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Chapter 4
A Relational Event Approach to Modeling 
Behavioral Dynamics

Carter T. Butts and Christopher Steven Marcum

4.1  Representing Interaction: From Social Networks 
to Relational Events

The social network paradigm is founded on the basic representation of social structure 
in terms of a set of social entities (e.g., people, organizations, or cultural domain 
elements) that are, at any given moment in time, connected by a set of relationships 
(e.g., friendship, collaboration, or association) (Wasserman & Faust, 1994). The 
success of this paradigm owes much to its flexibility: with substantively appropriate 
definitions of entities (vertices or nodes in network parlance) and relationships (ties 
or edges), networks can serve as faithful representations of phenomena ranging 
from communication and sexual relationships to neuronal connections and the 
structure of proteins (Butts, 2009). Nor must networks be static: the time evolution 
of social relationships has been of interest since the field’s earliest days (see, e.g. 
Heider, 1946; Rapoport, 1949; Sampson, 1969), and considerable progress has been 
made on models for network dynamics (e.g. Snijders, 2001; Koskinen & Snijders, 
2007; Almquist & Butts, 2014; Krivitsky & Handcock, 2014). Such models treat 
relationships (and, in some cases, the set of social entities itself) as evolving in dis-
crete or continuous time, driven by mechanisms whose presence and strength can be 
estimated from intertemporal network data.
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A key assumption that underlies the network representation in both its static and 
dynamic guises is that relationships are temporally extensive—that is, it is both 
meaningful and useful to regard individual ties as being present for some duration 
that is at least comparable to (and possibly much longer than) the time scale of the 
social process being studied. Where tie durations are much longer than the process 
of interest, we may treat the network as effectively “fixed;” thus is it meaningful for 
Granovetter (1973) or Burt (1992) to speak of personal ties as providing access to 
information or employment opportunities, for Freidkin (1998) to model opinion 
dynamics in experimental groups, or for Centola and Macy (2007) to examine the 
features that allow complex contagions to diffuse in a community, without explicitly 
treating network dynamics. When social processes (including tie formation and dis-
solution themselves) occur on a timescale comparable to tie durations, it becomes 
vital to account for network dynamics. For instance, the diffusion of HIV through 
sexual contact networks is heavily influenced by partnership dynamics (particularly 
the formation concur rent rather than serial relationships) (Morris, Goodreau, & 
Moody, 2007), and health behaviors such as smoking and drinking among adoles-
cents are driven by an endogenous interaction between social selection and social 
influence (see, e.g. Lakon, Hipp, Wang, Butts, & Jose, 2015; Wang, Hipp, Butts, 
Jose, & Lakon, 2016). While there are many practical and theoretical differences 
between the behavior of networks in the dynamic regime versus the “static” limit, 
both regimes share the common feature of simultaneity: relationships overlap in 
time, allowing for apparent reciprocal interaction between them.

Such simultaneous co-presence of edges forms the basis of all network structure (as 
expressed in concepts ranging from reciprocity and transitivity to centrality and struc-
tural equivalence), and is the foundation of social network theory. Such simultaneity, 
however, is a hidden consequence of the assumption of temporal extensiveness; in the 
limit, as tie durations become much shorter than the timescale of relationship forma-
tion, we approach a regime in which “ties” become fleeting interactions with little or no 
effective temporal overlap. In this regime the usual notion of network structure breaks 
down, while alternative concepts of sequence and timing become paramount.

This regime of social interaction is the domain of relational events (Butts, 2008). 
Relational events, analogous to edges in a conventional social network setting, are 
discrete instances of interaction among a set of social entities. Unlike temporally 
extensive ties, relational events are approximated as instantaneous; they are hence 
well-ordered in time, and do not form the complex cross-sectional structures char-
acteristic of social networks. This lack of cross-sectional structure belies their rich-
ness and flexibility as a representation for interaction dynamics, which is equal to 
that of networks within the longer-duration regime. (In fact, the two regimes can be 
brought together by treating relationships as spells with instantaneous start and end 
events. Our main focus here is on the instantaneous action case, however). The rela-
tional event paradigm is particularly useful for studying the social action that lies 
beneath (and evolves within) ongoing social relationships. In this settings, relational 
events are used to represent particular instances of social behavior (e.g., communica-
tion, resource transfer, or hostility) exchanged between individuals. To understand 
how such behaviors unfold over time requires a theoretical framework and analytic 

C.T. Butts and C.S. Marcum



53

foundation that incorporates the distinctive properties of such micro- behaviors. 
Within the relational event paradigm, actions (whether individual or  collective) are 
treated as arising as discrete events in continuous time, whose hazards are poten-
tially complex functions of the properties of the actors, the social context, and the 
history of prior interaction itself (Butts, 2008). In this way, the relational event para-
digm can be viewed as a fusion of ideas from social networks and allied theoretical 
traditions such as agent-based modeling with the inferential foundation of survival 
and event history analysis (Mayer & Tuma, 1990; Blossfeld & Rohwer, 1995). The 
result is a powerful framework for studying complex social mechanisms that can 
account for the heterogeneity and context dependence of real-world behavior with-
out sacrificing inferential tractability.

4.1.1   Prefatory Notes

At its most elementary level, as Marcum and Butts (2015) point out, the rela-
tional event framework helps researchers answer the question of “what drives 
what happens next” in a complex sequence of interdependent events. In this 
chapter, we briefly review the relational event framework and basic model fami-
lies, discuss issues related to data selection and preparation, and demonstrate 
relational event model analysis using the freely available software package relev
ent for R (Butts, 2010). Here, we provide some additional context before turning 
to the data and tutorial.

Following Butts (2008), a relational event is defined as an action emitted by one 
entity and directed toward another in its environment (where the entities in question 
may be sets of more primitive entities (e.g., groups of individuals), and self- 
interactions may be allowed). From this definition, a relational event is thus com-
prised of a sender of action, a receiver of that action, and a type of action, with the 
action occurring at a given point in time. In the context of a social system, we con-
sider relational events as “atomic units” of social interaction. A series of such events, 
ordered in time, comprise an event history that records the sequence of social actions 
taken by a set of senders and directed to a set of receivers over some window of 
observation. The set of senders and the set of receivers may consist of human actors, 
animals, objects or a combination of different types of actors. The set of action 
types, likewise, may consist of a variety behaviors including communication, move-
ments, or exchanges.

The relational event framework is in an increasingly popular approach to the 
analysis of relational dynamics and has been adopted by social network researchers 
in a wide variety of fields. Typically, research questions addressed in this body of 
work focus on understanding the behavioral dynamics of a particular type of action 
(such as communication alone).

Recently, relational event models have been used to study phenomena as diverse 
as reciprocity in food-sharing among birds (Tranmer, Marcum, Morton, Croft, & de 
Kort, 2015); social disruption in herds of cows (Patison, Quintane, Swain, Robins, 
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& Pattison, 2015); cooperation in organizational networks (Leenders, Contractor, & 
DeChurch, 2015); conversational norms in online political discussions (Liang, 
2014); and multiple event histories from classroom conversations (DuBois, Butts, 
McFarland, & Smyth, 2013b).

Prior to the relational event framework, behavioral dynamics occurring within 
the context of a social network were generally modeled using frameworks devel-
oped for dynamic network data; since, as noted above, dynamic networks are 
founded on the notion of simultaneous, temporally extensive edges, use of dynamic 
network models for relational event data requires aggregation of events within a 
time window. Such aggregation leads to loss of information, and the results of 
 subsequent analyses may depend critically on choices such as the width of the 
aggregation window. Model families such as the stochastic actor-oriented models 
(Snijders, 1996) or the temporal exponential random graph models (Robins & 
Pattison, 2001; Almquist & Butts, 2014; Krivitsky & Handcock, 2014) are appropri-
ate for studying systems of simultaneous relationships that evolve with time, but 
may yield misleading results when fit to aggregates of relational events. While such 
use can be motivated in particular cases, we do not as a general matter recommend 
coercing event processes into dynamic network form for modeling purposes. Rather, 
where possible, we recommend that relational event processes be treated on their 
own terms, as sequences of instantaneous events with relational structure. In the 
following sections, we provide an introduction to this mode of analysis.

4.2  Overview of the Relational Event Framework

We begin our overview of the relational event framework by considering what a 
relational event process entails. Although we provide some basic notation, we omit 
most technical details; interested readers are directed to Butts (2008), DuBois et al. 
(2013b), and Marcum and Butts (2015) for foundations and further developments. 
We start with a set of potential senders, S, a set of potential receivers, R, and a set of 
action types, C. A “sender” or “receiver” in this context may refer to a single indi-
vidual or a set thereof; in some cases, it may be useful to designate a single bulk 
sender or receiver to represent the broader environment (if, e.g., some actions may 
be untargeted, or may cross the boundary between the system of interest and the 
setting in which that system is embedded). An example of the use of aggregate send-
ers and receivers is shown in Sect. 4.3.1. A single action or relational event, a, is 
then defined to be a tuple containing the sender of that action s = s(a) ∈ S, the 
receiver of the action r = r(a) ∈ R, the type of action c = c(a) ∈ C, and the time that 
the action occurred τ = τ (a); formally, a = (s, r, c, t), the analog of an edge in a 
dynamic network setting. In practice, we may associate one or more covariates with 
each potential action (Xa), relating to properties of the sender or receiver, the sender/
receiver dyad, the time period in question, et cetera. A series of relational events 
observed from time 0 (defined to be the onset of observation) and a certain time t 
comprise an event history, denoted At ={Ai: τ(ai)< = t}. Typically, we will observe a 
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realization of At and seek to infer the mechanisms that generated (which will be 
expressed via a set of parameters, θ, as described below). At any given point in the 
event history, the set of possible events (or support) is defined by the set A(At) ⊆ S × 
R × C, where × indicates the Cartesian product. We note that the support may be 
endogenous, allowing us to consider cases in which particular actions within the 
event history either make new actions possible or render previously available actions 
impossible, or exogenous whereby certain possibilities in the support have been 
restricted (or otherwise new opportunities availed) due to circumstances outside of 
the system under study. (For instance, an individual who has left a building cannot 
speak to those still within it, and the appearance of a new entrant provides a new 
target for interaction).

Let A define the set of events that are possible at any moment. The propensity of 
such an event to occur is defined via its hazard, i.e. the limit of the conditional rate 
of event occurrence in a time window about a given point, as the width of that win-
dow approaches 0. Intuitively, the hazard of relational event a at time t is non- 
negative and equal to 0 if and only if a /∈ A(At) (i.e., a is currently impossible); 
larger hazards correspond to higher propensities. It is important to note that each 
event that is possible at a given moment has a non-zero hazard, and not merely those 
events that happen to occur; by observing both the events that transpired and the 
events that could have transpired (but did not), we seek to infer the propensities for 
all possible events. Such inference requires that we parameterize our event hazards, 
and it is natural to conceive of each as arising from a combination of mechanistic 
factors that either enhance or inhibit the realization of the event in question. 
Typically, we implement this by asserting that the hazard of each event is a multipli-
cative function of a series of statistics, each of which encodes the effect of a given 
mechanism on event propensity. Formally, this is expressed (Eq. 4.1) as:
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, , , if a 

 
(4.1)

where λaAtθ is the hazard of potential event a at time t given history At, θ is a vector 
of real-valued parameters, and u is a vector of functions (i.e., statistics) that may 
depend upon the sender, receiver, or type of an event, covariates, and/or the prior 
event history. It should be noted that the log-linear form for the hazard function used 
above is not strictly necessary, and other forms are possible. However, we do not 
consider such alternatives here.

The role played by the u functions in a relational event model is analogous to that 
of the sufficient statistics in an exponential random graph model (see, e.g. Wasserman 
& Robins, 2005), or to the effects in a conventional hazard model (Blossfeld & 
Rohwer, 1995): each represents a mechanism that may increase or decrease the 
propensity of a given action to be taken, as governed by θ. Each unit change in ui 
multiplies the hazard of an associated event by exp(θi), thereby making it (ceteris 
paribus) more prevalent and quick to occur or less prevalent and slower to occur. 
Typically, candidates for u are proposed on a priori theoretical grounds, with θ  
being inferred from available data. Comparison of goodness-of-fit for models with 
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alternative choices of u allows for alternative theories of social mechanisms to  
be tested, without assuming that the dynamics are governed by any single 
mechanism.

Figure 4.1 illustrates the logic of relational event framework by depicting a very 
general relational event process together with its theoretical components. In this 
figure, time runs downward from the top of the illustration to the bottom (as indi-
cated by the rightmost vertical axis). We begin with the state of the world prior to 
any observation of a relational event. This state can be characterized by the set of 
potential actions (or possible events) and their underlying propensities to occur (or 
their respective event hazards). For example, we may observe a group of individuals 
in a room, each of whom may direct a speech act at the others, with the hazards 
representing the distribution of action propensities. Then, something happens: we 
observe a realized relational event—one of the actors (the sender) addresses another 
actor (the receiver). The occurrence of this particular action, in turn, may have 
changed the state of the world, possibly including what actions are possible and 
each individual’s propensity to act. For instance, speaking first may have embold-
ened the first sender and incremented her propensity to speak even more. Thus, we 
update the set of possible events and their hazards to reflect new information given 
the current state of the event history. Next, something else happens: we observe 
another relational event. Again, this event may change the set of possible events and 
their hazards, and we update our view of the world based on the past history. This 
process continues by turns until the last event (not shown). Just as we make observations 

Fig. 4.1 Schematic representation of the inferential logic of the relational event framework. 
Models, proposed on theoretical grounds, determine the set of possible events and the mechanisms 
governing event hazards; observations of realized events are employed to infer unknown parame-
ters governing the strengths and directions of effects, and to select among competing models
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on the sequence of events, we use theory and substantive knowledge about the world 
to make suppositions or impose limits on the set of possible events and to derive the 
u statistics that govern the event hazards.

As the above indicates, the types of effects we estimate using the relational event 
framework can capture a wide range of mechanisms involving both endogenous 
behavioral dynamics and exogenous effects (either covariate-based or the impact of 
exogenous events). Typical examples include actor-level fixed effects (rates for 
sending and receiving events for each actor), subsequence effects, and time invari-
ant and time varying covariate effects. There are many possibilities for modeling 
endogenous dynamics using the relational event framework because there are many 
types of event history sub-sequences from which one may build sufficient statistics. 
Some such sub-sequences are of general theoretical interest. For example, we may 
consider the social processes related to the persistence of action, order of action, 
exchanges within triads of actors, conversational dynamics, or even dynamic pref-
erential attachment. Each of these processes can be parameterized in terms of a 
series of prior events in the life history, allowing it to be implemented in the rela-
tional event framework. The selection of such effects to proposed in a candidate 
model should be driven by the research question and evaluated by assessing 
goodness- of-fit (options currently supported by software are listed in the tutorial, 
below). For example, much research has shown that persons who have interacted 
frequently in the past are likely to continue to interact in the future. In a relational 
event context, we might thus hypothesize that sending events to certain individuals 
increases the chances that they will remain the targets of events in the future. This 
behavior may be characterized as a type of social persistence or inertia and can be 
implemented with an effect that treats the fraction of previous contacts as a predic-
tor of future contact. We might also hypothesize that the order in which one received 
ties from others in the past plays a role in one’s likelihood of replying. Specifically, 
because the last thing that happened is very likely to be the most salient, we may 
model this process with a statistic that employs the inverse of the order of an actor’s 
receipt of events from others as a predictor of that actor’s sending of events back to 
them in the future. If the inclusion of this effect in the model substantially improves 
fit (net of degrees of freedom consumed), we conclude that the mechanism in ques-
tion is predictive of the observed social process; if, however, we do not find such an 
improvement, we may thereby conclude that the observed pattern of interaction 
does not support the presence of the proposed mechanism. We return to more exam-
ples of relational event effects in the tutorial, below.

Regardless of which behaviors (or covariates) are of interest, it is important to 
understand the basic assumptions of the model used to estimate their effects on the 
relational event process; further details can be found in Butts (2008). Here, we 
briefly review three of the most relevant assumptions that most modelers should 
understand before using the relational event framework. First, we assume that all 
events are recorded, and that the onset of the observation period is exogenously 
determined (e.g., chosen by the researcher or set by a random external event). 
Second, we assume that no events can occur at exactly the same time but, rather, are 
temporally ordered. This assumption is perhaps the key distinction that separates 
the relational event regime from the dynamic network regime (as discussed above).
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Finally, we typically assume that event hazards and the support are piecewise 
constant, with changes occurring either when an endogenous event is realized or at 
exogenous “clock” events. This final assumption has numerous useful implications, 
among them being ease of computation and interpretation, the ability to infer param-
eters when exact times are unknown, and the fact that the waiting times between 
events are conditionally exponentially distributed. (Piecewise constancy is also a 
standard assumption in the well-known Cox proportional hazards models (Mills, 
2011), where it yields similar advantages). While this last assumption can be 
relaxed, current software implementations of the relational event framework (e.g. 
the relevent package for R, Butts, 2010) employ it.

Of these assumptions, the most critical is the notion that events are well-ordered 
in time. While non-simultaneity is in practice vital only for events whose occur-
rence can affect each others’ hazards, and while there are various workarounds for 
data sets with small amounts of simultaneity (e.g., due to imprecise coding event 
times), large numbers of simultaneous events suggest a system which is not in the 
relational event regime. Such cases may be better represented as dynamic networks, 
in the manner discussed above.

While the relational event paradigm is defined in terms of instantaneous events 
that unfold in continuous time, inference for relational event models does not neces-
sarily require that event times be known. It is useful in this regard to distinguish two 
general cases: event histories in which only the order of events is known (“ordinal 
time”); and event histories in which the exact time between events is known (“exact” 
or “interval time”). Butts (2008) derives the model likelihood for both scenarios 
under the assumptions listed above. Importantly, under the assumption of piecewise 
constant hazards, the parameter vector θ can in principle be identified up to a pacing 
constant; since relative rather than absolute hazards are typically of primary scien-
tific interest, this implies that information on event ordering is frequently adequate 
to employ the framework. Such data is common e.g. in archival or observational 
settings, in which it may be feasible to construct a transcript of actions taken but 
difficult or impossible to time them accurately. Both the ordinal and exact cases can 
be analyzed using the relevent package which, supports a variety of model effects. 
Additionally, while we are here focused on the basic case dyadic relational event 
models in a single event history, the framework is general enough to accommodate 
multiple event histories and even ego-centered event histories (DuBois et al., 2013b; 
Marcum & Butts, 2015) should one possess those types of data.

4.3  Sample Cases

To illustrate the use of the relational event model (REM) family, we employ 
sample case data from two previously published sources. First, to illustrate the 
relational event model for ordinal time data, we use data from Butts, Petrescu-
Prahova, and Cross (2007). These data consist of radio communications among 
37 named communicants in a police unit that responded to the World Trade 
Center disaster on the morning of September 11th, 2001. Second, to illustrate 

C.T. Butts and C.S. Marcum



59

REMs for exactly timed data, we use a time-modified1 subset of data from Dan 
McFarland, who recorded conversations occurring between 20 participants in 
classroom discussions (Bender- deMoll & McFarland, 2006). Both datasets are 
available online for didactic purposes here.

For the relevent software package used in the tutorial below, data are stored in 
“rectangular” format as an m × 3 matrix we call an “edgelist” (where m is the num-
ber of events). The first column of the edgelist indexes either the time or the order 
of the events, depending on the type of data. The second and third columns index the 
senders and receivers of the events, respectively, numbered from 1 to n (where n is 
the number of interacting parties). Importantly, the edgelist must be ordered by the 
first column (i.e., by time or event order). For exact timing data, the last row of the 
edgelist should index a null event for the time that observation period ended (by 
default, any event occurring in this row will be ignored by the software).

Optional sender and receiver covariate data may be stored separate from the 
edgelist as vectors or arrays, provided that they are ordered consistently with the 
actor set (1 through the number of actors). For time invariant covariates, this will  
be an n × p matrix, where n indexes the actors and p indexes the covariates. For time 
varying actor covariates, data should be stored in a 3-dimensional m × p × n array, 
where m indexes time and p and n index covariates and actors as above.

Optional event covariate data may be stored similarly. For time invariant covari-
ates, the data should be stored in a 3-dimensional p × n × n array, where p and n 
index each fixed covariate and actor, respectively. Likewise, time varying event 
covariates should be stored in a 4-dimensional m × p × n × n array, where m indexes 
time and the other dimensions are as above.

4.3.1   Butts et al.’s WTC Data

The 9/11 terrorist attacks at the World Trade Center (WTC) in New York City in 
2001 set off a massive response effort, with police being among the most prominent 
responders. As in much routine police work, radio communication was essential in 
coordinating activities during the crisis. Butts et al. (2007) coded radio communica-
tion events between officers responding to 9/11 from transcripts of communications 
recorded during the event. We will illustrate ordinal time REMs using the 481 com-
munication events from 37 named communicants in that data set. It is important to 
note that the WTC radio data was coded from transcripts that lacked detailed timing 
information; we do not therefore know precisely when these calls were made. We do, 
however, know the order in which calls were made, and can use this to fit temporally 
ordinal relational event models. Additionally, we will employ a single actor-level 
covariate from this dataset: an indicator for whether or not a communicant filled an 
institutional coordinator role, such as a dispatcher (Petrescu-Prahova & Butts, 2008).

1 Some events were given in order, but not distinguished by time; these have been spaced by 
0.1 min for purposes of illustration.
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4.3.2   McFarland’s Classroom Data

Dan McFarland’s classroom dataset includes exactly timed interactions between 
students and instructors within a high school classroom (McFarland, 2001; Bender- 
deMoll & McFarland, 2006). Sender and receiver communication events (n=691) 
were recorded between 20 actors (18 students and 2 teachers) along with the time of 
the events in increments of minutes. The data employed here were modified slightly 
to increase the amount of time occurring between very closely recorded events, 
ensuring no simultaneity of events as assumed by the relational event framework. 
Two actor-level covariates are also at hand in the dataset used here: whether the 
actor was a teacher and whether the actor was female.

4.4  Tutorial

Software for fitting relational event models is provided by the relevent package for 
R (Butts, 2010). There are numerous tutorials available online that provide instruc-
tion on how to obtain and learn to use the free R software. We direct neophyte users 
to the R project website (CRAN) to browse those resources: https://cran.r-project.
org/. In this tutorial we assume that R is installed and users have some experience 
with statistical programming in that environment.

The relevent package and its dependencies can be downloaded from CRAN 
using R, installed, and loaded into the user’s environment in the usual manner:

 

> ( )
> ( )
install packages relevent

library relevent

. " "

 

 

> ( )
> ( )
[ ]

load remdata Rdata

sociomatrix eventlist C

" .

" . . "

"

"

ls

as1 llass

ClassIntercept ClassIsFemale

ClassIsTeacher

"

" "" "

"

3

5

[ ]
[ ] "" "

" "

"

" .

" . int " .

"

sleep glbs

sleep coord

WTCPoliceCalls

7

9

[ ]
[ ]

wtc

""

"

"

"

WTCPoliceIsICR

WTCPoliceNet11[ ]
 

Dyadic relational event models are intended to capture the behavior of systems 
in which individual social units (persons, organizations, animals, etc.) direct dis-
crete actions towards other individuals in their environment. Within the relevent 
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package, the rem.dyad() function is the primary workhorse for modeling dyadic data. 
From the supplied documentation in R, the rem.dyad() function definition lists a 
number of arguments and parameters:

 

rem. ( , , , ,acl ,dyad edgelist n effects NULL ordinal TRUE NULL

cum

= = =
iideg NULL cumodeg NULL NULL covar NULL NULL

NU

= = = = =
=

, , rrl , , ,

tri

ps

LLL optim method BFGS optim control list

coef seed NUL

, . " , . ,

.

"= = ( )
= LL hessian FALSE sample size verbose TRUE

method c

, , . Inf, ,

fit .

= = =

= "" " " , .obs ,

. ,

" " "BPM MLE, , BSIR conditioned

prior mean prior

( ) =

=

0

0 .. , . , . ,

. , .

scale prior draws

expand

= = =
= =

100 4 500

10

nu sir

sir sir nu 44, )gof = TRUE  

In this tutorial, we focus on the first four arguments—edgelist, n, effects, ordinal; 
the ninth argument covar; and the fifteenth argument hessian. The remaining 
 arguments govern model fitting procedures and output and their default values will 
suffice here. The first argument, edgelist, is how the user passes their data to rem.
dyad; aptly, this takes an edgelist as described above. The second argument, n, 
should be a single integer representing the number of actors in the network. The 
third argument, effects, is how the user specifies which statistics (effects) will be 
used to model the data. This argument should be a character vector where each ele-
ment is one or more of the following pre-defined effect names:

• ‘NIDSnd’: Normalized indegree of v affects v’s future sending rate
• ‘NIDRec’: Normalized indegree of v affects v’s future receiving rate
• ‘NODSnd’: Normalized outdegree of v affects v’s future sending rate
• ‘NODRec’: Normalized outdegree of v affects v’s future receiving rate
• ‘NTDegSnd’: Normalized total degree of v affects v’s future sending rate
• ‘NTDegRec’: Normalized total degree of v affects v’s future receiving rate
• ‘FrPSndSnd’: Fraction of v’s past actions directed to v’ affects v’s future rate of 

sending to v’

• ‘FrRecSnd’: Fraction of v’s past receipt of actions from v’ affects v’s future rate 
of sending to v’

• ‘RRecSnd’: Recency of receipt of actions from v’ affects v’s future rate of send-
ing to v’

• ‘RSndSnd’: Recency of sending to v’ affects v’s future rate of sending to v’
• ‘CovSnd’: Covariate effect for outgoing actions (requires a ‘covar’ entry of the 

same name)

• ‘CovRec’: Covariate effect for incoming actions (requires a ‘covar’ entry of the 
same name)
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• ‘CovInt’: Covariate effect for both outgoing and incoming actions (requires a 
‘covar’ entry of the same name)

• ‘CovEvent’: Covariate effect for each (v,v’) action (requires a ‘covar’ entry of 
the same name)

• ‘OTPSnd’: Number of outbound two-paths from v to v’ affects v’s future rate of 
sending to v’

• ‘ITPSnd’: Number of incoming two-paths from v’ to v affects v’s future rate of 
sending to v’

• ‘OSPSnd’: Number of outbound shared partners for v and v’ affects v’s future 
rate of sending to v’

• ‘ISPSnd’: Number of inbound shared partners for v and v’ affects v’s future rate 
of sending to v’

• ‘FESnd’: Fixed effects for outgoing actions
• ‘FERec’: Fixed effects for incoming actions
• ‘FEInt’: Fixed effects for both outgoing and incoming actions
• ‘PSAB-BA’: P-Shift effect (turn receiving)—AB!BA (dyadic)
• ‘PSAB-B0’: P-Shift effect (turn receiving)—AB!B0 (non-dyadic)
• ‘PSAB-BY’: P-Shift effect (turn receiving)—AB!BY (dyadic)
• ‘PSA0-X0’: P-Shift effect (turn claiming)—A0!X0 (non-dyadic)
• ‘PSA0-XA’: P-Shift effect (turn claiming)—A0!XA (non-dyadic)
• ‘PSA0-XY’: P-Shift effect (turn claiming)—A0!XY (non-dyadic)
• ‘PSAB-X0’: P-Shift effect (turn usurping)—AB!X0 (non-dyadic)
• ‘PSAB-XA’: P-Shift effect (turn usurping)—AB!XA (dyadic)
• ‘PSAB-XB’: P-Shift effect (turn usurping)—AB!XB (dyadic)
• ‘PSAB-XY’: P-Shift effect (turn usurping)—AB!XY (dyadic)
• ‘PSA0-AY’: P-Shift effect (turn continuing)—A0!AY (non-dyadic)
• ‘PSAB-A0’: P-Shift effect (turn continuing)—AB!A0 (non-dyadic)
• ‘PSAB-AY’: P-Shift effect (turn continuing)—AB!AY (dyadic)

The fourth argument, ordinal, is a logical indicator that determines whether to 
use the ordinal or exact timing likelihood. The default setting specifies ordinal tim-
ing (TRUE). The ninth argument, covar, is how the user passes covariate data to 
rem.dyad(). Objects passed to this argument should take the form of an R list, where 
each element of the list is a covariate as described above. When covariates are indi-
cated, then there should be an associated covariate effect listed in the effects argu-
ment and each element of the covar list should be given the same name as its 
corresponding effect type specified in effects (e.g., ‘CovSnd’, ‘CovRec’, etc). 
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Finally, the fifteenth argument hessian is a logical indicator specifying whether or 
not to compute the Hessian of the log-likelihood or posterior surface, which is used 
in calculating inferential statistics. The default value of this argument is FALSE.

Having introduced the relational event package and the model fitting function, 
we now transition to examples of fitting relational event models using the two data-
sets described above. Since the case of ordinal timing is somewhat simpler than that 
of exact timing, we consider the World Trade Center data first in the tutorial.

4.4.1   Ordinal Time Event Histories

Before we move to the analysis of the WTC relational event dataset, it is useful to 
visually inspect both the raw data and the time-aggregated network. The eventlist is 
stored in an object called WTCPoliceCalls. Examining the first six rows of this data 
reveals that the data is a matrix with the timing information, source (i.e., the sender, 
numbered from 1 to 37), and recipient (i.e., the receiver, again numbered from 1 to 
37) for each event (i.e., radio call):

> ( )head WTCPoliceCalls

number source recipient

111632

223216

3311632

4 41632

551132

661132

Thus, we can already begin to see the unfolding of a relational event process just 
by inspecting these data visually. First, we see that responding officer 16 called 
officer 32  in the first event, officer 32 then called 16 back in the second (which 
might be characterized as a local reciprocity effect or AB → BA participation shift 
(Gibson, 2003)). This was followed by 32 being the target of the next four calls, 
perhaps due to either some unobserved coordinator role that 32 fills in the commu-
nication structure or due to the presence of a recency mechanism. Further visual 
inspection is certainly warranted here. We can use the included sna function as.
sociomatrix.sna() to convert the eventlist into a valued sociomatrix, which we can 
then plot using gplot():

 
> < ( )WTCPoliceNet sociomatrix eventlist WTCPoliceCalls, as. . 37
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> =gplot WTCPoliceNet edge WTCPoliceNet arrowhead( , . ^ . , .lwd ce75 xx

as sna col

=

( )[ ]( ) + =log . . . , .edgelist WTCPoliceNet , vertex

i

3 25

ffelse WTCPoliceIsICR,, black ,, gray vertex

ve

" " " " , . . ,( ) =cex 1 25

rrtex sides ifelse WTCPoliceIsICR,, ,, coord coord. , .= ( ) =4 100 wtc ))
 

Figure 4.2 is the resulting plot of the time-aggregated WTC Police communica-
tion network.

Your own may look slightly different due to both random node placement that 
gplot() uses to initiate the plot and because this figure has been tuned for printing. 
The three black square nodes represent actors who fill institutional coordinator roles 
and gray circle nodes represent all other communicants. A directed edge is drawn 
between two actors, i and j, if actor i ever called actor j on the radio. The edges and 
arrowheads are scaled in proportion to the number of calls over time. There are 37 
actors in this network and the 481 communication events have been aggregated to 
85 frequency weighted edges. This is clearly a hub-dominated network with two 
actors sitting on the majority of paths between all other actors. While the actor with 
the plurality of communication ties is an institutional coordinator (the square node 
at the center of the figure), heterogeneity in sending and receiving communication 

Fig. 4.2 Time-Aggregated WTC Police Radio Communication Network
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ties is evident, with several high-degree non-coordinators and two low-degree insti-
tutional coordinators, in the network. This source of heterogeneity is a good starting 
place from which to build our model.

4.4.2   A First Model: Exploring ICR Effects

We begin by fitting a very simple covariate model, in which the propensity of indi-
viduals to send and receive calls depends on whether they occupy institutionalized 
coordinator roles (ICR). We fit the model by passing the appropriate arguments to 
rem.dyad and summarize the model fit using the summary() function on the fitted 
relational event model object.

> < = = ( )wtcfit dyad WTCPoliceCalls n effects c CovInt1 37 rem. ( , , " " ,,

,

)

covar list CovInt WTCPoliceIsICR

hessian TRUE

Computing

= =( )
=

  preliminary statistics

Fitting model

Obtaining goodness of   fit statistics

summary wtcfit

Relational Event Model Ordi

> ( )1

nnal Likelihood

Estimate Z value ||z||

CovInt

( )
>( )Std Err. Pr

. .1 2 11044640 06981730 142 2 2 16

0 0 00

. . .

. : ’***’ .

***< e

Signif codes

 
  

11 0 01 0 05 0 1 1

6921 048 481

’**’ . ’* ’ . . . ’’

: .

’ ’

Null deviance degreon ees of freedom

Residual deviance degrees of fr: .6193 998 480on eeedom

square degrees of freedom

asymptotic p

Chi on : . ,727 0499 1

  value

AICC

0

6195 998 6196 007 6200 174AIC BIC: . : . : .

The output gives us the covariate effect, as well as some uncertainty and 
 goodness- of- fit information. The format is much like the output for a regression 
model summary, but coefficients should be interpreted per the relational event frame-
work. In particular, the ICR role coefficient is the logged multiplier for the hazard of 
an event involving an ICR versus a non-ICR event (eλ1). This effect is cumulative: an 
event in which one actor in an ICR calls another actor in an ICR gets twice the log 
increment (e2λ1). We can see this impact in real terms as follows, respectively:
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>

>

# / . /

e

Relative hazard a non a non non

event

for ICR ICR vs ICR ICR   

xxp

.

.

#

wtcfit $coef

CovInt

Relative hazard an

1

1

8 202707

( )

> for ICR // . /

exp *

ICR vs ICR ICRa non non event

twice the effect

wtcfi

  

( )
> 2 tt $coef

CovInt

1

1

67 28441

( )
.

.  

In this model, ICR status was treated as a homogenous effect on sending and receiving.
Next, we evaluate whether it is worth treating these effects separately with respect 

to ICR status. To do so, we enter the ICR covariate as a sender and receiver covariate, 
respectively, and then evaluate which model is preferred by BIC (lower is better):

 

> < =
=

wtcfit dyad WTCPoliceCalls n effects

c CovSnd ,

2 37 rem. ( , ,

" " "CCovRec

covar list CovSnd WTCPoliceIsICR,CovRec WTCPolic

" ,( )
= = = eeIsICR

hessian TRUE

Computing preliminary statistics

Fit

( )
=

,

)

tting model

summary wtcfit

summary wtcfit

Relational Eve

> ( )
( )

2

2

nnt Model Ordinal Likelihood

Estimate Z value ||z||

( )
>Std Err. Pr (( )

<CovSnd e

CovRec

. . . . .

. .

***1 1 9791750 09574520 671 2 2 16

1 2 2257

 
2200 09286223 968 2 2 16

0 0 001

. . .

. : ’***’ . ’**

***< e

Signif codes

 
  

’’ . ’* ’ . . . ’’

: .

’ ’0 01 0 05 0 1 1

6921 048 481Null deviance degrees oon ff freedom

Residual deviance degrees of freedo: .6190 175 479on mm

square degrees of freedom

asymptotic p val

Chi on 
 

: . ,730 8731 2

uue

AICC

wtcfit wtcfit

0

6194 175 6194 2 6202 527

1

AIC BIC

BIC

: . : . : .

$>  22

1 2 352663

$

.

BIC

[ ]  
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While there appear to be significant ICR sender and receiver effects, their 
 differences do not appear to be large enough to warrant the more complex model (as 
indicated by the slightly smaller Bayesian Information Criterion (BIC) of the first 
model). Smaller deviance-based information criteria, such as the BIC, indicate bet-
ter model fit.

4.4.3   Bringing in Endogenous Social Dynamics

One of the attractions of the relational event framework is its ability to capture 
endogenous social dynamics. Next, we examine several mechanisms that could con-
ceivably impact communication among participants in the WTC police network. In 
each case, we first fit a candidate model, then compare that model to our best fitting 
model thus far identified.

Where effects result in an improvement (as judged by the BIC), we include them 
in subsequent models, just as we decided for the comparison of the ICR covariate 
models.

To begin, we note that this is radio communication data. Radio communication is 
governed by strong conversational norms (in particular, radio standard operating pro-
cedures), which among other things mandate systematic turn-taking reciprocity. We 
can test for this via the use of what Gibson (2003) calls “participation shifts”. In par-
ticular, the AB-BA shift, which captures the tendency for B to call A, given that A has 
just called B, is likely at play in radio communication. Statistics for these effects are 
described above. Building from our first preferred model, we now add this dynamic 
reciprocity term by including “PSAB-BA” in the effects argument to rem.dyad():
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> < =

=

wtcfit dyad WTCPoliceCalls n

effects c CovInt ,

3 37 rem. ( , ,

" " "PPSAB

covar list CovInt WTCPoliceIsICR hessian TRUE

 BA" ,

,

( )
= =( ) = ))

Computing preliminary statistics

Fitting model

Obtaining gooodness of statistics

summary wtcfit

Relational Event

  fit

> ( )3

  Model Ordinal Likelihood

Estimate Z value ||z||

( )
>( )Std Err. Pr

CCovInt e

PSAB

. . . . .

. .

***1 1 60405 0 11500 13 949 2 2 16

7 32695 0 10

<  
 BA 5552 69 436 2 2 16

0 0 001 0 01

. .

. : ’***’ . ’**’ . ’*

***< e

Signif codes

 
  

’’ . . . ’’

: .

’ ’0 05 0 1 1

6921 048 481Null deviance degrees of freedon oom

Residual deviance degrees of freedom

sq

: .2619 115 479on

Chi uuare degrees of freedom

asymptotic p value

: . ,

:

4301 933 2

0

on

AIC

 
22623 115 2623 14 2631 467

1 3

1

. : . : .

$ $

AICC

wtcfit wtcfit

BIC

BIC BIC>  

[[ ]3568 707.
 

It appears that there is a very strong reciprocity effect and that the new model is 
preferred over the simple covariate model. In fact, the “PSAB-BA” coefficient 
 indicates reciprocation events have more than 1500 times the hazard of other types 
of events (e7.32695 = 1520.736) that might terminate the AB—BX sub-sequence.

Of course, other conversational norms may also be at play in radio communica-
tion. For instance, we may expect that the current participants in a communication 
are likely to initiate the next call and that one’s most recent communications may 
be the most likely to be returned. These processes can be captured with the 
 participation shifts for dyadic turn receiving/continuing and recency effects, 
respectively:
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>
> <

#

. (

Model includes p shift effects

wtcfit dyad WTCPolic

4

4

 
 rem eeCalls n effects

c CovInt , PSAB , PSAB , PSAB

, ,

" " " " " " "

= =37

   BA BY AYY" ,

, )

( )
= =( ) =covar list CovInt WTCPoliceIsICR hessian TRUE

Computting preliminary statistics

Fitting model

Obtaining goodnesss of statistics

summary wtcfit

Relational Event Model

  fit

> ( )4

OOrdinal Likelihood

Estimate Z value ||z||

CovInt

( )
>( )Std Err. Pr

.. . . . . ***

. .

1 1 54283 0 11818 13 0549 2 2 16

7 49955 0 11418 65

< e

PSAB

 

 BA .. . ***

. . . . ***

6831 2 2 16

1 25941 0 25131 5 0115 5 402 07

< e

PSAB e

PS

 

  BY

AAB

Signif codes

 
  

AY 0 87215 0 30612 2 8491 0 004384

0

. . . . **

. : ’***’00 001 0 01 0 05 0 1 1

6921 048 481

. ’**’ . ’* ’ . ’.’ . ’’

: .Null deviance don eegrees of freedom

Residual deviance degrees o: .2595 135 477on ff freedom

square degrees of freedom

asympto

Chi on : . ,4325 913 4

ttic p value

AICC

wtcfit

 0

2603 135 2603 219 2619 839

3

AIC BIC: . : . : .

$> BBIC BIC wtcfit4

1 12 62806

$

.[ ]  
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>
> <

#

. (

Model adds recency effects model

wtcfit dyad WTC

5 4

5

to

rem PPoliceCalls n

effects c CovInt PSAB PSAB

, ,

(" "," "," ,

"

"

=
=

37

  BA BY

PPSAB RRecSnd RSndSnd covar

list CovInt WTCPoliceI

 AY "," "," "), =
= ssICR hessian TRUE

Computing preliminary statistics

Fitti

( ) =, )

nng model

Obtaining goodness of statistics

summary wtcfit

  fit

> 55( )
( )Relational Event Model Ordinal Likelihood

Estimate Std.EErr Z value ||z||

RRecSnd e

Pr

. . . . ***

>( )
<2 38495 0 27447 8 6892 2 2 16 

RRSndSnd e

CovInt

1 34623 0 22307 6 0350 1 590 09

1 1 07058 0 1

. . . .

. . .

*** 
44244 7 5160 5 640 14

4 88714 0 15293 31 9569 2 2 1

. .

. . . .

***e

PSAB e

 
  BA < 66

1 67939 0 26116 6 4304 1 273 10

1 39017

***

***. . . .

.

PSAB e

PSAB

  
 
BY

AY 00 310574 47627 597 06

0 0 001 0

. . .

. : ’***’ . ’**’

***e

Signif codes

 
  

.. ’* ’ . . . ’’

: .

’ ’01 0 05 0 1 1

6921 048 481Null deviance degrees of on ffreedom

Residual deviance degrees of freedom: .2308 413 475on

Chhi on 
 

square degrees of freedom

asymptotic p value

: . ,4612 635 6

00

2320 413 2320 591 2345 469

4

AIC BIC

BIC

: . : . : .

$

AICC

wtcfit wtcfit>  55

1 274 3701

$

.

BIC

[ ]  

The results indicate that turn-receiving, turn-continuing, and recency effects are 
all at play in the relational event process. Both models improve over the previous 
iterations by BIC, and the effect size reciprocity as been greatly reduced by control-
ling for other effects that reciprocity may have been masking in model 5 (i.e., the 
“PSAB-BA” coefficient was reduced from > 7 to > 4). Finally, recall that our inspec-
tion the time-aggregated network in Fig. 4.2 revealed a strongly hub-dominated 
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network, with a few actors doing most of the communication. Could this be 
explained in part via a preferential attachment mechanism (per Price (1976) and 
others), in which those having the most air time become the most attractive targets 
for others to call? We can investigate this by including normalized total degree as a 
predictor of tendency to receive calls:

Fig. 4.3 Histogram of Deviance Residuals from Ordinal Model of WTC Data
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> < =
=

wtcfit dyad WTCPoliceCalls n

effects c CovInt

6 37 rem. ( , ,

(" ","" "," ,

" "," "," ","

"PSAB PSAB

PSAB RRecSnd RSndSnd NTDegR

  
 

BA BY

AY eec

covar list CovInt WTCPoliceIsICR hessian TRUE

Compu

"),

, )= =( ) =

tting preliminary statistics

Fitting model

Obtaining goodnesss of statistics

summary wtcfit

Relational Event Model

  fit

> ( )6

OOrdinal Likelihood

Estimate Z value ||z||

NTDegR

( )
>( )Std Err. Pr

eec e

RRecSnd

3 13453 0 56678 5 5305 3 194 08

2 02903 0 28500 7

. . . .

. . .

*** 
11194 1 084 12

0 87116 0 23846 3 6533 0 0002589

.

. . . .

***

***

e

RSndSnd

Co

 

vvInt e

PSAB

. . . . .

. .

***1 0 70734 0 16400 4 3129 1 611 05

5 32576 0 182

 
 BA 336 29 2042 2 2 16

1 86023 0 26322 7 0673 1 579 12

. .

. . . .

***

*

< e

PSAB e

 
  BY ***

***. . . .

. :

PSAB e

Signif codes

  
  

AY 1 64806 0 31092 5 3005 1 155 07

00 0 001 0 01 0 05 0 1 1

6921 048

’***’ . ’**’ . ’* ’ . . . ’’

: .

’ ’

Null deviance oon

on

481

2277 263 474

degrees of freedom

Residual deviance deg: . rrees of freedom

square degrees of freedom

a

Chi on : . ,4643 785 7

ssymptotic p value

AICC

wtcf

 0

2291 263 2291 5 2320 494AIC BIC: . : . : .

> iit wtcfit5 6

1 24 97434

$ $

.

BIC BIC 

[ ]  

Though still significant in the presence of preferential attachment effects, recency 
and ICR effect coefficients are reduced while participation shift effects are rela-
tively unchanged. This final model is also preferred by BIC and it’s clear that the 
deviance reduction from the null model is quite substantial at 67 %. While we could 
continue to investigate additional effects (see the list of options above), model 6  
is a good candidate to evaluate model adequacy, which is addressed in the next 
section.
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4.4.4   Assessing Model Adequacy

Model adequacy is an important consideration: even given that our final model from 
the exercises above (model 6) is the best of the set, is it good enough for our pur-
poses? There are many ways to assess model adequacy; here, we focus on the ability 
of the relational event model to predict the next event in the sequence, given those 
that have come before. This approach nicely falls within the relational event frame-
work. A natural question to ask in this framework is how “surprised” is the model 
by the data. Put another way, when does the model encounter relational event obser-
vations that are relatively poorly predicted? To investigate this, we can examine the 
deviance residuals, which are included in the fitted model object. We begin by cal-
culating the deviance residual under the null which, from the ordinal likelihood 
derivation in Butts (2008), is simply twice the log product of the number of sender- 
receiver pairs, and comparing that with the deviance residuals under the fitted 
model:

 

>
> < ( )
>

#

* log *

#

Null deviance residual

nullresid

Plot a his

 2 37 36

ttogram of the fitted model deviance residuals

hist wtcfit> ( 66 6$residuals main Deviance Residuals from Model

n with Nu

, "

\

=
lll Deviance Residual Indicated gray

abline v nullr

", " )"col =
> = eesid,

What fraction below the null resid

mean w

lty

are

=( )
>
>

2

# ?

ttcfit $residuals nullresid

What fraction

6

1 0 8898129

<( )
[ ]
>

.

# aree

How

less than

mean wtcfit $residuals

s

3

6 3

1 0 6839917

?

.

# "

> <( )
[ ]
> uurprised is the model

mean wtcfit $residuals nullresid

" ?

6

1

>( )
[ ]]0 1101871.  

The histogram of the model deviance residuals produced from the above code 
snippet is shown in Fig. 4.3. The dotted line indicates the null deviance residual: the 
idea here is that we want the model deviance residuals to fall to the right of that 
 cut- off. Indeed, about 89 % of the model deviance residuals are smaller than the null 
residual, with 68 % of them being less than three (or really, really small). These 
initial checks are good conditional evidence that our model is performing really 
well.
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To investigate further, we can evaluate the extent to which our model could take 
a random guess about which event comes next and get it right, relative to all possi-

bilities. Here again, the deviance residuals come in handy as the quantity e
D

2 , where 
Di is the model deviance residual for event i, is a “random guessing equivalent”. 
That is, it is the effective number of events such that a random guess about what 
happens next would be right as often as expected under the model.

 

>
>

# forDistribution of random guessing equivalents model

qua

6

nntile wtcfit $residualsexp /

% % % % %

. .

6 2

0 25 50 75 100

1 073634 1 2

( )( )

668661 1 739723 204 539040 31632 962350. . .

#> Distribution of randoom guessing equivalents model

quantile wtcfit $resid

for 1

1> exp uuals /

% % % % %

. . . .

2

0 25 50 75 100

390 0003 390 0003 390 0003 390 0003

( )( )

33199 0591.  

At least 50 % of the time our final model needs about 1 in 1.7 guesses to correctly 
predict the next event. This is in contrast to our first model with just the intercept 
term for ICR covariate, which needs about 390 such guesses. For an overall com-
parison, consider that the null model would get only 1 out of every 1332 (36 * 37) 
events correct just guessing at random.

Model adequacy as measured by surprise can also be visually inspected. First, 
one can inspect which events are surprising by adding an indicator for model sur-
prise to the original eventlist:

 

> = >head cbind WTCPoliceCalls,surprise wtcfit $residuals nullre6 ssid

number source recipient surprise

FALSE

F

( )( )

1 1 16 32

2 2 32 16 AALSE

FALSE

FALSE

TRUE

3 3 16 32

4 4 16 32

5 5 11 32  

The code snippet prints just the first five events, but these are enough to get a 
glimpse into why the model might be surprised. We can see that the first four events, 
involving exchanges between actors 16 and 32, are not surprising and appear to 
involve reciprocity and turn continuing participation shifts. The fifth event, how-
ever, is surprising, probably because it involves the sudden interruption of a new 
caller (actor 11). Thus, it appears that the model is surprised, perhaps unsurpris-
ingly, when events transpire that are not specified by the model statistics such  
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as third-party effects. These surprising events can also be projected onto the 
 time- aggregated network using as.sociomatrix.sna, as before:

 

> <surprising sociomatrix eventlist
WTCPoliceCalls wtcfit
 as. .

6$$residuals nullresid, ,

gplot surprising edge su

>[ ]( )

> =

37

( , .lwd rrprising
arrowhead edgelist surprising

^ . ,
. log . .

75
cex as sna= ( ) ,,

vertex ifelse WTCPoliceIsICR,, black ,, gra

3

25

[ ]( )
+ =. , . " " "col yy

vertex vertex sides

ifelse WTCPoliceIsICR,,,

" ,
. . , .

( )
= =cex 1 25

,,100( ))  

The resulting plot of the time-aggregated surprising event network is illustrated 
in Fig. 4.4, which can be directly compared with Fig. 4.2. While there are many 
fewer events that are surprising than not, it’s clear from the figure that the surprising 
events resolve on where the greatest opportunity for communication exists: namely 
on calls directed toward the main hub at the center and also calls sent from the sec-
ondary hub to others. This suggests the existence of some unobserved heterogeneity 
related to those actors not explained by conversational norms, preferential attach-
ment to them, or whether or not they fill institutional coordinator roles.

Fig. 4.4 Time-Aggregated ‘Surprising’ Events Network Under the Final Relational Event. Model 
of WTC Radio Communications
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Finally, the function rem.dyad() supplies two additional components in returned 
model objects that are useful for evaluating adequacy. These are the rank of the 
observed events in the predicted rate structure and a pair of indicators for whether 
or not the model exactly predicts the sender and receiver, respectively, involved in 
each event. While far more stringent as measures of surprise than the deviance 
residuals, these statistics can be quite informative for well-fitting models.

For instance, we can inspect the empirical cumulative distribution function of the 
observed ranks to assess classification accuracy of the model at various thresholds:

 

> =( )( )plot ecdf wtcfit $observed rank xlab Prediction( . / * , "6 37 36   Threshold

Fraction of Possible Events ylab Fraction o( ) =", " ff Observed Events Covered main

Classification Accuracy

",

" ")=

> aabline v c ,, ,, ,= =( )( )0 05 0 1 0 25 2. . . lty
 

The resulting plot of the ECDF is shown in Fig. 4.5, which shows that predic-
tions under the model very quickly cover the observed events. For the strictest mea-
sures, we can ask three questions of the exact predictions: (1) what is the fraction of 

Fig. 4.5 Classification Accuracy of the Observed Ranks Under Model 6 with Prediction. 
Thresholds Indicated at 0.05, 0.1, and 0.25
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events for which either sender or receiver are exactly predicted; (2) what is the 
fraction of events for which both sender and receiver are exactly predicted; and, (3) 
what are the respective fractions of events where we get the sender and receiver 
right under the model. These questions are easily addressed using the fitted model 
output:

 

> ( )( )
[ ]
>

mean apply wtcfit $predicted match, ,

me

6 1

1 0 7941788

.

.

any

aan apply wtcfit $predicted match, ,

colM

6 1

1 0 6839917

.

.

all( )( )
[ ]
> eeans wtcfit $predicted match

source recipient

6

0 7234927 0 75

.

. .

( )

446778  

Thus, our final model predicts something right about 79 % of the time (getting 
the sender right for 72 % and the receiver right about 75 % of the events, respec-
tively) and it predicts the event that actually transpired exactly right 68 % of the 
time. Despite its simplicity, this model appears to fit extremely well. Further 
improvement is possible, but for many purposes we might view it as an adequate 
representation of the event dynamics in this WTC police radio communication 
network.

4.5  Exact Time Histories

We now turn to a consideration of REMs for event histories with exact timing 
information. As in the case of ordinal time data, it is useful to begin by examining 
the raw temporal data and the time-aggregated network. The edgelist is stored in 
an object called Class. Printing the first six rows and the last two rows of this 
object reveals minor differences between the exact time and the ordinal time data 
structures (discussed above). As before, we have three columns: the event time, 
the event source (numbered from 1 to 20), and the event target (again, numbered 
1 to 20). In this case, event time is given in increments of minutes from onset of 
observation. Note that the last row of the event list contains the time at which 
observation was terminated; it (and only it) is allowed to contain NAs, since it has 
no meaning except to set the period during which events could have occurred. 
Where exact timing is used, the final entry in the edgelist is always interpreted in 
this way, and any source/target information on this row is ignored. This row indi-
cates that the total period of observation lasted just over 50 minutes (the length of 
one class session).
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> ( )éë ùûClass c , ,

StartTime FromId ToId

1 6 691 692

1 0 135 14 12

2 0 2

: :

.

. 770 12 14

3 0 405 18 12

4 0 540 12 18

5 0 675 1 12

6 0 810 12 1

691 50 910 17 6

6

.

.

.

.

.

992 50 920. NA NA  

We can again use the sna toolkit to convert and plot the time-aggregated network 
for inspection. Here, we color the female nodes black and the male nodes gray and 
represent teachers as square-shaped nodes and students as triangle-shaped nodes. 
Edges between nodes are likewise scaled proportional to the number of communica-
tion events transpiring between actors.

 

ClassNet sociomatrix eventlist Class,

gplot ClassNet

< ( ) as. .

(

20

,, . " " " " ,vertex ifelse ClassIsFemale,, black ,, gray vertexcol = ( ) ..

, . , . ^ .

sides

ClassIsTeacher vertex edge ClassNet

= +

= =

3

2 7cex lwd 55)  

Figure 4.6 displays the resulting time-aggregated network. A dynamic visualiza-
tion of this data is also available online in (Bender-deMoll & McFarland, 2006) and 
is well worth examining. While it is clear from this figure that teachers do a great 

Fig. 4.6 Time-Aggregated 
Classroom Communications
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deal of talking, there also appear to be several high-degree students. Female students 
in this classroom also appear to be slightly more peripheral. Both of these observations 
warrant inclusion of the respective covariates in our analysis, to which we now turn.

4.5.1   Modeling with Covariates

One of the advantages that the exact time relational event model likelihood has over 
the ordinal time likelihood is its ability to estimate pacing constants (i.e., the global 
rates at which events transpire). Here we investigate this with a simple intercept 
model, containing only a vector of 1 s as an actor-level sending effect. This vector 
is saved as ClassIntercept, which we can pass to the respective covariate arguments 
in rem.dyad(). Note that we must also tell rem.dyad that we do not want to discard 
timing information by setting the argument ordinal=FALSE:

 

> < = = ( )
=

classfit dyad Class n effects c CovSnd

covar

1 20 rem. ( , , " ,"

llist CovSnd ClassIntercept

ordinal FALSE hessian TRUE

Co

=( )
= =

,

, )

mmputing preliminary statistics

Fitting model

Obtaining goodnness of statistics

summary classfit

Relational Event 

  fit

> ( )1

MModel Temporal Likelihood

Estimate Z value ||z||

( )
>( )Std Err. Pr

CCovSnd e

Signif code

. . . . .

.

***1 3 332287 0 038042 87 596 2 2 16   
  

<

ss

Null deviance

: ’***’ . ’**’ . ’* ’ . . . ’’

: .

’ ’0 0 001 0 01 0 05 0 1 1

5987 2221 691

5987 221 691

on

on

degrees of freedom

Residual deviance d: . eegrees of freedom

square e degrees of frChi on   : .4 274625 11 0 eeedom

asymptotic p value

AICC

,

: . : . :

 1

5989 221 5989 227 5993AIC BIC ..759  

The model does not fit any better than the null because it is equivalent to the null 
model (as indicated by the absence of difference between the null and residual devi-
ance). As one would expect from first principles, this is really just an exponential 
waiting time model, calibrated to the observed communication rate. Thus, to calcu-
late the predicted number of events per minute we may multiply the number of pos-
sible event types (here, 20 _ 19 = 380) by the coefficient for the intercept:
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> ( )380 1

1

13 57031

*exp

.

.

classfit $coef

CovSnd

 

This simple model predicts the overall pace of events to occur at nearly 14 events 
per minute and this matches quite well with the average number of events per min-
ute from the observed data:

 

> ( )( ) [ ]( )
[ ]

nrow Class Class , 1 1

1 13 57031

/ max

.
 

Because we noted structural heterogeneity based on gender and status in Fig. 4.6, 
we fit a more interesting covariate model that specifies these effects for senders and 
receivers and evaluate whether there is any improvement over the intercept-only 
model by BIC.

 

> < = =classfit dyad Class n effects c CovSnd , CovRec2 20 rem. ( , , " " " "(( )
= =

,

(covar list CovSnd cbind ClassIntercept,,ClassIsTeacher,,,ClassIsFemale

CovRec cbind ClassIsTeacher,ClassIsFemale

( )
=

,

(( ) = =), , )ordinal FALSE hessian TRUE

Computing preliminary statiistics

Fitting model

Obtaining goodness of statistics

s

  fit

>
> uummary classfit

Relational Event Model Temporal Likelihoo

2( )
dd

Estimate Z value ||z||

CovSnd

( )
( )>Std Err. Pr

. . .1 3 834229 0 0788 442 48 6319 2 16

2 1 672561 0 091679 18 2436 2 16

  

 

. ***

. . . . *

<

<

e

CovSnd e ***

. . . . .

. . .

CovSnd

CovRec

3 0 123900 0 094931 1 3052 0 19184

1 0 373733 0 1127028 2 9421 0 00326

2 0 165729 0 080896 2 0487 0 0404

. . **

. . . . .CovRec 99

0 0 001 0 01 0 05 0 1 1

*

. : ’*** ’ . ’**’ . ’* ’ . ’.’ . ’’

  

Signif codes

Null  deviance degrees of freedom

Residual devianc

: .5987 221 691on

ee degrees of freedom

square de

: .

: .

5652 318 687

334 9034 4

on

Chi on ggrees of freedom

asymptotic p value

AICC

,

: . : .

 0

5662 318 5662AIC 4405 5685 008

1 2

1 308 7508

BIC

BIC BIC

: .

$ $

.

>
>

[ ]
classfit classfit 
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With multiple covariates, the model terms (CovSnd.1, CovSnd.2 etc) are listed in 
the object in the same order as they were specified within the covar argument. Here, 
we see a good improvement over the null model but also note that gender does not 
appear to be predictive of sending communication. A better model may be one with-
out that specific term included, which we fit below and again compare to the previ-
ous model by BIC.

 

> < = =classfit dyad Class n effects c CovSnd , CovRec3 20 rem. ( , , " " " "(( )
( )= =

,

(covar list CovSnd cbind ClassIntercept,ClassIsTeacher ,,

),CovRec cbind ClassIsTeacher,ClassIsFemale ordinal FALS= =( ) EE hessian TRUE

Computing preliminary statistics

Fitting mo

, )=

ddel

Obtaining goodness of statistics

summary classfit

  fit

> ( )3

RRelational Event Model Temporal Likelihood

Estimate

( )
Std Er. rr Z value ||z||

CovSnd e

Pr

. . . . .

>

<

( )
1 3 775227 0 063623 59 3379 2 2 1   66

2 1 615762 0 079933 20 2139 2 2 16

1 0 3

***

. . . . . ***

. .

CovSnd e

CovRec

<  

771749 0 127020 2 9267 0 003426

2 0 161154 0 080815 1 99

. . . **

. . . .CovRec 441 0 046141

0 0 001 0 01 0 05 0

. *

. : ’*** ’ . ’**’ . ’* ’ . ’.’

  

Signif codes .. ’’

: .

1 1

5987 221 691Null deviance degrees of freedom

Residua

on

ll deviance degrees of freedom

square

: .

: .

5654 016 688

333

on

Chi 22049 3

0

5662 016

on

AIC

degrees of freedom

asymptotic p value

A

,

: .

 
IICC

classfit classfit

: . : .

$ $

.

5662 074 5680 169

2 3

1 4

BIC

BIC BIC>

[ ]
 

8839661
 

Indeed, there is a marginal improvement in BIC and we retain the model lacking 
the gender effect for sending communication events.
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4.5.2   Modeling Endogenous Social Dynamics

While we find that the above covariate models perform better than the null, the final 
model is still unimpressive in terms of deviance reduction, with only about a 5 % 
total reduction from the null by our best fitting model. To investigate further, we 
propose a set of models that capture endogenous social dynamic effects that  
are reasonably presumed to be at play in classroom conversations. These include 
recency effects and effects that capture aspects of conversational norms, such as 
turn-taking, sequential address, and turn-usurping.

As before, we can enter these terms into the model using their appropriate effect 
names.

We also preserve the covariates from best covariate model (model 3 from the 
previous section) and check our improvement by BIC.

 

> +
> <

# , :

. (

First just recency effects model

classfit dyad C

3

4  rem llass n

effects c CovSnd , CovRec , RRecSnd , RSndSnd

, ,

" " " " " " " "

=
= (

20

))
= = ( )

,

( ,covar list CovSnd cbind ClassIntercept,ClassIsTeacher

CCovRec cbind ClassIsTeacher,ClassIsFemale

ordinal FALSE

= ( )
=

),

,, )hessian TRUE

Computing preliminary statistics

Fitting mod

=

eel

Obtaining goodness of statistics

This is preferred

  fit

> # :

>>

[ ]

>

classfit classfit

Next conversatio

3 4

1 1118 294

$ $

.

#

BIC BIC 

nnal norms model

classfit dyad Class n
effects c

+
> < =

=

4

5 20 rem. ( , ,
((" "," "," "," ",

" ","

CovSnd CovRec RRecSnd RSndSnd

PSAB PSAB  BA AY ""," ),

(

"PSAB

covar list CovSnd cbind ClassIntercept,ClassI

 BY
= = ssTeacher

CovRec cbind ClassIsTeacher,ClassIsFemale

or

( )
= ( )

,

),

ddinal FALSE hessian TRUE

Computing preliminary statistics

= =, )

FFitting model

Obtaining goodness of statistics  fit  
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>
>

[ ]

# :

$ $

Again an improvement

classfit classfit4 5

1 1699

BIC BIC 
..716

5> ( )summary classfit

Relational Event Model Temporal Likeelihood

Estimate Z value ||z||

RRecSnd

( )
>( )Std Err. Pr

. .2 429233 0 1155365 15 6356 2 2 16

0 986747 0 144667 6 8208 9

. .

. . . .

***< e

RSndSnd

 
  0053 12

1 5 003434 0 090609 55 2201 2 2 16

e

CovSnd e

Cov

 
   

***

***. . . . .<
SSnd e

CovRec

. . . . .

. .

***2 1 253893 0 085160 14 7239 2 2 16

1 0 722690 0

<  
 .. . .

. . . .

***141950 5 0912 3 559 07

2 0 047936 0 081325 0 5894 0

  e
CovRec ..

. . . .

.

***

5556

4 622128 0 137600 33 5910 2 2 16

1 67

PSAB e

PSAB

  
 
BA

BY

<
77591 0 164930 10 1715 2 2 16

2 869968 0 103113 27 8

. . .

. . .

***< e

PSAB

 
 AY 3332 2 2 16

0 0 001 0 01 0 05

< .

. : ’***’ . ’**’ . ’* ’ .

***

’

e

Signif codes

 
  

.. . ’’

: .

’ 0 1 1

5987 221 691Null deviance degrees of freedom

Resi

on

ddual deviance degrees of freedom

square

: .

:

2803 315 683

3

on

Chi 1183 906 8

0

2821 3

. ,

: .

on

AIC

degrees of freedom

asymptotic p value 
115 2821 58 2862 158AICC : . : .BIC  

We can see that adding recency effects to the covariate model results in a  
much improved fit by BIC. Moreover, there is again an improvement in BIC when 
conversational norms are added into the model. The summary of the results from 
model 5 also show that the remaining gender covariate effect falls out in the pres-
ence of the endogenous social dynamic effects. This hints at the possibility that 
what seemed at first glance to be a difference in the tendency to receive communica-
tion by gender was in fact a result of social dynamics (perhaps stemming from the 
fact that both instructors are male, with their inherent tendency to communicate 
more often amplified by local conversational norms). We can confirm that second 
the gender term is extraneous by evaluating whether a reduced model is preferred  
by BIC.
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> < =
=

classfit dyad Class n
effects c CovSnd CovRec

6 20 rem. ( , ,
(" "," ""," "," ",

" "," "," ),"

RRecSnd RSndSnd

PSAB PSAB PSAB

cova

   BA AY BY
rr list CovSnd cbind ClassIntercept,ClassIsTeacher

CovRec

= = ( )( ,

== = =ClassIsTeacher ordinal FALSE hessian TRUE

Computing pre

), , )

lliminary statistics

Fitting model

Obtaining goodness of  fit sstatistics

classfit $AICC classfit $AICC>

[ ]
5 6

1 1 705912

 
.

 

And, as before, the reduced model is indeed preferred. We now have a relatively 
well-fitting relational event model specified by a combination of covariate and 
endogenous dynamic effects. At this point, we can turn to interpretation of fitted 
model parameters and model adequacy from our current vantage point.

4.5.3   Interpretation of a Fitted Model

It is often useful to consider the inter-event times predicted to be observed under 
various scenarios by a fitted relational event model. Recall that under the piecewise 
constant hazard assumption, event waiting times are conditionally exponentially 
distributed. This allows us to easily work out the consequences of various model 
effects for social dynamics, at least within the context of a particular scenario.

The most basic results to interpret from a fitted model are, of course, the coeffi-
cients themselves. In interpreting coefficient effects, recall that they act as logged 
hazard multipliers. Taking their log-inverse (i.e., exponentiating them), produces 
their hazard multiplier. For instance, the turn-taking participation-shift (p-shift) 
effect from model 6 has a coefficient value of 4.623682, which corresponds to an 
interpretation that response events have about 100 times the hazard of non-response 
events (e4.623682 = 101.8684). While this appears to be a substantial effect, the fact 
that an event has an unusually high hazard does not mean that it will necessarily 
occur. For instance, while a response of B to a communication from A has hazard 
that is about 100 times as great as the hazard of a non-B → A event all things con-
stant, there are many more events of the latter type. In fact, there are 379 other 
events “competing” with the B → A event, and thus the chance that it will occur next 
is smaller than it may appear by simply taking the hazard multiplier at face value. 
This example shows that both relative rates and combinatorics (i.e., the number of 
possible ways that an event type may occur) govern the result and should temper 
respective interpretations.
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What else can be done with the model coefficients from an interpretation 
 perspective? One basic use of the model coefficients is to examine the expected 
inter- event times under specific scenarios and conditions. For instance, one may be 
interested in evaluating the predicted mean inter-event time when nothing else is 
happening. This is simply governed by the global pacing constant (i.e., the average 
rate that events transpire, or intercept) and the number of possible events. Or, one 
may want to know how long it takes for one actor to respond to another actor given 
an immediate event (or other such scenarios). Depending on the model, many of 
these “waiting time” effects can be evaluated from coefficients. To accomplish this 

using the exact time likelihood, some algebra comes in handy: 
1

m e’× ×∑
 where m 

is the number of possible events under the scenario and λ is the vector of model 
parameters involving the scenario of interest. Here again, both the number of ways 
that an event type can occur (m’) and the propensity of such events to occur (λ) both 
matter! In the following snippet, we evaluate such waiting times under different 
scenarios from model 6:

 

>

>

# ....

/ *

Mean inter event time if nothing else going on

1 20 199 6 1

1

0 3843285

* exp " . "

.

.

#

classfit $coef CovSnd

CovSnd

Mea

[ ]( )( )

> nn teacher student time again,if nothing else happened ( )
> 1 / 22 18 6 1 2* * exp " . " " . "sum classfit $coef c CovSnd , CovSnd( )éë ùû( )( )(( )
[ ]

>

1 1 153845.

# /Sequential address teacher w out prior intby eeraction

givena prior teacher student interaction assum

,

, and iing

nothing else happened

classfit $coef c CovSn> 1 17 6/ * exp "sum dd ,, CovSnd ,, PSAB

Teac

. " " . " "
"

.

#

1 2

1 0 1384693

 AY( )é
ë

ù
û( )( )( )

[ ]

> hher responding a specific student given an

immediate event

to ,

>> 1 6 1 2/ exp " . " " . " "sum Bclassfit $coef c CovSnd ,,, CovSnd ,,, PSAB AA" " "

.

#

,,, RRecSnd

Student respondi

( )éë ùû( )( )( )
[ ]

>

1 0 03587346

nng a specific teacher given an

immediate event

cla

to

sum

,

/ exp> 1 sssfit $coef c CovSnd ,,, CovRec ,,, PSAB ,,, RRecSn6 1 1" . " " . " " " " BA dd "

.

( )éë ùû( )( )( )
[ ]1 0 2657102
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Remember that our temporal units in the classroom dataset are increments of 
 minutes: multiplying these values by 60 returns how many seconds (or fractions 
thereof) these predicted waiting times entail. Thus, if no other event were to inter-
vene, a teacher would initiate communication with a student after a mean waiting 
time of approximately 70 seconds. Given an initial teacher→student communica-
tion and no other intervention, the same teacher will produce another speech act 
after an average of roughly 8 seconds—a rapid-fire lecture mode. Interestingly, we 
can also see that teachers are very quick to respond to student communications (a 
delay of just over 2 s, on average), while students take somewhat longer to respond 
to teachers (about 16 s). Such observations comport well with our general intuition 
regarding classroom functioning, and illustrate the types of quantitative information 
that can be gleaned from a REM fit.

4.5.4   Assessing Model Adequacy

We can assess model adequacy for exact time relational event models in much the 
same manner as we do for ordinal time models. The major difference is that we can-
not here use a fixed null residual or guessing equivalent. However, we can still 
examine “surprise” based on the deviance residuals of fitted models. Despite not 
having a fixed null residual to evaluate against, we can still inspect the distribution 
of the deviance residuals. Ideally, we would like them to be small and clustered near 
zero. Figure 4.7 plots the histogram of the deviance residuals from model 6. The 
distribution is clearly more “lumpy” than that observed in Fig. 4.3 for the corre-
sponding the WTC model, suggesting that the classroom dyamics are less well-
predicted on average than were the radio communications.

 

> # Plot the histogram of the deviance residuals from model6

>> ( )

>

hist classfit $residuals

well we predict the exact

6

# How do   event

mean apply classfit $predicted match,, ,,

?

.> ( )( )
[ ]

6 1

1

all

00 3299566.

#> How dowell we predict either the sender or receivver of an event

mean apply classfit $predicted match,, ,,

?

.> 6 1 anny

How do

( )( )
[ ]

>

1 0 5166425.

# well we predict each part of the eevent

colMeans classfit $predicted match

FromId ToId

?

.

.

> ( )6

0 50500651 0 3415340.  
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Evaluating how well the model predicts each event sheds additional light on 
these results.

On average, the model only predicts the event perfectly about 33 % of the time 
(still a remarkable performance, given the large number of possible events). We do 
a bit better with getting at least one part of the event right, correctly classifying the 
sender or receiver about 50 % of the time (and we do much better at classifying 
senders than receivers over all, on average). Moreover, inspection of the classifica-
tion accuracy in Fig. 4.8 for this model shows substantial lag between the prediction 
threshold and fraction of the observed events covered by the model. By 25 % of the 
possible events transpiring, the model has only predicted 89  % of the observed 
events (compared with 98 % in the corresponding WTC case).

Fig. 4.7 Histogram of Deviance Residuals from Exact Time Model of McFarland’s Classroom. 
Data
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>
>

#

( . / *

Classification plot

plot ecdf classfit $observed rank6 19 220( )( ) =, "xlab Prediction

Threshold Fraction of Possible Eventts ylab Fraction of

Observed EventsCovered main Clas

( ) =
=
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", )

. . .

= ( )
> =

0 1
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( ) =( )

>

,

a comparative look the prediction thresho

lty

at th# lld

ecdf classfit $observed rank> ( )( )( )
[ ]

6 19 20 25

1 0 8929088

. / * .

.

>> ( )( )( )
[ ]

ecdf wtcfit $observed rank6 37 36 25

1 0 983368

. / * .

.
 

Fig. 4.8 Classification Accuracy of the Observed Ranks Under Model 6 with Prediction. 
Thresholds Indicated at 0.05, 0.1, and 0.25
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So, comparatively, it looks that our exact time relational event model of the 
 classroom data isn’t performing as well as our ordinal time relational event model of 
the WTC data. We may be missing some important aspect of the relational event 
process in our model of the classroom conversation. We can again examine the model 
“surprise” superimposed on the time-aggregated network for clues about what may 
be going on. Here, because we lack a null residual, we’ll define surprising events as 
those for which the observed event is not in the top 5 % of those predicted.

 

> >
> <

# \ %

.

rank corresponds the here

surprising soc

19 5to cut off

as

 
 iiomatrix eventlist Class classfit $observed rank , ,. .6 19 20>[ ]( )

>>
>

#

( ,

Plot the resulting surprising network

gplot surprising eedge surprising
arrowhead edgelist

. ^ . ,
. log( . .

lwd
cex as sna

=
=

75
ssurprising

, vertex ifelse WTCPoliceIsICR,, b

( )
[ ] + =3 25) . , . "col llack ,, gray

vertex

vertex sides ifelse WTCPol

" " " ,
. . ,

.

( )
=

=
cex 1 25

iiceIsICR,, ,, displayisolates FALSE4 100( ) =, )  

The visualization in Fig. 4.9 gives us more of a clue about what we’re missing. 
Specifically, the presence of five distinct clusters represent the occurrence of vari-
ous side discussions that are not well-captured by the current model. This could be 
due to the fact that things like P-shift effects fail to capture simultaneous side- 
conversations (each of which may have its own set of turn-taking patterns), or to a 
lack of covariates that capture the enhanced propensity of subgroup members to 

Fig. 4.9 Time-Aggregated 
‘Surprising’ Events 
Network Under the Final 
Relational Event. Model  
of McFarland’s Classroom 
Data
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address each other (such as students being in the same school club together). Further 
elaboration could be helpful here. On the other hand, we seem to be doing reason-
ably well at capturing the main line of discussion within the classroom, particularly 
vis-a-vis the instructors. Whether or not this is adequate depends on the purpose to 
which the model is to be put; as always, adequacy must be considered in light of 
specific scientific goals.

4.6  Conclusion

A wide range of interaction processes—from radio communications to dominance 
contests— can be fruitfully studied within the relational event paradigm. While aris-
ing as the short duration limit of the dynamic network regime, the relational event 
regime has its own distinct properties and requires distinct treatment. In particular, 
relational event dynamics are fundamentally about sequential relational structure, 
rather than the simultaneous relational structure that is the dominant concern within 
social network analysis. In this and many other respects, theory and analysis of 
relational event dynamics owes as much to fields such as conversation analysis, 
event history analysis, and agent-based modeling as to conventional network analy-
sis. Relational event models are still fundamentally structural, however, and we 
stress that the approaches are complementary. Indeed, where exact (or exactly 
ordered) data is available on relationship start and stop times, it is possible to model 
dynamic networks via a REM process whose events involve the creation and termi-
nation of edges. Taking such a process to be fully latent—with only the state of the 
currently active edges observed at a small number of distinct points in time—leads 
one to a model family that is essentially similar to the framework of Snijders (2001). 
Likewise, temporally extensive relationships are often important covariates for rela-
tional event processes, allowing one to directly assess the impact of ongoing ties on 
social microdynamics.

Although we have focused here on some of the most basic types of REMs, more 
complex cases are also possible. As noted, REMs for “egocentric” event data 
(Marcum & Butts, 2015) can be powerful tools for modeling the responses of indi-
viduals to their local social environments, and are well-suited to the analysis of 
complex event series (with many event types) punctuated by exogenous events. 
Hierarchical extensions to REMs (DuBois et al., 2013b) allow for pooling of infor-
mation across multiple event sequences while still allowing the dynamics of each 
sequence to differ from the others; this is particularly useful when studying many 
small groups, and/or when attempting to estimate covariate effects for attributes 
whose prevalence varies greatly from group to group. Endowing REMs with latent 
structure also holds a host of opportunities, including the ability to infer latent inter-
action roles directly from behavioral data (DuBois, Butts, & Smyth, 2013a). Given 
the breadth and flexibility of the approach, the prospects are good for many more 
developments in this area. We close with the important reminder that no representa-
tion is fit for all purposes, nor is it intended to be. Many relational analysis problems 
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involve the modeling of ongoing relationships, and are better viewed through the 
lenses of static or dynamic network analysis. Where one’s focus is on micro- 
interaction or other processes involving discrete behaviors whose implications cas-
cade forward through time, however, the relational event paradigm offers a powerful 
and statistically grounded alternative.
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