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Abstract. In this paper, we apply Restricted Boltzmann Machine and
Subspace Restricted Boltzmann Machine to domain adaptation. More-
over, we train these models using the Perturb-and-MAP approach to
draw approximate sample from the Gibbs distribution. We evaluate our
approach on domain adaptation task between two image corpora: MNIST
and Handwritten Character Recognition dataset.
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1 Introduction

Typically, in machine learning it is assumed that training and test samples are gen-
erated from the same underlying distribution. However, very often these two sam-
ples are drawn from the training (source) distribution that is similar (e.g., in the
sense of the Kullback-Leibler divergence) but not the same as the test (target) dis-
tribution). Furthermore, in many real-life applications, a source sample becomes
out-dated and there is a need to adapt a model to the target domain. For exam-
ple, in handwriting recognition there could be a vast of data from different users
but the target distribution would correspond only to a specific user that possesses
her own writing style. A recognition system, however, should quickly adapt to that
user using a small amount of new data. It is worth stressing out that in the con-
sidered setting the source data is no longer available and we assume that the only
information preserved from the source domain is the model itself. This assump-
tion holds true in many real-life applications where we cannot afford to store and
transform a large amount of training data, e.g., on mobile devices.

The problem of domain adaptation becomes an important direction in current
machine learning research [12]. The increasing interest in this issue is brought by
modern applications, such as, natural language processing [3], sentiment analysis
[7], text categorization [16] or image categorization [24]. Moreover, the ability to
learn in an unsupervised manner and adapt to new problems using small samples
is a distinctive trait of the human brain. Therefore, the domain adaptation seems
to be one the most important means for formulating artificial intelligence [2].
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There are different approaches to the domain adaptation. One solution is to
train a model using a sample from the target domain with a kind of regularizer
utilizing the sample from the source domain, e.g., by using Maximum Mean
Discrepacy [16]. A different but similar approach aims at regularizing parameters
of the model using the parameters estimated on the source domain. In [3,24] the
model was regularized using �2-norm and in [14] it was further generalized and
shown that from the Bayesian perspective the regularizer takes the form of the
Kullback-Leibler divergence. In [1] conditions for learning a classifier for domain
adaptation were provided that led to formulating an upper-bound combining
source and target data. However, in many cases it remains unclear what kind of
a regularization term should be proposed to adapt to new domains.

Another popular research direction is instance weighting. A simple modifica-
tion of the risk functional for given loss function reveals that learning a model
with domain adaptation relies on weighting instances from the target domain by
the probability of these instances using the source distribution [12]. The manner
these distributions are estimated leads to different methods. For example, one
of them applies an optimization perspective and solves a minimax optimization
problem [15]. Although, the instance weighting-based methods are theoretically
well-motivated, they require maintaining the source sample and thus could be
very time consuming.

Recently, a very promising approach is representation adaptation (or repre-
sentation transfer) that utilizes hierarchical (deep) representation that contains
information about different domains. First methods utilized probabilistic graph-
ical models to combine source and target domains [5], however, these required
fixed structure for the domains. More flexible approach was about augmenting
feature representation for new domains [4]. Lately, deep learning gives the most
promising results. The general idea is to apply deep neural networks that can
share features among domains [6,7,26].

In this paper, we follow this line of thinking. However, we go beyond directed
neural networks like auto-encoders [7] or convolutional neural networks [6,26]
and utilize generative models, namely, Boltzmann Machines [11]. We aim at ver-
ifying whether adapting to new domain is possible using Restricted Boltzmann
Machine [20] and its recently proposed modification, Subspace Restricted
Boltzmann Machine [23], without any additional techniques for domain adapta-
tion. In other words, we want to quantify to which extent these models provide
representation transferable to new domains. Additionally, we apply new learn-
ing procedure for the two mentioned Restricted Boltzmann Machines using the
Perturb-and-MAP (PM) approach [18]. The basic idea of the PM approach is to
perturb the parameters of the model, and then, starting from the training data,
to find the local optima of the energy function using and optimization method.
This procedure produces approximate samples from the Gibbs distribution that
can be further used to approximate the gradient.

The contribution of the paper is threefold:

– We apply Restricted Boltzmann Machine and Subspace Restricted Boltzmann
machine to unsupervised domain adaptation task.
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– We utilize the Perturb-and-MAP approach to learning Subspace Restricted
Boltzmann Machine.

– We propose an evaluation metric for the domain adaptation in the fully unsu-
pervised setting (i.e., there are no labels available from source and target
domains).

The paper is organized as follows. First, in Sect. 2 we formulate the problem
of domain adaptation. Next, we outline Boltzmann machines used in the paper in
Sect. 3. Further, we describe a new learning schema for the Subspace Restricted
Boltzmann Machine basing on the Perturb-and-MAP approach in Sect. 4. The
presented approaches are evaluated in Sect. 5 using MNIST dataset [13] and
Handwritten Characted Recognition dataset [25]. At the end, the conclusions
are drawn in Sect. 6.

2 Unsupervised Domain Adaptation Problem

Let us define a data space X and a distribution P (x) where x ∈ X . The objective
of (unsupervised) machine learning is to learn a hypothesis (a model) h(x) basing
on N training data {xn}N

n=1. We define a domain as a pair D =
(X , P (x)

)
. Fur-

ther, we distinguish a source domain DS and a target domain DT . We formulate
the problem of domain adaptation as follows:

Given a source domain DS and a target domain DT such that PS(x) �= PT (x),
and a model hS(x) trained using examples from DS , the domain adaptation aims
to learn h(x) using a sample from DT that transfers knowledge from hS(x) and
makes as small errors on both DS and DT as possible.

There are different definitions of the domain adaptation (see, e.g., [12,16]),
however, in this paper we focus on a fully unsupervised problem statement.
Moreover, we would like to emphasize that in our definition we have access to
the source domain through the model hS(x) only. This forbids an application of
a technique that takes advantage of examples from the source domain (see, e.g.,
[16]). Therefore, a beneficial approach would be to transfer representation from
source to target domain, e.g., by applying deep learning [26].

3 Boltzmann Machines

A general Boltzmann machine (BM) is defined through a Gibbs distribution and
an energy function that describe relationships among random variables.

Restricted Boltzmann Machine. The binary Restricted Boltzmann Machine
(RBM) is a bipartite BM that defines the joint distribution over binary visi-
ble and hidden units [21], where x ∈ {0, 1}D are the visibles and h ∈ {0, 1}M

are the hiddens. The relationships among variables are specified through the
energy function:

E(x,h|Θ) = −x�Wh − b�x − c�h, (1)

where θ = {W,b, c} is a set of parameters, W ∈ R
D×M , b ∈ R

D, and c ∈ R
M .
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We can train RBM using the maximum likelihood approach that seeks the
maximum of the averaged log-likelihood. However, since the partition function
(i.e., normalizing constant) in the Gibbs distribution requires summing over
exponential number of configurations, an application of a gradient-based opti-
mization methods is troublesome. Therefore, RBM are trained using some kind
of gradient approximations like in the contrastive divergence (CD) algorithm
that applies T steps of the block Gibbs sampling [10].

Subspace Restricted Boltzmann Machine. The sRBM introduces third-order mul-
tiplicative interactions of one visible xi and two types of hidden binary units, a
gate unit gj and a subspace unit sjk. Each gate unit is associated with a group
of subspace hidden units. The energy function of a joint configuration is defined
as follows [23]:

E(x,h,S|θ) = −
D∑

i=1

M∑

j=1

K∑

k=1

VijkxigjSjk −
D∑

i=1

bixi −
M∑

j=1

cjgj −
M∑

j=1

gj

K∑

k=1

DjkSjk. (2)

where x ∈ {0, 1}D denotes a vector of visible variables, g ∈ {0, 1}M is a vector
of gate units, S ∈ {0, 1}M×K is a matrix of subspace units, the parameters are
θ = {V,b, c,D}, V ∈ R

D×M×K , b ∈ R
D, c ∈ R

M , and D ∈ R
M×K .

The sRBM can be seen as a mixture of many simple RBMs, where gate
units allow to activate or deactivate subsets of hidden units (subspace units).
We believe that these third-order relationships allow to better reflect domain
adaptation by maintaining information about domains in different small RBMs.

4 Perturb-and-MAP Learning Algorithm

The idea of the Perturb-and-MAP (PM) approach is about first adding i.i.d.
Gumbel perturbations to the energy function and next finding the MAP config-
uration that is a sample from the original Gibbs distribution [18]. Nevertheless,
since the domain of visibles and hiddens in RBM and sRBM grows exponentially
with the number of variables, it is troublesome to find the MAP assignment of
the perturbed energy efficiently. Therefore, first order (low-dimensional) Gum-
bel perturbations are often employed to obtain an approximate sample [8,17,22].
Then the joint perturbation is fully decomposable into a sum of perturbations
and it corresponds to perturbing unary potentials (i.e., biases) only [8,9,18].
Further, we denote Gumbel perturbation for value z by γ(z).

The manner of how the MAP configurations are found is crucial for learning
process. Since finding MAP solutions is run for each example in a mini-batch, the
method cannot be computationally complex. In [19] it was proposed to obtain
samples from the RBM by first perturbing the unary potentials, and further,
starting from a data point, applying block coordinate descent to optimize the
energy function (Perturb-and-Descent, PD). The procedure for sampling from
RBM is presented in Algorithm 1.1

1
I[·] denotes the indicator function, and � is the element-wise multiplication.
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Algorithm 1. Perturb-and-Descent for RBM
Input : x(0): training datum, T : number of optimization steps
Output: {x̂(T ),h(T )}: approximate MAP solutions of the perturbed energy
for i = 1, . . . , D, j = 1, . . . , M do

b̃i = bi + γ(xi = 1) − γ(xi = 0);
c̃j = cj + γ(hj = 1) − γ(hj = 0);

end
for t = 1, . . . , T do

x(t) = I[Wh(t−1) + b̃ > 0];

h(t) = I[W�x(t) + c̃ > 0];

end

return {x̂(T ),h(T )};

In the context of the sRBM the PD algorithm takes the similar form and is
presented in Algorithm 2.

Algorithm 2. Perturb-and-Descent for sRBM
Input : x(0): training datum, T : number of optimization steps
Output: {x̂(T ),g(T ),S(T )}: approximate MAP solutions of the perturbed

energy
for i = 1, . . . , D, j = 1, . . . , M and k = 1, . . . , K do

b̃i = bi + γ(xi = 1) − γ(xi = 0);
c̃j = cj + γ(gj = 1) − γ(gj = 0);

D̃jk = Djk + γ(Sjk = 1) − γ(Sjk = 0);

end
for t = 1, . . . , T do

x(t) = I[
∑M

j=1

∑K
k=1 V·jkg

(t−1)
j S

(t−1)
jk + b̃ > 0];

g(t) = I[
∑D

i=1

∑K
k=1 Vi·kx

(t)
i S

(t−1)
jk + c̃ +

∑K
k=1 D̃·k � S

(t−1)
·k > 0];

S(t) = I[
∑D

i=1

∑M
j=1 Vij·x

(t)
i g

(t)
j +

∑M
j=1 g

(t)
j D̃j· � S

(t−1)
j· > 0];

end

return {x̂(T ),g(T ),S(T )};

5 Experiments

Data and Training Details. We use two datasets in the experiment: Handwritten
Character Recognition (HCR) [25], and MNIST [13]. MNIST contains handwrit-
ten digits of size 28 × 28, and HCR consists of images of digits and letters2. We
split HCR into 24,000 training images, 8,134 test images, and remaining 8000
images formulate validation set. MNIST is divided into 50,000 training images,
10,000 validation images, and 10,000 test images (Fig. 1).
2 The original HCR is scaled to fit MNIST images.
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Fig. 1. Exemplary images from: (a) MNIST, and (b) HCR.

In the experiment we consider RBM with 500 hidden units and sRBM with
100 subspace units and 5 gate units to have comparable number of parameters.
We consider learning rate in {0.1, 0.01}, weight decay in {0, 10−6, 10−5, 10−4},
momentum equal 0.9 and optimization steps (or Gibbs sampler steps) in
{1, 5, 10}. The hyperparameters are chosen using the validation set. Addition-
ally, we apply early stopping with 30 look ahead steps. We train a model on
first domain and once the training process converges, we switch the domain and
proceed learning.

Evaluation Methodology. Our basic evaluation criterion is the negative recon-
struction error (cross-entropy):

ε(D) =
N∑

n=1

D∑

d=1

(
xn,d log x̃n,d + (1 − xn,d) log(1 − x̃n,d)

)
, (3)

where D is a dataset, xn is an original image and x̃n is its reconstruction.
We measure the reconstruction error at different timestamps during learning:
(i) after learning the first domain (SWAP), and (ii) at the end of training on
the second domain (END). In order to measure the quality of a model on the
domain adaptation task we define a domain adaptation accuracy as follows.
The reconstruction error of a model that was first trained on Di and further
learned on Dj and eventually evaluated on Di is denoted by εi→j(Di). In order
to be invariant to specific domain error, we introduce a baseline model, multiple
Bernoulli distribution with pixel probabilities calculated on the training data.
The reconstruction error on dataset Di for baseline is denoted by εb(Di). The
domain adaptation accuracy is then calculated as follows:

α(Di → Dj) =
1
2

(εb(Di) − εi→j(Di)
εb(Di)

+
εb(Dj) − εi→j(Dj)

εb(Dj)

)
. (4)
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Table 1. Reconstruction errors and domain adaptation accuracy.

MNIST → HCR SWAP END Domain adaptation
accuracy

HCR MNIST HCR MNIST

RBM-CD 159.1 ± 0.9 61.4 ± 0.2 32.9 ± 0.4 73.4 ± 0.4 76.6 % ± 0.1

RBM-PD 163.4 ± 2.0 41.8 ± 0.1 40.0 ± 0.1 45.6 ± 0.6 82.0 % ± 0.1

sRBM-CD 197.7 ± 8.9 42.2 ± 0.4 50.5 ± 0.6 55.3 ± 1.1 77.9 % ± 0.3

sRBM-PD 202.5 ± 4.0 47.3 ± 0.1 49.2 ± 0.8 55.3 ± 0.7 78.1 % ± 0.1

HCR → MNIST SWAP END Domain adaptation
accuracy

HCR MNIST HCR MNIST

RBM-CD 29.6 ± 0.4 71.2 ± 0.2 109.6 ± 6.3 62.4 ± 0.1 65.9 % ± 0.1

RBM-PD 36.6 ± 0.4 42.6 ± 1.0 110.6 ± 2.4 44.3 ± 0.3 70.1 % ± 0.1

sRBM-CD 43.6 ± 0.2 52.0 ± 0.7 152 ± 10.2 43.1 ± 0.7 63.1 % ± 1.7

sRBM-PD 48.2 ± 0.3 55.3 ± 0.7 130.2 ± 9.9 47.3 ± 0.7 66.0 % ± 0.1

Results. The reconstruction errors and the domain adaptation accuracies are
presented in Table 1.3 The baseline achieves the following reconstruction errors:
(i) HCR: 288.2, (ii) MNIST: 206.8. We present sampling capabilities of the con-
sidered methods in Fig. 2.

Fig. 2. Sampling using RBM and sRBM: (top row) HCR→MNIST, (bottom row)
MNIST→HCR. In each figure the most left column contains real images.

3 RBM and sRBM trained with contrastive divergence (CD) and PD are denoted by
RBM-CD and sRBM-CD, and RBM-PD and sRBM-PD, respectively.
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6 Discussion and Conclusion

In general, we notice that sRBM performs similarly to RBM, however, RBM
has tendency to overfit to the first domain while the sRBM has problems with
learning HCR (see Table 1). However, application of the PD training seems to
help RBM to adapt to new domain by obtaining the best domain accuracy. This
effect is less evident for sRBM. We hypothesize that sampling using PD approach
allows to obtain more diverse examples during training and that is why the model
does not drastically overfit to the first domain. We believe that similar result
could be obtained for sRBM, however, in order to compare RBM with sRBM
we chose the number of hidden units to be the same in both models but 5
gate and 100 subspace units could be too small amount to properly reconstruct
images. Next, a closer inspection of the sampling capabilities of the considered
approaches reveals that sampling with PD indeed results in more diverse sample.
It seems that application of CD leads to copying training images while PD gives a
model that generates more various images, e.g., see letter S and digit 6 in Fig. 2e
and f. Interestingly, sRBM trained with CD and PD allows to obtain more diverse
examples than the ones from RBM-CD. Concluding, we notice that the learning
procedure clearly matters in the domain adaptation using RBM, nevertheless,
the obtained reconstructions are still imperfect. An open question is whether
application of deeper BM is enough to handle the domain adaptation problem
or other optimization techniques are needed. We leave investigating this issue
for further research.
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