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Chapter 6
Sequential Synchronization Analysis

Toshio Murase, Marshall Scott Poole, Raquel Asencio, and Joseph McDonald

6.1  �Introduction

Sequences have long been a central interest in group research.1 Sequences capture 
how group processes unfold over time, and characterization of sequences as a whole 
and their properties offers valuable insights into group decision-making, conflict 
management, group cohesion, teamwork, and many other group phenomena.

Sequences have been studied on a variety of levels in group research. Some of 
the best known sequences are the stages of the group life cycle. While Tuckman’s 
(1965) iconic “Forming, Norming, Storming, and Performing” stage sequence is the 
best known of these, several dozen models of the group life course have been 
described (Hare, 1976, 2010; LaCoursiere, 1980). Sequential models of specific 
group activities such as problem solving (Bales & Strodtbeck, 1951), decision mak-
ing (Fisher, 1970; Poole & Roth, 1989), conflict (Pondy, 1967), and teamwork 
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(Ishak & Ballard, 2012; Marks, Mathieu, & Zaccaro, 2001) have also been advanced. 
Conceptually, these activity sequences can be thought of as embedded within longer 
group life cycles. Still other scholars have focused on short cycles of group activity 
that might be repeated multiple times within episodes of group work, such as 
Tschan’s (1995) orientation-action-evaluation cycles, which are posited to be tied to 
quality of group work.

In studying sequences, researchers can focus on the entire sequence, as did 
Tuckman (1965), Bales and Strodtbeck (1951), and Poole and Roth (1989). Relevant 
research questions include: Do all groups follow the proposed sequence?; What fac-
tors determine whether a given sequence occurs?; Is following the sequence related 
to outcomes such as effectiveness and group cohesion? A second option it so focus 
on subsequences that make up the entire sequence, as Tschan (1995) and Murase 
et al. (2015) did. In this case relevant questions include: What types of subsequences 
occur and what is their frequency?; How do they chain together to generate longer 
sequences and what types of longer sequences occur?; How are they related to out-
comes such as group effectiveness or group cohesion? Finally, researchers may 
identify characteristics of sequences or subsequences, such their frequency, com-
plexity (Poole & Roth, 1989), or conformity to an ideal sequence (Poole & Roth, 
1989) or subsequence (Tschan, 1995). Relevant research questions are: How do 
various sequences compare in terms of the properties?; What factors govern vari-
ability in the characteristics?; How do the characteristics relate to outcomes such as 
group effectiveness or group cohesiveness?

The approaches described in the previous paragraph focus on the sequence as a 
property of the group as a whole. Another approach is to decompose the sequential 
data from the group level to the individual level. In this case the sequence of behav-
iors of each member is analyzed. Just as with group level sequences, individual 
sequences can be characterized in terms of their overall structure, subsequences, 
and characteristics, and the same questions posed for the group as a whole can be 
posed for the sequences of individual members. But decomposition also enables 
researchers to explore the processes that lead to the emergence of a group or its 
properties from the interactions among members.

One of the oldest questions in group research is “What makes a group more than 
just a collection of individuals?” There has been a long debate over whether a group 
has an entitivity beyond the behaviors of its individual members (Davis, 1969; 
Hewes, 1996; Kozlowski, Chao, Grand, Braun, & Kuljanin, 2013; Kozlowski & 
Klein, 2000). Kozlowski and Klein (2000) argue that higher level group properties 
emerge through two processes, composition of individual attitudes, knowledge, and/
or behaviors into aggregates and compilation, which depends on nonlinear combi-
nation of individual attitudes, knowledge and/or behaviors. McGrath and Kelly 
(1986) and Ancona and Chong (1996) consider temporal elements of coordination 
among individual member sequences. Entrainment is defined as cases in which the 
pace, rhythm, and cycles of individual behaviors come into alignment with one 
another. In this case, the group’s activity takes on a character of a holistic unit 
greater than the individual members. McGrath and Kelly argued that entrainment 
depends on an external factor such as the group’s task or a leader or events in the 
environment that the group must respond to. However, it also seems possible that 
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entrainment might also be driven by members’ desire to coordinate and engage one 
another in internal group interaction. The study of synchronization and entrainment 
of member behavior enables us to investigate the degree to which the group tran-
scends individual member activities.

This chapter will provide an overview of several methods for sequence analysis 
that address these questions, including whole sequence methods, short cycle meth-
ods, and sequential synchronization analysis. Methods for whole sequence and 
short cycle analysis have been discussed at length elsewhere, so they will be 
described in general terms; sequential synchronization analysis has not been previ-
ously introduced, so the remainder of the chapter will be devoted to an explanation 
of how it works and can be conducted.

6.2  �Sequence Analysis

6.2.1  �Sequence Data

Group sequence data can come from a number of sources. It can be directly recorded 
by observers (e.g., Bales, 1950), or it can be coded from audio or video recordings 
(e.g., Fisher, 1970; Poole, 1981). Researchers like Axelrod (1976, 2015) used 
archives of diplomatic notes and negotiations to reconstruct sequences of argument. 
Data can also be gathered using computerized group or team simulations of, for 
example, military tasks, emergency patients, or negotiations (e.g., Schiflett, Elliott, 
Salas, & Coovert, 2004), which capture automatically the choices and actions of 
each member down to hundredth of a second units. Another data resource for group 
research is data captured from the internet (e.g., email, social media, text messages) 
and mobile devices (e.g., geolocation, sociometric badges).

Figure 6.1 presents a general illustration of the type of sequence data that results 
from the operations described in the previous two paragraphs. The top row shows 
the basic data units. These units are then coded into meaningful categories (in this 
case A, B, C, and D), which are the elements of the sequence. As the previous dis-
cussion shows, in some cases the coding system defines the units as part of the cod-
ing process (e.g., Interaction Process Analysis), while in other cases (e.g., a military 
simulation) the units are “hard-coded” into the data recording apparatus, while in 
still others (e.g., server data from a massive multiplayer online game) the units must 
be retrieved from a more complex data store. Each unit may also be associated with 
a timestamp, shown in the bottom row of the figure; this timestamp orders the ele-
ments and may also be used to determine durations. The timestamp in this figure is 
based on a “Newtonian” conception of time, in which time can be divided into equal 
units and proceeds linearly into the future. The top row of the figure portrays a dif-
ferent conception of time, “event time,” in which the occurrence of events marks the 
units, regardless of how long they were or the intervals between them. In addition to 
time stamps, this data also indicates the source of or major actor in each unit. Note 
that a member may engage in several consecutive acts.

6  Sequential Synchronization Analysis
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Some properties of sequence data are shown in the second row of Fig. 6.1, 
transitions from one element to the next. Substrings (or subsequences) are meaningful 
short-term patterns of acts; they may be defined structurally by repeated sequences 
of elements or theoretically by specification of meaningful sequences of elements 
(e.g., plan-act-evaluate). Identification of meaningful units or subsequences some-
times proceeds through a series of hierarchical steps. As the third row of the figure 
indicates, each series of similar units can be re-coded into a single occurrence or 
phase of this unit. A phase is a coherent period of group activity of the same type. 
In this case, the phasic sequence is ABABCDCDC. This can be reduced to a still 
higher-order pattern, as shown in row four, in which repeating AB substrings are 
reinterpreted as E phases and CD substrings as F phases. Poole and Roth (1989) 
used this approach to simplify phase sequences in group decision-making using a 
procedure formally described in Holmes and Poole (1991).

6.2.2  �Analyzing Sequences

Many group process studies analyze sequences by “collapsing” them into profiles of 
the total number of each type of act in the sequence. These profiles are useful 
because they show general differences between sequences. A sequence with a lot of 
conflict events is clearly different from one with very few.

Information is lost, however, by synoptic measures of processes such as profiles. 
Where in a decision process a conflict occurs tells us a lot about the process. A con-
flict early on may serve to raise issues for the group to discuss and resolve; a conflict 
at the end may create an impasse that stymies the group. Considering the sequence 
of activities tells us the “story” of the group process in a way that simple totals 
cannot.

Units (U*)/Members (M*):

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17
M1 M1 M1 M2 M1 M3 M1 M3 M2 M2 M2 M1 M3 M3 M1 M2 M3

Elements Transition Substring

A A A B B A A B C C C C D C D C C

Timestamp:

01 05 11 13 16 22 31 45 51 62 67 73 79 83 88 93 98

Coded into:

Fig. 6.1  Sequences and sequence data
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Rudimentary sequence analysis has often been applied to coded data in the social 
sciences. Human pattern recognition is powerful and adaptive, making it possible to 
extract rich information about human interaction and behavior from video sessions 
(e.g., DeChurch & Marks, 2006; Kozlowski, Chao, Chang, & Fernandez, 2015; 
Stachowski, Kaplan, & Waller, 2009). Bales and Strodtbeck (1951), for instance, 
divided their discussions into thirds and constructed graphs of amounts of orienta-
tion, evaluation, and control behavior over time to compare sequences of group 
problem solving sessions. However, if researchers have sequences made up of many 
units or a large set of sequences, manually identifying critical patterns is a difficult 
and daunting task. Methods developed in the biological sciences to identify DNA 
sequences from millions and billions of data points (Koonin & Galperin, 2003) and 
in computer science, where strings of thousands of digits or lines of code must be 
compared (Sankoff & Kruskal, 1983) can be brought to bear in this case. To over-
come this challenge, these disciplines developed approaches to data mining and 
large scale analytics designed to find unique patterns of information and to evaluate 
similarities in structure and function between sequences (Needleman & Wunsch, 1970).

Sequence analysis is particularly aligned with process models that posit that 
groups develop through a series of distinct stages (Tuckman, 1965) and engage in 
patterns of phases to make decisions and accomplish their tasks (Bales & Strodtbeck, 
1951; Gersick, 1988; Poole & Holmes, 1995; Poole & Roth, 1989; Sambamurthy & 
Poole, 1992). For example, Marks et  al. (2001, see also Ishak & Ballard, 2012) 
proposed temporally-based team process in which team members engage in two 
types of phases alternatively to achieve objectives: transition phases—where mem-
bers engage in planning and strategizing—and action phases—where they engage 
in activities directly contributing to team performance.

Sequence analysis is also appropriate for models of act-to-act sequences. The 
assumption commonly shared among these models is that events and behaviors trig-
ger each other to create unique contexts in which one leads to another, which then 
facilitates the occurrence of more events and behaviors later on (Lehmann-
Willenbrock, Meyers, Kauffeld, Neininger, & Henschel, 2011). Tschan’s (1995) 
plan-act-evaluate behavioral cycle model of effective team activity is a good exam-
ple of this approach.

6.2.2.1  �Whole Sequence Analysis

Poole and his colleagues investigated the phasic sequences groups followed to make 
decisions (Poole & Holmes, 1995; Poole & Roth, 1989; Sambamurthy & Poole, 
1992). Instead of measuring members’ perceptions of their decision-making pro-
cess, Poole and Roth (1989) content-coded 47 decision processes by taking the 
following steps: (a) identifying major activity (e.g., problem-focused, execution-
focused, and solution-focused activities) within each 30-second time segment of a 
process to create a sequence of the activities; (b) grouping into phases the activities 
of the same category if they occurred consecutively and also grouping into phases 
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activities from the different categories if they happened in a row. They used the 
technique of flexible phase mapping (Holmes & Poole, 1991) to identify various 
sequences and methods including optimal matching to compare and classify 
sequences into types. The sequences of activity phases produced by this method 
provided the fine-detailed picture of when the specific activity phases occurred and 
in what order. For example, some groups always went through a fixed process of 
different phases while others moved through different stages and cycled back to the 
previous stages. The richness of the sequence data helped Poole and Roth uncover 
that groups did not follow unitary group process but that their processes were much 
more complex and diverse.

One useful technique in whole sequence analysis is optimal matching (OM), 
which is designed to compare similarities of pairs of sequences (Abbott & Tsay, 
2000; Aisenbrey & Fasang, 2010; Hollister, 2009; Wu, 2000). OM evaluates how 
similar pairs of sequences are. It assesses the degree of difference (distance) between 
pairs of sequences using substitution-insertion-deletion transformation operations 
(INDEL). Suppose one wants to compare two sequences: ABC and ADE. OM cal-
culates the distance between them by using the INDEL operations. First, OM 
replaces B at the second position of ABC with D; inserts E between D and C of 
sequence ADC, which turns the sequence into ADEC; and then deletes C at the last 
position of the sequence. The number of the operations required to convert the first 
sequence into the second one is 3, which is the distance score between these two 
sequences. Weights are generally attached to various INDELs based on similarity of 
elements. For example of A and B both pertain to problem statements and to a solu-
tion statement, substituting A for B would make less difference than substituting C 
for A, So the B-A substitution would be given lower weight (cost) than the C-A 
substitution. Based on this logic optimal matching algorithms assign weighted dif-
ferences to each pair of sequences in a set. The number of ways to calculate distance 
scores between a pair of long sequences increases drastically. Therefore, OM seeks 
the most optimal ways to calculate distance scores among sequences (Abbott & 
Tsay, 2000).

The resulting set of distance scores can then be analyzed using multidimensional 
scaling or clustering techniques to derive sets of sequences with similar structures. 
For example, Sambamurthy and Poole (1992) derived three different sets of seq
uences from a sample of 45 conflict management discussions: one in which conflict 
was suppressed, one in which there were open disagreements that were not resolved, 
and a third in which there was open discussion and cooperative management of the 
conflict. The third set had more positive relationships to outcomes than the other 
two. It is also possible to take a reference sequence—for example, an ideal type 
sequence—and use optimal matching to determine how similar one or more 
sequences are to the reference sequence.

There has been much debate over the proper use and benefits and costs of using 
OM. Readers can refer to Aisenbrey and Fasang (2010) and Herndon and Lewis 
(2015) for further discussion of these issues.
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6.2.2.2  �Subsequence Analysis

While Poole and colleagues studied entire sequences, Lehmann-Willenbrock et al. 
(2011) examined whether mood emerges through short-cycles of behavioral patterns 
in which complaining behavior leads to supporting behavior which leads to com-
plaining behavior. They coded discussions in which 57 company teams discussed 
solutions to problems in their work activities. Each statement provided by an 
employee in the conversation was assigned to one of 44 behavioral categories, result-
ing in a sequence of behaviors for the team. Lehmann-Willenbrock et al. examined 
how often one behavioral type was followed by another by calculating probability 
ratings among all possible pairs of behaviors in the 44 × 44 table. Using the probabil-
ity ratings, they found that team members often engaged in specific cycles of com-
plaining behaviors (e.g., complaining, complaining, and complaining; complaining, 
supporting, and complaining), and that the cycles of complaining behaviors resulted 
in unaroused and unpleasant group mood while the cycles of positive behaviors pro-
duced pleasant group mood. Methods such as relational event modeling can be used 
to test hypotheses about short cycle sequences as well (see Chap. 4, this volume).

Murase et al. (2015) took a different approach to obtain sequences of actions from 
six-person teams participating in a military simulation game. The server recorded in 
milliseconds various acts which team members performed, producing sequence data 
consisting of thousands of thousands of acts over time. Murase et al. developed 37 
behavioral categories important for the game, each of which contained short 
sequences of acts that occurred in specific orders. They then wrote scripts to count the 
number of times subsequences of acts in the log that matched any of the 37 behav-
ioral categories occurred (they employed 30 s windows for sampling purposes). Their 
sequence data showed which member in the team engaged in what type of behavior 
in which time segment. This data was subsequently used in an analysis of social 
entrainment among team members that will be described in the next section.

Poole, Lambert, Murase, Asencio, and McDonald (2017) and Cornwell (2015) 
summarize these and other sequence analysis techniques, along with theoretical and 
data related issues. The bibliographies of these two works list a number of refer-
ences to more detailed descriptions of specific sequence methods. The remainder of 
this chapter focuses on the method of sequential synchronization analysis, which 
facilitates identification of emergent processes such as teamwork through the coor-
dination of the behavioral streams of individual members.

6.3  �Sequential Synchronization Analysis

6.3.1  �Individual Sequences into Group Processes

To conduct sequential synchronization analysis the researcher first decomposes the 
group sequence into a sequence for each member and then analyzes relationships 
among individual data sequences to determine team level dynamics.

6  Sequential Synchronization Analysis
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Two theoretical forms have been advanced to explain how group dynamics 
emerge at the team level: compositional and compilational models (Chan, 1998; 
Kozlowski & Klein, 2000; Roberts, Hulin, & Rousseau, 1978). Compositional mod-
els argue that a phenomenon at the individual level resembles the same form of the 
phenomenon at the team level while compilational models argue that the forms of a 
phenomenon at the individual and team level are different.

Compositional models are based on the logic that each member’s behavior can 
serve as an estimate of the group or team’s behavior, because the phenomenon of 
interest manifests in the same way at the individual and group levels. Averaging the 
individual estimates thus yields a more reliable measure of the group or team’s 
behavior. For example, in the case of group decision-making, information sharing is 
such that any information given by a single member can be used by the entire group. 
So it makes sense to take each members’ information sharing (or, in the case of self-
report measures, perceptions of group information sharing level) and combine or 
average them to get an overall measure for the group.

In contrast, compilational models operate under a logic of individual variability 
that assumes that it is the pattern or variation among members that gives the group 
process its character (Murase, Doty, Wax, DeChurch, & Contractor, 2012). So, if 
one member of a team is quarrelsome and difficult, this can disrupt the team’s activ-
ity no matter what other members do. Or members may specialize, as in a transac-
tive memory system, where one member specializes in remembering past mistakes 
and serves as devil’s advocate, while another specializes in coming up with novel 
ideas to address the problems raised by the first. Only if the group has individual 
members who enact these and other key roles, will it make an effective decision. So 
it is the pattern of members rather than any sort of sum total that characterizes the 
emergent group, and to capture this emergence, the various types of patterns or at 
least variance among members must be characterized. Measures for compilation 
include the standard deviation, minimum and maximum score of the team members, 
or gini coefficients on various measures such as personality traits, self-efficacy, or 
member roles (Barrick, Stewart, Neubert, & Mount, 1998; Campion, Medsker, & 
Higgs, 1993; Stewart, Fulmer, & Barrick, 2005). All of these measures are based on 
individual characteristics of members or synoptic, summary measures of group 
interaction, rather than the group process itself. One influential theory that offers a 
process-oriented, nonsynoptic account of group emergence from individual 
activities is the theory of social entrainment (Ancona & Chong, 1992; McGrath & 
Kelly, 1986).

6.3.2  �Entrainment

A great deal of evidence suggests that human behavior—including group and team 
behavior—is patterned by rhythms and temporal cycles. McGrath and Kelly (1986) 
summarize evidence that human interaction is characterized by “complex temporal 
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patternings of multiple sets of responses by multiple social actors. These patterns 
have been expressed by such terms as ‘mutuality,’ ‘reciprocity,’ ‘complementarity,’ 
‘dominance,’ ‘similarity,’ ‘simultaneity,’ and ‘alternation’” (p. 7). Cappella (1991) 
makes a case that at the dyadic level these rhythms and patterns in interaction are 
biologically determined. Poole and Roth (1989) noted that about 40 % of decision-
making groups engaged in repetitive cycles of problem-solution interaction. Tschan 
(1995) showed that short repetitive cycles of problem-solving were characteristic of 
effective teams.

McGrath (1990) argues that activities in social systems operate in rhythmic and 
cyclic forms. Multiple activities, initially operating in different rhythms, eventually 
get locked into the same rhythmic pattern by influencing one another’s pace or 
adjusting their activity rhythms to the rhythms of dominant members or external 
events. For example, project deadlines, unexpected requests from a client, and a 
competing company’s market entry function as dominant rhythms to which mem-
bers on teams must adjust their work paces (Ancona & Chong, 1992). Once the 
activities have settled into a fixed rhythmic pattern, it becomes persistent even when 
the dominant activity ceases, unless another disrupting event or new dominance 
pacer emerges to which the activities must start entraining (Harrison, Mohammed, 
McGrath, Florey, & Vanderstoep, 2003). These studies have demonstrated that 
synchronization of activities among members is a mechanism underlying the emer-
gence of group-level phenomena.

Most previous research has relied on experimental manipulations and/or mea-
surement of members’ perceptions to capture synchronization. However, it is also 
possible to identify synchronization from behavioral sequences.

For example, to accomplish a specific objective in a military team exercise, 
members may increase the level of a relevant behavior (e.g., attacking an enemy 
unit). Once the objective has been accomplished, the level of the behavior begins to 
decrease and then eventually cease for a while. This cycle repeats as triggering 
events (new enemy combatants) occur. In this case, members engage in oscillating 
activity patterns with one cycle representing a basic behavioral unit, defined as a 
peak-to-peak period (Cazelles & Stone, 2003). The overlap degree of peak-to-peak 
periods between pairs of activity cycles essentially determines synchronization 
degree and type.

If the peaks of multiple members’ oscillating patterns occur at the same time 
points, or the pace in which the peaks occur is the same (regardless of whether or 
not the peaks occur at the same time points), those members are said to be entrained 
to one another (Ancona & Chong, 1992). Ancona and Chong define the former as 
synchronic entrainment and the latter as tempo entrainment. If the peaks of pairs or 
sets of the oscillating patterns at completely at the alternating points, they are 
defined as harmonic entrainment. Figure 6.2a, b demonstrate two types of entrain-
ment where pace is defined as a period from one peak (maximum) at t time to 
another peak at t+1 time of a cycle (Cazelles & Stone, 2003). Various statistical 
measures of the properties of pairs or sets of patterns—discussed below—can be 
used to determine whether various types of entrainments hold in a group.
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128

6.4  �A Step-by-Step Guide to Sequential Synchronization 
Analysis

This section is organized to provide step-by-step directions for identifying sequences 
and then calculating phase-lock scores from a hypothetical time-series data, which 
are used to capture the degree of synchronization of team behavior. The approach to 
identifying sequences was used in Murase et al.’s study (2015) which counted fre-
quencies of sequences using the R package TraMineR (Ritschard, Bürgin, & Studer, 
2013) and calculated phase-lock scores using the R package synchrony (Gouhier & 
Guichard, 2014).

Fig. 6.2  Types of entrainment: (a) synchronic entrainment, (b) temporal entrainment

T. Murase et al.
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We provide a hypothetical study in which four members participate in a military 
simulation game in which two four-member teams must navigate a course through 
enemy positions. In order to do perform effectively, their units collect and exchange 
information important to their mission and also coordinate attacks on enemy units. 
There are eight events in this scenario: (A) collecting information, (B) member’s 
unit health decrease, (C) attack, (D) enemy health decrease, (E) communication, (F) 
enemy death, (G) exchanging information, (H) moving with other member, (I) mov-
ing alone, and (J) moving close to the enemy. These elements are documented at 
one-second intervals in the order in which they occurred during the hypothetical 
mission. The data set is available for download for those who are interested in ana-
lyzing it at http://hdl.handle.net/2142/91573. The R code for conducting the analy-
sis is referenced below in the example.

The dataset is made up of two teams of four members each. Each row represents 
a series of events performed by a single member. In this data, the events B, D, and 
F1 appear across all the members when any of these events occurs to at least one 
member because they are events that happen to or have impacts on all members of 
both teams. For example, Member 1 on Team 1 starts engaging the enemy at the 
19th position, and the enemy’s health decreases at the 21st position. Although this 
event belongs to Member 1, it is documented across all the members, because the 
enemy’s health decrement is beneficial for any member who encounters this enemy. 
This irregular, “messy” data structure is typical of sequence data sets, particularly 
those derived from digital traces. This underscores the value of attending to tempo-
ral patterns in data rather than individual acts: focusing on event D alone for 
Members 2, 3, and 4 might lead us to conclude incorrectly that these members 
engaged the enemy; but focusing on the sequence CD (attack → enemy health 
decrease) for Member 1 uncovers the meaning of the event, showing that the result 
for all was a product of the Member 1’s action.

The methods discussed in this section can be applied to simple units like those 
just defined or to more complex units such as subsequences. In our discussion we 
will use subsequences as our basic unit of analysis, on the premise discussed in  
the previous paragraph, that using subsequences or cycles as basic units gives us a 
more nuanced and accurate description of member behavior.

6.4.1  �Step 1: Theoretically Define the Units of Interest

The first and most important step is to develop a set of theoretically sound units of 
analysis. When using single acts, the coding system often specifies them. In the case 
of subsequences construct definition occurs through considering meaningful combi-
nations of acts. Not all subsequences are necessarily meaningful and even when all 
are, only a few might be of interest given the theory being tested. These serve as 
basic units of analysis. One challenge lies in the process of putting events in specific 
orders to create sequence bases because theories in social sciences typically do not 
specify sets of events and in what exact order those events should unfold. It is the 
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researcher’s responsibility to carefully evaluate what events and behaviors need to 
be included and in what order they should be placed so that the short sequences can 
capture the concepts of interest.

For example, in team research, explicit and implicit coordination have been 
found to influence team performance (Rico, Sánchez-Manzanares, Gil, & Gibson, 
2008). Explicit coordination is defined as the process in which members communi-
cate to define responsibilities, make plans and deadlines, and exchange information 
in order to orchestrate their efforts and activities to achieve common objectives. On 
the other hand, implicit coordination emphasizes members’ ability to predict each 
other’s activities in the process of orchestrating their efforts (Rico et al., 2008). As 
can be seen, these definitions do not precisely specify what exact behavioral events 
should be included and in what order. The researcher must choose the behaviors that 
fit these definitions.

The subsequences of implicit and explicit coordination can include combinations 
of several different types of behavioral events. For example, using the categories 
defined above, one subsequence for explicit coordination starts from communica-
tion with member A to moving with member A to being close to enemy. On the 
other hand, a subsequence of implicit coordination starts from moving along to 
moving with member A to being close to enemy because the definition of implicit 
coordination emphasizes one’s ability to predict other members’ behavior (Rico 
et al., 2008). This definition suggests that communication should not be the essen-
tial part of short sequences which capture implicit coordination.

Additionally, the researcher must determine how long the subsequences should 
be. An appropriate length should be long enough so that below that length a sequence 
of events should not be complete, but above it a sequence can be broken down into 
smaller subsequences. For example, it is difficult to determine what type of con-
struct can be captured by a subsequence of two behaviors which starts from moving 
alone to communication, because depending on what behavioral events come before 
or after this sequence, the meaning of the sequence changes. If the events, moving 
with other team and being close to enemy, come after this sequence, the new subse-
quence with the four events could mean explicit coordination. One member tells 
another member nearby that he is moving toward the enemy unit, and asks the mem-
ber to come to his location. Then these two meet and move together toward the 
enemy unit. If these two behaviors do not come after the original sequence, it can be 
too short to determine whether it captures explicit coordination or something else.

On the other hand, if a subsequence is too long, it could consist of two or more 
subsequences, each of which alone could provide sufficient information to capture 
a theoretical construct. For example, if a sequence is assumed to consist of six 
actions of moving alone, communicating, moving with another member, being 
close to enemy, attacking, and enemy health decrease, this sequence can be broken 
into the first subsequence of four behavioral elements—moving alone, communi-
cating, moving another member, and being close to enemy—and a second subse-
quence of attacking and enemy health decrease. The first subsequence is explicit 
coordination, and the second subsequence defines a new construct: engaging enemy. 
Therefore, the researcher must consider not only the “what events” question (what 
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events need to be included) but also the “how many events” question (how many 
events are necessary to make one complete sequence).

Furthermore, the researcher can create multiple subsequences all of which can 
belong to the same construct. There is no reason to expect that there should be only 
one subsequence per construct. For example, psychological scales are comprised of 
multiple items because having multiple questions is considered necessary to capture 
different aspects of the same construct (Nunnally & Bernstein, 1994). This perspec-
tive can be applied to the sequence-based method. If one subsequence may not be 
enough to capture the entire construct space, multiple subsequences are necessary 
to obtain adequate coverage of the construct.

This first step is essential for ensuring legitimacy for this type of method. It is 
common in computer science to simply mine sequences and use the obtained  
set. However, if we want to relate our sequence analysis to theory, this “dustbowl 
empiricist” approach would not be sufficient. For the eight act categories we had 
above, there would be 56 possible pairs for each individual team member and many 
more if we consider three and four act sequences. This is simply too many to sort 
through. Generating the subsequences of interest based upon both theory and 
empirical findings from the literature provides a solid framework through which the 
researcher can appropriately interpret the meanings of subsequences uncovered  
by data mining. Without theoretical guidance, the researcher will be easily over-
whelmed by the enormous number of short sequences identified through data min-
ing alone.

Out of hundreds of possible sequences, Murase et al. (2015) defined seven differ-
ent subsequence types comprised of 37 actual subsequences to represent four key 
teamwork constructs: implicit coordination, explicit coordination, taskwork, and 
information gathering. Two subsequence types indicated implicit coordination, two 
explicit coordination, two taskwork, and one indicated information gathering. In 
this case they used teamwork theory to guide a multilevel classification scheme that 
started with 37 meaningful sequences, which were then grouped into seven basic 
types, which were then mapped onto the four key teamwork constructs.

6.4.2  �Step 2: Extract Subsequences from Data

The next step is to extract subsequences of events from the longer sequence of each 
participant. The R package TraMineR (Gabadinho, Ritschard, Mueller, & Studer, 
2011) can be used to conduct a number of different types of sequence analyses. 
TraMineR contains numerous R functions with which researchers can create and 
manipulate data for sequence analysis, mine data to find unique sequences, and 
visualize results. Researchers who are more familiar with Stata can conduct similar 
types of sequence analysis using Stata packages such as SAID (Halpin, 2014) and 
others (e.g., Brzinsky-Fay, Kohler, & Luniak, 2006). The rest of the analytical dem-
onstration will be conducted using TraMineR.
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In this case we want to extract subsequences from the data. While we know 
theoretically which subsequences we are looking for, it is useful to mine the full set 
of subsequences for additional information. In some cases, additional unanticipated 
subsequences that correspond to our theoretical constructs may be identified. In 
other cases one or more subsequences might suggest additional constructs compat-
ible with our theoretical orientation.

To extract subsequences, we use the subsequence function (which is called 
seqefsub in the Synchrony package) to mine event sequences in the form of shifts 
from one type of behavior to another type. One consideration is subsequence length. 
The length of a sequence could be anywhere from 2 units (i.e., A → B) to the entire 
length of data collected in one’s study. A second consideration is how to deal with 
repeats of the same unit multiple times in a row. When data are documented in every 
second as they are in a game, the same event can be recorded for a member many 
times in row; for instance, if the player is moving continuously, then movement will 
be recorded each second so long as the continuous movement occurs. As a result, 
the data can contain a long string of the same events with a different element at the 
end (i.e., AAAAAAAB), and the repeats are an artifact of the recording. The subse-
quence function identifies no shift (A) and one shift from A to B (A→B) at the end, 
and ignores the intervening multiple occurrences of the element.

When we employ a subsequence identification technique like seqefsub that only 
identifies shifts from one type of act to another (and ignores successive repeats of 
the same unit), we recommend that the researcher consider whether to break data 
into multiple shorter segments to limit the time period over which subsequences can 
extend. If the original sequence runs over hours, months, or days, techniques like 
seqefsub might identify subsequences which extend over longer stretches of time 
than humans can realistically act over or attend to. If one’s sequence data spans 
60 min, for example, mining the entire sequence makes no sense because the subse-
quence function will pull out many sequences which are not meaningful. For exam-
ple, the function could identify a shift between two behaviors—communication 
with member A during the first 30 s of the session and moving with member A 25 m 
into the game. Such a shift does not make sense given the nature of teamwork inter-
action patterns, in which members typically respond relatively immediately to one 
another. To avoid this issue, the researcher should consider breaking the time into 
multiple time segments within which shifts between units are considered meaning-
ful. The appropriate length of time segments will vary according to the phenome-
non. A reasonable latency period for teamwork is relatively short, while in the case 
of organizational innovation adoption sequences could extend over days, weeks, or 
months and still be meaningful.

The second decision point is to determine how many shifts are allowed to be part 
of short sequences. The subsequence function could completely exhaust the entire 
list of short sequences, and it could take significant computing resources to com-
plete the identification process if the empirical sequence is very long. For more 
efficient subsequence identification, the researcher should determine the appropri-
ate number of shits which are maximally allowed in short sequences. If too many 
shifts are allowed, they would not be interpretable or can be broken down into 
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shorter sequences. In our case, we limit the length of sequences to be no more than 
3 shifts (i.e., A→B, B→C, C→D), which is in line with the decisions on this matter 
made by other researchers (Lehmann-Willenbrock et al., 2011; Murase et al., 2015; 
Poole & Roth, 1989).

The last decision point is to consider how far apart the behaviors within the same 
shift or the shifts within the same sequence are allowed to be. Suppose that there is 
a sequence of As and Bs at 10 positions (AAABAABBAA) and that the researcher 
is interested in identifying the short sequence (A→B)−(B→A). First, the researcher 
considers whether the events of the same shift should occur at the positions right 
next to each other or at the positions somewhat apart from each other. For example, 
it is important to consider whether A1 and B4 (the subscripts indicate the event posi-
tions in the sequence) are allowed to define a shift or whether only adjacent acts like 
A3 and B4, and A6 and B7 should be identified as shifts. The same concern must be 
exercised when the researcher considers which shifts should be included in the same 
subsequence. Depending on how far apart the behaviors within the same shift and 
shifts within the same short sequence are allowed to be located, the subsequence 
function produces different frequencies even for the same short sequence.

To operationalize various choices related to relationships among units in subse-
quences, there are several different counting operations one can use: one occurrence 
per object (COBJ), one occurrence per span-window (CWIN), distinct occurrences 
with possibility of event-timestamp overlap (CDIST_O), and distinct occurrences 
with no event-timestamp overlap allowed (CDIST) (Joshi, Karypis, & Kumar, 1999).

COBJ counts a specified sequence only once throughout the entire data even if 
the sequence appears more than once. This is an appropriate rule to use when once 
a subsequence occurs its full effect is felt. CWIN uses a moving window within 
which it evaluates the occurrence of the short sequence. First, the researcher must 
determine how many units a moving window covers every time it moves. For exam-
ple, if the moving window is set to cover three units, every time it moves, it assesses 
whether the sequence occurs in those three units. After the moving window goes 
through the entire data set, the CWIN function provides the total number of occur-
rences of the short sequence. This rule is appropriate if every occurrence of the 
subsequence counts. Finally, CDIST_O identifies all possible short sequences 
within the window whose length is specified by the researcher. The CDIST_O func-
tion differs from CDIST in that CDIST counts only one occurrence of the short 
sequence in a window, whereas CDIST_O counts all occurrences within the win-
dow, even those that overlap. More detailed descriptions and comparisons of the 
counting operations can be found in Joshi et al. (1999).

6.4.3  �Step 3: Revisit Theoretically Defined Subsequences 
in Light of Sequence Mining Results

The subsequence functions CWIN and CDIST_O will identify all possible 
combinations of subsequences and count their frequencies. In step 1 the researcher 
makes the decisions that define the types of subsequences that will be identified.  
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No theory allows the researcher to make perfect determinations about all meaningful 
subsequences that indicate theoretical constructs. Additional promising subsequen
ces may have been identified in the sequence mining process. The next task, then, is 
to use these results to refine the subsequence indicators that are supposed to capture 
the target constructs. Only those subsequences which indicate the target constructs 
or suggest new constructs that fit within the theoretical framework should be 
retained and all the rest should be discarded. Although this process seems straight-
forward, it is not.

Table 6.1 presents a scenario with the set of events which any short sequences 
identified must contain. For example, two other short sequences contain the set of 
AB events and provide their frequency information. Note that two letters connected 
by the arrow consist of a shift while the hyphens connect two shifts to create a lon-
ger chain. Suppose you have identified A and B as critical events, and the subse-
quence function has identified two other subsequences (A→B)  −  (B→A) and 
(A→B) − (A→B). The issue faced in this scenario is that the two latter chains con-
tain the A→B shift as part of their sequence so you wonder how this information can 
be combined. Because of the same A→B shift in the both short sequences, their 
frequency counts are not independent of each other but are redundant. As you can 
see, the base sequence (A→B) occurred seven times. This means that any short 
sequences containing the base sequence can occur more than seven times. Thus, 
unless, the specific short sequence (A→B) − (B→A) is the target short sequence 
whose occurrence is 6, the researcher should record 7 for this scenario while dis-
carding the other frequency numbers.

As the length of the original sequence data increases, the number of subse-
quences one can make exponentially increases and becomes impossible to count 
manually. Utilizing the data mining approach provides the researcher with the new 
ability to capture information that the researcher cannot think of without the data 
mining technique.

6.4.4  �Step 4: Aggregate Frequency Counts of Subsequences 
for Data Segments

In step 2 we argued that any long sequence could be broken into shorter segments 
that reflect realistic latencies in thought and action and also ease computational 
demands. Once an appropriate set of subsequence indicators have been identified, 
the next step is to count them in each segment to yield a sequence of counts for each 

Table 6.1  Counts of subsequences

Set of events Base sequence Short sequence 1 Short sequence 2

A, B Sequence (A→B) (A→B) − (B→A) (A→B) − (A)
Frequency 7 6 7

Note: The arrow sign indicates a shift from one behavior to another; a hyphen connects two shifts.
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individual member. Carrying through our example of the categories discussed in 
Step 1 this would yield values of the number of subsequences devoted to explicit 
coordination, implicit coordination, taskwork, and information gathering for each 
segment. The result is four time series, one for each activity, for each member.

6.4.5  �Step 5: Compute Synchronization Scores

Entrainment can be assessed by calculating the degree and type of synchronization 
across the individual member time series. The output of values of the algorithm 
provides a means for calculating the degree to which members remain phase-locked 
or socially entrained throughout the game. Suppose two members have coordination 
cycles with the same pace. If they coordinate with each other at the same time 
throughout the game, the cycle value differences are zero. However, even if their 
paces are the same, members can engage in coordination at different time points. 
For example, one member coordinates in every 5 min at the 5th, 10th, and 15th 
minute, but the other member engages in coordination at the 3rd, 8th, and 13th min-
ute. In this case, the cycle value differences yield a series of non-zero constants. 
Finally, if members engage in coordination at random time points and change the 
pace of these cycles, the cycle differences yield a series of random numbers. It is 
important to note that this third scenario represents members who are not entrained 
to one another.

Because the phase-lock algorithm produces random numbers for non-entrained 
members, the phase-lock calculation can determine the degree to which members 
are entrained by the distribution of the previously calculated cycle differences, with 
uniformly-distributed values representing low phase-lock (i.e., low entrainment) 
(Cazelles & Stone, 2003). For every pair of members, cycle difference scores for 
every time point are calculated to create a distribution. If two members’ coordination 
cycles are in perfect sync, the cycle difference scores are zeros while two members 
that constantly and randomly change their pace would create a uniform distribution 
of the difference scores. Therefore, if the distribution of cycle differences has a clear 
peak, two members are said to be “phase-locked”, and if the distribution spreads out 
and approaches uniformity, phase-lock decreases. We use kurtosis values to repre-
sent the degree of “peakedness” of cycle-difference distributions.

Besides the phase-lock technique which is the main synchrony analysis in this 
chapter, other synchrony analysis techniques which are also available in the syn-
chrony package deserve attention. Community-wide synchrony (Loreau & de 
Mazancourt, 2008) evaluates the degree to which members’ time-series data fluctu-
ate in unison. Kendall’s coefficient concordance is a non-parametric statistic which 
evaluates agreement among members’ time-series data (Gouhier, Guichard, & 
Gonzalez, 2010). Although these statistics can be used to evaluate entrainment, the 
phase-lock technique is the most appropriate because it capture similarity between 
peak-to-peak paces of multiple cycles, which we used to define entrainment. When 
using other techniques, we recommend that researchers carefully consider the defi-
nition of entrainment and then select the most appropriate technique.
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6.5  �Example

In this section we analyze the sample dataset mentioned earlier. Table 6.2 summa-
rizes ten basic activity elements team members engaged in the game and describes 
of which of three coordination sequences the actions should be part. These three 
sequences are also specified in the Searchcode file at http://hdl.handle.net/ 
2142/91572. This file currently allows readers to specify up to six elements that 
sequences should and should not contain. Elements that the sequences must contain 
need to be specified in the “action” columns, and TRUEs must be specified in the 
“yesno” column. If there are some elements that should not be part of sequences, 
they must be specified in the action columns, and FALSEs must be specified at the 
appropriate positions in the yesno columns. For example, the first row in the 
Searchcode file contains A and G and two TRUEs, meaning that mined sequences 
must contain A and G. If sequences should not contain, for example, G, the TRUE 
at the second position should be changed to FALSE. If A should not be contained, 
the first TRUE should be changed to FALSE.

Two R code scripts for sequence and synchrony analysis are available for down-
load at http://hdl.handle.net/2142/91573. The scripts help readers understand how 
we prepared data for sequential synchrony analysis and conducted the analyses. It is 
difficult to provide the full description in this chapter for what we did line-by-line 
given limited space, but we attempt to highlight the main lines important for the 
analysis and provide explanations. The further explanations for all the script lines 
are provided directly in the scripts.

We broke the data into 10 20-second time segments as we recommend in the Step 
2 section, and identified all sequences within each segment to create time-series 
data per member. The code to create the time segments is shown in Table 6.3.

Table 6.2  Coding categories used in the example

Element Action

Coordination 
sequence: 
engaging enemy

Coordination 
sequence: 
exchanging 
information

Coordination 
sequence: 
planning

A Pick up information ✓
B Health decrease
C Attack ✓
D Enemy health decrease
E Communication ✓
F1 Enemy death ✓
G Exchange information ✓
H Moving with other team ✓
I Moving alone
J Move close to enemy ✓

Note: Check mark indicates of which sequence the element/action is part
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Next we identified sequences within each segment. First, the CDIST counting 
operation was used to identify sequences that contained up to three shifts. Once 
identified, sequences were evaluated for whether they captured team coordination, 
and their frequency counts were documented if they contained one of the sets of 
behaviors in the following order: H, J, and C; F1 and E; A and G. These three sets 
of behaviors indicate different ways in which members engage in team coordina-
tion. Sequences containing H, J, and C indicate that members move together to 
engage enemy. Sequences containing F and E indicate that members plan for the 
next move after they complete a task (which is removing the enemy threat). Finally, 
sequences containing A and G indicate that members exchange information as they 
locate it. Although we could generate more combinations of behaviors, we use only 
these three sequences in this demonstration. If sequences contained any other 
behaviors which were not specified in this section, their frequency counts were not 
documented. Table 6.4 shows the commands given to TraMineR for this operation.

The next step was to examine whether sequences members engaged in within the 
same time segments were considered as redundant or unique. For example, Member 
2 on MTS 1 engaged in three sequences containing H, J, and C in the seventh time 
segment: (H) − (H→J) − (J→C); (H) − (J→C); and (H→J) − (J→C). If the frequen-
cies of all the three sequences were included, the total count for this segment would 
be 3. However, if the chain of actions in this segment is evaluated, it is obvious that 
these three are actually duplicates. The chain is HHHHHHHHJJCCCBDCDBDC. This 
member engaged in this type of coordination activity only once in this time segment 
as indicated in that the member engaged in one series of move activities and one 
series of attack activities. Therefore, we took only one sequence out of these three 
and documented its frequency count. Furthermore, we took this approach through 
the entire data. This is a complex operation that is explained in the code available 
for download.

Additionally, when members engaged in different types of coordination within 
the same time segments, we took the sum of their frequencies. For example, Member 
2 on MTS 1 engaged in two different types of sequences in the eighth segment: 
(H→J) − (J→C) and (F1→E), and each sequence occurred only once. The reason 

Table 6.3  Dividing data into segments

2 seg<−20

12 for(time_i in c(1:((ncol(teamdat)-3)/seg))){
13 print(paste(“MTS”,mts_i,” Mem”,member_i,” Seg”,time_i,sep=““))
14 lst<−time_i*seg
15 fst<−lst+1−seg
16 subdat<−teammemdat[1,fst:lst]
17 variability<−length(unique(apply(subdat,2,as.character)))

Line 2: Object seg indicates the 20-second time window used to divide the data into ten different 
time segments
Line12: The for-in function specified the number of time the lines that follow should repeat
Lines 14–15: The beginning and ending of each time segment are calculated
Line16: Object subdat is the data segment extracted from a member’s entire data set (teammemdat)
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for this approach being adequate is that on average the members engaged in 
coordination sequences only once in each segment. Thus, summing frequencies of 
different types of sequences did not distort team coordination information. However, 
this approach could produce distorted information if frequencies for one type of 
sequences were exceedingly larger than those for the other types of sequences, but 
all the types of sequences were considered equally important. For example, in some 
data teams typically engage in implicit coordination about 100 times with standard 
deviation (SD) of 20 while engaging in explicit coordination 10 times with SD of 2. 
Additionally, we assume the researchers consider these two types of coordination 
equally important. However, if the frequency counts of these two types are summed 
across, the aggregate score that is supposed to represent the coordination construct 
is over-represented by implicit coordination, which is not aligned with how this 
construct is conceptualized. In that case, researchers could convert frequencies into 
z-scores first and take sum of them. Fortunately, in the current data, this was not a 
concern.

Table 6.5 summarizes the frequency counts of sequences that met the aforemen-
tioned criteria. Member 1 and 4 on Team 1 did not engage in activities as much as 
the other members while all the members on Team 2 were active throughout all the 
time segments.

In the last step, calculation was conducted on the extent to which members’ 
activities over time were phase-locked. Using R package Synchrony (Gouhier & 
Guichard, 2014), phase-lock scores were calculated for every pair of members 
within each team, and then kurtosis scores were derived to evaluate the degree of 
peakness (Table 6.6).

Table 6.4  Code for CDIST

18 if(variability>1){

19 datsize<−ncol(subdat)
20 eve.seq<−seqdef(subdat)
21 eve.seqe<−seqecreate(eve.seq)
22 fsubseq<−seqefsub(eve.seqe,minSupport=1,maxK=3,
23 constraint = seqeconstraint (maxGap = datsize,
24 windowSize = datsize,countMethod=‘CDIST’))
25 evecount<−matrix(seqeapplysub(fsubseq,method=“count”),
26 ncol = 1, nrow = ncol(seqeapplysub(fsubseq,method=“count”)))

Line18: The if function checks whether the segment contains different action elements
Line20: The seqdef function converts a character string into a vector of events
Line21: The seqecreate function prepares data for sequence analysis from the event sequence 
object created in Line 20
Line22: The seqefsub function mines the data to produce sequences with maxK=3 meaning the 
function creates sequences of up to three shifts. CDIST is selected as counting operation for this 
analysis
Line25: The seqeapplysub function produces data containing frequency counts for the sequences 
found in Line 22. This line prepares the frequency count data in the matrix format
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Table 6.5  Frequency counts of coordination sequences over Time

Team Member
Time 
1

Time 
2

Time 
3

Time 
4

Time 
5

Time 
6

Time 
7

Time 
8

Time 
9

Time 
10

1 1 0 1 0 0 0 1 0 1 0 1
1 2 1 1 1 1 0 0 1 2 1 1
1 3 0 1 0 2 1 0 1 2 0 0
1 4 0 0 1 0 0 0 0 0 0 1
2 1 1 1 0 1 0 2 1 2 1 1
2 2 2 1 1 1 1 2 2 1 2 0
2 3 0 1 0 1 0 2 2 1 0 1
2 4 0 1 1 1 0 2 1 1 1 0

Table 6.6  Synchrony commands

23 for(mem_ii in unique(mtsdat[,“member_i”])

24 [−1*which(unique(mtsdat[,“member_i”])==members)])
25 {
26 run<−run+1
27 t1<−as.numeric(mtsdat[mtsdat[,“member_i”]==mem_i,−1:−2])
28 t2<−as.numeric(mtsdat[mtsdat[,“member_i”]==mem_ii,−1:−2])
29 div_i<−length(unique(t1))
30 div_ii<−length(unique(t2))
31 if((div_i>=3)|(div_ii>=3)){
32 sync.maxs<−phase.sync(t1,t2,mins=TRUE)
33 k<−0
34 s<−NA
35 ave<−NA
36 sds<−NA
37 k<−kurtosis(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
38 s<−skewness(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
39 ave<−mean(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
40 sds<−sd(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)

Lines 27–28: This line selects a pair of members (mem_i and mem_ii) from the team data (mtsdat)
Lines 29–30: This line calculates the numbers of actions the members performed, and then calcu-
lates synchrony scores for the pairs whose numbers of actions are equal to or more than 3
Line32: The phase.sync function calculates the synchrony scores between two members’ time-
series data and automatically creates a distribution of cycle differences of the synchrony scores
Line37: The kurtosis function calculates the degree of peakedness from the distribution of the 
cycle differences
Line38: The skewness function calculates how skewed the distribution is
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Table 6.7 summarizes kurtosis scores across all the pairs of members among the 
two teams, with higher scores indicating the more peaked the cycle difference dis-
tribution becomes (Cazelles & Stone, 2003). Values closer or larger than 3 indicate 
that the distribution has a higher peak than the normal distribution, which indicates 
that two members are entrained to each other. From this table, the 1–2 pair on Team 
1, and the pairs of 1–3 and 2–3 on Team 2 have values closer to 3, indicating that 
their distributions have a higher peak than the normal distribution (DeCarlo, 1997). 
Interestingly, the kurtosis value between Member 1 and 2 was higher than that 
between Member 2 and 3. Although Member 2 and 3 were more active than the 
other members, Member 1 and 2 had more synchronization on their activities than 
did the other pair. Another notable point is that the phase-lock calculation produced 
NAs for the pairs involving Member 4. Member 4 was inactive as evidenced in that 
this member engaged in coordination only twice. Calculating phase-lock values 
requires enough fluctuation in data so it may not be useful if one’s data contain 
many members being inactive throughout.

6.6  �Discussion

In this chapter, we have provided a step-by-step guide to perform sequence 
synchrony analysis to investigate the degree to which team members are socially 
entrained. Specifically, there are two objectives of the chapter. The first objective is 
not simply to explain how to use specific R functions from the R packages “syn-
chrony” and “TraMineR”, but how to evaluate the theoretical relevance of behav-
ioral elements that should be part of subsequences. The hybrid method of data 
mining and theory-based thinking provides a solid foundation on which subse-
quences mined from data acquire substantive meaning and relevance to one’s study. 
The second objective is to provide a further guidance on how to obtain unique team 
property “social entrainment” from subsequence data rather than simply calculating 

Table 6.7  Kurtosis scores 
used to evaluate 
synchronization

Team Pair Kurtosis

1 1 and 2 2.73
1 1 and 3 1.84
1 1 and 4 NA
1 2 and 3 1.70
1 2 and 4 1.63
1 3 and 4 NA
2 1 and 2 1.50
2 1 and 3 2.23
2 1 and 4 NA
2 2 and 3 2.72
2 2 and 4 1.50
2 3 and 4 1.50
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average scores across members. By combining these two methods, sequential syn-
chrony analysis enables researchers to capture compilational forms of emergence.

Group properties emerge in compilational and compositional forms as individu-
als become cohesive functioning teams (Chan, 1998; Kozlowski & Klein, 2000). 
Although researchers have argued importance for compilational forms, they have 
mainly relied on compositional forms or taking average scores to capture team 
properties. This practice suggests that the current state of science on group and team 
process is limited because the most preferred analytical approaches are designed to 
capture only compositional forms. We argue that a reason for the lack of utilizing 
compilational forms is that there is no theoretical as well as analytical guide to cap-
ture them. To spur the use of compilational forms, we have attempted to develop a 
solution to both of the problems.

Past studies have effectively demonstrated sequence analysis as a powerful tech-
nique in preserving contextual meanings of team processes. Sequence analysis  
can capture compilational forms of emergence especially when researchers directly 
conduct sequence analysis on data at the team level to obtain patterns of interactions 
in the team (Lehmann-Willenbrock et al., 2011; Poole & Roth, 1989; Tschan, 1995). 
However, this technique alone is not sufficient to capture compilational forms when 
it is conducted on individual-level time-series data because it simply converts the 
meaning of data from the raw information to subsequences. As a result, the con-
verted data still require aggregation to be elevated to the team level. This is the situ-
ation we have illustrated in the example, where researchers must have a specific 
theoretical and analytical guide to obtain compilational forms.

Social entrainment (McGrath & Kelly, 1986) is a theoretical framework that 
serves a guide when researchers wonder what team property emerges at the team 
level in a compilational form. Social entrainment takes on a compilational form 
when it emerges because each member’s behavioral rhythm does not accurately 
depict how synchronized members’ behaviors are. One useful way to observe this 
phenomenon is to conduct synchronization analysis on members’ time-series data.

Like all sequential process analysis, sequence synchronization analysis is a 
“work in progress.” Currently, there are no definitive, canonical techniques for 
process analysis as there for analysis of experimental designs. While these are 
emerging, at this point sequence analysis requires improvisation and ingenuity. We 
encourage readers to build on what we have described as they pursue their own 
projects.
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