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Abstract. We show that the MLE (maximum likelihood estimation)
in the class of Gaussian densities can be understood as the search for
the best coordinate system which “optimally” underlines the internal
structure of the data. This allows in particular to the search for the
optimal coordinate system when the origin is fixed in a given point.
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1 Introduction

MLE (maximum likelihood estimation) is one the most important estimation
methods in statistics [4,11]. In data engineering it plays the crucial role in par-
ticular in EM clustering [15], in information theory it can be “identified” with
the cross-entropy, which jointly with the Kullback-Leibler divergence plays the
basic role in computer science [6]. In this paper we discuss the MLE in the case
when the considered density is Gaussian with the center belonging to a given
set. We were inspired by the ideas presented by [5] and consider estimations in
various subclasses of normal densities.

One of the crucial question in data analysis is how to choose the best coor-
dinate system and define distance which “optimally” underlines the internal
structure of the data [3,8,12,17,18,20]. A similar role is played by Mahalanobis
distance in discrimination analysis [9]. In general, we first need to decide if we
allow or not the translation of the origin of coordinate system. Next we usually
consider one of the following:

– no change in coordinates;
– possibly different change of scale separately in each coordinate;
– arbitrary coordinates.
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It occurs that the value of likelihood function, in the case when we restrict
to the Gaussian densities, can be naturally interpreted as the measure of the
fitness of the given coordinate system to the data. Thus in the paper we search
for those coordinates in the above situations which best describe (with respect
to MLE) the given dataset Y ⊂ R

N .
At the end of the introduction let us mention that our results can be also

used in various density estimation and clustering problems which use Gaussian
models [1,5], in particular in the case when we consider the model consisting of
Gaussians with centers satisfying certain constraints.

2 Entropy and Gaussian Random Variables

Let X be a random variable with density fX . The differential entropy

H(X) :=
∫

− ln(fX(y))fX(y)dy (1)

tells us what is the asymptotic expected amount of memory needed to code X [6],
and thus the differential code-length optimized for X is given by − ln(fX(x)).

If we want to code Y (a continuous variable with density gY ) with the code
optimized for X we obtain the cross-entropy which was presented in [6,10] (we
follow the notation from [16]):

H×(Y ‖X) :=
∫

gY (y) · (− ln fX(y))dy, (2)

If A is a linear operator, then H×(AY ‖AX) = H×(Y ‖X) + ln |det(A)|. Since
we consider X only from its density fX point of view, we will commonly use the
notation

H×(Y ‖fX) :=
∫

gY (y) · (− ln fX(y))dy. (3)

Roughly speaking, H×(Y ‖f) denotes (asymptotically) the memory needed
to code random variable Y with the code optimized for the density f . In the
case of given dataset Y ⊂ R

N we interpret Y as an uniform discreet variable Y
on Y. Consequently, our formula is reduced to

H×(Y‖f) := H×(Y ‖f) = − 1
|Y|

∑
x∈Y

ln(f(x)), (4)

where |Y| denote cardinality of the set Y.
In our investigations we are interested in (best) coding for Y by densities

chosen from a set of densities F , and thus we will need the following definition.

Definition 1. By the cross-entropy of Y with respect to a family of coding den-
sities F we understand

H×(Y ‖F) := inf
f∈F

H×(Y ‖f). (5)
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Observe that the search for the density f with minimal cross entropy leads
exactly to the maximum likelihood estimation. Thus in general the calculation
of H×(Y ‖F) is nontrivial, as it is equivalent to finding ML estimator.

As is the case in many statistical or data-information problems, the basic
role in our investigations is played by the Gaussian densities. We recall that
the normal variable with mean m and a covariance matrix Σ has the density
N(m,Σ)(x) = 1√

(2π)Ndet(Σ)
e(−

1
2‖x−m‖2

Σ), where ‖x − m‖Σ is the Mahalanobis

norm ‖x − m‖2Σ := (x − m)T Σ−1(x − m), see [13]. The differential entropy of
Gaussian distribution is given by

H(N(m,Σ)) =
N

2
ln(2πe) +

1
2

ln(det(Σ)).

From now on, if not otherwise specified, we assume that all the considered ran-
dom variables have finite second moments and that they have values in R

N .
For a random variable Y , by mY = E(Y ) we denote its mean, and by ΣY its
covariance matrix, that is ΣY = E((Y − mY ) · (Y − mY )T ).

We will need the following result, which says that the cross-entropy of an arbi-
trary random variable Y versus normal can be computed just from the knowledge
of covariance and mean of Y .

Theorem 1 ([4], Theorem 5.59). Let Y be a random variable with finite covari-
ance matrix. Then for arbitrary m and positive-definite covariance matrix Σ we
have

H×(Y ‖N(m,Σ)) = N
2

ln(2π) + 1
2
‖m − mY ‖2

Σ + 1
2
tr(Σ−1ΣY ) + 1

2
ln(det(Σ)). (6)

Remark 1. Suppose that we are given a data set Y. Then we usually understand
the data as a sample realization of a random variable Y . Consequently as an
estimator for the mean of Y we use the mean mY = 1

|Y|
∑

y∈Y
y of the data Y and

as the covariance we use the ML estimator 1
|Y|

∑
y∈Y

(y − mY)(y − mY)T .

As a direct corollary we obtain the formula for the optimal choice of origin.

Proposition 1. Let Y be a random variable and Σ be a fixed covariance matrix.
Let M be a nonempty closed subset of R

N . From all normal coding densities
N(m,Σ), where m ∈ M , the minimal cross-entropy is realized for that m ∈ M
which minimizes ‖m − mY ‖Σ, and equals

inf
m∈M

H×(Y ‖N(m,Σ)) = 1
2

(
d2Σ(mY ;M) + tr(Σ−1ΣY ) + ln(det(Σ)) + N ln(2π)

)
,

where dΣ is a Mahalanobis distance.

Consequently, if M = R
N the minimum is realized for m = mY and equals

inf
m∈RN

H×(Y ‖N(m,Σ)) = 1
2

(
tr(Σ−1ΣY ) + ln(det(Σ)) + N ln(2π)

)
.

It occurs that our basic MLE problem, in the case when we restrict to the
Gaussian densities, can be naturally interpreted as search for the optimal rescal-
ing (optimal choice of coordinate system).
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Remark 2. Let us start from one dimensional space. In such a case, if we
allow the translation of the origin of coordinate system, we usually apply the
standarization/normalization: s : Y → (Y − mY )/σY . In the multivariate case
the normalization is given by the transformation s : X → Σ

−1/2
Y (Y −mY ). Then

we obtain that the coordinates are uncorrelated, and the covariance matrix is
identity. Taking the distance between the transformation of points x, y:

‖sx − sy‖2=(sx − sy)T (sx − sy)=(x − y)T Σ−1(x − y)

we arrive naturally at the Mahalanobis distance ‖x−y‖2Σ = (x−y)T Σ−1(x−y). If
we do not allow the translation of the origin, we usually only scale each coordinate
by dividing it by its mean (then the unit-scale plays the normalizing role, as the
mean of each coordinate is one), arriving in the case when the mean is one.

To study the question what is the optimal procedure, we need the criterion
to compare different coordinate systems. Suppose that we are given a basis
v = (v1, . . . , vN ) of RN and an origin of coordinate system m. Then by N[m,v]

we denote the “normalized” Gaussian density with respect to the basis v with
center at m, that is

N[m,v](m + x1v1 + . . . + xNvN ) = 1
(2π)N/2|det(v)|e

−(x2
1+...+x2

N )/2.

Then as a measure of fitness of the coordinate system [m, v] we understand the
cross-entropy H×(Y ‖N[m,v]).

3 Rescaling

Let us first consider the question how we should uniformly rescale the classical
coordinates to optimally “fit” the data. Assume that we have fixed an origin of
the coordinate system at m and that we want to find how we should (uniformly)
rescale the coordinates to optimally fit the data. This means that we search for
s such that s → H×(Y ‖N(m,sI)) attains minimum. Since

H×(Y ‖N(m,sI)) = 1
2 ([tr(ΣY ) + ‖m − mY ‖2]s−1 + N ln(s) + N ln(2π)), (7)

by the trivial calculations we obtain that the above function attains its minimum

N

2
(ln[tr(ΣY ) + ‖m − mY ‖2] + ln(2πe/N))

for s = [tr(ΣY )+‖m−mY ‖2]/N . Thus we have arrived at the following theorem.

Theorem 2. Let Y be a random variable with invertible covariance matrix
and m be fixed. Then the minimum of H×(Y ‖{N(m,sI)}s>0) is realized for
s = (tr(ΣY ) + ‖m − mY ‖2)/N , and equals

H×(Y ‖{N(m,sI)}s>0) = N
2 (ln[tr(ΣY ) + ‖m − mY ‖2] + ln(2πe/N)).
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Fig. 1. The original data set with optimal coordinate system (the new “optimal” basis
is marked by the bold arrows) in the case of the family

{N(m,sI)

}
s>0

(left figure). The
data in the new basis (right figure).

Example 1. Let Y be a realization of the normal random variable Y with mY =

[3, 4]T and Σ =
[

1 0.3
0.3 0.6

]
and let m = [0, 0]T . In Fig. 1 we present a sample

Y with the coordinate system (marked by bold black segments) obtained by the
Theorem 2 and data in the new basis.

Observe that the above minimum depends only on the trace of the covariance
matrix of Y and the Euclidean distance of m from mY . If we allow the change
of the origin, we have to clearly put the origin it at mY :

Corollary 1. Let Y be a random variable with invertible covariance matrix.
Then H×(Y ‖{N(m,sI)}s>0,m∈RN ) is realized for m = mY , s = 1

N tr(ΣY ), and
equals

H×(Y ‖{N(m,sI)}s>0,m∈RN ) = N
2 (ln(tr(ΣY )) + ln(2πe

N )).

Corollary 2. Let Y = (y1, . . . , yn) be a given data-set. Assume that we want to
move the origin to m, and uniformly rescale the coordinates. Then

s → (s − m)/
√

1
N (tr(ΣY) + ‖m − mY ‖2)

is the optimal rescaling, where ΣY is a covariance of Y. If we additionally allow
the change of the origin, we should put m = mS and consequently the rescaling
takes the form s → (s − mS)/

√
tr(ΣY)/N .

Applying the above we obtain that in the one dimensional case the rescal-
ing takes the form s → (s − mY)/σY (if we allow change of origin), and

s → s/
√

m2
Y + σ2

Y (if we fix the origin at zero).

Example 2. Let Y be a realization of the normal random variable Y from Exam-
ple 1. In Fig. 2 we present a sample Y with the coordinate system obtained by the
Corollary 1 and data in the new basis.
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Fig. 2. The original data set with optimal coordinate system in the case of the family{N(m,sI)

}
s>0,m∈RN (left figure). The data in the new basis (figure on the right).

Now we consider the case when we allow to rescale each coordinate Yi of Y =
(Y1, . . . , YN ) separately. For simplicity we consider the case N = 2. Consider the
splitting R

N = R
N1 ×R

N2 . For densities f1 and f2 on R
N1 and R

N2 , respectively,
we define the product density f1 ⊗ f2 on R

N = R
N1 × R

N2 by the formula

(f1 ⊗ f2)(x1, x2) := f1(x1) · f2(x2),

for (x1, x2) ∈ R
N1 ×R

N2 . Given density families F1 and F2, we put F1 ⊗ F2 :=
{f1 ⊗ f2 : f1 ∈ F1, f2 ∈ F2}. Let Y : (Ω,μ) → R

N1 × R
N2 be a random variable

and let Y1 : Ω → R
N1 and Y2 : Ω → R

N2 denote the first and second coordinate
of Y (observe that in general Y1 and Y2 are not independent random variables).
On can easily observe that

Proposition 2. Let F1 and F2 denote coding density families in R
N1 and R

N2 ,
respectively, and let Y : Ω → R

N1 × R
N2 be a random variable. Then

H×(Y ‖F1 ⊗ F2) = H×(Y1‖F1) + H×(Y2‖F2).

The above result means that if we allow to rescale coordinates, we can treat
them as separate random variables. Thus we obtain the following theorem.

Theorem 3. Let Y be a data set, and let Yk denote the set containing its k-th
coordinate. Then the optimal rescaling for each k-th coordinate is given by

Yk � s → (s − mYk
)/σYk

(if we allow change of origin),

Yk � s → s/
√

m2
Y + σ2

Y (if we fix the origin at zero).

Example 3. Let Y be a realization of the normal random variable Y from Exam-
ple 1. In Fig. 4 we present a sample Y and the coordinate system obtained by the
Theorem3 (if we fix the origin at zero) and data in the new basis. In Fig. 3 we
present a sample Y and the coordinate system obtained by the Theorem3 (when
we allow change of origin) and data in the new basis.



Maximum Likelihood Estimation and Optimal Coordinates 9

2 0 2 4 6 8

2

0

2

4

6

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Fig. 3. The original data set with optimal coordinate system in the case of separated
random variable when we allow change of origin (figure on the left) and the data in
the new basis (figure on the right).
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Fig. 4. The original data set with optimal coordinate system in the case of separated
random variable when we do not allow change of origin (left hand side illustration) and
data in the new basis (right hand side illustration).

4 Main Result

We find the optimal coordinate system in the general case by applying an app-
roach similar to that from [19]. To do so, we need a simple consequence of the
famous von Neuman trace inequality. Next we discuss the optimal rescaling if
we move the coordinate to the mean of the data.

In most of our further results the following proposition will play an important
role. In its proof we will use the well-known von Neumann trace inequality
described by [7,14]:

Theorem [von Neumann trace inequality]. Let E,F be complex N × N
matrices. Then

|tr(EF )| ≤
N∑

i=1

si(E) · si(F ), (8)

where si(D) denote the ordered (decreasingly) singular values of matrix D.

We also need Sherman-Morrison formula [2]:
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Theorem [Sherman-Morrison formula]. Suppose A is an invertible square
matrix and u, v are column vectors. Suppose furthermore that 1 + vT A−1u 
= 0.
Then the Sherman-Morrison formula states that

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
.

Let us recall that for the symmetric positive matrix its eigenvalues coincide
with singular values. Given λ1, . . . , λN ∈ R by Sλ1,...,λN

we denote the set of all
symmetric matrices with eigenvalues λ1, . . . , λN .

Proposition 3. Let B be a symmetric nonnegative matrix with eigenvalues
β1 ≥ . . . ≥ βN ≥ 0. Let 0 ≤ λ1 ≤ . . . ≤ λN be fixed. Then

min
A∈Sλ1,...,λN

tr(AB) =
∑

i

λiβi.

Proof. Let ei denote the orthogonal basis build from the eigenvectors of B, and
let operator Ā be defined in this basis by Ā(ei) = λiei. Then trivially

min
A∈Sλ1,...,λN

tr(AB) ≤ tr(ĀB) =
∑

i

λiβi.

To prove the inverse inequality we will use the von Neumann trace inequality.
Let A ∈ Sλ1,...,λN

be arbitrary. We apply the inequality (8) for E = λN I − A,
F = B. Since E and F are symmetric nonnegatively defined matrices, their
eigenvalues λN − λi and βi coincide with singular values, and therefore by (8)

tr((λN I − A)B) ≤ ∑
i(λN − λi)βi = λN

∑
i βi − ∑

i λiβi. (9)

Since
tr((λN I − A)B) = λN

∑
i

βi − tr(AB),

from inequality (9) we obtain that tr(AB) ≥ ∑
i λiβi.

Now we proceed to the main result of the paper. Let M ⊂ R
N then by GM

we denote the set of Gaussians with mean m ∈ M .

Theorem 4. Let m ∈ R
N be fixed and let G{m} denote the set of Gaussians with

mean m. Then H×(Y ‖G{m}) equals

1
2

(
ln(1 + ‖m − mY ‖2ΣY

) + ln(det(ΣY )) + N ln(2πe)
)
,

and is attained for Σ = ΣY + (m − mY )(m − mY )T .



Maximum Likelihood Estimation and Optimal Coordinates 11

Proof. Let us first observe that by applying substitution

A = Σ
1/2
Y Σ−1Σ

1/2
Y , v = Σ

−1/2
Y (m − mY ),

we obtain

H×(Y ‖N(m,Σ)) = 1
2
(tr(Σ−1ΣY ) + ‖m − mY ‖2

Σ + ln(det(Σ)) + N ln(2π))

= 1
2
(tr(Σ−1ΣY ) + (m − mY )T Σ−1(m − mY )

− ln(det(Σ−1ΣY )) + ln(det(ΣY )) + N ln(2π))

= 1
2

(
tr(A) + vT Av − ln(det(A)) + ln(det(ΣY )) + N ln(2π)

)
.

(10)

Then A is a symmetric positive matrix. Contrary given a symmetric positive
matrix A we can uniquely determine Σ by the formula

Σ = Σ
1/2
Y A−1Σ

1/2
Y . (11)

Thus finding minimum of (10) reduces to finding a symmetric positive matrix
A which minimize the value of

tr(A) + vT Av − ln(det(A)). (12)

Let us first consider A ∈ Sλ1,...,λN
, where 0 < λ1 ≤ . . . ≤ λN are fixed. Our aim

is to minimize
vT Av = tr(vT Av) = tr(A · (vvT )).

We fix an orthonormal basis such that v/‖v‖ is its first element, and then by
applying von Neumann trace formula we obtain that the above minimizes when
v is the eigenvector of A corresponding to λ1, and thus the minimum equals
λ1‖v‖2. Consequently we arrive at the minimization problem

λ1(1 + ‖v‖2) +
∑
i>1

λi −
∑

i

ln λi.

Now one can easily verify that the minimum of the above is realized for

λ1 = 1/(1 + ‖v‖2), λi = 1fori > 1,

and then (12) equals N+ln(1+‖m−mY ‖2ΣY
), while the formula for A minimizing

it is given by A = I − vvT

1+‖v‖2 . Consequently then the minimal value of (10) is

1
2

(
ln(1 + ‖m − mY ‖2ΣY

) + ln(det(ΣY )) + N ln(2πe)
)
.

and by (11) and Sherman-Morrison formula is attained for

Σ = Σ
1/2
Y (I− Σ

−1/2
Y (m−mY )(m−mY )T Σ

−1/2
Y

1+‖m−mY ‖2
ΣY

)−1Σ
1/2
Y = ΣY +(m − mY )(m − mY )T .

Example 4. Let Y be a realization of the normal random variable Y from Exam-
ple 1 and let m be fixed. In Fig. 5 is presented a sample Y and the coordinate
system obtained by the Theorem4 and data in the new basis.
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Fig. 5. The original data set with optimal coordinate system in the case of the fam-
ily G{(0,0)} (left hand side illustration) and data in the new basis (right hand side
illustration).

5 Conclusion

In the paper we show that the MLE in the class of Gaussian densities can be
understood equivalently as the search for the coordinates which best describe
given dataset Y ⊂ R

N . The main result of the paper presents the formula of the
optimal coordinate system in the case when the mean of the Gaussian density
satisfies certain constrains.

Our work can be used in density estimation and clustering algorithms which
use different Gaussian models.
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