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Abstract. The paper deals with the prediction of electricity demand, using data
from smart meters obtained in defined time steps. We propose the modification
of ensemble learning method called Dynamic Weighted Majority (DWM). The
data are represented by data streams. According to our experiments, the pro-
posed solution offers favorable alternative to current solutions. We also focus on
the comparison of proposed ensemble method with single predictions used in
the model.
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1 Introduction

Predicting future values is a topic that fascinates mankind for decades. Man is a curious
creature and his interest in knowing the future directly or indirectly affects his life. The
known and popular applications of prediction are the weather forecasting prediction of
growth or depreciation offinance. However, an increasingly popular area of prediction is
power load demand, which is the main goal of this paper. Due to non-stationarity and
special characteristic of dynamicity, the prediction of electricity loads is a difficult
problem. Moreover, predicting electricity loads is very important for suppliers as well as
for its customers. If it is precise, it could help companies to create major decisions about
its purchase. Using the correct prediction could also give customers an opportunity to
schedule their energy consumption, which may affect the saving of finance.

In this paper we will focus on different approaches of machine learning and data
mining algorithms. The main part will describe the proposed approach, which is based
on ensemble learning method called Dynamic Weighted Majority [12]. This method
was modified to fit and also solve our prediction problem. Ensemble learning
approaches are nowadays becoming very popular and currently they are subject to
many research works in various cases of study. Their relevance and achieved results are
one of the main motivating factors for their usage in our work.

This paper is organized as follows: Sect. 2 contains a summary of the related work.
In Sect. 3 we describe our proposed approach (the Modified Dynamic Weighted
Majority method and Dynamic Weighted Majority method with decomposition and
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parameter optimization). Description of used datasets, experimental evaluation and
results are presented in Sect. 4 and the conclusion is in Sect. 5.

2 Related Work

The prediction is based on the values measured in the past, which are used to predict
the future values. To achieve the precise prediction, it is very important to adjust the
prediction to the problem, which is to be solved. The load prediction, also known as
load forecasting, could be in general divided into three categories: short-term,
medium-term and long-term forecasts [4, 20]. The type of prediction is one of the facts,
which had to be considered before implementing the solution. The second important
fact, which should be considered, is related to the type of learning we want to use.
There are two known types of frequently used learning algorithms for the prediction.
The first one is called offline learning. In this case, the learning methods are basically
focused on datasets which are static. The arrival of any other data after training is not
expected [14]. The electricity load data are formed as data streams and they arrive in
specified time intervals meaning that the size of this dataset grows continuously. This
fact led us to analyze and use the second type of learning method that is called online
learning. Methods for this type of learning could provide i.e. lifelong learning. This
means that the models can obtain new information that can consequently be used to
adapt to new changes in data stream [14].

Over the last decades various online and offline models for improving electricity
load prediction accuracy have been developed. For example regression models [25],
methods designed for time series, ARMA and ARIMA models [16] or Holt-Winters
exponential smoothing [21]. In recent decade, intelligent forecasting models like
Support Vector Regression, Artificial Neural Networks or Expert Systems have been
developed and used [8, 20].

Till now, there is no single model which is capable to provide best forecasting
results for every kind of data. Big effort has been spend to overcome this issue.

One of the most popular methodologies used to solve this issue is called Ensemble
Learning [13]. The main idea of Ensemble Learning is that proper combination of
predictions of different base models can create more accurate result in comparison to
the result provided by the best individual model.

Recently, an interesting example of Ensemble Learning was proposed. It used a
cuckoo search algorithm to find optimal weights to combine four forecasting models
based on different types of neural networks [24]. Each neural network forecasts electric
load demand based on historical load data. The forecasting results of the combined
models were significantly improved compared to the results of the individual models.

In work [18] a Pattern Forecasting Ensemble Model (PFEM) for electricity demand
time series is proposed. It is based on the previous PSF algorithm, but uses a combi-
nation of five separate clustering models. Published results indicate that proposed
approach gives more accurate results compared to all the other five individual models.
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Another approach is proposed in work [7], where an ensemble of online regression
and option trees is introduced. Mendes-Moreira et al. provide an exhausting research on
topic of ensemble approaches for Ensemble [13].

Other successful implementation of Ensemble Learning approach is Dynamic
Weighted Majority (DWM). It was introduced by Kolter and Maloof in 2003 [12]. The
method was presented as a new ensemble method for tracking concept drifts in data
streams. It was mainly designed to solve the classification problems. In our work, we
adjust the DWM method to solve regression problems e.g. prediction of electricity
loads. During the analysis of available solutions we also found a modification of DWM
that is called Additive Expert Ensembles (AddExp) [11]. This modified method became
also one of the methods which are included in our proposed solution.

3 Proposed Method

We propose the Modified Dynamic Weighted Majority method for time series pre-
diction. This approach was chosen for its ability to adapt to changes in the distribution
of a target variable in time series data. It has a potential to obtain more accurate
prediction results than a single base prediction method.

3.1 Modified Dynamic Weighted Majority Method

Authors of the original DWM describe the main functionality of the method by four
mechanisms: (1) models of the ensemble are trained based on their performance,
(2) each model of ensemble is weighted, (3) models are removed from ensemble based
on their performance, and (4) new models are added to the ensemble based on global
performance i.e. the performance of the whole ensemble. As mentioned in previous
chapter, DWM method was until now mainly used for solving classification problems
and we could not find any described modification of this method for the prediction of
electricity loads. So we decided to modify it to fit to our problem [12]. Following
pseudo-code represents the simplified modified version of DWM method, which we
have used in our implementation.
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The pseudo-code of DWM method use the following parameters:

• β – factor for increasing/decreasing model weight
• p – number of iterations between the models removal and creation
• Λ, λ – global prediction of ensemble and local prediction of model
• wj – actual weight of model j
• win – predefined length of sliding window (e.g. number of days for training)
• traini – training data chunk of size win for iteration i
• reali�1 – data chunk of real values from previous iteration i
• predm – predicted values from model m
• h – threshold for removing experts according to their actual weights
• γ – parameter, which represents a threshold for an acceptation of expert prediction.

The DWM method begins with initialization of prediction models (lines 1–3).
During the initialization, the method sets the initial weights, trains chosen models on
the first data chunk and obtains the prediction. After the initialization phase, the method
continues in two loop cycles. The outer loop goes through the data chunks of incoming
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data stream and the inner loop passes through all models of the ensemble. For the
evaluation of local prediction (line 6), we used the mean absolute percentage error
(MAPE), which represents a frequently used prediction accuracy measure. MAPE is
defined by Eq. (1).

MAPE ¼ 1
n

Xn

t¼1

ŷt � ytj j
yt

� 100 ð1Þ

where yt is a real consumption, ŷt is a predicted load and n is a length of the time series.
Subsequently, the method evaluates the performance of current model by

increasing or decreasing its actual weight (lines 7–11). The process of increasement of
model weight is defined by Eq. (2).

wnew
j ¼ wj � ð1þ bÞ ð2Þ

The process of decreasement of model weight is defined by Eq. (3).

wnew
j ¼ wj � b ð3Þ

Then the method normalizes the models weights to an interval <0, 1> by sub-
procedure ‘Normalize_Experts_Weights’. Subsequently the global prediction of the
whole ensemble is computed by Eq. (4).

f̂global ¼
Pn

i¼1 wi � f̂i
� �

Pn
i¼1 wið Þ ð4Þ

where n is the number of prediction models in ensemble, wi is the assigned weight of
ith model and f̂i is the prediction of ith model.

If the predefined number of iterations was reached or the prediction error of the
ensemble is higher than the specified threshold (parameter h), the method proceeds into
the removal phase, where the “weak” models are removed and replaced by new created
models (line 18). Subprocedure ‘Create_New_Expert’ is used to choose new prediction
model from available set of base learners that is not presented in ensemble yet. Sub-
sequently, all models are trained on the following data chunk by subprocedure ‘Trai-
n_Expert’ (line 22).

As the base learners of our DWM method, we chose six prediction models that are
frequently used for prediction of electricity consumption:

1. Resilient Backpropagation Neural Network (NN) is an artificial neural network with
learning heuristic for supervised learning which performs a local adaptation of the
weight-updates according to the behavior of the error function [1]. Attributes to
neural network are load and lag of 3 days and training window of size 3 days. NN
used tanh activation function and sum of squares error as an error function. NN had
3 hidden layers. The number of neurons in each hidden layer and learning rate was
determined by Particle Swarm Optimization algorithm (PSO).
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2. Recursive Partitioning and Regression Trees (RT) is a method using 2 stages [2].
The first stage the model is created by splitting the data into subgroups using best
split variables. The second stage consists of cross-validation used to trim the created
tree. The attributes for RT are load and time vector. See Eqs. (5), (6) and (7).

Dayif gdi¼1 ð5Þ

Dayi ¼ 1; 2; . . .; period ð6Þ

Dayij j ¼ period ð7Þ

where period is the number of daily electric load measurements per end-user and d is
the number of days in training window. The maximum depth of final tree was set to
value 20.

3. Support Vector Regression (SVR) tries to find regression function that can best
approximate the actual output vector with an error tolerance [25]. SVR maps the
input data in to a higher dimensional feature space, in which the training data may
exhibit linearity. For this purpose various kernels are used. Attributes for SVR were
modeled as binary (dummy) variables representing the sequence numbers in
regression model. Variable equals 1 in the case when they point to the ith value of
the period, where i ¼ 1; 2; . . .; periodð Þ.

4. Seasonal decomposition of time series by loess (STL): is a method [6] that
decomposes a seasonal time series into three components: trend, seasonal and
irregular. The resulting three components are forecasted separately by ARIMA
(STL + ARIMA). ARIMA is one of the most frequently used forecasting methods
[8]. It consists of three parts: autoregressive (AR), moving average (MA) and the
differencing processes (I).

5. Exponential smoothing (STL + EXP) forecasts the future values of a time series as
a weighted average of past values [15]. The weights decay exponentially with time
as the observations get older.

6. Holt-Winters prediction method (HW) is used when the data shows not only the
trend, but the seasonality as well [23]. The additional formula and smoothing
parameter are introduced to handle the seasonality. The additive version of HW is
used.

All three methods STL + ARIMA, STL + ETS and HW receive only the load time
series.

The main differences between the original and modified version of DWM are:

• Integration function – the original version uses the result of the best model as global
prediction. In modified version, the global prediction is calculated as a weighted
average of predictions of all models in ensemble that allows solving regression
problems.

• New threshold parameter γ for an evaluation of expert prediction based on pre-
diction error.
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• The weights of models are updated at each iteration, unlike the original version,
where the weights were updated periodically after p iterations.

• Modified version of DWM starts with m prediction models. The original version
starts with one model.

3.2 Dynamic Weighted Majority with Decomposition

In addition to the modified DWM described in previous section, we have proposed
further modification of this method. The main difference lies in decomposition of the
time series. Each part of incoming data stream is represented as a time series that can be
further categorized to three types of time series patterns: trend, seasonal and cyclic [3].
Our method is based on the prediction of each of these patterns using different pre-
diction model. Obtained results can be then combined to one final prediction. There-
fore, from six models, which were used as prediction models in modified DWM,
variations of size three without repetitions were created. As the result we have created
120 different variations where each one represents one predictive model. We suppose
that the prediction of each part with different model could lead to higher probability to
create a better model, whose prediction error will be lower than error of previous six
models. Results of this proposed method (named as DWM+) can be found in evalu-
ation chapter.

In this case, we have used the method of additive expert ensembles with its core
functionality based on classical DWM. This method was proposed in 2005 by the same
authors as the original DWM method [14]. The main difference lies in modified
training process of models that are currently included in ensemble. However, in
original DWM method, each predictive model learns i.e. updates its learned informa-
tion every time when the new data chunk of data stream arrives. Here comes the main
question: Why are we updating the learned information, if the last prediction error was
low?

In this modified version, we re-train only those models, whose prediction error from
the last iteration is higher than defined threshold i.e. an acceptable error rate was
achieved. We have used other models, which had prediction error under the threshold,
in iteration with previously learned information.

As the name of method AddExp already suggests, another feature of this method is
based on adding new models to the ensemble. In our proposed method, we add a new
model to ensemble every time when the prediction of the whole ensemble i.e. global
prediction exceeds the defined threshold. New added model will be trained for the first
time on new data chunk and this prediction can help the whole ensemble to decrease
the global prediction error.

3.3 Technical Issues

After the implementation and initial testing of this method, we encountered the problem
of the rapid increase in the number of models over the longer term prediction (e.g.
prediction for the one-year period). This problem significantly affects the time and
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space complexity of this method. To solve this problem, we have suggested a pruning
method which is based on following two parameters: maximal number of models in
ensemble and pruning threshold. The pruning method is applied every time when the
size of ensemble reaches the defined maximal value. After that, all models, whose
prediction error from the last iteration was higher than pruning threshold, were
removed from the ensemble. Removed models were then replaced by new models that
were chosen by proposed heuristic. This heuristic relies on choosing the best predictive
models from the last iteration of method i.e. iteration where the last models have been
removed. The main idea of this heuristic is to add models with better results in com-
parison with the results of removed models. So, if the number of better models is lower
than number of removed models, it is not necessary to preserve the original number of
models. Pruning will be applied again when the size of ensemble reaches the maximum
number of models.

During implementation and initial testing of proposed method and predictive
models, we used recommended configuration parameters, described in the studied
papers [10, 11, 15, 19]. The electricity load forecasting represents a special type of
prediction problem therefore we decided to optimize parameters of DWM method and
its modified version AddExp, to fit our electricity loads dataset exactly.

To perform the optimization task, one of the Biologically Inspired Algorithms
(BIA), called Particle Swarm Optimization (PSO), was used. The main reason of
choosing the BIAs is their excellent ability to optimize various problems. This
approach can lead to solving the optimization problem in a different way in comparison
to classical optimization methods [5].

3.4 Optimization of Parameters by Particle Swarm Optimization

PSO algorithm represents a popular biological inspired method, which is frequently
used for optimization problems. More information about this algorithm and used
implementation library could be found in [9].

Before the optimization of DWM parameters took places, we decided to optimize
parameters of neural network predictive model [17]. The main reason for the opti-
mization of this model was its high time complexity that was needed in order to obtain
the prediction. Optimized parameters include: number of hidden neurons and hidden
layers, interval for learning rate of network and threshold for stopping criteria.

Figure 1 shows a comparison of an optimized version of model to a neural net
model with default parameters. The comparison is based on the average execution time.

The time interval, which was chosen for the optimization task of this model,
represents one month period of predictions. During this period, PSO algorithm was
optimizing the obtained results in terms of execution time and prediction error i.e.
MAPE. The x axis in Fig. 1 represents selected end-users from our dataset. The y axis
shows an average time of execution for described time period. As we can see, the
optimization by PSO algorithm helped the neural network to decrease the execution
time for some end-users more than fifteen times. It is important to mention that this
time reduction also helped to improve the whole ensemble of predictive models. Then
we continued with optimization of DWM method and its modified version.
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The Fig. 2 shows the obtained results from optimization of proposed DWM
methods for the same period as previously optimized neural network model. We have
optimized following parameters: decrease/increase factor for model weights, prediction
acceptance threshold and parameter representing initial ensemble size. In Fig. 2 the x
axis represents the tested methods and the y axis shows the mean absolute percentage
error of prediction. Except the time reduction, the optimization brought also a moderate
decrease of prediction error. The results indicate that the prediction error of the opti-
mized version was reduced in some cases by more than one percent in comparison to
original method.

Fig. 1. Average execution time of prediction for 4 end-users using neural network optimization

Fig. 2. MAPE of AddExp and DWM methods optimized by PSO
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4 Evaluation

In this chapter we focus on comparison of errors between the predictions of three
modifications of original DWM method and six base predictive models. Before we
describe the designed experiments and results, we focus on electricity loads dataset
used in our study.

4.1 Data Description

Dataset used in this paper is represented by electricity load records of Slovak com-
panies from 1.7.2013 to 16.02.2015. These records were obtained by smart meters that
send information about the actual electricity consumption every 15 min. Our dataset
consists of ca. 490mil records from 21 502 different end-users.

Records in a modified version of the dataset contain the following attributes: date,
time and electricity load.

The whole dataset was transformed to a stream of chunks where each part repre-
sented one shift of sliding window for 96 records i.e. one day load records.

Figures 3 and 4 represent the comparisons of all predictive models that were used
in this study. For the purpose of testing we have chosen two different time periods from
the data set. Figure 3 shows results from one month prediction and Fig. 4 represents
the results obtained from prediction of one year period. For better evaluation of the
results, we also provide a numeric comparison, which can be seen in Table 1.

As we see, prediction errors obtained from one year period are higher than pre-
diction errors obtained from shorter period i.e. one month. This fact was caused mainly
due to the presence of concept drifts that occurred in this one year period. However, in
both tested time intervals, all three modified versions of original DWM reached the
lowest prediction errors in comparison to other predictive models. This result repre-
sents a main achievement of this evaluation, which was based on the assumption that
ensemble methods could obtain more precise prediction than single models. The
modified method AddExp, which represents an extended version with a decomposition
of time series, reached the lowest prediction error.

Fig. 3. Comparison of all tested predictive models (month prediction)
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Based on further investigation of obtained predictions, we also provide a study on
prediction error progress on previous one month interval.

In Fig. 5 we can see a more detailed view of prediction error progress of six
models. Graphs on the left side represent the implemented methods based on DWM.
Graph on the right side represent the error of three models, whose error development
compared to previous methods looks more irregular. This fact can also be seen in
Table 2 that represents a histogram of models used during the one year prediction. The
methods with lowest prediction errors are preferred mostly and therefore they are
frequently used.

In Table 2, we can see three models that were characterized by their irregular error
development in Fig. 5. They were also less used in original DWM, where all parts of
time series are predicted by same model. On the other hand, we can notice that these
same three models were the most common in AddExp method. This fact proves the
following statement: Predictive models ARIMA, Holt-Winter and model of exponential
smoothing achieve better prediction results, if they predict only a part of time series
than a whole data stream chunk. This statement could lead to reverse fact that the
predictive models like Regression tree and Support Vector Regression model can be
more frequently used in AddExp model in case they are a part of ensemble, where they

Fig. 4. Comparison of all tested predictive models (year prediction)

Table 1. Obtained results of Mean Absolute Percentage Error (MAPE)

Name of predictive model MAPE (%) month MAPE (%) year

Additive Expert Ensembles (AddExp) 3,86 7,62
ARIMA (AR) 5,59 9,34
Dynamic Weighted Majority (DWM) 4,04 7,83
Dynamic Weighted Majority with decomp. (DWM +) 4,28 8,55
Exponential Smoothing (EXP) 5,71 9,30
Holt-Winters (HW) 6,45 9,88
Neural Network (NN) 4,97 9,10
Regression Tree (RT) 4,40 8,87
Support Vector Regression (SVR) 4,84 8,81
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could predict all three parts of time series. Consequently, this fact can lead to a
reduction of prediction error of AddExp method.

5 Conclusion

In this paper, we proposed three modifications of original Dynamic Weighted Majority
method that were applied as a solution to prediction problem of electricity load records.
We also focused on decomposition of time series, optimization of parameters by PSO
algorithm, or modifications based on extension of original DWM method with the aim
of further prediction accuracy improvement.

The results of proposed solutions were compared to six predictive models. Tested
models were compared by their prediction error that was represented by Mean Absolute
Percentage Error metric. The prediction was performed for two different time intervals

Fig. 5. Prediction error progress (month prediction)

Table 2. Histogram of models usage

Model name AddExp
decomposition

AddExp DWM

Trend Season Cyclic Sum Sum

AR 655 481 386 1522 72
EXP 568 460 458 1486 93
HW 450 636 616 1702 60
NN 55 82 25 162 102
RT 470 447 508 1425 104
SVR 359 451 564 1374 106
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from dataset. In all tested cases, which were applied, the proposed methods achieved a
lower prediction error than other prediction models. The best results i.e. the lowest
prediction error or most regular error development, were reached by method
AddExp. We believe that further improvements of this method could be reached by
applying described modification of models variations in time series decomposition.
Additional modifications could be a subject of future work of our study. The accuracy
of proposed ensemble could be improved by developing a mechanism to keep the
threshold values and models input settings continuously up-to-date.

Our modified ensemble learning methods i.e. DWM, DWM + and AddExp method
proved their suitability for solving the electricity power load demand predictions. The
proposed method is applicable generally for the time series prediction problems in
various domains.
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