
Chapter 2
Intuitionistic Fuzzy Predicate Logic

2.1 Short Remarks on Intuitionistic Fuzzy Predicate Logic

The idea for evaluation of the propositions was extended for predicates (see [1–6])
as follows (see, e.g., [7–10]).

Let x be a variable, obtaining values in set E and let P(x) be a predicate with a
variable x . Let

V (P(x)) = 〈μ(P(x)), ν(P(x))〉.

The IF-interpretations of the (intuitionistic fuzzy) quantifiers for all (∀) and there
exists (∃) are introduced in [7, 9, 10] by

V (∃x P(x)) = 〈sup
y∈E

μ(P(y)), inf
y∈E ν(P(y))〉, (2.1.1)

V (∀x P(x)) = 〈 inf
y∈E μ(P(y)), sup

y∈E
ν(P(y))〉. (2.1.2)

If E is a finite set, then we can use the denotations

V (∃x P(x)) = 〈max
y∈E μ(P(y)),min

y∈E ν(P(y))〉, (2.1.3)

V (∀x P(x)) = 〈min
y∈E μ(P(y)),max

y∈E ν(P(y))〉. (2.1.4)

In general, below, we use the first forms of both quantifiers.
Their geometrical interpretations are illustrated in Figs. 2.1 and 2.2, respectively,

where x1, . . . , x5 are possible values of variable x and V (x1), . . . , V (x5) are their
IF-evaluations.

The most important property of the two quantifiers is that each of them juxtaposes
to predicate P a point (exactly one per quantifier) in the IF-interpretational triangle.
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66 2 Intuitionistic Fuzzy Predicate Logic

Fig. 2.1 Second geometrical
interpretation of quantifier ∀

Fig. 2.2 Second geometrical
interpretation of quantifier ∃

In [9, 10], for implication →4 the following two theorems are proved, where we
used → instead of →4.

Theorem 2.1.1 The logical axioms of the K-theory (see [5]):

(a) A → (B → A),
(b) (A → (B → C)) → ((A → B) → (A → C)),

(c) (¬A → ¬B) → ((¬A → B) → A),
(d) ∀x A(x) → A(t), for the fixed variable t,
(e) ∀x(A → B) → (A → ∀x B)

are IFTs.

Proof Assertions (a)–(c) coincide with those in Theorem 1.5.17 (IL2), (IL5) and
Theorem 1.5.26, respectively. We will here prove only assertions (d) and (e).

(d) Let the variable t be fixed.
Then,

V (∀x A(x) → A(t))

= 〈inf
x

μ(A(x)), sup
x

ν(A(x))〉 → 〈μ(A(t)), ν(A(t))〉
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= 〈max(sup
x

ν(A(x)),μ(A(t))),min(inf
x

μ(A(x)), ν(A(t)))〉

and
max(sup

x
ν(A(x)),μ(A(t))) − min(inf

x
μ(A(x)), ν(A(t)))

≥ μ(A(t)) − inf
x

μ(A(x)) ≥ 0,

i.e., (d) is an IFT.
For (e) we sequentially obtain:

V (∀x(A → B) → (A → ∀x B)) = V (∀x(A → B)) → V (A → ∀x B)

= 〈inf
x
max(μ(B), ν(A)), sup

x
min(μ(A), ν(B))〉

→ 〈max(ν(A), inf
x

μ(B)),min(μ(A), sup
x

ν(B))〉

= 〈max(ν(A), inf
x

μ(B), sup
x

min(μ(A), ν(B))),

min(μ(A), sup
x

ν(B), inf
x
max(μ(B), ν(A)))〉

and
max(ν(A), inf

x
μ(B), sup

x
min(μ(A), ν(B))) ≥ max(ν(A), inf

x
μ(B))

= inf
x
max(μ(B), ν(A)) ≥ min(μ(A), sup

x
ν(B), inf

x
max(μ(B), ν(A))),

i.e., (e) also is an IFT. �

Below, we list some assertions, which are theorems of the classical first order
logic (see, e.g. [5]).

Theorem 2.1.2 The following formulas are IFTs:

(a) (∀x A(x) → B) ≡ ∃x(A(x) → B),
(b) ∃x A(x) → B ≡ ∀x(A(x) → B),
(c) B → ∀x A(x) ≡ ∀x(B → A(x)),
(d) B → ∃x A(x) ≡ ∃x(B → A(x)),
(e) (∀x A ∧ ∀x B) ≡ ∀x(A ∧ B),
(f) (∀x A ∨ ∀x B) → ∀x(A ∨ B),
(g) ¬∀x A ≡ ∃x¬A,
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(h) ¬∃x A ≡ ∀x¬A,
(i) ∀x∀yA ≡ ∀y∀x A,
(j) ∃x∃yA ≡ ∃y∃x A,
(k) ∃x∀yA → ∀y∃x A,
(l) ∀x(A → B) → (∀x A → ∀x B).
Proof We shall use Lemma 1.5.1.
(a)

V (∀x A(x) → B)

= 〈max(sup
x

ν(A(x)),μ(B)),min(inf
x

μ(A(x)), ν(B))〉

= 〈sup
x
(max(ν(A(x)),μ(B))), inf

x
(min(μ(A(x)), ν(B)))〉

= V (∃x(A(x) → B));

(b)
V (∃x A(x) → B)

= 〈max(inf
x

ν(A(x)),μ(B)),min(sup
x

μ(A(x)), ν(B))〉

= 〈inf
x
(max(ν(A(x)),μ(B))), sup

x
(min(μ(A(x)), ν(B)))〉

= V (∀x(A(x) → B));

(c)
V (B → ∀x A(x))

= 〈max(inf
x

μ(A(x)), ν(B)),min(sup
x

ν(A(x)),μ(B))〉

= 〈inf
x
(max(μ(A(x)), ν(B))), sup

x
(min(ν(A(x)),μ(B)))〉

= V (∀x(B → A(x)));

(d) is proved analogically;
(e)

V (∀x A ∧ ∀x B)

= 〈min(inf
x

μ(A),min μ(B)),max(sup
x

ν(A),max ν(B))〉

= 〈inf
x
(min(μ(A),μ(B))), sup

x
(max(ν(A), ν(B)))〉
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= V (∀x(A ∧ B));

(f) is proved analogically;
(g)

V (¬∀x A) = 〈sup
x

ν(A), inf
x

μ(A)〉 = V (∃x¬A);

(h) is proved analogically;
(i)

V (∀x∀yA)

= 〈inf
x
inf
y

μ(A), sup
x

sup
y

ν(A)〉

= 〈inf
y
inf
x

μ(A), sup
y

sup
x

ν(A)〉

= V (∀y∀x A);

(j) is proved analogically;
(k)

V (∃x∀yA → ∀y∃x A)

= 〈sup
x

inf
y

μ(A), inf
x
sup
y

ν(A)〉 → 〈inf
y
sup
x

μ(A), sup
y

inf
x

ν(A)〉

= 〈max(inf
y
sup
x

ν(A), inf
x
sup
y

μ(A)),min(sup
x

inf
y

μ(A), sup
y

inf
x

ν(A))〉

and
max(inf

y
sup
x

ν(A), inf
x
sup
y

μ(A)) − min(sup
x

inf
y

μ(A), sup
y

inf
x

ν(A))

≥ sup
y

inf
x

ν(A) − sup
y

inf
x

ν(A) = 0,

i.e., ∃x∀yA → ∀y∃x A is an IFT;
(l) is proved analogically. �

Theorem 2.1.3 For a predicate P and for negation ¬i , ∀x P(x)∨ ∃x¬i P(x) is an
IFT for i = 1, 3, 4, 8, 9, 11, 12, 14, 15, 18, . . . , 23, 25, . . . , 32, 45, 52, 53.

Proof Let for the variable x ,

V (∀x P(x)) = 〈M, n〉,

V (∃x P(x)) = 〈m, N 〉,
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where the pairs 〈M, n〉 and 〈m, N 〉 are given by either (2.1.1) and (2.1.2), or (2.1.3)
and (2.1.4). Below, we will discuss the proof for three of the negations: ¬1, ¬12 and
¬52.

For ¬1 we obtain:

∀x P(x) ∨ ∃x¬1P(x) = 〈m, N 〉 ∨ V (∃x〈ν(P(x)),μ(P(x))〉)

= 〈m, N 〉 ∨ 〈N ,m〉 = 〈max(m, N ),min(m, N )〉,

that is an IFT, because max(m, N ) − min(m, N ) ≥ 0.
For ¬12 we obtain:

∀x P(x) ∨ ∃x¬12P(x)

= 〈m, N 〉 ∨ 〈sup
x
(ν(P(x))(μ(P(x)) + ν(P(x)))),

inf
x
(μ(P(x))(μ(P(x)) + μ(P(x))ν(P(x)) + ν(P(x))2))〉

= 〈max(m, sup
x
(ν(P(x))(μ(P(x)) + ν(P(x))))),

min(N , inf
x
(μ(P(x))(μ(P(x)) + μ(P(x))ν(P(x)) + ν(P(x))2)))〉.

Then,
max(m, sup

x
(ν(P(x))(μ(P(x)) + ν(P(x)))))

−min(N , inf
x
(μ(P(x))(μ(P(x)) + μ(P(x))ν(P(x)) + ν(P(x))2)))

≥ m − inf
x
(μ(P(x))(μ(P(x)) + μ(P(x))ν(P(x)) + ν(P(x))2)) ≥ 0,

because for every two numbers a, b ∈ [0, 1], such that a + b ≤ 1: a + ab + b2 =
a + b(a + b) ≤ a + b ≤ 1, i.e., the expression is an IFT.

For ¬52 we obtain:
∀x P(x) ∨ ∃x¬52P(x)

= 〈m, N 〉 ∨ 〈sup
x
(sg(ν(P(x))) + sg(μ(P(x))ν(P(x)))),m〉

= 〈max(m, sup
x
(sg(ν(P(x))) + sg(μ(P(x))ν(P(x))))),min(N ,m)〉,

which obviously is an IFT. The (sup− inf)-case is analogous.
All other checks are similar. �
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The link between the interpretations of quantifiers and the topological operators C
(closure) and I (interior) defined over IFSs see [7] is obvious.

Open Problem 9. The basic problem which remains unsolved is related to the char-
acterization of predicate IFTs by means of a calculus.

Following [9, 10], we mention that a partial solution of the problem of giving a
calculus which generates all predicate IFTs is presented in the next theorem.

Theorem 2.1.4 A prenex normal form A is an IFT if and only if it is a classical
predicate tautology and its quantifier free matrix is a propositional IFT.

Here, a prenex formmeans (see [9, 10]) a predicate formula inwhich all quantifiers
are moved to the left. The proof is based on the fact that all predicate transformations
leading to prenex forms in the classical logic are valid for the intuitionistic fuzzy
case, too.

2.2 Extended Intuitionistic Fuzzy Quantifiers

In [8], we introduced the following six quantifiers and studied some of their proper-
ties.

V (∀μx P(x)) = {〈x, inf
y∈E μ(P(y)), ν(P(x))〉|x ∈ E},

V (∀νx P(x)) = {〈x,min(1 − sup
y∈E

ν(P(y)),μ(P(x))), sup
y∈E

ν(P(y))〉|x ∈ E},

V (∃μx P(x)) = {〈x, sup
y∈E

μ(P(y)),min(1 − sup
y∈E

μ(P(y)), ν(P(x)))〉|x ∈ E},

V (∃νx P(x)) = {〈x,μ(P(x)), inf
y∈E ν(P(y))〉|x ∈ E},

V (∀∗
νx P(x))

= {〈x,min(1 − sup
y∈E

ν(P(y)),μ(P(x))),min(sup
y∈E

ν(P(y)), 1 − μ(P(x)))〉|x ∈ E},

V (∃∗
μx P(x))

= {〈x,min(sup
y∈E

μ(P(y)), 1 − ν(P(x))),min(1 − sup
y∈E

μ(P(y)), ν(P(x)))〉|x ∈ E}.
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Fig. 2.3 Example of a
second geometrical
interpretation

Fig. 2.4 Second geometrical
interpretation of quantifier∃μ

Fig. 2.5 Second geometrical
interpretation of quantifier ∃ν

Let the possible values of the variable x be a, b, c and let their IF-evaluations
V (a), V (b), V (c) be shown on Fig. 2.3. The geometrical interpretations of the new
quantifiers are shown in Figs. 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9.
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Fig. 2.6 Second geometrical
interpretation of quantifier∀μ

Fig. 2.7 Second geometrical
interpretation of quantifier∀ν

Fig. 2.8 Second geometrical
interpretation of quantifier∃∗

μ
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Fig. 2.9 Second geometrical
interpretation of quantifier∀∗

ν

Now, we see that we can change the forms of the first two quantifiers to the forms

V (∀x P(x)) = {〈x, inf
y∈E μ(P(y)), sup

y∈E
ν(P(y))〉|x ∈ E},

V (∃x P(x)) = {〈x, sup
y∈E

μ(P(y)), inf
y∈E ν(P(y))〉|x ∈ E}.

Obviously, for every predicate P ,

V (∀x P(x)) ⊆ V (∀μx P(x)) ⊆ V (∀νx P(x)) ⊆ V (∃νx P(x))

⊆ V (∃μx P(x)) ⊆ V (∃x P(x))

and
V (∀x P(x)) ⊆ V (∀νx P(x)) ⊆ V (∀∗

νx P(x))

⊆ V (∃∗
μx P(x)) ⊆ V (∃μx P(x)) ⊆ V (∃x P(x)).

Open Problem 10.Which implications satisfy Theorem 2.1.1(d) and (e) in Sect. 2.1?

Now, we can modify the new six operators, so as to change their set form to the
form of the first two operators.

Let a be one of the possible values for variable x . Then,

V ((∀μx P(x)), a) = 〈 inf
y∈E μ(P(y)), ν(P(a))〉,

V ((∀νx P(x)), a) = 〈min(1 − sup
y∈E

ν(P(y)),μ(P(a))), sup
y∈E

ν(P(y))〉,

V ((∃μx P(x)), a) = 〈sup
y∈E

μ(P(y)),min(1 − sup
y∈E

μ(P(y)), ν(P(a)))〉,
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V ((∃νx P(x)), a) = 〈μ(P(a)), inf
y∈E ν(P(y))〉,

V ((∀∗
νx P(x)), a)

= 〈min(1 − sup
y∈E

ν(P(y)),μ(P(a))),min(sup
y∈E

ν(P(y)), 1 − μ(P(a)))〉,

V ((∃∗
μx P(x)), a)

= 〈min(sup
y∈E

μ(P(y)), 1 − ν(P(a))),min(1 − sup
y∈E

μ(P(y)), ν(P(a)))〉.

We finish this section with an example.
Let the universe comprise the members of the European Union and let for each

country the degree of government approval and disapproval be known. Let the pred-
icate P(x) be “The government of country x is widely approved by the people of
country x”. The first quantifier ∀ will give the minimal degree of approval which
exists in the countries of the EU, and the maximal degree of disapproval in the coun-
tries (not necessarily the same). Conversely, the second operator ∃ will give us the
maximal degree of approval in one of these countries and the minimal degree of
disapproval.

Let us assume that for some reason we do not have complete information about
either the approval or disapproval for a fixed country a from the EU (but we have
such information about the rest). If we are missing information about the degree of
approval for a, then, the third operator ∀μ will give us a lower bound for this degree
of approval for a. The fifth operator ∃μ will give us an upper bound for the degree
of approval for a.

Conversely, if we are missing information about the degree of disapproval, the
fourth operator will give us ∀ν will give us the upper bound and the sixth ∃ν will give
us the lower bound for the degree of disapproval for a.

The seventh and eighth operators act exactly like the fourth and the fifth operators,
respectively, but provide a more precise evaluation for the respective degree.

2.3 Ideas for New Types of Quantifiers

It is well known from the classical logic that for each predicate P with argument x
having a finite number of interpretations a1, a2, . . . , an:

V (∀x P(x)) = V (P(a1) ∧ P(a2) ∧ · · · ∧ P(an)),

V (∃x P(x)) = V (P(a1) ∨ P(a2) ∨ · · · ∨ P(an)).
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Now, following [11] and having in mind the ideas from Sect. 1.7, we can construct
a lot of new quantifiers. For each new pair of conjunction and disjunction, we obtain
a pair of quantifiers that have the forms

V (∀i, j P(x)) = V (P(a1) ∧i, j P(a2) ∧i, j · · · ∧i, j P(an),

V (∃i, j P(x)) = V (P(a1) ∨i, j P(a2) ∨i, j · · · ∨i, j P(an),

where i (1 ≤ i ≤ 185) and j (1 ≤ j ≤ 3) are the indices of the respective pair of
conjunction and disjunction that generates the new pair of quantifiers.

Obviously, ∀4,1 coincides with the standard quantifier ∀, and ∃4,1 coincides with
the standard quantifier ∃.

One special case is the following: using implication →139 and negation ¬1 we
obtain for a, b, c, d ∈ [0, 1] and a + b, c + d ≤ 1:

V (〈a, b〉 ∨139,3 〈c, d〉) =
〈
a + c

2
,
b + d

2

〉
= 〈a, b〉 ∧139,3 〈c, d〉.

Therefore, if for each i : V (P(xi )) = 〈ai , bi 〉, then,

V (∀139,3x P(x)) =
〈 n∑
i=1

ai

n
,

n∑
i=1

bi

n

〉
= V (∃139,3P(x)).

In this case, we check directly, that

¬1∀139,3x¬1P(x) = ∀139,3x P(x).

Hence, there exists a quantifier’s interpretation for which both quantifiers “∀” and
“∃” coincide.

It is very interesting that the topological weight-center operatorW (see, e.g. [12])
is an exact analogue of quantifier ∀139,3. So, we can denote it as WxP(x)).

The so defined quantifiers give us the possibility to clasify all of them in two
groups.

• Global quantifiers: ∀, ∃,W ,
• Local quantifiers: ∀μ,∀μ,∀∗

ν, ∃μ, ∃ν, ∃∗
μ,U .

Open Problem 11. Study in details the behaviour of these quantifiers.
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