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Chapter 3
Causal Inference Using Bayesian Networks

Iftekhar Ahmed, Jeffrey Proulx, and Andrew Pilny

3.1  �Introduction

The availability of new computational technologies, data collection opportunities, 
and data size is profoundly changing the nature social scientific analysis. Although 
traditional social scientific analysis (Content analysis, ANOVA, Regression, etc.) is 
still very much at the core of scholarly choice, newly found avenues are expanding 
analytical possibilities for social scientists. Prediction and network analyses are two 
of the areas impacted by newly found opportunities. Social scientists are now able 
to generate predictive results beyond traditional regression methods, thus are able to 
increase the power of social analysis. Hard sciences (i.e., Biology or Physics) have 
already developed a rich practice of collecting and analyzing massive amounts of 
data (Lazer et al., 2009). The possibility of dramatic changes in “analyzing, under-
standing, and addressing many major societal problems” became a reality due to an 
increase in the availability of informative social science data (King, 2011, p. 719). 
This data driven social scientific approach, popularly known as “computational 
social science”, is a slowly growing field within social sciences largely spearheaded 
by interdisciplinary scientific teams (Lazer et al., 2009).
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A number of new techniques utilized by present day computational social scien-
tists are borrowed from computer science or information technology. Machine 
learning classification algorithm (MLCA) is one of such technique. MLCA is an 
umbrella term that consists of a variety of classification algorithms. The actual 
choice of a MLCA technique depends upon the theoretical and predictive interests 
of the researcher and the nature of data. Instead of looking for patterns in the data-
set, MLCAs use cross-validation techniques to verify patterns in the data. MLCAs 
divide the data sample into several random samples, search for patterns in the earlier 
samples (except the last one), create probabilities or rules based on these patterns 
and then test those rules on the last sample. Bayesian network classifiers are one 
group of these MLCAs. Bayesian network MLCAs use posterior probabilities (PP) 
to generate classifications using Bayes’ formula.

MLCAs became more user friendly for social scientists with the availability of 
Analytical Graphical User Interfaces (GUI). Weka is one of these available GUI for 
researchers. Developed at the University of Waikato, New Zealand, “Weka is a col-
lection of machine learning algorithms for data mining tasks. The algorithms can 
either be applied directly to a dataset or called from your own Java code. Weka 
contains tools for data pre-processing, classification, regression, clustering, associa-
tion rules, and visualization.” (http://www.cs.waikato.ac.nz/ml/weka/). This chapter 
introduces Bayesian Network Analysis using WEKA.

“A Bayesian network consists of a graphical structure and a probabilistic descrip-
tion of the relationships among variables in a system. The graphical structure explic-
itly represents cause-and-effect assumptions that allow a complex causal chain 
linking actions to outcomes to be factored into an articulated series of conditional 
relationships” (Borsuk, Stow, & Reckhow., 2004, p. 219). Because of these links 
between actions and outcomes, social scientists can generate predictive results and 
develop network structure among variables beyond traditional social scientific 
approaches to increase the power of analysis. Conditional independence is at the 
core of Bayesian networks (Pe’er, 2005). Theoretically speaking, variable X is con-
ditionally independent of variable Z given variable Y if the probability distribution 
of X conditioned on both Y and Z is the same as the probability distribution of X 
conditioned only on Y: P(X|Y,Z) = P(X|Y). We represent this statement as (X ┴ Z|Y). 
Bayesian networks encode these conditional independencies with a graph structure 
(Pe’er, 2005, p. 1). A Bayesian network MLAs use posterior probabilities (PP) to 
generate classifications using Bayes’ formula (Eq. 3.1):
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P x y P y
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(3.1)

whereas P(y | x) is a posterior probability of y (dependent variable) given x (indepen-
dent variable), calculated by multiplying the likelihood of an attribute (x) given y (P(x 
| y)) and the class prior probability of y (P(y)) over that value time the probability of a 
false positive (P(x| not y) and the probability of a case not being y (P(not y)).
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For instance, imagine you wanted to know if group performance (i.e., HIGH) is 
contingent on whether or not the group implemented a participative decision making 
(PDM) structure (i.e., TRUE). The Bayesian formula (Eq. 3.2) would try to deter-
mine P(HIGH | TRUE):

P HIGH TRUE
P TRUE HIGH P HIGH

P TRUE HIGH P HIGH TRU
|

|

| P
( ) ( ) ( )

( ) ( )
=

×

× + EE HIGH HIGH| Pnot not( ) ( )× 	
(3.2)

For the current example, we will look at situations where a number of people are 
working together in a complex environment. A number of these situations like 
Military training or Firefighting are potentially dangerous and costly. The develop-
ment of new technology such as games provides us an opportunity to train people in 
a safer environment. Because of technological development, we can make these 
training simulations very close to real world actions. We use the term multiteam 
system (MTS) to describe nested teams engaged in military or firefighting opera-
tions. MTSs are “teams of teams” where each team is nested within a larger collab-
orative group (Marks, DeChurch, Mathieu, Panzer, & Alonso, 2005). The purpose 
of the experiment was to investigate MTS collaboration dynamics in response to 
changes in the accuracy of the information environment surrounding teams.

Now consider a Military training simulation using games. Our experiment was 
conducted using a computer game called Virtual Battlespace 2 (VBS2) (see Pilny, 
Yahja, Poole, & Dobosh, 2014). VBS2 is a customizable combat simulation envi-
ronment and is used globally for military training and simulation as it allows 
researchers to create custom scenarios where the researcher can add or remove 
stimuli in the simulation environment. Each experiment session lasted approxi-
mately three hours during which all participants engaged in two missions. All ses-
sions where implemented in seven, sequential phases. For each mission, participants 
either played a scenario that contained entirely accurate information or a scenario 
that contained partially inaccurate information. In the experimental scenario, each 
MTS contained four participants divided into two teams of two people. Teams were 
tasked with navigating a map that contained landmarks and hazards along a route to 
the MTS’s rendezvous point. As each team’s location was unknown to the other 
team, therefore frequent communication was needed to coordinate activities.

This experiment uses participant’s survey responses to see if we can predict 
which information condition the MTS assigned to groups. Each survey in this 
experiment was large and contained many scales and single response items, conse-
quently providing a robust dataset. These are the types of data sets that we earlier 
mentioned as new possibilities for social sciences. As investigators, our interest is to 
identify factors that can predict information manipulation. However, the amount of 
data that we get and the research interest that we have together persuades us to 
explore new possibilities of social scientific research under the broader term “com-
putational social science”. Here, our particular interest is to see how Bayesian 
Network Analysis helps us in our investigation.

3  Causal Inference Using Bayesian Networks
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3.2  �Scenario

This tutorial uses data from an experiment investigating MTSs. The purpose of the 
experiment was to investigate MTS collaboration dynamics in response to changes 
in the accuracy of the information environment surrounding teams. This chapter 
uses a subset of the original data. The following sections will walk the reader 
through the procedures used during data collection, variable selection, and the steps 
taken to prepare data for analysis.

Participants (n = 129) included undergraduate students from a large Midwestern 
university who were recruited through flyers and course announcements. A total of 
38 MTS experimental sessions were conducted. Each MTS was comprised of four 
participants, divided into two teams of two. Of these 38 sessions, 33 yielded usable 
data as five sessions needed to be discarded due to recording errors.

Teams were tasked with navigating a map that contained landmarks and hazards 
along a route to the MTS’s rendezvous point. As teams’ location was unknown to 
each other in the MTS, field teams needed to use radio communication to coordinate 
a synchronous arrival at the rendezvous point. Once arriving at the rendezvous 
point, teams were given the task of eliminating a group of enemy insurgents. As a 
collective, the MTS was given three tasks: (1) to record landmarks the team navi-
gated to for reconnaissance, (2) to successfully disarm and neutralize hazards such 
as explosive devices and insurgent ambushes, and (3) to coordinate a synchronous 
arrival at the rendezvous point.

While traveling to their rendezvous point, teams were exposed to pre-recorded 
radio messages that were intended to represent orders from the MTS’s commanding 
officer. These radio messages took the form of audio played through each partici-
pant’s headset that played when teams reached certain locations in the simulation. 
These messages gave teams information regarding the path that lie directly ahead of 
them and were also used to assign teams tasks such as confirming that an object 
exists along the path (e.g., a suspicious looking backpack) or exiting their vehicle to 
disarm an explosive device. Teams were exposed to ten messages during each mis-
sion. In the accurate condition all ten messages contained correct information that 
teams could verify within the simulation (e.g., if they are told there is a suspicious 
abandoned vehicle ahead, the suspicious vehicle actually existed). In the inaccurate 
condition two of the ten messages were inaccurate (e.g., if a team is told there is a 
suspected explosive device ahead, there was no explosive device).

All self-report items were measured at the individual level and observed mea-
sures were coded for each team in each session. As observed data were aggregated 
to the team level, there are two observations per session, one for each team. Screen 
recordings (videos) were used to construct a behaviorally anchored coding system 
and each MTS was coded for the five outcomes used in this analysis. Two indepen-
dent raters coded each video and coding was largely objective. Kappa was used to 
measure interrater reliabilities and exceeded .90  in all cases thus suggesting an 
acceptable level of agreement.

In this tutorial, we will be using the participant’s survey responses to predict 
manipulation of information condition in the MTS missions. Each survey in this 
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experiment was large and contained many scales and single response items. 
Additionally, there are several observed outcome variables recorded for each mis-
sion. In this case, we chose 118 variables that are a mixture of scales, single survey 
items, and outcome variables to demonstrate how Bayesian networks can be used to 
accommodate robust datasets.

3.2.1  �Variables

118 variables from the dataset were initially explored in this tutorial (1 dependent and 
117 independent). We will be using information accuracy as our dependent variable 
(it is called MA_Accurate). Information accuracy was manipulated as a counter-bal-
anced fixed effect in the experiment as each team was randomly assigned to either the 
accurate or inaccurate condition for their first mission. For the accurate information 
condition, all information given to teams was accurate, for the inaccurate condition, 
information given to teams contained two erroneous pieces of information. The 
remaining variables are treated as independent variables in this tutorial.

3.2.2  �Data Preparation

Prior to analysis, data need to be cleaned and formatted. In this case, our data 
preparation involved two steps. First, all data were merged into a single file con-
taining all of the variables we will use in our analysis. This means that survey 
responses, observed outcomes, and a dummy coded variable indicating which 
information condition the participant was in were combined into a single file. All 
variables are numeric.

After merging data, we removed any cases that containing missing values. In this 
case, a recording error occurred resulting in five sessions with partially mission 
data. These sessions were removed list wise. In order to analyze the dataset in Weka 
environment, we created a comma delimited file (.csv). MLCs work best with 
Binary Dependent Variable that we are going to predict. However, we can also use 
Nominal Variable with more than two categories.

3.3  �Description of Weka Environment

This section describes the Weka GUI and how to explore different options to run an 
analysis. Figure 3.1 shows the opening window. The Explorer button allows us to 
locate and choose the data file that we are going to use. Once you click the explorer tab, 
it will open a window that provides an Open File option (Fig. 3.2). That option helps us 
to explore our data location and choose the file we will use for this experiment.

3  Causal Inference Using Bayesian Networks
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Fig. 3.1  WEKA main 
GUI

Fig. 3.2  WEKA explorer window

I. Ahmed et al.
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Once the file in loaded in Weka, you can click any variable and see the basic 
statistics including maximum and minimum value, mean, standard deviation, and 
also visual representation of the data (Fig. 3.3).

Figure 3.4 shows the variable that we are going to predict. It shows that the vari-
able is nominal with two categories. As you can see, category I has 63 cases and 
category A 65 cases. It is recommended to have either exact or very close number of 
cases in categories for better prediction results because classification problems can 
occur from imbalanced data. A data set is imbalanced if the classes are not repre-
sented equally within the data set. It is common to have data sets with small imbal-
ances. However, large imbalances would definitely cause a problem. The best way 
to tackle the problem is by collecting new data. If that is not possible, then the 
option is to generate synthetic samples to balance the classes. This synthetic sample 
generation usually randomly sample attributes from minority class instances. If 
there are discrepancies, Weka allows to ‘under-sample’ or ‘over-sample’ a category. 
Over-sampling in Weka resamples datasets by applying the Synthetic Minority 
Oversampling TEchnique (SMOTE).

The Classify tab allows us to run classification algorithms. Figure 3.5 shows us a 
list of classifiers available based on the nature of our data. The first option here 
provides different Bayes classifiers. For this experiment, we are using BayesNet 
classifier.

Fig. 3.3  Variables and basic statistics

3  Causal Inference Using Bayesian Networks
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Fig. 3.5  List of available classifiers



37

3.4  �Running Bayesian Network Analysis in Weka

3.4.1  �Analysis with All Variables

There are 118 variables in our data set. MA_Accurate is the variable that provides 
us binary condition that we are interested to know. The rest of the variables will be 
used to predict MA_Accurate. There are three steps of running this experiment. 
First, in order to see the prediction power of our data set, we are going to run an 
analysis with all the variables. Having so many predictor variables is not a good 
practice as it makes explanation complicated. We are using it for two reasons. First 
to demonstrate advanced analysis possibilities so that we can use the technique if 
experimental situation demands such a robust analysis. Second, we like to compare 
results between all variables and few important variables that we are going to select 
later. Figure 3.6 shows us the basic window. As you can see, the classifier choice is 
BayesNet and the variable button shows MA_Accurate. It also shows that the vari-
able is Nominal. To run the classification algorithm, we simply need to hit the start 
button. There is one additional step to remember. Figure 3.6 shows that, to deter-
mine the predictors of information accuracy, we are using a tenfold cross-validation 
method. It means that the algorithm will divide the sample into ten random samples. 
Then, it will use the first nine to create probabilities and search for patterns and 

Fig. 3.6  Basic run window

3  Causal Inference Using Bayesian Networks



38

develop rules based on those patterns. Finally it will test those derived rules on the 
tenth sample. The number of cross validation choice depends upon the researcher 
and research interest (e.g., smaller samples may need smaller folds). A user can also 
supply a completely different data set to test the MLCA. Once we hit the start but-
ton, the classifier output window provides the result (Fig. 3.7).

3.4.2  �Understanding Weka Output

There are three important sections of the output that together provides us a clear 
picture of our analysis. First is the Stratified cross-validation Summary. This section 
provides detail into the number of correctly and incorrectly classified instances and 
total number of instances. For us these were 90 (70.31 %), 38 (29.68 %) and 128.

The most important output for us is the second part of result - Detailed Accuracy 
By Class. Five important statistics for us are the Precision, Recall, F-Measure, ROC 
Area, and Class (Table 3.1).

First, the Weka output table provides the rate of true positives (TP Rate) or the 
ratio of instances of a given class that was correctly classified and the rate of false 
positives (FP Rate) or the ratio of instances of a given class that was falsely classi-
fied. Then it provides Precision, Recall, F-Measure, ROC Area, and Class. Precision 
is the ratio calculated by dividing proportion of true instances of a class by the total 
number of instances classified as that class. Recall is the ratio calculated by dividing 

Fig. 3.7  Output window with run results
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the proportion of instances classified as a given class by the actual total of that class. 
The F-Measure (Eq. 3.3) is calculated by combining precision and recall in the 
following manner:

	
F

Precision Recall

Precision Recall
= ×

×
+

2 .
	

(3.3)

The overall F-Measure (mentioned in the output as Weighted Avg.) is the model 
accuracy. The accuracy of our test is shown by the ROC Area. A ROC Area value of 
1 denotes a perfect test whereas a value of .5 is equal to random guessing. So, a 
worthwhile value is the one above .5 and better if that is closer to 1. In this test, our 
value is 0.701, which is good enough to accept results. Class denotes the values of 
our binary classes. Here ‘I′ represents Inaccurate and ‘A’ represents Accurate 
classes of our MA_Accurate variable. Based on our results, we can say that the test 
can identify whether the information scenario given by the researchers were accu-
rate or inaccurate about seventy six percent of the time. Finally, the Confusion 
Matrix provides the statistics of how many times a particular class was classified 
rightly or wrongly. Our results indicate that in 50 cases of class I were classified as 
I (right classification) and in 13 cases as A (Table 3.2).

3.4.3  �Assessing Information Gain

Although we have a good model that has a 70 % prediction power, a question of the 
power of individual variables in prediction remains. Although we have 118 variables 
in the test, it is good to find out how much each of these variables is contributing to 
the prediction analysis. Assessing Information Gain is one way that allows us exactly 
to do that. The reason behind this test is to identify and exclude variables that are not 
contributing much to prediction, eliminating them, thus make the model more 
parsimonious.

In order to run Information Gain, we need to go to Select attributes tab and 
choose InfoGainAttributeEval (Fig. 3.8). The select method will automatically 

Table 3.1  Weka output for full model

Precision Recall F-Measure ROC area Class

0.667 0.794 0.725 0.770 I
0.755 0.615 0.678 0.770 A

Weighted Avg. 0.711 0.703 0.701 0.770

Table 3.2  Confusion matrix 
for full model

a b ← classified as

50 13 a = I
25 40 b = A

3  Causal Inference Using Bayesian Networks
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change to ranker and will provide a window to accept that choice. Once we click 
OK it will be set. By clicking the start button, we will get the Information Gain 
results in the output area (Fig. 3.9).

In the Ranked attributes section, our results identified three variables with some 
information gain number (Fig. 3.10). The numbers are the amount of information 
gained from that particular variable (on the left side). Starting from variable ‘118 
TAPOthCm2_T2’ the numbers are all 0. It means that those variables are not con-
tributing to any prediction analysis. Three variables our information gain test 
identified were team efficacy, team thoroughness, and speed. All variables were 
observed and measured at the interval level.

Team efficacy measures the degree to which teams accomplished their task of 
neutralizing hazards in the field. High scores of team efficacy were obtained by 
MTS’s that identified and neutralized threats such as explosive devices and insur-
gent ambushes efficiently and quickly. Low scores of team efficacy indicate an MTS 
that did not neutralize threats, needed multiple attempts to eliminate threats, or took 
damage while completing a task. MTSs were placed into three categories based on 
their scores: (1) High, (2) Average, and (3) Low.

Team thoroughness measures the extent to which teams completed their task of 
recording the location of landmarks and hazards during their mission. High scores 

Fig. 3.8  Selection of InfoGainAttributeEval in Select attributes tab
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of team thoroughness indicate an MTS that correctly identified the name and loca-
tion of mission landmarks and hazards. Low scores of team thoroughness indicate 
an MTS that did not accurately record the name or location of landmarks and haz-
ards that they were tasked to locate. They were similarly placed into.

Speed was measured as the time in seconds that it took each team to complete the 
mission. Completion of the mission was denoted by the moment at which each team 
first arrived at the rendezvous point and was similarly placed into three categories 
based on one standard deviation: (1) Long, (2) Average, and (3) Short.

An analysis with only three identified variables with information gain statistics 
would yield almost similar result. As such, it is time for us to re-run the test with 
selected variables.

Fig. 3.9  Information Gain results output

3  Causal Inference Using Bayesian Networks
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3.4.4  �Re-run with Selected Variables

In order to re-run the test, we need to go back to the Processes tab and select the 
variables that we need. Here we need M1_Efficacy, M1_Speed, and M1_
Thoroughness. We also need our main variable MA_Accurate (Fig. 3.11). Once we 
select these four variables by clicking the checkbox beside them, we need to click 
the Invert button right above the list of variables area. This will reverse the selection 
and will select all variables other than the four we need. Now we can click the 
remove button right under the list area and remove all unnecessary variables from 
our analysis (Fig. 3.12). Once this selection process is done, we can replicate the 
analysis exactly as before.

Table 3.3 shows us our re-run results. As you can see, there is a slight decrease in 
the overall F-Measure from 0.701 to 0.656. However, the important part to know is 
that we have significantly decreased much of the noise in the data (i.e., variables that 
do not predict well), making the data much more interpretable and more substan-
tially (rather than statistically) significant. A look at the probability distribution 
table can tell us more about the specific odds used to make prediction based on 
Bayes’ theorem.

Fig. 3.10  Ranked attributes section of Information Gain result

I. Ahmed et al.
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Fig. 3.11  Selection of variables with information gain

Fig. 3.12  Selected variables for final analysis

3  Causal Inference Using Bayesian Networks
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3.4.5  �Probability Distribution

Weka allows viewing the graphical structure of the network. By right clicking the 
result in the explorer and a drop-down menu appears with a “Visualize graph” 
option (Fig. 3.13). The graph represents the graphical network with relationship 
among nodes (Fig. 3.14). This window allows inspecting both the network struc-
ture and probability tables. This graph is very useful to identify relationship 
between nodes. Each node in the graph represents a variable or condition and their 
relationships represent the network. It is similar to any other network structure. 

Table 3.3  Weka output for reduced model

Precision Recall F-Measure ROC Area Class

0.727 0.508 0.598 0.701 I
0.631 0.815 0.711 0.701 A

Weighted Avg. 0.678 0.664 0.656 0.701

Fig. 3.13  Final prediction model

I. Ahmed et al.
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Moreover, the network in the graph are directional indicating a directional relation-
ship. If you place your cursor on any node, it will get high lighted. Clicking that 
node provides the probability table (Fig. 3.15). “The left side shows the parent 
attributes and lists the values of the parents, the right side shows the probability of 
the node clicked conditioned on the values of the parents listed on the left” 
(Bouckaert, 2004, p.29).

Using these probabilities, it is possible to calculate odds using Bayes’ theorem. 
For instance, consider whether or not there was a relationship between the informa-
tion manipulation and thoroughness (78 = AVG, 22 = HIGH, 28 = LOW). The cor-
responding probability of having a high thoroughness score and being in the true 
information accuracy group was 0.32. If we plug this into Bayes’ theorem, we can 
determine the posterior probability of an MTS in the true information condition 
having a high score based on the probabilities given in Fig. 3.14 (see also Witten, 
Frank, & Hall, 2011, p. 260). To calculate theses, observe that Fig. 3.14 gives the 
odds of being in the True condition as 0.51 and 0.32 when thoroughness is high. The 
same odd when information accuracy is False is 0.49 and 0.13. To obtain condi-
tional probabilities, we can use adapt Eqs. 3.1 into 3.4:

Information accuracy
False True
0.49 0.51

Efficacy

False
True

AVG HIGH LOW
0.07 0.23

0.040.260.70
0.71

Thoroughness

False
True

AVG HIGH LOW
0.49 0.32 0.19

0.160.130.71

Speed

False
True

AVG HIGH LOW
0.18 0.52 0.29

0.070.650.28

Fig. 3.14  Probability distribution table of one-parent model

3  Causal Inference Using Bayesian Networks
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The values from Fig. 3.14 help us solve this equation:

	

0 32 0 51

0 32 0 51 0 13 0 49
0 7193

. .

. . . .
.

×
×( ) × ×( )

=
	

As such, the conditional probability that an MTS had a high thoroughness score 
and was in the true information condition was 71.93 %, suggesting a significant 
relationship between having true information and better performance.

3.4.6  �Re-run with Two Parent Nodes

Many social scientists and group researchers are interested in moderation or in other 
words, interaction effects. One way to get at this type of analysis is through increasing 
the parent nodes from one to two. This allows the predictor variables to interact with 
one another to create join probabilities. Indeed, one of the reasons it is called Naïve 
Bayes is because the predictor variables operate independent from one another.

To increase the amount of parent nodes from one to two, simply click on the 
BayesNet classifier next to the “Choose” button in Weka to open the generic object 
editor (Fig. 3.15). Then click on the “searchAlgorithm” box next to the “Choose” 
button and increase the “madNrOfParents” from one to two (Fig. 3.15). Finally, re-
run the analysis (Table 3.4).

The table here is promising because the F-Measure has substantially increased from 
0.656 to 0.702. Similarly, clicking on visualize graph will give us a probability distribu-
tion table (see Fig. 3.16). For instance, consider if we looked at efficacy and speed and 
wanted to determine is those groups who had high efficacy and average speeds:

	

0 51 0 07 0 838

0 51 0 07 0 838 0 49 0 26 0 091
0 721

. . .

. . . . . .
.

× ×
× ×( ) + × ×( )

=
	

Here, we see that MTSs that had high efficacy and completed the mission in 
average times (i.e., not too long or short) had a 72.1 % chance of being in the true 
condition, demonstrating a significant relationship in how the manipulation may 
have influenced group performance.
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3.5  �Conclusion

This article demonstrated the opportunities offered by a data driven social scientific 
approach, popularly known as “computational social science”. Here we explored a 
situation where a number of people were working together in a complex environ-
ment. These people constituted true groups as they were interdependent with com-
mon goal and fate. Receiving accurate information was vital in their success. 
However, information accuracy was manipulated to see the effect on group pro-
cesses. It was a simulation of a real world group oriented problem, and due to recent 
technological developments, the simulation was very close to real world actions.

Fig. 3.15  Setting up a two-parent model

Table 3.4  Weka output for reduced model with two parent nodes

Precision Recall F-Measure ROC area Class

0.727 0.635 0.678 0.737 I
0.685 0.769 0.725 0.737 A

Weighted Avg. 0.706 0.703 0.702 0.737

3  Causal Inference Using Bayesian Networks
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Group communication scholars has been exploring and analyzing such situations 
for a long time. What made this situation unique is the number of variables that our 
system collected. We had 118 variables in the data set. What we observe here is the 
opportunity of collecting massive data. Previously, social scientists would limit the 
number of variables because of the complication that would arise in analysis and 
explanation. Data collection in those cases would be limited based on existing theo-
ries. Although theoretically sound, this line of research would be conservative in 
exploring many variables, limiting the possibility of discovering novel effects. 
Computational social science helps us to address this barrier.

Another possibility that comes forward is the opposite of theory driven analysis. 
Instead of an a-priory approach, now we can let the data show us relationships and 

Information accuracy
False
0.49 0.51

True

Efficacy
AVG

True
False

0.71 0.07 0.23
0.70 0.26 0.04

HIGH LOW

Speed

Info.
False AVG

AVG

False
False
True
True
True

Efficacy LONG AVG SHORT

HIGH

HIGH

LOW

LOW

0.118 0.656 0.226
0.091
0.548
0.095
0.027
0.143

0.091
0.290
0.600
0.838
0.143

0.818
0.161
0.305
0.135
0.714

Thoroughness

Info.
False AVG 0.462 0.312 0.226

0.455
0.032
0.095
0.351
0.143

0.091
0.419
0.137
0.027
0.714

0.455
0.548
0.768
0.622
0.143

AVG

False
False
True
True
True

Efficacy AVG

HIGH

HIGH

HIGH

LOW

LOW

LOW

Fig. 3.16  Probability distribution table of two-parent model
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relational patterns and make sense of the relationship later based on existing theories. 
During the process, this article demonstrates that the MLCA analysis could actually 
discriminate variables based on their importance in understanding the situation.

This article also demonstrates new ways of interpreting and presenting social 
scientific results. Here we not only see that the conditional probability that an MTS 
had a high thoroughness score and was in the true information condition suggesting 
a relationship between having true information and better performance, we knew 
that the probability was 71.93 %. Such accuracy derived from complex situations 
could be considered as a major improvement in social scientific analysis.

This demonstration represents one of many novel possibilities offered by compu-
tational social science methods to social scientific scholars. Together with tradi-
tional approaches, new methods would definitely enhance our explorations and 
analysis of social situations. The significance of considering the approaches is even 
higher when we consider the nature of data sets with numerous associations and 
layers that we get from new and emerging media.
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