
Layered Reconfigurable Architecture
for Autonomous Cooperative UAV

Computing Systems

Grzegorz Chmaj(&) and Henry Selvaraj

University of Nevada, Las Vegas, Las Vegas, USA
{grzegorz.chmaj,henry.selvaraj}@unlv.edu

Abstract. Cooperative processing in UAV swarms requires efficient architec-
tural and algorithmic solutions to maximize the operational speed and life time
span. Solutions need to include communication, data gathering, data processing
and general management. In this paper, we address all these needs and we also
present a reconfigurable approach to the UAV swarm cooperative processing
with maximum extent of decentralization. UAVs with multiple devices (such as
cameras, radars), and multiple processing units (CPUs and reconfigurable
FPGAs) onboard are considered. We present main elements of the architecture
and two reconfiguration algorithms used in the process of management of FPGA
chips. Results are evaluated using the dedicated simulation framework and
demonstrate the efficiency of the proposed solutions.

Keywords: Reconfigurable � Autonomous � UAV � Cooperative � Computing

1 Introduction

One of the main needs that appear in today’s world of interconnected devices is to be
able to throw the application onto some processing structure that might be unknown at
that time, and let the structure do the processing according to the application specifi-
cation. This type of process exists both in stationary powered and battery powered
systems. In both cases minimizing the operational electrical energy expenditure is
important, however in the latter case it is often critical. Application Specific Integrated
Circuits are most efficient when it comes to processing power and efficiency, however
they are tied to the specific functions or applications that makes them hard to use in
universal systems. Reconfigurable FPGA (Field Programmable Gate Array) chips offer
the way to program their structure with user-defined design, therefore becoming
application-specific chip with very good efficiency. In our research, we focus on the
UAV-based cooperative computing systems [1, 2]. They operate on battery power or
onboard combustible engines, what makes their energy consumption critical, especially
during missions. Decentralization is another issue that must be considered [3]. These
are systems working in the field that are distant from the base station, thus they should
not rely on one main component, as if it would become inoperable and render the entire
swarm down [4]. Next key factor is the flexibility of the UAV swarm. Typically each
vehicle is equipped with some extra sensing devices such as cameras, radars etc., they

© Springer International Publishing AG 2017
J. Świątek and J.M. Tomczak (eds.), Advances in Systems Science, Advances in Intelligent
Systems and Computing 539, DOI 10.1007/978-3-319-48944-5_15



also must have computing capabilities. Use of general purpose CPUs is not efficient for
heavy computations required to process the massive amount of data coming from the
sensing devices. Therefore, we are using FPGAs to program them with the designs that
are currently required, to get efficient processing. They can be reprogrammed for other
uses anytime, also on the fly reprogramming is supported and is one of key factors of
the electrical efficiency of our proposed architecture.

Multiple reconfigurable systems exist. A comprehensive survey of them, including
features, challenges, concepts, and applications is presented in [5]. Work presented in
[6] shows the development methods and tools used in embedded reconfigurable sys-
tems. The reconfigurable computing design patterns are described in [7]. [8] provides a
general overall description of reconfigurable systems, together with the characteristics
of reconfigurable logic. Spatial computation, configurable data path, distributed control
and distributed resources were stated as the fundamental differences between traditional
processing architectures and reconfigurable logic approach. Authors of [9] present the
methods of workload distribution over processing resources, which are considered to
be multi-core CPUs, GPUs (Graphical Processing Units), PPU (Physics Processing
Unit) and FPGAs, among others. Presented work focuses on handling applications’
requirements in the high-level design process, including the identified concurrencies
used to achieve load balancing and efficient task distribution. The behavior of dis-
tributed reconfigurable systems is often researched using simulation frameworks.
Results in [10] include modeling complex reconfigurable nodes, processor configura-
tions and tasks along with general purpose processors and offers multiple metrics for
the evaluation. [11] presents the Open Control Platform for reconfigurable distributed
control systems that provides the coordination of distributed interaction among hier-
archically organized units, and supports the dynamic reconfiguration.

2 System Operation

2.1 Layered Architecture

In order to achieve maximum flexibility in operation, and also in possible redesign of
the system – the presented architecture is proposed to be using the layered approach.
The following layers are used: (1) application (2) processing (3) units (4) communi-
cation. The application is defined only at its level, and does have no knowledge about
lower layers. The processing layer analyzes the application and manages the processing
(control, coordination, results). The processing layer uses units as processing resources:
sends the tasks and collects results related to these tasks. Units use the underlying
communication layer to exchange information and do any communication. Each layer
is connected to others with interfaces. Such layered structure allows replacing any layer
without modifying the remaining layers (e.g. using communication layer as TCP/IP,
Bluetooth, ZigBee etc., or using the same application on various systems). The pro-
posed layered structure is shown in Fig. 1.

154 G. Chmaj and H. Selvaraj



2.2 General Structure

The cooperative computing system consists of V multiple units v that are autonomous
with their decisions, i.e. the role of the centralized algorithm is minimized. Therefore,
there is a need to design autonomous local algorithms that will control the local unit
operation to the maximum extent. The decision making includes two cases: (1) deci-
sions are taken just based on the local data, without getting the remote data (2) deci-
sions are taken based on local and remote data (remote data must be fetched). The
general operation of the system is depicted in Fig. 2. Two main phases are indicated:
DP_PHASE_INIT and DP_PHASE_OPERATION.

During the DP_PHASE_INIT stage, the initial setup is done: the entry point is
created, roles are assigned to units with the particular special role ROLE_CONTROL.
This makes the cooperative system set up and ready for DP_PHASE_OPERATION.
During 2nd phase, each unit can register an application that will be further processed on
multiple units that participate in the group. The system allows each unit to register its
own application, therefore there may be multiple applications running in the system
concurrently, and each unit may process many different tasks belonging to different
applications. System operates until the defined end condition is satisfied. During
DP_PHASE_OPERATION roles of the units can be changed and/or reassigned.

Fig. 1. Layered structure

Fig. 2. The general system operation

Layered Reconfigurable Architecture for Autonomous Cooperative 155



Application is defined as a set of tasks, functions and data A = {T, F, D}. Functions
operate on data, and are coordinated by operations. Data is not continuous and divided
into data parts (if possible). This way such application can be executed in a distributed
manner, where multiple functions can be executed on multiple units, and operate on
various data parts. An example of such application A is the target location application
(TLA) for UAV mission team. Set of functions: f1 = capture camera image,
f2 = capture IR camera image, f3 = read radar data, f4 = read GPS data, f5 = re-
quest information from the other unit, f6 = analyze terrain image, f7 = analyze IR
terrain image. Set of tasks: t1 = determine position, t2 = analyze terrain fragment,
t3 = validate terrain fragment with peers, t4 = determine the next search area for the
team. UAVs are the units and are equipped with various electronic devices (cameras,
GPS, radars etc.). As mentioned earlier, the ROLE_CONTROL must be present at least
at one unit that serves as the database and control during the mission. A unit that starts
the target location application (not necessarily the ROLE_CONTROL), registers the
TLA at ROLE_CONTROL and therefore gets the ROLE_TASK_OWNER assigned.
Remaining units that have ROLE_BASIC by default, also know the ROLE_CON-
TROL unit and get the information about TLA application from it. Further, they
communicate directly with the task owner of the TLA and get the functions to execute
according to their local resources (e.g. function f2 can be executed only at the unit that
has the IR camera installed). The proposed DPRS architecture allows dynamic (re)
assignment of the functions during the operation. Given unit v1 can execute task t2
using functions f1, f4 and f6 at the time T, finish t2 execution at the time T + T1 and then
start the execution of task t4 at the time T + T2. This minimal set of operational
elements provides a great flexibility required for the heterogeneous environment of
cooperating units.

Each unit is considered to be a device with the processing capability (e.g.
embedded system, PC computer, IoT device etc.). The processing capabilities are
nowadays appearing in the form of multiple processors controlled by one operating
system (server hardware, but also other architectures), processors with multiple cores,
or single-chip single-core processor that is logically divided into processing threads by
the operating system. Therefore, the unit v considered in this work is modeled as the
device equipped with multiple processing devices – processors p such as CPUs, DSPs
etc. These processors are general purpose – i.e. they are not designed for any specific
application. The proposed approach allows using the reconfigurable FPGA chips,
which can be programmed with some specific functions and thus becoming the
application-specialized chips then. Hardware FPGA chips available on the market are
programmed with bitstreams that are compiled hardware designs and model the
hardware structure. This way, programming an FPGA reflects modeling its internal
hardware structure. Market solutions also allow reprogramming on the fly, multiple
functions can be programmed at the same time (if the internal chip space is sufficient)
and chips handle thousands of reprogramming cycles. All these features are used in the
proposed architecture.

Tasks are modeled as XML files that describe the relations between functions and
data, also how the results are used. XML is also used to model any data structure in the
system and all the relations. Functions f can appear in two forms: (1) programs com-
piled to the binary executable code (multiple platforms allowed) (2) definition in the

156 G. Chmaj and H. Selvaraj



form of script program (Ruby, Python, and similar). If a unit executes the processing of
task t, it must fetch the functions required by this task – in the form that matches unit’s
architecture. For the FPGA processing devices, executing a function f in such device
p requires programming the device p first, using the bitstream representing the function
f. Application-specific programmed FPGAs provide more efficient processing, however
require time and other resources to get the bitstreams and program them into the chip
structure. Each unit is autonomous, but is participating in the team and cooperates with
others units. This mechanism, along with the application structure as described above
provides a cooperative processing structure with maximum flexibility, able to process
multiple applications in the distributed manner with minimum centrality (thus more
reliability for failures). The proposed system is especially useful for systems where:
(1) several units have different capabilities and need to part and join the team structure
constantly (UAV missions); (2) structures with multiple concurrent applications that
need to be often switched / turned off / resumed, and benefit from efficient matching the
structure to current application / needs (Internet of Things structures).

2.3 Reconfiguration

Each unit runs multiple processes, also each role assigned to the unit is served by one
or more process. The very top-level scheme of the node operation is shown in Fig. 3.
Two phases already described before (NODE_PHASE_INIT and NODE_PHASE_R-
OLES) present the operations that unit performs when the entire system remains in
these stages. The NODE_PHASE_SCHEDULER is used to execute all the scheduled
operations that are not part of schemes /algorithms. Such operations include, among
others: leaving the system, new role assignment, role drop, etc. Operations may be
scheduled anytime in the advance. The focus of the presented work is the reconfigu-
ration schemes their energy cost.

Figure 4 presents the operational scheme for ROLE_RECONFIGURABLE, that is
assigned to every unit that is equipped with FPGA chip(s). The scheme assigned to
ROLE_RECONFIGURABLE works as follows for processor p. The reconfiguration
algorithm AL_RECONFIGURE_FPGA is executed regularly for p, and the period of
the execution is determined by RECONFIGURATION_PERIOD value. RECONFI-
GURATION_PERIOD value can be either determined once, before the system

Fig. 3. Top-level operation of the unit

Layered Reconfigurable Architecture for Autonomous Cooperative 157



operation starts, or changed dynamically during system operation. In the work pre-
sented in this paper, the former way is used. The variable reconf_counter is set to
RECONFIGURATION_PERIOD and then decremented each time the ROLE_R-
ECONFIGURE_FPGA scheme is executed. Once the value reaches zero, the algorithm
performs the reconfiguration attempt.

If reconf_counter = 0, but the related FPGA processor still executes a function, then
the procedure waits till the function execution ends. Once the reconfiguration attempt is
started, the AL_RECONFIGURE_FPGA algorithm is executed to determine if the
reconfiguration should be done for the processor. This determination is done based on
local knowledge and additional metrics that can be requested from other nodes (espe-
cially from ROLE_CONTROL and ROLE_TASK_OWNER. Based on all the inputs,
the decision is taken whether the reconfiguration process should be started immediately
or the next attempt should be taken next time the reconf_counter reaches zero.

Fig. 4. Operation of ROLE_RECONFIGURABLE

158 G. Chmaj and H. Selvaraj



Two reconfiguration algorithms are used and compared. The following notation is
used to describe their operation: xt,z = 1 if task t belongs to application z, 0 otherwise; nt,
f = 1 if task t requires function f, 0 otherwise; AL_RECONFIGURE_FPGA_1 works

Fig. 5. AL_RECONFIGURE_FPGA_1 algorithm

Fig. 6. AL_RECONFIGURE_FPGA_2 algorithm

Layered Reconfigurable Architecture for Autonomous Cooperative 159



according to the diagram Fig. 5(a) and pseudocode Fig. 5(b). The main idea of this
algorithm is to provide the even distribution of the functions programmed in the FPGAs
over the system. AL_RECONFIGURE_FPGA_2 works according to the diagram Fig. 6
(a) and pseudocode Fig. 6(b). This algorithm takes the popularity of the requirement
into consideration (how many tasks require a function f), considering tasks that require
single function. Descriptions are using multiple message types: MSGT_REQUES-
T_RECONF_METRICS – message to request all the data, known to the ROLE_-
TASK_OWNER and/or ROLE_CONTROL that can be useful for determining
reconfiguration; MSGT_REPLY_RECONF_METRICS – the reply for MSGT_RE-
QUEST_RECONF_METRICS; MSGT_RECONF_STATUS – an update message to
the ROLE_CONTROL unit.

3 Experimentation Results

The most important efficiency metric for the cooperative processing system is the
electrical energy efficiency, as the UAV systems often are built using devices that rely
on the battery power. Thus lowering the electrical energy consumption increases the
operational timespan, also for the specific UAV systems reduces the frequency of a
vehicle to be forced to come back to the ground base for recharging. The following
elements of the electrical energy expenditure were included: E_GETTING_TASKS –

process of getting the task definition to the unit, including control data and incoming
transmission costs; E_GETTING_FF – getting the definitions of the functions from
ROLE_TASK_OWNER; E_GETTING_EXT_DATA – acquiring any values that are
needed for task processing, such as remote data from other units; E_PRO-
CESSING_TASK – computational process (executing task); E_BASIC_COST – all
costs including configuration, idle operations, and others not included in the remaining
elements; E_OUTBOUND_TRAFFIC – cost of outgoing data transmission;
E_FPGA_PROGRAMMING_BITSTREAM – cost of programming the bitstream into
FPGA; E_FPGA_DOWNLOAD_BITSTREAM – cost of downloading the bitstream
files. E_FPGA_DECIDE_RECONF – cost of ROLE_RECONFIGURATION except
AL_RECONFIGURE_FPGA and programming bitstream;

The total cost is then:

E ¼
Xv

v

Xs

s

Xp

p
ðvsE GETTING TASKS þ vsE GETTING FF þ vsE GETTING EXT DATA

þ psE PROCESSING TASK þ vsE OUTBOUND TRAFFIC

þ vsE FPGA DOWNLOAD BITSTREAM þ psE FPGA DECIDE RECONF

þ psE FPGA PROGRAMMING BITSTREAMÞþ TpE BASIC COST

CAL1
AL2 ¼

AL2� AL1
AL2

� 100%

objselem indicates the energy that object obj spends on operations executing element
elem during time slot s. CAL1

AL2 compares two E values.

160 G. Chmaj and H. Selvaraj



Experiments were done for the target search application A described in Sect. 2,
modified to incorporate five different total tasks sizes (24 M, 85 M, 166 M, 328 M,
653 M respectively). Different task sizes reflect different search area and different data
load coming from data sensing equipment. Figures 7 and 8 show energy elements for
five cases. Results show, that for the same application the size of the processing data
has the most impact to E_PROCESSING_TASK, moderate impact to E_GET-
TING_TASKS, E_BASIC_COST, E_OUTBOUND_TRAFFIC and minimal to
E_GETTING_FF. Impact on functions is small as the same application logic contains

Fig. 7. Energy elements for different data volumes

Fig. 8. Energy elements related to reconfiguration

Layered Reconfigurable Architecture for Autonomous Cooperative 161



the same set of function, just differs with how many these functions will be sent to
units. Regarding the reconfiguration-related energy elements, the E_FPGA_DECI-
DE_RECONF depends on the timespan of the system operation, so its cost is linear.
The largest impact of the size can be observed to the process of programming the
bitstream into FPGA (also, being the most costly element of reconfiguration). The even
distribution of the functions selected to be programmed onto FPGA, used in
AL_RECONFIGURE_FPGA_1 exposed high operational cost, and the differences
compared to the AL_RECONFIGURE_FPGA_2 differ depending on the size of pro-
cessed tasks (Fig. 9, up to 22 % calculated as C). AL_RECONFIGURE_FPGA_2 uses
the information about tasks’ requirements and returns fcand being most universal for the
current task resources and suitable for most tasks.

The advantage of AL_RECONFIGURE_FPGA_2 comes from the periodic
reconfiguration not limited by remote resources matching. Thus, AL_RECONFI-
GURE_FPGA_2 is much more flexible and adapts better to the current processing
needs of the system. AL_RECONFIGURE_FPGA_1 required the longest time of
processing, and the difference compared to the remaining two algorithms increased
with the increase of the task(s) size. AL_RECONFIGURE_FPGA_2 is 31 %–38 %
faster than AL_RECONFIGURE_FPGA_1.

4 Conclusions

Development of cooperative processing systems that operate on battery power creates
demand for efficient algorithms for management. The centralized management is not
that much desired for its single point of failure design. At the same time the flexibility
of cooperative systems is demanded. In this work, we propose an architecture that
addresses all of the above challenges, among others. The use of FPGA chips and the
proposed efficient management algorithms create an effective and flexible solution.
Research showed, that the proposed algorithms can save both electrical energy and
time, while using the same resources for the same application. We also describe the

Fig. 9. Energy consumption for two AL_RECONFIGURE_FPGA algorithms

162 G. Chmaj and H. Selvaraj



proposal of the general architecture with multiple layers, multiple roles and various
types of resources, along with the universal format of defining the cooperative appli-
cation suitable for reconfigurable environment. Therefore, it creates a basis for further
research, especially in the areas of advanced scheduling algorithms for reconfigurable
systems, efficient applications management and improving the life of battery power for
decentralized cooperative systems with autonomous nodes.

References

1. Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: A Survey. In:
Selvaraj, H., Zydek, D., Chmaj, G. (eds.). AISC, vol. 366, pp. 449–454Springer, Heidelberg
(2015). doi:10.1007/978-3-319-08422-0_66

2. Chmaj, G., Selvaraj, H.: UAV cooperative data processing using distributed computing
platform. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.). AISC, vol. 366, pp. 455–461.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-08422-0_67

3. Chmaj, G., Latifi, S.: Decentralization of a multi data source distributed processing system
using a distributed hash table. Int. J. Commun. Netw. Syst. Sci. 6(10), 451–458 (2013)

4. Department of Defense, Unmanned Systems Integrated Roadmap FY2013-2038 (2013)
5. Jóźwiak, L., Nedjah, N.: Modern architectures for embedded reconfigurable systems a

survey. J. Circuits Syst. Comput. 18(2), 209–254 (2009)
6. Jóźwiak, L., Nedjah, N., Figueroa, M.: Modern development methods and tools for

embedded reconfigurable systems: a survey. Integr. VLSI J. 43(1), 1–33 (2010)
7. DeHon, A., et al.: Design patterns for reconfigurable computing. In: 12th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines, FCCM 2004, pp. 13–23
(2004). doi:10.1109/FCCM.2004.29

8. Bondalapati, K., Prasanna, V.: Reconfigurable computing systems. Proc. IEEE 90(7), 1201–
1217 (2002). doi:10.1109/JPROC.2002.801446

9. Freitas, E., Binotto, A., Pereira, C., Stork, A., Larsson, T.: Dynamic reconfiguration of tasks
applied to an UAV system using aspect orientation. In: International Symposium on Parallel
and Distributed Processing with Applications, ISPA 2008, Sydney, NSW, pp. 292–300
(2008). doi:10.1109/ISPA.2008.69

10. Nadeem, M., Ostadzadeh, S., Nadeem, M., Wong, S., Bertels, K.: A simulation framework
for reconfigurable processors in large-scale distributed systems. In: 2011 40th International
Conference on Parallel Processing Workshops (ICPPW), Taipei City, pp. 352–360 (2011)

11. Wills, L., Sander, S., Kannan, S., Kahn, A., Prasad, J., Schrage, D.: An open control
platform for reconfigurable, distributed, hierarchical control systems. In: 2000 Proceedings
of the 19th Digital Avionics Systems Conference, DASC, Philadelphia, PA, pp. 4D2/1–
4D2/8 (2000)

Layered Reconfigurable Architecture for Autonomous Cooperative 163

http://dx.doi.org/10.1007/978-3-319-08422-0_66
http://dx.doi.org/10.1007/978-3-319-08422-0_67
http://dx.doi.org/10.1109/FCCM.2004.29
http://dx.doi.org/10.1109/JPROC.2002.801446
http://dx.doi.org/10.1109/ISPA.2008.69

	Layered Reconfigurable Architecture for Autonomous Cooperative UAV Computing Systems
	Abstract
	1 Introduction
	2 System Operation
	2.1 Layered Architecture
	2.2 General Structure
	2.3 Reconfiguration

	3 Experimentation Results
	4 Conclusions
	References


