Chapter 3
Intuitionistic Fuzzy Modal Logics

The first step of the development of the idea of intuitionistic fuzziness (see [1]), was
related to introducing an intuitionistic fuzzy interpretation of the classical (standard)
modal operators “necessity” and “possibility” (see, e.g., [2-5]). In the period 1988—
1993, we defined eight new operators, extending the first two ones. In the end of last
and in the beginning of this century, a lot of new operators were introduced. Here,
we discuss the most interesting ones of them and study their basic properties.

3.1 Intuitionistic Fuzzy Classical Modal Operators

For the formula A for which V(A) = (a, b), where a,b € [0,1]anda + b < 1,
following [1], we define the two modal operators “necessity” and “possibility”:

V(DA) =(a,1-a),
V(G A) =(1=b,b),

respectively.
It is suitable to define the evaluation function V so that:

V(OA)=0V(@A),
V(G A) =SV I(A).

Two different geometrical interpretations of both operators are given in Figs. 3.1,
3.2, 3.3 and 3.4, respectively.
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Fig. 3.1 Second geometrical

interpretation of operator [J

Fig. 3.2 Third geometrical

interpretation of operator [J

Fig. 3.3 Second geometrical
interpretation of operator <

Fig. 3.4 Third geometrical
interpretation of operator <
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It is obvious, that if p is a tautology, then, O p and < p are also tautologies.
Moreover,

V(Op) =V(p) =V p),

where relation “ < ” is defined as in (1.1.9).
Let everywhere below:

V(p) =(a,b), V(g) = (c,d), V(r) = e, ),
where a, b, c,d,e, f €[0,1l,a+b<1l,c+d<1l,e+ f <1.
Here, some of the most important assertions, related to the two classical (standard)
modal operators, are formulated and proved for the intuitionistic fuzzy case.

First, following [1], we see that the basic properties of the (standard) modal
operators in their intuitionistic fuzzy interpretations for every formula A are:

V(ODDOA) =V(OA),
V(OO A) =V A),
V> OA) =V(OA),
V(S GA) =V(OA).

In classical modal logic, expressions

V(=OA) = V(&—A) (3.1.1)
V(OA) = V(=$—A) (3.1.2)
V(=G A) = V(O-A) (3.1.3)
V(G A) = V(=0O-A) (3.1.4)

are (in some sense) equivalent. In the intuitionistic fuzzy case, similarly with De
Morgan’s Laws, the situation is different.

Theorem 3.1.1 For every formula A,

(a) expression (3.1.1) is a tautology and an IFT for negations —, =, —¢, 78, 713,

T4y T35, -5 38, M0, T2, - - -5 465 485 505 53,

(b) expression (3.1.2) is a tautology and an IFT for negations —i, —g, —s3,

(c) expression (3.1.3) is a tautology and an IFT for negations —y, =3, ..., =6, 711,
T4y T35, -5 37, U39, T, -« -5 45, 47, 49, 50, TSI,

(d) expression (3.1.4) is a tautology and an IFT for negations —i, =3, —g.
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This is the first case, when a given expression is a tautology in all cases when it
is an IFT. As we saw in the two previous chapters, only small number of IFTs are
tautologies.

Theorem 3.1.2 For every formula A, each of the expressions
OA— A,
A— OA,
O0A—><CA
is
(a) a tautology for implications —,,—>3, —>5,—>8,—>11,—> 14,—> 15, —>20, —>23,—> 24

27, 731, T>32, ~>34, 737, 740, 742, 747, ~748, —>49, —>52,7>55, 57,
62, T763 765 ~768 ~>69 74, —>71, —>79, —>83 —>84 ~>88 92, —>93,

97, 1765 + -+ » 7185,

(b) an IFT for implications —1, ..., —>9, =11,y —>15, —> 17, —> 18, —>20» - - + »
P24y TP2Ty e ey T738y TP40, 742, TP 44y ooy TP53, 755, 7257, 7759, -0 TP66s
TX68s 77695 TP T1s TPT2s TP Thy ey TP T P79y ey T785, TP88s e a5 T4, T>97,
sy T2139, T4l TP 1465 - -0 T2 1705 T2 1765 - - -5 T 185-

Theorem 3.1.3 For every two formulas A and B, each of the equalities
VAV B)=VKAVOB) (3.1.5)
V(O(AAB)=V(OAA OB), (3.1.6)

holds for the disjunction and conjunction, defined by (1.1.4) and (1.1.5).

Open Problem 12 Which other disjunctions and conjunctions, existing of which is
discussed in Sect. 1.7, satisfy (3.1.5) and (3.1.6)?

Theorem 3.1.4 For every two formulas A and B, each of the expressions

OAvUOB— OAVB)
S(AANB) > OCAANOB
is
(a) a tautology for implications —,,—>3,—>5,—>8, —>11, —> 14> —> 15, —>20,
—>23, 724, 27, 7315 T732s T34, T737, T>40, 742, 74T, -5 T749, T>52,

—>55, T>57, T7625 T763s T765: 768y T>69, 774, ~>77, 779, ~>83, ~> 84, ~> 88>
—>92, =293, =97, —> 1765 - - - 5 —> 185,
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(b) an IFT for implications —1, ..., —>9, =11, ---s =15, —> 17, —> 18, —>20» + -  »
TP 245 TP275 - v o5 TP38 7740, T7A2, TP 44 oo o5 7753, TP55, 7757, TP50, -k TP66s
268y 77695 7 T1s TPT2s TP Thy ey TP TTs "7 ey 785, P88y o5 294, 7797,
sy TPU39, T4l TP 1465 - -0 T2 1705 T2 1765 - - -5 T 185-

Theorem 3.1.5 For every two formulas A and B, the expression

OA—- B)— (0OA— OB)
is

(a) a tautology for implications —,,—3,—>5,—>8, —>11, —> 14, —>20, —>24,

T>25, TP275 T729, P47y -5 P49, TP52, T>55, T>57, T>58, 760, 769, 77,
79, 7815 7792, 7> 93, —>97, 799, > 177, ~> 179, > 181, > 182, ~> 184>

(b) an IFT for implications —1,...,—>9, =11y, =14, —>17, —> 18> —>20,
P20y TP 245 TP25, 275 e P29, T746s - -y TP 535 T755, "5 e s 261 T 64s
2665 T769s 7Ty T2 TP TS5 ey TXTTs TPT9s ooy T7815 TP 915 - - -5 T2 94, 7797,
cees 721025 771085 - - s T 1135 T2 1185 71205 - -5 71285 T 1345 - -5 77137, 7139,
141, 147, TP1495 - - e TP 154 TPU565 PS8y - o5 71625 T7U655 -+ 71675

—>169, —> 177> —> 179, —> 1815 —> 182, —> 184-

Proof (a) Let, for example, the implication be considered in the variant — ;. Then,

V(O(A = B) = (OA — OB))
= 0O(l — (1 —c)sgla — ¢), dsgla — ¢)sg(d — b)) — ({a, 1 —a) — (¢, 1 —c))
= (I = (1 —c¢)sgla —¢), (1 — c)sgla — o))
— (1= (1 —=0)sgla—c), (1 —c)sgla —c)?)
=1 —-0-0-0-c)sgla—c))))sgla—c)
sg((I = (I =o)sgla —c)) — 1 = (1 —c)sgla — ),
(1 — o)sgla — o)sg(((1 — o)sgla — ©)) — (1 — ¢)sgla — ¢))?)
= (I — (1 = ¢)sgla — c))sgla — ¢)sg(0), (1 — c)sgla — ¢)sg(0))
= (1,0).

This completes the proof. (]

Theorem 3.1.6 For every two formulas A and B, the expression

(D(A—- B)AOA) — OB
is
(a) a tautology for implications —;,—>3, —>8, —>11, —> 14> —> 15, —>20, —> 24,
—>25, —>27, T729, 747, ~>48, ~>52, ~>55, —>57, 758, ~>60, ~> 77, —>79; —>81,
—>92, =297, =99, —> 177, —> 179,

(b) an IFT for implications —1,...,—>9, —>11,.--, =15, —>17, —> 18> —>20,
TP21s TP 245 T725, TP 2T ey T729, P46 - o o5 T753, TP55, T757, -5 761, T 64
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665 T769y TP Tl v ey T35 TPT55 0oy 27Ty TP795 ooy T8l 7915 -+ o5 T4,
=206, ++-5 —>1025 ~7106s +-+»> —>1135 21185 -++» —>128) ~—> 1345 +--5 —>138,
—>151, 71585 —> 161> > 1665 —> 167> —> 169, —> 177> —> 179, > 181, —> 182, —> 184-

Theorem 3.1.7 For every two formulas A and B, the expression
OA— (O(A— B)—> OB)

is

(a) a tautology for implications —3,—>5, —>11, —>14, —>20, —>25, —>27, —>29,
—>48, —>49, —>57, —>58, ~>60, ~> 77> —>79, —> 81> ~>97, —>99, —> 181, —> 182, —> 184,

(b) an IFT for implications — 1, —>3, ..., =7, =9, —>11s .-+, —>14, —> 17, —>18,
2205 TP 215 7725, P27 e v s T729, TP465 TP485 -+ o5 —> 515 T753, T>57, 7758, ~>60s
_)617 645 ~7665 —>71, —>72, _>757 ceey 77, 2795 ooy 7815 T791s -+ -y 704,

TPO7s e e 721025 71075 - e T2 1135 TP 118y T71205 - - o5 7122, TP 1245 - - -5 T 1285
1345+« - s ~>137, 7151, 71585 > 161, 166> —> 167> —> 169, 181, —> 182, > 184-

An interesting open problem here is the following.

Open Problem 13 Determine for which pair of implications (—;, — ;) and for every
two formulas A and B, the following equality is valid:

V(A —; B)=V(O(A —; B)).
‘We remind that for each evaluation function V and for each formula A such that

V(x) = {(a, b), A is “intuitionistic fuzzy sure” (IF-sure), iffa > 0.5 > b.
Let for the variable x, for which V (x) = (a, b), it is valid that

V(Ox)={a,1—a),
V& x)=(1-b,b)

(see Fig.3.5).

Fig. 3.5 Second geometrical
interpretation of operators

O and < 1—a
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Following and extending [6], we give the following theorem.

Theorem 3.1.8 (Locality of intuitionistic fuzzy sure) For every formula A, if
A(Ox) and A($ x) are IF-sure, then, for every y, for which

V(Ox) < V() < V($x), 3.1.7)

A(y) is IF-sure.

Proof Let
V(A(Ox)) = {a(x), b(x)) = (a,b),

V(A X)) = (c(x),d(x)) = (¢, d),
V(A(y)) = (a(y), B(y)) = (a, B).

We shall prove the assertion by induction on the complexity of the formula A. Let
A be a variable, i.e., A(x) = x. Then,

a(Ox)>05>b(Ox)=1—a(0x)
1-dx)=c(®x)>0.5>d(x)
and from (3.1.7) it follows that
a—pf>a—-b>0,

i.e., A(y) is IF-sure.
Let A= P A Q, where for P and Q the assertion is valid. Then,

a— 3 =min(u(P(y)), p(Q(y))) — max(v(P(y)), v(Q(y))) = 0.5 -0.5=0.
For A = P Vv Q, the check is similar.

Let A(x) = VzP(x, z), where the assertion is valid for P (x, z). For every y, for
which (3.1.7) is valid, and for every z:

wW(P(y,2)) =05 >v(P(y,2))

by assumption. Then,
a — 3 =min u(P(x, z)) — max(P(v(x,z))) > 0.5—-0.5=0.

For A(x) = 3z P(x, z) the assertion is proved analogically.
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Let A(x) = O P(x), where the assertion is valid for P(x). Then, we obtain
directly, that
a—0F>a—b>05-0.5=0.

When A(x) = < P(x) the assertion is proved analogically. U

Corollary 3.1.1 (Locality of intuitionistic fuzzy truth) For every formula A, if

A(Ox) and A($ x) are tautologies, then, for every y, for which (3.1.7) is valid,
A(y) is a tautology.

The case of IFTs is more complicated.

It can be established that if A and B are IFTs, then, A A B is not necessarily an
IFT. For example, let p V —p and g Vv —¢ for different propositions p and g be IFTs,
then

V(p Vv —p) = (max(u(p), u(—p)), min(v(p), v(—p)))
= (max(u(p), v(p)), min(v(p), u(—p))).

Nevertheless, the form
A=(pVv—-p)A(qV—q)
is not always an IFT. Take e.g.:
V(p) =(0.4,04),
V(g) =(0.2,0.2).

Then,
V(pVv —p)=(04,04),

Vg Vv —q) =1(0.2,0.2),

but
V(A) =(0.2,0.4).

A Conjunctive Normal Form (CNF) A is of the sort Dy A --- A D,,, where D; =
li1 V-Vl is a clause of literals. A literal is either a propositional variable
(e.g., p) or a negated variable (in the same case — —p). The literals p and —p are
called opposite. Two clauses C and D are called connected if they contain a common
variable occurring in opposite literals (e.g., p in C and —p in D).

Lemma 3.1.1 A clause C is an IFT ifand only ifit is a classical two-valued tautology
iff C contains a pair of opposite literals.

Lemma 3.1.2 A conjunction of two literals C and D, which are IFTs, is an IFT iff
they are connected.
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Proof If C and D are IFTs and are connected, then, C A D is an IFT. Consider an
arbitrary V.Let C = pVv A, D = —p Vv B, where V(A) = (a, b), V(B) = (¢, d)
and let V(p) = (u, v). Then,

max (i, @) = p = min(y, d)
max(v, ¢) > v > min(v, b)
max(u, a) > min(v, b)
max(v, ¢) > min(u, d)

and from
V(C A D) = (min(max(u, a), max(v, ¢)), max(min(v, b), min(u, d)))

and
min(max(u, a), max(v, ¢)) > max(min(v, b), min(u, d))

it follows that C A D is an IFT.

Let C and D be two IFT clauses. Let us define the following evaluation function
W: For variables p which occur in both positive and negative literals in C let W (p) =
(0.2, 0.2). For a variable g that appears in both the positive and the negative forms
in D: W(g) = (0.4,0.4). Note that the sets of such variables are disjoint. For
variables which occur positively in C or D, let W be (0.2, 0.4) and for variables
occurring negatively in C or D — (0.4, 0.2). It is a simple check which shows that
W(C A D) = (0.2, 0.4). Thus, the conjunction of C and D is not an IFT. |

A CNF A is called totally connected if every pair of clauses C, D initis connected.

Lemma 3.1.3 A CNF A is an IFT iff all clauses in it are IFTs and A is totally
connected.

Proof Assume that all clauses of A are IFTs and that A is totally connected. If we
assume that for a some evaluation function W:

W(A) = (u, v)

is such that p < v, then, it can be easily seen that there is a pair of clauses C and D
of A such that C A D is already not an IFT (due to W) — but this is impossible by
Lemma 3.1.2. In the opposite direction: if at least two clauses in A are not connected,
then their conjunction will not be an IFT, hence, A will not be an IFT either. U

Theorem 3.1.9 (Locality of IFT) For every connected formula A, if A(Ox) and
A($ x) are IFTs, then, for every y, for which (3.1.7) is valid, A(y) is an IFT.

Proof The proof is similar to the proof of Theorem 3.1.8, but in the case when
formula A is a conjunction of two connected formulas, we use Lemma 3.1.2 O
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Now, we discuss the basic relations between the quantifiers V and 3 and the two

modal operators 00 and <>.
The equalities from [7], Sect. 1.6 can be transformed for both modal operators
and both quantifiers, as follows.

Theorem 3.1.10 Let A be a formula and x be a variable. Then,

(a) V(YxOA) = V(OVxA),
(b) VEAxOA) = V(O 3IxA),
(c) V(Vx$ A) = V(OVxA),
(d) V@ExdA) = V(GIxA).

Proof Let us check the validity of (a):

V(VxOA)
= (min zu(A), max(1 — u(A)))
= (min pu(A), 1 — min pu(A))

= V(OVxA).
Equalities (b)—(d) are proved analogically. (]
Theorem 3.1.11 Let A be a formula and x be a variable. Then,

(@) V(OO A) =V IxOA) = V(=OVxd =A) = V(=5 Vad —A),
(b) V(OIS A) = V(O Ixd A) = V(= OVx O=A) = V(= Va O—A),
(c) V(OVxOA) = V(O VxOA) = V(=0Ixd =A) = V(=S 3xd —A),
(d) V(OVxd A) = V(O Vad A) = V(= O Ix O—A4) = V(=< Ix O—A),
(e) V(OIxO—A) = V(& IxO—A) = V(=OVxd A) = V(=S Vad A),
) V(OIxd =A) = V(O Ixd =A) = V(=OVx O A) = V(= Va O A),
(g) V(OVxO=A) = V(O VxO—A) = V(=0 3Ixd A) = V(=S Ixd A),
(h) V(OVxd =A) = V(O Vad —A) = V(=OIx O A) = V(=< Ix O A).

Proof Let us check the validity of (a)

V(O3x O A)
= 0d03axaOV(A)
= D3x{u(A), 1 — p(A))
— O {max u(A), min(1 — u(A)))
= (max j(A). 1 — max ju(A)):
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V(&3IAx O A)
=< (m)?x(,u(A)), Irkin(l — p(A)))

= {1 = min(l — z(A)), min(1 — z(A)))
= (max(p(A)), 1 — max(u(A)));

V(= 0Vxd—A) = =0V (U(A), u(A)) = = 0Va(l — p(A), u(A)
= =0 (min(1 - (A)), max((A)))

= —(min(1 = p(A)), 1 —min(l - (4)

= (I —min(l = u(A)), min(1 = u(A))

= (max u(A), 1 — max ju(A))

= V(= Vad—A)
== (ng}n(l — 1(A)), max u(A))

= —(l —max u(A), max mu(A))
= (max u(A), 1 —max u(A)).

Equalities (b)—(h) are proved analogically.

Let for a fixed formula A and for a variable x:
S(A) ={03Ix0A, ¢ IxTA, ~(OVxS —A), ~(O Vad —A)},
TA) ={03Ix> A, 0O A, =(OVx O—A), =(O Vx O—A)},
UA) ={0OVxOA, O VxOA, ~(O3IxO —A), (< Ixd —A)),
V(A) ={0Vxd A, OVxO A, —~(O03Ix 0—-A), = Ix 0 —-A)},
W(A) ={03Ix0—-A,< IxO-A, =(OVxO A), =(O Vad A},
X(A) ={03x —A, 0 ¢ —A, ~(OVx O A), =~ Vx O A)},
Y(A) ={0OVxO—-A, O VxO—-A, =(0IxS A), ~(O Ixd A)),
Z(A) ={0OVx$ —A, O Vx$O —A, ~(O03Ix 0A), ~( Ix T A)}.

Having in mind Theorem 3.1.11, we can prove the following theorem.

89
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Theorem 3.1.12 Let A be a formula and x be a variable. Then,

(a) if P € S(A) and Q € T(A), then, V(P) < V(AxA) < V(Q),
(b) if P € U(A) and Q € V(A), then, V(P) < V(YxA) < V(Q),
(c) if P € W(A) and O € X(A), then, V(P) < V(YxA) < V(Q),
(d) if P € Y(A) and Q € Z(A), then, V(P) < V(3xA) < V(0),

where V(X) < V(Y) for the formulas X and Y if and only if (X)) < w(Y) and
v(X) > v(Y).

Finally, following [8], we discuss another modal operator, without an analogue in
modal logic.

For the formula A, for which V(A) = (a,b), where a,b € [0,1] and
a + b < 1, we define the new modal operator “(0)” by:

a b
V(OA):<a+b’a+b>'

Obviously, the pair (4, ﬁ) is an intuitionistic fuzzy pair and more particularly

— a fuzzy pair, because
a b

=1
a+b+a+b

The new operator has the following more interesting properties.
Theorem 3.1.13 For every formula A:

(@ OO0A= DA,
(b) OC A=< A,

() O0OA=0A,
(d) & OA=0A,
(e) O OA=0A.

Proof (e) For formula A we obtain:

a b

b - -
woom=o<“ >=<a”%”¢ﬂ”b>=wom

atb atbl \ig+am @5t an

This completes the proof. The rest assertions in (a)—(d) are proved analogically. [
Theorem 3.1.14 For every formula A:

(a) Only negation — satisfies equality

~O—A=0A.

(b) Only negations —y, =y, =11, 718, —53 satisfy equality

~0OA=0-A.
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Theorem 3.1.15 For every two formulas A and B and for the disjunction and con-
Jjunction defined by (1.1.4) and (1.1.5):

V(IO(AAB)) = V(OAANOB),
V(IO(AV B)) = V(OAV OB).

Proof Let A and B be two formulas, so that V(A) = (a, b), V(B) = (c,d), a, b, c,
del0,1landa +b <1,c+d < 1. Then,

V(O A B)) =Oa, b) A{c,d)) = O{min(a, ¢), max(b, d))

_< min(a, ¢) max (b, d) >
" \min(a, ¢) + max(b, d)’ min(a, ¢) + max(b, d) |’

and

V(IOAANOB) = Ola.b) AN Ofc. d)

B a b A c d
“\a+b a+b c+d c+d

. a c b d
= ({min s , max N .
a+b c+d a+b c+d

First, we prove the validity of the following inequality. For every three real num-
bersa, b, c € [0, 1],if a > c, then:

a C
>

a+b " c+b

(3.1.8)

Obviously, the inequality is valid in the form of an equality, when a = c. Let
a > c. Then, sequentially, we obtain:

a ¢ ab — bc _ bla—o) -
a+b c+b (a+b)(c+b) (a+b)(c+Db)

)

i.e., (3.1.6) is valid.
Now, we check the validity of inequality

. a c min(a, c¢)
min , > — . (3.1.9)
a+b c+d min(a, ¢) + max(b, d)

Let

. a c min(a, ¢)
X = min , - .
a+b c+d min(a, ¢) + max(b, d)
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If a > ¢, then, we obtain:

. a c c
X = min , - .
(a+b c+d) ¢ + max(b, d)

If 2% a+b z L+d’ then

c c
— >0
c+d c+max(b,d) —

If =

/\

a+h < H_d,then from (3.1.6),

a c c c
X = — > 0.
a +b c+max(b,d) — b +c¢ ¢+ max(b,d)

Leta < c. Then,

. a c a
X = min , — .
(a+b c+d) a + max(b, d)

If % a+b > C+d,then from (1), we obtain

C a (& a

- > — >0
c+d a+max(b,d) ~ c+d a+d

If 25 a+b = L+d ’ then

_ a a
T a+4+b  a+max(b,d)’

In the same way, we can prove that

max(b, d) - b d
min(a, ¢) + max(b,d) ~ \a+b c+d

i.e., the first inequality is checked.
The second inequality in the theorem, as well as the Theorem 3.1.16 are proved
by analogy. (]

Theorem 3.1.16 For every predicate P:
V(OIxPx)) = V(Ex O P(x)),

V(OVxP(x)) < V({¥x O P(x)).
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3.2 Extensions of the Intuitionistic Fuzzy Modal Operators

In this section, we introduce the first group of extended intuitionistic fuzzy modal
operators.
First, by analogy with the IFS-operators from [7, 9], in the period 1988-1993, we
define eight new modal operators.
Let A be a fixed formula for which V(A) = (a, b) and v, 8,7, d,¢,n € [0, 1].
We define operators D, Fo 5, Ga,g, Hops Hy 5, Ja.8, J; 5 and Xo 5,46, bY:
V(Dy(A) =(a+a.(l1—a—->b),b+ (1 —a).(1 —a—>b)),
V(Fap(A) =(a+a.(l—a—-0b),b+B3.(1—a—>b)),fora+ <1,
V(Gap(A) = (a.a, B.b),
V(Ha3(A) = (a.a, b+ B.(1 —a — b)),
V(H} ;(A)) = (aa, b+ B.(1 —a.a — b)),
V(Ja,p(A) = (a+a.(1 —a—>),3.b),
V(J;3(A) =fla+a(l—a—p3.b),B.b),
V(Xaprs.en(A) =(aa+p.(1—a—b),6b+e(l —na—D>b)),

for
a+e—en<l (3.2.1)
B+d—=py =<1, (3.2.2)
B+e<l. (3.2.3)

In [10], it was mentioned that the third condition (3.2.3) was omitted in [7, 9].
It was introduced to the definition in [10], because without it, e.g., for constant
U* = (0, 0) we obtain
X0,1,00,1,0(U") = (1, 1),

which is impossible.
Obviously,

O A = Do(A),
<>A - DI(A)a
Da(A) = Fa,lfa(A)v

OA=Xi0,1,1,1(4),

qqqqq
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Dy (A) = X1.0.1,1.1-0,1(A),

Fop(A) = X1a.1151(4), fora+ 3 <1,

Gap(A) = Xo0.r0r(A),

H,5(A) = X4,0.r1,5,1(A),

Hy 5(A) = X0.0.r.5.0.0(A),

Ja,g(A) = X1.a,1,80-(A),
o 3(A) = X1.a.5.60.-(A),

where r is an arbitrary real number in [0, 1].
Let us define for every formula A:

V(Da(A)) = Da(V(A)),
V(Fo5(A) = Fa3(V(A)),
V(Ga,3(A) = Gap(V(A)),
V(Hop(A)) = Hap(V(A)),
V(H, 5(A) = H; 5(V(A)),
V(Ja3(A) = Jas(V(A)),

V(I3 5(A) = J5 5(V(A)),

V(Xapy.6.em(A) = Xaprs.en(V(A)).

To every formula A, the evaluation function V assigns for D, (A) a point from the

segment between V(O A) and V (<> A) depending on the value of the argument o €
[0, 1] (see Fig.3.6). As in the case of some of the above operations, this construction
needs auxiliary elements which are shown in Fig. 3.6.

To every formula A, the evaluation function V assigns for F,, 3(A) a point from

the triangle with vertices V(A), V(O A) and V (<> A), depending on the value of the
arguments «, § € [0, 1] for which a + 3 < 1 (see Fig.3.7).

To every formula A, the evaluation function V assigns for G, 3(A) a point
in the rectangle whose vertices are the point V(A) and points with coordinates,
(pr1V(A),0), (0, praV(A)) and (0, 0), where pr; p is the i-th projection (i = 1, 2)
(see Fig.3.8).
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Fig. 3.6 Second geometrical
interpretation of operator D, . V(OA)

Fig. 3.7 Second geometrical
interpretation of operator F, g

To every formula A, the evaluation function V assigns for K, 3(A) a point
V(H, p(A)) from the rectangle whose vertices are the points with coordinates

(0, praV(A)) and (0, pr, V(0O A)) and vertices V(O A) and V (A), depending on
the value of the parameters «, 3 € [0, 1] (see Fig.3.9).

To every formula A, the evaluation function V assigns for J, 3(A) a point
V(Ja,5(A)) from the rectangle whose vertices are the points with coordinates
(priV (& A), 0), (pr1V(A), 0) and vertices V(A) and V (<> A), depending on the
value of the parameters «, 3 € [0, 1] (see Fig.3.10).

To every formula A, the evaluation function V assigns for H ;(A) a point
V(H} ,i(A)) from the trapezoid with vertices with coordinates (0O, prZV(A)) and

(0, 1) and vertices V(O A) and V(A), depending on the value of the parameters
«, B € [0, 1] (see Fig.3.11).

To every formula A, the evaluation function V assigns for J; ;(A) a point
V(Ju 3(A)) from the trapezoid with vertices with coordinates (1, 0) and(pmV(A) 0)
and vertices V(A) and V(& A), depending on the value of the parameters «, 3 €
[0, 1] (see Fig.3.12).
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Fig. 3.8 Second geometrical
interpretation of operator G, 3

Fig. 3.9 Second geometrical
interpretation of operator H,, g

Fig.3.10 Second geometrical
interpretation of operator J,, 3

Below, we formulate and prove assertions, that by the moment have been checked
only for some intuitionistic fuzzy implications and negation, which gives rise to the
following important open problem for solving in future.

Open Problem 14 Check these assertions for all the remaining implications and
negations.
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Fig. 3.11 Second
geometrical interpretation of
operator H ,

V(H} 5(A))

Fig. 3.12 Second
geometrical interpretation of
operator J} 5

Theorem 3.2.1 If formula A is a tautology, then:

(a) for every two «, 3 € [0,1] : Dy(A), Fo3(A), for a + 3 < 1, J, 3(A) and
J ;,B(A) are tautologies,

(b) Gap(A), Hyp(A), HY ;(A), are IFTs,

(c) forevery o, e, sothat o > (1 — 1), Xo g4.6.cy(A) is an IFT.

Proof (b) From V(A) = (1, 0) it follows that
V(Ga,p(A)) = (a,0),
V(Ha3(A)) = V(H] 3(A) = (a, (1 = 1 = 0)) = (e, 0),
ie., Go3(A), Hy3(A) and H;ﬁ(A) are IFTs. The other cases are proved by anal-
ogy. (]

Theorem 3.2.2 [f formula A is an IFT, then:

(a) fora> 0.5 D,(A) is an IFT,

(b) fora > Band o+ B <1 F, 5(A) is an IFT,

(c) fora > (3 Gy p(A) isan IFT,

(d) Jas(A), J; 5(A) are IFTs,

(e) forae=6,0>¢e,1>vXapnrs.en(A)isanIFT.
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It can be easily seen that for every a, b, «, 3,7,9,¢,n€ [0, 1]Janda + b < 1, if
(OS {D(ls Fa,{ia Ga,ﬁ’ Ha,ﬁa H;ﬂa J(:z,ﬂ’ J(zﬁa X(x,ﬂ.v,{i,s,n}»

then
O({a, b)) —4 (a,b) and O({a, b)) =11 {(a,b)

are IFTs. For example,

V(Fq,p(a, b)) =11 (a, b))

(a+a.(l1—a—>b),b+ (1 —a—>b)) -1 (a,b)

(1— 1 —a).sg(a(l —a —b)),b.sg(a(l —a —b)).sgb+ 6.(1 —a —b) — b)),
(I — (1 —a).sg(a(l —a — b)), b.sg(a(l —a —b)).sg(B.(1 —a — b)))

(1,0), ifa=0o0ra+b=1

(a,b), ifa>0anda+b < 1

ie., Fo3({a, b)) =11 (a, b)is an IFT.

On the other hand, we can see that there are cases in which for the different
implications, different conditions must hold for the validity of some expression. The
following two assertions serve as examples.

Theorem 3.2.3 Foreverya, b, a, 3,7,0,¢e,n,a,0,,8,¢,n €[0,1]and a +
b<1,ifOe{D,F,G,H,H*, J, J*}, then:

(a) Oqp({a,b)) =11 Oy g({a, b)) is a tautology for o < o,
(b) Xa,ﬁ,ﬁ/,o’,a,n((a? b)) —11 Xa/,ﬁ’,q’,ﬁ’,a’ﬂl’((aa b)) is a tautology for a < o, B =< 6/
and By > 7.

Proof (b)Leta <o/, < and B.y > (3 .+'. Then,

V(Xa,ﬁ,'y,é,e,n((a’ b)) 11 Xa’,ﬂ’,')“,é’,e’,’r/ <a9 b)))

= (aa + B(1 —a — vb), b + (1 — na — b))
S (aat+ B —a—~b), &b+ —1na—b)

= (1= (1= (@a+B(1—a—vyb)sgaa + B —a —b)
—(dla+ ' (1—a—+'b))), (6'b+e(1 —n'a—0b))
sglaa+ B(1 —a—~b) — (d/a+ /(1 —a —~'b)))
s2(0b + (1 —/'a — b) — (6b + (1 — ja — b))))

= (1,0),

because

aa+ (1 —a—~b) — (da+ ' (1 —a—~+'b)
=a(a—a)+ (1 -a)(B—-F)—b(By—F7)=<0
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and therefore, sg(aa + (1 —a — vb) — (d’a + F'(1 — a — v'b)) = 0. The other
cases are proved similarly. O

Theorem 3.2.4 For every a,b,«, 3,7,0,¢,n,¢,3,+,0,¢,n € [0,1] and
a+b<1if0e(D, F, G, H, H* J,J*), then

(a) Oap(la, b)) =4 Ou g((a, b)) is an IFT for o < o' or 3 = 3,

(b) Xa,/ﬁ,'y,é,e,n((a» b)) —>4 X(y’,ﬁ’,w”,&,s’,n’((as b)) is an IFTfor a < Oé/, ﬁ < B/ and
vy>~orford >08,e>c andn <.

Open Problem 15 Which other implications satisfy Theorems 3.2.3 and 3.2.4?

There are properties that, probably, are specific for —;. For example, the following
assertion is valid for —, but for 0 < ¢ <7 < litis not valid for —ys . ,, (by definition,
— coincides with —45,0.0).

Theorem 3.2.5 Foreverya,b,a, 3 €[0,1]anda +b < 1:

(a) V(Fos(a, b)) =V(=1Fsa(—1(a, b)), fora+ <1,
(b) V(Gap(la, b)) = V(=1Gpa(—ila, b)),
(c) V(Hap((a, b)) =V (—1Jsa(—1{a, b)),
(d) V(Ja,p({a, b)) = V(=1Hpa(—1(a, b)),
(e) V(H] ;({a, b)) =V(=1Jj ,(—1(a, b)),
() VUi s(a, b)) = V(=iHj  (—i(a, b))

Open Problem 16 Which other negations satisfy Theorems 3.2.5?

Let for every two formulas A and B: A < B iff B — A.

Theorem 3.2.6 For every two formulas A and B, for every two real numbers o, 5 €
[0, 1] and for implication —4:

(a) Fop(ANB)—4 Fop(A) A Fop(B), fora+ <1,
(b) Fop(AV B) <4 Fyp5(A)V Fyp5(B), fora+ 3 <1,
(¢) Gapg(ANB)=Gap(A)AGap(B),

(d) Gap(AV B)=Gap(A)V Gap(B),

(e) Ha,ﬂ(A A B) —4 H(yﬂ(A) A HaS(B)’

(f) Hap(AV B) <=4 Hy 3(A) Vv H, 5(B),

(g) Ja,ﬁ(A A B) <=4 Hy 3(A) A Ho 3(B),

(h) Huop(AV B) =4 Hyp(A)V Hy 5(B),

(i) H ;(ANB) —4 Hy 5(A) AH 5(B),

() H* (AV B) <y H 3(A)VH* (B),

k) I, (A AB) <y H (A) A H 3(3)

(1) uﬂ(A V B) =, H;;ﬂ(A) v H ,(B)

are IFTs.



100 3 Intuitionistic Fuzzy Modal Logics
Proof (a) For the formulas A and B:

V(Fas(A A B) =4 Fa(A) A Fos(B))
= (min(a, ¢) + a(1 — min(a, ¢) — max(b, d)), max(b, d)+
G(1 — min(a, ¢) — max(b, d))) — (min(a + a(1 —a — b), c
+a(l —c—d)),max(b+ (1 —a —b),d + B(1 —c —d)))
= (max(max (b, d) + S(1 — min(a, ¢) — max(b, d)), min(a+
a(l —a —>b),c+ a(l —c —d))), min(min(a, ¢) + a(1 — min(a, ¢)
—max(b,d)), max(b+ (1 —a —b),d + B(1 —c —d))))

and

max(max (b, d) + S(1 — min(a, ¢) — max(b, d)), min(a+

a(l —a—>b),c+ a(l —c —d))) —min(min(a, ¢) + a(1—

min(a, ¢) — max(b, d)), max(b + (1 —a — b),d + (1 — c — d)))
> max(b, d) + (1 — min(a, ¢) — max(b, d))

—max(b+ (1 —a—>b),d+ 31 —c—d)) >0,

ie.,
Fa,ﬂ(A A B) —>4 Fa,ﬁ(A) A Fa,ﬁ(B)

is an IFT.
Formulas (b)—(1) are checked by analogy. (]

Open Problem 17 Which other conjunctions and disjunctions (whenever be defined,
following the ideas from Sect. 1.7) have similar properties?

Theorem 3.2.7 For every predicate A, and for every a, 3 € [0, 1], such that
a+ 8 <1:

(a) V@ExF, (P (x))) < V(Fo33xP(x)),

(b) V(VxFo3(P(x))) = V(Fo,g¥xP(x)).

Corollary 3.2.1 For every predicate A, and for every «, 3 € [0, 1], such that
a+p=<1:

(a) V@ExDa(P(x))) = V(DaIx P(x)),

(b) V(VxDo(P(x))) = V(DaVxP(x)).

Theorem 3.2.8 For every formula A and for every o, 3,7, € [0, 1] such that
a+pB<landvy+0d <1:

V(Elﬂ(F“/é(A))) = V(Fa+w—(m—aé.ﬂ+§—ﬂﬂ/—ﬁ§(A))~

Proof Let for o, 3,7,0 € [0,1]: o+ < land v+ 3§ < 1. Let V(A) = (a, b).
Then,
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V(Fog(F, 5(A))
= Fo,p({a+~y(1 —a—>b),b+ (1 —a—b)))
=(a+vy(1l—-a-b)+a(l—a—-~v(1—-a—->b)—b—561—a—->)),
b+6(1—a—b)+B0—a—~y(1—a—b)—b—05(1—a—b)))
= (a+(a+7—ay—ad)(l—a—b),
b+ (B+06—py—pH)( —a—D))
= V(Foty—ay—as,p+o—py—ps(A)).

This completes the proof. O

Corollary 3.2.2 For every predicate A, and for every o € [0, 1]:

(a) V(Da(Dg(A))) = V(Ds(A)),
(b) V(Da(F34(A)) = V(Datp—ap-ay(A), for 4+~ <1,
(c) V(Fap(Dy(A))) = V(Dy(A)).

Theorem 3.2.9 For every formula A and for every o, (3,7, 6 € [0, 1]:
V(Ga,3(Gy5(A)) = V(Gay,ps(A)).

Theorem 3.2.10 For every formula A and for every «, 3 € [0, 1]:

(a) V( ] F(L.{)’(A)) > V(Fa,ﬂ ] A)fora + ﬂ < 1;
(b) V(& Fop(A) < V(Fapd A) fora+ <1,

(C) V( ] Gaﬁ(A)) =< V(G(Y,B g A):
(d) V(& Gap(A) = V(Gap$ A),

(e) V(O Hyp(A) < V(Hy3OA),
(f) V(& Hap(A) = V(Ha 5o A),
(8) V(O Jop(A) = V(JopOA),
(h) V(& Ja3(A) £ V(o A),
(i) V(OH ;(A) < V(H!;0A),
() V(& T 4(A) = V(IE ;< A).

Theorem 3.2.11 For every A and for every a, 3, 7, 6 € [0, 1]:
Ga,5(G,5(A)) = Gay,ps(A).

Theorem 3.2.12 For every formula A and for every a, 3 € [0, 1]:

(a) V(Hop3(Gy5(A)) = V(G 5(Hap (A))
(b) V(JaB(G'y(S(A))) =< V(G')(S(Juﬁ’ (A))):
(c) V(H, 5(G5(A)) = V(G 5(Hy 5(A))),
(d) V(I; 5(Gy5(A)) < V(G55 5 (A)

Theorem 3.2.13 Let A be a formula and x be a variable. Then, for every o, 3 €
[0, 1]:
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V(¥xGa(A) = V(Ga,p(VxA)),
V(3xGap(A) = V(Ga,(3xA)).

We finish with an assertion for the operator X, following [11].

Theorem 3.2.14 For every two IFPs (u,v) and (p, o), there are real numbers
a,b,c,d,e, f €0, 1] satisfying (3.2.1)—(3.2.3), such that

V(Xa,b,cﬁd,e,f((,uv V))) = (P» U>-

Proof Let p,v,p,0 € [0,1], such that u + v < 1,p+ o < 1. We search for
a,b,c,d,e, f €[0, 1] that satisfy (3.2.1)—(3.2.3) and for which

(p,0) =V Xapede s v,) = (ap+b(l —p—cv),dv+e(d = fu—v)),

ie.,
p=ap+b(l—p—cv),

oc=dv+e(l — fu—v).

‘We discuss nine cases.

Case 1. 7= p=0.Then, v = 1. We put
a=c=e=f=0,b=p,d=o0.
Then, conditions (3.2.1)—(3.2.3) are valid and
X0,p,0.0,00(p v,)) = (04+p(1=0-0x1),0 x 14+0(1-0x pn—1)) = (p, o).
Case2. m=v =0.Then, = 1. We put
a=p,b=c=d=f=0,e=0.
Then, conditions (3.2.1)—(3.2.3) are valid and
X,000000, v,) =(p+0x(1-=0x1-0),0+0(1-0x1-=1)) = (p, o).
When 7 = 0 and p, v > 0, there are three (sub)cases. It is important to mention
that now p, v < 1.

Case3. p > p. Then, from 7 = O it follows that ¢ = 1 — v, and hence
c<1l—p<1—p=v.So, weput
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Then, conditions (3.2.1)—(3.2.3) are valid and

_ pP—H g\ _
Xy o g2 00U v,) =(p+ T7—A —p), —v)=(p,0).
=y 1 —p v

Case4. o > v. Then, from m = 0 it follows again that 4 = 1 — v, and hence
p<1—0<1—v=u. So,weput

a==,b=c=f=0,d=1,e= .
0 1—v

Then, conditions (3.2.1)—(3.2.3) are valid and

p o—v
Xe o012 000, v,) =(—p+0,v+ (I —=v))={p, o).
g v I 1—-v
Case5. p < pando <v.Then, we put
a=L b=c=e=f=0a=2
I v

Then, conditions (3.2.1)—(3.2.3) are valid and

p o
Xz 00.2.000p 1)) = <;,u +0, v + 0> = (p, o).

When 7 > 0, then, p, v < 1.
Case 6. p > pand o > v. Then, we put

Then, conditions (3.2.1)—(3.2.3) are valid, because:

at+e—ef=1l4+e—e=1<1,

g —V

b+d—-bc=d=

Slv
™

b+e=p—u+a—uzp+a—u—y

™ s m

< 1.

All other checks are done in a similar way. Now,

p—p o—v
Xl,%,l,l,%”,l“/”‘*”? >):<M+ = T,V + = 7T>=<P:U>~
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Case 7. p > pand o < v. Then, as in Case 3, we put

Then, conditions (3.2.1)—(3.2.3) are valid and

p—p o
Xy ez 02,0001, v, ) = <M + q(l — 1), ;V> = (p, o).

Case 8. p < pando > v. Then, as in point 4, we put

P o—v
a=—,b=c=f=0,d=1,e= .
" 1—v

Then, conditions (3.2.1)—(3.2.3) are valid and

g

p —v
Xﬁ.(),O,l,%,(),()((/J" v, )) = <_M+ 01 v+ _(1 - V)> = <p7 J>~
” v I 1—-v

Case 9. p < pando <v.Then, asin Case 5, we put

Then, conditions (3.2.1)—(3.2.3) are valid and

p o
Xz 00.2.000p v, ) = <;ﬂ +0, v+ O> = (p, o).

Therefore, the theorem is proved. ([
A modification of the above theorem is the following theorem.

Theorem 3.2.15 For every two formulas A, B there exists an operator Y € {F, 3,
Gap, Hyp, H:ﬂ, Jo. 3 J:,B} and there exist real numbers o, 3 € [0, 1] such that

V(A) = V(¥a3(B)).

Proof Let everywhere V(A) = (a, b) and V(B) = (c,d), where a, b, c,d € [0, 1]
anda+b<landc+d <1.
The following 9 cases are possible for a, b, ¢ and d.

Case 1. a =c¢ Then, forY :
and ifY =F, then,aa=(3=0;
b=d ifY =G, then,a =3 =1,
if Y = HorY = H*, then,a = 1 and 3 = 0;
if Y =JorY =J*then,aa=0and § = 1.
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Case2. a>c Then,Y = Fand a = and =0

a—c
l—c—d
and (weshallnotethatl —c—d >1—a—5b >0)
b=d orY = JorY = J* and « has the above

formand 5 = 1.
Case3. a <c¢ Then, Y = G and o =%andﬁ = 1 (we note

and thatc > a > 0)
b=d orY =JorY = J* and « has the above
form and 3 = 0.

b—d
1—c—d
and (wenotethatl —c—d>1—a—5b=>0)
b>d orY=HorY = H*, and @ = 1 and 3 has

the above form.

Cased. a=c Then,Y =Fanda=0and 8 =

Case 5. a >c¢ Then,Y:Fanda:%and
and [ =%(we note that
b>d l—c—d>1—a—b>0)
Case 6. a < ¢ Then, there are two subcases:
and
b>d.
6.1. ifb<1-—c, then,Y:Handa:%and
b—d
B_l—c—d
R _a _ b—d
orY=H anda_candﬂ_—l_a_d

(wenotethatl —a—d>1—c—d>b—d >0
andc > a > 0)

6.2. ifb>1—c, then,Y:H*anda:%and

b—d

ﬂzﬁ(wenotethatl—a—de—d>O

andc > a > 0)

Case7. a=c Then,Y:Ganda:landﬁ:%(wenote

and thatd > b > 0)
b<d.
orY=JorY =H* and a = 0 and (3 has the above form.
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Case 8. a > ¢ Then, there are two subcases:
and
b<d.
8.1. ifa<1—d, then,Y = Janda = —2—S _and
- ’ ’ l—c—d
b
=7
orY:J*anda:Landﬁzﬁ(we
1—-b—c d
notethat | —c—b>1—-c—-d>a—c>0
andd > b > 0)
. - _a-—c
8.2. ifa>1—d, then, Y =J anda—m

andﬂ:%(wenotethatl—c—bza—c>0
andd > b > 0)
Case 9. a <c Then Y = Ganda:%andﬁ:%(we shall

and note that ¢ > a > 0andd > b > 0).
b<d.
This completes the proof. ]

3.3 Second Type of Intuitionistic Fuzzy Modal Operators

In this section, following [7, 9, 12—17], several different modal-like operators of
second type are defined and the consequences of their generalizations are discussed.
We formulate the properties of these operators which hold for them but do not hold
for their extensions.

The following two operators of modal type are similar to the operators in Sect. 3.1.
Let for formula A: V(A) = (u, v). Then,

v(EHA) = <§ V;r 1>, (3.3.1)
V(XA) = <“T+1 g> (3.3.2)

All of their properties are valid for their first extensions. For a given real number
« € [0, 1] and formula A,

V(HLA) = (ap, av + 1 — o), (3.3.3)

V(X,A) = (ap+ 1 —a, av). (3.3.4)
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Fig. 3.13 Second
geometrical interpretation of

operator [T,

Fig. 3.14 Second
geometrical interpretation of

operator X,

Obviously,
O<ap+ar+l—-—a=1—-al —p—av) <1.

For every formula A,

V(Hosa) = v(EHA),
V(Xys4) = V(XIA).

Therefore, the new operators “H,” and “[X],” are generalizations of and

[X], respectively. Their geometrical interpretations are given in Figs.3.13 and 3.14,
respectively.
For every formula A, for every « € [0, 1]:

@ V(H.A) = v = v¥,A),
(b) V(= Ha—14) = v, 4),
() V(H.H,4) < vH.4),

@ V(X,,A) < v(X,A).
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For every formula A, and for every two real numbers «, 3 € [0, 1],
(@ V(H.HzA) = v(H;H.4),
(b) V(Xaxz4) = v (XI5, A),
(©) V(X Hza) > v(H;X,A).
For every formula A, and for every three real numbers «, 3, v € [0, 1],
@ V(H.Ds(A) = V(Ds(H,A)),
() V(IH,Fs3.,(A) = V(F5,(H,A)), where 3+ v < 1,
© V(H.Gs,(A) < V(G (H,A)),
(d) V(EH.Hg,(A) = V(Hz,(H,A)),
@ V(HH (A) = V(H; (H,A)),
() V(EHads,(A) = V(s (EHA),
(@ V(T (A) = Vg, (HaA)),
(h) V(X]aDs(A) = V(Ds(X,A)),
(i) V(X Fs.(A) = V(F5,(X],A)), where 5+ v < 1,
(G V(X,Gs,(A) < V(G (X, A)),
&) V(KoHg,(A) = V(Hg (<, A)),
)] V(aH;;ﬁ,(A)) = V(HE,A,(QA)),
m) V(X,J5,(4) = V(Js,(X,A4)),
) V(&dat; (4) = VU5, (aA)).

The second extension was introduced in [17] by K. Dencheva. She extended the
last two operators to the forms:

V(HapA) = (ap, av + B), (3.3.5)

V(. 54) = (ap+ B, av), (3.3.6)

where o, 3, a + 3 € [0, 1].
Obviously, for every formula A,

V(EHA) = V(BAs05),
V(XIA) = V(IX1Ags5,05),
V(HA) = V(IHAL -,

V(Aa) = V(Aa,l—a)~
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For every formula A, and for every «, 3, o + 8 € [0, 1],

(a) V(=H, =4) = V(X], 34),
() V(=X 5-4) = V(H, 34).

For every formula A, and for every «, 3 € [0, 1], each of the inequalities

(@ V(H, H,54) < V(IEH, 34),
b) V(X¥, X, 54) > VX, 54),

is valid if and only if « + 3 = 1.
For every formula A, and for every « € [0, 1],

vV, X, 54) = V(X, sH., 5A4) iff 3=0.
For every formula A, and for every «, 8,7, 6 € [0, 1] such that a4+ 3,7+ 0 €
0, 1],
o V(H, X, 54) < V(X sH, 5A4).
Now, the third extension of the above operators is as follows:

V(Hap,4) = (ap, v +7), (3.3.7)

V(u,ﬁ,'yA) = (Oé/,b + v, ﬂy), (338)

where «, 3, v € [0, 1] and max(«, B) + v < 1.
Obviously, for every formula A,

V(HA) = V(HAs50505)
V(XJA) = V(X Ags.0505).
V(EHAL) = V(IEHAL -0,
V(AL = V(IXAL W),
V(AL = V(EHAwap),

V(Aa,ﬁ) = V(Au,a,/3)~

For every formula A, and for every «, 3, v € [0, 1] for which max(«, 3) +v < 1,

@ V(=Hap,-4) = V(Xga,4),
(b) V(_'(y,ﬁ,'yﬁA)) = V(ﬁ,a,vA)-
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For every formula A, and for every «, 3, v € [0, 1] for which max(«, 3)+~ < 1,
(@) V(H,5,Hap,4) < V(H, 5,A4) is validiff 8+ =1,
) V(¥4 s5,X05,4) > VX, 5,A) is valid iff o + v = 1.

For every formula A, and for every «, 5, a + ( € [0, 1],
V(a,[},'ya,ﬁ,“/A) = V(a,ﬂ,q/a,ﬂ,'yA) iff v=0.

For every formula A, and for every «, 3, v € [0, 1] for which max(«, 8)+~ < 1,
the four properties
@ V(Has,04) =V(OH.5,4),
®) V(X¥ag,04) = V(0K 45,4,
© V(Hap,0A) =V©OHL,4),
@ V(X 5,04 =V, 5,4,
arevalidiffa = fanda + v = 1.
For every two formulas A and B, and for every «, 5,7 € [0, 1] for which
max(a, B) +v < 1,
@) V(Bas,(AAB) =V(Hs,A N 5,B),
0 VX, s,(AAB) =V(X,s,AAK,s,B),
© V(Bap,(AVB) =V(Hais,AvH,5,B),
@ V(&g (AvB) =V(Eys,4v L, B),
For every predicate A, and forevery o, 3, v € [0, 1] for which max(a, B)+v < 1,

@ V(H,5,3x4) = VErH, 5,4),
) V(Xl,5,3xA4) = VAEx X, 5,4),
©) V(Hap,¥xA) = V(vxH, 5, A),
d) V(X 5,YxA) = V(Vx[X, 5, A).

A natural extension of the last two operators is the operator
V((®las,54) = (ap+7, Br +6), (3.3.9)
where o, 3,7, 6 € [0, 1] and max(c, ) + v+ < 1.

It is the fourth type of operator from the currently discussed group.
Obviously, for every formula A,

......

aaaaaa
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V(IEHA) = V([#Aga01-0),
V(XA = V(#Asa1-a0).
V(HAL ) = V(®A,.000),
V(AL ) = V([&Adas0.
V(AL = V(A s0.4),

V(IXAL5,) = VI®A, 540

For every formula A, and for every «, (3, 7, ¢ € [0, 1] for which max(c, ) +v+
6 <1:

@ V(= 5,6—4) =V(®sa4,4),

) V(5508 c004)) = V(o se.aniypo164),
©) Ve, 5,504 >Vv(Olel, s, sA),

@ V(o550 A) <V 8, 5,54

For every pair of formulas A and B, and for every «, 3, 7, § € [0, 1] for which
max(a, B) +v+d <1,

@ V(®s,5(AAB) =V(®,5,5AN[,5,5B),
(b) V(E]a,ﬁ,“/,tS(A v B)) = V(E]a,ﬁ,w,éA \% E]a,ﬁ,ﬁ/,ﬁB)-

In [18], G. Cuvalcioglu introduced the operator E, 3 by
V(Eap(A) = (Blap+1—a), a(Br +1—0)), (3.3.10)

where «, 8 € [0, 1], and he studied some of its properties. Obviously,

V(Eq5(A)) = V(% as.ap.0-0)5.30-paA)-

For every predicate A, and for every «, 3, v, 0 € [0, 1] for which max(«, 3) +
y+o=1,

(@) V(8 5,53xA) = V@Ex[®, 5,5A),
(b) V([®,5,5YxA) = V(Vx[®], 5, 5A).

A new (potentially final?) extension of the above operators is the operator

V(o pr5.0cA) = (ap —ev+7, Br — Cu+ ), (3.3.11)
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where «, 8,7, 9,¢,( € [0, 1] and
max(a—(,0—¢e)+v+d <1, (3.3.12)
min(a — ¢, —¢)+v+9 > 0. (3.3.13)

Assume that in the particular cases when o — ( > —¢, 3 =90 =0and 6 — ( <
B,y = ¢ = 0, the inequalities

y>eand f+6<1

hold. Obviously, for every IFS A,

V(EA) = V((©o505.005004).
V(XJA) = V([9y505.05.0004).
V(EHaA) = V(&aa01-0004),
V(. A) = V([0 a1-0.0004),
V(o) = V(&4 a05004),
V(o 54) = V(& a0004),
V(Bap,4) = Vo 504004,
V(o p,4) = V& 550004,

Vl®l, 5,64) = V(. 545004),

V(E,3A) = V(s asp0-a)a0-5A).

For every formula A, and for every «, 3, v, d, €, ¢ € [0, 1] for which (3.3.12) and
(3.3.13) are valid, the equality

V(_'@a,/i,",/,ﬁ,s,ﬁ_'A) = V(@ﬁ,a,é,w,C,EA)

holds.
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For every formula A, and for every oy, 51, 71, 01, €1, (1, 2, B2, 72, 02,62, (2 €

[0, 1] for which conditions that are similar to (3.3.12) and (3.3.13) are valid, the
equality

V(@alvﬂ]ﬁl-dl-slsa (@(¥21s62ﬂ721621621<2A))

=V( [] ara+e1Q,fifh e, a1 —e10+71,f16:— v to,area+er fo, i@ +ian A)

holds.
It must be noted that the equalities

V(@a,ﬂ,w,é,s,c(A A B)) = V(@ry,ﬂ,ﬁ/,d,a,CA A @a,ﬁ,ﬁ/,é,a,CB)

and
VIl srsec(AVB) =V, 5450cAV [0 5456cB),

which are valid for operator [®], 5 . 5, are not always valid for [0, 5. 5. ¢

Open Problem 18 Check the validity of the above formulas for the case of all intu-
itionistic fuzzy conjunctions, disjunctions, implications and negations.

Following [9], we formulate and prove the following:

Theorem 3.3.1 Operators X, p c.a.c 5 and @a,g,w;f,( are equivalent.

Proof Leta,b,c,d, e, f € [0, 1] and satisty (6.24) and (6.25). Let
a=a—-b, f=d—e, y=b, d=e, €c=bc, (=ef.

Also, let
X=au—ev+~v=(a—>b)u—bcv+b,

Y=pv—Cu+d=(d—ev—efu-+e.

Then,
X>@@—-b)0—bc.l+b=b(1—-¢c)=>0,

X<(a—b).1—bcO+b=a<l,
Y>(d—e)0—efl+e=ce(l—f)>0,

Y<{d—-e).l—ef0+e=d=<1
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and
X+Y=@—-bpu—bcv+b+(d—ev—efu+e

=@—-b—ef)u+d—e—bco)v+b+e
<@—-b-ef)p+d—e—bo)(1—p)+b+e
=d—e—bc+b+et+(a—b—ef —d+e+bc)u
<d—-bc+b+a—-—b—ef —d+e+bc
=a—eft+e=a+y—-(+6<1

(from (3.3.12)).
Thus, we obtain

V(@a,ﬁ,w,ﬁ,s,CA) = (a/J' —ev+7, /BV - C:U/ + 5)
=x,(a—b)uy—bcv+b,(d—e)v—efu+e)
= (x,ap+b(l —p—cv),
dv+e(l— fu—v))
= V(Xa,bﬁc,d,e,f(A))-

Conversely, let o, 3,7, 9, ¢, € [0, 1] and satisfy (3.3.12) and (3.3.13). From
(3.3.13) it follows thatfora = =6 =(=0: € <y, whilefora = =~ =
e=0: ¢ <0;from (3.3.12) it follows thatfor = =e=(=0: a+v <1,
while fora =vy=e=(=0: 4§ < 1. Then, let

a=a+y(<),

b=r,

5
c=—(=1,

d=p+4d(=1),
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Let
g
XEaqub(l—u—cv)=(a+w)u+w(1—u—;u),

YEdl/—i—e(l—f,u—v)z(ﬂ—l—é)l/—i—(S(l—%,u—l/).

Then, we obtain,

O0<v—ezX=apt+ty—ev=a+y=1,
0<d—(<Y=0v+d—Cu=<p+di=<l1,
X+Y=au+y—cv+pr+6—_{u
=(@=Qpu—@B-ar+y+9
<@-Qu—@B-al—-—w+y+4
=(@=(+B—-e)p—-F+y+d+e
<a—(+pf—-—e—F+yv+d+e
=a—(+v+96

<max(a—(,B—e)+v+d=<1

(from (3.3.12)).

Then, we obtain
V(Xa,h,c,d,e,f(A))

={ap+b(l —p—cv),dv+ell — fu—v))

= ((a+v)u+7(1—u—%V),(6+5)V+5(1—%M—V)>

=((a+Nu+y—yp—ev,(B+0v+9d—(u—ov)

= (ap—ev+7, Bv—C(u+9)
== V(@a,ﬁ,'ygé,e,CA)-

Therefore, the two operators are equivalent.

115
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Xabede,f

aﬁ,'v aiﬂw
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Fig. 3.15 Relations among modal operators

Finally, we construct Fig.3.15 in which
“X N Y//
denotes that operator X represents operator Y, while the converse is not valid, and
“X Y//
denotes that each of the operators represents the other.
Following [19], we introduce the following new operator from modal type, that
is a modification of the above discussed operators. It has the form
V(®a,8,.64) = (aa + vb, Ba + 0b),

where o, 8,7,0 € [0, 1]anda+ (5 < 1,v+§ < 1.
First, we check that the new operator generates an intuitionistic fuzzy pair. Indeed,

O<aa+~vb<a+b<l,
0<fa+db<a+b<l

and
0 < aa+b+ Ba+ob

=(a+Ba+ (y+ b

<a+b<l.
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Second, it is easy to see that
®1,0014 = A,
®o,1,1,0A = 71 A.

Theorem 3.3.2 Forevery formula A, for every four real numbers ., 3, vy, 6 € [0, 1]
such that o + 3 < 1,v 4+ § < 1 and for negation —,

V(=1 ®a,8,7.6 714) = V(®s,4,8,04).
Proof We obtain sequentially that
V(=1 ®a.8,y.6 "14)
= = a8, (b, a)
= —{ab + ~va, Bb + da)
= (Bb + da, ab + vya)
= ®j5,,8,04.

This completes the proof. O

Theorem 3.3.3 For every two formulas A and B an for every four real numbers
a, B,7,6 €10, 1] suchthata+ 5 < 1,v+ 4§ <1,

(@) V(®ap7.6(AV B)) =V(®apy54Y Bapr.6B),
(b) V(®apy.6(ANB)) =V(®apr5AN®aprsB).

Proof For (a), first, we obtain that
V(®a,ﬁ,w,§(A \% B)) = ®a,§,7/,6<max(aa 0)7 min(b, d)>
= (amax(a, ¢) + ymin(b, d), f max(a, ¢) + d min(b, d)).

Second, we obtain that
Vv (®u,ﬁ,'y,6A V ®a,ﬂ,w’,5 B)

= (aa + b, Ba + db) V {ac + vd, Bc + d.d)

= (max(aa + vb, ac + vd), min(Ba + éb, Bc + dd)
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Let
X = max(aa + vb, ac + vd) — amax(a, ¢) — ymin(v4(x), d)

Now, for a, c, b, d we must study the following four cases.

Casel. a>c,b>d:
X = max(aa + vb, ac + vd) — aa — vd
>aa+vb—aa—~vd >0
Case2. a>c,b<d:
X = max(aa + Vb, ac + vd) — aa —vb > 0
Case3. a<c,b>d:
X = max(aa + vb, ac +vd) —ac —vd >0
Cased. a<c,b<d:
X = max(aa + vb, ac + vd) — ac) — vb
>ac+vd —ac)—vb >0
Assertion (b) is proved analogously. (I

The proofs of the next assertion follow by analogy.

Theorem 3.3.4 For every formula A and for every four real numbers o, 3,7, €
[0, 1] such thatao+ 3 < 1,yv+6 < 1:

(a) V(O Qa, 8,7, A) < V(®a,ﬂ,’y,6 OA),
(b) V(®a,ﬁ,7,5<> A) < V(<> ®a,ﬁ,7,5 A)

Theorem 3.3.5 Let A be aformula, suchthat V(A) = (u, v)andleta, b, c,d, e, f,
g, hel0,1], sothata+b,c+d,e+ f, g+ h € [0, 1]. Then,

V(®e, 0.1 (Qap,c.d(A)) = V(Quetbg.af +bh.cetrdg.cf+dn(A)). (3.3.14)

Proof Letformula A and the real numbers a, b, ¢, d, e, f, g, h satisfy the conditions
for operator ®. Then

V(®e,f,g,h (®a,b,c,d(A)))

= Qe.fon{X,ap+cv, by +dv)
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= (x,aep + cev +bgu+dgv,afu+ cfv+bhu+ dhv)
= (x, (ae + bg)pu + (ce +dg)v, (af +bh)u+ (cf +dh)v
= V(Quetbg.af +oh.cetdg.cfrdn(A)).

Therefore, (3.3.14) is valid. (|

Theorem 3.3.6 Let A be a formula, such that V(A) = (u,v) and let a,d,e, h €
©,1],b,c, f,g € (0,1], sothata+b,c+d,e+ f,g+h [0, 1] and

bg = cf, (3.3.15)
ag+ch=ce+dg. (3.3.16)

Then,
V(®e,f,g,h(®a,b,c,d(A))) = V(®a,b,c,d(®e,f,g,h(A)))- (3317)

Proof Let formula A and the real numbers a, b, ¢, d, e, f, g, h satisfy the conditions
of the theorem. First, we see, that from (3.3.15) and (3.3.16) it follows:

af—i—bh—be—df:af—i—ih—ie—df:i(ag—l—ch—ce—dg):O.
g 8 8

But, by the above conditions, f, g > 0. Therefore,
af + bh —be —df =0,

ie.,
af + bh = be + df. (3.3.18)

Now,
V(@e,f,g,h(@a,b,c,d(A))) = ®e,f,g,h (CIM +c.v, blu’ + dV)

=(aepu+cev+bgut+dgv,a.fu+c.fv+bhyu+dhv)
(from (3.3.16) and (3.3.18))
=(a.ept+agv+c.fu+chv,bepu+bgv+dfu+dhuv)
= Qup.calep+gv, fu+hv)
= V(®abcd Re, f,a.n (A)).

Therefore, (3.3.17) is valid. [
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Theorem 3.3.7 Let A be a formula, o, 3,7, € [0, 1], so that « + 3,7+ 0 €
[0,1],a,b,c,d,e, f € [0,1] so thata+e —e.f < 1,b+d —b.c <1 and
b+e <1.Then,

(Cl) @a,b,c,d,e,f(®a,[3,7,6(A)) - @aocfeﬁ,bﬂffa,c,d,eﬁfav,fwfbé(A)v
(b) ®u’,ﬁ,'y,6(@a,b,c,d,e,f(A)) = @au—f')f,a/ﬁ—f6,ca+d'y,c;3+d6,eu—b7,eﬂ—b6(A)-
The following two open problems are interesting:
Open Problem 19 Can operator ®, 3,5 be represented by the extended modal
operators?

Open Problem 20 Can operator ®,, 3,5 be used for representation of some types
of modal operators?

3.4 Intuitionistic Fuzzy Level Operators

Following [9], here we introduce the following two intuitionistic fuzzy level operators
for each formula A with evaluation V(A) = (a, b):

V(Pa,p(A)) = Pop(V(A)) = (max(a, @), min(b, 5)),
V(Qap(A) = Qap(V(A)) = (min(a, o), max(b, ()).
We must note, that for every formula A
V(Psp(A) = V(A)V (a, B)

and
V(Qaﬂ(A)) = V(A) A (Oé, 6)

Theorem 3.4.1 For every formula A and for every a, 3,7, 6 € [0, 1], such that
a+B<lLy+d=<1:

(a) V(=P p(—A)) =V(Qs.a(A));

(b) V(P<y,6(Q~/,6(A))) = V(Qmax(w,ﬂ/),min(ﬂ,é)(Pu,ﬂ(A)));
(c) V(Qa,ﬁ(Pﬂ/,()‘(A))) = V(Pmin(a,'y),max(ﬂ,(i)(Qa,ﬂ(A)));
(d) V(Pa,/f(P”/,r)'(A))) = V(Pmax(a,'y),min(ﬂ,()') (A))»

(e) V(Qa,p(Q,5(A)) = V(Qmin(a,7),max(3,5) (A)).
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Proof (b) Let A be a formula. Then,

V(Pa5(0r.5(A)))
= V(P s({min(v, a), max(d, b)))
= (max(«, min(y, a)), min(3, max(d, b)))
= (min(max(c, ), max(a, a)), max(min(3, 9), max (5, a)))
- Qmax(a,w),min(ﬂ.(s)((max(aa Cl), max(ﬁ, b)))
= V(Qmax(a,'y),min(/iﬁ)(Pa,ﬁ(A)))'

This completes the proof. (]

Theorem 3.4.2 For every two formulas A and B, and for every «, 3 € [0, 1], such
thatao + 0 < 1:

((1) V(P(yS(A A B)) = V(PuB(A)) A V(P(lﬂ(B))9

(b) V(Pag(AV B)) =V(P,3(A)V V(P ps(B)),

(c) V(Qap(ANAB)) =V(Qap(A) AV(Qas(B)),

(d) V(Qap(AV B)) =V(Qas(A)V V(Qas(B)).

Proof (a) Let A and B be two formulas. Then,

V (P, 3(A A B))
= P, s({min(a, c¢), max(b, d)))
= (max(«, min(a, ¢)), min(3, max(b, d)))
= (min(max(c, a), max(«, ¢)), max(min(3, b), min(3, d)))
= V(Pu,ﬁ(A) A Pa@(B))

This completes the proof. O

Theorem 3.4.3 Let A be aformulaand x be avariable. Then, for every o, 8 € [0, 1],
such that oo+ < 1:

(a) V(3xP, 3(A)) = V(Po(3xA)),
(b) V(VxQap(A)) = V(Qa,p(VxA)).

Proof (a) Let A be a formula. Then,

V(@3x P, 3(A))
= Jx(max(a, p(A)), min(3, v(A)))
= (mflx(max(oz, 1(A))), mxin(min(ﬂ, v(A))))

= (max(a, max(p(A))), min(3, min(v(A))))
= V (P, 3(3xA)).

This completes the proof. Assertion (b) is proved by analogy. (]
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3.5 Pseudo-fixed Points of the Intuitionistic Fuzzy
Operators and Quantifiers

Let S be a set of propositions (or more general, formulas) and let V : S — [0, 1] x
[0, 1], be defined for every A € S as in Sect. 1.1.
Let for operator Y and for IFP (a, b):

Y({a, b)) = (a, D).

Then, we call that the IFP is a fixed point for operator Y. But, when operator Y is
defined over elements of S, i.e., when for formula A

V(Y (A)) = (u(Y (A)), v(Y (A))),

then we will call that A is a pseudo-fixed point for operator Y. In this case, the
equality
(u(Y (A)), v(Y (A))) = (u(A), v(A)) (3.5.1)

holds (see [20]).
Obviously, if (3.5.1) is valid for IFP V(A) = (a, b), then, (a, b) is a fixed point
for operator Y.

Below, we determine all pseudo-fixed points of all quantifiers and operators,
defined in Chaps. 2 and 3.

Theorem 3.5.1 For all o, (8 € [0, 1] the pseudo-fixed point(s) of:

(a) 3 are all elements A € S for which V(A) = (1, 0),
(b) Y are all elements A € S for which V(A) = (0, 1),
(c) 3, are all elements A € S for which

p(A) = sup fu(x)
xeS

and in the more general case, all elements A € S for which V(A) = (1, 0),
(d) 3, are all elements A € S for which

v(A) = ;Ielg v(x)

and in the more general case, all elements A € S for which V(A) € [0, 1] x {0},
(e) Y, are all elements A € S for which

u(A) = iQ‘fs p(x)

and in the more general case, all elements A € S for which V(A) € {0} x [0, 1],


http://dx.doi.org/10.1007/978-3-319-48953-7_1
http://dx.doi.org/10.1007/978-3-319-48953-7_2
http://dx.doi.org/10.1007/978-3-319-48953-7_3
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V, are all elements A € S for which

v(A) = supv(x)
xes

and in the more general case, all elements A € S for which V(A) = (0, 1),
0O, <, QO are all elements A € S for which u(A) +v(A) =1,

D, are all elements A € S for which u(A) + v(A) = 1,

F, s are all elements A € S for which ((A) +v(A) = land a+ (3 <1,
G, pare all elements A € S for which f(A) = v(A) =0,

H, 3, H' , are all elements A € S for which u(A) = 0and v(A) = 1,

o.f

Jo.3s J;a are all elements A € S for which u(A) = 1 and v(A) =0,

H, ., are all elements A € S for which (A) = 0 and v(A) = 1,

X, [X], are all elements A € S for which u(A) = 1 and v(A) =0,

a’g are all elements A € S for which u(A) =0,v(A) =land o+ (= 1,

a,[)’ are all elements A € S for which u(A) = 1,v(A) =0and a + § = 1,
P, s are all elements A € S for which o < u(A) = 1 and 0 < v(A) < 03,
Q..p are all elements A € S for which 0 < p(A) = aand f < v(A) < 1.

References

AN AW

. Atanassov K. Intuitionistic fuzzy sets, VII ITKR’s Session; 1983 (Deposed in Central Sci. -

Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.), Reprinted: Int J Bioautomation.
2016;2(S1):S1-S6.

. Blackburn P, van Bentham J, Wolter F. Modal logic. Amsterdam: North Holland; 2006.

. Feys R. Modal logics. Paris: Gauthier-Villars; 1965.

. Fitting M, Mendelsohn R. First order modal logic. Dordrecht: Kluwer; 1998.

. Mints G. A short introduction to modal logic. Chicago: University of Chicago Press; 1992.

. Atanassov K. Elements of intuitionistic fuzzy logics. Part II: Intuitionistic fuzzy modal logics.

Adv Stud Contemp Math. 2002;5(1):1-13.

. Atanassov K. Intuitionistic fuzzy sets. Heidelberg: Springer; 1999.
. Atanassov K. A new topological operator over intuitionistic fuzzy sets. Notes on Intuitionistic

Fuzzy Sets. 2015;21(3):90-2.

. Atanassov K. On intuitionistic fuzzy sets theory. Berlin: Springer; 2012.
. Atanassov K. A short remark on intuitionistic fuzzy operators X, p.c.d.e, and Xq,p,c.de, f-

Notes on Intuitionistic Fuzzy Sets. 2013;19(1):54-6.

. Atanassov K. A property of the intuitionistic fuzzy modal logic operator X, 4.¢,q.e, f- Notes on

Intuitionistic Fuzzy Sets. 2015;21(1):1-5.

. Atanassov K. Some operators on intuitionistic fuzzy sets. In: Kacprzyk J, Atanassov K, editors.

Proceedings of the First International Conference on Intuitionistic Fuzzy Sets. Sofia, Oct 18-19,
1997; Notes on Intuitionistic Fuzzy Sets. 1997;3(4):28-33. http://ifigenia.org/wiki/issue:nifs/
3/4/28-33.

. Atanassov K. On one type of intuitionistic fuzzy modal operators. Notes on Intuitionistic Fuzzy

Sets. 2005;11(5):24-28. http://ifigenia.org/wiki/issue:nifs/11/5/24-28.
Atanassov K. The most general form of one type of intuitionistic fuzzy modal operators. Notes
on Intuitionistic Fuzzy Sets. 2006;12(2):36-38. http://ifigenia.org/wiki/issue:nifs/12/2/36-38.


http://ifigenia.org/wiki/issue:nifs/3/4/28-33
http://ifigenia.org/wiki/issue:nifs/3/4/28-33
http://ifigenia.org/wiki/issue:nifs/11/5/24-28
http://ifigenia.org/wiki/issue:nifs/12/2/36-38

124 3 Intuitionistic Fuzzy Modal Logics

15. Atanassov K. Some properties of the operators from one type of intuitionistic fuzzy modal
operators. Adv Stud Contemp Math. 2007;15(1):13-20.

16. Atanassov K. The most general form of one type of intuitionistic fuzzy modal operators. Part
2. Notes on Intuitionistic Fuzzy Sets. 2008;14(1):27-32. http://ifigenia.org/wiki/issue:nifs/ 14/
1/27-32.

17. Dencheva K. Extension of intuitionistic fuzzy modal operators [*| and (x] Proceedings of the
Second Int. IEEE Symposium: Intelligent Systems, Varna, June 22-24, vol. 3; 2004. p. 21-22.

18. Cuvalcioglu G. Some properties of E, g operator. Adv Stud Contemp Math. 2007;14(2):
305-310.

19. Atanassov K, Cuvalcioglu G, Atanassova V. A new modal operator over intuitionistic fuzzy
sets. Notes on Intuitionistic Fuzzy Sets. 2014;20(5):1-8.

20. Atanassov, K. On Pseudo-fixed Points of the Intuitionistic Fuzzy Quantifiers and Operators,
Proceedings of the 8th European Symposium on Computational Intelligence and Mathematics,
Sofia, Bulgaria, 5-8 October 2016:66-76.


http://ifigenia.org/wiki/issue:nifs/14/1/27-32
http://ifigenia.org/wiki/issue:nifs/14/1/27-32

	3 Intuitionistic Fuzzy Modal Logics
	3.1 Intuitionistic Fuzzy Classical Modal Operators
	3.2 Extensions of the Intuitionistic Fuzzy Modal Operators
	3.3 Second Type of Intuitionistic Fuzzy Modal Operators
	3.4 Intuitionistic Fuzzy Level Operators
	3.5 Pseudo-fixed Points of the Intuitionistic Fuzzy Operators �
	References


