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Abstract. Microservice architecture is a cloud application design pat-
tern which shifts the complexity away from the traditional mono-
lithic application into the infrastructure. Each microservice is a small
containerized application that has a single responsibility in terms of
functional requirement, and that can be deployed, scaled and tested inde-
pendently using automated orchestration systems. We propose a simple
swarm-like decentralized load balancing system for microservices running
inside OpenVZ containers. It can potentially offer performance improve-
ments with respect to the existing centralized container orchestration
systems.
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1 Introduction

A typical monolithic enterprise systems we build today are difficult to scale, diffi-
cult to understand and difficult to maintain. Written in a monolithic way, these
systems tend to have strong coupling between the components in the service
and between services. A system with the services tangled and interdependent is
harder to write, understand, test, evolve, upgrade and operate independently.
Strong coupling can also lead to cascading failures: one failing service can take
down the entire system, instead of allowing you to deal with the failure in isola-
tion. Popular application servers (e.g., WebLogic, WebSphere, JBoss or Tomcat)
encourage this monolithic model.

Microservices-based architecture is free of these problems [2,16,18,24,28]. It
advocates creating a system from a collection of small, isolated services, each
of which owns their data, and is independently isolated, scalable and resilient
to failure. Services integrate with other services in order to form a cohesive
system thats far more flexible than a typical monolithic system. One of the key
principles in employing a microservices-based architecture is the decomposition
of the system into discrete isolated subsystems communicating over well defined
asynchronous protocols and decoupled in time (allowing concurrency) and space
(allowing distribution and mobility – the ability to move services around).
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Some developers and researches believe that the concept of microserices is a
specific pattern of implementation of service-oriented architecture (SOA). How-
ever the microservice pattern has the following unique specifics: microservices
use lightweight HTTP mechanisms for communication, they are independently
deployable by fully automated machinery, and there is only a bare minimum of
centralized management [24]. Enterprise service bus (ESB) is a typical software
model used for designing and implementing communication between mutually
interacting software applications in SOA. ESB provides all of the routing and
data transformation required to get the parts of an application talking to each
other. In the microservices-based architecture there is no central unit like ESB
which does the routing. The accidental complexity is shifted from inside of an
monolithic application into the infrastructure. It is possible because now we
have many more ways to manage that complexity: programmable infrastructure,
infrastructure automation, and the movement to the cloud [28].

Today we have a much more refined foundation for isolation of services,
using virtualization, Linux Containers (LXC), Docker, and Unikernels [15,19].
This has made it possible to treat isolation as a necessity for resilience, scala-
bility, continuous delivery and operations efficiency. It has also paved the way
for the rising interest in microservices-based architectures, allowing you to slice
up the monolith and develop, deploy, run, scale and manage the services inde-
pendently of each other. The value of microservices and containers lies in how
they enable smaller, faster, more frequent change [5,14]. While cloud comput-
ing changed how we manage “machines,” it didnt change the basic things we
managed. Containers, on the other hand, promise a world that transcends our
attachment to traditional servers applications and application components. One
might claim that represent the fruition of the object-oriented, component-based
vision for application architecture.

So how do you build a smart system from a data center filled with dumb
servers? This is where tools like Google Kubernetes [4] and open source Apache
Mesos [13] data center operating system come in. Also of note is Dockers plat-
form, using its Machine, Swarm and Compose tools [26]. The role of orchestra-
tion and scheduling within these container platforms is to match applications to
resources. Google developed Kubernetes for managing large numbers of contain-
ers. Instead of assigning each container to a host machine, Kubernetes groups
containers into pods. For instance, a multi-tier application, with a database in
one container and the application logic in another container, can be grouped
into a single pod. The administrator only needs to move a single pod from one
compute resource to another, rather than worrying about dozens of individual
containers. Apache Mesos is a cluster manager that can help the administrator
schedule workloads on a cluster of servers. Mesos excels at handling very large
workloads, such as an implementation of the Spark or Hadoop data processing
platforms. Docker Swarm is a clustering and scheduling tool that automatically
optimizes a distributed applications infrastructure based on the applications life-
cycle stage, container usage and performance needs. All these container orches-
tration systems are monolithic applications running as daemons on dedicated
nodes of the cloud. They orchestrate containers in a centralized fashion.
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Usually decentralized orchestration systems offer performance improve-
ments. For example decentralized orchestration of composite web services yields
increased throughput, better scalability, and lower response time [6]. In this
paper a decentralized system for load balancing of containerized microservices is
proposed. In Sect. 2 the internals of a virtualization container are analyzed. In
addition to cloud application it can run an additional process implementing the
mobile agent intelligence. In Sect. 3 the swarm-like algorithm of container migra-
tion in the cloud is introduced. The number of containers on each host plays a role
analogous to a pheromone in colonies of insects or simple transceivers mounted
on autonomous robots. In Sect. 4 some preliminary experimental results for a
simple cloud consisting of 18 hosts are presented. We finish with a summary and
brief remarks in Sect. 5.

2 Container Internals

The startup time for a container is around a second. Public cloud virtual
machines take from tens of seconds to several minutes, because they boot a
full operating system every time. Thus recently the cloud industry is moving
beyond self-contained, isolated, and monolithic virtual machine images in favor of
container-type virtualization [17,25]. Containers introduce autonomy for appli-
cations by packaging apps with the libraries and other binaries on which they
depend. This avoids conflicts between apps that otherwise rely on key com-
ponents of the underlying host operating system. Containers do not contain a
operating system kernel, which makes them faster and more agile than virtual
machines. Container-type virtualization is an ability to run multiple isolated sets
of processes, each set for each application, under a single kernel instance. Having
such an isolation opens the possibility to save the complete state of (in other
words, to checkpoint) a container and later to restart it. This feature allows one
to checkpoint the state of a running container and restart it later on the same
or a different host, in a way transparent for running applications and network
connections [11,17].

In this paper container-type virtualization is used to build a swarm of tasks
in a cloud. Each container in addition to the application and their libraries con-
tains an separate process representing the mobile agent [1,12,27]. It deals with
sensing the neighboring containers and initiating live migration of its container
to another host. A typical modern server can run only about 10 virtual machines
or about 100 containers. Therefore the density of container based mobile agents
in a cloud can be 10 times higher. Typical migration time of a virtual machine is
about 10 s—container can be migrated in time of order of 1 s [29]. Thus container
migration is about 10 times faster. Containers can call system functions of the
operating system kernel running on the server. Therefore in principle they can
initiate container migration without help of a separate daemon process running
on the host server.

The years from 2002 to 2010 represented a time of experimentation, when
two projects in particular moved the needle on virtualization containers in Linux.
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VServer project patched the Linux kernel in order to split things up into virtual
servers, an early version of what today we would call containers. The second
project was OpenVZ, which transformed the Linux kernel, so that you could
run containers in production. Despite its success, OpenVZ never managed to get
the containerization technology merged into the stock Linux kernel and always
required a custom patch to make it possible. At later time, control groups and
namespaces [22] were introduced, making LXC containers a functionality avail-
able within the stock Linux kernel. It thus became possible to use something
that looked like a container without patching the kernel. At the time, Salomon
Hykes was leading dotCloud, an infrastructure platform as a service (PaaS) com-
pany that was committed to applying standards in the deployment of distributed
architecture for applications. They spent three years running a cloud platform
production using LXC, so they had a lot of operational experience. They learned
that this technology was not practical, so they wrote a tool that was more sta-
ble and allowed to deliver container-based application deployment for large-scale
hybrid cloud environments. In this way a popular Docker technology based on a
libcontainer format was born.

Docker containers cannot be live migrated between hosts—they can only be
snapshotted and restored on the same or other host. The generally accepted
method for managing Docker container data is to have stateless containers run-
ning in the production environment that store no data on their own and are
purely transactional. Stateless containers store processed data on the outside,
beyond the realm of their container space, preferably to a dedicated storage ser-
vice that is backed by a reliable and available persistence backend. Another class
of container instances are these that host storage services, like upon pattern is
to use data containers. The runtime engines of these stateful services get linked
at runtime with the data containers. In practical terms, this would mean having
a database engine that would run on a container, but using a “data container”
that is mounted as a volume to store the state. Therefore to run a cloud hosting
environment, it is important to have a distributed storage solution, like Glus-
ter and Ceph, to provide shared mount points. This is useful if the container
instances move around the cloud based on availability.

Parallels R©Virtuozzo is another widely deployed container-based virtualiza-
tion software for Linux and Windows operating systems. As opposed to Docker
Virtuozzo allows for live migration of containers. The results presented in this
paper were obtained using an open source version of this software called OpenVZ
[17]. OpenVZ is available for Linux operating system only and runs on a custom
kernel. There have been several studies on various optimizations of container
migration algorithms [17]. Two best known examples are lazy migration and
iterative migration. Lazy migration is the migration of memory after actual
migration of container, i.e., memory pages are transferred from the source server
to the destination on demand. In the case of an iterative migration iterative
migration of memory happens before actual migration of container. In our exper-
iments with stripped down OpenVZ containers with a size of 50 MB in a test
system consisting of two nodes connected by a 100 Megabit Ethernet network
we measured the migration time seen by the host T = 6.61 s and the migration
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time seen by the container τ = 2.25 s. The later is three times smaller than the
former due to optimizations described above.

We have altered the OpenVZ kernel by adding a system function allowing the
container to ask the host to migrate it to another host. By calling this function
a container is placed in a queue in the kernel - a dedicated daemon reads this
queue and migrates all the containers waiting in it. Thus containers can leave
the host only in a sequence. Our studies indicate that a parallel migration is
possible, but the performance gain is negligible—migration speed increases only
by 8 %. In addition as shown in our previous paper dealing with two hosts only
sequential migration helps to stabilize the swarm algorithm [23].

Processes running inside an OpenVZ container have their own disk with
partitions and file systems. In reality this is a virtual disk and its image is stored
as a file on the physical disk of the host. This solution makes the migration of the
container’s data to another host is very easy—only a single file needs to be copied
between servers. The network of the container is isolated in a way that allows the
container to have they own IP address on the network. This is not the IP address
of host but it can be reached from the other containers and hosts. Each container
maintains its own state: network connections, file descriptors, memory usage etc.
Containers share only the kernel with the host operating system. Thanks to state
isolation from other containers a container can be migrated to another system
and resumed.

When we launch our container for the first time it does not know on what
host it was started. However it can use an ICMP echo/reply mechanism to detect
the IP address of the host. Each ICMP packet has a TTL (Time-to-Live) value.
When this packet is routed trough router this value is decreased. When it reaches
0 the packet is destroyed and an error ICMP packet is send back. This ICMP
error packet will have last router IP address. Thus to detect the IP address of the
host our container can send an ICMP echo packet with value 1 of TTL to some
arbitrary external IP address. The host system acts as a router for container’s
network. When this special packet is sent by the container it will never reach
the destination but the host system will send back an ICMP error packet with
its IP address.

Host system keeps all the containers filesystems mounted on its local
file system. Each container’s file system is visible as a folder located in
/var/lib/vz/root/CID where CID is an unique container identification num-
ber. The location can be exported trough an network file system like NFS. Our
container will mount it locally. To do this it needs to know the export path
/var/lib/vz/root and the IP address of its host system. By counting the num-
ber of entries in this folder it can detect other containers running on the same
hosts and count their number N . By calling a custom system function written
by us it can also check for the number Q of containers queued for migration in
the kernel. A container can also log in via ssh to another host and ask for these
parameters there. Each container knows how many hosts we have H and knows
their IP addresses. It also knows how many other containers are there C in the
cloud. These numbers can be updated dynamically at runtime by probing other
containers and hosts using ICMP echo/reply protocol either by the container
itself or by the host.
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3 Swarm Algorithm

There many examples in biology how complex global behaviors can arise from
simple interactions between large numbers of relatively unintelligent agents.
Examples of self-organized processes of natural aggregation are nest construc-
tion, foraging, brood sorting, hunting, navigation, and emigration. All involve
only local interactions between individuals and between individuals and their
environment. For example the ants rely only on physical contact and pheromone
communication, but simple individual ant behaviors result in group behaviors
that are thought to be optimal for the entire colony. Emerging technologies are
making it possible to cheaply manufacture small robots with sensors, actua-
tors and computation. Swarm approaches to robotics, involving large numbers
of simple robots rather than a small number of sophisticated robots, has many
advantages with respect to robustness and efficiency. Such systems can typi-
cally absorb many types of failures and unplanned behavior at the individual
agent level, without sacrificing task completion [3,7–9,20,21]. These properties
make swarm intelligence an attractive solution also for other problem domains.
In this paper we use this approach for task scheduling in a complex distributed
system—the cloud.

Let us now propose a swarm-like decentralized algorithm for container migra-
tion inspired by pheromone robots [20,21]. The proposed approach threats the
containers as mobile agents and is also capable of automatic self-repair; the sys-
tem can quickly recover from most patterns of agent death and can receive an
influx of new agents at any location without blocking problems. Each host is
described by a pheromone p which can be either repulsive 0 < p < 1 or attrac-
tive p < 0. The complete algorithm executed by a dedicated process running
inside each container reads as follows:
1: Use the method described in Sect. 2 to get the IP address of the host.
2: Mount the /var/lib/vz/root folder exported by it.
3: loop
4: repeat
5: Obtain the pheromone value p of the host.
6: Generate a random number 0 < r < 1.
7: until r < p
8: Randomly choose a host with an attractive pheromone p < 0.
9: Ask the host to migrate to it.

10: repeat
11: Get the IP address of the host.
12: until It’s different from the previous one

{Migration to another host is complete}
13: Unmount /var/lib/vz/root from the old host.
14: Mount it from the new host.
15: end loop
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Thus the pheromone p can be viewed as a migration probability of a container.
The simplest choice for p is the fraction of the number of containers on a host:

p =
N − Q − n

N − Q
(1)

above the equilibrium value where the containers are equally distributed between
the hosts:

n =
C

H
(2)

In this case the tasks are migrated between the nodes until the number of tasks
on each node is the same and equal to n. Using an analogy with physics the
nodes can be imagined to be gas containers, and the tasks running on them—
gas molecules. The network links between the nodes are tubes connecting the
containers between each other. The pressure of the gas equilibrates until it is the
same in each container. Similar analogy is used in a self-repairing formation of
mobile agents [8]. Note that the subtraction of Q in Eq. (1) is necessary in order
to avoid oscillations of the containers [23].

In realistic cloud environments, tasks often differ regarding CPU and I/O
load. Hence, optimization towards an equal distribution of tasks across available
hosts does not seem to be optimal in each case. Instead of using Eq. (2) the
desired number of containers of a given type n could be computed on each
server separately using Dominant Resource Fairness (DRF) algorithm [10]. For
example consider a server with 9 CPU cores and 18 GB of RAM. Container of
type A needs 1 CPU core and 4 GB of RAM, and container of type B—3 CPU
cores and 1 GB od RAM. DRF gives nA = 3, and nB = 2. The pheromone value
p from Eq. (1) needs to be calculated separately for each container type. There
are separate migration queues Q for containers of different types.

4 Experimental Results

The experiments were performed on H = 18 servers equipped with Intel R©i5-3570
Quad-Core CPU, 8 GB of RAM each connected by a dedicated 100 Megabit Eth-
ernet network. All servers were running Debian GNU/Linux operating system
with OpenVZ software installed. The Linux kernel was modified by adding new
system functions as described in Sect. 3. At the initial time C = 18· 17 = 306
identical containers are launched on the first 17 hosts, and the last one was
empty:

Ni = 18, i = 1, . . . 17, N18 = 0 (3)

Each container has a size of about 100 MB and its migration to another host
takes T = 16 s. Each container is running a Python script implementing the
algorithm from Sect. 3. It starts by scanning the network using nmap to find
the number of containers C, and the number of hosts H = 18 and their IP
addresses. Than the mean number of containers n = 17 is calculated and the
script enters a loop in which it periodically checks the pheromone value p, and
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decides with probability p whether to migrate to another host. In addition on the
host server a monitor program was started which periodically (period 5 s) checked
the number of containers N in the filesystem and the number of containers
queued for migration Q in the kernel queue (access to this data from a user
process was possible by a custom system function added to the kernel).

Fig. 1. Number of containers on each host versus time.

In Fig. 1 we have the numbers of containers N on each host plotted versus
time t. It is seen from inspection of this plot that the containers can arrive to the
destination host in parallel thus network bandwith was apparently not a problem
during this experiment. Notice that around t � 4T the yellow line drops below
the equilibrium value of N = 17—this happens because the migration process
is inherently a probabilistic one. The migration probability is p = 1/18 but
sometimes more than pN = 1 container can decide to jump to another host.
Also the containers do not move independently but interact with each other. If
more than one excess container asks the host for migration, then one of them
must wait in a queue until the first one leaves the host. The system reaches
equilibrium and migration stops around t � 9T :

Ni = 17, i = 1, . . . 18 (4)

Thus at average two containers arrive to the destination host during time T .
Containers startup is not instantaneous. The experiment was arranged in

such a way that the migration agent processes inside the containers were started
in a loop—therefore some were started later than the other. In Fig. 2 we have
the numbers of containers waiting for migration Q on each host plotted versus
time t. Indeed we see a small delay in entering the queue. The first container
leaves the migration queue around t � 1.5T (red line) but is deleted from the
file system with some delay only after t > 2T (c.f., Fig. 1).
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Fig. 2. Number of containers waiting for migration on each host versus time. (Color
figure online)

Fig. 3. Histogram of times needed to reach equilibrium.

To investigate the container self-organization process even further in Fig. 3
we have a histogram of times needed to reach equilibrium t0 obtained from 300
runs of the algorithm. It is seen that the case discussed earlier is a fairly typical
one.

5 Summary

In summary, the OpenVZ containerization software was used to implement a
swarm of tasks executing in a cloud. Each task includes a mobile agent process
which governs its migration to another nodes of the cloud. A variant of the Con-
tained Gas Model known from self-repairing formations of autonomous robots
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is used. The tasks running on the nodes of the cloud self-organize to maintain a
constant load among the servers. The system automatically adapts to creation
and destruction of tasks as well as extension of the cloud by new servers. It can
be easily adopted to react on server failures: a failing server can produce an arti-
ficial pheromone by creating entries in the /var/lib/vz/root directory of its
filesystem. This will cause all the tasks running on it to migrate away from the
pheromone. The performance of the swarm-like algorithm proposed to control
the containers was experimentally tested on a simple “cloud” consisting of 18
nodes.
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