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Abstract. In diabetes treatment, the blood glucose level is key quan-
tity for evaluating patient’s condition. Typically, measurements of the
blood glucose level are recorded by patients and they are annotated by
symbolic quantities, such as, date, timestamp, measurement code (insulin
dose, food intake, exercises). In clinical practice, predicting the blood glu-
cose level for different conditions is an important task and plays crucial
role in personalized treatment. This paper describes a predictive model
for the blood glucose level based on Gaussian processes. The covariance
function is proposed to deal with categorical inputs. The usefulness of
the presented model is demonstrated on real-life datasets concerning 10
patients. The results obtained in the experiment reveal that the proposed
model has small predictive error measured by the Mean Absolute Error
criterion even for small training samples.

Keywords: Gaussian process · Categorical data · Diabetes · Nonpara-
metric regression

1 Introduction

Diabetes is reported to be one of the most dangerous chronic disease that afflicted
around 171 million people in the world in the year 2000 [26]. The increasing num-
ber of diabetics entails growing total costs of a treatment, i.e., pharmacological
treatment, hospitalization, laboratory test, medical visits, and constant patient
health monitoring. Therefore, there is a need to propose personalized therapy
to lower the costs and make the disease bearable for patients [22]. In diabetes
treatment, the blood glucose level is crucial quantity for evaluating patient’s con-
dition. Understanding the influence of different factors on the glucose level and
possibility to predict its values for new measurements would give opportunity to
design therapy-effective decision-support systems.

First mathematical models for diabetes aimed at understanding the biochem-
ical processes governing the blood glucose level. The mechanistic models were
proposed to explain dependencies between the glucose level and insuline and food
ingestion [9]. However, such approach fails in several apsects. First, it is trouble-
some to propose correct relations using dynamical systems. Second, in practice it
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is almost impossible to force patients to record all meals represented by ingested
calories. Additionally, patients have tendency to forget to report all important
information which results in unreliable models. Third, sometimes parameters of
the models do not represent any physical quantities and hence the justification
of applying the mechanistic models is put into question. Fourth, there are many
external factors which affect the blood glucose level, e.g., lifestyle, which can-
not be included in the mechanistic models. Fifth, except numeric values of the
blood glucose level, we can have access to a non-numeric (symbolic) description
of the measurement, e.g., day of a week, period of day, measurement’s code rep-
resenting insuline dose, or food ingestion. Typically, such information cannot be
included in the mechanistic models.

All these issues cause a demand to formulate new models that allow to predict
the blood glucose level for symbolic data. In other words, we need to propose a
model for a relation between non-numeric inputs (symbolic variables represent-
ing measurements) and numeric output (the blood glucose level). The problem
of symbolic variables is an important issue in the modern modelling and differ-
ent types of symbolic data are distinguished. There are categorical (nominal)
variables that take values in a finite set with no ordering, and ordinal variables
that take values in a finite set with an ordering between the values but no met-
ric notion is appropriate [1]. Moreover, there are structural variables that take
values in sets of mathematical structures, e.g., graphs [4].

The theoretical inquires about symbolic data for classification or regression
models are forced by many practical applications, e.g., nominal data in credit
scoring [27] and medicine [22], structural data in biology [10], biochemistry [21],
and chemistry [25]. Therefore, practice requires developing new models to cope
with symbolic data [4]. There are methods for clustering, see [14], dimensionality
reduction, see [18], mixture models, see [16], classifiers, e.g., logistic regression
[5], and regression models, e.g., CART [6].

In this paper, we cope with the regression problem with categorical inputs,
in which mechanistic models fail completely. Moreover, because of the speci-
ficity of the domain, we would like to apply a non-parametric model in order
to avoid proposing explicit parametrization of the model. In machine learning,
one of the most successful non-parametric regression model is Gaussian process
regression [19]. It has been applied to numerous applications, e.g., biosystems [3],
discovering biomarkers in microarray gene expression data [7], chemical plants
[17], non-linear system identification [24], predicting Quality-of-Service in Web
service systems [23]. Additionally, Gaussian process regression allows to find
a relation between any kind of inputs and output because similarity between
objects is expressed by a kernel function. Hence, the core of the approach is to
define appropriate kernel function for symbolic inputs [12,20].

The contribution of the paper is the following. First, the Gaussian process
regression as the predictive model for the blood glucose level is outlined. Second,
the covariance function for categorical inputs is presented. Third, the mean func-
tion for categorical inputs is proposed. Fourth, the learning of hyperparameters
is outlined. Fifth, the experiment with real-life data is conducted.
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2 Methodology

Let us consider a dataset D of N measurements of patient’s blood glucose level.
Each observation is represented by measurement’s description, denoted as a vec-
tor of D categorical (nominal) variables x ∈ X ,1 and measured blood glucose
level, y ∈ R+. The variables x will be called inputs and y – output. Further,
we write X to denote a matrix of training inputs, and y – a vector of training
outputs.

2.1 Gaussian Process Regression Model

In the regression problem it is assumed that there exists a mapping between
inputs and output, denoted by f(x), with an additive Gaussian noise

y = f(x) + ε, (1)

where ε is a zero mean Gaussian random variable with variance σ2, that is,
ε ∼ N (·|0, σ2). If the mapping f is parameterized by w ∈ R

D, there exist a
set of features φ transforming the original input space to a new space, and the
mapping is linear with respect to parameters, that is, f(x,w) = w�φ(x), then
such model is known as linear regression model [5].

The linear regression models have limiations because they require explicit
form of the features and the number of parameters. Therefore, it would be bene-
ficial to assume that the mapping f is unknown and try to induce it from data. In
the probabilistic (Bayesian) framework it is accomplished by treating the map-
ping f as a latent variable that results in obtaining a flexible non-parametric
regression model. In fact, this is the idea standing behind the Gaussian processes
[19]. The final regression model is the following:

y = f(x) + ε

f ∼ GP(·|μ(x), k(x,x′)) (2)

ε ∼ N (·|0, σ2)

where GP denotes the Gaussian process, μ(x) is the mean function, k(x,x′) is
the covariance function.

There are two components in the model to be determined: the covariance
function and the mean function for categorical inputs. Both issues are crucial
to allow calculating similarities between measurements’ descriptions. In order to
solve these problems we need to propose proper kernel function for the covariance
function and a domain-specific expression for the mean function.

1 Further, in the experiment, we will consider only three inputs (D = 3) which are
typical in the diabetes treatment, namely, day of a week, period of a day, and a
measurement code. However, the presented idea is given in a general case for any
number of inputs.
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Covariance Function for Categorical Inputs. The covariance function of
two function values corresponding to the inputs x and x′ is a kernel function2

[5,19], denoted by k(x,x′). Our goal is to propose a proper kernel function for
the categorical inputs in the context of diabetes. Here, we restrict ourselves to
nominal variables, however, in general, there are many possible kernels for other
types of symbolic data like strings, trees, and graphs [12]. We propose to apply
the following kernel function for nominal inputs:

Proposition (Covariance Function for Categorical Inputs). Let x be a vector
of categorical inputs, xd ∈ Xd, card{Xd} < ∞, for all d = 1 . . . D and there is
no ordering between the values, and δd(x,x′) be the Kronecker’s delta,

δd(x,x′) =
{

1, ifxd = x′
d,

0, otherwise.
(3)

Then the following function

k(x,x′) =
D∏

d=1

δd(x,x′) (4)

is a valid kernel function.

Proof. First, let us prove that the Kronecker’s delta is a kernel function. From
the definition of kernel function we need to show that for any set {xn}N

n=1

N∑
i=1

N∑
j=1

xd,i δd(xi,xj) xd,j ≥ 0.

The Kronecker’s delta returns 1 if the two values are equal and 0 otherwise, thus
we get a sum of squares of those objects which have equal values. The sum of
squares for any objects is nonnegative that yields the Kronecker’s delta is a valid
kernel function.

Second, we need to prove that the product of Kronecker’s deltas is also a
valid kernel function. We use the fact that product of any valid kernels is also
a kernel [5,20]. Hence, we get that the proposed kernel function for categorical
inputs (4) is a valid kernel function. �

Our proposition of the kernel function could be presented in a simpler form as
the Kronecker’s delta for whole vectors x and x′. However, we present the kernel
in the given form (4) because of two reasons. First, we aim at distinguishing our
proposition to the one proposed in [8] which is a sum of Kronecker’s deltas (and
kernels for continuous variables). Second, it is easier to interpret the product of
the Kronecker’s deltas for each input as a partition of the input space into single
conjunctions of values.

2 Kernel function is a symmetric function and the Gram matrix whose elements are
given by k(xn,xm) is positive semidefinite for any set {xn}N

n=1 [20].
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Mean Function. It is common practice to use Gaussian processes with a zero
mean function [19]. However, explicit modelling of the mean function allows
us to incorporate additional information about the considered phenomenon. In
the case of diabetes and the categorical inputs we can take advantage on the
character of the input space which is finite and propose different mean values
for different combinations of values of selected or all inputs. In other words, the
mean function can be parameterized as follows: for each combination of inputs’
values a fixed nonnegative real number is assigned, namely

μ(x) = μx, (5)

where μx ∈ R+ is a fixed value for given inputs x.
The form of the proposed mean function requires to calculate as many values

of mean as the cardinality of the input space which grows exponentially. However,
we can limit the number of mean values by considering only selected inputs, e.g.,
the code of the measurement, and do not include others in the calculations, e.g.,
day of a week.

2.2 Prediction

Let us take a test measurement xt for which we want to predict an output yt.
The similarities between the new observation xt and the training examples X
are defined by the kernel function k(xt,xn) as in Eq. (4). We write kt to denote
the vector of covariances between the test point and the N training examples,
and K is the kernel matrix for X. According to the regression model in Eq. (2)
we get the predictive distribution for given xt with the following mean [19]:

μt = μ(xt) + k�
t (K + σ2I)−1(y − μ), (6)

where μ is a vector of means for X, and variance [19]:

var(xt) = k(xt,xt) − k�
t (K + σ2I)−1kt. (7)

The predictive distribution is Gaussian distribution and thus the most probable
value is chosen as the prediction, i.e., yt = μt. Additionally, we can provide the
uncertainty of the prediction which is equivalent to the variance var(xt).

2.3 Learning

In practical applications, we need to determine a covariance function, a mean
function and values of free parameters (hyperparameters), e.g., the noise variance
σ2. While selection of the covariance function and mean function may be accom-
plished basing on the considered domain, setting the hyperparameters requires
application of techniques of model selection [19]. We refer to the determination
of values of the hyperparameters as learning.
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Learning Mean Function. The mean function is parameterized by μx for
all possible combinations of values of selected inputs. Therefore, we propose to
calculate mean values of outputs for all possible x as follows:

μx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
xn∈X

1{xn = x}yn

∑
xn∈X

1{xn = x} , if
∑

xn∈X

1{xn = x} > 0,

0, otherwise,

(8)

where 1{·} is the indicator factor.
Rationale behind the formula in Eq. (8) is that the prediction is made as

a mean value of the same situations in the past. Such approach represents an
assumption that patient’s life is repeatable and her customs are essentially the
same during a week. This is a manner how to incorporate context of daily routines
into the model. On the other hand, the correlations among past observations are
introduced by the covariance function.

Learning Covariance Function. In the literature, there are several approaches
to model selection, e.g., cross-validation, approximate methods like Laplace’s
Approximation, Variational Bayes, Expactation Propagation [19]. However, in
this work we use the procedure based on the maximization of the marginal
likelihood [5,19]. Once we have determined mean values using (8), we deal with
one parameter only, i.e., the variance of the noise σ2. Let us denote the difference
between outputs and means by ȳ = y − μ. Then the objective function is the
log likelihood function in the following form:

ln p(y|X, σ2) = −1
2
ȳ�(K + σ2I)−1ȳ − ln |K + σ2I| − N

2
ln 2π, (9)

where | · | denotes the determinant of a matrix. Next, we need to calculate
derivative of (9) w.r.t. σ2 which leads to the following equation:

∂

∂σ2
ln p(y|X, σ2) = − 1

2
ȳ�(K + σ2I)−1 ∂(K + σ2I)

∂σ2
(K + σ2I)−1ȳ+

− 1
2
tr

(
(K + σ2I)−1 ∂(K + σ2I)

∂σ2

)
, (10)

where tr(·) denotes the trace of a matrix. Notice that ∂(K+σ2I)
∂σ2 = I which yields

∂

∂σ2
ln p(y|X, σ2) = − 1

2
ȳ�(K + σ2I)−1(K + σ2I)−1ȳ+

− 1
2
tr

(
(K + σ2I)−1

)
. (11)

Solving the optimization problem with the objective function given by (11) and
without constraints requires inverting (K + σ2I). The computational cost is
proportional to O(N3) and hence gradient-based optimization techniques can
be successfully applied for reasonably small N .3

3 By reasonably small we mean up to N = 1000.
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3 Experiment

To evaluate the Gaussian process regression for predicting the blood glucose level
a real-life datasets are used [11]. The original data covers 70 patients. Diabetes
patient records were obtained from two sources: an automatic electronic record-
ing device and paper records. The automatic device had an internal clock to
time stamp events, whereas the paper records only provided “logical time” slots
(breakfast, lunch, dinner, bedtime). Each patient’s medical history corresponds
to a period from 20 to 149 days of measurements, depending on a patient.

3.1 Data Description

Original diabetes files consist of four information per record: (i) date, (ii) time,
(iii) code (categorical), (iv) blood glucose level (numeric). The code describes the
measurement, e.g., regular insulin dose, pre-lunch glucose measurement, typical
meal ingestion, typical exercise activity, and others (details can be found in [11]).

The original records were transformed into the following inputs: x1 – day of a
week, X1 consists of the following values: Monday, Tuesday, Wednesday, Thurs-
day, Friday, Saturday, Sunday, x2 – part of a day, X2 consists of the following
values: from 4:00 until 10:00, from 10:00 until 16:00, from 16:00 until 22:00, and
from 22:00 until 4:00, x3 – measurement code, X3 consists of 20 values, e.g.,
insulin dose, measurement before breakfest.

In the experiment only 10 out of 70 patient records were used from which the
smallest number of examples was 926 (116 days), and the biggest number was
1327 (149 days). The rest of records consist of too small number of observations
to conduct statistically reliable experiments.

3.2 Experiment Details

Evaluation Metric. In order to evaluate the performance of the Gaussian
process regression and compare it with other models we use the Mean Absolute
Error (MAE). It is reported that this evalution metric is less sensitive to outliers
in comparison to other metrics, e.g., mean square error and root mean square
error, and thus is preferred in forecast accuracy assessement [15].

Predictive Models. In the experiment, the prediction of the blood glucose
level is made according to the following models:

1. Mean Prediction (MPred) is a model which always returns yMP =
1
N

N∑
n=1

yn

as a prediction. This model is a baseline for comparing models in the experi-
ment.

2. Classification and Decision Tree (CART) is a regression model which can
be used for symbolic inputs. In this approach the input space is recursively
partitioned due to given criterion which results in a tree-structured model.
At each leaf a mean value of objects covered by decision criteria at each node
up to the root. For details see [6].
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3. Gaussian process regression (GP) model with the covariance function in the
form (4), and the mean function (5) calculated only for the input x3, that
is, the measurement code.4 This assumption results in 20 mean values to be
determined. The prediction for new object is made according to (6).

Experiment Setting. The considered data in the experiment consists of 10
datasets representing different patients’ records. Each dataset formulates time
series. We decided to fix test set to contain last 300 examples in the time series
(the most recent examples). However, the training set consists of varying number
of observations equal 100, 200, 300, 400, 500, and 600. This aspect allows us to
analyze the sensitivity of the considered models to different number of observa-
tions. Additionally, we use 100 examples before training set as a validation set
to determine the noise parameter σ2.

Implementation Details. The experiment was carried out in MATLAB envi-
ronment. The GP regression model with the proposed covariance function and
mean function were implemented in MATLAB. For CART model the built-in
MATLAB implementation was used. In order to determine the hyperparameter
σ2 MATLAB optimization function was used with the objective function given
by (11) which was calculated basing on data included in the validation set.

3.3 Results and Discussion

The results of the prediction of the blood glucose level averaged over 10 patients
are presented as boxplots in Figs. 1 and 2. In the Fig. 1 the predictive models are
compared for different size of the training set. In the Fig. 2 detailed performance
on all predictive models are presented as a function of varying number of the
training examples.

CART and Gaussian process regression performed significantly better than
the baseline. CART and GP obtained mean MAE at the level of 23–27 mg/dl
(see Fig. 2(a)), and 21.5-23 mg/dl (see Fig. 2(b)), respectively, whilst MPed – 77–
78 mg/dl (see Fig. 2(c)). GP model behaved more stable for varying size of the
training set than CART and it was enough to have N = 300 of training examples
to obtain the best predictive accuracy (see Fig. 1). Moreover, for N = 100 and
N = 200 the GP model performs only slightly worst (about 1.5 mg/dl) than for
N greater than 300 (see Fig. 2(a)).

There are two main conclusions following from the experiment. First, both
CART and GP models achieved good prediction accuracy and thus could be suc-
cesfully used in real-life applications. Second, the GP regression obtained better
results than CART for smaller training samples. This issue is especially impor-
tant from the practical point of view because of smaller memory requirements
and lower computational costs. These aspects are crucial in modern eHealth
systems [2], e.g., as mobile services [13].
4 We have omitted the day of a week and the part of a day because of two reasons.

First, we wanted to have less parameters of the mean function. Second, in the pre-
liminary experiments, including also x1 and x2 resulted in no significant change in
the performance of the GP.
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Fig. 1. Boxplots representing comparison between methods using MAE evaluation met-
ric for changing number of training examples N . GP stands for Gaussian process regres-
sion, CART – Classification and Regression Tree, MPred – prediction with mean value
basing on training examples.
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Fig. 2. Boxplots for each method with changing number of training examples (x-axis)
and MAE evaluation metric (y-axis).

4 Conclusion

In this paper, we have presented the model based on Gaussian processes for the
prediction of the blood glucose level. Considering the specificity of the problem,
i.e., the symbolic character of inputs, the covariance function and the mean
function have been proposed. The learning of the hyperparameter, i.e., mean
values and the variance of the noise, has been presented using maximization of
the marginal likelihood. At the end, the experiment with 10 real-life datasets has
been conducted. The results indicate high predictive accuracy of the proposed
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approach (see Figs. 1 and 2). Moreover, our model can be easily implemented in
mobile eHealth systems and this would be a focus of our future work.

Acknowledgements. The research is partially supported by the grant co-financed by
the Ministry of Science and Higher Education in Poland.

References

1. Agresti, A.: An Introduction to Categorical Data Analysis. Wiley-Interscience,
New York (2007)

2. Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput.
Netw. 54(15), 2688–2710 (2010)
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