality. Hence, by apply-
ing Lemma A.1 in Appendix A.1, the conclusion follows. #

Remark 6.14 The necessary condition forX1 < 0 is thatDT
4 P + PD4 < 0 is solvable

for P > 0. Since (6.74) can be rewritten as

(
P−1
3 PT

2 A2 + A4
)T

P3 + P3
(
P−1
3 PT

2 A2 + A4
)

< 0

which shows that A4 + P−1
3 PT

2 A2 is stable because P3 > 0, and A4 + P−1
3 PT

2 A2 has
n − p eigenvalues in the open left-half plane. Since Aeq defined in (6.91) has 2n −
p − m eigenvalues which lies in the open left-half plane, the matrix

[
D4 M2 + D3S2
0 A4 + P−1

3 PT
2 A2

]

associated with the sliding mode dynamics in (6.94)–(6.95), has 2n − p − m eigen-
values which lie in the open left-half plane. Therefore D4 has n − m eigenvalues
which lie in the open left-half plane, which in turn implies that the matrix inequality

DT
4 P + PD4 < 0

is solvable for P > 0.

Remark 6.15 Since the sliding motion is completely robust to the matched contribu-
tion, it should be emphasised that the function Φ(·) in Theorem 6.4 can be replaced
by Φ1(·) if f (·) in System (6.43) can be expressed as

f (·) = Bf0(·) + Φ1(·)xd

which may reduce conservatism.
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6.3.7 Sliding Mode Control Design

In this section, a control law will be proposed such that the reachability condition
[38, 174]

σ T (y, x̂2)σ̇ (y, x̂2) ≤ −η‖σ(y, x̂2)‖ (6.103)

is satisfied for some constant η > 0 where σ(·) is the sliding function designed in
(6.75).

Consider System (6.43)–(6.44) in a neighbourhood of the origin defined by

{x | ‖x‖ ≤ l1}.

Let
l := max{l1, l0}

where l0 is given in (6.46). The following control law is proposed:

u = −(SB)−1
((

S1A1 − S2P−1
3 PT

2 A2P−1
3 PT

2 + S2(A3 − A4P−1
3 PT

2 )
)
y

+ S2
(
A4 + P−1

3 PT
2 A2

)
ŵ2 + (S1 − S2P−1

3 PT
2 )A2x̂2

+ lρ(t, y, x̂2)‖(S1 − S2P−1
3 PT

2 )E1‖
+ Sf (t, y, x̂2, yd, x̂2d)

)
− k(·)(SB)−1 σ(y,x̂2)

‖σ(y,x̂2)‖ (6.104)

where the function k(·) is the control gain to be determined later.

Theorem 6.5 Suppose Assumptions 6.4–6.7 are satisfied in a neighbourhood of the
origin. Then, the control given in (6.104) drives the system (6.43)–(6.44) to the sliding
surface (6.76) and maintains a sliding motion if in the neighbourhood of the origin,
the control gain k(·) satisfies

k(·) ≥ α1 exp{−α2t}
( ∥
∥(S1 − S2P−1

3 PT
2 )A2

∥
∥ + l

∥
∥(S1 − S2P−1

3 PT
2 )E

∥
∥Lρ

+ ∥
∥S1 − S2P−1

3 PT
2

∥
∥
(
1 + exp{α2d̄})Lf

)
+ η (6.105)

where α1 and α2 are given in Theorem 6.3, and η is a positive constant.

Proof From the analysis above, all that needs to be proved is that the reachability
condition (6.103) is satisfied when applying the control in (6.104) to System (6.43)–
(6.44).

From (6.75), (6.50)–(6.51), (6.59) and using the fact that

x̂2 = ŵ2 − P−1
3 PT

2 y

in Corollary 6.1,
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σ̇ (y, x̂) = (S1 − S2P−1
3 PT

2 ) (A1y + A2x2 + E1Δf (·)) + S2
( (

A4 + P−1
3 PT

2 A2
)

ŵ2

+ (
P−1
3 PT

2 (A1 − A2P−1
3 PT

2 ) + A3 − A4P−1
3 PT

2

)
y
)

+ (S1 − S2P−1
3 PT

2 )B1u + S2
[
P−1
3 PT

2 In−p
]

Bu

+ (S1 − S2P−1
3 PT

2 )f1(·) + S2
[
P−1
3 PT

2 In−p
]

F(t, y, ŵ2, yd, ŵ2d).

(6.106)

It is clear that

(S1 − S2P−1
3 PT

2 )B1u + S2
[
P−1
3 PT

2 In−p
]

Bu

= S1B1u − S2P−1
3 PT

2 B1u + [
S2P−1

3 PT
2 S2

]
[

B1

B2

]

u.

= S1B1u + S2B2u = SBu. (6.107)

By similar reasoning, and from (6.57),

(S1 − S2P−1
3 PT

2 )f1(·) + S2
[
P−1
3 PT

2 In−p
]

F(·)
= Sf (·) − S2

[
P−1
3 PT

2 In−p
]
δ(f , f̂ ) (6.108)

where
δ(f , f̂ ) := f (t, x, xd) − f (t, y, x̂2, yd, x̂2d). (6.109)

Substituting (6.107) and (6.108) into (6.106) yields:

σ̇ (y, x̂) = (
S1A1 − S2P−1

3 PT
2 A2P−1

3 PT
2 + S2(A3 − A4P−1

3 PT
2 )
)
y

+ (S1 − S2P−1
3 PT

2 )A2x2 + (S1 − S2P−1
3 PT

2 )E1Δf (·)
+ S2

(
A4 + P−1

3 PT
2 A2

)
ŵ2 + SBu

+ Sf (t, x, xd) − S2
[
P−1
3 PT

2 In−p
]
δ(f , f̂ ). (6.110)

Note

Sδ(f , f̂ ) − S2
[
P−1
3 PT

2 In−p
]
δ(f , f̂ ) = [

S1 − S2P−1
3 PT

2 0
]
δ(f , f̂ )

and in the neighbourhood of the origin,

‖xd‖ ≤ l.

It follows by applying control (6.104) to (6.110) that

σ T (·)σ̇ (·) ≤ ‖σ(·)‖
( ∥
∥(S1 − S2P−1

3 PT
2 )A2

∥
∥ ‖x2 − x̂2‖

+ l‖(S1 − S2P−1
3 PT

2 )E1‖
(
ρ(t, x) − ρ(t, y, x̂2)

)
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+‖S1 − S2P−1
3 PT

2 ‖Lf (‖x2 − x̂2‖ + ‖x2d − x̂2d‖)
)

− k(·)‖σ(·)‖
≤ α1 exp{−α2t}

( ∥
∥(S1 − S2P−1

3 PT
2 )A2

∥
∥ + l‖(S1 −

S2P−1
3 PT

2 )E‖Lρ + ‖S1 − S2P−1
3 PT

2 ‖(1
+ exp{α2d̄})Lf

)
‖σ(·)‖ − k(·)‖σ(·)‖. (6.111)

From the choice of k(·) in (6.105), it follows that

σ T (·)σ̇ (·) ≤ −η‖σ(·)‖.

Hence the conclusion follows. �
Theorem 6.5 shows that the control in (6.104) drives System (6.43)–(6.44) to

the sliding surface (6.76) and maintains a sliding motion thereafter. Theorem 6.4
has shown that the sliding motion is uniformly asymptotically stable under certain
conditions. From sliding mode control theory, the closed-loop system formed by
applying the control (6.104) to System (6.43)–(6.44) is uniformly asymptotically
stable.

Remark 6.16 From (6.76) and/or (6.81), it follows that the sliding surface is designed
in the augmented space (x, x̂2) and/or (x, e). The formulae in (6.76) and/or (6.81)
clearly show that it is not required that e(t) = 0 when the sliding motion takes place.
This implies that in the reduced-order sliding motion stability analysis, it is not
required that e(t) = 0. Also, in the reachability analysis, only the condition that

‖e(t)‖ ≤ α1 exp{−α2t}

is employed. It should be pointed out that here the fact that ‖e(t)‖ is bounded is
enough to guarantee reachability for some sufficiently large control, and it is not
required that the estimation error e(t) is zero.

Remark 6.17 As in much of the existing work [101, 131, 141, 184], the delay is
assumed to be known for the purpose of the observer design, which makes the
observer-based control scheme delay dependent.

6.4 Decentralised Static Output Feedback Sliding
Mode Control

In this section, a class of interconnected time-varying delay systems is considered
where both the known and unknown interconnections have time-delays. A decen-
tralised static output feedback sliding mode control, which is dependent on the time-
delay, is synthesised to control the interconnected system such that the corresponding
closed-loop system is globally uniformly asymptotically stable.
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6.4.1 Introduction

The phenomenon of time-delay is often encountered in interconnected engineering
systems.Mohmond and Bingulac [118] considered a class of interconnected systems
where a delay does not appear in the interconnection terms. However, the intercon-
nection between two or more physical systems is often accompanied by phenomena
such as material transfer, energy transfer and information transfer. From amathemat-
ical point of view, these transfer phenomena can be represented by delay elements
[127]. This has motivated the study of time-delay interconnected systems [22, 118,
187, 218].

It should be noted that most of the existing results for time-delay interconnected
systems are based on the assumption that all system states are available, and the asso-
ciated decentralised output feedback results are scarce. Specifically, when delays are
included, only a few results are available [72, 113, 135, 227]. A class of nonlinear
interconnected systems with triangular structure is considered in [72], and an inter-
connected system composed of a set of single-input single-output subsystems with
dead zone input is considered in [227]. Park et al. proposed a decentralised control
approach for large-scale discrete-delay systems in [135].However, in [135, 172, 227],
the control schemes are based on dynamical output feedback. A decentralised model
reference adaptive control scheme is proposed in [113] where the interconnections
are linear and matched.

Recently, various control approaches have been employed to deal with time-delay
control problems of interconnected systems. Adaptive control is usually powerful
for systems possessing parametric uncertainty [113], while backstepping approaches
require the considered systems to have a special structure [227]. Slidingmode control
is completely robust to so-called matched uncertainty, and can be used successfully
to deal with mismatched uncertainty [208]. Since the sliding mode dynamics are
reduced order, it is possible to reduce the conservatism in the stability analysis of
the sliding motion. This has motivated the application of sliding mode techniques
to time-delay systems [53, 112, 132, 154, 208]. However most of the published
work focuses on centralised control systems. In [200], a decentralised static output
feedback control scheme is proposed using sliding mode control but the results
obtained are local, and time-delays are not considered. Results on applying sliding
mode techniques to time-delayed interconnected systems are very few. In the limited
available literature [28, 56, 195], it is required that all system state variables are
available and the interconnection terms are linear and matched. The assumption that
all the terms involving time-delay are matched in [28, 156, 195] means the reduced-
order sliding mode is no longer a time-delay system. To date, a global decentralised
static output feedback slidingmode based control scheme for interconnected systems
with mismatched time-delay interconnections has not been formulated.

In this section, a class of nonlinear interconnected systems with time-varying
delays is considered, where the time-delay appears not only in the isolated sub-
systems, but also in the interconnections. The interconnections are separated into
matched and mismatched components and are dealt with separately to reduce the
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conservatism. Using appropriate coordinate transformations, sliding mode dynamics
are derived which are reduced-order time-delayed interconnected systems. Sufficient
conditions are developed using a Lyapunov–Razumikhin approach such that the slid-
ing motion is uniformly globally asymptotically stable. Unlike existing related work
[28, 156, 195], the derived sliding mode dynamics here involve time-delays due to
the delayed mismatched interconnections. A decentralised static output feedback
control strategy is proposed to drive the system to the composite sliding surface.

6.4.2 System Description and Problem Formulation

Consider a time-varying delayed interconnected system composed of n, ni-th order
subsystems

ẋi = Aixi + Bi
(
ui + Gi(t, xi, xidi)

) +
n∑

j=1
j �=i

(
Hijyjdj + ΔHij(t, xj, xjdj )

)

(6.112)

yi = Cixi, i = 1, 2, . . . , n, (6.113)

where xi ∈ R
ni , ui ∈ R

mi and yi ∈ R
pi withmi ≤ pi < ni are the state variables, inputs

andoutputs of the i-th subsystem respectively. The triples (Ai, Bi, Ci) andHij ∈ R
ni×pj

(i �= j) represent known constant matrices of appropriate dimensions with Bi and Ci

of full rank. The vector Gi(·) is a matched nonlinearity in the ith subsystem. The
terms ∑n

j=1
j �=i

Hijyjdj and
∑n

j=1
j �=i

ΔHij
(
t, xj, xjdj

)

are, respectively, known interconnections and uncertain interconnections in the i-th
subsystem. The symbols

xidi := xi(t − di) and yidi := yi(t − di)

represent delayed states and delayed outputs respectively, where di := di(t) is the
time-varying delay which is assumed to be known, continuous, nonnegative and
bounded in R+, that is

di := sup
t∈R+

{di(t), i = 1, . . . , n} < ∞.

The initial conditions are given by

xi(t) = φi(t) t ∈ [−di, 0]
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where theφi(·) are continuous in [−di, 0] for i = 1, 2, . . . , n. It is assumed that all the
nonlinear functions are smooth enough such that the unforced system has a unique
continuous solution.

Since the sliding motion is insensitive to matched uncertainty, it is useful to
deal with matched interconnections and mismatched interconnections separately to
reduce the conservatism. In view of this, consider the following decomposition of
the interconnection terms:

Hij = Ha
ij + Hb

ij (6.114)

ΔHij(·) = ΔHa
ij(t, xj, xjdj ) + ΔHb

ij(t, xj, xjdj ) (6.115)

where

Ha
ij = BiDij (6.116)

ΔHa
ij(t, xj, xjdj ) = BiΔΘij(t, xj, xjdj ) (6.117)

for some Dij ∈ R
mi×pi andΔΘij(·) ∈ R

mi whereΔΘij(·) is uncertain for i �= j, i, j =
1, 2, . . . , n.

Remark 6.18 From basic matrix theory, the decompositions in (6.114) and (6.115)
which satisfy (6.116) and (6.117) respectively, can be obtained in the following way.
Consider the l-th column vector H(l)

ij of matrix Hij for l = 1, 2, . . . , pj. For a given
matrix Bi, decompose

H(l)
ij = (H(l)

ij )a + (H(l)
ij )b

such that
(H(l)

ij )a ∈ Im(Bi) and (H(l)
ij )b ∈ (Im(Bi))

⊥

where (Im(Bi))
⊥ is the orthogonal complimentary space of Im(Bi). Then

Ha
ij =

[
(H(1)

ij )a (H(2)
ij )a · · · (H

(pj)

ij )a
]

Hb
ij =

[
(H(1)

ij )b (H(2)
ij )b · · · (H

(pj)

ij )b
]

will be a choice for the decomposition (6.114). The decomposition for the uncertain
interconnections ΔHij(t, xj, xjdj ) can be obtained in the same way.

Assumption 6.8 There exist known nonnegative continuous functions gi(·), αij(·)
and βij(·) such that for i, j = 1, 2, . . . , n

‖Gi(t, x, xidi)‖ ≤ gi(t, yi, yidi) (6.118)

‖ΔΘij(t, xj, xjdj )‖ ≤ αij(t, yj, yjdj )‖yjdj ‖, (i �= j) (6.119)

‖ΔHb
ij(t, xj, xjdj )‖ ≤ βij(t, yj, ‖yjdj ‖)‖yjdj ‖, (i �= j) (6.120)
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where βij(·, ·, r) is nondecreasing with respect to the variable r in R+.

Remark 6.19 Assumption 6.8 is a limitation on the uncertainties that can be toler-
ated by the system. Similar to [227], it is required that the interconnections can be
described or bounded by functions of the system outputs. Unlike [227], time-delays
are involved in the interconnections; the bounds on the uncertain interconnections
are nonlinear and the results obtained are global.

It follows from (6.115), (6.117), (6.119) and (6.120) that there exist known con-
tinuous functions ρij(·) such that

‖ΔHij(t, xj, xjdj )‖ ≤ ρij(t, yj, yjdj )‖yjdj ‖, i �= j, i, j = 1, 2, . . . , n. (6.121)

Assumption 6.9 rank(CiBi) = mi for i = 1, 2, . . . , n.

From[38],Assumption6.9 implies that there exists a nonsingular linear coordinate
transformation: x̃i = T̃ixi such that the triple (Ai, Bi, Ci) with respect to the new
coordinates has the structure

Ãi =
[

Ãi1 Ãi2

Ãi3 Ãi4

]

, B̃i =
[
0
B̃i2

]

, C̃i = [
0 C̃i2

]
(6.122)

where Ãi1 ∈ R
(ni−mi)×(ni−mi), B̃i2 ∈ R

mi×mi is nonsingular and C̃i2 ∈ R
pi×pi is

orthogonal.

Assumption 6.10 The triple (̃Ai1, Ãi2, Ξi) is output feedback stabilisable, where

Ξi := [
0(pi−mi)×(ni−pi) Ipi−mi

]
, i = 1, 2, . . . , n

Remark 6.20 In the regular form (6.122), thematrices Ãij with j = 1, 2, 3, 4, B̃i2, and
C̃i2 are dependent on the coordinate transformation used. However, if Assumption
6.9 holds, the satisfaction or otherwise of Assumption 6.10 does not depend on the
coordinate transformation employed. Hence, Assumptions 6.9 and 6.10 together,
describe inherent properties of the triple (Ai, Bi, Ci).

From Sect. 2.6, Assumptions 6.9 and 6.10 guarantee that there exist a coordi-
nate transformation xi �→ zi = Tixi which will transform the triple (Ai, Bi, Ci) to the
following form in the new coordinate system zi,

[
Ai1 Ai2

Ai3 Ai4

]

,

[
0

Bi2

]

,
[
0 Ci2

]
(6.123)

where Ai1 is stable and both Bi2 ∈ R
mi×mi and Ci2 ∈ R

pi×pi are nonsingular.
Note, the analysis above implies that mi < pi. However, if mi = pi, Assumption

6.10 can be replaced by the assumption that Ãi1 is stable. The associated discussion
becomes simpler in this case, and details are available in Sect. 5.3 in [38].

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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Remark 6.21 Assumptions 6.9 and 6.10 are limitations on the triples (Ai, Bi, Ci).
They ensure the existence of the output sliding surface. Assumption 6.10 requires
(̃Ai1, Ãi2, Ξi) instead of (Ai, Bi, Ci) as in [227] to be output feedback stabilisable.
The former is related to a system with order ni − mi, while the latter is an ni-th order
system. Sometimes this reduced order problem is more amenable to solution: for
example, if the matrix triple is related to a single-input and two-output system, the
output feedback problem reduces to a classical “root-locus” investigation [41].

The objective of this section is to design a variable structure control law of the
form

ui = ui(t, yi, yidi), i = 1, 2, . . . , n (6.124)

using sliding mode techniques such that the associated closed-loop system formed
by applying the control law in (6.124) to the interconnected system (6.112)–(6.113),
is globally uniformly asymptotically stable, even in the presence of the uncertainties
and time-delay. It is clear that the control ui in (6.124) depends on only the time t, the
i-th subsystem output yi and delayed output yidi . Since the di := di(t) for i = 1, . . . , n
are assumed to be known, the term yidi is available for design. The control in (6.124)
is called a delay dependent decentralised static output feedback control.

6.4.3 Sliding Mode Stability Analysis

A composite output sliding surface is presented for System (6.112)–(6.113) and the
associated slidingmode dynamics are derived. Then the stability of the slidingmotion
is investigated.

It has been shown in Sect. 2.6 that under Assumptions 6.9 and 6.10, there exist
matrices Fi ∈ R

mi×pi such that

Fi
[
0 Ci2

] = [
0 Fi2

]
(6.125)

where Fi2 ∈ R
mi×mi is any nonsingular matrix which does not affect the sliding

motion.
For the interconnected system (6.112)–(6.113), consider the composite sliding

surface defined by

{
col(x1, x2, . . . , xn)

∣
∣ Si(xi) = 0, i = 1, 2, . . . n

}
(6.126)

where
Si(xi) := FiCixi = Fiyi, i = 1, 2, . . . , n (6.127)

and the matrices Fi satisfying (6.125) can be obtained using the algorithm given in
[38].

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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Under Assumptions 6.9 and 6.10, it follows from the analysis in Sect. 6.4.2 that
there exists a coordinate transformation xi �→ zi = Tixi for i = 1, 2, . . . , n such that
in the new coordinates z = col(z1, z2, . . . , zn), the system (6.112)–(6.113) can be
described by

żi =
[

Ai1 Ai2

Ai3 Ai4

]

zi +
[

0
Bi2

] (
ui + Gi(t, T−1

i zi, T−1
i zidi) +

n∑

j=1
j �=i

(
Dijyjdj

+ΔΘij(t, T−1
j zj, T−1

j zjdj )
))

+
n∑

j=1
j �=i

Ti

(
Hb

ijyjdj + ΔHb
ij(t, T−1

j zj, T−1
j zjdj )

)
(6.128)

yi = [
0 Ci2

]
zi, i = 1, 2, . . . , n (6.129)

where Ai1 ∈ R
ni−mi is stable; both Bi2 ∈ R

mi×mi and Ci2 ∈ R
pi×pi are nonsingular;

Ha
ij(·) andHb

ij(·),ΔΘij(·) andΔHb
ij(·) are given in (6.114), (6.117) and (6.115) respec-

tively. Since Ai1 is stable, it follows that for any Qi > 0, the Lyapunov equation

AT
i1Pi + PiAi1 = −Qi, i = 1, 2, . . . , n (6.130)

has a unique solution Pi > 0 for i = 1, . . . n. For convenience, partition

Ti ≡:
[

Ti1

Ti2

]

, T−1
i ≡: [Wi1 Wi2] (6.131)

where Ti1 ∈ R
(ni−mi)×ni and Wi1 ∈ R

ni×(ni−mi). It is clear that System (6.128)–(6.129)
can be rewritten as

żi1 = Ai1zi1 + Ai2zi2 + ∑n
j=1
j �=i

Ti1

(
Hb

ijyjdj + ΔHb
ij(t, T−1

j zj, T−1
j zjdj )

)
(6.132)

żi2 = Ai3zi1 + Ai4zi2 + Bi2

(
ui + Gi(·) +

n∑

j=1
j �=i

(
Dijyjdj + ΔΘij(t, T−1

j zj, T−1
j zjdj )

))

+∑n
j=1
j �=i

Ti2

(
Hb

ijyjdj + ΔHb
ij(t, T−1

j zj, T−1
j zjdj )

)
(6.133)

yi = [
0 Ci2

]
zi, i = 1, 2, . . . , n, (6.134)

where zi := col(zi1, zi2) with zi1 ∈ R
ni−mi and zi2 ∈ R

mi .
From (6.127), (6.134) and (6.125),

Si(xi) = Fiyi = Fi
[
0 Ci2

]
zi = [0 Fi2]

[
zi1

zi2

]

= Fi2zi2
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where Fi2 ∈ R
mi×mi is nonsingular. Therefore, in the new coordinates z, the sliding

surface (6.126) can be described by

{
col

(
z1, z2, . . . , zn

) | zi2 = 0, i = 1, 2, . . . , n
}
. (6.135)

Further, partition the output distribution matrix in (6.134) as

[0 Ci2] =
[
0 Ci21︸ ︷︷ ︸

Cis

Ci22

]
. (6.136)

where Cis := [0 Ci21] ∈ R
pi×(ni−mi) and Ci22 ∈ R

pi×mi . When the system in
(6.132)–(6.133) is constrained to the sliding surface, zi2 = 0, from partition (6.131)

T−1
i zi = Wi1zi1 and T−1

i zidi = Wi1zi1di .

From (6.136), the i-th subsystem output yi is described by

yis := [0 Ci21]zi1 = Ciszi1, i = 1, 2, . . . , n. (6.137)

Then, from the structure of System (6.132)–(6.133), the sliding mode dynamics of
System (6.112)–(6.113) associated with the sliding surface (6.126) is described by

żi1 = Ai1zi1 +
n∑

j=1
j �=i

Ti1

(
Hb

ijCjszj1dj + ΔHb
ij(t, Wj1zj1, Wj1zj1dj )

)
(6.138)

where Wi1 is defined by the partition (6.131) for i = 1, 2, . . . , n. Obviously, System
(6.138) is a reduced-order interconnected system with dimension

∑n
i=1(ni − mi)

when compared with the system (6.112)–(6.113) which has dimension
∑n

i=1 ni.

Theorem 6.6 Assume that Assumptions 6.8–6.10 hold. Then, for the sliding surface
in (6.126), the sliding motion associated with the time-delay interconnected system
(6.112)–(6.113), is governed by dynamical system (6.138). Moreover, the sliding
motion is globally uniformly asymptotically stable if

(i) the ni × ni symmetric matrix

Ni : = Qi − PiTi1

(∑n
j=1
j �=i

1
εj

Hb
ijCjsP

−1
j CT

js(H
b
ij)

T
)

TT
i1Pi − q

∑n
j=1
j �=i

εjPj > 0

for some q > 1 and εi > 0 for i = 1, 2, . . . , n
(ii) the n × n matrix function M + MT > 0 where M = [mij(·)]n×n is defined by

mij(·) :=
{

λmin(Ni), i = j
−γjβij(t, Ciszi1γj‖Cjs‖ ‖zj1‖)‖PiTi1‖ ‖Cjs‖, i �= j
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for some γi > 1 for i, j = 1, 2, . . . , n and μ := inf
z11,··· ,zn1

{λmin(M + MT )} > 0.

Proof The analysis above has shown that for System (6.112)–(6.113), the reduced-
order sliding mode dynamics associated with the sliding surface (6.126) are given
by the system described in (6.138). All that remains to be proved is that (6.138) is
globally uniformly asymptotically stable.

For System (6.138), consider the Lyapunov function candidate

V (z11, z21, . . . , zn1) =
n∑

i=1

zT
i1Pizi1

where Pi > 0 satisfies (6.130) for i = 1, 2, . . . , n. Then, the time derivative of V (·)
along the trajectories of System (6.138) is given by

V̇ |(6.138) = −
n∑

i=1

zT
i1Qizi1 + 2

n∑

i=1

n∑

j=1
j �=i

zT
i1PiTi1Hb

ijCjszj1dj

+ 2
n∑

i=1

n∑

j=1
j �=i

zT
i1PiTi1ΔHb

ij(·) (6.139)

where (6.130) has been used to obtain the expression in (6.139).
From Lemma B.1 (see Appendix B.1), it follows that for any εj > 0,

2zT
i1PiTi1Hb

ijCjszj1dj ≤ 1

εj
zT

i1PiTi1Hb
ijCjsP

−1
j (Ti1Hb

ijCjs)
T Pizi1

+ εjz
T
j1dj

Pjzj1dj , (i �= j). (6.140)

Since the zi1 for i = 1, 2, . . . , n are independent of each other, it is clear that

V (z11d1 , z21d2 , . . . , zn1dn) ≤ qV (z11, z21, . . . , zn1)

for q > 1, is equivalent to

zT
i1di

Pizi1di ≤ qzT
i1Pizi1, i = 1, 2, . . . , n (6.141)

which implies1

‖zi1di‖ ≤ γi‖zi1‖, i = 1, 2, . . . , n (6.142)

1It is clear that Inequality (6.141) implies that λmin(Pi)‖zi1di ‖2 ≤ qλmax(Pi)‖zi1‖2 from which
it follows ‖zi1di ‖ ≤ q

√
λmax(Pi)/λmin(Pi) ‖zi1‖. This shows that one choice for γi in (6.142)

is γi = q
√

λmax(Pi)/λmin(Pi) for i = 1, 2, . . . , n where q can be chosen as any constant bigger
than 1.
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for some positive constants γi > 1 with i = 1, 2, . . . , n. Further from (6.137) and
(6.142),

‖yisdi‖ = ‖Ciszi1di‖ ≤ γi‖Cis‖ ‖zi1‖. (6.143)

Since βij(t, yjs, r) is nondecreasing with respect to the variable r ∈ R
+, from (6.120),

(6.143) and (6.137)

PiTi1ΔHb
ij(·) ≤ γjβij(t, Cjszj1, γj‖Cjs‖ ‖zj1‖)‖PiTi1‖ ‖Cjs‖ ‖zj1‖ (i �= j). (6.144)

Therefore, from (6.139), (6.140) and (6.144), when

V (z11d1 , z21d2 , . . . , zn1dn) ≤ qV (z11, z21, . . . , zn1)

it follows that

V̇ |(6.138) ≤ −
n∑

i=1

zT
i1Qizi1 +

n∑

i=1

n∑

j=1
j �=i

( 1

εj
zT

i1PiTi1Hb
ijCjsP

−1
j (Ti1Hb

ijCjs)
T Pizi1

)

+
n∑

i=1

n∑

j=1
j �=i

εjz
T
j1Pjzj1

+ 2
n∑

i=1

n∑

j=1
j �=i

γjβij(t, Cjszj1, γj‖Cjs‖ ‖zj1‖) ‖PiTi1‖ ‖Cjs‖ ‖zj1‖ ‖zi1‖

≤ −
n∑

i=1

zT
i1Nizi1

+ 2
n∑

i=1

n∑

j=1
j �=i

γjβij(t, Cjszj1, γj‖Cjs‖ ‖zj1‖)‖PiTi1‖ ‖Cjs‖ ‖zi1‖ ‖zj1‖

= −1

2
[‖z11‖ ‖z21‖ · · · ‖zn1‖](M + MT )

⎡

⎢
⎣

‖z11‖
...

‖zn1‖

⎤

⎥
⎦

≤ −1

2
inf

z11,··· ,zn1

{λmin(M + MT )}
n∑

i=1

‖zi1‖2

= −1

2
μ‖z‖2 (6.145)

where z = col(z1, z2, . . . , zn). Sinceμ > 0, the conclusion follows from LemmaA.1
(See Appendix A.1). ∇
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Remark 6.22 If mr0 = pr0 for the r0-th (1 ≤ r0 ≤ n) subsystem, then

yr0 = zr02

and thus from (6.137), yr0s = 0. In this case, from the proof of Theorem6.6, condition
(i) in Theorem 6.6 can be weakened to be

Ni = Qi − PiTi1

(∑n
j=1

j �=i,r0

1
εj

Hb
ijCjsP

−1
j CT

js(H
b
ij)

T
)

TT
i1Pi − q

∑n
j=1

j �=i,r0
εjPj > 0,

for i = 1, 2, . . . , n.

6.4.4 Reachability Analysis

The objective in this section is to design a decentralised static output feedback sliding
mode control such that the system states are driven to the sliding surface (6.126). For
the interconnected system (6.112)–(6.113), the reachability condition is described
by (see, [69])

n∑

i=1

ST
i (xi)Ṡi(xi)

‖Si(xi)‖ < 0 (6.146)

where the switching function Si(·) is defined by (6.127). In order to develop a global
reachability condition based on static output feedback control, the following condi-
tion is imposed on the System (6.112)–(6.113).

Assumption 6.11 The matrix equation

ΓiCi = FiCiAi

is solvable for Γi with i = 1, 2, . . . , N .

Remark 6.23 Assumption 6.11 is required to guarantee global reachability, and is
unnecessary when only the local case is considered. Similar conditions have been
employed by Hui and Zak in [219].

Theorem 6.7 Consider the time-delay interconnected system (6.112)–(6.113).
Under Assumptions 6.8–6.11, there exists a global delay dependent static output
feedback decentralised control law which drives the system (6.112)–(6.113) to the
composite sliding surface (6.126), and maintains a sliding motion on it thereafter.

Proof Since the triple in (6.123) is obtained from (Ai, Bi, Ci)using the transformation
zi = Tixi, it follows that for i = 1, 2, . . . , n

TiBi =
[

0
Bi2

]

, CiT
−1
i = [

0 Ci2
]
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where both Bi2 ∈ R
mi×mi and Ci2 ∈ R

pi×pi are nonsingular. Then, from (6.125), it
follows that

FiCiBi = Fi [0 Ci2]

[
0

Bi2

]

= Fi2Bi2

which shows thatFiCiBi is nonsingular becauseFi2 andBi2 are nonsingular.Construct
a variable structure control

ui = −(FiCiBi)
−1
{
Γiyi +

(
‖FiCiBi‖gi(t, yi, yidi) + ηi +

n∑

j=1
j �=i

‖FjCjHji‖‖yidi‖

+
n∑

j=1
j �=i

‖FjCj‖ ρji(·)‖yidi‖
)
sgn(Fiyi)

}
(6.147)

where gi(·) and ρij(·) (i �= j) are defined by (6.118) and (6.121) respectively;
ηi can be chosen as any positive constant for i, j = 1, 2, . . . , n, and the symbol
sgn(·) denotes the usual signum vector function. From (6.112), (6.127), (6.121) and
Assumption 6.11

n∑

i=1

ST
i (xi)Ṡi(xi)

‖Si(xi)‖ ≤
n∑

i=1

(Fiyi)
T

‖Fiyi)‖Γiyi +
n∑

i=1

(Fiyi)
T

‖Fiyi)‖FiCiBi
(
ui + Gi(t, xi, xidi)

)

+
n∑

i=1

n∑

j=1
j �=i

‖FiCiHij‖ ‖yjdj ‖

+
n∑

i=1

n∑

j=1
j �=i

ρij(t, yj, yjdj )‖FiCi‖ ‖yjdj ‖. (6.148)

Substituting the control from (6.147) into (6.148), it follows from (6.118) that

n∑

i=1

ST
i (xi)Ṡi(xi)

‖Si(xi)‖

≤
n∑

i=1

(
− (Fiyi)

T sgn(Fiyi)

‖Fiyi‖ ‖FiCiBi‖gi(t, yi, yidi) + ‖FiCiBi‖ ‖Gi(t, xi, xidi)‖
)

−
n∑

i=1

(Fiyi)
T sgn(Fiyi)

‖Fiyi‖ ηi −
n∑

i=1

(Fiyi)
T sgn(Fiyi)

‖Fiyi‖
( n∑

j=1
j �=i

‖FjCjHji‖
)
‖yidi‖

+
n∑

i=1

( n∑

j=1
j �=i

‖FjCjHji‖
)

‖yidi‖
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−
n∑

i=1

(Fiyi)
T sgn(Fiyi)

‖Fiyi‖
n∑

j=1
j �=i

ρji(t, yi, yidi)‖FiCi‖ ‖yjdj ‖

+
n∑

i=1

n∑

j=1
j �=i

ρij(t, yj, yjdj )‖FjCj‖ ‖yjdj ‖ ≤ −
n∑

i=1

ηi < 0

where the conclusions (i) and (ii) of Lemma B.2 (See Appendix B.2) are employed
to achieve the expressions above. Hence the conclusion follows. ∇

From sliding mode control theory, Theorems 6.6 and 6.7 together show that the
proposed decentralised output feedback control law in (6.147) uniformly asymptot-
ically stabilises the system (6.112)–(6.113) globally.

Remark 6.24 From the proof in Theorem 6.7, when the interconnections can be
expressed in a superposition form as

∑n
j=1
j �=i

Φij(·) where Φij(·) can be expressed in

terms of (or bounded by) functions of known information: t, yj and yjdj , the intercon-
nection effects can be canceled completely by designing an appropriate decentralised
control law to guarantee reachability.

Remark 6.25 If there exists a term, for example, Ĥikxk (i �= k) in the i-th intercon-
nections, the approach proposed here can be applied directly. In this case, condition
(i) in Theorem 6.6 should be replaced by

Ni : = Qi − PiTi1

( n∑

j=1
j �=i

1

εj
Hb

ijCjsP
−1
j CT

js(H
b
ij)

T
)

TT
i1Pi − q

n∑

j=1
j �=i

εjPj

−
(
(Ĥb

ikTi1)
T Pi + PiTi1Ĥb

ik

)
> 0.

Also, a condition that there exists a matrix Γik such that

ΓikCk = FiCiĤik (6.149)

needs to be added to Assumption 6.11. The example in Sect. 6.6 will be used to
illustrate this.

6.5 Numerical Simulation Examples

In this section, numerical examples with simulation are provided to illustrate the
control schemes proposed in Sects. 6.2–6.4.



198 6 Delay Dependent Output Feedback Control

6.5.1 Static Output Feedback Control

Consider the time-varying delay system with delayed disturbance described by

ẋ =
⎡

⎣
−10 1 0

1 0 0
0 1 −5

⎤

⎦

︸ ︷︷ ︸
A

x +
⎡

⎣
0 0 0

−1 0 1
0 0 0

⎤

⎦

︸ ︷︷ ︸
A0

x(t − d(t))

+
⎡

⎣
0
−1
0

⎤

⎦

︸ ︷︷ ︸
B

(
u(t) + g(t, x(t), x(t − d(t)))

)
+

⎡

⎣

√
2β1(t, x(t), x(t − d(t)))x1(t) + β2(t, x(t), x(t − d(t)))x1(t − d(t))

0
β1(t, x(t), x(t − d(t)))x3(t) + β2(t, x(t), x(t − d(t)))x3(t − d(t)))

⎤

⎦

︸ ︷︷ ︸
f (t,x(t),x(t−d(t)))

(6.150)

y =
[
0 0 1
0 1 0

]

︸ ︷︷ ︸
C

x (6.151)

where x = col(x1, x2, x3), u and y = col(y1, y2) are respectively the state variables,
the inputs and the outputs of the system. The unknown functions β1(·) and β2(·) are
time-delayed disturbances which are assumed to satisfy

|β1(·)| ≤ (y2(t))2 | sin y1(t − d(t))|
|β2(·)| ≤ |y1(t − d(t))| sin2 y1(t) + (y2(t))2.

The matched delayed disturbance g(·) has unknown structure but satisfies

‖g(·)‖ ≤ y42(t) sin
2 y1(t − d(t))

︸ ︷︷ ︸
�(·)

.

The domain considered here is

Ω =
{

(x1, x2, x3) | x2 ∈ R,
1

2
x21 + x23 < 12

}

.

Obviously
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‖f (t, x(t), x(t − d(t)))‖ ≤ √
2(y2(t))

2 | sin y1(t − d(t))|
︸ ︷︷ ︸

ρ1(·)
‖x(t)‖

+ (|y1(t − d(t))| sin2 y1(t) + (y2(t))
2
)

︸ ︷︷ ︸
ρ2(·)

‖x(t − d(t))‖

and Assumption 6.2 holds.
Clearly CB = [

0 −1
]T

is full rank. According to the algorithm given in [37], the
coordinate transformation x̃ = T̃x with

T̃ =
⎡

⎣
−1 0 0
0 0 1
0 1 0

⎤

⎦

transforms the triple (A, B, C) into the following from

[
Ã11 Ã12

Ã21 Ã22

]

=
⎡

⎣
−10 0 −1
0 −5 1

−1 0 0

⎤

⎦ , (6.152)

[
0

B̃2

]

=
⎡

⎣
0
0

−1

⎤

⎦ ,
[
0 T̆2

]
= [0 I2] . (6.153)

It is clear that the triple (A, B, C) is output feedback normalisable with the choice
K = 0 due to the stability of Ã11. Further Im(A0) ⊂ Im(B) since A0 = BD with
D = [

1 0 −1
]
. Therefore Assumption 6.1 is satisfied.

Since (6.152)–(6.153) already has the regular form (6.5)–(6.7), it follows that

T = T̃ , A11 = Ã11

A12 = Ã12, A21 = Ã21

A22 = Ã22, B2 = B̃2, C2 = C̃2 = I2.

Let Q = 10I2. It follows that the Lyapunov equation (6.21) has a unique solution

P = diag{0.5, 1}

and thus

P
1
2 = diag

{√
2

2
, 1

}

.

According to [37], choose F = [
0 1

]
. The designed sliding surface from (6.17) is

then described by
S(x) = {(x1, x2, x3) | y2 = 0}. (6.154)
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By direct computation, it follows from (6.16) that

f1 =
[
2 0
0 1

]

β1(·)P 1
2 z1(t) +

[√
2 0

0 1

]

β2(·)P 1
2 z1(t − d(t)). (6.155)

When a sliding motion takes place, y2(t) = 0, and thus

β1(·) = 0, |β2(·)‖ ≤ |y1(t − d(t))| sin2 y1(t).

Then,

∥
∥
∥P

1
2 [f1(t, z(t), z(t − d(t)))]z2(t)=0

∥
∥
∥

≤ ‖z1(t − d(t))‖ (sin y1(t))
2
∥
∥
∥P

1
2 z1(t − d(t))

∥
∥
∥ . (6.156)

By comparing (6.156) with (6.22), it follows that

ψ1(·) = 0

ψ2(·) = ‖z1(t − d(t))‖(sin y1(t))
2.

Therefore,
Θ(t, z1(t)) = ζ 2

√
2(sin y1(t))

2‖P
1
2 z(t)‖.

Let ζ = 1.01. By direct computation, γ > 0.0026 > 0 in T(Ω), and thus the condi-
tions of Theorem 6.1 hold in the domain T(Ω). From (6.36) and (6.37), the control
is given as follows:

u =
(
10.0499μ1 +

√
(y2(t))2 + (y2(t) − 5y1(t))2 + y42(t) sin

2 y1(t − d(t))

+√
2(y2(t))

2 | sin y1(t − d(t))| (μ1 + ‖y‖) +
(
|y1(t − d(t))| sin2 y1(t)

+(y2(t))
2
)
(μ2 + ‖y(t − d(t))‖) + η

)
sgn(y2(t)). (6.157)

For implementation purposes, choose

μ1 = μ2 = 2 and η = 1.

The time-varying delay d(t) is chosen as

d(t) = 2 + sin t.
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Fig. 6.1 The time responses
of the state variables of
System (6.150)–(6.151)
under control (6.157)
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Fig. 6.2 The time responses
of control signal (6.157)
(upper) and sliding function
(6.154) (lower)
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A simulation with the initial condition

φ(t) = col(cos(t), 1,−2 sin(t))

is shown in Figs. 6.1 and 6.2 and confirms that the proposed approach is effective.
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6.5.2 Reduced-Order Observer-Based Feedback Control

Consider a time-delay system described by

ẋ =
⎡

⎣
−1 0 0
0 1 0
1 0 −1

⎤

⎦

︸ ︷︷ ︸
A

x +
⎡

⎣
1
1

−1

⎤

⎦

︸ ︷︷ ︸
B

u + 1

2

⎡

⎣
1 1
1 −1
0 0

⎤

⎦

︸ ︷︷ ︸
E

Δf (·)

+
⎡

⎣
x211x13d

x211x13d + |x12|x12d exp{−t − 2}
−x211x13d

⎤

⎦

︸ ︷︷ ︸
f (t,x,xd )

(6.158)

y =
[
1 0 0
0 1 0

]

︸ ︷︷ ︸
C

x (6.159)

where x = col(x11, x12, x13) ∈ R
3, u1 ∈ R and y = col(y11, y12) ∈ R

2 are, respec-
tively, the state variables, input and outputs of the system. The uncertainty is assumed
to satisfy

‖Δf (t, x, xd)‖ ≤ 0.3|x12| sin2(t)︸ ︷︷ ︸
ρ(·)

‖xd‖.

The considered domain is

Ω := {
(x11, x12, x13)| |x11| < 5, |x12| < 1.16, |x13| < 5

}
.

It is clear that Assumptions 6.4 and 6.7 hold, and

f (·) =
⎡

⎣
0 0 x211
0 |x12| exp{−t − 2} x211
0 0 −x211

⎤

⎦

︸ ︷︷ ︸
Φ(·)

xd

= x211x13dB +
⎡

⎣
0 0 0
0 |x12| exp{−t − 2} 0
0 0 0

⎤

⎦

︸ ︷︷ ︸
Φ1(·)

xd (6.160)

which shows that Assumption 6.6 holds. Let

L0 =
[
0 0 1
0 2 0

]T

.
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It is straightforward to check that A − L0C is stable and Assumption 6.5 holds with

P0 = 0.5I3

and
F = diag{0.25,−0.25}.

Let ε = 0.8. It follows that the conditions in Theorem 6.3 are satisfiedwith γ = 0.01,
and thus the reduced-order observer (6.59) is well defined and

α1 = 5, α2 = 0.1825.

According to the algorithm given in [38], the sliding surface is chosen as

S := [S1 S2] = [0.1961 − 0.9806 | 0] (6.161)

and the coordinate transformation matrix T is

T = [T1 T2] =
⎡

⎣
0.1961 0.9806 0

−0.9806 0.1961 0
0 0 1

⎤

⎦ .

Then,
ST = [1 0 0]

and

[
D1 D2

D3 D4

]

:=
⎡

⎣
0 0 0

[2mm]1 −1.5 0
−0.9806 1.4709 −1

⎤

⎦

[
H1

H2

]

:= 10−15

⎡

⎣
−0.0833
0.1249

−0.1061

⎤

⎦

[
M1

M2

]

:= 10−15

⎡

⎣
0 0 0.0833
0 0 −0.1249
0 0 0.1061

⎤

⎦

[
N1

N2

]

:=
⎡

⎣
0 0 0

1.2748 −1.2748 0
−0.2500 1.2500 ←−1

⎤

⎦ .

When the system is constrained to the sliding surface, it follows from (6.161) that

x12 = 0.9806S2e + 0.1961z12 = 0.1961z12 (6.162)
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where z =: col(z11, z12, z13). From Remark 6.15, the function matrix Φ(·) in
Theorem 6.4 can be replaced by Φ1(·) in (6.160). Let

q2 = 1.01, ε1 = 2, and ε2 = 0.8.

By direct computation, it follows that the matrix W defined in Theorem 6.4 is given
by ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.2848 0.3063 0 −0.0833� 0 0
0.3063 −0.4794 0 0.0490� 0 0

∗ ∗ −0.1825 0 0 0
∗ ∗ ∗ −0.3768 −0.2942 0
∗ ∗ ∗ −0.2942 −0.2550 0
∗ ∗ ∗ ∗ ∗ −0.1080

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where
� := |x12| exp{−t − 2}

and ∗ represents the corresponding symmetric entries, which is negative definite
in the considered domain Ω with maximum eigenvalue q0 = −0.0125. Therefore,
the associated sliding motion is uniformly asymptotically stable. Further, by direct
computation, Lρ and LΦ1 can be given by

Lρ = sin2 t and LΦ1 = exp{−t − 2}.

Then the k(·) satisfying (6.105) can be determined directly and thus the controller
(6.104) is well defined. For simulation purposes, the uncertainty Δf (·) is chosen as

Δf (·) =
[

0.27x12 sin2(t)‖xd‖
−0.12x12 sin2(t)‖xd‖

]

.

Let η = 2, and x0 = (−3.5,−1, 4.5) with ŵ20 = 2. Assume the delay is

d(t) = 5 + sin(t)

and the initial condition associated with the delay is

φ(t) = [cos(t) 0 1 + 2 sin(t)]T .

The simulation results in Fig. 6.3 demonstrate that the proposed approach is effective.
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Fig. 6.3 Evolution of states, control, sliding function and estimate error (e(t):=x13 − x̂13)

6.5.3 Decentralised Output Feedback Control

Consider an interconnected time-delay system composed of two third-order subsys-
tems and described by

ẋ1 =
⎡

⎣
−8 0 1
0 −8 1
1 1 0

⎤

⎦

︸ ︷︷ ︸
A1

x1 +
⎡

⎣
0
0
1

⎤

⎦

︸ ︷︷ ︸
B1

(
u1 + (x11 + x12)

2x13d1 sin x12d1Δg1(·)
︸ ︷︷ ︸

G1(·)

)

+
⎡

⎣
0 −1
1 0
4 1

⎤

⎦

︸ ︷︷ ︸
H12

y2d2 (6.163)

ẋ2 =
⎡

⎣
−6 0 1
0 −6 1
1 1 0

⎤

⎦

︸ ︷︷ ︸
A2

x2 +
⎡

⎣
0
0
1

⎤

⎦

︸ ︷︷ ︸
B2

(
u2 + Δg2(·)︸ ︷︷ ︸

G2(·)

)
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+
⎡

⎣
4(x11d1 + x12d1)(sin x13)2Δh1(·)

4(sin x13)2x13d1(Δh1(·))2
(x11 + x12) x13d1(sin x11d1)

2Δh2(·)

⎤

⎦

︸ ︷︷ ︸
ΔH21(·)

(6.164)

y1 =
[
1 1 0

0 0 1

]

︸ ︷︷ ︸
C1

x1 (6.165)

y2 =
[
1 1 0

0 0 1

]

︸ ︷︷ ︸
C2

x2 (6.166)

where x1 = col(x11, x12, x13) ∈ R
3 and x2 = col(x21, x22, x23) ∈ R

3, u1 ∈ R and u2 ∈
R, and y1 = col(y11, y12) ∈ R

2 and y2 = col(y21, y22) ∈ R
2 are, respectively, the state

variables, inputs and outputs of the system. The uncertaintiesΔg1(·),Δg2(·),Δh1(·)
and Δh2(·) are assumed to satisfy

|Δg1(·)| ≤ (x13d1)
2 sin2(x11 + x12)

|Δh1(·)| ≤ 1
|Δg2(·)| ≤ |x21d2 + x22d2 | x223 sin2 x22
|Δh2(·)| ≤ ‖y1d1‖.

In this example,
ΔH12 = 0 and H21 = 0.

The decompositions (6.114) and (6.115) can be given as

Ha
12 =

⎡

⎣
0 0
0 0
4 1

⎤

⎦ , Hb
12 =

⎡

⎣
0 −1
1 0
0 0

⎤

⎦ (6.167)

ΔHa
12 = ΔHb

12 = 0, Ha
21 = Hb

21 = 0 (6.168)

ΔHa
21 = B2 (x11 + x12) x13d1(sin x11d1)

2Δh2(·)
︸ ︷︷ ︸

Θ21(·)
(6.169)

|Θ21| ≤ |y11y12d1 |︸ ︷︷ ︸
α21(·)

‖y1d1‖ (6.170)

ΔHb
21 =

⎡

⎣
4(x11d1 + x12d1)(sin x13)2Δh1(·)

4(sin x13)2x13d1(Δh1(·))2
0

⎤

⎦ (6.171)

‖ΔHb
21(·)‖ ≤ 4 sin2 y12

√

y211d1
+ y212d1

= 4 sin2 y12
︸ ︷︷ ︸

β21(·)
‖y1d1‖. (6.172)
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It is straightforward to check that Assumption 6.8 is satisfied with

g1(·) = y211|y12d1 |3 sin2 y11, g2(·) = |y21d2 |y222
α12(·) = 0, α21(·) = |y11y12d1 |
β12(·) = 0, β21(·) = 4 sin2 y12

ρ12(·) = 0, ρ21(·) =
√

16 sin4 y12 + (y11y12d1)
2.

Assumption 6.9 can also be shown to hold. Using the algorithm given in [38], it
follows that Assumption 6.10 is satisfied with

K̃1 = K̃2 = 0

and the coordinate transformations zi = Tixi for i = 1, 2 are given by

T1 =
⎡

⎣
0.7071 −0.7071 0

−1 −1 0
0 0 −1

⎤

⎦ and T2 =
⎡

⎣
0.7071 −0.7071 0

−1 −1 0
0 0 −1

⎤

⎦

and the sliding surface matrices are

F1 = [0 1] and F2 = [0 1].

Let
Q1 = Q2 = I2.

The corresponding solutions to the Lyapunov equations (6.130) are

P1 =
[
0.0625 0

0 0.0625

]

and P2 =
[
0.0833 0

0 0.0833

]

.

Further, choose p = γ1 = γ2 = 1.1. By direct computation,

N1 =
[

0.9108 − 0.0083
−0.0083 0.9049

]

N2 =
[
0.9375 0

0 0.9375

]

M =
[

0.8991 0
−0.5185 sin2 y12 0.9375

]

.

It can be verified that the conditions in Theorem 6.6 are satisfied globally. So from
Theorem 6.6, the sliding motion associated with the sliding surface
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{(x11, x12, x13, x21, x22, x23) | x13 = 0, x23 = 0}

is globally uniformly asymptotically stable. By direct computation, Assumption 6.11
is satisfied with

Γ1 = Γ2 = [
1 0

]
.

From Theorem 6.7, the decentralised control law

u1 = −y11 −
(

y211|y12d1 |3 sin2 y11 +
√

16 sin4 y12 + (y11y12d1)
2 + 20

)
sgn(y12)

u2 = −y21 − (|y21d2 |y222 + 2.0616‖y2d2‖ + 16
)
sgn(y22)

stabilises the system (6.163)–(6.164) globally.
For simulation purposes, assume the delays are

d1(t) = 2 − sin(t)

and
d2(t) = 1 − 0.5 cos(t).

The initial conditions are

φ1(t) = col(cos(t), 0,−2 sin(t))
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Fig. 6.4 The evolution of the state variables of the system (6.163)–(6.164)
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Fig. 6.5 The time responses of the control signal and sliding functions

and
φ2(t) = col(0, 1, 2 + sin(t)).

The simulation results in Figs. 6.4 and 6.5 demonstrate that the proposed approach
is effective.

Remark 6.26 In the example above, the interconnection terms have been decom-
posed into matched and mismatched parts as in (6.167)–(6.172). These are subse-
quently ‘processed’ separately. If all the interconnections in the example are taken
as mismatched, then, the conditions of Theorem 6.6 will not be satisfied. This shows
that the decomposition in (6.114) and (6.115) can be used to reduce conservatism.

6.6 Application to River Pollution Control

In this section, the decentralised control scheme developed in Sect. 6.4will be applied
to a river pollution control problem.

Consider a two-reach model of a river pollution control problem [111]. It is
assumed that the concentration of biochemical oxygen demand (BOD) for the first
subsystem is perturbed by a time-delay. Then, based on the approach given in [15],
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the system can be described by

ẋ1 =
[−1.32δ 0

−0.32 −1.2

]

︸ ︷︷ ︸
A1

x2 +
[
0.1
0

]

︸ ︷︷ ︸
B1

(
u1 +

[−13.2(1 − δ)

0

]

y1d1

︸ ︷︷ ︸
G1(·)

)

+ΔH12(·) (6.173)

ẋ2 =
[−1.32 0

−0.32 −1.2

]

︸ ︷︷ ︸
A2

x2 +
[
0.1
0

]

︸ ︷︷ ︸
B2

(u2 + G2(·)) +
[
0.9δ
0

]

︸ ︷︷ ︸
H21

y1d1 +
[
0.9 0
0 0.9

]

︸ ︷︷ ︸

Ĥ21

x1

+
[−0.9δy1
0

]

︸ ︷︷ ︸
ΔH21(·)

(6.174)

y1 = [
1 0

]

︸ ︷︷ ︸
C1

x1, y2 = [
1 0

]

︸ ︷︷ ︸
C2

x2 (6.175)

where x1 := col(x11, x12) and x2 := col(x21, x22). The variables xi1 and xi2 represent
the concentration of the BODand the concentration of dissolved oxygen respectively,
and the controls ui are theBODof the effluent discharge into the river for i = 1, 2. The
constant δ ∈ [0, 1] is the retarded coefficient. The uncertainties G2(·) and ΔH12(·)
are added to illustrate the obtained results, and are assumed to satisfy

|G2(·)| ≤ (y2d2)
2 sin2 y2

‖ΔH12‖ ≤ exp{y2 − 2}|y2d2 sin t|.

Let
δ = 0.5, g1 = 6.6|y1d1 | g2 = (y2d2)

2 sin2 y2
α12 = β12 = ρ12 = exp{y2 − 2}| sin t|, H12 = 0

H21 =
[
0.45
0

]

︸ ︷︷ ︸
Ha

21

+
[
0
0

]

︸︷︷︸
Hb

21

, Ha
21 = 0.45︸︷︷︸

D21

B2

ΔH21 =
[−0.45y1
0

]

︸ ︷︷ ︸
ΔHa

21

+
[
0
0

]

︸︷︷︸
ΔHb

21

, ΔHa
21 = −0.45y1

︸ ︷︷ ︸
ΔΘ21

B2

α21 = ρ21 = 0.45, β21 = 0

Ĥ21 =
[
0.9 0
0 0

]

︸ ︷︷ ︸

Ĥa
21

+
[
0 0
0 0.9

]

︸ ︷︷ ︸

Ĥb
21

, Ĥa
21 = B2

[
9 0

]

︸ ︷︷ ︸

D̂21

.
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It is straightforward to check that Assumptions 6.8 and 6.9 hold. Since both the
subsystems are square, Assumption 6.10 is replaced by the condition that Ãi1 is
stable [38]. The coordinate transformation matrices Ti are chosen as

T1 = T2 =
[
0 1
1 0

]

.

Then
[

A11 A12

A13 A14

]

=
[−1.2 −0.32
0 −0.66

]

,

[
A21 A22

A23 A24

]

=
[−1.2 −0.32
0 −1.32

]

[
0

B12

]

=
[

0
B22

]

=
[
0
1

]

,
[
0 C12

] = [
0 C22

] = [
0 1

]
.

Let Q1 = Q2 = 2.4. Then, P1 = P2 = 1. The sliding matrices are given by

F1 = F2 = 1

and the sliding functions are

S1 = y1 and S2 = y2.

By direct computation, Assumption 6.11 holds with

Γ1 = −0.66

and
Γ2 = −1.32

and Eq. (6.149) is satisfied with
Γ21 = 0.9.

Following Remark 6.25, it is directly verified that the conditions in Theorem 6.6 hold
with

p = γ1 = γ2 = 1.01.

Then, System (6.173)–(6.175) is stabilisable globally by the control

u1 = −10
{−0.66y1 + 0.9y1 + (

1.56|y1d1 | + 1
)
sgn(y1)

}
(6.176)

u2 = −10
{

− 1.32y2 + (0.1(y2d2 sin y2)
2 + 5

+ exp{y2 − 2}| sin t|)sgn(y2)
}

(6.177)
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Fig. 6.6 The evolution of
the state variables of the
system (6.173)–(6.175)
under control
(6.176)–(6.177)
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where the term 0.9y1 in Eq. (6.176) comes from the interconnection Ĥ21x1. For sim-
ulation purposes, the delays are chosen as

d1(t) = 3 − 2 sin(t) and d2(t) = 1

and the delay related initial conditions are chosen as

φ1(t) = col(2 cos t, 1) and φ2(t) = col(0, 1 − sin(t)).

The simulation results in Fig. 6.6 show the effectiveness of the results obtained.

6.7 Summary

In this chapter, time-varying state delay systems have been considered. Section6.2
presents static output feedback control strategies. Approaches to deal with nonlin-
ear matched and mismatched disturbances have been proposed when time-varying
delay is involved in the nonlinear bounds on the disturbances. Specifically, in the
reduced-order observer-based control scheme proposed in Sect. 6.3, coordinate trans-
formations are employed to explore the system structure. The features of sliding
mode control are used to enhance the robustness of the scheme. This reduced-order
observer scheme has benefits for implementation. Section6.4 has shown a decen-
tralised static output feedback sliding mode control law to globally stabilise a class
of time-varying delay interconnected systems. It has been shown that the effects
of the interconnections can be canceled completely in the reachability analysis by
designing an appropriate decentralised control law if the interconnections have the
form given in Remark 6.24. Several examples have been presented to illustrate the
results.



Chapter 7
Delay Independent Output Feedback
Control

This chapter will introduce time-delay independent control design for nonlinear
systems using output feedback control, and then study large-scale interconnected
systems.

7.1 Introduction

Control design for nonlinear time-delay systems has been discussed in Chap. 6 but
the control algorithm required that all the time-delays are precisely known, and thus
can be used by the control algorithm. However, in many cases, the time-delays may
not be known precisely. Specifically it is very difficult to identify the time-delay if it is
time varying. Therefore, it is of interest to study control of time-delay systems when
the delay is unknown. It should be noted that a time-delay dependent result is usually
less conservative than a corresponding time-delay independent result but requires
that information on the time-delay is available, which may be limiting. However,
the delay dependent controller usually explicitly depends on the time-delay and
thus needs memory to store historical data in implementation, which needs more
resources.

In Sects. 7.2 and 7.3, local stabilisation is considered for affine nonlinear control
systems with uncertainties involving time-varying delay. It is not assumed that the
nominal system is either linearisable or partially linearisable.A static output feedback
variable structure control is synthesised to stabilise the system uniformly asymptoti-
cally, and a control strategy to enforce exponential stability is also derived in Sect. 7.2.
In Sect. 7.3, an appropriate transformation is introduced to express the affine nonlin-
ear system in regular formwhich facilitates both design and analysis. Then, sufficient
conditions are developed based on the Lyapunov–Razumikhin approach such that
the sliding motion is uniformly asymptotically or exponentially stable. A static out-
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put feedback control law, independent of the time-delay, is synthesised to guarantee
reachability.

Section7.4 focuses on the stabilisation problem for a class of large-scale
systemswith nonlinear interconnections. A decentralised static output feedback vari-
able structure control is synthesised and the stability of the corresponding closed-
loop system is analysed. A set of conditions is developed to guarantee that the
considered large-scale interconnected systems are stabilised uniformly asymptoti-
cally. Section7.5 provides some examples to demonstrate the results developed in
Sects. 7.2–7.4.

7.2 Lyapunov Technique-Based Variable Structure Control
for Nonlinear Systems

This section presents time-delay independent variable structure output feedback con-
trollers to stabilise affine nonlinear systems based on Lyapunov techniques.

7.2.1 Introduction

It is well known that linear dynamical systems cannot adequately describe many
phenomena commonly observed in the real world. In order to incorporate complex
phenomena, it is necessary to investigate nonlinear systems as a means to more
accurately model real systems. Compared with linear control systems, the study of
nonlinear systems is relatively immature—largely due to their complexity. In the
control paradigm, state or output feedback is used to form a closed-loop system to
improve the dynamic performance. Compared with state feedback, output feedback
is much more difficult because effectively only a subset of the state variables are
available for design and controller implementation. However, in reality, usually only
a subset of measurements is available for use by the controller. One way to circum-
vent this problem is to design an observer to measure/estimate system states [159,
180, 210], and then use the estimated states to replace the true states to form the
feedback loop. However, the separation principle usually does not hold for nonlinear
systems, which implies that approaches using the true state to design the control law
may produce completely different results when estimated states are used for imple-
mentation. Although observer based or dynamical output feedback control has been
extensively applied [139, 208], extra devices or hardware are necessary which may
be too expensive to implement. Therefore, there is a need to consider static output
feedback control approaches for nonlinear systems.

In recent decades, static output feedback control has been widely used in control
design (see, e.g., [34, 84, 112, 147, 207]). However, the systems considered in much
of the existing work are either largely linear or delay free. A class of linear time-



7.2 Lyapunov Technique-Based Variable Structure Control for Nonlinear Systems 215

delay systems is considered in [34]. By introducing an artificial delay, a static output
feedback control scheme is provided in [147] where the considered system is linear
and delay free. A class of linear time-delay systems with nonlinear disturbance is
considered in [207] where it is required that the time-varying delay is precisely
known. Luo et al. considered a class of time-delay systems where both static and
dynamic output feedback strategies are studied [112] but it is required that all of the
uncertainties are matched. Janardhanan and Bandyopadhyay [84] proposed a static
output feedback slidingmode control scheme for time-delay systemswhere a class of
linear discrete-time systems is considered. Recently, a class of nonlinear time-delay
systems with uncertainties bounded by nonlinear functions has been considered in
[208] but it is required that the time-delay is exactly known and observer-based output
feedback is used. Some interesting results on stabilisation of nonlinear time-delay
systems have been developed in [136] but state feedback is employed. The problem
of static output feedback stabilisation for nonlinear systems is full of challenge
especially when the system experiences both uncertainties and time-delay.

Control systems with time-delay disturbances have been widely studied (see, e.g.,
[71, 188]). Much of the existing work studying systems with disturbances is based
on the fact that the nominal system is stable or has desired performance [71, 188,
207, 221]. In this section, a class of affine nonlinear control systems with nonlinear
uncertainties which involve time-varying delay is considered. Similar to the work
in [71, 188, 207, 221], it is assumed that the nominal system is output feedback
stabilisable with an output feedback control law having been well designed. Then, a
robust static output feedback variable structure control is synthesised such that the
corresponding closed-loop system is uniformly asymptotically stable in the pres-
ence of uncertainties and time-delay. Both matched and mismatched uncertainties
are considered, and the accessible bounds on the uncertainties are employed in the
control design to reduce the effects of the uncertainties to enhance the robustness of
the designed controller. Furthermore, a set of sufficient conditions is developed to
guarantee that the closed-loop system is exponentially stable. The designed control
does not depend on the time-delay and thus it is not required that the time-delay is
known. It is not required that either the system is square, or the nominal system is
linearisable or partially linearisable.

7.2.2 System Description and Analysis

Consider an affine nonlinear system described by

ẋ = f (x) + g(x)(u + Δg(x, xd)) + Δ f (x, xd) (7.1)

y = h(x) (7.2)

where x ∈ X ⊂ R
n (X is a neighbourhood of the origin), u ∈ R

m , y ∈ Y ⊂ R
p are

system state variables, inputs and outputs respectively. The functions f (x) and g(x)
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with f (0) = 0 are both known functions, and Δg(x, xd) and Δ f (x, xd) are matched
and mismatched uncertainties respectively—which include all the disturbances and
modelling errors. The symbol xd := x(t − d(t)) denotes the delayed states where
d(t) is a time-varying delay which is assumed to be continuous, nonnegative in R

+
and

d := sup
t∈R+

{d(t)} < ∞.

The initial condition relating to the time-delay is given by

x(t) = φ(t), t ∈ [−d, 0] (7.3)

where φ(·) is continuous in [−d, 0]. It is assumed that all the nonlinear terms are
smooth enough such that the existence and uniqueness of solutions of the unforced
system is guaranteed.

For System (7.1)–(7.2), the system

ẋ = f (x) + g(x)u (7.4)

y = h(x) (7.5)

is called the corresponding nominal system. The following assumptions are imposed
on the system (7.1)–(7.2).

Assumption 7.1 There exist known continuous nonnegative functions α1(·), α2(·),
α3(·) and β(·) such that

‖Δg(x, xd)‖ ≤ α1(y) + α2(y)α3(x, ‖xd‖) (7.6)

‖Δ f (x, xd)‖ ≤ β(x, ‖xd‖) (7.7)

where β(x, r) is a class K I function.

Remark 7.1 Themathematical definition of the classK I function has been provided
in Definition2.5 in Sect. 2.2). Assumption7.1 provides limitations on the matched
and mismatched uncertainties, and requires that the bounds on the uncertainties are
known. It should be noted that the bounds on both thematched uncertaintyΔg(x, xd)

and mismatched uncertainty Δ f (x, xd) are nonlinear and subject to the time-delay
with general forms. This is in comparison with the existing work in [75, 112, 132,
207, 221] where the bounds are functions of system outputs or satisfy a linear growth
condition.

Assumption 7.2 There exists a continuous function u1(y) in Y , a C1 function
V (x) : Rn �→ R and a continuous function M(·) ∈ R

1×m defined in Y such that in
the considered domain X ,

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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c1(‖x‖) ≤ V (x) ≤ c2(‖x‖) (7.8)
∂V

∂x
( f (x) + g(x)u1(y)) ≤ −c3(‖x‖) (7.9)

∥
∥
∥
∥
∂V

∂x

∥
∥
∥
∥ ≤ c4(‖x‖) (7.10)

∂V

∂x
g(x) = M(y) (7.11)

where c1(·), c2(·), c3(·) and c4(·) are class K functions in R+, and

∂V

∂x
=:
(

∂V

∂x1
,

∂V

∂x2
, . . . ,

∂V

∂xn

)

.

Remark 7.2 Assumption7.2 limits the nominal system (7.4)–(7.5) where the con-
ditions (7.8)–(7.10) guarantee that the nominal system is output feedback stabilised
by u = u1(y). The condition (7.11) provides a constraint on the Lyapunov function
V (·). In order to form a static output feedback control scheme, the limitation (7.11)
is required. It should be noted that for a linear system (A, B, C) with Lyapunov
function

V = xT Px

where P > 0 satisfies

(A − BK C)T P + P(A − BK C) < 0

condition (7.11) degenerates to the condition that there exists a matrix F such that
the matrix equation

BT P = FC

holds, which is the well known constrained Lyapunov problem (CLP) [41, 57]. It
is clear to see that the conditions (7.8)–(7.10) together with the limitation (7.11) is
an extension of the CLP. The CLP has been extended to the nonlinear case in [196]
but it is required that the system considered is square. The current consideration
has extended the CLP to the non-square nonlinear case which renders all previous
settings as special cases in this regard.

Assumption 7.3 The inequality

‖x(t + θ)‖ ≤ γ (‖x‖)

holds for some continuous nonnegative function γ (·) if

V (x(t + θ)) ≤ w(V (x(t))), θ ∈ [−d̄, 0]

for some function w(·) defined in R+ satisfying w(r) > r in r ∈ R
+.
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Remark 7.3 It should be noted that Assumption7.3 is a limitation on the function
V (·) given in Assumption7.2. It is not required if there is no time-delay involved in
the system. Since the considered systems are nonlinear, Lyapunov functionsmayhave
various forms/structures for different systems. Therefore, there is no general way to
check Assumption7.3. However, if V (·) has a quadratic form, then Assumption7.3
is satisfied automatically. Moreover, Lemma C.1 and Remark C.1 in Appendix C
present classes of functions which satisfy Assumption7.3.

In this section, it is assumed that the nominal system (7.4)–(7.5) is output feedback
stabilisable and the control u1(·) in Assumption7.2 has beenwell defined. The objec-
tive is to design a variable structure control such that the corresponding closed-loop
system is uniformly asymptotically stable in the presence of time-delayed uncertain-
ties. The local case will be considered. For ease of exposition, the domain considered
may not be specifically stated in the subsequent analysis unless it is necessary, but
each variable’s dimension will be clearly shown.

7.2.3 Asymptotic Stabilisation Control Synthesis

A static output feedback control will be synthesised such that the corresponding
closed-loop system is uniformly asymptotically stable. Then conditions for expo-
nential stabilisation will follow.

For System (7.1)–(7.2), consider an output feedback control law

u(y) = u1(y) + u2(y) (7.12)

where the function u1(·) is given in Assumption7.2, and u2(·) is defined by

u2(y) =
{

−MT (y)
(

1
‖M(y)‖α1(y) + 1

2ε α
2
2(y)

)
, M(y) 	= 0

0, M(y) = 0
(7.13)

where M(·) ∈ R
1×m is given in (7.11), ε is an adjustable positive constant, and α1(·)

and α2(·) are determined by (7.6).
The control (7.12) is called a variable structure control due to the term u2(·)

which usually prescribes a different structure between the outside and the inside of
the surface M(y) = 0. The following result is ready to be presented.

Theorem 7.1 Under Assumptions7.1–7.3, the closed-loop system formed by apply-
ing the control (7.12)–(7.13) to the system (7.1)–(7.2) is uniformly asymptotically
locally stable if there exists a class K function α(·) such that

c3(‖x‖) − ε

2
α2
3(x, γ (‖x‖)) − c4(‖x‖)β(x, γ (‖x‖)) ≥ α(‖x‖) (7.14)
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for some positive constant ε, where c3(·) and c4(·) satisfy Assumption7.2 and α3(·)
and β(·) satisfy Assumption7.1.

Proof The closed-loop system obtained by applying the control (7.12)–(7.13) to
System (7.1)–(7.2) is described by

ẋ = f (x) + g(x) (u1(y) + u2(y) + Δg(x, xd)) + Δ f (x, xd) (7.15)

y = h(x). (7.16)

For System (7.15)–(7.16), consider the Lyapunov function candidate V (x) in
Assumption7.2. The time derivative of V (x) along the trajectories of the system
is given by

V̇ |(7.15)−(7.16) = ∂V

∂x
( f (x) + g(x)u1(y)) + ∂V

∂x
g(x)

(
u2(y)

+Δg(x, xd)
)+ ∂V

∂x
Δ f (x, xd)

≤ −c3(‖x‖) + ∂V

∂x
g(x)

(
u2(y) + Δg(x, xd)

)

+∂V

∂x
Δ f (x, xd) (7.17)

where (7.9) is used to obtain the last inequality. From the definition of u2(·) in (7.13),
Inequality (7.6) and Eq. (7.11), it follows that

(i) if M(y) = 0, then

∂V

∂x
g(x) (u2(y) + Δg(x, xd)) = M(y) (u2(y) + Δg(x, xd)) = 0;

(ii) if M(y) 	= 0, then

∂V

∂x
g(x) (u2(y) + Δg(x, xd))

≤ ∂V

∂x
g(x)u2(y) +

∥
∥
∥
∥
∂V

∂x
g(x)

∥
∥
∥
∥ ‖Δg(x, xd)‖

≤ −M(y)MT (y)

(
1

‖M(y)‖α1(y) + 1

2ε
α2
2(y)

)

+‖M(y)‖ (α1(y) + α2(y)α3(x, ‖xd‖))
= −‖M(y)‖α1(y) − 1

2ε
‖M(y)‖2α2

2(y) + ‖M(y)‖α1(y)

+‖M(y)‖α2(y)α3(x, ‖xd‖)
= − 1

2ε
‖M(y)‖2α2

2(y) + ‖M(y)‖α2(y)α3(x, ‖xd‖). (7.18)
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Then from the special case of Young’s inequality ab ≤ ε
2a2 + 1

2ε b2, it follows that
for any ε > 0

‖M(y)‖α2(y) α3(x, ‖xd‖) ≤ 1

2ε
α2
2(y)‖M(y)‖2 + ε

2
α2
3(x, ‖xd‖). (7.19)

Further from (7.19), (7.18) and the analysis in (i) and (ii) above, it is straightforward
to see that

∂V

∂x
g(x) (u2(y) + Δg(x, xd)) ≤ ε

2
α2
3(x, ‖xd‖). (7.20)

From (7.7) and (7.10),

∂V

∂x
Δ f (x, xd) ≤

∥
∥
∥
∥
∂V

∂x

∥
∥
∥
∥ ‖Δ f (x, xd)‖ ≤ c4(‖x‖)β(x, ‖xd‖). (7.21)

Substituting (7.20) and (7.21) into (7.17) yields

V̇ ≤ −c3(‖x‖) + ε

2
α2
3(x, ‖xd‖) + c4(‖x‖)β(x, ‖xd‖). (7.22)

In order to apply the Razumikhin approach, suppose that for any d(t) ∈ [0, d̄],

V (x(t + θ)) ≤ w (V (x(t)))

where w(·) satisfies w(r) > r for r ∈ R
+. Then from Assumption7.3, for any

d(t) ∈ [0, d̄],
‖xd‖ ≤ γ (‖x‖). (7.23)

From the result (i) of Lemma2.3 in Sect. 2.2 and the condition that α3(·) is a class
K I function, the function α2

3(·) belongs to classK I . Since β(·) is also a classK I
function, if V (x(t + θ)) ≤ w (V (x(t))), then (7.23) holds and thus

α3(x, ‖xd‖) ≤ α3(x, γ (‖x‖)) (7.24)

β(x, ‖xd‖) ≤ β(x, γ (‖x‖)). (7.25)

Applying (7.24) and (7.25) to (7.22), it follows from (7.14) that

V̇ ≤ −c3(‖x‖) + ε

2
α2
3(x, γ (‖x‖)) + c4(‖x‖)β(x, γ (‖x‖))

≤ −α(‖x‖).

Hence the conclusion follows from the Razumikhin Theorem2.5 in Sect. 2.5. ∇
Remark 7.4 As for much of the existing work for fully nonlinear systems [71, 136,
211], the conditions developed in this section are sufficient and there is no general
way to check the conditions due to the complexity of nonlinear systems. However,

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
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Theorem 7.1 has provided a way of dealing with nonlinear systems with time-delay
disturbances. Moreover, the results developed are not dependent on time-delay and
thus it is not required that the time-delay is known.

7.2.4 Exponential Stabilisation Control Synthesis

Based on the analysis in Sect. 7.2.4, an output feedback control law will be synthe-
sised for System (7.1)–(7.2) in this section such that the corresponding closed-loop
system is exponentially stable. The Assumptions7.1 and 7.2 are now strengthened
to the following corresponding Assumptions7.4 and 7.5.

Assumption 7.4 The uncertainties Δg(x, xd) and Δ f (x, xd) satisfy

‖Δg(x, xd)‖ ≤ α1(y) + α2(y)‖xd‖ (7.26)

‖Δ f (x, xd)‖ ≤ β1(‖x‖) + β2(‖xd‖) (7.27)

where α1 : Y �→ R
+ and α2 : Y �→ R

+ are known continuous and nonnegative
functions, and β1 : R

+ �→ R
+ and β2 : R

+ �→ R
+ are known nonnegative and

K C1 functions.

From Assumption7.4, β1(·) and β2(·) are K C1 functions, and it follows from
result (ii) of Lemma2.3 in Sect. 2.2 that there exist continuous functions β3 : R+ �→
R

+ and β4 : R+ �→ R
+ such that

β1(r) = β3(r)r (7.28)

β2(r) = β4(r)r. (7.29)

It should be noted that one of the choices to obtain β3(·) and β4(·) has been given in
the proof of Lemma2.3 in Sect. 2.2.

Assumption 7.5 There exists a continuous function ua : Y �→ R
m , a function

matrix M(·) ∈ R
1×n defined in Y and a C1 function U (x) : Rn �→ R such that in

the considered domain X ,

κ1‖x‖2 ≤ U (x) ≤ κ2‖x‖2 (7.30)
∂U

∂x
( f (x) + g(x)ua(y)) ≤ −κ3‖x‖2 (7.31)

∥
∥
∥
∥
∂U

∂x

∥
∥
∥
∥ ≤ κ4‖x‖ (7.32)

∂U

∂x
g(x) = M(y) (7.33)

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
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for some positive constants κi for i = 1, 2, 3, 4, where

∂U

∂x
=:
(

∂U

∂x1
,
∂U

∂x2
, . . . ,

∂U

∂xn

)

Remark 7.5 The conditions (7.30)–(7.32) in Assumption7.5 imply that the nominal
system (7.4)–(7.5) is stabilisable by u = ua(y). Suppose that f (x) and g(x) are C1

functions. Then it follows from [91] that Assumption7.5 is satisfied if the nominal
system (7.4)–(7.5) is exponentially stabilisable by a C1 function u = ua(y), that is

ẋ = f (x) + g(x)ua(y) (7.34)

is exponentially stable.

The following result is now ready to be presented.

Theorem 7.2 Under Assumptions7.4 and 7.5, System (7.1)–(7.2) is locally expo-
nentially stabilised by the control

u(·) = ua(y) + u2(y) (7.35)

where ua(·) satisfies Assumption7.5 and u2(·) is defined in (7.13), if there exist
constants ε > 0 and q > 1 such that

μ := κ3 − ε

2

qκ2

κ1
− ν > 0 (7.36)

where

ν := sup
x∈X

{

κ4β3(‖x‖) + κ4

√
qκ2

κ1
β4

(√
qκ2

κ1
‖x‖
)}

(7.37)

and where the constants κ1 and κ2 satisfy (7.30), k3 and κ4 satisfy (7.31) and (7.32)
respectively, and β3(·) and β4(·) are defined by (7.28) and (7.29) respectively.

Proof For the closed-loop system formed by applying the control (7.35) into (7.1)–
(7.2), consider theLyapunov function candidateU (x) defined inAssumption7.5. The
time derivative of U (x) along the trajectories of the closed-loop system is described
by

U̇ = ∂U

∂x
( f (x) + g(x)ua(y)) + ∂U

∂x
g(x)

(
u2(y) + Δg(x, xd)

)

+∂U

∂x
Δ f (x, xd)

≤ −κ3‖x‖2 + ∂U

∂x
g(x)

(
u2(y) + Δg(x, xd)

)+ ∂U

∂x
Δ f (x, xd). (7.38)
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Following the analysis on Inequality (7.20) in the proof of Theorem7.1, it is straight-
forward to see that

∂U

∂x
g(x) (u2(y) + Δg(x, xd)) ≤ ε

2
‖xd‖2 (7.39)

holds for any constant ε > 0.
From (7.27) and (7.32),

∂U

∂x
Δ f (x, xd) ≤ κ4β1(‖x‖)‖x‖ + κ4β2(‖xd‖)‖x‖. (7.40)

Substituting (7.39) and (7.40) into (7.38),

U̇ ≤ −κ3‖x‖2 + ε

2
‖xd‖2 + κ4β1(‖x‖)‖x‖ + κ4β2(‖xd‖)‖x‖. (7.41)

If the inequality U (x(t + θ)) ≤ qU (x(t) holds for q > 1 and θ ∈ [−d̄, 0], then, it
follows from (7.30) that for any d(t) ∈ [0, d̄]

κ1‖xd‖2 ≤ U (xd) ≤ qU (x(t)) ≤ qκ2‖x‖2

and thus

‖xd‖ ≤
√

qκ2

κ1
‖x‖. (7.42)

Since β2(·) is class K C1, it follows from the nondecreasing property of β2(·) and
equation (7.29) that

β2(‖xd‖) ≤ β2

(√
qκ2

κ1
‖x‖
)

=
√

qκ2

κ1
β4

(√
qκ2

κ1
‖x‖
)

‖x‖.

Therefore, when
U (x(t + θ)) ≤ qU (x(t)

for q > 1 and θ ∈ [−d̄, 0],

U̇ ≤ −κ3‖x‖2 + ε

2

qκ2

κ1
‖x‖2 + κ4β3(‖x‖)‖x‖2 + κ4

√
qκ2

κ1
β4

(√
qκ2

κ1
‖x‖
)

‖x‖2

= −
(
κ3 − ε

2

qκ2

κ1
− ν
)
‖x‖2

= −μ‖x‖2
≤ − μ

κ2
U (x) (7.43)
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where (7.30) is used to obtain the last inequality, and μ and ν are defined by (7.36)
and (7.37) respectively. From Inequality (7.43),

‖x(t)‖ ≤
√

1

κ1
U (x(t))

≤
√

U (x(0))

κ1
exp

{

− μ

κ2
t

}

=
√

U (x(0))

κ1
exp

{

− μ

2κ2
t

}

which implies that System (7.1)–(7.2) is exponentially stable.
Hence the conclusion follows. ∇

Remark 7.6 It should be noted that a similar assumption to Assumption7.3 has been
removed in the study of exponentially stabilisation because the relevant condition has
been guaranteed by condition (7.30). This can be seen from the derived inequality
(7.42) which shows that Assumption7.3 has been satisfied if (7.30) holds.

7.3 Sliding Mode Technique-Based Variable Structure
Control for Nonlinear Systems

This section presents time-delay independent variable structure output feedback con-
trollers for nonlinear systems using sliding mode techniques.

7.3.1 Introduction

Nearly all real systems are nonlinear in nature and are subject to nonlinear distur-
bances inwhich time-delay is often encountered [65, 185, 226]. Nonlinear time-delay
systems have been extensively studied [74, 185, 189, 212, 213].

In all of the associated existing results for time-delay systems, it is required that
the bounds on the disturbances satisfy a linear growth condition (i.e., linear functions
of ‖x‖ and/or ‖x(t − d)‖). Recently, the bounds on the disturbances/uncertainties
have been extended to the nonlinear case for time-delay systems [210]. However, the
designed control explicitly depends on the time-delay which requires the time-delay
to be perfectly known. More recently, Pepe and Ito proposed an interesting sliding
mode control scheme for nonlinear time-delay systems in [137] but it requires that
all the system states are available to the controller. As pointed out in [74], most of
the existing sliding mode controllers depend on time-delay, and thus require that the
time-delay is known and hence require memory, which is difficult to implement in
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real systems especially for the case of time-varying delay. Although a memoryless
control was proposed for a class of linear systems with nonlinear disturbance in [74],
it is required that the nonlinear disturbances are matched and it is again assumed that
all the system states are available.

LMI techniques have been widely applied to linear time-delay systems [65, 105],
and provide a systematic design approach. However, it is difficult to find a systematic
design approach for nonlinear systems because nonlinear systems are very complex
and exhibit very rich phenomena. It is desirable to develop a set of conditions such that
the controlled nonlinear system exhibits desired performance levels. In this section, a
robust stabilisation problem is formulated for a class of nonlinear systems with time-
varying delay disturbances. Not only are the disturbances nonlinear functions of the
state variables, but the nominal system is nonlinear as well. It is not required that the
nominal systems are linearisable or partially linearisable. The disturbances involved
are matched and mismatched, and are bounded by nonlinear functions of the state
and delayed state variables. By employing an appropriate coordinate transformation,
the system is firstly transformed to regular form, which facilitates both analysis
and design. Based on the Lyapunov–Razumikhin approach, sufficient conditions
are derived to guarantee that the sliding motion is uniformly asymptotically stable,
or exponentially stable, irrespective of the disturbances and time-delay. A static
output feedback sliding mode control law is then proposed to drive the system to
the sliding surface in finite time and maintain a sliding motion on it thereafter. The
developed control is independent of the time-delay and thus does not requirememory
for implementation.

7.3.2 System Description and Problem Formulation

Consider a class of nonlinear systems with disturbances described by

ẋ = f (t, x) + g(t, x)
(
u + φ

(
t, x, xd

))+ ψ
(
t, x, xd

)
(7.44)

y = h(x) (7.45)

where x ∈ Ω ⊂ R
n (Ω is a neighbourhood of the origin), u ∈ R

m and y ∈ Ωy ⊂ R
p

are, respectively, the state variables, inputs and outputs with m ≤ p < n. It is
assumed that the matrix function g(·) ∈ R

n×m is known and has full column rank;
the nonlinear vectors f (·) ∈ R

n and h(·) ∈ R
p with h(0) = 0 are known. The terms

φ(·) and ψ(·) represent the matched and mismatched disturbances respectively. The
notation xd := x(t − d) represents delayed states where d := d(t) denotes the time-
varying delay which is continuous, nonnegative and bounded in R

+ := {t | t ≥ 0},
and thus

d̄ := sup
t∈R+

{d(t)} < ∞.

The initial condition relating to the time-delay is given by
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x(t) = ζ(t), t ∈ [−d̄, 0] (7.46)

where ζ(·) ∈ Θ and Θ is the admissible initial condition set defined by

Θ := {ζ(t) | ζ(·) ∈ C[−d̄,0], ‖ζ(t)‖ ≤ q1
}

(7.47)

for some constant q1 > 0. It is assumed that all the nonlinear functions are smooth
enough, which guarantees that the unforced system has a unique continuous solution
in t ∈ [0,+∞).

Suppose that the Jacobian matrix of h(x) is full row rank in Ω . Then, there exist
n − p smooth functions δi (x) defined in the domain Ω for i = 1, . . . , n − p such
that the Jacobian matrix of the vector function

T (x) := [ δ1(x) · · · δn−p(x) hT (x)
]T

is nonsingular in the domain Ω . This implies that T (x) forms a diffeomorphism in
Ω . Let

z := [δ1(x), . . . , δn−p(x)]T .

The diffeomorphism T (·) defines a new coordinate system:

T : x �→ col(z, y) = T (x). (7.48)

Further, it is assumed that the input distribution function matrix g(t, x) satisfies

[
∂T (x)

∂x
g(t, x)

]

=
[

0
G(t, y)

]

(7.49)

where G(t, y) ∈ R
m×m is nonsingular in R

+ × Ωy because g(·) has full column
rank.

Remark 7.7 There is no systematic way to find a diffeomorphism T (·) satisfying
(7.49). However, for some special cases, it is possible to find the associated diffeo-
morphism. Consider System (7.44)–(7.45) when

f (t, x) = f (x)

and
g(t, x) = g(x) := [g1(x), g2(x), . . . , gm(x)]

where gi (·) ∈ R
n for i = 1, 2, . . . , m and the output y ∈ R is a scalar. From [121],

there exists a diffeomorphism T̄ (·) with T̄ (0) = 0 such that

[
∂ T̄ (x)

∂x
g(x)

]

= g0(y) (7.50)
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if

(i) rank
{

d(L j
f h(x)) | j = 0, 1, . . . , n − 1

}
= n;

(ii) [adi
f ω, ad j

f ω] = 0 for i, j = 0, 1, . . . , n − 1;

(iii) [gi , ad j
f ω] = 0 for i = 1, 2, . . . , m and j = 1, 2, . . . , n − 2, where ω is the

vector field satisfying

〈

⎡

⎢
⎢
⎢
⎣

dh
...

d(Ln−2
f h)

d(Ln−1
f h)

⎤

⎥
⎥
⎥
⎦

, ω
〉
=

⎡

⎢
⎢
⎢
⎣

0
...

0
1

⎤

⎥
⎥
⎥
⎦

(Here the notation is the same as in [121, 123]). Then, the diffeomorphism T̄ can be
obtained by

z1 = L f h(x),

z2 = L2
f h(x)

...

zn−1 = Ln−1
f h(x)

where y = h(x). Further, from Sect. 5.4 in the Ref. [123], the results can be extended
to the multi-output case. If the first n − m rows of g0(y) in (7.50) are a linear
combination of the last m rows of g0(y), then a linear coordinate transformation TL

can be obtained using basic matrix theory and the transformation T := TL ◦ T̄ will
satisfy Eq. (7.49).

Then, in the new coordinates (z, y) defined by (7.48), the system (7.44)–(7.45)
can be described by

[
ż
ẏ1

]

= F1(t, z, y1, y2) + Ψ1(t, z, y1, y2, zd , y1d , y2d ) (7.51)

ẏ2 = F2(t, z, y) + G(t, y)
(
u + Φ(t, z, y, zd , yd )

)+ Ψ2(t, z, y, zd , yd ) (7.52)

y = col(y1, y2) (7.53)

where z ∈ R
n−p, y1 ∈ R

p−m and y2 ∈ R
m form the system states in the new

coordinate system, and u ∈ R
m and y := col(y1, y2) ∈ R

p are the inputs and outputs
respectively. In Eqs. (7.51)–(7.52),

yd := y(t − d), zd := z(t − d)

http://dx.doi.org/10.1007/978-3-319-48962-9_5
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and
[

F1(·)
F2(·)

]

:=
[
∂T

∂x
f (t, x)

]

x=T −1(z,y)

(7.54)

Ψ (·) :=
[

Ψ1(·)
Ψ2(·)

]

:=
[
∂T

∂x
ψ(t, x, xd)

]

x=T −1(z,y)

(7.55)

Φ(·) := [φ(t, x, xd)]x=T −1(z,y) . (7.56)

In the new coordinates (z, y1, y2), the domain Ω is transferred to

ΩT := Ωz × Ωy1 × Ωy2 := {(z, y1, y2) = T (x) | x ∈ Ω}

where z ∈ Ωz, y1 ∈ Ωy1 and y2 ∈ Ωy2 . The system (7.51)–(7.53) has two properties:

• it is in the usual regular form for sliding mode design;
• the system outputs y together with the variable z form the full state (z, y).

The first feature is very useful for the constructive application of the sliding mode
paradigm to practical design, whilst the second feature provides the opportunity to
employ the system output to reduce conservatism in static output feedback control
design.

In the subsequent analysis, the stabilisation problem for System (7.51)–(7.53)
will be considered. The objective is to design a static output feedback sliding mode
control law

u = u(t, y) (7.57)

which depends only on time t and the output y, but is independent of the delay
d(t), such that the closed-loop system formed by applying the control to the system
(7.51)–(7.52) is uniformly asymptotically stable irrespective of the disturbances and
time-delay. The local casewill be treated in this section. In order to avoid unnecessary
notation in describing the local region, the domain may not be specifically stated,
but each variable’s dimension will be clearly shown.

7.3.3 Sliding Motion Analysis and Control Synthesis

In this section, a sliding surface is proposed first and then a sliding mode control is
synthesised.

7.3.3.1 Stability of the Sliding Motion

For System (7.51)–(7.53), choose the switching function as

s(z, y) := y2. (7.58)
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Then, the output sliding surface is described by

{col(z, y1, y2) | y2 = 0} . (7.59)

Since System (7.51)–(7.52) is in regular form, it follows from sliding mode control
theory that the corresponding sliding motion is dominated by System (7.51) which,
when limited to the sliding surface (7.59), can be described in a compact form by

Ẋ = F1s(t, X) + Ψ1s(t, X, Xd) (7.60)

where X := col(z, y1) ∈ R
n−m and Xd := X (t − d) are the states and the delayed

states of the slidingmode dynamics. The considered domain is X ∈ ΩX := Ωz×Ωy1 ,
and

F1s(t, X) := F1(t, z, y1, 0)

Ψ1s(t, X, Xd) := Ψ1(t, z, y1, 0, zd , y1d , 0)

where, from (7.55), the term Ψ1s(·) is caused by the mismatched disturbance ψ(·).
The initial value related to the time-delay for the system (7.60) can be obtained from
(7.46) based on the coordinate transformation (7.48).

The objective now is to analyse the stability of System (7.60) in the domain ΩX .
The following assumptions are imposed on System (7.60):

Assumption 7.6 There exists a C1 function V (·) : R+ ×R
n−m �→ R

+ and classK
functions ri (·) for i = 1, . . . , 4 such that for any X ∈ ΩX the following inequalities
hold

(i) r21 (‖X‖) ≤ V (t, X) ≤ r22 (‖X‖),
(ii)

∂V

∂t
+
(

∂V

∂ X

)T

F1s(t, X) ≤ −r23 (‖X‖),

(iii)

∥
∥
∥
∥
∂V

∂ X

∥
∥
∥
∥ ≤ r4(‖X‖)

where
∂V

∂ X
:=
[ ∂V

∂ X1

∂V

∂ X2
· · · ∂V

∂ Xn−m

]T
and col(X1, X2, . . . , Xn−m) := X .

Remark 7.8 Assumption7.6 implies that the nominal part of System (7.60), i.e., the
dynamics

Ẋ = F1s(t, X)

is asymptotically stable to guarantee that the sliding mode (7.60) is asymptotically
stable. It should be noted that the fact that the system

Ẋ = F1s(t, X)

is asymptotically stable does not imply that either the nominal uncontrolled system
in (7.44) or the nominal system in (7.51) is stable. From the fact that any class K



230 7 Delay Independent Output Feedback Control

function r(·) can be expressed as

r(τ ) = α2(τ )

where α(·) is a class K function, it is straightforward to see that Assumption7.6 is
the same as the corresponding conditions in the converse Lyapunov Theorem (see
Sect. 2.3.3) if the Jacobian matrix of F1s(·) is bounded in a neighbourhood of the
origin (see, e.g., Theorem 4.16 in [91]). Here, the functions r2i (·) instead of ri (·) for
i = 1, 2, 3 are used in Assumption7.6 to simplify notation.

Assumption 7.7 The disturbance Ψ1s(·) in (7.60) satisfies

‖Ψ1s(t, X, Xd)‖ ≤ η (t, ‖X‖, ‖Xd‖) (7.61)

where η(·, τ1, τ2) is a known class W S function1 w.r.t. the variables τ1 and τ2.

Under Assumption7.7, the function η(·) has a decomposition as

η (·) = η1(t, ‖X‖, ‖Xd‖)‖X‖ + η2(t, ‖X‖, ‖Xd‖)‖Xd‖ (7.62)

where the scalar functions η1(·, ·, τ ) and η2(·, ·, τ ) are nondecreasing with respect
to the variable τ in R+.

Assumption 7.8 For any θ ∈ [−d̄, 0], the inequality

V (t + θ, X (t + θ)) ≤ ρ(V (t, X (t)))

where ρ(·) is a continuous nondecreasing function satisfying ρ(τ) > τ for τ > 0,
implies that there exists a K C1 function b0(·) > 0 such that

‖X (t + θ)‖ ≤ b0(‖X (t)‖).

Remark 7.9 Assumption7.8, which is related to the time-delay, is a limitation on the
function V (·) given in Assumption7.6. If time-delay is not involved, Assumption7.8
is unnecessary. A class of functions satisfyingAssumption7.8 is identified in Lemma
C.1 and Remark C.1 in the Appendix C.

Since b0(·) is a classK C1 function, there exists a continuous function b(·) such
that

b0(‖X‖) = b(‖X‖)‖X‖, X ∈ ΩX . (7.63)

1The definition of the class of W S function can be found in Sect. 2.1.

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_2
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The function b(·) defined by (see [202])

b(r) =

⎧
⎪⎨

⎪⎩

b0(r)

r
, r ∈ (0,+∞)

d(b0(r))

dr
, r = 0

is continuous and satisfies Eq. (7.63). Note, if the functions ri (·) for i = 1, 2, 3, 4 in
Assumption7.6 are strengthened to classK C1 functions, then there exist continuous
functions ϑi (·) such that for any X ∈ ΩX

ri (‖X‖) = ϑi (‖X‖)‖X‖, i = 1, 2, 3, 4. (7.64)

The following result is ready to be presented.

Theorem 7.3 Suppose that ri (·) for i = 1, 2, 3, 4 in Assumption7.6 are class K C1

functions. Then, under Assumptions7.6–7.8, the system (7.51)–(7.52) has a uniformly
asymptotic stable sliding motion associated with the sliding surface (7.59) if there
exists a continuous nondecreasing function w : R+ �→ R

+ satisfying

w(τ ) > 0 for τ > 0

such that for X ∈ ΩX and t ∈ R
+,

ϑ2
3 (‖X‖)− ϑ4(‖X‖)η1

(
t, ‖X‖, b0(‖X‖)

)

−ϑ4(‖X‖)b(‖X‖)η2
(

t, ‖X‖, b0(‖X‖)
)

≥ w(‖X‖) (7.65)

where η1(·) and η2(·) are given in (7.62), and b0(·) and b(·) satisfy (7.63).

Proof From the analysis above, System (7.60) is the sliding mode dynamics relating
to the sliding surface (7.59). It remains to be proved that System (7.60) is uniformly
asymptotically stable.

Under the conditions that ri (·) are classK C1 functions, the inequalities in (7.64)
hold. Consider the Lyapunov candidate function V (·) defined in Assumption7.6 for
System (7.60). The time derivative of V (·) along the trajectory of System (7.60) is
given by

V̇ = ∂V

∂t
+
(

∂V

∂ X

)T

(F1s(t, X) + Ψ1s(t, X, Xd))

≤ ∂V

∂t
+
(

∂V

∂ X

)T

F1s(t, X) +
∥
∥
∥

(
∂V

∂ X

)T ∥
∥
∥ ‖Ψ1s(t, X, Xd)‖

≤ −r23 (‖X‖) + r4(‖X‖)η(t, ‖X‖, ‖Xd‖)
= −ϑ2

3 (‖X‖)‖X‖2 + ϑ4(‖X‖)η1(·)‖X‖2
+ϑ4(‖X‖)η2(·)‖X‖‖Xd‖ (7.66)
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where (7.62) and (7.64) are used.
If there exists a function ρ(·) defined in R

+ which satisfies ρ(τ) > τ for τ > 0,
such that for any θ ∈ [−d̄, 0],

V (t + θ, X (t + θ)) ≤ ρ(V (t, X (t))) (7.67)

then, from Assumption7.8, there exists a class K C1 function such that for any
θ ∈ [−d̄ 0]

‖X (t + θ)‖ ≤ b0(‖X (t)‖) = b(‖X‖)‖X‖ (7.68)

where (7.63) is used above. Since both η1(·, ·, τ ) and η2(·, ·, τ ) are nondecreasing
w.r.t. the variable τ ∈ R

+, it is clear that if (7.67) holds, then from (7.68) and (7.66),

V̇ ≤ −ϑ2
3 (‖X‖)‖X‖2 + ϑ4(‖X‖)η1 (t, ‖X‖, b0(‖X‖)) ‖X‖2

+ϑ4(‖X‖)b(‖X‖)η2(t, ‖X‖, b0
(‖X‖))‖X‖2

= −
(
ϑ2
3 (‖X‖) − ϑ4(‖X‖)η1(t, ‖X‖, b0(‖X‖))

−ϑ4(‖X‖)b(‖X‖)η2(t, ‖X‖, b0(‖X‖))
)
‖X‖2

≤ −w(‖X‖)‖X‖2

where (7.65) is employed above. Hence the conclusion follows from the well known
Razumikhin Theorem2.5. ∇

Consider the case when the system

Ẋ = F1s(t, X)

is exponentially stable. In this case, it follows from [91] that there exist constants
γi > 0 such that Assumption7.6 is satisfied with

ri (τ ) = γiτ, i = 1, 2, 3, 4. (7.69)

The following result can be obtained.

Corollary 7.1 Suppose that Assumption7.6 holds with ri (·) satisfying (7.69). Then
under Assumption7.7, the sliding motion of System (7.51)–(7.52) associated with the
sliding surface (7.59) is exponential stable if for X ∈ ΩX and t ∈ R

+, the inequality

μ := sup
X∈ΩX

{

η1

(
t, ‖X‖, γ2

γ1

√
ν ‖X‖

)
+ γ2

γ1

√
ν η2

(
t, ‖X‖, γ2

γ1

√
ν ‖X‖

)}

<
γ 2
3

γ4
(7.70)

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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holds for some ν > 1 where γ3 and γ4 satisfy (7.69), and η1(·) and η2(·) are given
in (7.62).

Proof From condition (i) of Assumption7.6 and (7.69), for any constant ν > 1 and
any θ ∈ [−d̄, 0], if

V (t + θ, X (t + θ)) ≤ νV (t, X (t))

then
γ 2
1 ‖X (t + θ)‖2 ≤ V (t + θ, X (t + θ))

≤ νV (t, X (t)) ≤ νγ 2
2 ‖X (t)‖2.

This implies

‖X (t + θ)‖ ≤ γ2

γ1

√
ν ‖X (t)‖.

Choose
b0(τ ) = γ2

γ1

√
ν τ and ρ(τ) = ντ.

It is straight forward to see that Assumption7.8 holds. Then following the proof of
Theorem7.3, it follows that if

V (t + θ, X (t + θ)) ≤ νV (t, X (t))

holds, then

V̇ ≤ −
(

γ 2
3 − γ4 η1

(
t, ‖X‖, γ2

γ1

√
ν ‖X‖

)

−γ4
γ2

γ1

√
ν η2

(
t, ‖X‖, γ2

γ1

√
ν ‖X‖

))

‖X‖2

≤ −γ4

(
γ 2
3

γ4
− sup

X∈ΩX

{

η1

(
t, ‖X‖, γ2

γ1

√
ν ‖X‖

)

+γ2

γ1

√
ν η2

(
t, ‖X‖, γ2

γ1

√
ν ‖X‖

)})

‖X‖2

= −γ4

(
γ 2
3

γ4
− μ

)

‖X‖2.

From (7.70),

γ4

(
γ 2
3

γ4
− μ

)

> 0.

Hence the conclusion follows. ∇
Remark 7.10 Corollary7.1 shows that Assumption7.8 is unnecessary if
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Ẋ = F1s(t, X)

is exponentially stable. From (7.61) and (7.62), the limitation on the mismatched
uncertainty Ψ1(·) is reflected through (7.65) or (7.70). Since X := (z, y1) ∈ R

n−m

represent the partial state variables of x ∈ R
n and

Ψ1s(t, X, Xd) := Ψ1(t, z, y1, 0, zd , y1d , 0)

where from (7.55),Ψ1(·) is only a subcomponent of the uncertaintyΨ (·), it is straight-
forward to see that the conservatism of (7.65) and (7.70) is reduced when compared
with the results in [210, 214], where the limitation is onΨ (·) in x ∈ R

n . Similar to the
work in [89, 224], the assumptions and conditions are imposed on the transformed
system, which usually reduces conservatism due to the favourable structure of the
transformed system, although the relationship between these assumptions and the
original system may not be transparent.

Since the input distributionmatrix G(t, y) of System (7.51)–(7.52) is nonsingular,
it is straightforward to see that both terms Φ(·) and Ψ2(·) are matched disturbances.
Theorem7.3 and Corollary7.1 show that only Ψ1(·), which is the mismatched dis-
turbance, affects the sliding motion. This is consistent with the well known fact that
the sliding mode is insensitive to matched uncertainty.

7.3.3.2 Reachability Analysis

Consider System (7.51)–(7.53). The following assumptions are required.

Assumption 7.9 The disturbances Φ(·) and Ψ2(·) in (7.52) satisfy

‖Φ(t, z, y, zd , yd)‖ ≤ �1(t, z, y, zd , yd), (7.71)

‖Ψ2(t, z, y, zd , yd)‖ ≤ �2(t, z, y, zd , yd) (7.72)

for some known functions �1(·) and �2(·) which satisfy the generalised Lipschitz
condition w.r.t. the variables z, zd and yd uniformly for t ∈ R

+ and y ∈ Ωy .

Assumption 7.10 The nonlinear function F2(t, z, y) in (7.52) satisfies the gener-
alised Lipschitz condition w.r.t. the variables z uniformly for t ∈ R

+ and y ∈ Ωy .

From Assumptions7.9 and 7.10, the following inequalities hold

|�1(t, z, y, zd , yd) − �1(t, 0, y, 0, 0)|
≤ L�11(t, y)‖z‖ + L�12(t, y)‖zd‖ + L�13(t, y)‖yd‖ (7.73)

|�2(t, z, y, zd , yd) − �2(t, 0, y, 0, 0)|
≤ L�21(t, y)‖z‖ + L�22(t, y)‖zd‖ + L�23(t, y)‖yd‖ (7.74)

‖F2(t, z, y) − F2(t, 0, y)‖ ≤ LF21(t, y)‖z‖ (7.75)
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where L�i for i = 1, 2, 3 are the generalised Lipschitz bounds of the function �

with respect to z, zd and yd uniformly for (t, y) ∈ R
+ × Ωy . Consider System

(7.51)–(7.53) in {
(z, y) | ‖z‖ ≤ q2, y ∈ Ωy

} ⊂ ΩT

where q2 is a positive constant and Ωy := Ωy1 × Ωy2 . Let

q := max{q1, q2} (7.76)

where q1 is defined in (7.47). Construct the control law

u(t, y) = −G−1(t, y)F2(t, 0, y) − G−1(t, y)
(‖G(t, y)‖�1(t, 0, y, 0, 0)

+�2(t, 0, y, 0, 0)
)
sgn(y2) − G−1(t, y)k(t, y)sgn(y2) (7.77)

where F2(·) is given in (7.52) and �1(·) and �2(·) satisfy (7.71). sgn(·) is the usual
signum function, and k(·) is the control gain to be determined later. The G(t, y) is
given in (7.49), which is nonsingular in R+ ×Y , and thus the control u(·) in (7.77)
is well defined. The control u(·) in (7.77) is only dependent on the time t and output
y but independent of the time-delay d(t). It is called a memoryless static output
feedback control.

Theorem 7.4 Consider the nonlinear system (7.51)–(7.52). Under Assumptions7.9
and 7.10, System (7.51)–(7.52) can be driven to the sliding surface (7.59) in finite
time and maintains a sliding motion on it thereafter by means of the control (7.77) if
the control gain k(·) is chosen as

k(t, y) := q
(
LF21(t, y) + ‖G(t, y)‖(L�11(t, y) + L�12(t, y) + L�13(t, y)

)

+L�21(t, y) + L�22(t, y) + L�23(t, y)
)+ ρ (7.78)

for any constant ρ > 0, where q > 0 is defined in (7.76), and �1(·), �2(·) and F2(·)
satisfy (7.73), (7.74) and (7.75) respectively.

Proof From Eq. (7.52),

yT
2 ẏ2 = yT

2

(
F2(t, z, y) + G(t, y)

(
u + Φ(t, z, y, zd , yd)

)+ Ψ2(t, z, y, zd , yd)
)
.

Substituting the control u(·) in (7.77) into this equation yields

yT
2 ẏ2 = yT

2

(
F2(t, z, y) − F2(t, 0, y)

)
+ yT

2 G(t, y)Φ(·)
−‖G(t, y)‖�1(t, 0, y, 0, 0)yT

2 sgn(y2) + yT
2 Ψ2(·)

−�2(t, 0, y, 0, 0)yT
2 sgn(y2) − k(t, y)yT

2 sgn(y2). (7.79)

Under Assumption7.10,
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yT
2

(
F2(t, z, y) − F2(t, 0, y)

)
≤ ‖y2‖ ‖F2(t, z, y) − F2(t, 0, y)‖
≤ qLF21(t, y)‖y2‖ (7.80)

and from the fact that sT sgn(s) ≥ ‖s‖ for any vector s (see, Lemma 1 in [199]), it
follows that under Assumption7.9,

yT
2 G(t, y)Φ(·) − ‖G(t, y)‖�1(t, 0, y, 0, 0)yT

2 sgn(y2)

≤ ‖y2‖ ‖G(t, y)‖�1(t, z, y, zd , yd) − ‖y2‖‖G(t, y)‖�1(t, 0, y, 0, 0)

= ‖y2‖ ‖G(t, y)‖(�1(t, z, y, zd , yd) − �1(t, 0, y, 0, 0)
)

≤ ‖y2‖ ‖G(t, y)‖(L�11(t, y)‖z‖ + L�12(t, y)‖zd‖ + L�13(t, y)‖yd‖
)

≤ q‖y2‖ ‖G(·)‖(L�11(t, y) + L�12(t, y) + L�13(t, y)
)

(7.81)

where (7.73) is employed above. By similar reasoning as in (7.81),

yT
2 Ψ2(t, z, y, zd , yd) − �2(t, 0, y, 0, 0)yT

2 sgn(y2)

≤ ‖y2‖
(
�2(t, z, y, zd , yd) − �2(t, 0, y, 0, 0)

)

≤ q‖y2‖
(
L�21(·) + L�22(·) + L�23(·)

)
. (7.82)

Substituting (7.80)–(7.82) into (7.79) yields

yT
2 ẏ2 ≤ q

(
LF21(t, y) + ‖G(t, y)‖(L�11(t, y) + L�12(t, y) + L�13(t, y)

)

+L�21(t, y) + L�22(t, y) + L�23(t, y)
)
‖y2‖ − k(t, y)‖y2‖

= −ρ‖y2‖

where (7.78) is employed above.
Hence the conclusion follows from s(·) = y2 in (7.58). ∇
Following the transformation (7.48), the disturbance ψ(·) in (7.44) is split into

Ψ1(·) in (7.51) andΨ2(·) in (7.52). The former only affects the slidingmode dynamics
while the latter only impacts on the reachability. From sliding mode control theory,
Theorem7.4 together with Theorem7.3 (or Corollary7.1) shows that the associated
closed-loop system is uniformly asymptotically (or exponentially) stable.

Remark 7.11 Assumptions7.7 and 7.9 are imposed on Ψ1(·) and Ψ2(·) respectively
based on their different effects. This has improved the robustness when compared
with the existing work (see, e.g., [210, 214]) where both Assumptions7.7 and 7.9
are required for ψ(·). Assumption7.7 and Eq. (7.62) show that Ψ1s(·) must vanish
at X = 0 and Xd = 0 to guarantee that the sliding motion is asymptotically stable.
However, here it is not required that the matched disturbance vanishes at the origin.

It should be noted that in the control design, the parameter q should be selected
properly. This depends on q1 and q2 through Eq. (7.76). From (7.47), q1 can be
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determined by the admissible initial conditions relating to the delay, and q2 can
be estimated by Inequality (7.65). In addition, the results developed in this section
include systemswith linear nominal dynamics as a special case. The design paradigm
can be applied to the systems discussed in [74, 75, 209] by appropriate modification.

7.4 Decentralised Output Feedback Control for Nonlinear
Interconnected Systems

This section considers the stabilisation problem for a class of nonlinear large-scale
interconnected systems with uncertainties based on a memoryless static output feed-
back control scheme.

7.4.1 Introduction

Many practical systems are often modelled as dynamical equations composed of
interconnections between a collection of lower dimensional subsystems. A decen-
tralised control approach is adapted to reduce information requirements. These have
motivated the study of this section.

Time-delay is an important factor in the effective of control of a large scale
interconnected system. The interconnections between two or more physical systems
are often accompanied by phenomena such as material transfer, energy transfer and
information transfer, which, from a mathematical point of view, can be represented
by delay elements [126]. This has motivated the study of large scale time-delay
interconnected systems, and many results have been achieved [2, 70, 217].

However most of the existing results consider situations where all the system
states are available. The associated decentralized output feedback results for time
delay large-scale interconnected systems are very few [73, 227]. An output feedback
decentralised control scheme is given in [120] for the case of discrete interconnected
systems. A class of nonlinear interconnected systems with triangular structure is
considered in [227], and a large-scale system composed of a set of single input
single output subsystems with dead zone input is considered in [227]. In both [73,
227], the control schemes are based on dynamical output feedback which increases
the computation greatly due to the associated closed-loop system possessing possibly
twice the order of the actual plant.

In many of the existing control schemes, controllers are explicitly dependent on
time-delay [6, 208] and/or limitations on the rate of change of the time-delay must
be imposed [51]. In addition, as pointed out in [227], most of the existing variable
structure controllers for nonlinear systems use knowledge of the delay explicitly
and hence require memory, which is difficult to implement in practice especially for
the case of time-varying delay. Although a memoryless control for a class of linear
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systems was proposed based on a back-stepping approach in [227], the nonlinear
uncertainty is required to be matched and it is assumed that all the system states are
available. A memoryless sliding mode control scheme is given in [195], but all the
nonlinear terms are assumed to be matched and are without time-delay. This renders
the associated sliding mode dynamics to be delay free and thus there is no delay
involved in the stability analysis of the slidingmode dynamics. More recently, a class
of nonlinear time-delay interconnected systems is considered by [210]. However, it
is required that the time-delay is precisely known and each subsystem is square.
Further, the results given in [210] do not render themselves suitable for extension to
the non-square case.

In this section, a variable structure control is synthesised to stabilise a class of
large-scale time-delay systems with nonlinear interconnections. The bounds on the
uncertainties are nonlinear and involve time-delay states. A decentralised variable
structure control scheme using only output information is proposedwhich is indepen-
dent of time-delay. Based on the Lyapunov–Razumikhin approach, sufficient condi-
tions are derived such that the closed-loop system formed by the designed control
and the large-scale interconnected systems is uniformly asymptotically stable. Lim-
itation on the rate of change of the time-delay is unnecessary. A compensator, which
increases the required computation levels for large-scale interconnected systems, is
not required either. Further study shows that the effects of the known interconnections
can be largely rejected if they are separated into matched and mismatched parts and
dealt with separately. Unlike the work in [210], it is not required that the subsystem
is square, and it is not required that the time-delay is known. Thus the controller does
not require memory.

7.4.2 System Description and Basic Assumptions

Consider a time-varying delay interconnected system composed of n ni -th order
subsystems described by

ẋi = Ai xi + Bi
(
ui + ξi

(
t, xi , xidi

))+ Fi (x) + ψi (t, x, xd) (7.83)

yi = Ci xi , i = 1, 2, . . . , n, (7.84)

where x := col(x1, . . . , xn), xi ∈ R
ni , ui ∈ R

mi and yi ∈ R
pi are the state vari-

ables, inputs and outputs of the i-th subsystem respectively. The triples (Ai , Bi , Ci )

represent constant matrices of appropriate dimensions with Bi and Ci of full rank.
The functions ξi (·) are matched uncertainties in the i-th subsystem. The function
vectors Fi (x) ∈ R

ni are known and analytic with Fi (0) = 0. The terms ψi (t, x, xd)

are uncertain interconnections of the i-th subsystem. The symbols

xidi := xi (t − di ) and xd := col(x1d1 , x2d2 , . . . , xndn )
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are the delayed states, and the symbols di := di (t) denote the time-varying delays
which are assumed to be known, nonnegative and bounded in R+, that is

di := sup
t∈R+

{di (t)} < ∞, i = 1, 2, . . . , n.

The initial conditions associated with the time-delays are given by

xi (t) = φi (t), t ∈ [−di , 0]

where φi (·) are continuous in [−di , 0] for i = 1, 2, . . . , n. It is assumed that all the
nonlinear functions are smooth enough such that the unforced interconnected system
has a unique continuous solution.

In this section, the local case will be considered. In order to simplify the descrip-
tion, the considered domain will not be stated unless it is necessary. However, each
variable’s dimension will be clearly identified. Note, if all the relevant conditions
hold globally, the developed results can be extended to the global case.

Since the function vectors Fi (x) are known and analytic with Fi (0) = 0, there
exist analytic function matrices Φi (·) ∈ R

ni ×∑n
i=1 ni such that (see [3])

Fi (x) = Φi (x)x, i = 1, 2, . . . , n.

Partition the matrices Φi (·) as

Φi (x) := [Φi1(x) Φi2(x) · · · Φin(x)
]

whereΦi j (·) ∈ R
ni ×n j for i, j = 1, 2, . . . , n. It follows from x = col(x1, x2, . . . , xn)

that the interconnection terms Fi (x) can be expressed by

Fi (x) =
n∑

j=1

Φi j (x)x j . (7.85)

It should be noted that the matrices Φi j (·) which satisfy Eq. (7.85) are not unique.
One way to find the matrices Φi (·) and thus Φi j (·) is presented in [197].

System (7.83)–(7.84) can be considered as being generated by interconnecting its
isolated subsystems. The following basic assumptions are required.

Assumption 7.11 There exist known continuous functions ρi (·), �i (·), αi j (·) and
βi j (·) such that for i, j = 1, 2, . . . , n

‖ξi (t, xi , xidi )‖ ≤ ρi (t, yi ) + �i (t, yi )‖xidi ‖ (7.86)

‖ψi (t, x, xd)‖ ≤
n∑

j=1

αi j (t, x)‖x j‖ +
n∑

j=1

βi j (t, x)‖x jd j ‖. (7.87)
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Remark 7.12 Assumption7.11 describes the limitations on the uncertainties that can
be tolerated by the system. It is not required that the interconnections are described
or bounded by functions of the system outputs as in [142, 214]. Furthermore, unlike
[118, 142, 214], the bounds on the uncertain interconnections are nonlinear and
involve the time-delay state variables.

Assumption 7.12 The triples (Ai , Bi , Ci ) are output feedback stabilisable for i =
1, 2, . . . , n.

Assumption7.12 is fundamental and implies that there exist matrices Ki such that
for any Qi > 0, the equations

− Qi = (Ai − Bi Ki Ci )
T Pi + Pi (Ai − Bi Ki Ci ) < 0, i = 1, 2, . . . , n (7.88)

have unique solutions Pi > 0.

Assumption 7.13 There exist matrices Ei such that

BT
i Pi = Ei Ci (7.89)

where the matrices Pi satisfy (7.88) for i = 1, 2, . . . , n.

Remark 7.13 Assumption7.12 together with Assumption7.13 describes a structural
characteristic associated with the nominal isolated subsystems (Ai , Bi , Ci ) which
is the standard Constrained Lyapunov Problem (CLP) (see, e.g., [57]). A similar
limitation has been imposed by many authors [24, 26, 57]. Necessary and sufficient
conditions for solving the CLP can be found in [41, 57].

The objective now is, under the assumption that all the isolated subsystems are
output feedback stabilisable, to design a variable structure control law of the form

ui = ui (t, yi ), i = 1, 2, . . . , n (7.90)

such that the closed-loop system formed by applying the control law in (7.90) to the
large-scale interconnected system (7.83)–(7.84), is uniformly asymptotically stable
even in the presence of the uncertainties and time-delays. Since the control ui in
(7.90) are only dependent on the time t and the i-th subsystem’s output yi , and are
independent of time-delay, they constitute a delay independent decentralised static
output feedback control.

7.4.3 Decentralised Output Feedback Control Design

A decentralised output feedback controller which is independent of the time-delay
will be proposed for the large-scale interconnected system (7.83)–(7.84).
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Consider the control law

ui = −Ki yi − 1

2εa
i

Ei yi�
2
i (t, yi ) + ua

i (t, yi ), i = 1, 2, . . . , n (7.91)

where Ki ∈ R
mi ×pi are design parameters satisfying (7.88),�i (·) are given in (7.86),

εa
i > 0 are constant and the terms ua

i (·) are defined by

ua
i (·) :=

{− Ei yi

‖Ei yi ‖ρi (t, yi ), Ei yi 	= 0
0, Ei yi = 0

(7.92)

where Ei satisfy (7.89). Clearly each element ui is decentralised because it is only
dependent on the time t and the local output yi . Thus the ui in (7.91) are called
decentralised output feedback variable structure controllers in Sect. 7.4.

The following result is now ready to be presented:

Theorem 7.5 Under Assumptions7.11–7.13, the closed-loop system formed by
applying the control (7.91)–(7.92) to System (7.83)–(7.84) is uniformly asymptot-
ically stable if

γ := inf
x

{
λmin

(
W T (·) + W (·))} > 0

where W (·) = [wi j (·)]2n×2n is a function matrix defined by

wi j (·) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmin(Qi ) − qλmax(Pi ) − 2‖PiΦi i (x)‖
− 2αi i (t, xi )‖Pi‖ 1 ≤ i = j ≤ n

λmin(Pi ) − εa
i , n + 1 ≤ i = j ≤ 2n

−2‖PiΦi j (x)‖ − 2αi j (t, x)‖Pi‖, i 	= j and 1 ≤ i, j ≤ n
−2βi( j−n)(t, x j−n)‖Pi‖, 1 ≤ i ≤ n, and j > n
−2β(i−n) j (t, x j )‖Pi−n‖, i > n, and 1 ≤ j ≤ n

0, otherwise

for constants q > 1 and εa
i > 0, where αi j (·) and βi j (·) satisfy (7.87) for i, j =

1, 2, . . . , n.

Proof Applying the control (7.91)–(7.92) to System (7.83)–(7.84) and considering
Eq. (7.85), the corresponding closed-loop system can be described by

ẋi = Ai xi + Bi

(
−Ki Ci xi − 1

2εa
i

Ei yi�
2
i (t, yi ) + ua

i (t, yi ) + ξi
(
t, xi , xidi )

)

+
n∑

j=1

Φi j (x)x j + ψi (t, x, xd) (7.93)

where ua
i (·) are given by (7.92) and Φi j (·) satisfy Eq. (7.85) for i, j = 1, 2, . . . , n.

For System (7.93), consider the Lyapunov function candidate
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V (x(t)) = V (x1(t), x2(t), . . . , xn(t)) =
n∑

i=1

xT
i (t)Pi xi (t) (7.94)

where Pi > 0 satisfy Eq. (7.88) for i = 1, 2, . . . , n. Then, the time derivative of V (·)
along the trajectories of System (7.93) is given by

V̇ = −
n∑

i=1

xT
i Qi xi + 2

n∑

i=1

xT
i Pi Bi

(
− 1

2εa
i

Ei yi�
2
i (t, yi ) + ua

i (t, yi )
)

+2
n∑

i=1

xT
i Pi Biξi (t, xi , xidi ) + 2

n∑

i=1

n∑

j=1

xT
i PiΦi j (x)x j

+2
n∑

i=1

xT
i Piψi (t, x, xd). (7.95)

From (7.86), (7.89) and Young’s inequality, it follows that for any εa
i > 0

xT
i Pi Bi ξi (t, xi , xidi ) = (Ei yi )

T ξi (t, xi , xidi )

≤ ‖Ei yi ‖ρi (t, yi ) + ‖Ei yi ‖�i (t, yi )‖xidi ‖
≤ ‖Ei yi ‖ρi (t, yi ) + 1

2εa
i
‖Ei yi ‖2� 2

i (t, yi ) + εa
i

2
‖xidi ‖2. (7.96)

From (7.89) and the definition of ua
i (·) in (7.92), it follows that

(i) if Ei yi = 0, then ua
i (·) = 0, and thus

xT
i Pi Bi u

a
i (t, yi ) + ‖Ei yi‖ρi (t, yi ) = 0

(ii) if Ei yi 	= 0, from the definition of ua
i (·) in (7.92),

xT
i Pi Bi u

a
i (t, yi ) + ‖Ei yi‖ρi (t, yi )

≤ −(Ei yi )
T Ei yi

‖Ei yi‖ρi (t, yi ) + ‖Ei yi‖ρi (t, yi )

= 0.

Therefore, from (i) and (ii) above,

xT
i Pi Bi u

a
i (t, yi ) + ‖Ei yi‖ρi (t, yi ) ≤ 0, i = 1, 2, . . . , n. (7.97)

Further, from (7.89),
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− 1

2εa
i

xT
i Pi Bi Ei yi�

2
i (t, yi ) + 1

2εa
i

‖Ei yi‖2� 2
i (t, yi )

= − 1

2εa
i

xT
i CT

i E T
i Ei yi�

2
i (t, yi ) + 1

2εa
i

‖Ei yi‖2� 2
i (t, yi )

= − 1

2εa
i

(Ei yi )
T Ei yi�

2
i (t, yi ) + 1

2εa
i

‖Ei yi‖2� 2
i (t, yi ) = 0. (7.98)

Therefore, from (7.96), (7.97) and (7.98)

n∑

i=1

xT
i Pi Bi

(
− 1

2εa
i

Ei yi�
2
i (t, yi ) + ua

i (t, yi )
)

+
n∑

i=1

xT
i Pi Biξi (t, xi , xidi )

≤ −
n∑

i=1

1

2εa
i

xT
i Pi Bi Ei yi�

2
i (t, yi ) +

n∑

i=1

xT
i Pi Bi u

a
i (t, yi ) +

n∑

i=1

‖Ei yi‖ρi (t, yi )

+
n∑

i=1

1

2εa
i

‖Ei yi‖2� 2
i (t, yi ) +

n∑

i=1

εa
i

2
‖xidi ‖2

≤ 1

2

n∑

i=1

εa
i ‖xidi ‖2. (7.99)

From (7.87),

xT
i Piψi (t, x, xd) ≤ ‖xi‖ ‖Pi‖

n∑

j=1

(
αi j (t, x)‖x j‖ + βi j (t, x)‖x jd j ‖

)

=
n∑

i=1

(
αi j (t, x)‖Pi‖ ‖xi‖ ‖x j‖

+βi j (t, x)‖Pi‖ ‖xi‖‖x jd j ‖
)
. (7.100)

Applying (7.99) and (7.100) to Eq. (7.95) yields

V̇ ≤ −
n∑

i=1

xT
i Qi xi +

n∑

i=1

εa
i ‖xidi ‖2 + 2

n∑

i=1

n∑

j=1

xT
i Pi Φi j (x)x j

+2
n∑

i=1

n∑

j=1

(
αi j (t, x)‖Pi ‖ ‖xi ‖ ‖x j ‖ + βi j (t, x)‖Pi ‖ ‖xi ‖‖x jd j ‖

)
. (7.101)

From the definition of V (·) in (7.94), it is clear that

V (x1d1 , x2d2 , . . . , xndn ) ≤ qV (x1, x2, . . . , xn), (q > 1)
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implies that

q
n∑

i=1

λmax(Pi )‖xi‖2 −
n∑

i=1

λmin(Pi )‖xidi ‖2

≥ q
n∑

i=1

xT
i Pi xi −

n∑

i=1

xT
idi

Pi xidi

≥ 0. (7.102)

Therefore, when
V (x1d1 , . . . , xndn ) ≤ qV (x1, . . . , xn)

it follows from (7.102) and (7.101) that

V̇ ≤ −
n∑

i=1

λmin(Qi )‖xi‖2 +
n∑

i=1

εa
i ‖xidi ‖2 + 2

n∑

i=1

n∑

j=1

‖PiΦi j (x)‖ ‖xi‖ ‖x j‖

+2
n∑

i=1

n∑

j=1

(
αi j (t, x)‖Pi‖ ‖xi‖ ‖x j‖ + βi j (t, x)‖Pi‖ ‖xi‖‖x jd j ‖

)

+q
n∑

i=1

λmax(Pi )‖xi‖2 −
n∑

i=1

λmin(Pi )‖xidi ‖2

≤ −
n∑

i=1

(
λmin(Qi ) − qλmax(Pi )

)
‖xi‖2 −

n∑

i=1

(
λmin(Pi ) − εa

i

)
‖xidi ‖2

+2
n∑

i=1

n∑

j=1

(
‖PiΦi j (x)‖ + αi j (t, x)‖Pi‖

)
‖xi‖ ‖x j‖

+2
n∑

i=1

n∑

j=1

βi j (t, x)‖Pi‖ ‖xi‖ ‖x jd j ‖

= −1

2
Y
(
W T (·) + W (·)) Y T

≤ −1

2
λmin

(
W T (·) + W (·)) (‖x‖2 + ‖xd‖2)

≤ −1

2
γ ‖x‖2

where
Y := [ ‖x1‖ · · · ‖xn‖ ‖x1d1‖ · · · ‖xndn ‖

]
.

Hence, by applying Lemma A.1 in the Appendix A.1, the conclusion follows from
γ > 0. �
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Remark 7.14 From inequalities (7.87) in Assumption7.11, the bounds on the uncer-
tain interconnections are dependent on the system states, and thus they cannot be
employed in the control design since static output feedback is used. The effects of
such interconnections have been reflected throughαi j (t, x) andβi j (t, x) in thematrix
W in Theorem7.5. From Lemma A.1 in Appendix A.1, it is straightforward to see
that the result in Theorem7.5 can be extended to the global case if

γ := inf
x

{
λmin

(
W T (·) + W (·))} > 0

holds globally.

It is well known that one of the main challenges for large-scale interconnected
systems is to deal with interconnections. It is assumed that the function matrices
Φi j (·) in the decomposition (7.85) are only dependant on the i-th system’s outputs
yi , that is

Φi j (x) = Φi j (yi ), i, j = 1, 2, . . . , n.

In this case, the known interconnections Φi (x) in System (7.83) are described by

Φi (x) =
n∑

i=1

Φi j (yi )x j , i = 1, 2, . . . , n (7.103)

where Φi j (·) ∈ R
ni ×n j . It is clear to see that the expressions (7.103) include linear

interconnections as a special case in which the matrices Φi j (·) are constant.
In order to reduce the effects of the interconnections, the objective now is to

separate the interconnections into matched and mismatched contributions, and then
try to reject the effects of the accessible parts by appropriate additive control elements.
Denote the l-th column vector of the matrix Φi j (yi ) by Φ

(l)
i j (yi ) for l = 1, 2, . . . , n j .

For the given input matrices Bi , it is assumed that Im(Bi ) represents the image of the
matrix Bi , and (Im(Bi ))

⊥ denotes the orthogonal complimentary space of Im(Bi ).
Using basic matrix theory, decompose the vector Φ

(l)
i j (yi ) as

Φ
(l)
i j (yi ) = (Φ

(l)
i j (yi ))

a + (Φ
(l)
i j (yi ))

b

such that
(Φ

(l)
i j (yi ))

a ∈ Im(Bi ) and (Φ
(l)
i j (yi ))

b ∈ (Im(Bi ))
⊥

for l = 1, 2, . . . , n j . Let

Φa
i j (yi ) :=

[
(Φ

(1)
i j (yi ))

a (Φ
(2)
i j (yi ))

a · · · (Φ
(n j )

i j (yi ))
a
]

Φb
i j (yi ) :=

[
(Φ

(1)
i j (yi ))

b (Φ
(2)
i j (yi ))

b · · · (Φ
(n j )

i j (yi ))
b
]
.
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It is straightforward to see that Φi j (yi ) has the following decomposition

Φi j (yi ) = Φa
i j (yi ) + Φb

i j (yi ), i, j = 1, 2, . . . , n (7.104)

where

Φa
i j (yi ) = Bi Φ̃i j (yi ), i, j = 1, 2, . . . , n (7.105)

for some Φ̃i j (yi ) ∈ R
mi ×n j .

Then, consider the following control law:

ui = −Ki yi − 1

2εa
i

Ei yi�
2
i (t, yi ) + ua

i (t, yi ) + ub
i (t, yi ), i = 1, 2, . . . , n

(7.106)
where Ki and ua

i (·) are given in (7.91), and the additive control element ub
i (·) is

defined by

ub
i (·) =

⎧
⎪⎨

⎪⎩

− Ei yi

‖Ei yi‖2
n∑

j=1

(
1

2εb
i

‖(Ei yi )
T Φ̃i j (yi )‖2

)

, Ei yi 	= 0

0, Ei yi = 0

(7.107)

where Φ̃i j (yi ) satisfy (7.105). It should be noted that the control (7.106) is generated
by adding the term (7.107) to the control (7.91).

Corollary 7.2 Assume that the interconnections of System (7.83)–(7.84) can be
expressed in (7.103). Then, under Assumptions7.11–7.13, the closed-loop system
formed by applying the control (7.106) to the system (7.83)–(7.84) is uniformly
asymptotically stable if

inf
x

{
λmin

(
Γ T (·) + Γ (·))} > 0

where the matrix Γ (·) = [Γi j (·)]2n×2n is defined by

Γi j (·) =

⎧
⎪⎪⎨

⎪⎪⎩

λmin(Qi ) − qλmax(Pi ) − 2αi i (t, xi )‖Pi‖
−∑n

j=1ε
b
j , 1 ≤ i = j ≤ n

−2‖PiΦ
b
i j (yi )‖ − 2αi j (t, x)‖Pi‖, i 	= j and 1 ≤ i, j ≤ n

wi j (·), otherwise

for some constants
εb

j > 0 and q > 1

where the functions wi j (·) are defined in Theorem7.5 and the matrices Φb
i j (·) are

defined in (7.104).
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Proof From (7.103), (7.104) and (7.105),

n∑

i=1

xT
i Pi Bi ub

i (t, yi ) +
n∑

i=1

xT
i Pi Φi (x)

=
n∑

i=1

xT
i Pi Bi ub

i (t, yi ) +
n∑

i=1

n∑

j=1

xT
i Pi Bi Φ̃i j (yi )x j +

n∑

i=1

n∑

j=1

xT
i Pi Φ

b
i j (yi )x j .(7.108)

Based on the structure of the control in (7.107), consider the following two cases:
(i) if Ei yi = 0, then from (7.89) and (7.107),

n∑

i=1

xT
i Pi Bi u

b
i (t, yi ) +

n∑

i=1

n∑

j=1

xT
i Pi Bi Φ̃i j (yi )x j

=
n∑

i=1

(Ei yi )
T ub

i (t, yi ) +
n∑

i=1

n∑

j=1

(Ei yi )
T Φ̃i j (yi )x j

= 0

(ii) if Ei yi 	= 0, then from (7.89), the definition of ub
i (·) in (7.107) and Young’s

inequality,

n∑

i=1

xT
i Pi Bi u

b
i (t, yi ) +

n∑

i=1

n∑

j=1

xT
i Pi Bi Φ̃i j (yi )x j

=
n∑

i=1

(Ei yi )
T ub

i (t, yi ) +
n∑

i=1

n∑

j=1

(Ei yi )
T Φ̃i j (yi )x j

≤
n∑

i=1

(Ei yi )
T ub

i (t, yi ) +
n∑

i=1

n∑

j=1

(
1

2εb
i

‖(Ei yi )
T Φ̃i j (yi )‖2 + εb

i

2
‖x j‖2

)

= −
n∑

i=1

(Ei yi )
T Ei yi

‖Ei yi‖2
( n∑

j=1

1

2εb
i

‖(Ei yi )
T Φ̃i j (yi )‖2

)

+
n∑

i=1

n∑

j=1

1

2εb
i

‖(Ei yi )
T Φ̃i j (yi )‖2 +

n∑

i=1

n∑

j=1

εb
i

2
‖x j‖2

=
n∑

i=1

( n∑

j=1

εb
j

2

)

‖xi‖2.

From the analysis in (i) and (ii) above, it follows that

n∑

i=1

xT
i Pi Bi u

b
i (t, yi ) +

n∑

i=1

n∑

j=1

xT
i Pi Bi Φ̃i j (yi )x j ≤

n∑

i=1

( n∑

j=1

εb
j

2

)

‖xi‖2. (7.109)
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By applying (7.109) to (7.108),

2
n∑

i=1

xT
i Pi Bi u

b
i (t, yi ) + 2

n∑

i=1

n∑

j=1

xT
i PiΦi (x)

≤ 2
n∑

i=1

n∑

j=1

xT
i PiΦ

b
i j (yi )x j +

n∑

i=1

( n∑

j=1

εb
j

)

‖xi‖2. (7.110)

Hence, the conclusion follows by following the proof of Theorem7.5. �

Remark 7.15 From the proof of Corollary7.2, it is clear to see that using the decom-
position (7.104), the nonlinear term

n∑

i=1

n∑

j=1

xT
i Pi Bi Φ̃i j (yi )x j

which results from the matched interconnections can be largely rejected by the
designed control (7.107) by choosing the positive parameters εb

j small enough,
although this approach may result in high gain control. The numerical example in
Sect. 7.5.3 will show that the conservatism can be reduced by employing the additive
term (7.107).

7.5 Simulation Examples

Examples are presented in this section to demonstrate the results obtained from the
approaches developed in Sects. 7.2–7.4.

7.5.1 Case Study—A Mass–Spring System

Consider a mass–spring systemwhich experiences a hardening spring, linear viscous
friction and an external force described by (see [91])

ms̈ + cṡ + ks + ka2s3 = u (7.111)

where s denotes the displacement from the reference position, m is the mass of the
object sliding on a horizontal surface, k is the spring constant and u is an external
force which is considered as the control input. The term

ks + ka2s3
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is used to model the restoring force for the hardening spring. Let x = col(x1, x2) =
(s, ṡ). Then,

ẋ1 = x2 and ẋ2 = s̈.

From Eq. (7.111),

ẋ2 = − c

m
x2 − k

m
x1 − k

m
a2x3

1 + u

= −
(

k

m
+ k

m
a2x2

1

)

x1 − c

m
x2 + u.

The model is parameterised as in [91] (see, pages 172–173) (alternatively choose
m = c = k = a = 1). Then, the system is described by

ẋ =
[

x2
−(1 + x2

1 )x1 − x2

]

︸ ︷︷ ︸
f (·)

+
[
0
1

]

︸︷︷︸
g(·)

(u + Δg(x, xd)) + Δ f (x, xd) (7.112)

y = x1 + x2 (7.113)

where y is the system output. As in [180], the system output here is chosen as the
linear combination of the position and velocity, which guarantees that the nominal
system is output feedback stabilisable. This may occur in some real systems such as
certain remote control applications where the number of transmission and receive
lines/frequencies are limited [180]. The uncertainties Δ f (x, xd) and Δg(x, xd) are
not an inherent property of the system but are specifically added to illustrate the
results obtained in Sect. 7.2. It is assumed that

‖Δg(x, xd)‖ ≤ 1 + y sin2 y
︸ ︷︷ ︸

α1(·)
+ y2
︸︷︷︸
α2(·)

‖xd‖︸︷︷︸
α3(·)

(7.114)

‖Δ f (x, xd)‖ ≤ 0.01‖x‖ ‖xd‖2︸ ︷︷ ︸
β(·)

. (7.115)

Then, consider an output feedback control

u1(y) = −y (7.116)

and a Lyapunov function candidate

V = xτ

[
4 1
1 1

]

x + 1

2
x4
1 .

It is straightforward to see that V (·) is a continuous positive definite function. By
direct computation,
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0.697‖x‖2 ≤ V (x) ≤ 4.303‖x‖2 + 1

2
‖x‖4 (7.117)

∂V

∂x
( f (x) + g(x)u1(y)) = −2x2

1 − 2x2
2 − 2x4

1 ≤ −2‖x‖2

∥
∥
∥
∥
∂V

∂x

∥
∥
∥
∥ ≤ 8.606‖x‖ + 2‖x‖3

∂V

∂x
g(x) = 2x1 + 2x2 = 2y = M(y).

Let
c1(r) = 0.697r2, c2(r) = 4.303r2 + 1

2r4,
c3(r) = 2r2, c4(r) = 8.6056r + 2r3.

It is clear to see that both Assumptions7.1 and 7.2 are satisfied. Further, assume that

V (x(t + θ)) ≤ qV (x(t))

for any θ ∈ [−d̄, 0] and q > 1. From Inequality (7.117), it follows that for any
d ∈ [0, d̄],

0.697‖xd‖2 ≤ V (x(t − d)) ≤ qV (x(t)) ≤ 4.303q‖x‖2 + 1

2
q‖x‖4.

Then,
‖xd‖2 ≤ 6.2q‖x‖2 + 0.72q‖x‖4.

This implies that Assumption7.3 is satisfied with

γ (r) =
√
6.2qr2 + 0.72qr4. (7.118)

By direct computation, it is observed that the conditions of Theorem7.1 are satisfied
in the domain

X := {x | ‖x‖ ≤ 1}

with
α(r) = 0.01r2

if the parameters q and ε are chosen in the shaded open set shown in Fig. 7.1.
Based on Theorem7.1, the mass–spring system (7.112)–(7.113) is stabilised by

the control
u = u1 + u2
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Fig. 7.1 The estimated
admissible region for the
parameters ε and q

where

u1 = −y (7.119)

u2 =
{

−
(

y
|y|
(
1 + y sin2 y

)+ 1
ε

y5
)
, y 	= 0

0, y = 0
. (7.120)

For simulation purposes, choose

ε = 0.1 and q = 1.05.

The time-delay is chosen as

d(t) = 2 − 1.5 cos(t)

and the initial condition relating to the delay defined in (7.3) is chosen asφ(t) = sin t .
The simulation results in Fig. 7.2 are as expected.

Remark 7.16 From Fig. 7.2, it is clear to see that chattering occurs in the control
signal. This is a result of the discontinuous control u2(·) in (7.120). One way of
overcoming this drawback is to introduce a boundary layer about the discontinuous
surfaces (see [13]).

Remark 7.17 Considering Assumption7.3, it is straight forward to see that in the
simulation example,

w(r) = qr and γ (r) =
√

4.303qr2 + 1

2
qr4.

By direct computation, Assumption7.3 is satisfied for any q > 1. The parameter q
is embedded in the inequality (14) through the function γ (·). From the expression
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Fig. 7.2 The time response of state variables of mass–spring system (7.112)–(7.113) (Upper) and
the control signal (Bottom)

for γ (·) in (7.118), inequality (14) implies a limitation on the parameters q, ε and
the domain size. In this example, any parameter pair (ε, q) lying in the shaded area
in Fig. 7.1 will satisfy the conditions in Theorem7.1 in the domain

X := {x | ‖x‖ ≤ 1} .

For simulation purposes, (ε, q) = (0.1, 1.01) is chosen which lies in the shaded area
in Fig. 7.1.

7.5.2 Sliding Mode Control Synthesis

Consider a nonlinear system with time-delay disturbances

ẋ =

⎡

⎢
⎢
⎢
⎣

−6x2
2 x2

3 − 4x2
2 − 2x1

−3x2x2
3 − 3x2 + 1

16

(
x2
2 − x1

)2

3x2
2 x3 − 3x3 − 1

4

(
x2
2 − x1

)
exp{−t} cos(x3t)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
f (·)
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+
⎡

⎣
−4
(
x2
3 sin

2 t + 1
)

0
0

⎤

⎦

︸ ︷︷ ︸
g(·)

(
u + φ(t, x, xd)

)+ ψ(t, x, xd) (7.121)

y =: [ y1 y2
]T =

[

x3
1

4

(
x2
2 − x1

)
]T

(7.122)

where x = col(x1, x2, x3) ∈ R
3, u ∈ R and y ∈ R

2 are, respectively, the states,
input and outputs, and φ(·) ∈ R and ψ(·) ∈ R

3 are the matched and mismatched
disturbances respectively, satisfying

|φ(·)| ≤ (|x2d | + |x3| + 1) exp{−t}
‖ψ(·)‖ ≤ 1

√

1 + 4x2
2

(

|x2d x2| sin2(t x3d) +
∣
∣x2

2 − x1
∣
∣
∣
∣x2

2d − x1d

∣
∣

16

)

. (7.123)

Let

T :

⎧
⎪⎨

⎪⎩

z = x2
y1 = x3

y2 = 1

4
(x2

2 − x1)
. (7.124)

The Jacobian matrix of T is given by

⎡

⎢
⎣

0 1 0
0 0 1

−1

4

1

2
x2 − 1

⎤

⎥
⎦

which is nonsingular, and thus the transformation

T (x1, x2, x3) �→ (z, y1, y2)

defined in (7.124) is a diffeomorphism. It is clear that

∂T (x)

∂x
g(t, x) =

⎡

⎢
⎣

0 1 0
0 0 1

−1

4

1

2
x2 −1

⎤

⎥
⎦

⎡

⎣
−4
(
x2
3 sin

2 t + 1
)

0
0

⎤

⎦

=
⎡

⎣
0
0(

y21 sin
2 t + 1

)

⎤

⎦ .
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The system (7.121)–(7.122) in the new coordinates (z, y1, y2) can be described by

[
ż
ẏ1

]

=
[ −3zy21 − 3z + y22
3z2y1 − 3y1 − y2 exp{−t} cos(y1t)

]

︸ ︷︷ ︸
F1(·)

+Ψ1(·) (7.125)

ẏ2 = −2y2 + 1

2
zy22

︸ ︷︷ ︸
F2(·)

+ (1 + y21 sin
2 t)

︸ ︷︷ ︸
G(·)

(
u + Φ(·))+ Ψ2(·) (7.126)

where the disturbances

Φ(·) :=
[
φ(t, x, xd)

]

x1=z2−4y2
x2=z
x3=y1

[
Ψ1(·)
Ψ2(·)

]

:=
[

JT (x)ψ(t, x, xd)
]

x1=z2−4y2
x2=z
x3=y1

where Ψ1(·) ∈ R
2 and Ψ2(·) ∈ R

1. By direct computation, it follows from (7.123)
that

|Φ(·)| ≤ (|zd | + |y1| + 1) exp{−t}
︸ ︷︷ ︸

�1(·)
‖Ψ1(·)‖ ≤ |zd z| sin2(t y1d) + |y2d y2|

|Ψ2(·)| ≤ 1

4
(|zd z| sin2(t y1d) + |y2d y2|)
︸ ︷︷ ︸

�2(·)

.

Choose the switching function s(z, y) := y2. Then, the sliding mode dynamics are
described by

Ẋ =
[−3zy21 − 3z
3z2y1 − 3y1

]

︸ ︷︷ ︸
F1s (·)

+Ψ1s(t, X, Xd) (7.127)

where X = col(z, y1). Substituting y2 = 0 in the bound on Ψ1(·), it follows that

‖Ψ1s(t, X, Xd)‖ ≤ |zd z| sin2(t y1) ≤ |zd z|
︸︷︷︸

η

and thus Eq. (7.62) holds with

η1(·) = 0 and η2(·) = |z|.

This implies that Assumption7.7 is satisfied. Construct a candidate Lyapunov func-
tion
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V (t) = z2(t) + y21 (t).

It is straightforward to check that Assumption7.6 holds and the ri (·) satisfy (7.69)
with

γ1 = γ2 = 1, γ3 = √
6 and γ4 = 2.

Let ν = 1.1. By direct computation, all the conditions in Corollary7.1 hold in the
domain

ΩX = {(z, y1)
∣
∣ |z| ≤ 2.8, y1 ∈ R}

which guarantees that the sliding motion is exponentially stable. Then, from (7.77),
the designed control is

u(t, y) = 2y2
1 + y21 sin

2 t
− (|y1| + 1) exp{−t}sgn(y2)

− k(t, y)

1 + y21 sin
2 t

sgn(y2) (7.128)

where, according to (7.78), the control gain function k(·) is chosen as

k(t, y) = q
(1

2
y22 + (1 + y21 sin

2 t)(exp{−t} + 0.75)
)

+ ρ.

From Corollary7.1 and Theorem7.4, the closed-loop system formed by applying the
control (7.128) to the system (7.121), is exponentially stable.

For simulation purposes, the initial states are chosen as x0 = (−16, 2, 5). The
delay is chosen as

d(t) = 2 − sin(t)

and the initial condition relating to the delay is given by

ζ(t) = [ sin(t) 0 1 + cos(t)
]T

, t ∈ [−3, 0].

The constants q and ρ are chosen as

q = 3 and ρ = 1.

The simulation in Figs. 7.3 and 7.4 demonstrates the effectiveness of the proposed
approach: Fig. 7.3 shows the time response of the closed-loop system states and
Fig. 7.4 presents the designed control signal and sliding function.
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Fig. 7.3 The time response of System (7.121)–(7.122) under the control (7.128)
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7.5.3 A Time-Delay Nonlinear Interconnected System

In order to illustrate the results obtained, consider an interconnected systemdescribed
by

ẋ1 =
⎡

⎣
−4 0 0
0 − 4 0
0 2 2

⎤

⎦

︸ ︷︷ ︸
A1

x1 +
⎡

⎣
0
0
2

⎤

⎦

︸ ︷︷ ︸
B1

(u1 + ξ1(t, x1, x1d1)) +
⎡

⎣
0.1x12x22
−0.1x21

(5x21 − 5x22)x12

⎤

⎦

︸ ︷︷ ︸
F1(x)

+ψ1(t, x, xd) (7.129)

ẋ2 =
[

10 15
− 30 1

]

︸ ︷︷ ︸
A2

x2 +
[

1
−1

]

︸ ︷︷ ︸
B2

(
u2 + ξ2(t, x2, x2d2)

)

+
[

0.1x11 + 2x12 − 6x13
(x22 − x21)(−2x12 + 6x13)

]

︸ ︷︷ ︸
F2(x)

+ψ2(t, x, xd) (7.130)

y1 =
[
0 1 0
0 0 1

]

︸ ︷︷ ︸
C1

x1, (7.131)

y2 = [−1 1]
︸ ︷︷ ︸

C2

x2, (7.132)

where x1 := col(x11, x12, x13) ∈ R
3 and x2 := col(x21, x22) ∈ R

2 are states, y1 =
col(y11, y12) ∈ R

2 and y2 ∈ R
1 are outputs, and u1, u2 ∈ R

1 are inputs. The
uncertainties ξi (·) and the uncertain interconnections ψi (·) for i = 1, 2 satisfy

‖ξ1(t, x1, x1d1)‖ ≤ (2 + y11)
2 sin4(y12t)

︸ ︷︷ ︸
ρ1(t,y1)

+ |y12y11 sin t |
︸ ︷︷ ︸

�1(t,y1)

‖x1d1‖

‖ξ2(t, x2, x2d2)‖ ≤ 3|y2| exp{−t}
︸ ︷︷ ︸

ρ2(t,y2)

+ y22 | sin t |
︸ ︷︷ ︸
�2(t,y2)

‖x1d2‖

‖ψ1(t, x, xd)‖ ≤ 1

3
|x11 cos x22|
︸ ︷︷ ︸

α12(t,x)

‖x2‖ + 1

4
|x12| sin2 t
︸ ︷︷ ︸

β12(t,x)

‖x2d2‖

ψ2(t, x, xd) = 0

where the bounds on ψ1(·) imply that

α11(·) = β11(·) = 0
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and the fact that ψ2(·) = 0 shows that

α21(·) = α22(·) = β21(·) = β22(·) = 0.

The interconnections F1(·) and F2(·) can be expressed in (7.103) as follows:

F1(·) =
⎡

⎣
0 0
0 0
0 0

⎤

⎦

︸ ︷︷ ︸
Φ11(y1)

x1 +
⎡

⎣
0 0.1

−0.1 0
5y11 −5y11

⎤

⎦

︸ ︷︷ ︸
Φ12(y1)

x2

F2(·) =
[
0.1 2 − 6
0 −2y2 6y2

]

︸ ︷︷ ︸
Φ21(y2)

x1 +
[
0 0 0
0 0 0

]

︸ ︷︷ ︸
Φ22(y2)

x2.

It is straightforward to see that the decompositions (7.104) and (7.105) hold with

Φ̃11(y1) = 0, Φb
11(y1) = 0

Φ12(y1) =
⎡

⎣
0
0
2

⎤

⎦

︸ ︷︷ ︸
B1

[
2.5y11 −2.5y11

]

︸ ︷︷ ︸
Φ̃12(y1)

+
⎡

⎣
0 0.1

−0.1 0
0 0

⎤

⎦

︸ ︷︷ ︸
Φb

12(y1)

Φ21(y2) =
[

1
−1

]

︸ ︷︷ ︸
B2

[
0 2y2 −6y2

]

︸ ︷︷ ︸
Φ̃21(y2)

+
[
0.1 0 0
0 0 0

]

︸ ︷︷ ︸
Φb

21(y2)

Φ̃22(y2) = 0, Φb
22(y2) = 0.

Let
K1 = [1 3], K2 = −8,
Q1 = 8I3, Q2 = I2.

Then the solutions to the Eqs. (7.88) and (7.89) are

P1 = I3, P2 =
[
1.25 0.25
0.25 1.25

]

,

E1 = [0 2], E2 = −1

Let
εi = εa

i = εb
i = 0.1 (i = 1, 2) and q = 1.01.

Based on the parameters above, the control given in (7.107) is well defined. By direct
computation,



7.5 Simulation Examples 259

0 1 2 3 4 5 6 7 8
−5

0

5

10

time [sec]

x11
x12
x13

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2

time [sec]

x21
x22

Fig. 7.5 The time response of the state variables of System (7.129)–(7.132)

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6.7900 −0.2 − 2

3
|x11 cos x22| 0 −0.6667 − 1

2
|x12| sin2 t

−0.2550 4.2850 0 0

0 − 0.6667 − 1

2
|x12| sin2 t 0.9000 0

0 0 0 0.9000

⎤

⎥
⎥
⎥
⎥
⎥
⎦

which is positive definite in the domain

Ω = {(x11, x12, x13, x21, x22) | |x11| ≤ 10.5, |x12| ≤ 3.1, x13, x21, x22 ∈ R}.

Hence from Corollary7.2, the system (7.129)–(7.132) is stabilised by the control
(7.91). Simulation results presented in Figs. 7.5 and 7.6 show the results obtained are
effective.

Remark 7.18 Consider a comparison of the matrix W in Theorem7.5 and the matrix
Γ in Corollary7.2. By direct computation it follows that

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6.9900 −14.1435 − 2

3
|x11 cos x22| 0 −0.6667 − 1

2
|x12| sin2 t

−17.8891 4.4850 0 0

0 −0.6667 − 1

2
|x12| sin2 t 0.9000 0

0 0 0 0.9000

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.



260 7 Delay Independent Output Feedback Control

0 1 2 3 4 5 6 7 8
−60

−40

−20

0

20

time [sec]

u1

0 1 2 3 4 5 6 7 8
−20

0

20

40

time [sec]

u2

Fig. 7.6 The time response of the control signals

It is straightforward to check that W + W T is not positive definite even if x11 = 0
and x12 = 0, and thus Theorem7.5 cannot be applied to the system (7.129)–(7.132).
This confirms the result stated in Remark7.15.

7.6 Summary

In this chapter, time-delay independent control schemes have been proposed based
on the Lyapunov–Razumikhin approach. Local stabilisation results using static out-
put feedback control are achieved for a class of nonlinear systems with time-delay
disturbances. The Lyapunov direct method is used in Sect. 7.2 and sliding mode
techniques are employed in Sect. 7.3. Although some of the developed conditions
may not be straightforward to check in Sects. 7.2 and 7.3, a framework is provided
to stabilise nonlinear systems with time-varying delay disturbances using a delay
independent output feedback controller.

A control strategy for a class of interconnected systems with time varying delays
has been presented in Sect. 7.4. Where it is not required that the subsystems are
square. The proposed controllers are decentralised, independent of the time-delay
and based only on output information, which is convenient for implementation.

It should be noted that the Lyapunov–Razumikhin approach may lead to a con-
servative result but the developed results are delay independent and are independent
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of the upper bound d̄ on time-delay d(t). This implies that it is not required that
the time-delay is known, or the bound on time-delay is known. The limitation on
the rate of change of the time-varying delay is not required, as is required using the
Lyapunov–Krasovskii approach. Therefore, the developed results can be applied to
a wide class of nonlinear systems. A tutorial case study of a mass–spring system and
simulation examples have shown the effectiveness and feasibility of the proposed
control strategies.



Chapter 8
Sliding Mode Observer-Based Fault
Detection and Isolation

This chapter considers the problem of robust fault detection and isolation (FDI)
for a class of nonlinear systems using sliding mode observers. The focus is fault
reconstruction and estimation for system faults and sensor faults in the presence of
nonlinear uncertainties.

8.1 Introduction

It is well known that automatic control systems can reduce the consumption of
energy and save manpower, and thus they are widely applied in industry. However
such systems are subject to malfunctions and errors because the human operator
interaction is reduced/removed in these systems. Furthermore, unexpected variations
in the external surroundings or normal wear and tear of components can also make
the system faulty. The effect of the faults can cause catastrophic accidents if not
detected in time. Therefore, fault detection and isolation (FDI) techniques are of
practical significance.

Faults are classified, according to their physical locations, into system faults,
actuator faults and sensor faults. In recent decades, the study of FDI has made many
significant advances [40, 50, 78, 150, 223]. Compared with actuators, sensors are
passive elements in the sense that they only provide operational information about
the system, and do not affect the system behaviour directly, and thus have been less
studied when compared with the study of actuator FDI.

Obviously, autonomous systems, where the human operator is removed from the
loop, are more dependent on the increasing numbers of sensors to acquire system
information. This, in turn, makes systems more vulnerable to faults in sensors. The
potential for faults in the sensors becomes even more critical when they are applied
to the automatic control of a system, where the effects of malfunctions may be
devastating [61].

© Springer International Publishing AG 2017
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The main task of FDI is to indicate that something is wrong and determines which
subsystem or component has a fault. The advancement of modelling techniques
provides the possibility exploiting model-based FDI approaches which have been
considered a very effective method for FDI both in theory and practice [20].

Various model-based approaches have been developed [20], and in particular
observer-based techniques have obtained much attention. The comprehensive sur-
vey paper [49] provides an overview of observer-based approaches, and since then
many results have been established (see e.g., [20, 50, 151, 194] and the references
therein). Subsequently, some control inspired approaches, for instance, sliding mode
techniques [40],modern differential geometric approaches [138] and adaptive control
[223] have been successfully incorporated with the observer-based FDI approach. It
should be noted that adaptive control is usually only powerful for overcoming linear
parametric uncertainty whilst modern geometric approaches tend to require strong
geometric conditions on the systems considered. Sliding mode techniques, however,
have good robustness and are completely insensitive to so-called matched uncer-
tainty [38, 174]. It has been shown that sliding mode techniques can be used to deal
with both structured and mismatched uncertainty [200]. Therefore, the application
of sliding mode techniques for robust FDI offers good potential.

This chapter considers fault detection and isolation (FDI) issues for nonlinear
systems with uncertainties, using an equivalent output error injection approach. A
particular design of sliding mode observer is presented for which the parameters can
be obtained using LMI techniques. In Sect. 8.2, an estimation approach is presented
to estimate system faults where the estimation error is dependent on the bounds on
the uncertainty. For a special class of uncertainty, a fault reconstruction scheme is
proposedwhere the reconstructed signal can approximate the fault signal to any accu-
racy even in the presence of the class of uncertainties. Section8.3 considers sensor
FDI for nonlinear systems. A nonlinear diffeomorphism is introduced to explore the
system structure and a simple filter is presented to ‘transform’ the sensor fault into
a pseudo-actuator fault scenario. A sliding mode observer is designed to reconstruct
the sensor fault precisely if the system does not experience any uncertainty, and to
estimate the sensor fault when uncertainty exists. Finally, case studies on a robotic
arm system and a mass–spring system are presented to show the effectiveness of the
proposed FDI approaches.

8.2 Nonlinear Robust Fault Reconstruction and Estimation

8.2.1 Introduction

A sliding mode observer was used for FDI as early as 1993 [161]. More recently
Edwards et al. [40] proposed an approach based on the concept of equivalent output
injection in which the resulting reconstruction signal can approximate the fault to
any required accuracy. This is called ‘precise’ fault reconstruction in this book. Later,
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it was extended by Tan and Edwards in [166] where sensor faults were considered.
However, uncertainty was not considered in these early papers.

It is well known that the observer-based approach is very dependent on the system
model. However in practice a precise and accurate model for a real system is often
not available due to unknown exogenous disturbances and/or time-varying parame-
ters (component ageing). Modelling uncertainty can cause false and missed alarms.
Hence, it is very important to consider robustness when implementing FDI schemes.

An FDI scheme for a class of linear systemswith uncertainty was proposed by Tan
andEdwards [167]which focused onminimising theL2 gain between the uncertainty
and the fault reconstruction signal by using linear matrix inequalities (LMI). Jiang
et al. [85] proposed a fault estimation scheme for a class of systems with uncertainty
but the proposed signal is only an estimate of the fault. A robust fault detection
method for nonlinear systems with disturbances was considered in [48] where strict
geometric conditions are exploited and the disturbance can effectively be considered
as linear parametric uncertainty.

It should be emphasised that ‘precise’ fault reconstruction is very challenging for
nonlinear systems especially in the presence of uncertainty. The notion of ‘precise’
fault reconstruction has been considered in [40, 166] for systems which are linear
without uncertainty.Whenuncertainty is considered, all the results concerning sliding
mode observer-based fault reconstruction only provide an estimate of the fault signal.
To establish an approach for fault reconstruction in nonlinear systems or to find
conditions under which ‘precise’ fault reconstruction is possible is valuable and
meaningful. Moreover, since FDI is required to take place on-line in real engineering
systems, this requires the reconstruction fault signal to be based only on the available
measured information.

In this section, a class of nonlinear uncertain systems is considered where the
uncertainty is allowed to have a nonlinear bound. In order to reduce the conserva-
tiveness, appropriate coordinate transformations are introduced to exploit the system
structure. A sufficient condition based on LMIs is presented for the existence and
stability of a robust slidingmodeobserver. Then, fault estimation and fault reconstruc-
tion methods are presented using the equivalent output injection approach proposed
by Edwards et al. [40]. It is shown that under certain geometric conditions associated
with the uncertainty structure matrix and the fault distribution matrix, ‘precise’ fault
reconstruction is available for a class of nonlinear systems by exploiting the features
of the sliding motion and the structure of the uncertainty. The proposed reconstruc-
tion signal converges to the fault with arbitrary accuracy even in the presence of
uncertainty. If the geometric condition does not hold, then a strategy is presented to
estimate the fault signal, where the estimation error depends on the bounds on the
uncertainty. An optimization procedure is presented which provides a tight bound
of the effect of the uncertainty on the estimate. The proposed sliding mode observer
design procedure is constructive and the design parameters can be obtained using
LMI techniques. The associated reconstruction and estimation signals are only based
on the plant input and output information which can be obtained on-line. This makes
the FDI scheme practically implementable.
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8.2.2 System Analysis and Preliminaries

Consider a nonlinear system described by

ẋ = Ax + G(x, u) + EΨ (x, u, t) + D f (y, u, t) (8.1)

y = Cx, (8.2)

where x ∈ R
n , u ∈ R

m and y ∈ R
p are the state variables, inputs and outputs respec-

tively; A ∈ R
n×n , E ∈ R

n×r , D ∈ R
n×q and C ∈ R

p×n (q ≤ p < n) are constant
matrices with D and C both full rank, the known nonlinear term G(x, u) is Lipschitz
with respect to x uniformly for u ∈ U (here U is an admissible control set), and
the unknown nonlinear termΨ (x, u, t) representsmodelling uncertainties and distur-
bances experienced by the system. The unknown function f (y, u, t) ∈ R

q represents
an actuator fault which satisfies

‖ f (y, u, t)‖ ≤ ρ(y, u, t) (8.3)

where the function ρ(y, u, t) is known.All the functions involved in the system (8.1)–
(8.2) are assumed to be continuous in their arguments. Furthermore, it is assumed
that the faults are associated with the actuators of the system—hence the direct
dependence of the signal f (·) on the control signal u(t). It will be assumed that the
system in (8.1)–(8.2) is under feedback control and the signals u(t) are (smooth)
functions of the states x(t). In the absence of faults, it is assumed that the controller
has been well designed so that x(t) is close to its required operating point. If a fault
occurs it is assumed that x(t) lies in a bounded compact set for at least a finite time
t f > 0, starting from the onset of the fault, which allows time for detection to take
place.

First, some basic assumptions will be imposed on the system (8.1)–(8.2).

Assumption 8.1 There exists a known function ξ(x, u, t) which is Lipschitz about
x uniformly for t ∈ R

+ and u ∈ U such that

‖Ψ (x, u, t)‖ ≤ ξ(x, u, t). (8.4)

Assumption 8.2 rank(C[E D]) = rank([E D]).
Remark 8.1 In Assumption 8.1, the bound on the uncertain term Ψ (x, u, t) takes
a more general nonlinear form (as in [200, 214]) when compared with the work in
[85, 167]. Assumption 8.2 is a limitation on the uncertain distribution matrix and the
fault distribution matrix, and implies that rank([E D]) ≤ p.

From Lemma D.1 in Appendix D, it can be assumed without loss of generality
that System (8.1)–(8.2) has the form
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ẋ1 = A1x1 + A2x2 + G1(x, u) (8.5)

ẋ2 = A3x1 + A4x2 + G2(x, u) + E2Ψ (x, u, t) + D2 f (y, u, t) (8.6)

y = C2x2 (8.7)

where x = col(x1, x2)with x1 ∈ R
n−p, G1(x, u) and G2(x, u) are the first n − p and

the last p components of G(x, u) respectively, and E2 and D2 are defined in (D.2).

Assumption 8.3 All the invariant zeros of the matrix triple (A, [E D], C) lie in the
open left-half plane.

The Assumptions 8.2 and 8.3 amount to relative degree one minimum phase con-
ditions, which are necessary for the design when the system experiences uncertainty
or disturbance. For non-square systems, generally (A, [E D], C) will not possess
any invariant zeros and soAssumption 8.3will be trivially satisfied formany systems.

As pointed out in Remark D.1, the coordinate transformation used to obtain the
regular form from Lemma D.1 in Appendix D can be obtained directly from matrix
theory. Therefore, System (8.5)–(8.7) is well defined and available from System
(8.1)–(8.2) by using basic linear algebra. The following analysis will focus on the
system (8.5)–(8.7) which has an amenable structure for subsequent developments.

8.2.3 A Sliding Mode Observer Design

In this section, a robust sliding mode observer will be proposed using the system
structure characteristics shown in Sect. 8.2.2.

Consider System (8.5)–(8.7). Introduce a coordinate transformation z = T x
where

T :=
[

In−p L
0 Ip

]

(8.8)

where L has the structure given in (D.8) in Appendix D. Then, from the analysis in
Sect. 8.2, it follows that in the new coordinate System z, System (8.5)–(8.7) has the
following form

ż1 = (A1 + L A3)z1 + (A2 + L A4 − (A1 + L A3)L) z2
+ [

In−p L
]

G(T −1z, u) (8.9)

ż2 = A3z1 + (A4 − A3L) z2 + G2(T
−1z, u) + E2Ψ (T −1z, u, t)

+D2 f (y, u, t) (8.10)

y = C2z2 (8.11)

where z := col(z1, z2) with z1 ∈ R
n−p. The structure in (8.9) occurs because

L E2 = 0 and L D2 = 0



268 8 Sliding Mode Observer-Based Fault Detection and Isolation

from (D.8) and (D.2) in Appendix D.
For System (8.9)–(8.11), consider a dynamical system

˙̂z1 = (A1 + L A3)ẑ1 + (A2 + L A4 − (A1 + L A3)L) C−1
2 y

+ [
In−p L

]
G(T −1 ẑ, u) (8.12)

˙̂z2 = A3 ẑ1 + (A4 − A3L) ẑ2 − K (y − C2 ẑ2) + G2(T
−1 ẑ, u)

+ν(t, u, y, ŷ, ẑ) (8.13)

ŷ = C2 ẑ2 (8.14)

where ẑ := col(ẑ1, C−1
2 y) and ŷ is the output of the dynamical system. Note that

ẑ does not represent the state estimate col(ẑ1, ẑ2). It is merely used as a piece of
convenient notation in the developments which follow. The gain matrix K is chosen
such that

C2(A4 − A3L)C−1
2 + C2K

is symmetric negative definite (clearly this is always possible sinceC2 is nonsingular).
The function ν is defined by

ν := k(·)C−1
2

y − ŷ

‖y − ŷ‖ , if y − ŷ �= 0 (8.15)

where k(·) is a positive scalar function to be determined later.
Let

e1 = z1 − ẑ1, and ey = y − ŷ = C2(z2 − ẑ2).

Then from (8.9)–(8.11) and (8.12)–(8.14), the state estimation error dynamical sys-
tem is described by

ė1 = (A1 + L A3)e1 + [
In−p L

] (
G(T −1z, u) − G(T −1 ẑ, u)

)
(8.16)

ėy = C2 A3e1 +
(

C2(A4 − A3L)C−1
2 + C2K

)
ey + C2

(
G2(T −1z, u)

−G2(T −1 ẑ, u)
)+ C2E2Ψ (T −1z, u, t) + C2D2 f (y, u, t) − C2ν

(8.17)

where ẑ = col(ẑ1, C−1
2 y) and ν are defined by (8.15).

Remark 8.2 In Eq. (8.13), a gain matrix K ∈ R
p×p is introduced to guarantee that

the nominal linear system matrix of the state estimation error dynamical system
(8.16)–(8.17) given by

[
A1 + L A3 0

C2 A3 C2(A4 − A3L)C−1
2 + C2K

]

(8.18)



8.2 Nonlinear Robust Fault Reconstruction and Estimation 269

is stable. It is obvious from the structure (8.18) that such a K always exists since
A1 + L A3 is stable under Assumption 8.3, and C2 is nonsingular.

From (8.8) to (8.11), it follows that

T −1z − T −1 ẑ =
[

In−p −L
0 Ip

] [
z1 − ẑ1
z2 − C−1

2 y

]

=
[

e1
0

]

⇒ ∥
∥T −1z − T −1 ẑ

∥
∥ = ‖e1‖. (8.19)

For System (8.16)–(8.17), consider a sliding surface

S = {
(e1, ey) | ey = 0

}
. (8.20)

Then, the following conclusion is ready to be presented:

Proposition 8.1 Under Assumptions 8.1–8.3, the sliding motion of System (8.16)–
(8.17) associated with the surface (8.20) is asymptotically stable if the matrix inequal-
ity

ĀT P̄T + P̄ Ā + 1

ε
P̄ P̄T + ε (LG)2 In−p + αP < 0 (8.21)

is solvable for P̄ where

P̄ := P
[

In−p L
]
, Ā :=

[
A1

A3

]

(8.22)

with P > 0, ε and α are positive constants, LG is the Lipschitz constant for G(x, u)

with respect to x and the matrix L has the structure (D.8) given in Appendix D.

Proof The analysis above has shown that (8.16) represents the sliding dynamics
when restricted to the sliding surface (8.20). Therefore, it is only required to prove
that (8.16) is asymptotically stable.

Consider a Lyapunov candidate function

V = eT
1 Pe1.

The time derivative of V along the trajectories of System (8.16) is given by

V̇ |(8.16) = eT
1

(
(A1 + L A3)

T P + P(A1 + L A3)
)

e1 + 2eT
1 P

[
In−p L

]

·
(

G(T −1z, u) − G(T −1 ẑ, u)
)

= eT
1

(
ĀT P̄T + P̄ Ā

)
e1 + 2

(
P̄T e1

)T
(

G(T −1z, u) − G(T −1 ẑ, u)
)
.

From the well known inequality that 2X T Y ≤ εX T X + 1
ε
Y T Y for any scalar ε > 0,

it follows that
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V̇ |(8.16) ≤ eT
1

(
P̄ Ā + ĀT P̄T

)
e1 + εeT

1 P̄ P̄T e1

+1

ε

(
G(T −1z, u) − G(T −1 ẑ, u)

)T(
G(T −1z, u) − G(T −1 ẑ, u)

)
.

From (8.19),
‖G(T −1z, u) − G(T −1 ẑ, u)‖ ≤ LG‖e1‖. (8.23)

Consequently

V̇ |(8.16) ≤ eT
1

(
P̄ Ā + ĀT P̄T

)
e1 + εeT

1 P̄ P̄T e1 + 1

ε
(LG)2 ‖e1‖2

= eT
1

(
P̄ Ā + ĀT P̄T + εP̄ P̄T + 1

ε
(LG)2 I

)
e1

≤ −αeT
1 Pe1 = −αV (8.24)

where (8.21) has been used to obtain the last inequality. #

Remark 8.3 Note that Inequality (8.21) can be transformed into the following LMI
problem: for a given scalar α > 0, find matrices P and Y and a scalar ε such that

⎡

⎣
P A1 + AT

1 P + Y A3 + AT
3 Y T + αP + ε (LG)2 P Y

P −εIn−p 0
Y T 0 −εIp

⎤

⎦ < 0 (8.25)

where Y := P L with P > 0, which can be solved by LMI techniques. If LG is
known, then for a given α, the problem of finding P , Y and ε to satisfy (8.25) is
a standard LMI feasibility problem. Alternatively, an optimization problem can be
posed which is to find P , Y and ε which maximises LG in (8.25). This is a convex
eigenvalue optimization problem and can be solved using standard LMI algorithms
[56].

Since V̇ (t) ≤ −αV (t) in (8.24), it follows that there exists a positive scalar M
such that

‖e1(t)‖ ≤ M‖e1(0)‖ exp
{
−α

2
t
}

(8.26)

where a choice is M :=
√

λmax(P)

λmin(P)
. Based on Inequality (8.26), introduce a dynamic

system given by
˙̂w(t) = −1

2
αŵ(t). (8.27)

Then, for any value e1(0), choose ŵ(0) such that

‖e1(0)‖ ≤ ŵ(0)/M.
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Then, it is straightforward to see that the available solution ŵ(t) to Eq. (8.27) is an
upper bound on the size of the corresponding state estimation error e1(t); specifically

‖e1(t)‖ ≤ ŵ(t), ∀t ≥ 0.

Proposition 8.1 has shown that the slidingmode associatedwith the sliding surface
S given in (8.20) is stable if the matrix inequality (8.21) is solvable. The objective is
now to determine the scalar gain function k(·) in (8.15) such that the system can be
driven to the surface S in finite time and a sliding motion can be maintained.

The following conclusion is ready to be presented:

Proposition 8.2 Under Assumptions 8.1–8.3, System (8.16)–(8.17) is driven to the
sliding surface (8.20) in finite time and remain on it if the gain k(·) in (8.15) is chosen
to satisfy

k(t, u, y, ẑ) ≥ (‖C2 A3‖ + ‖C2‖LG + ‖C2E2‖Lξ)ŵ(t) + ‖C2E2‖ξ(T −1 ẑ, u, t)

+‖C2D2‖ρ(y, u, t) + η (8.28)

where η is a positive constant and ŵ is the solution to the differential equation (8.27).

Proof Let Ṽ (ey) = eT
y ey . From the expression for the output estimation error in

(8.17), it follows that

˙̃V (ey) = eT
y

(

C2(A4 − A3L)C−1
2 + C2K +

(
C2(A4 − A3L)C−1

2 + C2K
)T
)

ey

+2eT
y

(
C2A3e1 + C2

(
G2(T

−1z, u) − G2(T
−1 ẑ y, u)

)+ C2E2Ψ (T −1z, u, t)

+C2D2 f (y, u, t) − C2ν
)
. (8.29)

Since by design the matrix

C2(A4 − A3L)C−1
2 + C2K

is symmetric negative definite, it follows that

(
C2(A4 − A3L)C−1

2 + C2K
)T + C2(A4 − A3L)C−1

2 + C2K < 0. (8.30)

By applying (8.3) and (8.30) to (8.29), it follows from (8.19) that

˙̃V ≤ 2‖ey‖ (‖C2 A3‖ + ‖C2‖LG) ‖e1‖ + 2‖ey‖
(
‖C2E2‖

(
ξ(T −1 ẑ, u, t)

+Lξ‖e1‖
)+ ‖C2D2‖ρ(y, u, t)

)
− 2eT

y C2ν. (8.31)
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From the arguments above ‖e1‖ ≤ ŵ, substituting the ν given in (8.15) into (8.31)

˙̃V = 2‖ey‖
(
(‖C2 A3‖ + ‖C2‖LG)ŵ + ‖C2E2‖

(
ξ(T −1 ẑ, u, t) + Lξŵ

)

+‖C2D2‖ρ(·)
)

− 2k(·)‖ey‖. (8.32)

From (8.28) and (8.32) it follows that

˙̃V ≤ −2η‖ey‖ ≤ −2ηṼ
1
2 .

This shows that a reachability condition is satisfied (see [174] for example). It fol-
lows that Ṽ = 0 in finite time and consequently a sliding motion is achieved and
maintained after some finite time ts > 0. Hence the conclusion follows. #

From sliding mode control theory, it follows that Propositions 8.1 and 8.2 have
shown that (8.12)–(8.13) are sliding mode observer of System (8.9)–(8.11), where ŷ
defined by (8.14) is called the observer output which will be used in the FDI.

8.2.4 Robust Fault Detection and Estimation

It is assumed in this section that the sliding mode observer given in Sect. 8.2.3 has
been designed. The objective is to reconstruct/estimate the system fault by using the
observer output and the estimated states given by the observer.

The following fault reconstruction results can be obtained using Lemma D.3
presented in Appendix D:

Theorem 8.1 Consider System (8.1)–(8.2) satisfying Assumptions 8.1–8.3. Assume
that the matrix inequality (8.21) is solvable and k(·) is chosen to satisfy (8.28). Then

(i) there exists a continuous function d(t) satisfying limt→∞ d(t) = 0 such that

∥
∥
∥ f̂ (t) − f (y(t), u(t), t)

∥
∥
∥ ≤ ∥

∥D+
2 E2

∥
∥ ξ(x, u, t) + d(t) (8.33)

where D+
2 is any left pseudo inverse of D2 (which exists since D2 is full column

rank), and

f̂ (t) = k(·)D+
2 C−1

2

y − ŷ

‖y − ŷ‖ + σ1 exp{−σ2t} (8.34)

where σ1 and σ2 are both positive constants;

(ii) limt→∞
∥
∥
∥ f̃ (t) − f (y(t), u(t), t)

∥
∥
∥ = 0 if Im(E22)∩Im(D22) = {0}, where

f̃ (t) = k(·)H−1
2 W2

[
0q̃×(p−q̃) Iq̃

]
C−1
2

y − ŷ

‖y − ŷ‖ + σ1 exp{−σ2t} (8.35)
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where W2 denotes the last q rows of matrix W in (D.9) in Appendix D, and σ1

and σ2 are both positive constants.

Proof From the features of the sliding mode observer designed in Sect. 8.2.3, it
follows that in finite time the error dynamics (8.16)–(8.17) will be driven to the
sliding surface (8.20) and a slidingmotion ismaintained thereafter. During the sliding
motion

ey = 0 and ėy = 0. (8.36)

Since C2 is nonsingular, it follows from (8.17) and (8.36) that

φ
(
e1, z, ẑ, u

)+ E2Ψ (T −1z, u, t) + D2 f (y, u, t) − νeq = 0 (8.37)

where νeq denotes the equivalent output error injection signal required to maintain
the sliding motion [38, 174], and φ(·) is defined by

φ
(
e1, z, ẑ, u

) := A3e1 + G2(T
−1z, u) − G2(T

−1 ẑ, u). (8.38)

From (8.23), it follows that

‖φ (e1, z, ẑ, u
) ‖ ≤ (‖A3‖ + LG2)‖e1(t)‖ → 0 (t → ∞) (8.39)

since limt→∞ e1(t) = 0. In order to reconstruct/estimate the fault signal f (y, u, t),
it is necessary to recover the equivalent output error injection signal νeq . Here the
approach given in Edwards et al. [40] will be employed to produce νeq . From (8.15),
the equivalent output error injection signal νeq in (8.37) can be approximated by

νeq � k(·)C−1
2

y − ŷ

‖y − ŷ‖ + σ1 exp{−σ2t} (8.40)

where σ1 and σ2 are both positive constants.
(i) Multiplying both sides of Eq. (8.37) by the pseudo inverse D+

2 , it follows from
D+

2 D2 = Iq that

f (y, u, t) = D+
2 νeq − D+

2 E2Ψ (T −1z, u, t) − D+
2 φ(e1, z, ẑ, u). (8.41)

Then, substituting the arbitrarily close approximation to νeq from (8.40) into the
equation above, it follows fromAssumption 8.1 and the definition of f̂ in (8.34) that

∥
∥
∥ f̂ (t) − f (y, u, t)

∥
∥
∥ ≤ ‖D+

2 E2‖ ‖Ψ (T −1z, u, t)‖ + d(t)

≤ ‖D+
2 E2‖ξ(x, u, t) + d(t)

where
d(t) := ‖D+

2 φ(e1(t), z(t), ẑ(t), u(t))‖

is continuous in R+. From (8.39), obviously limt→∞ d(t) = 0.
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(ii) By applying the structural properties of E2 and D2 in (D.2) given in Appendix
D.1 to (8.37), it follows that

νeq2 = φ2(e1, z, ẑ, u) + [
E22 D22

]
[

Ψ (T −1z, u, t)
f (y, u, t)

]

(8.42)

where νeq2 and φ2 denote the last q̃ components of νeq and φ, respectively. Since by
assumption

Im(E22) ∩ Im(D22) = {0}

it follows from Lemma D.3 in Appendix D that (D.9) holds. Multiplying both sides
of (8.42) by W yields

Wνeq2 = Wφ2(e1, z, ẑ, u) +
[

H1Ψ (T −1z, u, t)
H2 f (y, u, t)

]

. (8.43)

Let W2 denote the last q rows of W . It follows from (8.43) that

f (y, u, t) = H−1
2 W2

(
νeq2 − φ2(e1, z, ẑ, u)

)

= H−1
2 W2

( [
0q̃×(p−q̃) Iq̃

]
νeq − φ2(e1, z, ẑ, u)

)
.

Then, from (8.40) and the definition of f̃ in (8.35),

f̃ (t) := k(·)H−1
2 W2

[
0q̃×(p−q̃) Iq̃

]
C−1
2

y − ŷ

‖y − ŷ‖ + σ1 exp{−σ2t}
→ f (y, u, t)

when t → ∞. Hence the conclusion follows. #

It should be noted that the parameters σ1 and σ2 in (8.34) and (8.35) determine
the degree of approximation to ideal sliding which is attained. Typically, σ1 would
be small while σ2 would usually be large.

Remark 8.4 From (8.40), it is clear that νeq depends only on known system infor-
mation: the system output y, the observer output ŷ and the system input u. From
(8.34) and (8.35), the estimated signal f̂ and the reconstructed signal f̃ are both
only dependent on available information and thus the fault detection schemes can be
implemented on-line.

Remark 8.5 In the precise reconstruction situation, detection is inherent in the
approach since the reconstruction signal reflects the fault faithfully. When precise
reconstruction is not possible, detection is more difficult since f̂ (t) may become
nonzero as a result of the uncertainty and not because faults are present. However,
provided the size of the error bounds ‖D+E2Ψ (·)‖ are small compared to the size
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of the faults that need to be detected, then by setting appropriate thresholds, a level
of detection (and isolation) can still be achieved.

Theorem 8.1 shows that f̃ is a precise reconstruction of the fault f if

Im(E22) ∩ Im(D22) = {0}.

If this condition is not satisfied, then an estimation signal f̂ is available to estimate
the fault f . From (8.33), one way to reduce the effect of the uncertainty on the
fault estimation signal is to choose an appropriate matrix D+

2 such that ‖D+
2 E2‖ is

minimised. Let
D = {

X ∈ R
q×p | X D2 = Iq

}
.

It follows that D can be parameterised as

D = {
(DT

2 D2)
−1DT

2 + M DN
2 ) | M ∈ R

q×(p−q)
}

where DN
2 ∈ R

(p−q)×p is such that the columns of (DN
2 )T span the null-space of DT

2
which implies that

DN
2 D2 = 0.

Consequently, for any D+
2 ∈ D ,

D+
2 E2 = (DT

2 D2)
−1DT

2 E2 + M DN
2 E2

and so the objective is to solve the following optimization problem

min
M∈Rq×(p−q)

{∥
∥
∥
(
DT

2 D2
)−1

DT
2 E2 + M DN

2 E2

∥
∥
∥

}
.

This is well defined and can be easily solved using an LMI optimization approach
(Alternatively, the analytic theory as described in (p. 43, [228]) could be employed).

8.3 Sensor FDI for a Class of Nonlinear Systems

8.3.1 Introduction

Sensor faults are incorrect readings due to malfunctions in the sensor components or
transducers, such as brokenwires, resulting in the loss of effectiveness, ormore subtly,
unknownbiases at the sensor outputs as a result of poor calibration or evenunexpected
changes in the dynamic characteristics of the transducers. Since the signals from
sensors often carry the most important information in automated/feedback control
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systems, the state of health of the sensors is, therefore, very important for the reliable
operation of the entire system. This has motivated the study of sensor FDI.

Sensor redundancy [17] is an obvious solution to the sensor fault problem, where
multiple sensors are installed to measure the same quantity. The main problem of
this approach is the extra equipment and maintenance costs and the additional space
required to accommodate the equipment. In [222], an isolation scheme for sensor
faults is proposed using an adaptive estimator. A sensor fault FDI strategy for a linear
discrete time systemwas discussed in [103] using a structural vector-based approach.
By using sliding mode techniques, continuous time systems were considered in [40,
166, 167] where it is required that the systems are linear. However, most real systems
are more accurately modelled by nonlinear equations.

It iswell known that one approach for dealingwith nonlinear systems is to linearize
around some operating point by using approximation techniques [21, 104]. However,
the linear systemobtained in thisway is valid only in a neighbourhoodof the operating
point and tends to suffer from poor detection or high false alarm rates due to the error
of approximation. Furthermore, when a large region of the state space is required
to be considered, the linearisation method may not be sufficient. Therefore, it is
necessary to study nonlinear systems.

In this section, sensor FDI is studied for a class of nonlinear systems with uncer-
tainty. The sensor fault considered ismodelled as an additive fault. A diffeomorphism
is first used to explore the system structure and no approximation is employed. By
designing an appropriate filter, the sensor fault can be modelled as a pseudo-actuator
fault. Then, using the transformed system structure and the characteristics of the
designed filter, a sliding mode observer is presented to reconstruct the sensor fault
precisely if no uncertainty exists in the system. A sensor fault estimation scheme is
also proposedwhen the system is affected by uncertainty, inwhich case the estimation
error depends on the bound on the uncertainty.

The reconstruction/estimation schemes which are proposed in this section can be
implemented online. It is not required that the system is linear/linearizable, and the
minimum phase limitation required in [40, 198] is removed. Therefore, this work is
applicable to a wide-class of systems.

8.3.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = F(x(t), u(t)) + ΔF(x(t)) (8.44)

y(t) = h(x(t)) + D fs(t), x0 = x(0) (8.45)

where x ∈ Ω ⊂ R
n (and Ω is a neighbourhood of x0), u = col(u1, u2, . . . , um) ∈

U ∈ R
m, and y = col(y1, y2, . . . , yp) ∈ R

p are the state variables, inputs and out-
puts, respectively, whereU is an admissible control set. F(x, u) is a known smooth
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vector field in Ω × U and the known function h : Ω �→ R
p is smooth; D ∈ R

p×q

(q ≤ p) is a known sensor fault distribution matrix which is full column rank; the
unknown vector function ΔF(x(t)) models all the uncertainties and disturbances
affecting the system and fs(t) ∈ R

q is a sensor fault satisfying

‖ fs(t)‖ ≤ ρ(t) (8.46)

where ρ(t) is a known continuous function. It is assumed that fs is unknown and
fs(t) = 0 when there is no fault. Therefore, the function fs(·) is defined in t ∈ R

+.
In this work, the fact that U is an admissible control set means that for any

u(t) ∈ U , the corresponding closed-loop system (8.44) has a unique solution lying
in the domain Ω .

Definition 8.1 Consider System (8.44)–(8.45). The differential and algebraic equa-
tions

ẋ(t) = F(x(t), u(t)) (8.47)

y(t) = h(x(t)), x0 = x(0) (8.48)

are called the nominal system associated with (8.44)–(8.45).

For convenience, the nominal system (8.47)–(8.48) is also denoted by a vector
pair (F(x, u), h(x)).

This section considers the problem of reconstructing (or estimating) the sensor
faults fs(t) for System (8.44)–(8.45). A slidingmode observerwill be established and
then, based on the observer, a signal f̂ , which only depends on available information,
will be given such that

(i) the function f̂s is a precise reconstruction of the sensor fault fs(t), i.e.,

lim
t→∞ ‖ f̂s(t) − fs(t)‖ = 0

if there is no uncertainty;
(ii) the inequality

‖ f̂s(t) − fs(t)‖ ≤ ξ(t)

holds if the system experiences some uncertainty, where ξ(t) is the estimation
error which usually depends on the bound on the uncertainty.

8.3.3 System Analysis and Assumptions

In order to solve the problem proposed in Sect. 8.3.2, it is required to impose assump-
tions to the system considered. Then based on these assumptions, the system is
transformed to a new system which facilitates the design.
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Assumption 8.4 The nonlinear systems represented by the pair (F(x, u), h(x)) has
an uniform observability index {r1, r2, . . . , rp}with∑p

i=1 ri = n in the domainΩ ×
U .

Construct a nonlinear transformation T : x �→ z as follows:

zi1 = hi (x) (8.49)

zi2 = L F(x,u)hi (x) (8.50)
...

ziri = Lri −1
F(x,u)hi (x) (8.51)

where zi := col(zi1, zi2, . . . , ziri ) for i = 1, 2, . . . , p and z := col(z1, z2, . . . , z p).

Remark 8.6 Under Assumption 8.4, it follows from Definition 2.8 that M(x, u)

has rank p in Ω × U , implying all the zi are independent of the control u, which
combined with the restriction

∑p
i=1 ri = n means the corresponding Jacobian matrix

of T (x) is nonsingular. Therefore, equations (8.49)–(8.51) are a diffeomorphism in
the domain Ω , and z = col(z1, z2, . . . , z p) forms a new coordinate system which
can be obtained by direct computation from (8.49)–(8.51).

Since L j
F(x,u)hi (x) is independent of u for all i = 1, 2, . . . , p and j = 1, 2, . . . ,

ri − 1, it follows by direct computation that for i = 1, 2, . . . , p

żi1 = ∂hi
∂x F(x, u) = L F(x,u)hi (x) = zi2

żi2 = ∂(L F(x,u)hi (x))
∂x F(x, u) = L2

F(x,u)hi (x) = zi3
...

żiri−1 = Lri −1
F(x,u)hi (x) = ziri

żiri = Lri
F(x,u)hi (x).

Therefore, in the new coordinates z defined by (8.49)–(8.51), the system (8.44)–
(8.45) has the following form

ż = Az + BΦ(z, u) + Ψ (z) (8.52)

y = Cz + D fs(t) (8.53)

where

A = diag{A1, . . . , Ap}, B = diag{B1, . . . , Bp} and C = diag{C1, . . . , C p}

where Ai ∈ R
ri ×ri , Bi ∈ R

ri ×1 and Ci ∈ R
1×ri for i = 1, 2, . . . , p are defined by

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Ci = [
1 0 · · · 0

]
(8.54)

and

Φ(z, u) :=

⎡

⎢
⎢
⎢
⎣

φ1(z, u)

φ2(z, u)
...

φp(z, u)

⎤

⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎣

Lr1
F(x,u)h1(x)

Lr2
F(x,u)h2(x)

...

L
rp

F(x,u)h p(x)

⎤

⎥
⎥
⎥
⎦

x=T −1(z)

(8.55)

Ψ (z) :=

⎡

⎢
⎢
⎢
⎣

ψ1(z)
ψ2(z)

...

ψp(z)

⎤

⎥
⎥
⎥
⎦

:=
[
∂T (x)

∂x
ΔF(x)

]

x=T −1(z)

(8.56)

where φi : T (Ω) × U �→ R and ψi : T (Ω) × U �→ R
ri for i = 1, 2, . . . , p.

Remark 8.7 It should be noted that System (8.52)–(8.53) is still a nonlinear system
but possesses a structurewhich is convenient for later analysis. In this section, it is not
required that the system (8.44)–(8.45) is linearizable. It is also not required that the
nonlinear function Φ(z, u) can be expressed as a function of u and y (in comparison
with the work in [122]). Also, there is no approximation employed above and this
makes the transformations valid in the whole domain Ω instead of just a small
neighbourhood of x0 as in [21, 104].

Choose the constants αi1,αi2, . . . ,αiri such that all the roots of the polynomial
algebraic equations

λri + αi(ri −1)λ
ri −1 + · · · + αi1λ + αi0 = 0 (8.57)

lie in the open left-half plane for i = 1, 2, . . . , p. Then, from (8.54), it follows that
(A − BΛ) is stable where

Λ = diag{Λ1,Λ2, . . . , Λp} (8.58)

with Λi ∈ R
1×ri defined by

Λi = [αi0 αi1 · · · αi(ri −1)] (8.59)

which satisfy (8.57) for i = 1, 2, . . . , p.
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Assumption 8.5 The nonlinear function Φ(·) in (8.55) can be expressed as

Φ(z, u) = −Λz + Γ (z, u) (8.60)

where for any z, ẑ ∈ T (Ω) and u ∈ U

‖Γ (z, u) − Γ (ẑ, u)‖ ≤ L (u)‖z − ẑ‖ (8.61)

where L (·) is a continuous function defined on U .

Remark 8.8 Assumption 8.5 is a limitation on the nonlinear term Φ(·). If the Jaco-
bian matrix of F(x, u) in (8.44), evaluated at (x0, u0) (u0 ∈ U ) is stable, then
Assumption 8.5 is likely to be satisfied in a neighbourhood of (x0, u0).

8.3.4 Sliding Mode Observer Synthesis

In this section, themain results will be presented. The special case whenΔF(x, u) =
0 is considered first, and the study of the uncertain system (8.44)–(8.45) when
ΔF(x, u) �= 0 follows.

Suppose Assumption 8.4 holds. Then, from the analysis in Sect. 8.3.2, it follows
that in the new coordinates z defined by the diffeomorphism (8.49)–(8.51), Sys-
tem (8.44)–(8.45) can be described by (8.52)–(8.53). For System (8.52)–(8.53), the
following linear filter is introduced

ża = Aaza + Ba y (8.62)

where za ∈ R
p is the filter state, Aa ∈ R

p×p and Ba ∈ R
p×p are constant matrices

which are design parameters to be defined later; and y is the output of System (8.52)–
(8.53). The matrix Aa must be Hurwitz stable, but for simplicity in the subsequent
analysis it will be assumed that Aa is symmetric negative definite. This is not a
stringent assumption since Aa is a design parameter. Then, under Assumption 8.5,
the following augmented system can be obtained

ż = (A − BΛ)z + BΓ (z, u) + Ψ (z) (8.63)

ża = BaCz + Aaza + Ba D fs(t) (8.64)

ya = Caza (8.65)

where z ∈ T (Ω) ⊂ R
n , Ca ∈ R

p×p is orthogonal (where one simple choice is to
let Ca = Ip), Γ (·) is determined by (8.60) and finally Ψ (·) is defined in (8.56) and
involves the uncertainty.

It is observed that the sensor fault in System (8.44)–(8.45) has been transformed
into a pseudo-actuator fault in System (8.63)–(8.65). Now, consider the following
dynamical system
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˙̂z = (A − BΛ)ẑ + BΓ (ẑ, u) (8.66)
˙̂za = BaCẑ + Aaẑa + ν(t, ya, ŷa) (8.67)

ŷa = Caẑa (8.68)

where

ν := k(t)CT
a

ya − ŷa

‖ya − ŷa‖ (8.69)

and the scalar gain k(t) is to be designed later.
Let e(t) := z(t) − ẑ(t) and ea(t) := za(t) − ẑa(t). It follows from (8.63)–(8.65)

and (8.66)–(8.68) that the error dynamics can be described by

ė = (A − BΛ)e + B
(
Γ (z, u) − Γ (ẑ, u)

)+ Ψ (z) (8.70)

ėa = BaCe + Aaea + Ba D fs(t) − ν(t, ya, ŷa) (8.71)

where Γ (·) is determined by (8.60), Ψ (·) is the uncertain term which is defined by
(8.56) and ν(·) is given by (8.69).

8.3.5 Sensor FDI for the Nominal Case

In this section, the special caseΔF ≡ 0 is considered, which implies that the system
under consideration does not experience any uncertainty. In this case, the correspond-
ing augmented system is the same as (8.63)–(8.65) except Ψ (·) ≡ 0 in (8.63), and
thus the corresponding error dynamical system (8.70)–(8.71) is described by

ė = (A − BΛ)e + B
(
Γ (z, u) − Γ (ẑ, u)

)
(8.72)

ėa = BaCe + Aaea + Ba D fs(t) − ν(t, ya, ŷa) (8.73)

The objective now is to develop a condition under which (8.66)–(8.68) is a sliding
mode observer of the system (8.63)–(8.65) with Ψ (·) ≡ 0 in (8.63), and can be
employed to reconstruct the fault signal fs(t).

From the analysis above, the following conclusion is ready to be presented:

Proposition 8.3 Suppose Assumption 8.5 holds. Then, System (8.72) is stable if there
exists a matrix P > 0 such that

(A − BΛ)T P + P(A − BΛ) + ε1PBBT P + 1

ε1
(L (u))2 In < 0 (8.74)

for all u ∈ U where ε1 is a positive constant, Λ is defined by (8.58) and L (u)

satisfies (8.61).
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Proof For System (8.72), consider a Lyapunov function candidate

V = eT (t)Pe(t)

where P > 0 is a solution for the matrix inequality (8.74). The time derivative of V
along the trajectories of System (8.72) is given by

V̇ |(8.72) ≤ eT (t)
(
(A − BΛ)T P + P(A − BΛ)

)
e(t)

+2e(t)T P B
(
Γ (z, u) − Γ (ẑ, u)

)
. (8.75)

From the fact 2X T Y ≤ ε1X T X + 1
ε1

Y T Y , it follows that

V̇ |(8.72) ≤ eT (t)
(
(A − BΛ)T P + P(A − BΛ)

)
e(t) + ε1(BT Pe(t))T BT Pe(t)

+ 1

ε1

(
Γ (z, u) − Γ (ẑ, u)

)T (
Γ (z, u) − Γ (ẑ, u)

)

≤ eT (t)
(
(A − BΛ)T P + P(A − BΛ)

)
e(t) + ε1eT (t)P B BT Pe(t) +

1

ε1
(L (u))2‖z − ẑ‖2

= eT
(
(A − BΛ)T P + P(A − BΛ) + ε1P B BT P + 1

ε1
(L (u))2 In

)
e

where (8.61) is used to establish the second inequality. Hence the conclusion follows
from (8.74). �
It should be noted that

• Proposition 8.3 implies that e(t) is bounded, and thus

sup
0≤t<∞

{‖e(t)‖} ≤ b (8.76)

for some finite positive scalar b;
• because of the scalar ε1 in (8.74) which provides additional design freedom, with-
out loss of generality it can be assumed that P > In rather than just being positive
definite.

Consider a sliding surface

S = {col(e, ea) | ea = 0} . (8.77)

Proposition 8.3 implies that the sliding mode dynamics of the error system (8.72)–
(8.73) associated with the sliding surface (8.77) is stable. According to sliding mode
theory, in order to guarantee the stability of the observer it is only required to prove
that the error system can be driven to the sliding surface in finite time by choosing an
appropriate gain k(t) in (8.69). In view of this, the following conclusion is presented:
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Proposition 8.4 If Inequality (8.76) holds, then the error system (8.72)–(8.73) is
driven to the sliding surface (8.77) if k(·) in (8.69) is chosen to satisfy

k(t) ≥ ‖BaC‖b + ‖Ba D‖ρ(t) + η (8.78)

where η is a positive constant.

Proof From Eq. (8.73), it follows that

eT
a ėa = eT

a BaCe + eT
a Aaea + eT

a Ba D fs(t) − eT
a ν(t, ya, ŷa).

Since Aa < 0 it follows that eT
a Aaea ≤ 0. Since Ca is orthogonal,

‖ya − ŷa‖ =
√

(Caea)T Caea = ‖ea‖. (8.79)

Then, from (8.76), (8.69) and (8.46)

eT
a ėa ≤ eT

a BaCe + eT
a Ba D fs(t) − k(t)eT

a CT
a

ya − ŷa

‖ya − ŷa‖
≤ ‖ea‖ ‖BaC‖b + ‖ea‖ ‖Ba D‖ρ(t) − k(t)(Caea)

T Caea

‖ea‖
= (‖BaC‖b + ‖Ba D‖ρ(t) − k(t)) ‖ea‖ (8.80)

where (8.79) is used to obtain the second inequality. Then, it follows from (8.80) and
(8.78) that

eT
a ėa ≤ −η‖ea‖.

This means that the reachability condition is satisfied [174], and a sliding motion on
S is attained in finite time. �
Remark 8.9 It should be stressed that the dynamics of the error system e(t) in (8.70),
which represents the reduced order slidingmotion associated with the sliding surface
(8.77), must be stable so that the term BaCe in Eq. (8.71) vanishes with time. This
makes it possible to reconstruct/estimate the sensor fault.

Remark 8.10 It is tempting from (8.78) to select Ba = 0. However, this is not possi-
ble since if Ba = 0, it follows from (8.64) that the sensor fault termwill also disappear
and thus it cannot be reconstructed.

From slidingmode theory, Propositions 8.3 and 8.4 have shown that (8.66)–(8.68)
is an observer of System (8.63)–(8.65) when Ψ (·) ≡ 0 in (8.63). The objective is
now to establish a reconstruction signal for the sensor fault fs(t) based on the sliding
mode observer (8.66)–(8.68).

Since the fault distribution matrix D is assumed to be full column rank, there
exists a nonsingular matrix N ∈ R

p×p such that
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N D =
[
0(p−q)×q

D1

]

(8.81)

where D1 ∈ R
q×q is nonsingular. The matrix N can be obtained from QR decompo-

sition. Then, from the analysis above, it follows that a sliding motion takes place in
finite time, and during the sliding motion

ea = 0 and ėa = 0

and thus from (8.73)
BaCe + Ba D fs(t) − νeq = 0 (8.82)

where νeq is the equivalent output error injection which plays the same role as the
equivalent control in sliding mode control [38, 174]. The equivalent output injection
signal represents the average behaviour of the discontinuous function ν defined by
(8.69), which is necessary to maintain an ideal sliding motion.

In order to reconstruct the sensor fault, the design parameter Ba in filter (8.62) is
chosen as Ba = N where N is given by (8.81). It follows that

Ba D =
[
0(p−q)×q

D1

]

(8.83)

where D1 is nonsingular. From (8.82) and (8.83)

[
0q×(p−q) Iq

]
BaCe + D1 fs(t) − [

0q×(p−q) Iq
]
νeq = 0

and since D1 is nonsingular, it follows that

fs(t) = − [
0q×(p−q) D−1

1

] (
BaCe − νeq

)

= − [
0q×(p−q) D−1

1

]
BaCe + [

0q×(p−q) D−1
1

]
νeq . (8.84)

Now, it is required to recover the equivalent output error injection νeq . Considering
the structure of ν(·) in (8.69), it follows from [40] that by choosing an appropriate
positive constant scalar σ, νeq can be approximated to any accuracy by

νσ = k(t)CT
a

(ya − ŷa)

‖ya − ŷa‖ + σ
(8.85)

where k(·) satisfies (8.78). Let

f̂s(t) := [
0q×(p−q) D−1

1

]
νσ (8.86)
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where νσ is defined by (8.85) and D1 is given by (8.81). Then from (8.84) and (8.86),

fs(t) − f̂s(t) = − [
0q×(p−q) D−1

1

]
BaCe + [

0q×(p−q) D−1
1

]
(νeq − νσ)

where limt→∞ e(t) = 0. Therefore, f̂s defined by (8.86) is a reconstruction of the
sensor fault fs(t) since ‖νeq − νσ‖ can be made arbitrarily small by choice of σ.

Remark 8.11 From (8.85) and (8.86), it is clear that the reconstruction signal f̂s given
by (8.86) is only dependent on ya and ŷa which can be obtained on-line. Therefore,
the fault reconstruction scheme is convenient for real implementation.

8.3.6 Sensor FDI for Systems with Uncertainty

Here, it is assumedΔF(x(t)) �= 0. This means that the system under consideration is
affected by uncertainties or disturbances. In this case, the corresponding dynamical
error equation is given by (8.70)–(8.71).

Assumption 8.6 The uncertain function Ψ (z) defined by (8.56) satisfies

√
Ψ (z)T PΨ (z) ≤ 1

2
d, ∀z ∈ T (Ω)

where the s.p.d. matrix P satisfies (8.74) with P > In and d is a known constant.

Remark 8.12 Assumption 8.6 is a limitation on the magnitude of the uncertainty
Ψ (·). It can be written as

‖P
1
2 Ψ (z)‖ ≤ 1

2
d

which is just a special weighted norm for Ψ (·). Assumption 8.6 can, therefore, be
interpreted as a requirement that the uncertaintyΨ (·) is bounded (in the special norm)
and its bound is known. It is clear that Assumption 8.6 holds if Ψ (·) is bounded in
the domain T (Ω).

Define

Q := (A − BΛ)T P + P(A − BΛ) + ε1P B BT P + 1
ε1

(L (u))2 In (8.87)

where ε1 is the positive constant associated with (8.74).

Proposition 8.5 Assume that the matrix inequality (8.74) is solvable for P > 0.
Then under Assumptions 8.5 and 8.6, for any scalar ε2 > 0 there exists a time T1

such that for t ≥ T1, e(t) will enter the set

B =
{

e | eT Pe ≤ ( d+ε2
α

)2
}

(8.88)
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and remains there for all subsequent time, where the positive constant

α := −λmax (P−1Q)

where the matrix Q is defined in (8.87).

Proof Consider V = e(t)T Pe(t) as a potential Lyapunov function for System (8.70).
Since (8.74) is solvable, thematrix Q defined by (8.87) is symmetric negative definite
and so α := −λmax (P−1Q) is a positive quantity. By the same reasoning as in the
proof of Proposition 8.3, it follows from (8.87) and Assumptions 8.5 and 8.6 that

V̇ |(8.70) ≤ eT (t)Qe(t) + 2e(t)T PΨ (z)

= eT (t)P1/2P−1/2Q P−1/2P1/2e(t) + 2e(t)T P1/2P1/2Ψ (z)

≤ λmax (P−1/2Q P−1/2)V + √
V d (8.89)

since V = eT P1/2P1/2e = ‖P1/2e‖2. Further, since

λmax (P−1/2Q P−1/2) = λmax(P−1Q)

from the standard properties of eigenvalues, Inequality (8.89) can be written as

V̇ |(8.70) ≤
(

d − α
√

V
)√

V .

It follows that for any ε2 > 0, if e(t) /∈ B, d − α
√

V < −ε2 and so

V̇ |(8.70)≤ −ε2
√

V . (8.90)

This implies that System (8.70) is uniformly ultimate bounded with respect to B:
i.e., e(t) will enter the ballB defined in (8.88) after a finite time T1 and remain in it
thereafter. Hence the conclusion follows. #

It should be noted that (8.73) is exactly the same as (8.71). Therefore, by the
same reasoning as in Sect. 8.3.5, System (8.70)–(8.71) will be driven to the sliding
surface (8.77) in finite time, and a sliding motion maintained on it, if the function
ν is designed as in (8.69) and k(·) satisfies (8.78). The main difference is that in
this case when uncertainty exists, the sliding motion is ultimately bounded instead
of asymptotically stable. By combining Proposition 8.5, it follows that (8.66)–(8.68)
is an approximate observer of System (8.63)–(8.65) when uncertainty is considered.
Similar to the analysis in Sect. 8.3.5, it follows that (8.84) is true when a sliding
motion takes place. It follows that

f̂s(t) = [
0q×(p−q) D−1

1

]
νσ (8.91)

is an estimation of the sensor fault fs where νσ is given by (8.85) and D1 is defined
by (8.81). From (8.84) and (8.91),
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‖ fs − f̂s‖ ≤ ∥
∥D−1

1

∥
∥
(
‖Ba‖ ‖C‖ ‖e(t)‖ + ‖νeq − νσ‖

)
.

Since νeq can be approximated by νσ to any accuracy by choosing an appropriate σ,
it follows that for any ε > 0 there exists a time T2 such that for T > T2

‖νeq − νσ‖ < 1
‖D−1

1 ‖ε. (8.92)

From the fact that the matrix C from (8.54) has the property ‖C‖ = 1 and P > In ,
it follows that

V = eT Pe ≥ ‖e‖2

and
B ⊂

{
e | ‖e‖ < (d+ε2)

α

}
. (8.93)

Hence by combining with Proposition 8.5, the sensor fault estimation error

‖ fs(t) − f̂s(t)‖ ≤ ∥
∥D−1

1

∥
∥ ‖Ba‖ d+ε2

α
+ ε (8.94)

for all t > T := max{T1, T2}, where the scalars ε2 and ε are arbitrary small positive
constants. Clearly, from (8.94), the estimation error is closely connected with the
uncertain bound d.

Remark 8.13 Sensor fault estimation has been considered in [40, 166, 167]. Slowly
varying sensor faults are considered in [40] but more general ones are considered in
[160, 167]. However, in these papers, only linear systems are considered. In [198],
actuator fault reconstruction was developed but a minimum phase condition was
required for the system. In this section, the corresponding minimum phase limitation
has been removed which makes the work applicable to a wider class of systems.

Remark 8.14 The sensor faults considered in this chapter aremodelled as an additive
disturbance. Fault detection is concernedwith identifying a problem in themonitored
system while fault isolation is the determination of which component is faulty. If the
system is not affected by any uncertainty/disturbance, then a ‘precise’ reconstruction
signal has been proposed in this section, i.e., after some time the reconstruction signal
can duplicate the fault precisely. In this situation it is clear to seewhich channel has the
fault through the reconstruction signal. This implies that the solution of the isolation
problem is inherent in the approach. If the system is subject to uncertainty, the results
developed in this section only represent an estimation of the fault. In this case, an
appropriate threshold is required to be established for fault isolation. Its accuracy
will be limited by the size of the bound on the uncertainty compared to the size of
the fault signals to be detected.

In the following, an approach based on LMI techniques is presented to determine
the design parameters. Suppose β ∈ R is such that L (u) ≤ β for all u ∈ U . Also
suppose Λ has been chosen so that (A − BΛ) is stable (clearly this is a necessary
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condition for (8.74) to have a positive definite solution for P). Consider the matrix
inequality

(A − BΛ)T P + P(A − BΛ) + P B BT P + β2 In + 1

γ
P < 0 (8.95)

where γ ∈ R is a positive scalar. If (8.95) is satisfied for some matrix P > 0, then
from the definition of Q in (8.87) where ε1 is chosen as 1, it follows that

P−1/2Q P−1/2 + 1

γ
In < 0

which implies

λmax(P−1Q) < − 1

γ

and so

γ > −1/λmax(P−1Q) = 1

α
.

Consequently minimising γ, subject to solving (8.95) for P , decreases the radius
of the ultimate boundedness set B from (8.93). A plausible convex optimization
problem is to minimise γ with respect to P and X subject to

[
(A − BΛ)T P + P(A − BΛ) + ε1β

2 In + X P B
BT P −ε1 Ip

]

< 0 (8.96)

In < P (8.97)

P < γX (8.98)

where X ∈ R
n×n is a s.p.d ‘slack’ variable. This is a well-posed convex optimization

problem and can be solved using LMI techniques. From the Schur complement, if
(8.96) is satisfied then

(A − BΛ)T P + P(A − BΛ) + P B BT P + β2 In < −X

and since from (8.98) −X < − 1
γ

P , it follows that (8.95) is satisfied.

8.3.7 Procedure for Sensor Fault Reconstruction/Estimation

Based on the analysis above, a design procedure is summarised as follows:

Step 1. Check that the system (8.44)–(8.45) has uniform observability indices
{r1, r2, . . . , rp} with∑p

i=1 ri = n in Ω × U ;
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Step 2. Find the diffeomorphism T defined by (8.49)–(8.51). Then compute the
transformed system (8.52)–(8.53);

Step 3. Choose constants αi j for i = 1, 2, . . . , p and j = 1, 2, . . . , ri such that all
the roots of the polynomials (8.57) lie in the left-half plane;

Step 4. CheckAssumption 8.5 and compute the functionsΓ (z, u) satisfying (8.60)
and L (u) satisfying (8.61);

Step 5. Choose Aa < 0, Ba = N satisfying (8.81) andCa orthogonal. Then, estab-
lish the filter (8.62) and the observer (8.66)–(8.68);

Step 6. Using an LMI package, find the solution P of the matrix inequalities
(8.96)–(8.98), then Q can be obtained from (8.87);

Step 7. Choose the gain k(·) to satisfy (8.78) and establish the observer (8.66)–
(8.68);

Step 8. According to (8.86) compute the reconstruction/estimation signal f̂s . (The
estimation error can be obtained from (8.94)).

If the system under consideration satisfies the conditions proposed in this section,
then the procedure described above can be employed to reconstruct/estimate the
sensor fault signal.

8.4 Case Studies

The FDI schemes developed in Sects. 8.2 and 8.3 will be applied to a robot arm
system and a mass–spring system, respectively.

8.4.1 Fault Reconstruction and Estimation for a Robot
System

Consider a single-link flexible joint robot system, where the system nonlinearities
come from the joint flexibility modelled as a stiffened torsional spring, and the
gravitational force. The dynamical model for the robot can be described by [44]:

θ̇1 = ω1 (8.99)

ω̇1 = 1

J1
(κ1(θ2 − θ1) + κ2(θ2 − θ1)

3) − Bv

J1
ω1 + Kτ

J1
u (8.100)

θ̇2 = ω2 (8.101)

ω̇2 = − 1

J2
(κ1(θ2 − θ1) + κ2(θ2 − θ1)

3) − ml gh

J2
sin θ2

+Ψ (θ1,ω1, θ2,ω2, t) (8.102)

where θ1 and ω1 are the motor position and velocity respectively; θ2 and ω2 are the
link position and velocity respectively; J1 is the inertia of the DC motor, J2 is the
inertia of the link, 2h is the length of the link while ml represents its mass, Bv is the
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viscous friction, κ1 and κ2 both are positive constants and Kτ is the amplifier gain.
The domain considered here is

{(θ1,ω1, θ2,ω2) | |θ2 − θ1| < 2.8, |ω1| ≤ 50}.

It is assumed that the motor position, motor velocity and the sum of link velocity
and link position are measured. The quantity Ψ (·) satisfying

|Ψ (x, u, t)| ≤ |ω1 sinω2| exp{−t}

represents the uncertainty affecting the system, which has been added to illustrate
the results obtained in this section and is not a feature of [44].

Suppose that a fault f occurs in the input channel in the robot system. Then,
the fault distribution matrix D will be equal to the input matrix. According to [44],
suitable values for the parameters are:

J1 = 3.7 × 10−3 kgm2

J2 = 9.3 × 10−3 kgm2

h = 1.5 × 10−1 m,

m = 0.21 kg, Bv = 4.6 × 10−2 m
κ1 = κ2 = 1.8 × 10−1 Nm/rad,
Kτ = 8 × 10−2 Nm/V.

Let
x = col(x1, x2, x3, x4) := (θ1,ω1, θ2,ω2).

Then, the robot system can be described in the form (8.1)–(8.2) as follows

ẋ =

⎡

⎢
⎢
⎣

0 1 0 0
−0.0486 −12.4324 0.0486 0

0 0 0 1
0.0194 0 −0.0194 0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
A

x +

⎡

⎢
⎢
⎣

0
0.0194(x3 − x1)

3 + 21.6216u
0

0.0486(x3 − x1)
3 − 83.4324 sin x3

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
G(x,u)

+

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
E

Ψ (x, u, t) +

⎡

⎢
⎢
⎣

0
21.6216

0
0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
D

f (y, u, t)

y =
⎡

⎣
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎦

︸ ︷︷ ︸
C

x .
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Introduce a coordinate transformation z = T x with T defined by

T =

⎡

⎢
⎢
⎢
⎣

−1.4142 0 0 0

0 0 1 0

−1 − 1 0 0

0 0 0 −0.01

⎤

⎥
⎥
⎥
⎦

.

It follows that

[
A1 A2

A3 A4

]

=

⎡

⎢
⎢
⎢
⎣

−1 0 1.4142 0

0 0 0 −1

8.0496 −0.0486 −11.4324 0

0.0137 0.0194 0 0

⎤

⎥
⎥
⎥
⎦

D2 =
[

0
D22

]

=
⎡

⎣
0

−21.6216
0

⎤

⎦ , (8.103)

E2 =
[

0

E22

]

=
⎡

⎣
0
0

−1

⎤

⎦ (8.104)

C2 =
⎡

⎣
0 −1 0
1 0 0
0 0 −1

⎤

⎦ (8.105)

and

G(T −1z, u) =

⎡

⎢
⎢
⎣

0
0

−21.6216u − 0.0486(z2 + 0.7071z1)3

0.0002(z2 + 0.7071z1)3 + 0.3319 sin z2

⎤

⎥
⎥
⎦ .

Let α = 0.5. From the LMI synthesis, the optimal value of the Lipschitz gain
LG = 0.7499 when L = [

0 0 0
]
, ε = 1.9989, and P = 1.5 and the conditions of

Proposition 8.1 are satisfied. Then, by choosing

K =
⎡

⎣
0 1.1 1

10.2324 −0.0486 0
0 0.0194 −1

⎤

⎦

by direct computation, it follows that
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Fig. 8.1 The fault reconstruction for the robot system with the fault signal f = 0.5 sin u (Left fault
signal; Middle reconstruction signal; Right reconstruction signal with sensor noise)

C2(A4 − A3L)C−1
2 + C2K =

⎡

⎣
−1.2 0 0
0 −1.1 0
0 0 −1

⎤

⎦

and thus (8.30) is true. The design of the observer (8.12)–(8.13) is now completely
specified. From (8.103)–(8.105), Im(E22) ∩ Im(D22) = {0}. A suitable choice of the
decoupling matrix is

W =
[

0 1
1 0

]

with H2 = −21.6216. Then, for any fault f , fromTheorem 8.1, the signal f̃ obtained
from (8.35) is a reconstruction of the fault.

For simulation purposes, a linear state feedback controller

u = [−0.6797 13.0863 0.2836 − 35.8391]x

has been introduced to stabilise the system. In the first case, the fault signal is
f (t) = 0.5 sin u which does not affect the stability of the system. The associated sim-
ulation is shown in Fig. 8.1. In the second case the fault signal is f (t) = sin u which
destroys the system stability. The corresponding simulation is shown in Fig. 8.2.
The simulations show that the signal f̃ can reconstruct the fault perfectly even if
the faults destroy the stability of the system. However, in the second simulation the
reconstruction properties will eventually be lost over time as the states of the plant
become unbounded. It also shows that in the presence of sensor noise the reconstruc-
tion scheme is still effective because in this case the reconstruction can still preserve
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Fig. 8.2 The fault reconstruction for the robot system with the fault f = sin u (Left fault signal;
Middle reconstruction signal; Right reconstruction signal with sensor noise)

the fault signal shape and the effect of the fault is clearly visible in the detection
signal.

8.4.2 Sensor FDI for a Mass–Spring System

Consider a mass–spring system with a hardening spring, linear viscous friction and
an external force described by

Mẍ + cẋ + μx + μa2x3 = u (8.106)

where x denotes the displacement from a reference position, M is the mass of the
object sliding on a horizontal surface, μ is the spring constant, a represents a coef-
ficient which is associated with the hardening properties of the spring and u is the
control signal which represents an external force applied to the system (see, [91],
pp. 8–9). Let z = col(z1, z2) = (x, ẋ). The system output is assumed to be y = z1.
The parameters are chosen as in ([91], pp. 172–173). Then, the system is described
in the form of (8.52)–(8.53) as follows:

ż =
[
0 1
0 0

]

︸ ︷︷ ︸
A

z +
[
0
1

]

︸︷︷︸
B

(−z1 − z2 − z31 + u)
︸ ︷︷ ︸

Φ(x,u)

+Ψ (z) (8.107)

y = [
1 0

]

︸ ︷︷ ︸
C

z + D fs(t) (8.108)
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where D = 1 and the term D fs(z) is the sensor fault added to illustrate the results
developed in Sect. 8.3. It is assumed that Ψ (·) includes all uncertainties present in
the system and in this case is assumed to satisfy

|Ψ (z)| ≤ 0.1 sin2 y.

This function has been added to demonstrate the results which have been developed
and is not a feature of [91]. The domain considered in this example is

Ω = {(z1, z2) | |z1| < 0.44, z2 ∈ R}.

Let Λ = [−1 − 1]. It follows that Assumption 8.5 holds with

Γ (z, u) = −z31 + u

which satisfies (8.61) inΩ withL (u) = 0.5808. Choose ε1 = γ = 1. It follows that
the LMIs (8.96)–(8.98) have a solution

P =
[
1.2047 0.2428
0.2428 1.2881

]

and β = 0.6 > L (u). Therefore, the conditions of Proposition 8.3 are satisfied in
the domain Ω .

Choose Aa = −1. Obviously D1 can be chosen as

D1 = D = 1, and Ba = 1.

Then the filter is described by
ẋa = −xa + y
ya = xa .s.

If k(t) is chosen to satisfy (8.78), it follows that f̂s = νσ is a reconstruction for
fs(t) if Ψ (·) = 0 and an estimate of the fault fs(t) if Ψ (·) �= 0. The simulation in
Figs. 8.3, 8.4 and 8.5 shows that the approach is effective. Themiddle figure in Fig. 8.3
shows that the reconstruction signal reproduces the fault faithfully if no uncertainty
is present in the system and thus the sensor fault can be detected easily from the
reconstruction. The lower figure in Fig. 8.3 considers the case when

Ψ = [0.6 0.6]T sin2 y.

It shows that the estimation signal still reproduces the fault to a reasonable extent
when uncertainty Ψ (·) is present. In the presence of uncertainty, it follows that for
any ε > 0, there exists a time T1 such that
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Fig. 8.3 Sensor fault reconstruction/estimation for Mass–Spring System (8.107)–(8.108) (Upper
fault signal; Middle reconstruction signal; Bottom Estimation signal where the dashed line is the
estimation signal and the solid line is the fault signal
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Fig. 8.4 State estimation of Mass–Spring System (8.107)–(8.108) without uncertainty (Upper
placement of the mass and its estimation; Bottom speed of the mass and its estimation

‖ fs(t) − f̂ (t)‖ ≤ 0.0444 + ε

0.0554
+ ε, t > T1.

In this case, an appropriate threshold is required to be established for fault detection.
The error bound given above is conservative and the performance which is achieved
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Fig. 8.5 State estimation of Mass–Spring System (8.107)–(8.108) with uncertainty (Upper place-
ment of the mass and its estimation; Bottom speed of the mass and its estimation

by the scheme is considerably better. Figures8.4 and 8.5 shows the state estimation of
the Mass–Spring system (8.107)–(8.108) with and without uncertainty respectively.

8.5 Summary

Approaches for robust fault estimation and reconstruction for a class of nonlinear
systems have been proposed in this chapter based on a sliding mode observer. The
observer design parameters can be obtained using LMI techniques in a systematic
way. Under appropriate conditions, the reconstruction signal can approximate the
fault signal to any accuracy even in the presence of uncertainties. The proposed
FDI scheme is straightforward to implement in real systems and can be applied to a
reasonably wide class of systems.

For the sensor fault case, the nonlinear system has been transformed to a sys-
tem with special structure to facilitate the design, and an augmented system has
been established by designing a simple filter to process the outputs. A sliding mode
observer has been proposed for the augmented system to estimate the system states.
Based on the observer, sensor FDI schemes are presented for the systemwith/without
uncertainty.

Case studies have shown that the proposed FDI schemes are effective. The simu-
lation examples show how to use the reconstruction signal to detect a sensor fault.



Chapter 9
Application of Decentralised Sliding Mode
Control to Multimachine Power Systems

In this chapter, a robust stabilisation problem for multimachine power systems is
considered using only output information. The power system is formed from an
interconnected set of lower order systems through a network transmission which
is nonlinear and has an associated nonlinear bound. Under some mild conditions,
a decentralised sliding mode control scheme is developed. Simulation results for a
three-machine power system are presented to show the effectiveness of the proposed
method.

9.1 Introduction

The demand for electrical energy has increased greatly with the development of tech-
nology. Various complex power systems have been built to satisfy this demand. These
systems are often modelled as dynamic equations composed of the interconnection
of a set of lower dimensional subsystems through a network transmission.

The complexity of the multimachine power system comes from its high dimen-
sionality (if there are many generators), strong nonlinearity (each motor behaves
nonlinearly) and strong interconnection between the subsystems (all the generators
usually interact with each other), which makes traditional linear centralised con-
trol schemes difficult to implement. In fact, multimachine power systems are often
widely distributed in space, and thus the information transfer among subsystems
may be very difficult due to high cost, or even impossible due to practical limita-
tions. These factors motivate the development of decentralised control which can
avoid such shortcomings.

Power systems are important and many stabilising control schemes have been
proposed for such systems. In [109], using modern geometric methods, Lu and Sun
proposed a nonlinear control scheme for a multimachine power system. However,
the approach is based on a mathematical model with fixed structure and without

© Springer International Publishing AG 2017
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uncertainty. Wang et al. [183] studied a class of single-machine systems, which was
later extended to multimachine power systems in [182].

Decentralised control is an effective approach for the control of large-scale inter-
connected systems (see, for example [204, 214]), andmany authors have successfully
applied these techniques to multimachine power systems. Based on estimated states,
a decentralised control strategy is presented for multimachine power systems in [19].
Recently, robust decentralised controllers have been designed for multimachine sys-
tems in [67] exploiting the systems lower triangular structure. In [67], however,
parametric uncertainty is not considered and only matched interconnections are dealt
with. Xie et al. [193] have developed a control scheme to deal with parametric uncer-
tainty using LMIs. However, it should be pointed out that in all these results it is
required that the interconnections are bounded by linear functions of the norm of the
system state. Furthermore the uncertainty structure is not used in the control design,
which may result in unnecessary conservatism. All the results mentioned above [19,
67, 193] are state variable based.

However, usually, all the system state variables are not fully available. Sometimes
it may be possible to use an observer to estimate unknown states, but unfortunately,
this approach not only requires more hardware resources, but also makes the dimen-
sion of the corresponding closed-loop system increase. This may cause further dif-
ficulties, especially for large-scale power systems and thus it should be avoided if
possible. Therefore, it is pertinent to study decentralised control for multimachine
power systems using static output feedback.

In this chapter, as in previous work [108, 193], only the excitation control prob-
lem is considered. Not only are nonlinear interconnections considered, parametric
disturbances are dealt with as well. Furthermore, the interconnections are allowed
to be nonlinear and have nonlinear bounds. Mismatched uncertain interconnections
are dealt with and parametric uncertainties in the direct axis transient short circuit
time constants, which affect the subsystem input distribution matrix, are considered.
By using the approach outlined in Sect. 2.5, an output sliding surface is synthesised
which has stable sliding dynamics when the system is restricted to the surface. The
approach used in this chapter is practical when compared with previous theoretical
output feedback sliding mode control strategies which impose some strong geo-
metric conditions on the nominal subsystems. A robust decentralised sliding mode
controller is proposed, using only system output information, such that the system
can reach the sliding surface in a finite time. Robustness is enhanced by using the
sliding mode technique and conservatism is reduced by fully using system output
information and the available structure of the uncertainties.

The proposed approach can deal with interconnection terms and parametric dis-
turbances with large magnitude. It also allows significant nonlinearity to be present
in the interconnection terms. Furthermore, the obtained results hold in a large region
of the origin if the control gain is high enough. This allows the operating point of
the multimachine power system to vary to satisfy different load demands. Finally,
simulation results for a three-machine power system are presented to illustrate the
control scheme.

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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9.2 Dynamical Model for Multimachine Power Systems

The exciter is one of the main control systems which directly affect the performance
of multimachine power systems. It can be approximately depicted by Fig. 9.1.

The classical model of power systems was given by Bergen [8] (see e.g.,
Sect. 1.5.5). Based on the model in Bergen [8], multimachine power systems con-
sisting of N synchronous generators interconnected through a transmission network
can be modelled, as in [67, 108, 182, 193], by:

ẋi = (Ai + ΔAi )xi + (Bi + ΔBi )v f i + Mi (x) + ΔMi (x) (9.1)

yi = Ci xi , i = 1, 2, . . . , N , (9.2)

where x = col(x1, x2, . . . , xN ) with

xi = col(xi1, xi2, xi3) := col
(
δi − δi0, ωi , Pei − Pmi0

)

for i = 1, 2, . . . , N ; v f i ∈ R and yi ∈ R
pi are the input and the output of the

i-th subsystems respectively; Ci ∈ R
pi ×3 with pi ≤ 3 is the system output matrix;

Mi (x) is the interconnection term; and ΔMi (x) includes the network transmission
disturbance, the torque disturbance acting on the rotating shaft, the electromagnetic
disturbances entering the excitation winding and other unstructural uncertainties.

The nominal system and input distribution matrices are

Ai =
⎡

⎢
⎣

0 1 0
0 − Di

2Hi
− ω0

2Hi

0 0 − 1
T ′

doi

⎤

⎥
⎦ , Bi =

⎡

⎣
0
0
1

T ′
doi

⎤

⎦ . (9.3)

Fig. 9.1 Excitation system

http://dx.doi.org/10.1007/978-3-319-48962-9_1
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The uncertainty is described by

ΔAi =
⎡

⎣
0 0 0
0 0 0
0 0 θi

⎤

⎦ , ΔBi =
⎡

⎣
0
0

−θi

⎤

⎦ , (9.4)

where

θi = 1

T ′
doi

− 1

T ′
doi + ΔT ′

doi

. (9.5)

The interconnection term is given as

Mi (x) =
⎡

⎣
0
0

Φi (x)

⎤

⎦ , (9.6)

where

Φi (x) = E ′
qi

N∑

j=1

Ė ′
q j Bi j sin(δi − δ j ) − E ′

qi

N∑

j=1

E ′
q j Bi j cos(δi − δ j )ω j . (9.7)

The input control variables are

v f i = Iqi Kci u f i − (xdi − x ′
di )Iqi Idi − Pmi0 − T ′

doi Qeiωi , (9.8)

where u f i is the actual input of the amplifier of the i-th generator for i = 1, 2, . . . , N .
The physical meanings of all the symbols used above are shown in Appendix E.1.

In this work, Pmi = Pmi0 = constant since only excitation control is considered.
It should be noted that direct feedback linearisation compensation for the power sys-
tem representation has been used to obtain the systemmodel (9.1)–(9.2) as described
in [182]. The feedback transformation (9.8) is nonsingular since Iqi Kci �= 0 for a
generator working in the normal region.

From the work in [67]:

|Φi (x)| ≤
N∑

j=1

(
γ I

i j | sin δ j | + γ II
i j |ω j |

)
, (9.9)

where the constants γ I
i j and γ II

i j are defined by

γ I
i j = 4

|T ′
doj |min

|Pei |max (9.10)

γ II
i j = |Qei |max . (9.11)



9.2 Dynamical Model for Multimachine Power Systems 301

Therefore, for i = 1, 2, . . . , N

‖Mi (x)‖ = |Φi (x)| ≤
N∑

j=1

(
γ I

i j | sin x j1| + γ II
i j |x j2|

)
. (9.12)

Remark 9.1 From (9.7) and (9.12), it is observed that the interconnections Mi (x)

are nonlinear and their bounds also take nonlinear forms instead of constants as in
the work described in [67]. By using the nonlinear bounds, a control scheme with
reduced conservatism will result.

9.3 Sliding Motion Analysis and Control Design

In this section, a sliding surface will be synthesised using the approach proposed by
Edwards and Spurgeon [37, 38]. Then, under some mild conditions, the stability of
the sliding mode dynamics is analysed and a decentralised output feedback sliding
mode control strategy is proposed to guarantee that the system (9.1)–(9.2) can reach
the sliding surface in finite time and remain on it thereafter.

9.3.1 Basic Assumptions

Some basic assumptions are imposed on the system (9.1)–(9.2).

Assumption 9.1 The matrices Ci and Bi satisfy Ci Bi �= 0 for i = 1, 2, . . . , N .

From Sect. 2.6, it follows that Assumption 9.1 implies that there exists a nonsin-
gular linear coordinate transformation such that the triple (Ai , Bi , Ci ) with respect
to the new coordinates has the structure

Ãi =
[

Ãi1 Ãi2

Ãi3 Ãi4

]

, B̃i =
[
0
b̃i

]

, C̃i = [
0 C̃i2

]
, (9.13)

where Ãi1 ∈ R
2×2, b̃i ∈ R and C̃i2 ∈ R

pi ×pi for i = 1, 2, . . . , N . Furthermore b̃i �= 0
and det(C̃i2) �= 0.

Assumption 9.2 The triple ( Ãi1, Ãi2, Ξi ) is output feedback stabilisable, where the
matrix pair ( Ãi1, Ãi2) is given by (9.13) and thematrixΞi =: [

0(pi −1)×(ni −pi ) Ipi −1
]

for i = 1, 2, . . . , N .

Under Assumptions 9.1 and 9.2, Edwards and Spurgeon [37, 38] show that there
exists a coordinate transformation xi �→ zi = Ti xi , where

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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Ti =
[

I 0
− KiΞi I

]

such that in the new coordinates system (Ai , Bi , Ci ) has the following structure

[
Ai1 Ai2

Ai3 Ai4

]

,

[
0
bi

]

,
[
0 Ci2

]
, (9.14)

where Ai1 = Ãi1 − Ãi2KiΞi is stable, bi �= 0 and Ci2 ∈ R
pi ×pi is nonsingular.

Remark 9.2 Assumptions 9.1 and 9.2 are limitations on the isolated nominal subsys-
tems. They ensure the existence of the output sliding surface. Notably, Assumption
9.2 requires ( Ãi1, Ãi2, Ξi ) instead of (Ai , Bi , Ci ) to be output feedback stabilisable.
This is in contrast with other output feedback control results for interconnected sys-
tems (see, for example [196, 214]). It should be emphasised that all the matrices
in (9.13) and (9.14) can be obtained directly from (Ai , Bi , Ci ) using the algorithm
given in [37, 38].

Assumption 9.3 There exist positive constants αi < 1 and known continuous func-
tions βi j (x j ) such that

|T ′
doiθi | ≤ αi (9.15)

‖ΔMi (x)‖ ≤
N∑

j=1

βi j (x j )‖x j‖. (9.16)

for i, j = 1, 2, . . . , N .

Remark 9.3 Assumption 9.3 is a limitation on the uncertainties that can be tolerated
by the system. From the work in [108, 193], these assumptions are fundamental and
reasonable. The structural requirement on the interconnection bounds in (9.16) is not
essential because it can be easily extended to a more general case (see for example
[215]).

9.3.2 Stability of Sliding Motion

Based on the assumptions above, the stability of the sliding mode is analysed in this
section. Suppose Assumptions 9.1 and 9.2 are satisfied. From Sect. 2.6, there exist
matrices

Fi = [
K1 1

]
C̃−1

i2 (9.17)

such that for i = 1, 2, . . . , N the system

ẋi = Ai xi + Bi v f i

http://dx.doi.org/10.1007/978-3-319-48962-9_2
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when restricted to
Fi Ci xi = 0

is stable, where Fi Ci xi = 0 is called the switching surface. Consider the composite
sliding surface for the interconnected system (9.1)–(9.2) as

S(x) = 0 (9.18)

with S(x) =: col(S1(x1), S2(x2), . . . SN (xN )) and

Si (xi ) = Fi Ci xi = Fi yi , (9.19)

where the Fi can be obtained from the algorithmgiven in [37, 38]. Next the stability of
the system (9.1)–(9.2)when restricted to the sliding surface (9.18)will be considered.

From the structure of ΔAi in (9.4), it follows that

TiΔAi T
−1

i zi = Ti

⎡

⎣
0
0

θi xi3

⎤

⎦ = (Ti Bi )T
′

doiθi (Pei − Pmi0). (9.20)

In the new coordinates z = col(z1, z2, . . . , zN ), System (9.1)–(9.2) has the following
form

żi =
[

Ai1 Ai2

Ai3 Ai4

]

zi +
[
0
bi

] (
(1 − T ′

doiθi )v f i + θi T
′

doi (Pei − Pmi0) + T ′
doiΦi (x)

)

+TiΔMi (x) (9.21)

yi = [
0 Ci2

]
zi , i = 1, 2, . . . , N , (9.22)

where Ai1 is stable, bi �= 0 and Ci2 ∈ R
pi ×pi is nonsingular with

Fi
[
0pi ×(ni −pi ) Ci2

] = [
01×2 fi

]
, (9.23)

where fi �= 0 is a real constant.
Since Ai1 is stable for i = 1, . . . N , for any Λi > 0, the following Lyapunov

equation has a unique solution Πi > 0 such that

Aτ
i1Πi + Πi Ai1 = −Λi , i = 1, 2, . . . , N . (9.24)

For convenience, partition

Ti =:
[

Ti1

Ti2

]

, T −1
i =: [

Wi1 Wi2
]
, (9.25)

where Ti1 ∈ R
2×3 and Wi1 ∈ R

3×2. Then, System (9.21)–(9.22) can be rewritten as
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żi1 = Ai1zi1 + Ai2zi2 + Ti1ΔMi (T
−1z) (9.26)

żi2 = Ai3zi1 + Ai4zi2 + (1 − T ′
doiθi )v f i + θi T

′
doiΔPei + T ′

doiΦi (x)

+Ti2ΔMi (T
−1z) (9.27)

yi = [
0 Ci2

]
zi , i = 1, 2, . . . , N , (9.28)

where T −1 =: diag {
T −1
1 , T −1

2 , . . . , T −1
N

}
, zi1 ∈ R

2 and zi2 ∈ R. Now, consider the
sliding surface (9.19) in the new coordinate system. From (9.23),

Fi
[
0 Ci2

]
zi = fi zi2

and since fi �= 0 it follows that the sliding surface (9.18) becomes

zi2 = 0, i = 1, 2, . . . , N . (9.29)

When System (9.26)–(9.28) is restricted to the sliding surface (9.29), it has the
following form

żi1 = Ai1zi1 + Ti1ΔMi (W z1), i = 1, 2, . . . , N , (9.30)

where z1 =: col(z11, 0, z21, 0, . . . , zN1, 0), and W =: diag{W11, 0, W21, 0, . . . ,
WN1, 0}.
Theorem 9.1 For System (9.1)–(9.2), suppose Assumptions 9.1–9.3 are satisfied.
Then, the sliding mode is asymptotically stable if there exists a domain Ω ⊂
R

N×(n−m) including the origin, such that

Lτ + L > 0

in Ω \ {0}, where L ∈ R
N×N is given element-wise by

Li j =
{

λmin(Λi ) − 2‖Πi Ti1‖ ‖Wi1‖βi i (Wi1zi1, 0), i = j
−2‖Πi Ti1‖ ‖W j1‖βi j (W j1z j1, 0), i �= j,

where Πi and Λi are defined in (9.24), and λmin(·) denotes the minimum eigenvalue
of the matrix for i, j = 1, 2 . . . , N.

Proof From the analysis above, all that needs to be proved is that System (9.30) is
asymptotically stable. For System (9.30), consider the Lyapunov function candidate

V =
N∑

i=1

(zi1)
τ Πi zi1.

The time derivative of V along the trajectories of System (9.30) is given by
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V̇ |(9.30) =
N∑

i=1

{
− (zi1)

τ Λi zi1 + 2 (zi1)
τ Πi Ti1ΔMi (W z1)

}
, (9.31)

where (9.24) is used to obtain the first term in the bracket. From Assumption 9.3

V̇ ≤
N∑

i=1

{
− λmin(Λi )‖zi1‖2 + 2‖zi1‖ ‖Πi Ti1‖

N∑

j=1

‖ΔMi (W z1)‖
}

≤ −
N∑

i=1

λmin(Λi )‖zi1‖2 + 2
N∑

i=1

{
‖zi1‖ ‖Πi Ti1‖

N∑

j=1

βi j (W j1z j1, 0)‖W j1‖ ‖z j1‖
}

= −
N∑

i=1

{
λmin(Λi ) − 2βi i (Wi1zi1, 0)‖Πi Ti1‖ ‖Wi1‖

}
‖zi1‖2

+2
N∑

i=1

N∑

j=1
j �=i

βi j (W j1z j1, 0)‖Πi Ti1‖ ‖W j1‖ ‖zi1‖ ‖z j1‖

= −1

2

[‖z11‖ ‖z21‖ · · · ‖zN1‖
]
(Lτ + L)

⎡

⎢
⎢
⎢
⎣

‖z11‖
‖z21‖

...

‖zN1‖

⎤

⎥
⎥
⎥
⎦

. (9.32)

Then, the conclusion follows since Lτ + L > 0 for col(z11, z21, . . . , zN1)

∈ Ω \ {0}. #

It should be emphasised that in Theorem 9.1, Lτ + L > 0 only depends on the
partial state variables zi1 instead of the entire state variables zi (actually xi ). This is
in contrast with the work [196, 214, 215]. As such, this result is less conservative.

Theorem 9.1 presents a condition under which the sliding mode dynamics is
asymptotically stable. The next objective is to design a decentralised output feedback
sliding mode control law such that the system state is driven to and maintained on
the sliding surface.

9.3.3 Sliding Mode Control Synthesis

Traditionally, the reachability condition (see for example [38, 173]) is described by

Sτ (t)Ṡ(t) < 0
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for small-scale systemswith switching function S(t).However, for the interconnected
system (9.1)–(9.2), the corresponding condition is described by

N∑

i=1

Sτ
i (xi )Ṡi (xi )

‖Si (xi )‖ < 0, (9.33)

where Si (xi ) is defined by (9.19). For details see [69]. This condition is called com-
posite reachability condition for the interconnected systems.

From (9.12) and (9.16), for i = 1, 2, . . . , N

‖Mi (x) + ΔMi (x)‖ ≤
N∑

j=1

(
γ I

i j | sin x j1| + γ II
i j |x j2|

) +
N∑

j=1

βi j (x j )‖x j‖

=:
N∑

j=1

ηi j (x j ). (9.34)

In order to fully use system output information, consider the output matrix Ci . Com-
paring System (9.1)–(9.2) with (9.21)–(9.22), it follows that

Ci = [
0 Ci2

]
Ti = Ci2

[
0 Ipi

]
Ti , i = 1, 2, . . . , N , (9.35)

where Ci2 is nonsingular and satisfies (9.23). Splitting Ti xi into two components
(Ti xi )1 ∈ R

(3−pi ) and (Ti xi )2, it follows that

xi = T −1
i Ti xi = T −1

i

[
(Ti xi )1
(Ti xi )2

]

= T −1
i

[
(Ti xi )1
C−1

i2 yi

]

. (9.36)

Further, let

Fi Ci Ai T
−1

i =: [
Υi1 Υi2

]
(9.37)

Fi Ci

[
0

T −1
i,3

]

=: [
Γi1 Γi2

]
, (9.38)

where T −1
i,3 denotes the third row of the matrix T −1

i , Υi1 ∈ R
1×(3−pi ) and Γi1 ∈

R
1×(3−pi ) for i = 1, 2, . . . , N . Since

Fi Ci Bi = Fi Ci T
−1

i Ti Bi = Fi
[
0 Ci2

]
[
0
bi

]

= [
0 fi

]
[
0
bi

]

= fi bi

it follows that Fi Ci Bi is nonsingular due to fi �= 0 and bi �= 0 for i = 1, 2, . . . , N .

The objective is to satisfy the composite reachability condition (9.33). Consider
System (9.1)–(9.2) in the domain D =: D1 × D2 × · · · × DN , where Di ∈ R

3 and
explicitly
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Di =: {
xi | xi ∈ R

3, ‖(Ti xi )1‖ ≤ μi
}
, i = 1, 2, . . . , N (9.39)

for some positive constant μi .
Then, the following control law is proposed for i = 1, 2, . . . , N

v f i = − 1

1 − αi
(Fi Ci Bi )

−1sign(Fi yi )
[
‖Υi2C

−1
i2 yi‖ + αi

T ′
doi

‖Γi2C−1
i2 yi‖ + ki (yi )

]
,

(9.40)
where sign(·) represents the signum function, Fi is defined by (9.19) and can be
designed by the approach in [37, 38], αi is determined by Assumption 9.3, and
ki (yi ) ≥ 0 is a control gain to be designed later. Obviously, the control law (9.40)
depends only on system outputs and is decentralised.

Theorem 9.2 Consider the nonlinear interconnected system (9.1)–(9.2). Under
Assumptions 9.1–9.3, the decentralised sliding mode control (9.40) drives the system
(9.1)–(9.2) to the composite sliding surface (9.18) and maintains a sliding motion in
the domain D if the control gain function ki (yi ) satisfies

ki (yi ) >

(

‖Υi1‖ + αi

T ′
doi

‖Γi1‖
)

μi +
N∑

j=1

‖Fj C j‖η j i (xi ), (9.41)

where Fi and η j i are determined by (9.19) and (9.34) respectively for i , j =
1, 2, . . . , N and D is defined by (9.39).

Proof It is necessary to prove that the composite reachability condition (9.33) is
satisfied.

From (9.19), (9.37), (9.38) and the structures of Bi and ΔBi , the sliding mode
dynamics of the system (9.1)–(9.2) can be described by

Ṡi (xi ) = Fi Ci (Ai + ΔAi )xi + Fi Ci (Bi + ΔBi )v f i + Fi Ci [Mi (x) + ΔMi (x)]

= (Υi1 + θiΓi1) (Ti xi )1 + (Υi2 + θiΓi2) C−1
i2 yi + Fi Ci Bi

(
1 − θi T

′
doi

)
v f i

+Fi Ci [Mi (x) + ΔMi (x)] (9.42)

for i = 1, 2 . . . , N . Substituting (9.40) into (9.42), it follows that

N∑

i=1

Sτ
i (xi )Ṡi (xi )

‖Si (xi )‖

=
N∑

i=1

(Fi yi )
τ

‖Fi yi‖
{

(Υi2 + θiΓi2) C−1
i2 yi − 1 − θi T ′

doi

1 − αi
sign(Fi yi )

(
‖Υi2C−1

i2 yi‖

+ αi

T ′
doi

‖Γi2C−1
i2 yi‖

)
+ (Υi1 + θiΓi1) (Ti xi )1 + Fi Ci [Mi (x) + ΔMi (x)]

−1 − θi T ′
doi

1 − αi
sign(Fi yi )ki (yi )

}

. (9.43)
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From Assumption 9.3,

1 − θi T
′

doi ≥ 1 − ∣
∣θi T

′
doi

∣
∣ ≥ 1 − αi > 0. (9.44)

Then, for i = 1, 2, . . . , N

(Fi yi )
τ

‖Fi yi ‖
{

(Υi2 + θi Γi2) C−1
i2 yi − 1 − θi T ′

doi

1 − αi
sign(Fi yi )

(
‖Υi2C−1

i2 yi ‖

+ αi

T ′
doi

‖Γi2C−1
i2 yi ‖

)}

= (Fi yi )
τ

‖Fi yi ‖
(
Υi2C−1

i2 yi + θi Γi2C−1
i2 yi

)
− 1 − θi T ′

doi

1 − αi

(
‖Υi2C−1

i2 yi ‖ + αi

T ′
doi

‖Γi2C−1
i2 yi ‖

)

≤ ‖Υi2C−1
i2 yi ‖ + |θi | ‖Γi2C−1

i2 yi ‖ − ‖Υi2C−1
i2 yi ‖ − αi

T ′
doi

‖Γi2C−1
i2 yi ‖

=
(

|θi | − αi

T ′
doi

)

‖Γi2C−1
i2 yi‖

≤ 0, (9.45)

and from (9.34)

(Fi yi )
τ

‖Fi yi ‖
{

(Υi1 + θi Γi1) (Ti xi )1 + Fi Ci
[
Mi (x) + ΔMi (x)

]

−1 − θi T ′
doi

1 − αi
sign(Fi yi )ki (yi )

}

= (Fi yi )
τ

‖Fi yi ‖
[
(Υi1 + θi Γi1) (Ti xi )1 + Fi Ci

[
Mi (x) + ΔMi (x)

] ]
− 1 − θi T ′

doi
1 − αi

ki (yi )

≤
(

‖Υi1‖ + αi

T ′
doi

‖Γi1‖
)

‖(Ti xi )1‖ + ‖Fi Ci ‖ ‖Mi (x) + ΔMi (x)‖ − ki (yi )

≤
(

‖Υi1‖ + αi

T ′
doi

‖Γi1‖
)

‖(Ti xi )1‖ + ‖Fi Ci ‖
N∑

j=1

ηi j (x j ) − ki (yi ), (9.46)

where (9.44) is used to establish the first inequality.
Now, substituting (9.45) and (9.46) into (9.43), in the domain D

N∑

i=1

Sτ
i (xi )Ṡi (xi )

|Si (xi )|

≤
N∑

i=1

{(
‖Υi1‖ + αi

T ′
doi

‖Γi1‖
)
μi + ‖Fi Ci‖

N∑

j=1

ηi j (x j ) − ki (yi )

}

=
N∑

i=1

{[(
‖Υi1‖ + αi

T ′
doi

‖Γi1‖
)
μi +

N∑

j=1

‖Fj C j‖ηi j (xi )
]

− ki (yi )

}

. (9.47)
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Then, if ki (yi ) is chosen to satisfy (9.41), it follows that in the domain D

N∑

i=1

Sτ
i (xi )Ṡi (xi )

|Si (xi )| < 0.

Hence, the result follows. #

Remark 9.4 It should be noted that Inequality (9.41) can be satisfied globally only
in some specific cases. However, it can always be satisfied in the arbitrarily large
domain D with μi < ∞ for i = 1, 2, . . . , N if the control gain ki (yi ) is sufficiently
high. In fact, one conservative choice of ki (yi ) is

ki (yi ) >
(
‖Υi1‖ + αi

T ′
doi

‖Γi1‖
)
μi +

N∑

j=1

‖Fj C j‖ max
xi ∈Di

{
η j i

(
(Ti xi )1, C−1

i2 yi
)}

for i = 1, 2, . . . , N .

Remark 9.5 From the analysis above, it is observed that there is no special require-
ment on the interconnections Mi (xi ) for i = 1, 2, . . . , N . Only their bounds are
assumed to be known. This shows that the approach is applicable to the multima-
chine power system which has high nonlinearity and coupling.

Remark 9.6 From (9.8) and (9.40), the designed excitation control for the original
multimachine power system is as follows

u f i = − 1

Iqi Kci

[
1

1 − αi
(Fi Ci Bi )

−1sign(Fi yi )
(
‖Υi2C−1

i2 yi‖

+ αi

T ′
doi

‖Γi2C−1
i2 yi‖ + ki (yi )

)
+ (xdi − x ′

di )Iqi Idi + Pmi0

+T ′
doi Qeiωi

]

, i = 1, 2, . . . , N . (9.48)

Remark 9.7 According to sliding mode control theory, Theorems 9.1 and 9.2 show
that the closed-loop system resulting from the designed control law (9.48) and sys-
tem (9.1)–(9.2) is asymptotically stable. Moreover, under Assumptions 9.1–9.3, the
multimachine power system is globally stabilised by (9.48) if for i, j = 1, 2, . . . , N ,

(i) LT + L > 0 is satisfied globally;
(ii) Υi1 = 0 and Γi1 = 0;
(iii) ηi j (xi ) is bounded by a function of yi .
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9.4 Simulation for the Three-Machine Power System

Consider the three-machine power system shown in Fig. 9.2, where the generator 3
is an infinite busbar being used as a reference.

This system is also called the two-machine infinite bus power system (see [67]).
The simulation parameters listed in Appendix E.2 are chosen as in [67, 193]. Then
it follows that

|Pe1|max = |Qe1|max = 1.4, |Pe2|max = |Qe2|max = 1.5
|T ′

do1|min = 6.21 s, |T ′
do2|min = 7.614 s

.

As in [193], take
ΔT ′

doi = 0.1T ′
doi

for i = 1, 2. With the chosen value of ΔT ′
doi , it follows that Eq. (9.15) is satisfied for

α1 = α2 = 0.1.

In addition, assume

‖ΔM1‖ = ‖ΔM2‖ ≤ (x13 − 0.0025x11)
2‖x1‖2 + 0.006‖x2‖.

Then, from (9.1)

A1 =
⎡

⎣
0 1 0
0 −0.625 −39.27
0 0 −0.1449

⎤

⎦ , B1 =
⎡

⎣
0
0

0.1449

⎤

⎦ , C1 =
[
0 0 1
1 0 0

]

Fig. 9.2 A three-machine
power system
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and

A2 =
⎡

⎣
0 1 0
0 −0.2941 −30.8
0 0 −0.1256

⎤

⎦ , B2 =
⎡

⎣
0
0

0.1256

⎤

⎦ , C2 =
[
0 0 1
1 0 0

]

,

where C1 and C2 are assumed to be the system output matrices.
Obviously, Assumption 9.1 is satisfied. Let

K1 = −0.0025, K2 = −0.0008.

Then according to the algorithm given by Edwards and Spurgeon [37, 38], it can be
verified that Assumption 9.2 is satisfied, and the appropriate transformation matrices
(9.25) are given by

T1 =
[

T11

T12

]

=
⎡

⎣
0 1 0
1 0 0

−0.0025 0 1

⎤

⎦ , T2 =
[

T21

T22

]

=
⎡

⎣
0 1 0
1 0 0

−0.0008 0 1

⎤

⎦

and consequently

W11 =
⎡

⎣
0 1.0000

1.0000 0
0 0.0025

⎤

⎦ , W21 =
⎡

⎣
0 1.0000

1.0000 0
0 0.0008

⎤

⎦ .

In the new zi coordinate system, the special representation of the triple in (9.14) takes
the form

[
A11 A12

A13 A14

]

=
⎡

⎣
−0.6250 −0.0982 −39.27
1.0000 0 0

−0.0025 −0.0004 −0.1449

⎤

⎦

[
A21 A22

A23 A24

]

=
⎡

⎣
−0.2941 −0.0246 −30.8000
1.0000 0 0

−0.0008 −0.0001 −0.1256

⎤

⎦

and

C12 =
[
0.0025 1

1 0

]

C22 =
[
0.0008 1

1 0

]

.

The associated switching functions matrices from (9.17) are

F1 = [
1 − 0.0025

]
, F2 = [

1 − 0.0008
]
.

Choosing Λ1 = I2, Λ2 = 0.1I2 and solving the Lyapunov equations (9.24) yields
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Π1 =
[
8.9466 5.0916
5.0916 4.0608

]

and

Π2 =
[
7.0810 2.0325
2.0325 0.7720

]

.

Since in the sliding surface
x13 − 0.0025x11 = 0

it is straightforward to see that

β11(W11z11, 0) = 0, and β21(W11z11, 0) = 0

and further

β12(W21z21, 0) = 0.006, and β22(W21z21, 0) = 0.006.

By direct computation,

L + Lτ =
[
2.0000 −0.1458

−0.1458 0.0157

]

> 0.

Then, from Theorem 9.1 the designed sliding mode is globally asymptotic stable.
From Theorem 9.2, the three-machine power system is stabilised by the control law

v f 1(y1) = − 1

0.9 × 0.1449
sign(y11 − 0.0025y12)

(
0.1449|y11|

+ 1

69
|y11 − 0.0025y12| + k1(y1)

)
(9.49)

v f 2(y2) = − 1

0.9 × 0.1256
sign(y21 − 0.0008y22)

(
0.1256|y21|

+ 10

796
|y21 − 0.0008y22| + k2(y2)

)
, (9.50)

where

k1(y1) = 2.9025μ1 + 1.8036| sin y12| + (y11 − 0.0025y12)(y211 + y212 + μ2
1) + 0.5,

k2(y2) = 2.9008μ2 + 1.471| sin y22| + 0.012
√

y221 + y222 + μ2
2 + 0.5.

The original control signals u f 1 and u f 2 can be obtained from (9.48).
For simulation purposes, let

μ1 = μ2 = 5.
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Fig. 9.3 The time responses of the three-machine power system under control (9.49)–(9.50)

The operating point is chosen as

δ10 = 60.98◦, δ20 = 58.62◦
ω10 = ω20 = 0 r/s, Pm10 = 1.1 p.u., Pm20 = 1.0 p.u.

Simulation results with initial conditions

x0 = (0.05,−0.5, 0.3, 0.1, 2, 0.4)

are presented in Fig. 9.3 to verify that the results are as effective as expected.

9.5 Summary

This chapter has presented a sliding mode control strategy to stabilise multimachine
power systems using only static output feedback. A composite sliding surface is ini-
tially formed and then a decentralised control scheme is synthesisedwhich guarantees
the reachability condition holds for the whole interconnected system. The developed
results are convenient for practical design due to their static output feedback nature.
Significant matched uncertainty and nonlinearities in the interconnection terms can
be accommodated. Simulation shows that the results are effective.



Chapter 10
Concluding Remarks

Study of complex control systems has received much attention in order to satisfy the
increasing requirement for system performance in the modern world. This book has
presented some of the recent research work of the authors along with associated fun-
damentals in the area of variable structure control. There is great interest in the area
of variable structure control, as high robustness is pursued by engineers working in
a wide variety of application areas. The book has included various feedback frame-
works including static output feedback control design, dynamical output feedback
control design and reduced-order compensator-based feedback control for complex
systems. Both time-delay dependent and independent control schemes have been
presented for complex systems in the presence of time-delays. Centralised control
for nonlinear systems and decentralised control for interconnected systems have been
considered. Slidingmode observer-based fault detection and isolation strategies have
also been discussed. Many examples and case studies with simulations have been
provided to demonstrate the theoretical results, which also help readers to understand
and apply the theoretical results provided in this book.

This book has focused on enhancing robustness to uncertainties and reducing
conservatism of the theoretical results. All uncertainties considered in this book are
nonlinear and bounded by nonlinear functions of the system states and/or delayed
states, or outputs and/or delayed outputs. This is in comparison with other relevant
work in which it is required that bounds on uncertainties satisfy linear growth condi-
tion [75, 84, 112, 132, 186, 201]. Both static and dynamic output feedback controllers
are designed to stabilise complex control systems: the former is convenient for prac-
tical design but the developed results are usually conservative; the latter usually
results in low conservatism but requires more resources in real implementation. All
time-delays involved in this book are time varying, and the Lyapunov–Razumikhin
approach is employed to deal with the time-delay. There is no limitation to the rate
of change of the time-delay. Reconstruction/estimation for both system faults and
sensor faults is considered using slidingmode observers. The results presented in this
book are based on rigorous underpinning theory, but withwide practical applications.

© Springer International Publishing AG 2017
X.-G. Yan et al., Variable Structure Control of Complex Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-48962-9_10

315



316 10 Concluding Remarks

It should be pointed out that nearly all of the designed controllers in this book are
variable structure which usually results in discontinuous systems and thus chattering
may occur. Chattering may be harmful because it leads to low control accuracy and
high wear of moving mechanical parts although chattering is tolerable for some
systems such as power electronics. In order to overcome/attenuate chattering, the
boundary layer approach was proposed in [13]. This provides a smooth control signal
at the cost of control accuracy. The other choice is to apply higher order sliding mode
techniques which achieve finite time convergence and yield continuous closed-loop
systems [5, 9, 99, 153]. This area has not been considered in this book.

Since the systems considered in this book are complex and all developed results
are mathematically rigorous, the proposed control schemes, fault detection and iso-
lation strategies are complex and thus may be difficult to implement in real systems.
How to implement the various theoretical control schemes presented in this book is
a challenge for researchers and control engineers. Even from a theoretical point of
view, the study of complex systems is far from mature. All of the existing results are
for a limited class of complex nonlinear systems and nearly all of the obtained condi-
tions are sufficient. The degree of conservatism in the results is important: how large
is the class of systems and how conservative are the conditions. It should be noted that
for many known nonlinear unforced systems, it is very difficult to know whether the
nonlinear system is stable or not. The stabilisation problem for nonlinear control sys-
tems with uncertainties, delay and/or coupling is even more challenging. It is worth
noting that this book, like most of the existing efforts on complex systems, focused
on reduction of conservatism or enhancement of robustness provided the nominal
systems have the desired performance or assuming that the controllers/observers
have been well designed for the nominal system.

In the real world, there are many phenomena which need to be explored. Thus
complex models are required to describe various phenomena, which will increase
the complexity of the research. It is impossible to find a systematic way to study all
complex systems as has been done for linear systems. Recall, at the beginning of
the book, it was mentioned, from a general point of view, that nonlinearity, uncer-
tainty/modelling error, time-delay and interconnection are sources of complexity.
Some specific examples and remarks to help readers to further understand the com-
plexity caused by these sources are now provided. This motivates suggestions for
possible future work.

Nonlinearity is one of the main characteristics of complex systems. The systems
studied in this book are either nonlinear or have nonlinear uncertainty (bounded
by nonlinear functions). The behaviour of a nonlinear system is usually very hard
to predict or control even for a specific nonlinear system. Instead of studying the
nonlinear system itself, the book has focused on developing less conservative results
to tolerate/reject the effects of uncertainties by using available information about the
uncertainties. In this way the systems considered have the desired performance even
in the presence of uncertainties provided that the corresponding nominal systems
have the desired performance. Although studies on linear systems have become very
mature, many ideas/results for linear systems cannot be extended to nonlinear cases.
In connection with this, the following simple example is provided.
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Example 10.1 It is well-known that a simple linear system

ẋ = Ax (10.1)

where x ∈ R
n is the system state and A ∈ R

n×n is a constantmatrix, is asymptotically
stable if all the eigenvalues of the matrix A lie in the left-half plane. However, this is
not true for nonlinear systems. Consider the following 2nd-order nonlinear system

ẋ(t) =
[

−1 1
x22 (t)

0 − 1

]

︸ ︷︷ ︸
A(x)

x(t) (10.2)

where x = col(x1, x2) ∈ R
2 is the system state and the initial condition x0 is given

by

x0 :=
[
x1(0)
x2(0)

]

=
[
1
1
2

]

. (10.3)

It is clear to see that both the eigenvalues of the matrix A(x) in (10.2) are negative
for any x ∈ R

2 \ {0}. However, the solution to the Eq. (10.1) with respect to the
initial condition x0 is not stable.

It can be seen that x2 = 1
2e

−t . Then using the integrating factor approach, it
follows that x1 = et . Therefore, the solution to System (10.1) with initial condition
x0 = col(1, 1

2 ) is

x1(t) = et

x2(t) = 1

2
e−t

which is not stable.

Remark 10.1 Example 10.1 shows that a nonlinear system

ẋ = A(x)x (10.4)

where x ∈ R
n and A(x) ∈ R

n×n , may not be stable even if all the eigenvalues
of the matrix A(x) are negative in the considered domain. In order to guarantee the
stability of nonlinear system (10.4), extra conditions are required: detailed discussion
is available in [3]. This is true for linear time-varying systems as well, that is, a time-
varying system ẋ(t) = A(t)x(t) may not be asymptotically stable even if for any
t ∈ R, all the real parts of the eigenvalues of matrix A(t) lie on the open left-half
plane. Like the well-known modern differential geometric approach for nonlinear
systems proposed by Isidori [79], to explore new tools to study nonlinear control
systems is interesting and challenging.
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An interconnected system can be considered as a system composed of many
lower order subsystems interacting with each other, for which decentralised strate-
gies are preferred. It is well-known that even if all the isolated subsystems are
stable/controllable/observable, the whole interconnected system may not be sta-
ble/controllable/observable, which implies that the interconnections affect the
performance of the whole interconnected system. This book has shown that if the
interconnections or the bounds on the uncertain interconnections have a ‘superposi-
tion’ property, their effects can be reduced/cancelled by designing a proper sliding
mode controller even if only a decentralised scheme is employed. To deal with
interconnections between the isolated subsystems is one of the main tasks for an
interconnected system specifically when decentralised strategies are considered. The
following example shows how much interconnection terms affect the whole system
performance.

Example 10.2 Consider the following nonlinear interconnected system

ẋ1 = f (x1) + ψ(x1, x2) (10.5)

ẋ2 = Ax2 + Bu (10.6)

where x = col(x1, x2)with x1 ∈ R
n1 and x2 ∈ R

n2 , and u ∈ R
m are system states and

control, respectively, the matrices A and B are constant with appropriate dimensions,
and the term ψ(·) satisfies ψ(x1, 0) = 0.

System (10.5) and (10.6) given in Example 10.2 can be considered as an inter-
connected system consisting of two subsystems where the interconnection exists in
only the first subsystem which is the term ψ(x1, x2) in (10.5). The study in [146]
disclosed that even if the subsystem

ẋ1 = f (x1)

is globally asymptotically stable and the matrix pair (A, B) is stabilisable, it is the
interconnection term ψ(x1, x2) which determines whether the whole system (10.5)
and (10.6) are stabilisable or not.

Remark 10.2 Example 10.2 shows that interconnections not only affect the whole
system performance but sometimes they may dominate the whole interconnected
system performance. This clearly demonstrates that the interconnections between
subsystems greatly increase the complexity of the problem. How to employ the
structure and the possible known information about the interconnection terms to
design decentralised controllers to reduce/reject the effects of interconnections on
the whole system is always significant for complex interconnected systems.

Uncertainties in a control system may destroy the system performance com-
pletely. A stable controlled system may become unstable if an uncertainty is added
to the system. To enhance the performance of a control system, it is necessary to con-
sider uncertainties experienced by the system when controllers are designed. This
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book has considered various uncertainties, and controllers have been designed to
reduce/reject the effects of the uncertainties when their bounds are known. The fol-
lowing example shows that an asymptotically stable controlled system will become
unstable even if a ‘small’ uncertainty is added to the controlled system.

Example 10.3 Consider the following simple control system

ẋ = f (x) + u (10.7)

where x ∈ R and u ∈ R are system state and control, respectively, and f (x) is
continuous in R. Assume x0 = x(0) represents the initial condition.

The scalar system (10.7) can have any desired performance by designing an appro-
priate controller. It is straight forward to see that System (10.7) is globally stabilised
by the controller, for example,

u = −x − f (x). (10.8)

Now, consider the system

ẋ = f (x) + u + 2x2e−t , x0 = 2 (10.9)

where x0 = 2 is the initial condition. System (10.9) can be considered as a new
system obtained by adding a nonlinear term 2x2e−t to the system (10.7) which can
be considered as a disturbance on System (10.7). The term 2x2e−t has the following
properties:

• It vanishes at the origin x = 0;
• It includes an exponentially damping factor e−t .

However, System (10.9) cannot be stabilised by the controller (10.8). Actually the
corresponding closed-loop system obtained by applying the controller (10.8) to sys-
tem (10.9) is

ẋ = −x + 2x2e−t , x(0) = 2 . (10.10)

Letting z = 1/x , the system (10.10) can be expressed as a standard first order
linear differential equation. Then, using the integrating factor method, the solution
of System (10.10) is given by

x = 2

−et + 2e−t
. (10.11)

It is clear to see that x(t) → ∞ when t → 1
2 ln 2 and thus it is not stable.

Remark 10.3 The example above shows that a ‘small’ uncertainty may destroy sys-
tem performance. Other examples are available in [90]. This book has providedmany
results to deal with various uncertainties using bounds on uncertainties to enhance
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robustness. If bounds on the uncertainties are not available, some other approaches
may be required to identify/estimate the bounds on uncertainties [54, 134].

Time-delaywidely exists in reality. It should be noted that sometimes even a small
delay may greatly affect the performance of a system; a stable system may become
unstable, or chaotic behaviourmay appear due to the delay in the system [130]. Time-
delay usually results in unpredictable results and thus increases the complexity of
the research. This book has considered both delay dependent and delay independent
control design. Delay dependent control needs the time-delay to be known so that it
can be used in the design and thus the obtained results are usually less conservative
when comparedwith delay independent control. However, delay independent control
can be applied to the case when the delay is unknown. The following example shows
that a globally stabilised control systems may not be stabilised globally if there is a
delay in the input channel.

Example 10.4 Consider the 2nd order nonlinear control system

ẋ1 = x1 + x41 x2 (10.12)

ẋ2 = u(t) (10.13)

where col(x1, x2) ∈ R
2 is the state and u ∈ R is input. It is easy to check, using the

Lyapunov function V = x21 + x22 , that the system (10.12) and (10.13) are stabilisable
by feedback

u = −x2 − x51 . (10.14)

However, if the input has a constant delay τ > 0, then System (10.12) and (10.13)
are changed to the following time-delay systems

ẋ1 = x1 + x41 x2 (10.15)

ẋ2 = u(t − τ). (10.16)

It is shown in [125] that the closed-loop system formed by applying the control
(10.14) to System (10.15) and (10.16) is not globally asymptotically stable.

Remark 10.4 In this book, only state delay is considered, and both delay dependent
and delay independent results have been provided. However, input delay and output
delay were not considered. Example 10.4 shows that a delay in the input channel may
destroy the performance of the controlled system. It is interesting to study complex
systems in the presence of input delay and/or output delay based on the skills and
knowledge provided in this book in the future.

It should be noted that there are many sources of complexity in control systems
and only a few of them have been considered in this book. The examples and remarks
have shown that nonlinearities, uncertainties/disturbances, time-delay and intercon-
nections, make the behaviour of systems very difficult to predict and significantly
increase the complexity of the research greatly. However, in order to describe various
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phenomena existing in the real world, and also satisfy increasing requirements for
system performance, it is necessary to consider complex systems from the point of
view of both theoretical research and practical application. It is helpful and feasible
to build a research framework for a class of complex systems. Study on complex
systems is an ongoing task for control researchers and engineers.



Appendix A
Results Used in Sect. 6.3

This section will provide some results employed in Sect. 6.3.

A.1 Quadratic Lypunov Function for Time-Delay Systems

A result relating to quadratic Lyapunov functions for time-delay systems which is
developed from the Razumikhin Theorem in Sect. 2.5, will be presented here.

Consider a time-delay system

ẋ(t) = f (t, x(t − d(t)) (A.1)

with an initial condition

x(t) = φ(t), t ∈ [−d, 0]

where the function vector f : R+ × C[−d,0] �→ R
n takes R × (bounded sets of

C[−d,0]) into bounded sets inRn; d(t) is the time-delay and d := supt∈R+{d(t)} < ∞.

Lemma A.1 Consider System (A.1). If there exists a function V0(x) = xT Px with
P > 0 such that for d ∈ [−d, 0], the time derivative of V0 along the solution of
System (A.1) satisfies

V̇0(t, x) ≤ −q1‖x‖2 (A.2)

if
V0(x(t − d)) ≤ q2V0(x(t))

for some q1 > 0 and q2 > 1, then System (A.1) is uniformly asymptotic stable. Fur-
ther, if all the conditions hold globally, then System (A.1) is globally uniformly asymp-
totic stable.

© Springer International Publishing AG 2017
X.-G. Yan et al., Variable Structure Control of Complex Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-48962-9
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Proof Since P > 0, it is clear that

λmin(P)‖x‖2 ≤ V0(x) ≤ λmax(P)‖x‖2.

Let
ζ1(τ ) = λmin(P)τ 2

and
ζ2(τ ) = λmax(P)τ 2.

It is straightforward to see that both ζ1(·) and ζ2(·) are class K∞ functions and

ζ1(‖x‖) ≤ V0(x) ≤ ζ2(‖x‖), x ∈ R
n.

Therefore, System (A.1) is uniformly asymptotically stable
Further, let

ζ3(τ ) = −q1τ
2 and ξ(τ ) = q2τ.

It is clear from q1 > 0 and q2 > 1 that for τ > 0.

ξ(τ ) > τ and ζ3(τ ) > 0.

Hence, the conclusion follows from (A.2) and Theorem 2.5. ∇

A.2 Transformation and Lipschitz Condition

Two results associated with coordinate transformations will be presented. From the
fact that f (t, x, xd) satisfies Lipschitz condition with respect to x and xd in Assump-
tion 6.6, it follows that for any x , x̂ and xd , x̂d in the domain considered, and any
t ∈ R

+

‖ f (t, x, xd) − f (t, x̂, x̂d)‖ ≤ L f

∥
∥
∥
∥

[
x − x̂
xd − x̂d

]∥
∥
∥
∥ . (A.3)

Lemma A.2 Assume that f (·) satisfies (A.3) in a neighbourhood of the origin.
Then there exists a neighbourhood of the origin such that for any (w1,w2), (ŵ1, ŵ2),
(w1d ,w2d) and (ŵ1d , ŵd2) in the neighbourhood of the origin and t ∈ R

+

∥
∥
∥δ(F, F̂)

∥
∥
∥ ≤ L f

∥
∥
∥
∥

[
w2 − ŵ2

w2d − ŵ2d

]∥
∥
∥
∥ (A.4)

where δ(F, F̂) is defined in (6.65).

http://dx.doi.org/10.1007/978-3-319-48962-9_2
http://dx.doi.org/10.1007/978-3-319-48962-9_6
http://dx.doi.org/10.1007/978-3-319-48962-9_6
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Proof For convenience, let

μ(ξ1, ξ2) := ξ2 − P−1
3 PT

2 ξ1.

From (A.3), the definition of F(·) in (6.57), y = x1 in (6.51) and the transformation
(6.53), it follows that

∥
∥
∥δ(F, F̂)

∥
∥
∥ = ∥

∥ f
(
t,w1, μ(w1,w2),w1d , μ(w1d ,w2d)

)

− f (t,w1, μ(w1, ŵ2),w1d , μ
(
w1d , ŵ2d)

) ∥
∥

≤ L f

∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎣

0
μ(w1,w2) − μ(w1, ŵ2)‖

0
μ(w1d ,w2d) − μ(w1d , ŵ2d)

⎤

⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥

= L f

∥
∥
∥
∥

[
w2 − ŵ2

w2d − ŵ2d

]∥
∥
∥
∥ .

Hence the conclusion follows. ∇
Lemma A.3 Assume that the transformation z = T0x is nonsingular. If (A.3) holds,
then

∥
∥
∥

[
f (t, x1, x2, x1d , x2d) − f (t, x1, x̂2, x1d , x̂2d)

]

x=T−1
0 z

∥
∥
∥
2 ≤ L 2

f

(
eT e + eTd ed

)

(A.5)

where x1 ∈ R
p, x̂2 ∈ R

n−p is given by Corollary 6.1, e := x2 − x̂2 and ed := x2d −
x̂2d .

Proof Let x̂ :=
(
x1
x̂2

)

. Then x̂d =
(
x1d
x̂2d

)

and it follows from (A.3) that

∥
∥
∥
[
f (t, x1, x2, x1d , x2d) − f (t, x1, x̂2, x1d , x̂2d)

]

x=T−1
0 z

∥
∥
∥
2

=
∥
∥
∥
[
f (t, x, xd) − f (t, x̂, x̂d)

]

x=T−1
0 z

∥
∥
∥
2

≤ L 2
f

∥
∥
∥
∥

[
x − x̂
xd − x̂d

]∥
∥
∥
∥

2

= L 2
f

∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎣

0
e
0
ed

⎤

⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥

2

= L 2
f

(
eT e + eTd ed

)
.

Hence the conclusion follows. ∇
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Lemma A.3 shows that if (A.3) holds in a neighbourhood of the origin, then the
Inequality (A.5) holds in the neighbourhood of the origin. Specifically, (A.5) holds
during the sliding motion, which implies that

‖δT ( f, f̂ )‖2 ≤ L 2
f

(
eT e + eTd ed

)
(A.6)

where δT ( f, f̂ ) is defined in (6.96).

http://dx.doi.org/10.1007/978-3-319-48962-9_6


Appendix B
Results Used in Sect. 6.4

This Appendix summarises the results used in Sect. 6.4.

B.1 An Inequality

Lemma B.1 Let thematrix N1 ∈ R
m×n and suppose the vectors x ∈ R

m and y ∈ R
n.

Then, the inequality

xT N1y ≤ 1

2ε
xT N1N

−1
2 NT

1 x + ε

2
yT N2y

holds for any symmetric positive definite matrix N2 ∈ R
n×n and any positive con-

stant ε.

Proof For any n × n matrix N2 > 0, N
1
2
2 is well defined and N

1
2
2 > 0. Let vector

ϑ :=
√

1

2ε
N

− 1
2

2 NT
1 x −

√
ε

2
N

1
2
2 y.

By direct computation, it follows that

ϑTϑ = 1

2ε
xT N1N

−1
2 NT

1 x − xT N1y + ε

2
yT N2y.

Hence the conclusion follows from the fact that ϑTϑ ≥ 0. ∇
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B.2 Properties of the Signum Function and Summation

This section will provide an inequality for the signum function sgn(x) when x is a
vector, and an equality relating to summation.

Lemma B.2 Assume Hi j ∈ R
ni×p j with ni and p j positive integers, and x = col(x1,

x2, . . . , xn) where xi ∈ R
ni for i = 1, 2, . . . , n. Then

(i) ‖x‖ ≤ xT sgn(x) where sgn(·) denotes the usual vector signum function;

(ii)
∑n

i=1

∑n
j=1
j 
=i

Hi j x j = ∑n
i=1

(
∑n

j=1
j 
=i

Hji

)

xi .

Proof 1

(i) Let xi = col(xi1, xi2, . . . , xini ). It follows that for i = 1, 2, . . . , N

xTi sgn(xi ) = [
xi1 xi2 . . . xini

]

⎡

⎢
⎢
⎢
⎣

sgn(xi1)
sgn(xi2)
...

sgn(xini )

⎤

⎥
⎥
⎥
⎦

= |xi1| + |xi2| + · · · + |xini | ≥ ‖xi‖.

Therefore

xT sgn(x) = [
xT1 xT2 . . . xTN

]

⎡

⎢
⎢
⎢
⎣

sgn(x1)
sgn(x2)
...

sgn(xN )

⎤

⎥
⎥
⎥
⎦

= xT1 sgnx1 + xT2 sgnx2 + xTN sgnxN≥ ‖x1‖ + ‖x2‖ + · · · + ‖xN‖ ≥ ‖x‖.

Hence conclusion (i) follows.
(ii) From the fact that

∑n
i=1

∑n
j=1 Hi j x j = ∑n

j=1

∑n
i=1 Hi j x j

it follows that
∑n

i=1

∑n
j=1
j 
=i

Hi j x j = ∑n
i=1

∑n
j=1 Hi j x j − H11x1 − H22x2 − · · · − Hnnxn

= ∑n
j=1

∑n
i=1 Hi j x j − ∑n

j=1 Hj j x j

= ∑n
j=1

(∑n
i=1 Hi j x j − Hj j x j

)

= ∑n
j=1

(∑n
i=1 Hi j − Hj j

)
x j = ∑n

i=1

( ∑n
j=1
j 
=i

Hji

)
xi .

Hence the conclusion follows. ∇

1The proof of conclusion (i) is also available in [199].



Appendix C
Identification of a Class of Functions

This appendix will show a result used to identify a class of functions with special
properties, which is employed in Sect. 7.2.

Lemma C.1 Let d̄ > 0, ξ : R+ �→ R
+ be a class K function and P ∈ R

n×n be
symmetric positive definite. There exists k > 1 such that

kξ(r) ≤ ξ(c0r)

in r ∈ R
+ for some constant c0 > 0. Then,

(i) the function V (x) := ξ(xT Px) (x ∈ R
n) is positive definite;

(ii) there exists a nondecreasing continuous function w : R+ �→ R
+ satisfying

w(r) > r for r > 0 such that for any θ ∈ [−d̄, 0],

‖x(t + θ)‖ ≤ η‖x‖ if V (x(t + θ)) ≤ w (V (x(t)))

where η is a positive constant.

Proof (i) From the definition of the class K function, ξ(·) is strictly increasing in
R

+ with ξ(0) = 0. Then from P > 0 and thus xT Px ≥ 0, it follows that if x 
= 0

V (x) = ξ(xT Px) > ξ(0) = 0 and V (0) = 0 ⇐⇒ x = 0.

This shows that the function V (x) is positive definite.
(ii) Let

w(r) := kr, (r ∈ R
+).

It is straightforward to see from k > 1 that w(·) is nondecreasing and continuous
satisfying w(r) > r for r > 0. From the fact that ξ : R+ �→ R

+ is strictly increasing
in R+ and kξ(r) ≤ ξ(c0r), it follows that when

V (x(t + θ)) ≤ w(V (x)) = kV (x)
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for any θ ∈ [−d̄, 0],

ξ
(
xT (t + θ)Px(t + θ)

) ≤ kξ
(
xT Px

) ≤ ξ(c0xT Px)
=⇒ xT (t + θ)Px(t + θ) ≤ c0xT Px
=⇒ λ(P)‖x(t + θ)‖2 ≤ xT (t + θ)Px(t + θ) ≤ c0xT Px ≤ c0λ(P)‖x‖2
=⇒ ‖x(t + θ)‖ ≤

√

c0λ(P)/λ(P)‖x‖.

where λ(·) and λ(·) denote the maximum and minimum eigenvalues of the matrix P
respectively. Hence the conclusion follows by choosing

η ≥
√

c0λ(P)/λ(P)

∇
Remark C.1 It is straightforward to check that the function

V (x) = (xT Px)δ

where the constant δ > 0 and the matrix P > 0, satisfies the condition of Lemma
C.1. Thus,

V (x) = (xT Px)δ

have the properties stated in both (i) and (ii) of Lemma C.1. Furthermore, if δ ≥ 1,
then the function V (·) is differentiable.



Appendix D
Lemmas for Chap. 8

This Appendix will present three lemmas used in Chap.8.

D.1 System Structure

Lemma D.1 Let rank[E D] = q̃ . Then under Assumption 8.2 there exists a coor-
dinate system in which the triple (A, [E D],C) has the following structure:

([
A1 A2

A3 A4

]

,

[
0(n−p)×r 0(n−p)×q

E2 D2

]

,
[
0p×(n−p) C2

]
)

(D.1)

where A1 ∈ R
(n−p)×(n−p), C2 ∈ R

p×p is nonsingular and

E2 =
[
0(p−q̃)×r

E22

]

, D2 =
[
0(p−q̃)×q

D22

]

(D.2)

where E22 ∈ R
q̃×r , and the matrix D22 ∈ R

q̃×q is of full rank. The sub-blocks A1 and
A3 when partitioned have the following structure

A1 =
[
A11 A12

0(n−p−l)×l A22

]

, and A3 =
[
0(p−q̃)×l A31

A32

]

(D.3)

where A11 ∈ R
l×l and A31 ∈ R

(p−q̃)×(n−p−l) for some integer l ≥ 0. The pair
(A22, A31) is completely observable. The eigenvalues of A11 are the invariant zeros
of the triple (A, [E D],C).

Proof Without loss of generality, it can be assumed that the output matrix has the
following form

C = [
0 Ip

]
. (D.4)
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Partition [E D] in a compatible way with C as

[E D] =
[
Ẽ1 D̃1

Ẽ2 D̃2

]

(D.5)

where Ẽ1 ∈ R
(n−p)×r and D̃1 ∈ R

(n−p)×q . It follows from (D.4) and (D.5) that
C[E D] = [Ẽ2 D̃2]. From Assumption 8.2, rank([Ẽ2 D̃2]) = q̃ , which implies
that there exists a matrix X̃ such that

[Ẽ1 D̃1] = X̃ [Ẽ2 D̃2] = [X̃ Ẽ2 X̃ D̃2]. (D.6)

Furthermore, from the fact that rank([Ẽ2 D̃2]) = q̃ ≤ p, it follows that there exists
a nonsingular matrix T̃ ∈ R

p×p such that

T̃ [Ẽ2 D̃2] =
[
0(p−q̃)×r 0(p−q̃)×q

E22 D22

]

= [E2 D2] (D.7)

where E22 ∈ R
q̃×r and D22 ∈ R

q̃×q is of full rank, i.e., has column rank q. Construct
a nonsingular matrix

TX =
[
In−p −X̃
0 T̃

]

.

Then, from (D.5)–(D.7), it follows that

TX [E D] =
⎡

⎣
0(n−p)×r 0(n−p)×q

0(p−q̃)×r 0(p−q̃)×q

E22 D22

⎤

⎦ =
[
0(n−p)×r 0(n−p)×q

E2 D2

]

CT−1
X = [0p×(n−p) T̃−1].

Obviously D22 is of full rank since D is of full rank. Letting C2 = T̃−1 gives the
structure of the input and output distribution matrices in (D.1) and E2 and D2 have
the structures in (D.2).

By the same reasoning as used in [38], and employing further changes of coor-
dinates, the system matrix can be forced to have the structure given in (D.3) whilst
preserving the structures of the input and output distribution matrices. #

Remark D.1 It should be noted that thematrix [E D]maynot be full rank. Therefore,
the conclusion in Lemma D.1 above cannot be directly obtained from Lemma 6.1 of
[38]. From [38], it is straightforward to see that the nonnegative integer l in Lemma
D.1 above denotes the number of the invariant zeros of the triple (A, [E D],C). It
should be emphasised that the transformation employed in Lemma D.1 can be easily
obtained from linear system theory.

http://dx.doi.org/10.1007/978-3-319-48962-9_8
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D.2 An Equivalent Condition

Lemma D.2 Under Assumption 8.3, there exists a matrix L ∈ R
(n−p)×p which has

a structure
L = [L1 0(n−p)×q̃ ] (D.8)

with L1 ∈ R
(n−p)×(n−q̃) such that A1 + L A3 is stable where A1 and A3 are given by

(D.3).

Proof From the fact that (A22, A31) is observable in LemmaD.1, it follows that there
exists a matrix L12 ∈ R

(n−p−l)×(p−q̃) such that A22 + L12A31 is stable. Let

L =
[
L11 0l×q̃

L12 0(n−p−l)×q̃

]

:= [
L1 | 0(n−p)×q̃

]
.

Then, from the partition (D.3), it follows that

A1 + L A3 =
[
A11 A12 + L11A31

0 A22 + L12A31

]

.

From Lemma D.1 and Assumption 8.3, A11 is stable. Therefore, A1 + L A3 is stable
due to the stability of A22 + L12A31. #

Lemma D.3 Let E22 and D22 be given by (D.2). Then, the following conditions are
equivalent:

(i) Im(E22) ∩ Im(D22) = {0};
(ii) there exists a nonsingular matrix W ∈ R

q̃×q̃ such that

W [E22 D22] =
[
H1 0
0 H2

]

(D.9)

where H1 ∈ R
(q̃−q)×r and H2 ∈ R

q×q is nonsingular.

Proof “(ii)=⇒ (i)” Let η ∈ Im(E22) ∩ Im(D22). Then, there exist η1 ∈ R
r and η2 ∈

R
q such that

E22η1 = D22η2 = η. (D.10)

From (D.9) and (D.10),

Wη = WE22η1 =
[
H1η1
0

]

Wη = WD22η2 =
[
0
H2η2

]

.
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This implies that Wη = 0 and thus η = 0 since W is nonsingular. Hence (i) is true.

“(i) =⇒ (ii)” Since D22 is of full rank, there exists a nonsingular matrixW such that

WD22 =
[
0
H2

]

(D.11)

where H2 is nonsingular. Then, partition WE22 in a compatible way to (D.11) as

WE22 =
[
H1

H3

]

. (D.12)

From the fact that Im(E22) ∩ Im(D22) = {0} and W is nonsingular, it is observed
that

Im(WE22) ∩ Im(WD22) = {0}.

Then, from (D.11), (D.12) and the nonsingularity of H2, it is observed that H3 = 0.
Therefore,

W [E22 D22] = [WE22 WD22] =
[
H1 0
0 H2

]

.

Hence the conclusion (ii) follows. #



Appendix E
Notation and Parameters for Multimachine
Power Systems

This Appendix will show the notation and parameters used in the Sect. 1.5.5 and
Chap.9 associated with multimachine power systems.

E.1 Notation for Multimachine Power Systems in Sect. 1.5.5

The following table shows the notation used in Sect. 1.5.5 and Chap.9:

δi generator power angle [rad]
Pei electrical power [p.u.]
ωi relative speed [rad/s]
ω0 synchronous machine speed [rad/s]
Di per unit damping constant
Hi inertia constant [s]
E ′
qi transient EMF in the quadrature axis [p.u.]

T ′
doi direct axis transient short circuit time constant [s]

xdi direct axis reactance [p.u.]
x ′
di direct axis transient reactance [p.u.]
Bi j i-th row and j-th column element of nodal susceptance matrix at

internal nodes after eliminating all physical buses [p.u.]
Iqi quadrature axis current [p.u.]
Kci gain of the excitation amplifier [p.u.]
u f i input of the SCR amplifier [p.u.]
Qei reactive power [p.u.]
Idi direct axis current [p.u.]
Pmi0 mechanical input power [p.u.]
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E.2 Parameters Used in the Simulation in Sect. 9.4

The following table shows the value of the parameter values used in the simulation
in Sect. 9.4:

parameter unit Generator 1 Generator 2

xd p.u. 1.863 2.36

x ′
d p.u. 0.257 0.319

xad p.u. 1.712 1.712

T ′
do s 6.9 7.96

XT p.u. 0.129 0.11

H s 4 5.1

D p.u. 5 3

Kc 1 1

ω0 rad/s : 314.159

X12 = 0.55p.u., X13 = 0.53p.u., X23 = 0.60p.u.
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