Estimating Cluster Population

Laxmi Gewali®™, K.C. Sanjeev, and Henry Selvaraj

University of Nevada, Las Vegas, USA
{laxmi. gewali, henry. selvaraj}@unlv. edu

Abstract. Partitioning a given set of points into clusters is a well-known
problem in pattern recognition, data mining, and knowledge discovery. One of
the widely used methods for identifying clusters in Euclidean space is the
K-mean algorithm. In using K-mean clustering algorithm it is necessary to know
the value of k (the number of clusters) in advance. We present an efficient
algorithm for a good estimation of k for points distributed in two dimensions.
The techniques we propose is based on bucketing method in which points are
examined on the buckets formed by carefully constructed orthogonal grid
embedded on input points. We also present experimental results on the per-
formances of bucketing method and K-mean algorithm.

Keywords: Clustering - Data partitioning - Bucketing method

1 Introduction

Clustering is a technique of identifying ‘closely related points’ from a collection of
large number of given data points. Closely related points in terms of some distance
metric are grouped together as a cluster. In most input data there could be several
blocks of clusters. Cluster analysis is extensively used in many fields that include
statistics, medicine, social sciences and humanities [1, 6]. In fact, any study that uses
collection of data can make productive use of cluster analysis.

Most of the early research on cluster analysis is done by considering point distri-
bution in Euclidean space, where Euclidean metric is used to measure distance between
points. In this setting, distance between a pair of points in the same cluster is distinctly
smaller than the distance between a pair formed by taking one point from the cluster
and the other from outside the cluster. After the advent of computer science, researchers
considered the problem of developing efficient algorithms for extracting clusters [3, 4].
K-Mean algorithm and its variations are example of practical algorithms for identifying
clusters in Euclidean space. In recent years, there is surge in research interest for
identifying clusters in big-data. In the normal data we can assume that all the data is
available in the main memory and algorithms are developed by considering standard
RAM model. In big-data, not all the data can be stored in RAM. The challenge is to
develop cluster identification algorithms when data is available in external memory and
the cloud. In some applications, Euclidean metric cannot be used to measure distance
between points. For example, the data points could be visitors to Las Vegas enter-
tainment sites and we may be interested to identify cluster of visitors who frequent
casino sites and are coming from Hong Kong. Straightforward use of Euclidean metric

© Springer International Publishing AG 2017
J. Swiatek and J.M. Tomczak (eds.), Advances in Systems Science, Advances in Intelligent
Systems and Computing 539, DOI 10.1007/978-3-319-48944-5_5



Estimating Cluster Population 51

may not be applicable for such data to extract clusters. We need to come up with
appropriate metric other than the Euclidean. In statistics, a widely used technique for
cluster analysis is the method of principal component analysis (pca). In this approach
orthogonal transformation is performed to obtain linearly uncorrelated data from
possibly correlated ones [5].

In this paper we address the issues of estimating the number of clusters for points
distributed in Euclidean space. In Sect. 2, we present a brief review of the prominent
existing methods for extracting clusters. In Sect. 3, we present the main contribution of
the paper. We present an efficient algorithm for estimating the number of clusters and
the location of their centers. In Sect. 4, we present preliminary results of the experi-
mental investigation of the proposed algorithm.

2 Review of Existing Approaches

Clustering algorithms have been reported in Engineering and Statistics literature for
almost last one hundred years [6, 7]. Most of the clustering algorithms are developed by
using some variations of the following two general methods. In hierarchical scheme,
each of the point p; in the input data is considered as a cluster. Each cluster is associated
with its centroid point which is taken as the arithmetic mean of the coordinates of the
points in the cluster. Two clusters are picked to combine by formulating some metric.
One simple way of combining clusters is to pick a pair of clusters whose centroids are
closest. Another way to combine clusters is to consider the smallest distance between
nodes from one cluster to the other. When a new cluster is formed by combining two
smaller clusters, the corresponding centroid is also computed. The process of combining
two clusters is continued until all points are grouped into one cluster. In some sense the
hierarchical clustering scheme works by following the spirit similar as the construction
of minimum spanning tree by using Kruskals’ algorithm [2]. We can illustrate this
strategy by an example shown in Fig. 1, where the top part shows the recursive process
of cluster combination and the bottom part shows the implied tree.

In the point assignment strategy, clustering algorithms are developed by making an
initial estimate of the number of clusters and approximate locations of their centers.
The K-mean algorithm described next is an example of this strategy. The K-Mean
Algorithm was first formally introduced by Stuart Lloyd [7] in connection with its
application to pulse code modulation at Bell Lab. This algorithm is perhaps the most
widely referred clustering algorithm for almost 35 years. The algorithm works for
points distributed in Euclidean space. The algorithm assumes the number of clusters as
a part of the input. The location of the initial £ points is also specified by the user of the
algorithm. The algorithm grows clusters by adding carefully selected nodes to the
partially constructed clusters.

Initially, the k clusters have one node each. The locations of the initial single
member in the clusters are taken as their centroids. The algorithm progresses through a
series of steps to grow clusters by adding one node at a time. The nodes outside the
clusters are unprocessed nodes. The algorithm examines an unprocessed node p; as the
next candidate point. The candidate point p; is added to the cluster whose center is
closest to p;. This process of “adding a candidate point” is continued until all nodes are



52 L. Gewali et al.

Fig. 1. Illustration of hierarchical clustering

processed. When all points are processed, one pass of the “clusters construction” is
completed. After the completion of a pass the centroids are recomputed. The updated
centroid of a cluster C; is the centroid of all points included in it. A new pass of
computation starts with respect to the newly updated centroids. In each pass the esti-
mation of centroids and their memberships are updated. The initiation of the next pass
stops when cluster members do not change or the change in the location of centroids is
below a certain predetermined threshold value.



Estimating Cluster Population 53

3 Estimation of Cluster Population

3.1 Preliminaries

As mentioned in the previous section, one of the most popular methods for constructing
clusters from a given set of points distributed in Euclidean space is the K-mean
algorithm [7]. This algorithm assumes that the number of clusters k (cluster population)
is known in advance. If the value of k is not given as a part of the input then we need to
estimate it ‘somehow’. One straightforward technique would be to repeat the execution
of the algorithm for several values of k and evaluate the quality of resulting solutions.
The value of k that corresponds to the best value of cluster quality is the desired answer.
A brute-force method is to try all values of k = 2,3,4,... n. A faster method based on
the binary search technique has been suggested [6], for searching the value of
k. Obviously the binary search technique is only effective where the quality of cluster
as a function of k is a monotone function. An exhaustive searching approach has
several demerits: (i) executing the clustering algorithm repeatedly is time consuming,
(ii) measuring the quality of a candidate solution is not precise, and (iii) locating the
cluster center for a given value of k is itself a difficult problem. We present next an
innovative approach for estimating the value of k and the locations (co-ordinates) of
cluster centers for points distributed in the Euclidean plane.

3.2 Adaptive Bucketing

Without loss of generality we can assume that the input point-sites S = po, p1, . . .pPn—1
are inside a rectangular box R of height = 4 and width = w. The box R can be divided
into n by m orthogonal buckets. The value of bucket size m can be pre-determined by
examining the distribution of the nearest neighbor distance distribution for n input
points. An example of partitioning the bounding box R into orthogonal buckets is
shown in Fig. 2 (top part).

A straight-forward approach for counting the points in each bucket is to check for
point inclusion in each bucket. The bucket that returns ‘true’ for point inclusion is the
bucket containing the point. Since the buckets are disjoint, only one bucket will return
true for inclusion for a given point. To implement this approach we maintain a count
array cnt[ ] whose entries are initialized to zeros. An array bx/] holds the coordinates of
the top left corner of buckets. If the inclusion test for point p;(x; y;) against bucket bx/j]
returns true then cnt[bx[j]] is increased by 1. When this check is repeated for all points,
point counts for all buckets are complete. A formal sketch of the algorithm based on
this approach is listed as Straightforward Count Algorithm (Algorithm 1). It is easily
seen that he time complexity of Algorithm 1 is O(Nnm). If n*m is comparable to N then
the time complexity becomes O(N?) which is rather high.



54

L. Gewali et al.

00 150 300 490 600 50
I 2 3 4 5
0,10
6 7 8 9 10
020
55,25
1 12 13 4 e 15
0,30
16 17 18 19 20
0,40

Fig. 2. Tllustrating grid embedding and index mapping

Algorithm 1. Straightforward Count Algorithm

Input: (i) p/NJ; // Input points in 2D
(i1) int n, m; // Number of bucket rows and columns
(iii) int bx/n,m]; //To hold top left corner of buckets
(iv) int kv, kh; // length and width of each bucket
Output: cnt/]; // Array to hold count of bucket
Step 1: read p/NJ, n, m ,kv,kh
Step 2: for (inti =0; i < n*m; i++)
cnt[i] = 0;
Step 3: for (int i = 0; i <N; i++) f
for (intj =0;j < n*m, j++) f
if (inside(bx/j], p[i])) cnt[bx[j]]++;
Step 4: Output cnt/];



Estimating Cluster Population 55

Mapping Count Approach: This approach is used to directly map p; to the bucket b
[/] where it falls. Since the size of buckets are the same and rectangular, the index of the
bucket where point p; falls can be computed in term of the row number, column number,
width, and height of the bucket. It is given that the outer rectangle R bounding the input
points is partitioned into n columns and m rows of buckets, each of size k,*k;. Here k, is
the vertical extent of the bucket and k;, its horizontal width. For a given point p(x;, y;), its
row number r, is given by rn = y/k, + 1 and column number ¢, = x; / k;, +1. We can
index buckets left to right and top to bottom as 1, 2,...... , n*m as shown in Fig. 2
(bottom part). Then the bucket index corresponding to point p,(x; y;) is (r, — 1) *
n + c,. As an example, point p{(55, 25) is mapped bucket (3—1)*5 + 4 = 14.

Based on this mapping, the following is a faster algorithm (Algorithm 2) called
Mapping Count Algorithm. The time complexity of Algorithm 2 is O(N +nm). This
time complexity is optimal in the sense that it takes O(/N) time to read the points and nm
is at most N

Algorithm 2. Mapping Count Algorithm
Input: (i) p[N]; // Input points in 2D
(i1) int n;m; // Number of rows and columns
(iii) int bx[n;m]; //To hold top left of buckets
(iv) int k,,k;; // length and width of each bucket
Step 1: read p/NJ, n, m, k,, k;, // Read input
Step 2: for(inti = 0, i <n*m; i++)
cntfi] = 0;
Step 3: for(inti = 0, i < N; i++)
r, = yi/kv + 1;
¢, = xi/kh + 1;
j:(rn' 1) *Vl+Cn
cnt[bx[j]]++;
Step 4: Output cnt/]

Remark 1 (Number of buckets): The very purpose of using buckets fails if there are
too many buckets. For making the bucketing approach valid we do not want to have
many empty buckets. At the same time to identify the boundaries of clusters we should
have enough buckets. A good upper bound for the number of rows and columns in
bucket partitioning is N*?. In some applications, the number of rows and columns is
much smaller than N2, and in some cases it is even constant.

3.3 Aggregating Bucket Clusters

After identifying buckets containing a high concentration of points, it is now necessary
to aggregate buckets together belonging to the same cluster. We can clarify this with
the following example in Fig. 3.

In this example there are two clusters C1 and C2. Cluster C1 has 10 buckets b1, b2,
b3, b4, b5, b6, b7, b8, b11, b12 and cluster C2 has five buckets b9, b10, b13, b14, b15.
Suppose the starting bucket is b6. The algorithm proceeds by initializing a queue Qb by



56 L. Gewali et al.

.
. M . . - - . .
bl'
. L] . . e o . -
.

. . ‘b).O.bZ .
P M ..o * el .

. o oo LY

bi2 b4, boe *
R L R O C Py A D
. . .

. 5
. .
LI . . .: .. b4
Del*.* ¢ :. . .
. e |* .I.O * . * .
o | o|a® 0| @ o [b11° .
L g . bl5e
. | o DA Gve| * . . .
. “o e, b . o .

Fig. 3. Aggregating ‘H’-buckets

inserting the starting bucket b6 to Qb. The algorithm then repeats the following generic
task until all buckets of the cluster are aggregated.

Generic Task: Pick the bucket b; from the front of the queue Qb and inset into queue
all four connected neighbors of b; that are marked H. Bucket b; is pushed onto stack S,
and b; is marked processed.

In our running example, bucket b6 is removed from the front of the queue Q,, and
its ‘H’ marked neighbors that have not been processed yet (b2, b4, b8 and b7) are
inserted into queued onto queue Q,,. Bucket b6 is marked processed. Next bucket b2 is
removed from the queue and its unprocessed neighbors that are marked ‘H’ (b1 and 53)
are inserted into queue onto the queue.

Bucket 52 is marked processed. These operations on stack and queue are repeated
until the queue is empty. When the queue is empty all the buckets of the cluster in the
context are present in the stack. A formal sketch of the algorithm which we refer to as
Bucket Clustering Algorithm is listed as Algorithm 3.



Estimating Cluster Population 57

Algorithm 3. Bucket Clustering Algorithm
Input: (i) An array b[] of size m * n representing
the top left co-ordinates of buckets
(i1) A given starting bucket index q that
belongs to current cluster
Output: A stack containing the buckets
representing the cluster counting b[q]
Step 1: Q = b[q]; / Initialize queue Q
// Initialize stack Sh to be empty
Step 2: while (Q is not empty)
a. Px = Q.delete();
b. Let Rc be set of unprocessed
4-neighbors of Px
c. Insert points in Rc into Q
d. Push Px into stack Sbh
e. Mark points in Rc ‘processed'
Step 3: Output Sb

3.4 Nudging

A straightforward application of the bucketing technique aggregates high count buckets
(H-buckets) to extract a cluster. We refer to the clusters constructed in this way as
coarse clusters and their boundaries as coarse boundaries. Some points in L-clusters
adjacent to coarse boundaries are not included in the cluster even if they are very close
to the fence of a H-bucket. Of course, points in L-buckets adjacent to a coarse boundary
should not be included in the cluster if such points are farther away from the boundary
and appear disconnected to the cluster.

In Fig. 4 (top part), the cluster at the center is formed by aggregating 8 buckets [4,
4], [5,4], [4,5], [5,5], [6,5], [3,6], [4,6] and [5,6]. However, boundary points in low
count buckets [4, 7], [5, 7], [6, 7] and [6, 6] should be included in the cluster. When
such boundary points are included in the cluster we get better estimation of the cluster
as shown in Fig. 4 (bottom part). Now we describe a formal way of identifying points
near the coarse boundary that can be included in the cluster. Our approach is to nudge
coarse boundaries to capture proximity points in the corresponding cluster. Consider a
H-bucket adjacent to a coarse boundary as shown in Fig. 5. If a L-bucket shares an
edge with a H-bucket, then we can inspect points inside a rectangle of size 1 X 1/4 (strip
rectangle) as shown in Fig. 5 to possibly include in the cluster, where 1 is the side
length of the bucket. This is called strip nudging. If a L-bucket is adjacent to a corner of
a H-bucket then we should inspect points inside an arc of radius 1/4 and angle 3n/4, as
shown in the lower left of Fig. 5. This technique is called arc nudging.



58 L. Gewali et al.

)

1 2 3 4 5 6 7 8

Fig. 4. Aggregation and nudging

4 Results and Discussion

We generated different examples with varying number of clusters and initial repre-
sentative points to test the performance of the bucketing algorithm. To measure the
quality of the solution obtained using the bucket clustering algorithm, we used the sum
of squared error (SSE) as our objective function [3, 9].

We first calculate the squared error of each point to its closest centroid and com-
puted the total sum of the squared errors for the clusters. A small SSE means the
generated clusters better represent the points in the cluster. We calculated SSE for
clusters generated using both the standard K-means algorithm and bucketing algorithm.
The results are tabulated in Table 1.



Estimating Cluster Population 59

sirip nudging
/ .

\?1(.’ )
\ arc nudging

Fig. 5. Strip nudging and arc nudging

Table 1. Experimental Results

Method Avg. SSE Total clusters | Threshold points
K-mean (k = 4) 901703.25 | 4 N/A
Set-1

K-mean (k = 4) 907126.25 | 4 N/A
Set-2

Bucketing 24114140 1 4
Bucketing and | 24566045 1 4
Nudging

Bucketing 1279606 4 5
Bucketing and 1595448 4 5
Nudging

Bucketing 599789 4 9
Bucketing and 881676 4 9
Nudging

Bucketing 373290 3 13
Bucketing and 592832 3 13
Nudging

Bucketing 122360 2 15
Bucketing and 282545 2 15
Nudging

From the experimental results it is clear that when the threshold points are carefully
selected, the clusters obtained using the bucketing algorithm, in most cases, have either
less or almost equal SSE compared to the standard K-means algorithm. Due to the
wrong selection of threshold points, in some cases, the SSE obtained from the buck-
eting algorithm is higher than the standard K-means. Overall, the bucketing algorithm



60

L. Gewali et al.

provides almost the same or better SSE compared to original K-means. In addition,
bucketing algorithm removes the necessity of providing the number of clusters at the
beginning.

References

. Berg, M., Krevald, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:

Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

. Cormen, T.H., Lieserson, C.E., Ronald, L., Rivest, R.L., Stein, C.: Introduction to

Algorithms, 3rd edn. MIT Press, Cambridge (2009)

. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large databases.

Inf. Syst. 26(2), 35-58 (2009). MIT Press

. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of

dimensionality. In: Proceedings of STOC, pp. 604—13 (1998)

. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)
. Leskovec, J., Ullman, J.D., Rajaraman, A.: Mining of Massive Datasets. Cambridge University

Press, New York (2014)

. Lloyd, S.P.: Least square quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129-137

(1982)

. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press,

Cambridge (1998)

. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addison Wesley,

Boston (2005)



	Estimating Cluster Population
	Abstract
	1 Introduction
	2 Review of Existing Approaches
	3 Estimation of Cluster Population
	3.1 Preliminaries
	3.2 Adaptive Bucketing
	3.3 Aggregating Bucket Clusters
	3.4 Nudging

	4 Results and Discussion
	References


