
Evaluating Raft in Docker on Kubernetes

Caio Oliveira(B), Lau Cheuk Lung, Hylson Netto, and Luciana Rech

Universidade Federal de Santa Catarina, Florianopolis, Brazil
caio.po@grad.ufsc.br, {lau.lung,luciana.rech}@ufsc.br,

hylson.vescovi@blumenau.ifc.edu.br

Abstract. In computing systems, some applications require high avail-
ability. The creation of copies improves availability, but keeping the
copies synchronized requires the replication of the application state. Raft
is a consensus algorithm that emerged with an easy understanding logic
and a consequently well accepted solution. At infrastructure level, con-
tainers offer an alternative for replacing traditional virtual machines in
cloud providers. This paper (This project was supported by CNPq proc.
401364/2014-3) evaluates the execution of Raft in physical machines and
in Kubernetes, a container management system developed by Google and
other companies. Results show similar performance for Raft in both envi-
ronments.

Keywords: Raft · Performance · Kubernetes · Docker · Containers

1 Introduction

Data centers can manage resources dynamically in an efficient manner with the
use of Virtual Machines [12]. This characteristic matches the nature of cloud
computing, defined by NIST [7] as “a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(...) that can be rapidly provisioned and released with minimal management
effort or service provider interaction”. Virtualization at level system, known
as Containers [1], provides faster resource allocation, in comparison with vir-
tual machines [3]. Docker is an example of container implementation [11]. Some
companies interested in create standards for adopting containers as technology
for improvement in resource management founded the Cloud Native Computing
Foundation (CNCF) [14].

Google has a large experience with containers [16]. Kubernetes is an open
source management system for Docker containers [1] which was presented as
an initial result from CNCF. Some engineers of Borg [16] (the current con-
tainer management system at Google) worked in the construction of Kuber-
netes. Kubernetes replicate containers with the aim of improving availability.
Failed containers are recreated by Kubernetes, but the state of the application
inside the container is not restored. External volumes can persist the state. How-
ever, the volumes should be protected against failures and concurrent access to
the volume have to be controlled by the application.
c© Springer International Publishing AG 2017
J. Świ ↪atek and J.M. Tomczak (eds.), Advances in Systems Science, Advances in Intelligent
Systems and Computing 539, DOI 10.1007/978-3-319-48944-5 12



124 C. Oliveira et al.

Raft [10] is an algorithm derived from Paxos [6]. It can be used to imple-
ment replicated state machines (SMR) [13] in local area networks (LAN). Raft
emerged as a understandable algorithm, when compared to Paxos. Consequently,
many Raft implementations became available1 in various programming lan-
guages. With Raft, all requests send to any replicated container will be executed
on all replicas, in the same order. Raft can be applied in Kubernetes at appli-
cation level, i.e., inside containers. There are some evaluations of Raft [5,9] but
its characterization of terms of latency and throughput are still incipient.

This paper brought an evaluation of Raft to provide state machine repli-
cation. We compare its execution in containers implemented by Docker on the
Kubernetes environment with the execution directly in bare metal (i.e. phys-
ical machines). Although throughput is quite different and higher in physical
machines, we found that clients observe similar latencies in both environments.
Kubernetes provides many management features that could compensate the
overhead perceived in the throughput measurements.

The remainder of this paper is organized as follows. Section 2 presents con-
cepts about containers in Kubernetes. In Sect. 3 we take an overview in Raft.
Section 4 brings the adaptions make to run Raft in Kubernetes. In Sect. 5 we
evaluated the executions of Raft and finally in Sect. 6 we conclude the paper.

2 Containers and Kubernetes

Virtualization at system level appeared in the FreeBSD operational system as an
extended version of the chroot command called jail [1]. Next, Solaris improved
this resource, which was called zone. Containers are instantiated from static
images. The state of a container can be defined by all data stored inside the
container since its instantiation from the image. When a container is destroyed,
its state is lost. It is not common to maintain session data inside containers. Thus,
containers can be considered stateless virtual machines. Images of containers are
usually small because they use a layered file system, e.g. aufs. That way, only
files that do not exist in its host are effectively stored in the container image.
With a level system virtualization and a layered file system, containers can be
created and destroyed faster than traditional virtual machines [3]. It brings a
more dynamic resource management capability to data centers. An example of
container implementation is Docker [11].

Google created Kubernetes [1] as an evolution of its current management
system called Borg [16]. Kubernetes has many features originally designed in
Borg. For example, considers a web server and its logs, which are consumed by
a log analyzer. Host these applications in different containers is recommended
because it benefits the individual software maintenance. There containers should
remain on the same machine, to avoid the effort of sending the log over the
network. A feature of Borg called Alloc maintains containers together in the
same machine. Kubernetes has a component called POD, which also maintains
containers together on the same machine.
1 raft.github.io.

http://raft.github.io


Evaluating Raft in Docker on Kubernetes 125

Kubernetes is composed of machines (virtual or physical) called nodes
(Fig. 1). The component POD contain one or more containers. Each POD
receives a network address. Containers inside a POD can share resources such
as external data volumes. A firewall forwards requests from clients to nodes in
the Kubernetes cluster. Each request will be delivered to only one node. The
load balance policy is defined by the rules of the firewall, which is a component
external to the Kubernetes cluster. The proxy component forwards requests to
PODs, which can be replicated or not. When PODs are replicated, requests are
distributed in a round-robin fashion. PODs are managed by the kubelet compo-
nent. The kubelet also sends data about monitoring of containers to the main
node.

Fig. 1. Kubernetes architecture.

The main node of Kubernetes contains the management components. All
information about the Kubernetes cluster is persisted in a storage component.
The tool etcd [2] implements the storage in Kubernetes. Components interact via
REST APIs. Components use the API Server to save and retrieve information.
A human operation can interact with the cluster using the kubectl command
interface. Some examples of commands are the creation of PODs, checking the
health of the cluster and getting the description of PODs that are running.



126 C. Oliveira et al.

3 Raft

Raft [10] is a consensus protocol designed to be of easy understanding, in com-
parison with Paxos [6] which is one of the most known consensus protocol. As
consequence of the effort to create a simple protocol, many implementations of
Raft are available [4]. Raft is already available in the etcd component2 and can
distribute the storage across the network, making it fault tolerant [15]. A set
of replicas that have to maintain the same state is called a configuration. Raft
ensure that replicas members of a configuration execute requests in the same
order, what enables the maintenance of a replicated state on the replicas [13].
The system still works even if a minority of replica fail by crash. Formally, the
system must have n = 2f + 1 replicas in the system, on which up to f replicas
can fail. In Raft, crash failures are tolerated.

Replicas can act as leader, follower or candidate. An unique replica acts as a
leader, determining the order of requests. Clients interact only with the leader.
If a client interact with a follower replica, the client will be informed about the
address of the leader replica. Follower replicas obey the proposal of the leader,
running the requests in the established order. When a leader fails, elections
are started and replicas can become candidate. The most updated replica in
the system wins the election and becomes the new leader, sending heartbeat
messages to other replicas to establish its authority and prevent new elections.

Each replica has to receive periodically answers from the leader, through a
heartbeat mechanism. If leader does not answer after a timeout, replicas become
candidate and start elections. Replicas use randomized timeouts (in a fixed inter-
val, e.g., 150–300 ms) to prevent split votes. Initially, a candidate replica sends
RequestVote messages to all replicas, which answer by Vote messages. A replica
only does not accept a leader if this replica has an state more updated than the
state of the proposer, and when a new leader was not elected yet. A new leader
is elected when it is accepted by a majority of replicas.

An elected leader receives requests, assigns order to them and send a list of
ordered requests to all replicas. The message which contains this list is called
AppendEntry. On receiving this list, a follower replica updates its own list and
answers the leader about this update. When the leader acknowledges that a
majority of replicas (including itself) have new updated requests, the leader
executes these new requests, sends answers to the clients (replies) and sends
to replicas a list with the executed requests. The follower replicas also execute
these requests and update their states. In Raft site [4] an animation allows the
simulation of some actions (e.g. faults, request sending) in a quorum of five
servers. In scenario the system can tolerate two faults, because the crash fault
tolerance rule (n = 2 ∗ f + 1) requires n = 5 servers to tolerate f = 2 faults.

2 github.com/coreos/etcd/tree/master/raft.

http://github.com/coreos/etcd/tree/master/raft


Evaluating Raft in Docker on Kubernetes 127

4 Modifying Raft for Kubernetes

We choose one3 of the many available implementations of Raft [4]. We choose
an implementation in Go, the language on which Kubernetes was developed.
Some modifications were done to allow the execution of Raft in the Kubernetes
environment. The source code is available in GitHub4. We modified the original
chosen implementation about the following characteristics:

– Replica discovery. Replicas communicate to each other via the IP address.
When a replica enters in the system, it have to know the IP of the other
replicas. To get this addresses, each replica was provided with a call to the
endpoints5 Kubernetes API, which returns a list with the IP of all repli-
cas. This action is necessary because each container receives a dynamic
IP during its instantiation. The API call has the format of an URL like
http://ip-of-main-node:port-of-api-server/api/v1/endpoints. Usu-
ally, the port of the API server is the 8080 port. Replicas query the end-
points API periodically to keep updated with new replicas that entered in
the system. These modifications are in the caiopo/raft repository, inside
the raft.go program. This program also contains a hard-coded IP prefix
like “18.16.” (this IP prefix was defined inside the Flannel configuration (see
Sect. 5.1). The endpoints API returns the IP of all containers. So, we compared
the prefix with each returned address and consider only the IP of the our Raft
replicated containers. It is possible to specify metadata in the creation of the
container and get endpoints of an specific tag, but we did use this feature on
our container.

– Accepting of requests by any replica. In Raft, only the leader can receive
requests from clients. When a non-leader replica receives requests, they are
ignored and the client is informed with the address of the leader. We modify
Raft to allow each follower replica answer to clients about requests that they
receive. It is mandatory because Kubernetes does an internal load balance (via
proxy component, Sect. 2), delivering requests to any replicated container.
This is done with a direct verification like “if t.node.State == Leader”,
being the block of code inside the else clause responsible by sending the
requests to the leader and waiting for the answer. Modifications of this default
behavior are in the caiopo/pontoon repository, inside the http transport.go
program. Another modifications in this program included the addition of com-
mands like hash, which was used to get the hash over the log of executed com-
mands in the container. We could compare the hash of all replicas in order
to check if the state remains equals in all replicas after the execution of each
test.

The modified source code of Raft is installed in a Docker container and is
available in Docker Hub6 under the tag caiopo/raft.
3 github.com/mreiferson/pontoon.
4 github.com/caiopo/pontoon and github.com/caiopo/raft.
5 kubernetes.io/docs/api-reference/v1/definitions/# v1 endpoints.
6 hub.docker.com.

http://github.com/mreiferson/pontoon
http://github.com/caiopo/pontoo
http://github.com/caiopo/raft
http://kubernetes.io/docs/api-reference/v1/definitions/#_v1_endpoints
http://hub.docker.com


128 C. Oliveira et al.

5 Evaluation

In this section we evaluate the performance of Raft in physical machines and
in Kubernetes. Containers are virtual machines at system level. Therefore, the
system will provide similar performance when running Raft in physical machines
and in Docker containers on Kubernetes [3].

5.1 Experiment

An experiment was conducted to investigate the presented conjectures. We used
a cluster with four computers Intel i7 3.5 GHz, QuadCore, cache L3 8 MB, 12 GB
RAM, 1TB HD 7200 RPM. Machines are connected through an Ethernet 10/100
MBits network. Ubuntu Server 14.04.3 64 bits with kernel 3.19.0-42 was installed
in the computers. The Kubernetes 1.1.7 was used. Docker containers communi-
cate among them between physical machines via Flannel virtual network7.

Raft was executed in Kubernetes and directly on the physical machines,
using 3 replicas. The number of clients that simultaneously accessed Raft was
varied following the sequence 4, 8, 16, 32 and 64. When using only Kubernetes,
the number of replicas was three. To simulate the access of clients to Raft, the
Apache HTTP server benchmarking tool8 was used.

5.2 Results and Discussion

The evaluated latencies presented stable results, with low standard deviation
(except for 4 and 8 clients), as presents Table 1. The performance of Raft is faster
when running in physical machines. Although the overhead of Kubernetes starts
high (111.1 %) for few clients, it decreases as more clients start to make requests,
stabilizing around 21 % for 16 or more simultaneous access. Also represented in
Fig. 2, latencies increase as more clients enter in the system.

Table 1. Measurements of Raft

Cli. Req. Kubernetes Physical machine Ku/Phy (%)

Latency
(ms)

St.Dev.
(ms)

Time of
test (s)

Latency
(ms)

St.Dev.
(ms)

Time of
test (s)

4 16000 19 62.8 75.3 9 1.0 34.5 111.1

8 12000 27 57.1 40.2 17 1.4 26.2 58.8

16 8000 42 2.3 12.1 35 2.1 17.3 20.0

32 8000 84 4.1 21.0 69 3.3 17.3 21.7

64 8000 169 9 21.2 139 7.7 17.5 21.6

7 coreos.com/flannel.
8 httpd.apache.org/docs/2.4/programs/ab.html.

http://coreos.com/flannel
http://httpd.apache.org/docs/2.4/programs/ab.html


Evaluating Raft in Docker on Kubernetes 129

Kubernetes Physical Machine

Environment of Execution

La
te

nc
y 

(m
s)

0
50

10
0

15
0

20
0

Clients
4
8
16
32
64

(a)

Kubernetes Physical Machine

Environment of Execution

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

0
10

0
20

0
30

0
40

0
50

0

Clients
4
8
16
32
64

(b)

Fig. 2. (a) Latency and (b) Throughput of Raft in the evaluated environments.

Throughput of Raft increases as more clients access Raft in Kubernetes.
For more than 16 clients, it remains around 380 requests per second. When
Raft runs in physical machines, throughput is stable and presents the better
value among all measurements. However, it does not scale as more clients send
requests. This superior cut point can occurs because of a limitation in our chosen
Raft implementation, which does not implement batch of messages.

Ongaro [9] have preliminary tests of performance in which throughput scales
as more replicas enter in the system, but latency is evaluated considering only
one client accessing the system. Another work [5] repeat the Raft authors’ per-
formance analysis, not considering latency perceived by clients nor throughput.
Although executing Raft in Kubernetes presents throughput lower than when
running in physical machines, we argue that the reduction of approximately
17.4 % is compensated by the benefits offered by the Kubernetes features.

6 Conclusion

This paper presents an evaluation of the Raft algorithm running on physical
machines and in Docker containers managed by Kubernetes. We modified Raft
to be capable of dynamically discover replicas and to allow clients send requests
to any replica of Raft (i.e., not only the leader). Results show that Kubernetes
provides competitive throughput when compared with the execution in bare
metal. As more clients enter in the system, the latency perceived by the clients
is similar in both environments.

Improvements in this work includes the usage of other consensus algorithms.
For example, EPaxos [8] did not use leader, which could make better use of the
load balance provided by Kubernetes. A more robust implementation of Raft can
be used in order to achieve more efficient results. With containers, we can easily
increase the number of replicas, when comparing with the context of traditional



130 C. Oliveira et al.

virtual machines. New experiments could consider scenarios with more faults.
Applications that require high availability but are exposed to many risks (like
sites exposed on Internet) are expected to suffer more faults than applications
executed in local area networks or inside organizations.

References

1. Bernstein, D.: Containers and cloud: from lxc to docker to kuber-netes. IEEE Cloud
Comput. 1(3), 81–84 (2014)

2. CoreOS. etcd (2016). https://coreos.com/etcd. Accessed 12 May 2016
3. Felter, W., et al.: An updated performance comparison of virtual machines, Linux

containers. In: International Symposium on Performance Analysis of Systems and
Software, pp. 171–172. IEEE (2015)

4. GitHub. Raft (2016). http://raft.github.io. Accessed 12 May 2016
5. Howard, H., et al.: Raft refloated: do we have consensus? ACM SIGOPS Oper.

Syst. Rev. 49(1), 12–21 (2015)
6. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
7. Mell, P., Grance, T.: The NIST definition of cloud computing. Technical report

Spp. 800–145. Gaithersburg, MD, United States: National Institute of Standards
& Technology (2011)

8. Moraru, I., Andersen, D.G., Kaminsky, M.: There is more consensus in egalitar-
ian parliaments. In: Proceedings of the Twenty-Fourth Symposium on Operating
Systems Principles, pp. 358–372. ACM (2013)

9. Ongaro, D.: Consensus: bridging theory and practice. Ph.D. thesis. Stanford Uni-
versity (2014)

10. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference, pp. 305–320 (2014)

11. Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster management for the cloud -
survey results, own solution. J. Grid Comput. 14, 1–18 (2016)

12. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Commun. ACM 17(7), 412–421 (1974). ISSN:0001–0782

13. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

14. Sill, A.: Emerging standards, organizational Patterns in cloud computing. IEEE
Cloud Comput. 2(4), 72–76 (2015). ISSN:2325–6095

15. Toffetti, G., et al.: An architecture for self-managing microservices. In: Proceedings
of the 1st International Workshop on Automated Incident Management in Cloud,
pp. 19–24. ACM (2015)

16. Verma, A., et al.: Large-scale cluster management at Google with Borg. In: Euro-
pean Conference on Computer Systems, p. 18. ACM (2015)

https://coreos.com/etcd
http://raft.github.io

	Evaluating Raft in Docker on Kubernetes
	1 Introduction
	2 Containers and Kubernetes
	3 Raft
	4 Modifying Raft for Kubernetes
	5 Evaluation
	5.1 Experiment
	5.2 Results and Discussion

	6 Conclusion
	References


