
Chapter 3
Intuitionistic Fuzzy Modal Logics

The first step of the development of the idea of intuitionistic fuzziness (see [1]), was
related to introducing an intuitionistic fuzzy interpretation of the classical (standard)
modal operators “necessity” and “possibility” (see, e.g., [2–5]). In the period 1988–
1993, we defined eight new operators, extending the first two ones. In the end of last
and in the beginning of this century, a lot of new operators were introduced. Here,
we discuss the most interesting ones of them and study their basic properties.

3.1 Intuitionistic Fuzzy Classical Modal Operators

For the formula A for which V (A) = 〈a, b〉, where a, b ∈ [0, 1] and a + b ≤ 1,
following [1], we define the two modal operators “necessity” and “possibility”:

V ( A) = 〈a, 1 − a〉,

V (♦ A) = 〈1 − b, b〉,

respectively.
It is suitable to define the evaluation function V so that:

V ( A) = V (A),

V (♦ A) = ♦V (A).

Two different geometrical interpretations of both operators are given in Figs. 3.1,
3.2, 3.3 and 3.4, respectively.
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Fig. 3.1 Second geometrical

interpretation of operator

Fig. 3.2 Third geometrical

interpretation of operator

Fig. 3.3 Second geometrical
interpretation of operator ♦

Fig. 3.4 Third geometrical
interpretation of operator ♦
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It is obvious, that if p is a tautology, then, p and ♦ p are also tautologies.
Moreover,

V ( p) ≤ V (p) ≤ V (♦ p),

where relation “ ≤ ” is defined as in (1.1.9).
Let everywhere below:

V (p) = 〈a, b〉, V (q) = 〈c, d〉, V (r) = 〈e, f 〉,

where a, b, c, d, e, f ∈ [0, 1], a + b ≤ 1, c + d ≤ 1, e + f ≤ 1.
Here, some of themost important assertions, related to the two classical (standard)

modal operators, are formulated and proved for the intuitionistic fuzzy case.
First, following [1], we see that the basic properties of the (standard) modal

operators in their intuitionistic fuzzy interpretations for every formula A are:

V ( A) = V ( A),

V ( ♦ A) = V (♦ A),

V (♦ A) = V ( A),

V (♦ ♦ A) = V (♦ A).

In classical modal logic, expressions

V (¬ A) = V (♦¬A) (3.1.1)

V ( A) = V (¬♦¬A) (3.1.2)

V (¬♦ A) = V ( ¬A) (3.1.3)

V (♦ A) = V (¬ ¬A) (3.1.4)

are (in some sense) equivalent. In the intuitionistic fuzzy case, similarly with De
Morgan’s Laws, the situation is different.

Theorem 3.1.1 For every formula A,

(a) expression (3.1.1) is a tautology and an IFT for negations ¬1,¬2,¬6,¬8,¬13,

¬14, ¬35, . . . ,¬38,¬40,¬42, . . . ,¬46,¬48,¬50,¬53,

(b) expression (3.1.2) is a tautology and an IFT for negations ¬1,¬8,¬53,

(c) expression (3.1.3) is a tautology and an IFT for negations ¬1,¬3, . . . ,¬6,¬11,

¬14, ¬35, . . . ,¬37,¬39,¬41, . . . ,¬45,¬47,¬49,¬50,¬51,

(d) expression (3.1.4) is a tautology and an IFT for negations ¬1,¬3,¬4.

http://dx.doi.org/10.1007/978-3-319-48953-7_1
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This is the first case, when a given expression is a tautology in all cases when it
is an IFT. As we saw in the two previous chapters, only small number of IFTs are
tautologies.

Theorem 3.1.2 For every formula A, each of the expressions

A → A,

A → ♦ A,

A → ♦ A

is

(a) a tautology for implications →2,→3, →5,→8,→11,→14,→15, →20, →23,→24,
→27, →31, →32, →34, →37, →40, →42, →47, →48, →49, →52,→55, →57,
→62, →63, →65, →68, →69, →74, →77, →79, →83, →84, →88, →92, →93,
→97, →176, . . . ,→185,

(b) an IFT for implications →1, . . . ,→9,→11, . . . ,→15,→17,→18,→20, . . . ,

→24, →27, . . . ,→38,→40,→42,→44, . . . ,→53,→55,→57,→59, . . . ,→66,

→68,→69,→71,→72,→74, . . . ,→77,→79, . . . ,→85,→88, . . . , →94,→97,

. . . ,→139,→141,→146, . . . ,→170,→176, . . . ,→185.

Theorem 3.1.3 For every two formulas A and B, each of the equalities

V (♦ (A ∨ B)) = V (♦ A ∨ ♦B) (3.1.5)

V ( (A ∧ B)) = V ( A ∧ B), (3.1.6)

holds for the disjunction and conjunction, defined by (1.1.4) and (1.1.5).

Open Problem 12 Which other disjunctions and conjunctions, existing of which is
discussed in Sect. 1.7, satisfy (3.1.5) and (3.1.6)?

Theorem 3.1.4 For every two formulas A and B, each of the expressions

A ∨ B → (A ∨ B)

♦ (A ∧ B) → ♦ A ∧ ♦B

is

(a) a tautology for implications →2,→3,→5,→8,→11,→14,→15,→20,

→23, →24, →27, →31, →32, →34, →37,→40, →42, →47, . . . ,→49, →52,

→55, →57, →62, →63, →65, →68, →69, →74,→77, →79,→83,→84,→88,

→92,→93,→97,→176, . . . ,→185,

http://dx.doi.org/10.1007/978-3-319-48953-7_1
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(b) an IFT for implications →1, . . . ,→9,→11, . . . ,→15,→17,→18,→20, . . . ,

→24,→27, . . . ,→38,→40,→42,→44, . . . ,→53, →55, →57, →59, . . . ,→66,

→68,→69,→71,→72,→74, . . . ,→77, →79, . . . ,→85, →88, . . . ,→94, →97,

. . . ,→139,→141,→146, . . . ,→170,→176, . . . ,→185.

Theorem 3.1.5 For every two formulas A and B, the expression

(A → B) → ( A → B)

is

(a) a tautology for implications →2,→3,→5,→8, →11, →14, →20, →24,

→25, →27, →29, →47, . . . ,→49, →52, →55, →57, →58, →60, →69, →77,

→79,→81,→92,→93,→97,→99,→177,→179,→181,→182,→184,
(b) an IFT for implications →1, . . . ,→9,→11, . . . ,→14,→17,→18,→20,

→21, →24, →25, →27, . . . ,→29,→46, . . . ,→53,→55,→57, . . . ,→61,→64,

→66, →69, →71, →72,→75, . . . ,→77,→79, . . . ,→81,→91, . . . ,→94,→97,

. . . ,→102,→108, . . . ,→113,→118,→120, . . . ,→128, →134, . . . ,→137, →139,

→141, →147, →149, . . . ,→154, →156, →158, . . . ,→162, →165, . . . , →167,

→169,→177,→179,→181,→182,→184.

Proof (a) Let, for example, the implication be considered in the variant →11. Then,

V ( (A → B) → ( A → B))

= 〈1 − (1 − c)sg(a − c), dsg(a − c)sg(d − b)〉 → (〈a, 1 − a〉 → 〈c, 1 − c〉)
= 〈1 − (1 − c)sg(a − c), (1 − c)sg(a − c)〉

→ 〈1 − (1 − c)sg(a − c), (1 − c)sg(a − c)2〉
= (1 − (1 − (1 − (1 − c)sg(a − c))))sg(a − c)

sg((1 − (1 − c)sg(a − c)) − 1 − (1 − c)sg(a − c)),
(1 − c)sg(a − c)sg(((1 − c)sg(a − c)) − (1 − c)sg(a − c))2〉

= (1 − (1 − c)sg(a − c))sg(a − c)sg(0), (1 − c)sg(a − c)sg(0)〉
= 〈1, 0〉.

This completes the proof. �

Theorem 3.1.6 For every two formulas A and B, the expression

( (A → B) ∧ A) → B

is

(a) a tautology for implications →2,→3,→8,→11,→14,→15,→20,→24,

→25, →27, →29, →47, →48, →52, →55, →57,→58,→60,→77,→79,→81,

→92,→97,→99,→177,→179,
(b) an IFT for implications →1, . . . ,→9,→11, . . . ,→15,→17,→18,→20,

→21,→24,→25,→27, . . . ,→29,→46, . . . ,→53, →55, →57, . . . ,→61, →64,
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→66,→69,→71, . . . , →73, →75, . . . ,→77, →79, . . . , →81, →91, . . . , →94,

→96, . . . , →102, →106, . . . , →113, →118, . . . , →128, →134, . . . , →138,

→151,→158,→161,→166,→167,→169,→177,→179,→181,→182,→184.

Theorem 3.1.7 For every two formulas A and B, the expression

A → ( (A → B) → B)

is

(a) a tautology for implications →3,→5,→11,→14,→20,→25, →27,→29,

→48, →49, →57, →58,→60,→77,→79,→81,→97,→99,→181,→182,→184,
(b) an IFT for implications →1,→3, . . . ,→7,→9,→11, . . . ,→14, →17,→18,

→20,→21,→25,→27, . . . ,→29,→46,→48, . . . ,→51,→53,→57,→58,→60,

→61,→64, →66, →71, →72, →75, . . . ,→77,→79, . . . ,→81,→91, . . . ,→94,

→97, . . . ,→102, →107, . . . ,→113,→118,→120, . . . ,→122,→124, . . . ,→128,

→134, . . . ,→137, →151, →158, →161,→166, →167, →169, →181,→182,→184.

An interesting open problem here is the following.

Open Problem 13Determine for which pair of implications (→i ,→ j ) and for every
two formulas A and B, the following equality is valid:

V (A →i B) = V ( (A → j B)).

We remind that for each evaluation function V and for each formula A such that
V (x) = 〈a, b〉, A is “intuitionistic fuzzy sure” (IF-sure), iff a ≥ 0.5 ≥ b.

Let for the variable x , for which V (x) = 〈a, b〉, it is valid that

V ( x) = 〈a, 1 − a〉,

V (♦ x) = 〈1 − b, b〉

(see Fig. 3.5).

Fig. 3.5 Second geometrical
interpretation of operators

and ♦
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Following and extending [6], we give the following theorem.

Theorem 3.1.8 (Locality of intuitionistic fuzzy sure) For every formula A, if

A( x) and A(♦ x) are IF-sure, then, for every y, for which

V ( x) ≤ V (y) ≤ V (♦ x), (3.1.7)

A(y) is IF-sure.

Proof Let

V (A( x)) = 〈a(x), b(x)〉 = 〈a, b〉,

V (A(♦ x)) = 〈c(x), d(x)〉 = 〈c, d〉,

V (A(y)) = 〈α(y),β(y)〉 = 〈α,β〉.

We shall prove the assertion by induction on the complexity of the formula A. Let
A be a variable, i.e., A(x) = x . Then,

a( x) ≥ 0.5 ≥ b( x) = 1 − a( x)

1 − d(♦ x) = c(♦ x) ≥ 0.5 ≥ d(♦ x)

and from (3.1.7) it follows that

α − β ≥ a − b ≥ 0,

i.e., A(y) is IF-sure.
Let A = P ∧ Q, where for P and Q the assertion is valid. Then,

α − β = min(μ(P(y)),μ(Q(y))) − max(ν(P(y)), ν(Q(y))) ≥ 0.5 − 0.5 = 0.

For A = P ∨ Q, the check is similar.
Let A(x) = ∀z P(x, z), where the assertion is valid for P(x, z). For every y, for

which (3.1.7) is valid, and for every z:

μ(P(y, z)) ≥ 0.5 ≥ ν(P(y, z))

by assumption. Then,

α − β = min μ(P(x, z)) − max(P(ν(x, z))) ≥ 0.5 − 0.5 = 0.

For A(x) = ∃z P(x, z) the assertion is proved analogically.
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Let A(x) = P(x), where the assertion is valid for P(x). Then, we obtain
directly, that

α − β ≥ a − b ≥ 0.5 − 0.5 = 0.

When A(x) = ♦ P(x) the assertion is proved analogically. �

Corollary 3.1.1 (Locality of intuitionistic fuzzy truth) For every formula A, if

A( x) and A(♦ x) are tautologies, then, for every y, for which (3.1.7) is valid,
A(y) is a tautology.

The case of IFTs is more complicated.
It can be established that if A and B are IFTs, then, A ∧ B is not necessarily an

IFT. For example, let p ∨¬p and q ∨¬q for different propositions p and q be IFTs,
then

V (p ∨ ¬p) = 〈max(μ(p),μ(¬p)),min(ν(p), ν(¬p))〉
= 〈max(μ(p), ν(p)),min(ν(p),μ(¬p))〉.

Nevertheless, the form

A = (p ∨ ¬p) ∧ (q ∨ ¬q)

is not always an IFT. Take e.g.:

V (p) = 〈0.4, 0.4〉,

V (q) = 〈0.2, 0.2〉.

Then,
V (p ∨ ¬p) = 〈0.4, 0.4〉,

V (q ∨ ¬q) = 〈0.2, 0.2〉,

but
V (A) = 〈0.2, 0.4〉.

A Conjunctive Normal Form (CNF) A is of the sort D1 ∧ · · · ∧ Dm , where Di =
li,1 ∨ · · · ∨ li,ki is a clause of literals. A literal is either a propositional variable
(e.g., p) or a negated variable (in the same case – ¬p). The literals p and ¬p are
called opposite. Two clauses C and D are called connected if they contain a common
variable occurring in opposite literals (e.g., p in C and ¬p in D).

Lemma 3.1.1 A clause C is an IFT if and only if it is a classical two-valued tautology
iff C contains a pair of opposite literals.

Lemma 3.1.2 A conjunction of two literals C and D, which are IFTs, is an IFT iff
they are connected.
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Proof If C and D are IFTs and are connected, then, C ∧ D is an IFT. Consider an
arbitrary V . Let C = p ∨ A, D = ¬p ∨ B, where V (A) = 〈a, b〉, V (B) = 〈c, d〉
and let V (p) = 〈μ, ν〉. Then,

max(μ, a) ≥ μ ≥ min(μ, d)
max(ν, c) ≥ ν ≥ min(ν, b)
max(μ, a) ≥ min(ν, b)
max(ν, c) ≥ min(μ, d)

and from

V (C ∧ D) = 〈min(max(μ, a),max(ν, c)),max(min(ν, b),min(μ, d))〉

and
min(max(μ, a),max(ν, c)) ≥ max(min(ν, b),min(μ, d))

it follows that C ∧ D is an IFT.
Let C and D be two IFT clauses. Let us define the following evaluation function

W : For variables p which occur in both positive and negative literals inC let W (p) =
〈0.2, 0.2〉. For a variable q that appears in both the positive and the negative forms
in D: W (q) = 〈0.4, 0.4〉. Note that the sets of such variables are disjoint. For
variables which occur positively in C or D, let W be 〈0.2, 0.4〉 and for variables
occurring negatively in C or D − 〈0.4, 0.2〉. It is a simple check which shows that
W (C ∧ D) = 〈0.2, 0.4〉. Thus, the conjunction of C and D is not an IFT. �

ACNF A is called totally connected if every pair of clausesC, D in it is connected.

Lemma 3.1.3 A CNF A is an IFT iff all clauses in it are IFTs and A is totally
connected.

Proof Assume that all clauses of A are IFTs and that A is totally connected. If we
assume that for a some evaluation function W :

W (A) = 〈μ, ν〉

is such that μ < ν, then, it can be easily seen that there is a pair of clauses C and D
of A such that C ∧ D is already not an IFT (due to W ) – but this is impossible by
Lemma 3.1.2. In the opposite direction: if at least two clauses in A are not connected,
then their conjunction will not be an IFT, hence, A will not be an IFT either. �

Theorem 3.1.9 (Locality of IFT) For every connected formula A, if A( x) and
A(♦ x) are IFTs, then, for every y, for which (3.1.7) is valid, A(y) is an IFT.

Proof The proof is similar to the proof of Theorem 3.1.8, but in the case when
formula A is a conjunction of two connected formulas, we use Lemma 3.1.2 �
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Now, we discuss the basic relations between the quantifiers ∀ and ∃ and the two

modal operators and ♦ .
The equalities from [7], Sect. 1.6 can be transformed for both modal operators

and both quantifiers, as follows.

Theorem 3.1.10 Let A be a formula and x be a variable. Then,

(a) V (∀x A) = V ( ∀x A),

(b) V (∃x A) = V ( ∃x A),
(c) V (∀x♦ A) = V (♦∀x A),
(d) V (∃x♦ A) = V (♦∃x A).

Proof Let us check the validity of (a):

V (∀x A)
= 〈min

x
μ(A),max

x
(1 − μ(A))〉

= 〈min
x

μ(A), 1 − min
x

μ(A)〉
= V ( ∀x A).

Equalities (b)–(d) are proved analogically. �

Theorem 3.1.11 Let A be a formula and x be a variable. Then,

(a) V ( ∃x A) = V (♦ ∃x A) = V (¬ ∀x♦ ¬A) = V (¬♦ ∀x♦ ¬A),

(b) V ( ∃x♦ A) = V (♦ ∃x♦ A) = V (¬ ∀x ¬A) = V (¬♦ ∀x ¬A),

(c) V ( ∀x A) = V (♦ ∀x A) = V (¬ ∃x♦ ¬A) = V (¬♦ ∃x♦ ¬A),

(d) V ( ∀x♦ A) = V (♦ ∀x♦ A) = V (¬ ∃x ¬A) = V (¬♦ ∃x ¬A),

(e) V ( ∃x ¬A) = V (♦ ∃x ¬A) = V (¬ ∀x♦ A) = V (¬♦ ∀x♦ A),

(f) V ( ∃x♦ ¬A) = V (♦ ∃x♦ ¬A) = V (¬ ∀x A) = V (¬♦ ∀x A),

(g) V ( ∀x ¬A) = V (♦ ∀x ¬A) = V (¬ ∃x♦ A) = V (¬♦ ∃x♦ A),

(h) V ( ∀x♦ ¬A) = V (♦ ∀x♦ ¬A) = V (¬ ∃x A) = V (¬♦ ∃x A).

Proof Let us check the validity of (a)

V ( ∃x A)

= ∃x V (A)

= ∃x〈μ(A), 1 − μ(A)〉
= 〈max

x
μ(A),min

x
(1 − μ(A))〉

= 〈max
x

μ(A), 1 − max
x

μ(A)〉;

http://dx.doi.org/10.1007/978-3-319-48953-7_1
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V (♦∃x A)
= ♦〈max

x
(μ(A)),min

x
(1 − μ(A))〉

= 〈1 − min
x
(1 − μ(A)),min

x
(1 − μ(A))〉

= 〈max
x

(μ(A)), 1 − max
x

(μ(A))〉;

V (¬ ∀x♦¬A) = ¬ ∀x♦〈ν(A),μ(A)〉 = ¬ ∀x〈1 − μ(A),μ(A)〉
= ¬ 〈min

x
(1 − μ(A)),max

x
(μ(A))〉

= ¬〈min
x
(1 − μ(A)), 1 − min

x
(1 − μ(A)〉

= 〈1 − min
x
(1 − μ(A)),min

x
(1 − μ(A))〉

= 〈max
x

μ(A), 1 − max
x

μ(A)〉
= V (¬♦∀x♦¬A)
= ¬♦〈min

x
(1 − μ(A)),max

x
μ(A)〉

= ¬〈1 − max
x

μ(A),max
x

mu(A)〉
= 〈max

x
μ(A), 1 − max

x
μ(A)〉.

Equalities (b)–(h) are proved analogically. �

Let for a fixed formula A and for a variable x :

S(A) = { ∃x A,♦ ∃x A,¬( ∀x♦ ¬A),¬(♦ ∀x♦ ¬A)},

T (A) = { ∃x♦ A,♦∃x♦ A,¬( ∀x ¬A),¬(♦ ∀x ¬A)},

U (A) = { ∀x A,♦ ∀x A,¬( ∃x♦ ¬A),¬(♦ ∃x♦ ¬A)},

V (A) = { ∀x♦ A,♦∀x♦ A,¬( ∃x ¬A),¬(♦ ∃x ¬A)},

W (A) = { ∃x ¬A,♦ ∃x ¬A,¬( ∀x♦ A),¬(♦ ∀x♦ A)},

X (A) = { ∃x♦ ¬A,♦ ∃x♦ ¬A,¬( ∀x A),¬(♦ ∀x A)},

Y (A) = { ∀x ¬A,♦ ∀x ¬A,¬( ∃x♦ A),¬(♦ ∃x♦ A)},

Z(A) = { ∀x♦ ¬A,♦ ∀x♦ ¬A,¬( ∃x A),¬(♦ ∃x A)}.

Having in mind Theorem 3.1.11, we can prove the following theorem.
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Theorem 3.1.12 Let A be a formula and x be a variable. Then,

(a) if P ∈ S(A) and Q ∈ T (A), then, V (P) ≤ V (∃x A) ≤ V (Q),
(b) if P ∈ U (A) and Q ∈ V (A), then, V (P) ≤ V (∀x A) ≤ V (Q),
(c) if P ∈ W (A) and Q ∈ X (A), then, V (P) ≤ V (∀x A) ≤ V (Q),
(d) if P ∈ Y (A) and Q ∈ Z(A), then, V (P) ≤ V (∃x A) ≤ V (Q),

where V (X) ≤ V (Y ) for the formulas X and Y if and only if μ(X) ≤ μ(Y ) and
ν(X) ≥ ν(Y ).

Finally, following [8], we discuss another modal operator, without an analogue in
modal logic.

For the formula A, for which V (A) = 〈a, b〉, where a, b ∈ [0, 1] and
a + b ≤ 1, we define the new modal operator “©” by:

V (©A) =
〈

a

a + b
,

b

a + b

〉
.

Obviously, the pair 〈 a
a+b ,

b
a+b 〉 is an intuitionistic fuzzy pair and more particularly

– a fuzzy pair, because
a

a + b
+ b

a + b
= 1.

The new operator has the following more interesting properties.

Theorem 3.1.13 For every formula A:

(a) © A = A,
(b) ©♦ A = ♦ A,

(c) © A = ©A,
(d) ♦ © A = ©A,
(e) © © A = ©A.

Proof (e) For formula A we obtain:

V (© © A) = ©
〈

a

a + b
,

b

a + b

〉
=

〈
a

a+b
a

a+b + b
a+b

,

b
a+b

a
a+b + b

a+b

〉
= V (©A).

This completes the proof. The rest assertions in (a)–(d) are proved analogically. �

Theorem 3.1.14 For every formula A:

(a) Only negation ¬1 satisfies equality

¬ © ¬A = ©A,

(b) Only negations ¬1,¬2,¬11,¬18,¬53 satisfy equality

¬ © A = ©¬A.
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Theorem 3.1.15 For every two formulas A and B and for the disjunction and con-
junction defined by (1.1.4) and (1.1.5):

V (©(A ∧ B)) ≤ V (©A ∧ ©B),

V (©(A ∨ B)) ≥ V (©A ∨ ©B).

Proof Let A and B be two formulas, so that V (A) = 〈a, b〉, V (B) = 〈c, d〉, a, b, c,
d ∈ [0, 1] and a + b ≤ 1, c + d ≤ 1. Then,

V (©(A ∧ B)) = ©(〈a, b〉 ∧ 〈c, d〉) = ©〈min(a, c),max(b, d)〉

=
〈

min(a, c)

min(a, c) + max(b, d)
,

max(b, d)

min(a, c) + max(b, d)

〉
.

and
V (©A ∧ ©B) = ©〈a, b〉 ∧ ©〈c, d〉

=
〈

a

a + b
,

b

a + b

〉
∧

〈
c

c + d
,

d

c + d

〉

=
〈
min

(
a

a + b
,

c

c + d

)
,max

(
b

a + b
,

d

c + d

)〉
.

First, we prove the validity of the following inequality. For every three real num-
bers a, b, c ∈ [0, 1], if a ≥ c, then:

a

a + b
≥ c

c + b
. (3.1.8)

Obviously, the inequality is valid in the form of an equality, when a = c. Let
a > c. Then, sequentially, we obtain:

a

a + b
− c

c + b
= ab − bc

(a + b)(c + b)
= b(a − c)

(a + b)(c + b)
> 0,

i.e., (3.1.6) is valid.
Now, we check the validity of inequality

min

(
a

a + b
,

c

c + d

)
≥ min(a, c)

min(a, c) + max(b, d)
. (3.1.9)

Let

X ≡ min

(
a

a + b
,

c

c + d

)
− min(a, c)

min(a, c) + max(b, d)
.

http://dx.doi.org/10.1007/978-3-319-48953-7_1
http://dx.doi.org/10.1007/978-3-319-48953-7_1
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If a ≥ c, then, we obtain:

X = min

(
a

a + b
,

c

c + d

)
− c

c + max(b, d)
.

If a
a+b ≥ c

c+d , then,

X = c

c + d
− c

c + max(b, d)
≥ 0.

If a
a+b ≤ c

c+d , then, from (3.1.6),

X = a

a + b
− c

c + max(b, d)
≥ c

b + c
− c

c + max(b, d)
≥ 0.

Let a < c. Then,

X = min

(
a

a + b
,

c

c + d

)
− a

a + max(b, d)
.

If a
a+b ≥ c

c+d , then, from (1), we obtain

X = c

c + d
− a

a + max(b, d)
≥ c

c + d
− a

a + d
≥ 0.

If a
a+b ≤ c

c+d , then,

X = a

a + b
− a

a + max(b, d)
.

In the same way, we can prove that

max(b, d)

min(a, c) + max(b, d)
≥

(
b

a + b
,

d

c + d

)
,

i.e., the first inequality is checked.
The second inequality in the theorem, as well as the Theorem 3.1.16 are proved

by analogy. �

Theorem 3.1.16 For every predicate P:

V (©∃x P(x)) ≥ V (∃x © P(x)),

V (©∀x P(x)) ≤ V (∀x © P(x)).



3.2 Extensions of the Intuitionistic Fuzzy Modal Operators 93

3.2 Extensions of the Intuitionistic Fuzzy Modal Operators

In this section, we introduce the first group of extended intuitionistic fuzzy modal
operators.

First, by analogy with the IFS-operators from [7, 9], in the period 1988–1993, we
define eight new modal operators.

Let A be a fixed formula for which V (A) = 〈a, b〉 and α,β, γ, δ, ε, η ∈ [0, 1].
We define operators Dα, Fα,β , Gα,β, Hα,β , H∗

α,β, Jα,β, J ∗
α,β and Xα,β,γ,δ,ε,η by:

V (Dα(A)) = 〈a + α.(1 − a − b), b + (1 − α).(1 − a − b)〉,
V (Fα,β(A)) = 〈a + α.(1 − a − b), b + β.(1 − a − b)〉, for α + β ≤ 1,
V (Gα,β(A)) = 〈α.a,β.b〉,
V (Hα,β(A)) = 〈α.a, b + β.(1 − a − b)〉,
V (H∗

α,β(A)) = 〈α.a, b + β.(1 − α.a − b)〉,
V (Jα,β(A)) = 〈a + α.(1 − a − b),β.b〉,
V (J ∗

α,β(A)) = 〈a + α.(1 − a − β.b),β.b〉,
V (Xα,β,γ,δ,ε,η(A)) = 〈α.a + β.(1 − a − γ.b), δ.b + ε.(1 − η.a − b)〉,

for
α + ε − ε.η ≤ 1 (3.2.1)

β + δ − βγ ≤ 1, (3.2.2)

β + ε ≤ 1. (3.2.3)

In [10], it was mentioned that the third condition (3.2.3) was omitted in [7, 9].
It was introduced to the definition in [10], because without it, e.g., for constant
U ∗ = 〈0, 0〉 we obtain

X0,1,0,0,1,0(U
∗) = 〈1, 1〉,

which is impossible.
Obviously,

A = D0(A),

♦ A = D1(A),

Dα(A) = Fα,1−α(A),

A = X1,0,r,1,1,1(A),

♦ A = X1,1,1,1,0,r (A),
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Dα(A) = X1,α,1,1,1−α,1(A),

Fα,β(A) = X1,α,1,1,β,1(A), for α + β ≤ 1,

Gα,β(A) = Xα,0,r,β,0,r (A),

Hα,β(A) = Xα,0,r,1,β,1(A),

H∗
α,β(A) = Xα,0,r,β,0,α(A),

Jα,β(A) = X1,α,1,β,0,r (A),

J ∗
α,β(A) = X1,α,β,β,0,r (A),

where r is an arbitrary real number in [0, 1].
Let us define for every formula A:

V (Dα(A)) = Dα(V (A)),

V (Fα,β(A)) = Fα,β(V (A)),

V (Gα,β(A)) = Gα,β(V (A)),

V (Hα,β(A)) = Hα,β(V (A)),

V (H∗
α,β(A)) = H∗

α,β(V (A)),

V (Jα,β(A)) = Jα,β(V (A)),

V (J ∗
α,β(A)) = J ∗

α,β(V (A)),

V (Xα,β,γ,δ,ε,η(A)) = Xα,β,γ,δ,ε,η(V (A)).

To every formula A, the evaluation function V assigns for Dα(A) a point from the

segment between V ( A) and V (♦ A) depending on the value of the argument α ∈
[0, 1] (see Fig. 3.6). As in the case of some of the above operations, this construction
needs auxiliary elements which are shown in Fig. 3.6.

To every formula A, the evaluation function V assigns for Fα,β(A) a point from

the triangle with vertices V (A), V ( A) and V (♦ A), depending on the value of the
arguments α,β ∈ [0, 1] for which α + β ≤ 1 (see Fig. 3.7).

To every formula A, the evaluation function V assigns for Gα,β(A) a point
in the rectangle whose vertices are the point V (A) and points with coordinates,
〈pr1V (A), 0〉, 〈0, pr2V (A)〉 and 〈0, 0〉, where pri p is the i-th projection (i = 1, 2)
(see Fig. 3.8).
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Fig. 3.6 Second geometrical
interpretation of operator Dα

Fig. 3.7 Second geometrical
interpretation of operator Fα,β

To every formula A, the evaluation function V assigns for Kα,β(A) a point
V (Hα,β(A)) from the rectangle whose vertices are the points with coordinates

〈0, pr2V (A)〉 and 〈0, pr2V ( A)〉 and vertices V ( A) and V (A), depending on
the value of the parameters α,β ∈ [0, 1] (see Fig. 3.9).

To every formula A, the evaluation function V assigns for Jα,β(A) a point
V (Jα,β(A)) from the rectangle whose vertices are the points with coordinates
〈pr1V (♦ A), 0〉, 〈pr1V (A), 0〉 and vertices V (A) and V (♦ A), depending on the
value of the parameters α,β ∈ [0, 1] (see Fig. 3.10).

To every formula A, the evaluation function V assigns for H∗
α,β(A) a point

V (H∗
α,β(A)) from the trapezoid with vertices with coordinates 〈0, pr2V (A)〉 and

〈0, 1〉 and vertices V ( A) and V (A), depending on the value of the parameters
α,β ∈ [0, 1] (see Fig. 3.11).

To every formula A, the evaluation function V assigns for J ∗
α,β(A) a point

V (J ∗
α,β(A)) from the trapezoidwith verticeswith coordinates 〈1, 0〉 and 〈pr1V (A), 0〉

and vertices V (A) and V (♦ A), depending on the value of the parameters α,β ∈
[0, 1] (see Fig. 3.12).
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Fig. 3.8 Second geometrical
interpretation of operator Gα,β

Fig. 3.9 Second geometrical
interpretation of operator Hα,β

Fig. 3.10 Second geometrical
interpretation of operator Jα,β

Below, we formulate and prove assertions, that by the moment have been checked
only for some intuitionistic fuzzy implications and negation, which gives rise to the
following important open problem for solving in future.
Open Problem 14 Check these assertions for all the remaining implications and
negations.
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Fig. 3.11 Second
geometrical interpretation of
operator H∗

α,β

Fig. 3.12 Second
geometrical interpretation of
operator J ∗

α,β

Theorem 3.2.1 If formula A is a tautology, then:

(a) for every two α,β ∈ [0, 1] : Dα(A), Fα,β(A), for α + β ≤ 1, Jα,β(A) and
J ∗
α,β(A) are tautologies,

(b) Gα,β(A), Hα,β(A), H∗
α,β(A), are IFTs,

(c) for every α, ε, η so that α ≥ ε(1 − η), Xα,β,γ,δ,ε,η(A) is an IFT.

Proof (b) From V (A) = 〈1, 0〉 it follows that

V (Gα,β(A)) = 〈α, 0〉,

V (Hα,β(A)) = V (H∗
α,β(A)) = 〈α,β(1 − 1 − 0)〉 = 〈α, 0〉,

i.e., Gα,β(A), Hα,β(A) and H∗
α,β(A) are IFTs. The other cases are proved by anal-

ogy. �

Theorem 3.2.2 If formula A is an IFT, then:

(a) for α ≥ 0.5 Dα(A) is an IFT,
(b) for α ≥ β and α + β ≤ 1 Fα,β(A) is an IFT,
(c) for α ≥ β Gα,β(A) is an IFT,
(d) Jα,β(A), J ∗

α,β(A) are IFTs,
(e) for α ≥ δ,β ≥ ε, η ≥ γ Xα,β,γ,δ,ε,η(A) is an IFT.
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It can be easily seen that for every a, b,α,β, γ, δ, ε, η ∈ [0, 1] and a + b ≤ 1, if

O ∈ {Dα, Fα,β,Gα,β, Hα,β, H∗
α,β, Jα,β, J ∗

α,β, Xα,β,γ,δ,ε,η},

then
O(〈a, b〉) →4 〈a, b〉 and O(〈a, b〉) →11 〈a, b〉

are IFTs. For example,

V (Fα,β(〈a, b〉) →11 〈a, b〉)
= 〈a + α.(1 − a − b), b + β(1 − a − b)〉 →11 〈a, b〉
= 〈1 − (1 − a).sg(α(1 − a − b)), b.sg(α(1 − a − b)).sg(b + β.(1 − a − b) − b)〉,
= 〈1 − (1 − a).sg(α(1 − a − b)), b.sg(α(1 − a − b)).sg(β.(1 − a − b))〉

=
⎧⎨
⎩

〈1, 0〉, if α = 0 or a + b = 1

〈a, b〉, if α > 0 and a + b < 1
,

i.e., Fα,β(〈a, b〉) →11 〈a, b〉 is an IFT.
On the other hand, we can see that there are cases in which for the different

implications, different conditions must hold for the validity of some expression. The
following two assertions serve as examples.

Theorem 3.2.3 For every a, b,α,β, γ, δ, ε, η,α′,β′, γ′, δ′, ε′, η′ ∈ [0, 1] and a +
b ≤ 1, if O ∈ {D, F,G, H, H∗, J, J ∗}, then:

(a) Oα,β(〈a, b〉) →11 Oα′,β′(〈a, b〉) is a tautology for α ≤ α′,
(b) Xα,β,γ,δ,ε,η(〈a, b〉) →11 Xα′,β′,γ′,δ′,ε′,η′(〈a, b〉) is a tautology for α ≤ α′,β ≤ β′

and βγ ≥ β′γ′.

Proof (b) Let α ≤ α′,β ≤ β′ and β.γ ≥ β′.γ′. Then,

V (Xα,β,γ,δ,ε,η(〈a, b〉) →11 Xα′,β′,γ′,δ′,ε′,η′(〈a, b〉))
= 〈αa + β(1 − a − γb), δb + ε(1 − ηa − b)〉

→11 〈α′a + β′(1 − a − γ′b), δ′b + ε′(1 − η′a − b)〉
= 〈1 − (1 − (α′a + β′(1 − a − γ′b)))sg(αa + β(1 − a − γb)

−(α′a + β′(1 − a − γ′b))), (δ′b + ε′(1 − η′a − b))
.sg(αa + β(1 − a − γb) − (α′a + β′(1 − a − γ′b)))
.sg(δ′b + ε′(1 − η′a − b) − (δb + ε(1 − ηa − b)))〉

= 〈1, 0〉,

because

αa + β(1 − a − γb) − (α′a + β′(1 − a − γ′b)
= a(α − α′) + (1 − a)(β − β′) − b(βγ − β′γ′) ≤ 0
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and therefore, sg(αa + β(1 − a − γb) − (α′a + β′(1 − a − γ′b)) = 0. The other
cases are proved similarly. �

Theorem 3.2.4 For every a, b,α,β, γ, δ, ε, η,α′,β′, γ′, δ′, ε′, η′ ∈ [0, 1] and
a + b ≤ 1, if O ∈ {D, F,G, H, H∗, J, J ∗}, then

(a) Oα,β(〈a, b〉) →4 Oα′,β′(〈a, b〉) is an IFT for α ≤ α′ or β ≥ β′,

(b) Xα,β,γ,δ,ε,η(〈a, b〉) →4 Xα′,β′,γ′,δ′,ε′,η′(〈a, b〉) is an IFT for α ≤ α′,β ≤ β′ and
γ ≥ γ′ or for δ ≥ δ′, ε ≥ ε′ and η ≤ η′.

Open Problem 15 Which other implications satisfy Theorems 3.2.3 and 3.2.4?

There are properties that, probably, are specific for¬1. For example, the following
assertion is valid for¬1, but for 0 < ε ≤ η ≤ 1 it is not valid for¬45,ε,η (by definition,
¬1 coincides with ¬45,0,0).

Theorem 3.2.5 For every a, b,α,β ∈ [0, 1] and a + b ≤ 1:

(a) V (Fα,β(〈a, b〉)) = V (¬1Fβ,α(¬1〈a, b〉)), for α + β ≤ 1,
(b) V (Gα,β(〈a, b〉)) = V (¬1Gβ,α(¬1〈a, b〉)),
(c) V (Hα,β(〈a, b〉)) = V (¬1 Jβ,α(¬1〈a, b〉)),
(d) V (Jα,β(〈a, b〉)) = V (¬1Hβ,α(¬1〈a, b〉)),
(e) V (H∗

α,β(〈a, b〉)) = V (¬1 J ∗
β,α(¬1〈a, b〉)),

(f) V (J ∗
α,β(〈a, b〉)) = V (¬1H∗

β,α(¬1〈a, b〉)).
Open Problem 16 Which other negations satisfy Theorems 3.2.5?

Let for every two formulas A and B: A ← B iff B → A.

Theorem 3.2.6 For every two formulas A and B, for every two real numbers α,β ∈
[0, 1] and for implication →4:

(a) Fα,β(A ∧ B) →4 Fα,β(A) ∧ Fα,β(B), for α + β ≤ 1,
(b) Fα,β(A ∨ B) ←4 Fα,β(A) ∨ Fα,β(B), for α + β ≤ 1,
(c) Gα,β(A ∧ B) = Gα,β(A) ∧ Gα,β(B),
(d) Gα,β(A ∨ B) = Gα,β(A) ∨ Gα,β(B),
(e) Hα,β(A ∧ B) →4 Hα,β(A) ∧ Hα,β(B),
(f) Hα,β(A ∨ B) ←4 Hα,β(A) ∨ Hα,β(B),
(g) Jα,β(A ∧ B) ←4 Hα,β(A) ∧ Hα,β(B),
(h) Hα,β(A ∨ B) →4 Hα,β(A) ∨ Hα,β(B),
(i) H∗

α,β(A ∧ B) →4 H∗
α,β(A) ∧ H∗

α,β(B),
(j) H∗

α,β(A ∨ B) ←4 H∗
α,β(A) ∨ H∗

α,β(B),
(k) J ∗

α,β(A ∧ B) ←4 H∗
α,β(A) ∧ H∗

α,β(B),
(l) H∗

α,β(A ∨ B) →4 H∗
α,β(A) ∨ H∗

α,β(B)

are IFTs.
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Proof (a) For the formulas A and B:

V (Fα,β(A ∧ B) →4 Fα,β(A) ∧ Fα,β(B))
= 〈min(a, c) + α(1 − min(a, c) − max(b, d)),max(b, d)+

β(1 − min(a, c) − max(b, d))〉 → 〈min(a + α(1 − a − b), c
+ α(1 − c − d)),max(b + β(1 − a − b), d + β(1 − c − d))〉

= 〈max(max(b, d) + β(1 − min(a, c) − max(b, d)),min(a+
α(1 − a − b), c + α(1 − c − d))),min(min(a, c) + α(1 − min(a, c)
−max(b, d)),max(b + β(1 − a − b), d + β(1 − c − d)))〉

and

max(max(b, d) + β(1 − min(a, c) − max(b, d)),min(a+
α(1 − a − b), c + α(1 − c − d))) − min(min(a, c) + α(1−
min(a, c) − max(b, d)),max(b + β(1 − a − b), d + β(1 − c − d)))

≥ max(b, d) + β(1 − min(a, c) − max(b, d))
−max(b + β(1 − a − b), d + β(1 − c − d)) ≥ 0,

i.e.,
Fα,β(A ∧ B) →4 Fα,β(A) ∧ Fα,β(B)

is an IFT.
Formulas (b)–(l) are checked by analogy. �

Open Problem 17Which other conjunctions and disjunctions (whenever be defined,
following the ideas from Sect. 1.7) have similar properties?

Theorem 3.2.7 For every predicate A, and for every α,β ∈ [0, 1], such that
α + β ≤ 1:

(a) V (∃x Fα,β(P(x))) ≤ V (Fα,β∃x P(x)),
(b) V (∀x Fα,β(P(x))) ≥ V (Fα,β∀x P(x)).

Corollary 3.2.1 For every predicate A, and for every α,β ∈ [0, 1], such that
α + β ≤ 1:

(a) V (∃x Dα(P(x))) ≤ V (Dα∃x P(x)),
(b) V (∀x Dα(P(x))) ≥ V (Dα∀x P(x)).

Theorem 3.2.8 For every formula A and for every α, β, γ, δ ∈ [0, 1] such that
α + β ≤ 1 and γ + δ ≤ 1:

V (Fα,β(Fγ,δ(A))) = V (Fα+γ−αγ−αδ,β+δ−βγ−βδ(A)).

Proof Let for α,β, γ, δ ∈ [0, 1]: α + β ≤ 1 and γ + δ ≤ 1. Let V (A) = 〈a, b〉.
Then,

http://dx.doi.org/10.1007/978-3-319-48953-7_1
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V (Fα,β(Fγ,δ(A)))
= Fα,β(〈a + γ(1 − a − b), b + δ(1 − a − b)〉)
= 〈a + γ(1 − a − b) + α(1 − a − γ(1 − a − b) − b − δ(1 − a − b)),

b + δ(1 − a − b) + β(1 − a − γ(1 − a − b) − b − δ(1 − a − b))〉
= 〈a + (α + γ − αγ − αδ)(1 − a − b),

b + (β + δ − βγ − βδ)(1 − a − b)〉
= V (Fα+γ−αγ−αδ,β+δ−βγ−βδ(A)).

This completes the proof. �

Corollary 3.2.2 For every predicate A, and for every α ∈ [0, 1]:
(a) V (Dα(Dβ(A))) = V (Dβ(A)),
(b) V (Dα(Fβ,γ(A))) = V (Dα+β−αβ−αγ(A)), for β + γ ≤ 1,
(c) V (Fα,β(Dγ(A))) = V (Dγ(A)).

Theorem 3.2.9 For every formula A and for every α, β, γ, δ ∈ [0, 1]:

V (Gα,β(Gγ,δ(A))) = V (Gαγ,βδ(A)).

Theorem 3.2.10 For every formula A and for every α, β ∈ [0, 1]:
(a) V ( Fα,β(A)) ≥ V (Fα,β A) for α + β ≤ 1,
(b) V (♦ Fα,β(A)) ≤ V (Fα,β♦ A) for α + β ≤ 1,

(c) V ( Gα,β(A)) ≤ V (Gα,β A),
(d) V (♦ Gα,β(A)) ≥ V (Gα,β♦ A),

(e) V ( Hα,β(A)) ≤ V (Hα,β A),
(f) V (♦ Hα,β(A)) ≥ V (Hα,β♦ A),

(g) V ( Jα,β(A)) ≥ V (Jα,β A),
(h) V (♦ Jα,β(A)) ≤ V (Jα,β♦ A),

(i) V ( H∗
α,β(A)) ≤ V (H∗

α,β A),
(j) V (♦ J ∗

α,β(A)) ≥ V (J ∗
α,β♦ A).

Theorem 3.2.11 For every A and for every α,β, γ, δ ∈ [0, 1]:

Gα,β(Gγ,δ(A)) = Gαγ,βδ(A).

Theorem 3.2.12 For every formula A and for every α, β ∈ [0, 1]:
(a) V (Hα,β(Gγ,δ(A))) ≤ V (Gγ,δ(Hα,β (A))),
(b) V (Jα,β(Gγ,δ(A))) ≤ V (Gγ,δ(Jα,β (A))),
(c) V (H∗

α,β(Gγ,δ(A))) ≤ V (Gγ,δ(H∗
α,β (A))),

(d) V (J ∗
α,β(Gγ,δ(A))) ≤ V (Gγ,δ(J ∗

α,β (A))).

Theorem 3.2.13 Let A be a formula and x be a variable. Then, for every α,β ∈
[0, 1]:
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V (∀xGα,β(A)) = V (Gα,β(∀x A)),

V (∃xGα,β(A)) = V (Gα,β(∃x A)).

We finish with an assertion for the operator X , following [11].

Theorem 3.2.14 For every two IFPs 〈μ, ν〉 and 〈ρ,σ〉, there are real numbers
a, b, c, d, e, f ∈ [0, 1] satisfying (3.2.1)–(3.2.3), such that

V (Xa,b,c,d,e, f (〈μ, ν〉)) = 〈ρ,σ〉.

Proof Let μ, ν, ρ,σ ∈ [0, 1], such that μ + ν ≤ 1, ρ + σ ≤ 1. We search for
a, b, c, d, e, f ∈ [0, 1] that satisfy (3.2.1)–(3.2.3) and for which

〈ρ,σ〉 = V (Xa,b,c,d,e, f (〈μ, ν, 〉)) = 〈aμ + b(1 − μ − cν), dν + e(1 − f μ − ν)〉,

i.e.,
ρ = aμ + b(1 − μ − cν),

σ = dν + e(1 − f μ − ν).

We discuss nine cases.

Case 1. π = μ = 0. Then, ν = 1. We put

a = c = e = f = 0, b = ρ, d = σ.

Then, conditions (3.2.1)–(3.2.3) are valid and

X0,ρ,0,σ,0,0(〈μ, ν, 〉) = 〈0+ρ(1−0−0×1),σ ×1+0(1−0×μ−1)〉 = 〈ρ,σ〉.

Case 2. π = ν = 0. Then, μ = 1. We put

a = ρ, b = c = d = f = 0, e = σ.

Then, conditions (3.2.1)–(3.2.3) are valid and

Xρ,0,0,0,σ,0(〈μ, ν, 〉) = 〈ρ + 0× (1− 0× 1− 0), 0+ σ(1− 0× 1− 1)〉 = 〈ρ,σ〉.

When π = 0 and μ, ν > 0, there are three (sub)cases. It is important to mention
that now μ, ν < 1.

Case 3. ρ > μ. Then, from π = 0 it follows that μ = 1 − ν, and hence
σ ≤ 1 − ρ < 1 − μ = ν. So, we put

a = 1, b = ρ − μ

1 − μ
, c = e = f = 0, d = σ

ν
.
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Then, conditions (3.2.1)–(3.2.3) are valid and

X1, ρ−μ
1−μ ,0,

σ
ν ,0,0

(〈μ, ν, 〉) =
〈
μ + ρ − μ

1 − μ
(1 − μ),

σ

ν
ν

〉
= 〈ρ,σ〉.

Case 4. σ > ν. Then, from π = 0 it follows again that μ = 1 − ν, and hence
ρ ≤ 1 − σ < 1 − ν = μ. So, we put

a = ρ

μ
, b = c = f = 0, d = 1, e = σ − ν

1 − ν
.

Then, conditions (3.2.1)–(3.2.3) are valid and

X ρ
μ ,0,0,1,

σ−ν
1−ν ,0,0

(〈μ, ν, 〉) =
〈
ρ

μ
μ + 0, ν + σ − ν

1 − ν
(1 − ν)

〉
= 〈ρ,σ〉.

Case 5. ρ ≤ μ and σ ≤ ν. Then, we put

a = ρ

μ
, b = c = e = f = 0, d = σ

ν
.

Then, conditions (3.2.1)–(3.2.3) are valid and

X ρ
μ ,0,0,

σ
ν ,0,0

(〈μ, ν, 〉) =
〈
ρ

μ
μ + 0,

σ

ν
ν + 0

〉
= 〈ρ,σ〉.

When π > 0, then, μ, ν < 1.
Case 6. ρ > μ and σ > ν. Then, we put

a = c = d = f = 1, b = ρ − μ

π
, e = σ − ν

π
.

Then, conditions (3.2.1)–(3.2.3) are valid, because:

a + e − e. f = 1 + e − e = 1 ≤ 1,

b + d − b.c = d = σ − ν

π
≤ 1,

b + e = ρ − μ

π
+ σ − ν

π
= ρ + σ − μ − ν

π
≤ 1.

All other checks are done in a similar way. Now,

X1, ρ−μ
π ,1,1, σ−ν

π ,1(〈μ, ν, 〉) =
〈
μ + ρ − μ

π
π, ν + σ − ν

π
π

〉
= 〈ρ,σ〉.
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Case 7. ρ > μ and σ ≤ ν. Then, as in Case 3, we put

a = 1, b = ρ − μ

1 − μ
, c = e = f = 0, d = σ

ν
.

Then, conditions (3.2.1)–(3.2.3) are valid and

X1, ρ−μ
1−μ ,0,

σ
ν ,0,0

(〈μ, ν, 〉) =
〈
μ + ρ − μ

1 − μ
(1 − μ),

σ

ν
ν

〉
= 〈ρ,σ〉.

Case 8. ρ ≤ μ and σ > ν. Then, as in point 4, we put

a = ρ

μ
, b = c = f = 0, d = 1, e = σ − ν

1 − ν
.

Then, conditions (3.2.1)–(3.2.3) are valid and

X ρ
μ ,0,0,1,

σ−ν
1−ν ,0,0

(〈μ, ν, 〉) =
〈
ρ

μ
μ + 0, ν + σ − ν

1 − ν
(1 − ν)

〉
= 〈ρ,σ〉.

Case 9. ρ ≤ μ and σ ≤ ν. Then, as in Case 5, we put

a = ρ

μ
, b = c = e = f = 0, d = σ

ν
.

Then, conditions (3.2.1)–(3.2.3) are valid and

X ρ
μ ,0,0,

σ
ν ,0,0

(〈μ, ν, 〉) =
〈
ρ

μ
μ + 0,

σ

ν
ν + 0

〉
= 〈ρ,σ〉.

Therefore, the theorem is proved. �

A modification of the above theorem is the following theorem.

Theorem 3.2.15 For every two formulas A, B there exists an operator Y ∈ {Fα,β,

Gα,β, Hα,β, H∗
α,β, Jα,β, J ∗

α,β} and there exist real numbers α,β ∈ [0, 1] such that

V (A) = V (Yα,β(B)).

Proof Let everywhere V (A) = 〈a, b〉 and V (B) = 〈c, d〉, where a, b, c, d ∈ [0, 1]
and a + b ≤ 1 and c + d ≤ 1.

The following 9 cases are possible for a, b, c and d.

Case 1. a = c Then, for Y :
and if Y = F, then, α = β = 0;
b = d if Y = G, then, α = β = 1;

if Y = Hor Y = H∗, then, α = 1 and β = 0;
if Y = Jor Y = J ∗ then, α = 0 and β = 1.
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Case 2. a > c Then, Y = F and α = a − c
1 − c − d

and β = 0

and (we shall note that 1 − c − d > 1 − a − b ≥ 0)
b = d or Y = Jor Y = J ∗, and α has the above

form and β = 1.

Case 3. a < c Then, Y = G and α = a
c
and β = 1 (we note

and thatc > a ≥ 0)
b = d or Y = J or Y = J ∗, and α has the above

form and β = 0.

Case 4. a = c T hen,Y = F and α = 0 and β = b − d
1 − c − d

and (we note that 1 − c − d > 1 − a − b ≥ 0)
b > d or Y = H or Y = H∗, and α = 1 and β has

the above form.

Case 5. a > c Then, Y = F and α = a − c
1 − c − d

and

and β = b − d
1 − c − d

(we note that

b > d 1 − c − d > 1 − a − b ≥ 0)
Case 6. a < c Then, there are two subcases:

and
b > d.

6.1. i f b ≤ 1 − c, then, Y = H and α = a
c
and

β = b − d
1 − c − d

or Y = H∗ and α = a
c
and β = b − d

1 − a − d
(we note that 1 − a − d > 1 − c − d ≥ b − d > 0
and c > a ≥ 0)

6.2. i f b > 1 − c, then, Y = H∗ and α = a
c
and

β = b − d
1 − a − d

(we note that 1 − a − d ≥ b − d > 0

and c > a ≥ 0)

Case 7. a = c Then, Y = G and α = 1 and β = b
d
(we note

and that d > b ≥ 0)
b < d.

or Y = J or Y = H∗, and α = 0 and β has the above form.
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Case 8. a > c Then, there are two subcases:
and
b < d.

8.1. i f a ≤ 1 − d, then, Y = J and α = a − c
1 − c − d

and

β = b
d

or Y = J ∗ and α = a − c
1 − b − c

and β = b
d
(we

note that 1 − c − b > 1 − c − d ≥ a − c > 0
and d > b ≥ 0)

8.2. i f a > 1 − d, then, Y = J ∗ and α = a − c
1 − b − c

and β = b
d
(we note that 1 − c − b ≥ a − c > 0

and d > b ≥ 0)

Case 9. a < c Then, Y = G and α = a
c
and β = b

d
(we shall

and note that c > a ≥ 0 and d > b ≥ 0).
b < d.

This completes the proof. �

3.3 Second Type of Intuitionistic Fuzzy Modal Operators

In this section, following [7, 9, 12–17], several different modal-like operators of
second type are defined and the consequences of their generalizations are discussed.
We formulate the properties of these operators which hold for them but do not hold
for their extensions.

The following two operators of modal type are similar to the operators in Sect. 3.1.
Let for formula A: V (A) = 〈μ, ν〉. Then,

V (+ A) =
〈
μ

2
,
ν + 1

2

〉
, (3.3.1)

V (× A) =
〈
μ + 1

2
,
ν

2

〉
. (3.3.2)

All of their properties are valid for their first extensions. For a given real number
α ∈ [0, 1] and formula A,

V (+ α A) = 〈αμ,αν + 1 − α〉, (3.3.3)

V (× α A) = 〈αμ + 1 − α,αν〉. (3.3.4)
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Fig. 3.13 Second
geometrical interpretation of

operator +
α

Fig. 3.14 Second
geometrical interpretation of

operator ×
α

Obviously,

0 ≤ αμ + αν + 1 − α = 1 − α(1 − μ − αν) ≤ 1.

For every formula A,

V (+ 0.5A) = V (+ A),

V (× 0.5A) = V (× A).

Therefore, the new operators “+ α” and “× α” are generalizations of + and
× , respectively. Their geometrical interpretations are given in Figs. 3.13 and 3.14,
respectively.

For every formula A, for every α ∈ [0, 1]:
(a) V (+ α A) ≤ V (A) ≤ V (× α A),

(b) V (¬1 + α¬1A) = V (× α A),

(c) V (+ α + α A) ≤ V (+ α A),

(d) V (× α × α A) ≤ V (× α A).
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For every formula A, and for every two real numbers α,β ∈ [0, 1],
(a) V (+ α + β A) = V (+ β + α A),

(b) V (× α × β A) = V (× β × α A),

(c) V (× α + β A) ≥ V (+ β × α A).

For every formula A, and for every three real numbers α,β, γ ∈ [0, 1],
(a) V (+ α Dβ(A)) = V (Dβ(+ α A)),

(b) V (+ α Fβ,γ(A)) = V (Fβ,γ(+ α A)), where β + γ ≤ 1,

(c) V (+ αGβ,γ(A)) ≤ V (Gβ,γ(+ α A)),

(d) V (+ α Hβ,γ(A)) = V (Hβ,γ(+ α A)),

(e) V (+ α H∗
β,γ(A)) = V (H∗

β,γ(
+ α A)),

(f) V (+ α Jβ,γ(A)) = V (Jβ,γ(+ α A)),

(g) V (+ α J ∗
β,γ(A)) = V (J ∗

β,γ(
+ α A)),

(h) V (× α Dβ(A)) = V (Dβ(× α A)),

(i) V (× α Fβ,γ(A)) = V (Fβ,γ(× α A)), where β + γ ≤ 1,

(j) V (× αGβ,γ(A)) ≤ V (Gβ,γ(× α A)),

(k) V (× α Hβ,γ(A)) = V (Hβ,γ(× α A)),

(l) V (× α H∗
β,γ(A)) = V (H∗

β,γ(
× α A)),

(m) V (× α Jβ,γ(A)) = V (Jβ,γ(× α A)),

(n) V (× α J ∗
β,γ(A)) = V (J ∗

β,γ(
× α A)).

The second extension was introduced in [17] by K. Dencheva. She extended the
last two operators to the forms:

V (+ α,β A) = 〈αμ,αν + β〉, (3.3.5)

V (× α,β A) = 〈αμ + β,αν〉, (3.3.6)

where α,β,α + β ∈ [0, 1].
Obviously, for every formula A,

V (+ A) = V (+ A0.5,0.5),

V (× A) = V (× A0.5,0.5),

V (+ Aα) = V (+ Aα,1−α),

V (× Aα) = V (× Aα,1−α).
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For every formula A, and for every α,β,α + β ∈ [0, 1],
(a) V (¬ + α,β¬A) = V (× α,β A),

(b) V (¬ × α,β¬A) = V (+ α,β A).

For every formula A, and for every α,β ∈ [0, 1], each of the inequalities

(a) V (+ α,β + α,β A) ≤ V (+ α,β A),

(b) V (× α,β × α,β A) ≥ V (× α,β A),

is valid if and only if α + β = 1.
For every formula A, and for every α ∈ [0, 1],

V (+ α,β × α,β A) = V (× α,β + α,β A) iff β = 0.

For every formula A, and for every α,β, γ, δ ∈ [0, 1] such that α + β, γ + δ ∈
[0, 1],

V (+ α,β × γ,δ A) ≤ V (× γ,δ + α,β A).

Now, the third extension of the above operators is as follows:

V (+ α,β,γ A) = 〈αμ,βν + γ〉, (3.3.7)

V (× α,β,γ A) = 〈αμ + γ,βν〉, (3.3.8)

where α,β, γ ∈ [0, 1] and max(α,β) + γ ≤ 1.
Obviously, for every formula A,

V (+ A) = V (+ A0.5,0.5,0.5),

V (× A) = V (× A0.5,0.5,0.5),

V (+ Aα) = V (+ Aα,α,1−α),

V (× Aα) = V (× Aα,1−α),

V (+ Aα,β) = V (+ Aα,α,β),

V (× Aα,β) = V (× Aα,α,β).

For every formula A, and for every α,β, γ ∈ [0, 1] for which max(α,β)+γ ≤ 1,

(a) V (¬ + α,β,γ¬A)) = V (× β,α,γ A),

(b) V (¬ × α,β,γ¬A)) = V (+ β,α,γ A).
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For every formula A, and for every α,β, γ ∈ [0, 1] for which max(α,β)+γ ≤ 1,

(a) V (+ α,β,γ + α,β,γ A) ≤ V (+ α,β,γ A) is valid iff β + γ = 1,

(b) V (× α,β,γ × α,β,γ A) ≥ V (× α,β,γ A) is valid iff α + γ = 1.

For every formula A, and for every α,β,α + β ∈ [0, 1],

V (+ α,β,γ × α,β,γ A) = V (× α,β,γ + α,β,γ A) iff γ = 0.

For every formula A, and for every α,β, γ ∈ [0, 1] for which max(α,β)+γ ≤ 1,
the four properties

(a) V (+ α,β,γ A) = V ( + α,β,γ A),

(b) V (× α,β,γ A) = V ( × α,β,γ A),

(c) V (+ α,β,γ♦ A) = V (♦ + α,β,γ A),

(d) V (× α,β,γ♦ A) = V (♦ × α,β,γ A),

are valid iff α = β and α + γ = 1.
For every two formulas A and B, and for every α,β, γ ∈ [0, 1] for which

max(α,β) + γ ≤ 1,

(a) V (+ α,β,γ(A ∧ B)) = V (+ α,β,γ A ∧ + α,β,γ B),

(b) V (× α,β,γ(A ∧ B)) = V (× α,β,γ A ∧ × α,β,γ B),

(c) V (+ α,β,γ(A ∨ B)) = V (+ α,β,γ A ∨ + α,β,γ B),

(d) V (× α,β,γ(A ∨ B)) = V (× α,β,γ A ∨ × α,β,γ B),

For every predicate A, and for everyα,β, γ ∈ [0, 1] forwhichmax(α,β)+γ ≤ 1,

(a) V (+ α,β,γ∃x A) = V (∃x + α,β,γ A),

(b) V (× α,β,γ∃x A) = V (∃x × α,β,γ A),

(c) V (+ α,β,γ∀x A) = V (∀x + α,β,γ A),

(d) V (× α,β,γ∀x A) = V (∀x × α,β,γ A).

A natural extension of the last two operators is the operator

V ( •
α,β,γ,δ A) = 〈αμ + γ,βν + δ〉, (3.3.9)

where α,β, γ, δ ∈ [0, 1] and max(α,β) + γ + δ ≤ 1.
It is the fourth type of operator from the currently discussed group.
Obviously, for every formula A,

V (+ A) = V ( • A0.5,0.5,0,0.5),

V (× A) = V ( • A0.5,0.5,0.5,0),
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V (+ Aα) = V ( • Aα,α,0,1−α),

V (× Aα) = V ( • Aα,α,1−α,0),

V (+ Aα,β) = V ( • Aα,α,0,β),

V (× Aα,β) = V ( • Aα,α,β,0),

V (+ Aα,β,γ) = V ( • Aα,β,0,γ),

V (× Aα,β,γ) = V ( • Aα,β,γ,0).

For every formula A, and for every α,β, γ, δ ∈ [0, 1] for which max(α,β)+γ +
δ ≤ 1:

(a) V (¬ •
α,β,γ,δ¬A) = V ( •

β,α,δ,γ A),

(b) V ( •
α,β,γ,δ( •

ε,ζ,η,θ A)) = V ( •
αε,βζ,αη+γ,βθ+δ A),

(c) V ( •
α,β,γ,δ A) ≥ V ( •

α,β,γ,δ A),

(d) V ( •
α,β,γ,δ♦ A) ≤ V (♦ •

α,β,γ,δ A).

For every pair of formulas A and B, and for every α,β, γ, δ ∈ [0, 1] for which
max(α,β) + γ + δ ≤ 1,

(a) V ( •
α,β,γ,δ(A ∧ B)) = V ( •

α,β,γ,δ A ∧ •
α,β,γ,δ B),

(b) V ( •
α,β,γ,δ(A ∨ B)) = V ( •

α,β,γ,δ A ∨ •
α,β,γ,δ B).

In [18], G. Çuvalcioǧlu introduced the operator Eα,β by

V (Eα,β(A)) = 〈β(αμ + 1 − α),α(βν + 1 − β)〉, (3.3.10)

where α,β ∈ [0, 1], and he studied some of its properties. Obviously,

V (Eα,β(A)) = V ( •
αβ,αβ,(1−α)β,(1−β)α A).

For every predicate A, and for every α,β, γ, δ ∈ [0, 1] for which max(α,β) +
γ + δ ≤ 1,

(a) V ( •
α,β,γ,δ∃x A) = V (∃x •

α,β,γ,δ A),

(b) V ( •
α,β,γ,δ∀x A) = V (∀x •

α,β,γ,δ A).

A new (potentially final?) extension of the above operators is the operator

V ( ◦
α,β,γ,δ,ε,ζ A) = 〈αμ − εν + γ,βν − ζμ + δ〉, (3.3.11)
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where α,β, γ, δ, ε, ζ ∈ [0, 1] and

max(α − ζ,β − ε) + γ + δ ≤ 1, (3.3.12)

min(α − ζ,β − ε) + γ + δ ≥ 0. (3.3.13)

Assume that in the particular cases when α − ζ > −ε,β = δ = 0 and δ − ζ <

β, γ = ε = 0, the inequalities

γ ≥ ε and β + δ ≤ 1

hold. Obviously, for every IFS A,

V (+ A) = V ( ◦ 0.5,0.5,0,0.5,0,0 A),

V (× A) = V ( ◦ 0.5,0.5,0.5,0,0,0 A),

V (+ α A) = V ( ◦
α,α,0,1−α,0,0 A),

V (× α A) = V ( ◦
α,α,1−α,0,0,0 A),

V (+ α,β A) = V ( ◦
α,α,0,β,0,0 A),

V (× α,β A) = V ( ◦
α,α,β,0,0,0 A),

V (+ α,β,γ A) = V ( ◦
α,β,0,γ,0,0 A),

V (× α,β,γ A) = V ( ◦
α,β,γ,0,0,0 A),

V ( •
α,β,γ,δ A) = V ( ◦

α,β,γ,δ,0,0 A),

V (Eα,β A) = V ( ◦
αβ,αβ,β(1−α),α(1−β) A).

For every formula A, and for every α,β, γ, δ, ε, ζ ∈ [0, 1] for which (3.3.12) and
(3.3.13) are valid, the equality

V (¬ ◦
α,β,γ,δ,ε,ζ¬A) = V ( ◦

β,α,δ,γ,ζ,ε A)

holds.
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For every formula A, and for every α1,β1, γ1, δ1, ε1, ζ1,α2,β2, γ2, δ2, ε2, ζ2 ∈
[0, 1] for which conditions that are similar to (3.3.12) and (3.3.13) are valid, the
equality

V ( ◦
α1,β1,γ1,δ1,ε1,ζ1(

◦
α2,β2,γ2,δ2,ε2,ζ2 A))

=V ( ◦
α1α2+ε1ζ2,β1β2+ζ1ε2,α1γ2−ε1δ2+γ1,β1δ2−ζ1γ2+δ1,α1ε2+ε1β2,β1ζ2+ζ1α2 A)

holds.
It must be noted that the equalities

V ( ◦
α,β,γ,δ,ε,ζ(A ∧ B)) = V ( ◦

α,β,γ,δ,ε,ζ A ∧ ◦
α,β,γ,δ,ε,ζ B)

and
V ( ◦

α,β,γ,δ,ε,ζ(A ∨ B)) = V ( ◦
α,β,γ,δ,ε,ζ A ∨ ◦

α,β,γ,δ,ε,ζ B),

which are valid for operator •
α,β,γ,δ , are not always valid for ◦

α,β,γ,δ,ε,ζ .

Open Problem 18 Check the validity of the above formulas for the case of all intu-
itionistic fuzzy conjunctions, disjunctions, implications and negations.

Following [9], we formulate and prove the following:

Theorem 3.3.1 Operators Xa,b,c,d,e, f and ◦
α,β,γ,δ,ε,ζ are equivalent.

Proof Let a, b, c, d, e, f ∈ [0, 1] and satisfy (6.24) and (6.25). Let

α = a − b, β = d − e, γ = b, δ = e, ε = bc, ζ = e f.

Also, let
X ≡ αμ − εν + γ = (a − b)μ − bcν + b,

Y ≡ βν − ζμ + δ = (d − e)ν − e f μ + e.

Then,
X ≥ (a − b).0 − bc.1 + b = b(1 − c) ≥ 0,

X ≤ (a − b).1 − bc.0 + b = a ≤ 1,

Y ≥ (d − e).0 − e f.1 + e = e(1 − f ) ≥ 0,

Y ≤ (d − e).1 − e f.0 + e = d ≤ 1
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and
X + Y = (a − b)μ − bcν + b + (d − e)ν − e f μ + e

= (a − b − e f )μ + (d − e − bc)ν + b + e

≤ (a − b − e f )μ + (d − e − bc)(1 − μ) + b + e

= d − e − bc + b + e + (a − b − e f − d + e + bc)μ

≤ d − bc + b + a − b − e f − d + e + bc

= a − e f + e = α + γ − ζ + δ ≤ 1

(from (3.3.12)).
Thus, we obtain

V ( ◦
α,β,γ,δ,ε,ζ A) = 〈αμ − εν + γ,βν − ζμ + δ〉

= 〈x, (a − b)μ − bcν + b, (d − e)ν − e f μ + e〉

= 〈x, aμ + b(1 − μ − cν),

dν + e(1 − f μ − ν)〉

= V (Xa,b,c,d,e, f (A)).

Conversely, let α,β, γ, δ, ε, ζ ∈ [0, 1] and satisfy (3.3.12) and (3.3.13). From
(3.3.13) it follows that for α = β = δ = ζ = 0 : ε ≤ γ, while for α = β = γ =
ε = 0 : ζ ≤ δ; from (3.3.12) it follows that for β = δ = ε = ζ = 0 : α + γ ≤ 1,
while for α = γ = ε = ζ = 0 : β + δ ≤ 1. Then, let

a = α + γ (≤ 1),

b = γ,

c = ε

γ
(≤ 1),

d = β + δ (≤ 1),

e = δ,

f = ζ

δ
(≤ 1).
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Let

X ≡ aμ + b(1 − μ − cν) = (α + γ)μ + γ

(
1 − μ − ε

γ
ν

)
,

Y ≡ dν + e(1 − f μ − ν) = (β + δ)ν + δ

(
1 − ζ

δ
μ − ν

)
.

Then, we obtain,

0 ≤ γ − ε ≤ X = αμ + γ − εν ≤ α + γ ≤ 1,

0 ≤ δ − ζ ≤ Y = βν + δ − ζμ ≤ β + δ ≤ 1,

X + Y = αμ + γ − εν + βν + δ − ζμ

= (α − ζ)μ − (β − ε)ν + γ + δ

≤ (α − ζ)μ − (β − ε)(1 − μ) + γ + δ

= (α − ζ + β − ε)μ − β + γ + δ + ε

≤ α − ζ + β − ε − β + γ + δ + ε

= α − ζ + γ + δ

≤ max(α − ζ,β − ε) + γ + δ ≤ 1

(from (3.3.12)).
Then, we obtain

V (Xa,b,c,d,e, f (A))

= 〈aμ + b(1 − μ − cν), dν + e(1 − f μ − ν)〉

= 〈(α + γ)μ + γ(1 − μ − ε

γ
ν), (β + δ)ν + δ(1 − ζ

δ
μ − ν)〉

= 〈(α + γ)μ + γ − γμ − εν, (β + δ)ν + δ − ζμ − δν〉

= 〈αμ − εν + γ,βν − ζμ + δ〉

= V ( ◦
α,β,γ,δ,ε,ζ A).

Therefore, the two operators are equivalent.
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Fig. 3.15 Relations among modal operators

Finally, we construct Fig. 3.15 in which

“X −→ Y ′′

denotes that operator X represents operator Y , while the converse is not valid, and

“X ←→ Y ′′

denotes that each of the operators represents the other.
Following [19], we introduce the following new operator from modal type, that

is a modification of the above discussed operators. It has the form

V (⊗α,β,γ,δ A) = 〈αa + γb,βa + δb〉,

where α,β, γ, δ ∈ [0, 1] and α + β ≤ 1, γ + δ ≤ 1.
First, we check that the new operator generates an intuitionistic fuzzy pair. Indeed,

0 ≤ αa + γb ≤ a + b ≤ 1,

0 ≤ βa + δb ≤ a + b ≤ 1

and
0 ≤ αa + γb + βa + δb

= (α + β)a + (γ + δ)b

≤ a + b ≤ 1.



3.3 Second Type of Intuitionistic Fuzzy Modal Operators 117

Second, it is easy to see that

⊗1,0,0,1 A = A,

⊗0,1,1,0 A = ¬1A.

Theorem 3.3.2 For every formula A, for every four real numbers α,β, γ, δ ∈ [0, 1]
such that α + β ≤ 1, γ + δ ≤ 1 and for negation ¬1,

V (¬1 ⊗α,β,γ,δ ¬1A) = V (⊗δ,γ,β,α A).

Proof We obtain sequentially that

V (¬1 ⊗α,β,γ,δ ¬1A)

= ¬1 ⊗α,β,γ,δ 〈b, a〉

= ¬1〈αb + γa,βb + δa〉

= 〈βb + δa,αb + γa〉

= ⊗δ,γ,β,α A.

This completes the proof. �

Theorem 3.3.3 For every two formulas A and B an for every four real numbers
α,β, γ, δ ∈ [0, 1] such that α + β ≤ 1, γ + δ ≤ 1,

(a) V (⊗α,β,γ,δ(A ∨ B)) = V (⊗α,β,γ,δ A ∨ ⊗α,β,γ,δ B),
(b) V (⊗α,β,γ,δ(A ∧ B)) = V (⊗α,β,γ,δ A ∧ ⊗α,β,γ,δ B).

Proof For (a), first, we obtain that

V (⊗α,β,γ,δ(A ∨ B)) = ⊗α,β,γ,δ〈max(a, c),min(b, d)〉

= 〈αmax(a, c) + γ min(b, d),β max(a, c) + δmin(b, d)〉.

Second, we obtain that
V (⊗α,β,γ,δ A ∨ ⊗α,β,γ,δ B)

= 〈αa + γb,βa + δb〉 ∨ 〈αc + γd,βc + δ.d〉

= 〈max(αa + γb,αc + γd),min(βa + δb,βc + δd〉
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Let

X ≡ max(αa + γb,αc + γd) − αmax(a, c) − γ min(νA(x), d)

Now, for a, c, b, d we must study the following four cases.

Case 1. a ≥ c, b ≥ d:

X = max(αa + γb,αc + γd) − αa − γd

≥ αa + γb − αa − γd ≥ 0

Case 2. a ≥ c, b < d:

X = max(αa + γb,αc + γd) − αa − γb ≥ 0

Case 3. a < c, b ≥ d:

X = max(αa + γb,αc + γd) − αc − γd ≥ 0

Case 4. a < c, b < d:

X = max(αa + γb,αc + γd) − αc) − γb

≥ αc + γd − αc) − γb ≥ 0

Assertion (b) is proved analogously. �

The proofs of the next assertion follow by analogy.

Theorem 3.3.4 For every formula A and for every four real numbers α,β, γ, δ ∈
[0, 1] such that α + β ≤ 1, γ + δ ≤ 1:

(a) V ( ⊗α,β,γ,δ A) ≤ V (⊗α,β,γ,δ A),
(b) V (⊗α,β,γ,δ♦ A) ≤ V (♦ ⊗α,β,γ,δ A).

Theorem 3.3.5 Let A be a formula, such that V (A) = 〈μ, ν〉 and let a, b, c, d, e, f,
g, h ∈ [0, 1], so that a + b, c + d, e + f, g + h ∈ [0, 1]. Then,

V (⊗e, f,g,h(⊗a,b,c,d(A)) = V (⊗ae+bg,a f +bh,ce+dg,c f +dh(A)). (3.3.14)

Proof Let formula A and the real numbers a, b, c, d, e, f, g, h satisfy the conditions
for operator ⊗. Then

V (⊗e, f,g,h(⊗a,b,c,d(A)))

= ⊗e, f,g,h〈x, aμ + cν, bμ + dν〉
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= 〈x, aeμ + ceν + bgμ + dgν, a f μ + c f ν + bhμ + dhν〉

= 〈x, (ae + bg)μ + (ce + dg)ν, (a f + bh)μ + (c f + dh)ν

= V (⊗ae+bg,a f +bh,ce+dg,c f +dh(A)).

Therefore, (3.3.14) is valid. �

Theorem 3.3.6 Let A be a formula, such that V (A) = 〈μ, ν〉 and let a, d, e, h ∈
(0, 1], b, c, f, g ∈ (0, 1], so that a + b, c + d, e + f, g + h ∈ [0, 1] and

bg = c f, (3.3.15)

ag + ch = ce + dg. (3.3.16)

Then,
V (⊗e, f,g,h(⊗a,b,c,d(A))) = V (⊗a,b,c,d(⊗e, f,g,h(A))). (3.3.17)

Proof Let formula A and the real numbers a, b, c, d, e, f, g, h satisfy the conditions
of the theorem. First, we see, that from (3.3.15) and (3.3.16) it follows:

a f + bh − be − d f = a f + c f

g
h − c f

g
e − d f = f

g
(ag + ch − ce − dg) = 0.

But, by the above conditions, f, g > 0. Therefore,

a f + bh − be − d f = 0,

i.e.,
a f + bh = be + d f. (3.3.18)

Now,
V (⊗e, f,g,h(⊗a,b,c,d(A))) = ⊗e, f,g,h〈a.μ + c.ν, b.μ + d.ν〉

= 〈a.e.μ + c.e.ν + b.g.μ + d.g.ν, a. f.μ + c. f.ν + b.h.μ + d.h.ν〉

(from (3.3.16) and (3.3.18))

= 〈a.e.μ + a.g.ν + c. f.μ + c.h.ν, b.e.μ + b.g.ν + d. f.μ + d.h.ν〉

= ⊗a,b,c,d〈e.μ + g.ν, f.μ + h.ν〉

= V (⊗a,b,c,d ⊗e, f,g,h (A)).

Therefore, (3.3.17) is valid. �
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Theorem 3.3.7 Let A be a formula, α,β, γ, δ ∈ [0, 1], so that α + β, γ + δ ∈
[0, 1], a, b, c, d, e, f ∈ [0, 1] so that a + e − e. f ≤ 1, b + d − b.c ≤ 1 and
b + e ≤ 1. Then,

(a) ◦ a,b,c,d,e, f (⊗α,β,γ,δ(A)) = ◦ aα−eβ,bβ− f α,c,d,eδ−aγ, f γ−bδ(A),

(b) ⊗α,β,γ,δ( ◦ a,b,c,d,e, f (A)) = ◦ aα− f γ,aβ− f δ,cα+dγ,cβ+dδ,eα−bγ,eβ−bδ(A).

The following two open problems are interesting:
Open Problem 19 Can operator ⊗α,β,γ,δ be represented by the extended modal
operators?
Open Problem 20 Can operator ⊗α,β,γ,δ be used for representation of some types
of modal operators?

3.4 Intuitionistic Fuzzy Level Operators

Following [9], herewe introduce the following two intuitionistic fuzzy level operators
for each formula A with evaluation V (A) = 〈a, b〉:

V (Pα,β(A)) = Pα,β(V (A)) = 〈max(a,α),min(b,β)〉,

V (Qα,β(A)) = Qα,β(V (A)) = 〈min(a,α),max(b,β)〉.

We must note, that for every formula A

V (Pα,β(A)) = V (A) ∨ 〈α,β〉

and
V (Qα,β(A)) = V (A) ∧ 〈α,β〉.

Theorem 3.4.1 For every formula A and for every α,β, γ, δ ∈ [0, 1], such that
α + β ≤ 1, γ + δ ≤ 1:

(a) V (¬Pα,β(¬A)) = V (Qβ,α(A));
(b) V (Pα,β(Qγ,δ(A))) = V (Qmax(α,γ),min(β,δ)(Pα,β(A)));
(c) V (Qα,β(Pγ,δ(A))) = V (Pmin(α,γ),max(β,δ)(Qα,β(A)));
(d) V (Pα,β(Pγ,δ(A))) = V (Pmax(α,γ),min(β,δ)(A));
(e) V (Qα,β(Qγ,δ(A))) = V (Qmin(α,γ),max(β,δ)(A)).
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Proof (b) Let A be a formula. Then,

V (Pα,β(Qγ,δ(A)))
= V (Pα,β(〈min(γ, a),max(δ, b)〉)
= 〈max(α,min(γ, a)),min(β,max(δ, b))〉
= 〈min(max(α, γ),max(α, a)),max(min(β, δ),max(β, a))〉
= Qmax(α,γ),min(β,δ)(〈max(α, a),max(β, b)〉)
= V (Qmax(α,γ),min(β,δ)(Pα,β(A))).

This completes the proof. �

Theorem 3.4.2 For every two formulas A and B, and for every α,β ∈ [0, 1], such
that α + β ≤ 1:

(a) V (Pα,β(A ∧ B)) = V (Pα,β(A)) ∧ V (Pα,β(B)),
(b) V (Pα,β(A ∨ B)) = V (Pα,β(A)) ∨ V (Pα,β(B)),
(c) V (Qα,β(A ∧ B)) = V (Qα,β(A)) ∧ V (Qα,β(B)),
(d) V (Qα,β(A ∨ B)) = V (Qα,β(A)) ∨ V (Qα,β(B)).

Proof (a) Let A and B be two formulas. Then,

V (Pα,β(A ∧ B))
= Pα,β(〈min(a, c),max(b, d)〉)
= 〈max(α,min(a, c)),min(β,max(b, d))〉
= 〈min(max(α, a),max(α, c)),max(min(β, b),min(β, d))〉
= V (Pα,β(A) ∧ Pα,β(B)).

This completes the proof. �

Theorem 3.4.3 Let A be a formula and x be a variable. Then, for every α,β ∈ [0, 1],
such that α + β ≤ 1:

(a) V (∃x Pα,β(A)) = V (Pα,β(∃x A)),
(b) V (∀x Qα,β(A)) = V (Qα,β(∀x A)).

Proof (a) Let A be a formula. Then,

V (∃x Pα,β(A))
= ∃x〈max(α,μ(A)),min(β, ν(A))〉
= 〈max

x
(max(α,μ(A))),min

x
(min(β, ν(A)))〉

= 〈max(α,max
x

(μ(A))),min(β,min
x
(ν(A)))〉

= V (Pα,β(∃x A)).

This completes the proof. Assertion (b) is proved by analogy. �
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3.5 Pseudo-fixed Points of the Intuitionistic Fuzzy
Operators and Quantifiers

Let S be a set of propositions (or more general, formulas) and let V : S → [0, 1] ×
[0, 1], be defined for every A ∈ S as in Sect. 1.1.

Let for operator Y and for IFP 〈a, b〉:

Y (〈a, b〉) = 〈a, b〉.

Then, we call that the IFP is a fixed point for operator Y . But, when operator Y is
defined over elements of S, i.e., when for formula A

V (Y (A)) = 〈μ(Y (A)), ν(Y (A))〉,

then we will call that A is a pseudo-fixed point for operator Y . In this case, the
equality

〈μ(Y (A)), ν(Y (A))〉 = 〈μ(A), ν(A)〉 (3.5.1)

holds (see [20]).
Obviously, if (3.5.1) is valid for IFP V (A) = 〈a, b〉, then, 〈a, b〉 is a fixed point

for operator Y .
Below, we determine all pseudo-fixed points of all quantifiers and operators,

defined in Chaps. 2 and 3.

Theorem 3.5.1 For all α,β ∈ [0, 1] the pseudo-fixed point(s) of:

(a) ∃ are all elements A ∈ S for which V (A) = 〈1, 0〉,
(b) ∀ are all elements A ∈ S for which V (A) = 〈0, 1〉,
(c) ∃μ are all elements A ∈ S for which

μ(A) = sup
x∈S

μ(x)

and in the more general case, all elements A ∈ S for which V (A) = 〈1, 0〉,
(d) ∃ν are all elements A ∈ S for which

ν(A) = inf
x∈S

ν(x)

and in the more general case, all elements A ∈ S for which V (A) ∈ [0, 1]×{0},
(e) ∀μ are all elements A ∈ S for which

μ(A) = inf
x∈S

μ(x)

and in the more general case, all elements A ∈ S for which V (A) ∈ {0}×[0, 1],

http://dx.doi.org/10.1007/978-3-319-48953-7_1
http://dx.doi.org/10.1007/978-3-319-48953-7_2
http://dx.doi.org/10.1007/978-3-319-48953-7_3
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(f) ∀ν are all elements A ∈ S for which

ν(A) = sup
x∈S

ν(x)

and in the more general case, all elements A ∈ S for which V (A) = 〈0, 1〉,
(g) ,♦,© are all elements A ∈ S for which μ(A) + ν(A) = 1,
(h) Dα are all elements A ∈ S for which μ(A) + ν(A) = 1,
(i) Fα,β are all elements A ∈ S for which μ(A) + ν(A) = 1 and α + β ≤ 1,
(j) Gα,β are all elements A ∈ S for which μ(A) = ν(A) = 0,
(k) Hα,β, H∗

α,β are all elements A ∈ S for which μ(A) = 0 and ν(A) = 1,
(l) Jα,β, J ∗

α,β are all elements A ∈ S for which μ(A) = 1 and ν(A) = 0,

(m) + , + α are all elements A ∈ S for which μ(A) = 0 and ν(A) = 1,

(n) × , × α are all elements A ∈ S for which μ(A) = 1 and ν(A) = 0,

(o) + α,β are all elements A ∈ S for which μ(A) = 0, ν(A) = 1 and α + β = 1,

(p) × α,β are all elements A ∈ S for which μ(A) = 1, ν(A) = 0 and α + β = 1,
(q) Pα,β are all elements A ∈ S for which α ≤ μ(A) = 1 and 0 ≤ ν(A) ≤ β,
(r) Qα,β are all elements A ∈ S for which 0 ≤ μ(A) = α and β ≤ ν(A) ≤ 1.
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