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Chapter 2
Response Surface Models to Analyze 
Nonlinear Group Phenomena

Andrew Pilny and Amanda R. Slone

2.1  Introduction to Response Surface Methodology

Using Response Surface Methodology (RSM) is a lot like being a chef, mixing 
together different combinations of ingredients to see which ones come together 
to make the best dish. In this situation, strict linear thinking no longer applies. 
For instance, adding just the right amount of salt to a dish can bring out the 
sweetness in desserts or bump up the taste in more savory dishes. But, too much 
salt can overwhelm the flavor of a dish, just as too little salt can leave it tasting 
bland and unsatisfying. Chefs must find that perfect amount of salt that takes 
their dish from acceptable to exceptional. In addition, chefs must consider how 
the salt will interact with other ingredients in the dish. For example, salt inter-
acts with the yeast in bread to help create texture, and it helps sausage and other 
processed meats come together by gelatinizing the proteins. Likewise, RSM 
helps us find the optimal amount of an outcome variable based on two or more 
independent variables.

This chapter will provide an introduction on how to use RSM to analyze nonlin-
ear group phenomenon. First, the chapter will outline a brief history and background 
of the approach. Then, the chapter will walk the reader through a tutorial demon-
strating how to execute the second-order model using the PROC RSREG function 
in SAS.  Data previously collected from virtual groups in the game EverQuestII 
(see Williams, Contractor, Poole, Srivastava, & Cai, 2011) will be provided as an 
example.
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2.2  Brief Background of RSM

Box and Wilson’s (1951) treatment on polynomial models provided the foundation 
for RSM, which evolved and developed significantly (e.g., different variations of 
designs) during the 1970s (Khuri, 2006). Like many statistical methods, RSM 
developed in the natural sciences, but has yet to be applied extensively within the 
social sciences given the amount of repeated observations needed for RSM. Indeed, 
given the complexity involved in running controlled social science experiments and 
the typically low rate of manipulations, though, it is no wonder that RSM has not 
taken hold. However, with the advent of Big Data providing virtual Petri dishes of 
human behavior, RSM has garnered new interest in the social sciences for its ability 
to answer questions about complex group interactions (Williams et al. 2011. For 
example, due to its emphasis on optimization (i.e., finding the right combination of 
independent variables that maximizes a dependent variable), RSM has primarily 
impacted the world of business and performance management.

2.3  Basic Processes Underlying RSM

RSM is a blend between least squares regression modeling and optimization methods. 
More formally, RSM can be defined as the “collection of statistical and mathemati-
cal techniques useful for developing, improving, and optimizing processes” (Myers, 
Montgomery, & Anderson-Cook, 2009, p. 1). Moreover, instead of trying to only 
explain variance, RSM also seeks to clarify optimization. In other word, it is not 
necessarily about how a set of independent variables explains a dependent variable, 
but rather what combination of independent variables will yield the highest (or low-
est) response in a dependent variable. In order to do this, RSM requires at least three 
variations in each variable, measured on a ratio or interval level.

To conduct an RSM test, there are typically five consecutive steps to go through 
(SAS Institute, 2013): (1) the regression modeling, (2) lack of fit, (3) coding of 
variables, (4) canonical analysis, and (5) ridge analysis. Each of these steps is 
described in more detail below.

2.3.1  Step 1: Second-Order Regression Modeling

The most common and most useful RSM design is the second-order model because 
it is flexible (i.e., not limited to linear trends), easy (i.e., simple to estimate using 
least-squares), and practical (i.e., has been proven to solve real world problems; 
Myers et al., 2009). The general linear model formula is identical to that which is 
used when conducting a regression (Eq. 2.1):
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(2.1)

In this general linear equation, y equals a response variable, x1 and x2 represent 
predictor variables, and e equals the error term.

But, RSM uses the second-order model in order to fully determine the response 
shape (i.e., the observed nonlinear trend). The equation for the second-order model 
is as follows (Eq. 2.2):

 y b x b x x� �
= + +¢ ¢

0 B  (2.2)

In this second-order matrix equation, “b0, b, and B
�

 are the estimates of the inter-
cept, linear, and second-order coefficients” (Myers et al., 2009, p. 223) respectively. 
One thing to note is that, unlike most other second-order regression models used 
when conducting group research, the results provided in this model are preliminary. 
That is, the results are used to determine linear, quadratic, and interactional relation-
ships between the independent variables, not to identify the response shape.

2.3.2  Step 2: Lack of Fit

Lack of fit is how well predicted repeated observations match the observed data. In 
other words, lack of fit of the second-order model indicates that the predicted values 
of the data do not look like the observed values (see Montgomery, 2005, p. 421–
422). For example, though salt (independent variable) may be shown to influence 
taste (dependent variable) in a second-order model (i.e., statistically significant), 
when we compare the predicted responses to actual taste ratings (e.g., feedback 
from customers), there are major discrepancies. This indicates a poorly fitting 
model.

When we have more than one observation on an independent variable, there are 
several things to look out for when calculating lack of fit. First, it is important to 
differentiate pure error from lack of fit error. Pure error is more common in regres-
sion modeling is determined by looking at the sum of squares (Eq. 2.3) variability 
between each repeated observation of the independent variables (yij) and the average 
value of the response variable ( y i):
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Lack of fit error is different because it uses a weighted version of yij and looks at 
the actual observed value of the dependent variable, not the average. The Equation 
(2.4) can be calculated by taking the sum of the difference of the average value of 
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the response variable ( y i) the fitted value of the response variable ( y� i), and weight-
ing it by the number of observations at value of the independent variable (ni):
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From there, an F-test (Eq. 2.5) can be derived using mean squares (MS) from 
both equations to determine whether or not a quadratic model is even necessary to 
replace a reduced first-order model. For instance, if the lack of fit test is not signifi-
cant for a first-order model, then there could be a reasonable argument that a second- 
order model is not event needed:
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(2.5)

Likewise, if the test is statistically significant for a second-order model, then by 
Occam’s Razor (i.e., law of parsimony), we have evidence that a quadratic model 
might not be appropriate.

2.3.3  Step 3: Coding of Variables

Despite requiring variables to be measured at the interval or ratio level, RSM does 
not simply examine multiple sets of linear relationships. Instead, RSM conducts an 
experiment of sorts, and organizes variables into conditions to see which results in 
the optimal output. As such, to make it easier to conduct the canonical analysis 
(Step 4) and ridge analysis (Step 5), recoding values is a convenient way to examine 
the response shape at multiple values of the independent variables. As Lenth (2009) 
put it, “Using a coding method that makes all coded variables in the experiment vary 
over the same range is a way of giving each predictor an equal share in potentially 
determining the steepest-ascent path” (p. 3). In addition to simplifying the calcula-
tion, recoding the variables also produces results with respect to the original values 
of the independent variables. A common way to recode variables, as in the SAS 
package, is to do the following (Eq. 2.6):

 
Coded value

Original value M

S
=

-

 
(2.6)

whereas “M is the average of the highest and lowest values for the variable in the 
design and S is half their difference” (SAS Institutive, 2013, p. 7323). For instance, 
if there were five observations of on salt, ranging from two ounces to ten ounces, 
then the data for salt are stored in coded form using the following (Eq. 2.7):

 
xsalt =

- -( )Salt value 10 2

4  
(2.7)
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2.3.4  Step 4: Canonical Analysis of the Response System

The next step is to conduct a canonical analysis of each of the conditions. The pur-
pose of the canonical analysis is to determine the overall shape of the data. For a 
first-order model, this is typically done through a method of steepest ascent or 
descent, wherein a linear shape determines which region of values creates an opti-
mal response. However, for a second-order model, the shape can look more three- 
dimensional given the addition of interaction and polynomial terms. Here, we go 
back to our original Eq. (2.2) of a second-order response in matrix form (see Myers 
et al., 2009, p. 223):

 y b x b x x� �
= + + ¢¢

0 B  

To optimize the response ( y� )  and locate the stationary point (xs) (i.e., the point of 
highest response in the dependent variable) we can set the derivative of y�  equal to 0:
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and then solve for the stationary point:
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In these equations, b equals a vector of first-order beta coefficients:
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And B
�

 includes quadratic (diagonals) and interaction (off-diagonals) beta 
coefficients:
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(2.10)
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For instance, consider if we trying to maximize taste ( y� )  with salt (x1) pepper 
(x2). After running a clean second-order model (i.e., no lack of fit), we find that:

 
b =

é

ë
ê

ù

û
ú =

- -
- -
é

ë
ê

ù

û
ú

3 65

4 69

1 22 0 25

0 25 2 66

.

.
,

. .

. .
B
�

 

then

 
xs = -

-1

2

1

B b
�

 

 
= -

-
-

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

1

2

0 84 0 08

0 08 0 38

3 65

4 69

. .

. .

.

.  

 
=
é

ë
ê

ù

û
ú

1 34

0 75

.

.  

To compute this equation using matrix algebra, the following R code can be 
used:
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As such, the predicted stationary point for taste based on salt and pepper (x1, x2) 
is 1.34 and 0.75. If the hypothetical fitted second-order model is

 y x x x x x x� = + + - - -69 65 12 22 3 45 9 33 6 32 4 651 2 1
2

2
2

1 2. . . . . .  

then the predicted highest response of taste ys
�æ

è
ç

ö
ø
÷  would be 63.63 by plugging in the 

optimal values for salt and pepper. It can then be re-expressed in the canonical sec-
ond order form (this will be useful for later, see Montgomery, 2005, p. 446):

 y y w ws
� �= + +l l1 1

2
2 2

2

 

 = + +63 63 1 34 0 751
2

2
2. . .w w  

where w1 and w2 are canonical variables (i.e., latent variables in relationship with 
the original independent variables).

From this point, it is necessary to determine the shape of the stationary point. The 
eigenvalues (λ) of the canonical analysis give indication to the nature of the shape 
(see Montogmery, 2005, p. 446):
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 | |B- =lI 0  (2.11)

If the eigenvalues for each independent variable are negative, then a maximum 
stationary point has been reached. A maximum stationary point looks like a hill, 
meaning that there is a point that indicates a high response. For most research, this 
is good news because it means that some combinations of variables entered in the 
model to produce a maximum response in the dependent variable. On the other 
hand, if they are all positive, then this indicates a minimum stationary point, mean-
ing that the data will look like a valley. For most research, this is bad news because 
it means that some combinations of variables entered in the model to produce a 
minimum response in the dependent variable, unless a decrease in the dependent 
variable was what was desired of course.

Finally, if the eigenvalues are mixed, this indicates a saddle point, meaning that 
maximum or minimum solutions are not found, but rather multiple regions of high 
and low variables exist. In other words, the data will look like a series of hills and 
valleys, or perhaps even a plateau. For instance, a high value of x1 and low value of 
x2 may produce the highest value of y, while at the same time, a low value of x1 and 
low value of x2 may also produce the same value in y. Moreover, if they are all very 
close, or are at zero, then there is a flat area, meaning that there was little to no rela-
tionship between the independent variables and the response variable. Beyond look-
ing at the eigenvalues, a two-dimensional contour plot is also a visual that can easily 
determine the shape of the response surface.

From our current example,
|B − λI| = 0
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By taking the determinant of the matrix:
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 l l2 3 88 3 183 0+ + =. .  

The solution, using basic completing the square calculus, is λ1  = −1.177 and 
λ2 = −2.70. As such, because both eigenvalues were negative, it indicates a maximum 
stationary point. This means that the canonical values for salt and pepper would yield 
the highest value of taste based on the data the researcher has collected.

2.3.5  Step 5: Conduct Ridge Analysis if Needed

Often when a saddle point is found, or if the researcher wants additional informa-
tion regarding a maximum or minimum point, a ridge analysis can be performed. 
The purpose of a ridge analysis is to “anchor the stationary point inside the 
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experimental region” and to give “some candidate locations for suggested improved 
operating conditions” (Myers et al., 2009, p. 236). In other words, the ridge analysis 
provides an estimated response value of y for each of the different values in the 
independent variables.

For instance, consider if the eigenvalue for pepper was essentially zero, but salt, 
as we found out, was significantly less than zero (see, Montgomery, 2005, p. 447). 
From this point, we would want to see what values of salt would yield a high amount 
of taste by analyzing the predicted response in taste from different values in salt. If 
the example formula was

 y x x x x x x� = - + - - +69 65 14 87 7 94 0 33 8 89 13 651 2 1
2

2
2

1 2. . . . . .  

and the resulting response in canonical form was

 y y w ws
� �= - -13 56 0 021 1

2
2
2. .  

then we know we can pay more attention to salt because a single unit in the w2 
canonical variable would results in a 13.56 unit change rather than a small 0.02 unit 
change moved in the w2 direction. In Table 2.1, a ridge analysis used this informa-
tion to produce a line of predicted values that might indicate a trend:

From here, one can see how the decreasing levels of salt are related to a higher esti-
mated response in taste, which could prove useful for future design of experiments.

2.4  RSM in Context

To demonstrate the usefulness of RSM in group research, this exemplar study 
employs data gathered from a download of data on 100,000 characters over 5 months 
in the Massive Multiplayer Online Game (MMOG) Everquest II (EQII).

Table 2.1 Example ridge analysis table

Order Estimated response in taste Un-coded value for salt Un-coded value for pepper

1 65.24 2 1
2 59.17 3 0.9
3 49.53 4 0.8
4 36.32 5 0.7
5 19.55 6 0.6
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2.4.1  About the Game

Commercially launched in November 2004, this game was estimated to have about 
200,000 active subscribers in North America alone as of early 2008, the year in 
which the data was drawn from.1 These players participate in thousands of teams 
over the 5 months, making it possible to draw much larger samples and making it 
possible to identify large samples of teams. Moreover, they incorporate precise met-
rics for the for team performance outcomes. As such, a random sample of 154 
unique groups (i.e., no shared members) was analyzed for this tutorial.

As in most MMOGs, EQII players create a character and advance that character 
through challenges in a social milieu, typically banding together with other players 
for help and companionship. For each character, a class is chosen to fit some varia-
tion of the three basic archetypes found in nearly every fantasy MMO: damage- 
dealer, damage-taker and damage-healer. Each archetypal role has different 
capabilities, weaknesses and strengths, and the choice of class then determines how 
players develop their characters and how they will interact in the game environment 
and with other players. Players can communicate with others in the game through 
text messaging and voice chat.

Following a loose storyline, players use their characters to complete various 
tasks (quests) in order to earn virtual items such as currency and equipment. One 
important performance metric is number of “experience points” gained during a 
quest. Players must accumulate experience points to advance their character level. 
The character level is a fundamental indicator of players’ success in the game. It not 
only represents a quantitative measure of players’ skill and competence, but also 
determines whether players have access to certain quests and other game content, 
locations, and equipment. Until they attain the maximum level of 70, the accumula-
tion of experience points is the only way for players to increase their character level. 
The amount of experience points associated with a given quest is associated with the 
difficulty of the quests and the value of the items won. Therefore, experience points 
can be used as a simple yet powerful indicator of players’ performance at the com-
mon tasks in the game.

At the opposite end of the spectrum, a player can die during a quest. When a 
player dies in the game, they are not gone forever, but do pay a cost. For instance, 
for several minutes, the character is very vulnerable and cannot use many of their 
capabilities until they have had time to refresh many of their spells, buffs, and item 
effects. Moreover, their armor takes a significant amount of damage and if com-
pletely destroyed, the character will have to find a shop to get new armor or get it 
repaired. Finally, unless they are revived from a teammate, they will likely revive at 
a location far away from where the quest was being performed. As such, it is in the 
team’s interest to avoid death because it can hinder their progress in the quest.

1 There is no definitive evidence for the exact size of the population on Everquest II. The number 
200,00 is estimated from multiple professional and fan sites such as http://www.mmogchart.com 
and http://gamespot.com
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This study focused on group (i.e., heroic) quests and teams of three to six mem-
bers. Generally, groups undertaking heroic quests include characters with different 
capabilities and skills. As discussed earlier, experience level is an important indica-
tor of players’ capabilities and competence, and groups often have members with 
different experience levels. The diversity in experience levels in a group can influ-
ence team processes substantially (Valenti & Rockett, 2008). Groups also typically 
are composed of members with different archetypal roles (i.e., damage-dealers, 
damage-takers, and damage-healers).

The groups in EQII that undertake heroic quests resemble the action teams 
described by Sundstrom, De Meuse, and Futrell (1990) in that they have short-term 
projects with clear goals and standards for evaluation, and members take on specific 
highly-interdependent roles. Their projects are the quests in the game, which require 
players to complete certain activities, such as finding objects or information, or kill-
ing a monster. Success or failure is clearly indicated by whether the quest is com-
pleted or not and whether or not members are killed during the quest. Analogous 
real world teams include military units, emergency medical response teams, and 
surgical teams.

2.5  Dependent Variable

2.5.1  Team Performance

Team performance was measured using two metrics. The first was the amount of 
experience points each player earned during the quest. These were obtained through 
the back-end database. Throughout the quest, characters earn points for successfully 
completing required tasks (i.e., defeating a monster, finding hidden objects). 
Likewise, death was the second and separate indicator of team performance. The 
total amount of deaths was calculated and the lower the number of group deaths, the 
better the performance.

2.6  Independent Variables

2.6.1  Complexity

Task complexity scores for each group were obtained through individually cod-
ing each quest. Detailed descriptions of each quest were obtained through ZAM 
EverQuest II, the largest EQII online information database. ZAM also features 
EQII wikis, strategy guides, forums, and chat rooms. Graduate and undergradu-
ate researchers independently coded each quest based on the general definition of 
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task complexity given by Wood (1986). According to Wood (1986), complexity 
entails three aspects: (1) component complexity (i.e., the number of acts and 
information cues in the quests), (2) coordinative complexity (i.e., the type and 
number of relationships among acts and cues), and (3) dynamic complexity (i.e., 
the changes in acts and cues, and the relationships among them). These features 
were used to code the complexity of each quest (Mean  =  21.11, SD  =  17.35, 
Min = 4, Max = 81).

2.6.2  Difficulty

Difficulty scores for each quest were obtained through Sony Online Entertainment. 
Each quest is given a static difficulty score ranging from 1 (least difficult) to 70 
(most difficult). To create a variable that most closely resembled how difficult it was 
for the group attempting it, we subtracted the difficulty of the level of the quest from 
the highest player’s character level. Thus, a negative number indicates that the group 
has at least one player that has a character level much higher that the quest they are 
attempting, meaning that it will likely be quite easy. On the other hand, a positive 
number indicates that everybody in the group has a character level below the quest 
difficulty level, meaning that it will likely be quite difficult to complete 
(Mean = –2.52, SD = 6.76, Min = –31, Max = 13).

2.7  Control Variables

2.7.1  Group Size

The more group members, the more likely there are opportunities for groups to both 
earn experience points and die. As such, to account for group size, we used group 
size as a covariate. Groups ranged from three (67.3  %), to four (22.2  %), five 
(5.2 %), and six (5.2 %) members. Since most groups has three members, the group 
size of three was used a reference point.

2.8  Data Analysis

The current example carries out RSM in SAS, through the proc. rsreg procedure. 
SAS is used here because it has perhaps the simplest code, though other programs 
can easily implement RSM like R and JMP.

2 Response Surface Models to Analyze Nonlinear Group Phenomena
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2.8.1  Controlling for Group Size

Another benefit of using SAS is that the procedure, including contour plots and 
ridge analysis, are all done through specifying a few lines of code:

 

data

g groupsize

g groupsize

g groups

rsm;

set rsm;

;

;

6 6

5 5

4

= =( )
= =( )
= iize

g groupsize

=( )
= =( )

4

3 3

;

;
 

In the above line of code, the first thing that we must do is create the covariate 
variable. Since we want qualitative variable for each group size, we create four dif-
ferent variables and call them g6, g5, g4, and g3.

2.8.2  Experience Points: A Minimum Stationary Point

The next line of code runs the RSM procedure:

 

ods ;

;

graphics

proc rsreg data plots ridge surface

model

= = ( )rsm

  experience g g g g difficulty complexity covar lack_ /pts = =6 4 5 3 4 ffit

ridge

odsgraphicsoff;

;

max min;

;run

( )  

The first line (ods graphics on;), simply tells SAS to turn on the ODS Statistical 
Graphics (Rodriguez, 2011). These graphics are necessary to produce the contour 
plots that show the predicted response based on different values of the independent 
variables. The second line of code does two things. First, it specified the data, which 
we have named “rsm” (proc rsreg data = rsm). Second, it tells the program which 
types of plots we want form the output. In this case, we want a ridge and surface plot 
(plots =  (ridge surface)). The third line of code specifies the model variables. In 
model one, we are analyzing experience points as a function of quest difficulty and 
complexity while treating group size as a covariate. When reading this line of code, 
the dependent variable should come directly after the model term followed by an 
equal sign (model experience_pts=). The independent variables should come next 
(g6 g4 g5 g3 Difficulty Complexity), making sure to have the covariates come first. 
The covariate command lets the program know that the first four variables are to be 
treated as covariates and not included in the canonical and ridge analysis (covar = 4).
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The final line of the model command is the lack of fit test, telling the command 
to include it in the output (lackfit;). Finally, we want to include the ridge analysis to 
find values of the independent variables that predict a maximum or minimum 
response in experience points (ridge max min;). After these commands are properly 
arranged, we must tell the program to run it (run;). Turning the ODS Graphics off 
is useful because it might make future commands run a bit slower, even if they are 
not using the ODS Graphics.

2.9  Results

The following figures contain screenshots from the actual SAS output to ease in initial 
interpretation. Figure 2.1 contains the results from the least squares regression, includ-
ing the interaction and polynomial terms. Before the results, however, are some 
descriptive information, including how the two independent variables were re-coded 
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Fig. 2.1 Coding coefficients and ANOVA (experience points)
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for the canonical and ridge analysis, and descriptives for the dependent variable, 
which in this case is experience points (M = 3232.61). The omnibus analysis of vari-
ance table compares the different models (e.g., linear, quadratic, cross-product, covari-
ate) to an intercept-only model in order to determine how much of an effect they add. 
For instance, because the quadratic terms by themselves (F = 2.67, p = 0.07), more or 
less, provide a better fit than an intercept-only model, it means they will likely be 
influential predicting an optimal or minimal response surface.

Figure 2.2 displays information on the lack of fit test and individual estimates for 
each independent variable. Overall, the lack of fit test was just above a 0.10  threshold 
for significance (p = 0.11). While this is generally acceptable as a rule of thumb, it 
points to some concern about how well the model predicted the actual response of 
experience points. Nevertheless, there were both linear and nonlinear effects in the 
model. For instance, there was a negative linear relationship with complexity 
(t = −2.11, p = 0.03), meaning that groups earned more experience points with less 
complex tasks. On the other hand, while there was not a linear relationship with 
difficulty (t = −0.84, p = 0.40), there was a quadratic effect (t = 2.28, p = 0.02), 
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Pure Error
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Fig. 2.2 Model coefficients and lack of fit (experience points)
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Fig. 2.3 Canonical 
analysis (experience 
points)

meaning that there is a certain difficulty peak where groups tend to earn more expe-
rience points. To further investigate that point, a canonical analysis is useful here.

Figure 2.3 shows the results of the canonical analysis. Because the eigenvalues 
for difficulty (λ1 = 1757.25) and complexity (λ2 = 483.50) were both positive, this 
means the unique solution is a minimum. In other words, a unique combination of 
difficulty and class can yield a solution in which groups earned the least amount of 
experience points. As such, these two variables cannot tell us much about high per-
forming groups, but do tell us a lot about low performing groups. Moreover, because 
difficulty was over three times the value of complexity, it means that experience 
points changes more rapidly along changes in difficulty compared to complexity. 
Finally, the table below gives the solution for the predicted minimum stationary 
point of 2271.66 experience points at a value of −8.59 for difficulty and 61.96 for 
complexity. Because the mean values for each variable is −2.52 and 21.11, this 
means that groups perform the worst when they choose quests that are about 40 units 
higher in complexity than average and when the groups highest member is about 
8 units less than the quest value, which is higher than average.

Figure 2.4 shows the ridge analysis for a minimum solution. The quadratic effect 
for difficulty is clearly evidence here as the values fluctuate from moving higher from 
−9 to −7.87, then decreasing from −7.87 to −13.07. This is important because the 
relationship as demonstrated by the regression model is not linear, suggesting that the 
difficulty of the quest compared to the highest-level character in the group has a tip-
ping point (~−8.59). On the other hand, though there is an overall negative linear 
trend with complexity according to the regression model, the ridge solution paints a 
more complicated picture. For instance, almost equal predicted responses are 
obtained with a complexity value of 42.50 and 80.33. These results are in line with 
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the critical value threshold demonstrating that a complexity value near 60 is where 
groups are predicted to perform the least, much higher than average (Mcompelxity = 21.11).

Although no maximum solution was found, a ridge analysis for maximum ascent 
tends to demonstrate simple linear effects for both difficulty and complexity (see 
Fig. 2.5). More specifically, groups are predicted to perform better when the charac-
ter level of the highest character approaches the same level of the quest and the 
complexity of the quest increases. This makes sense because it means that the quest 
should not be as challenging for the group if they have at least one character in the 
group that is close to the quest difficulty level. The quest is still complex enough for 
group members to do activities that will give them a chance to earn points. However, 
no solid conclusions should be drawn from this. Instead, it may serve as an impetus 
to collect more data for future analysis.

Finally, Fig. 2.6 is a visualization of the response surface analysis as a contour 
plot, with covariates fixed at their average values. This means that this plot is most 
relevant for groups of three, which were the majority of groups playing this game. 
The minimum solution can be easily visualized by looking at the large ring  representing 
values below 3000. Values closer to the center of that ring are the lowest predicted 
values of experience points. If you cross the intersection between the two critical 
values of −8.59 for difficulty and 61.96 for complexity, one can pinpoint to the center 
of the ring. The circles represent the predicted values for each observation.

Fig. 2.4 Ridge analysis of minimum response (experience points)
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2.9.1  Model for Deaths: A Saddle Point

For the model with deaths as the response surface, we use the same code except 
switch the dependent variable form experience points to deaths:

 

ods on;

rsm ;

graphics

proc rsreg data plots ridge surface

mod

= = ( )
eel deaths g g g g difficulty complexity covar lackfit

ri

= =6 4 5 3 4/ ;

ddge

odsgraphics

max min;

run;

off;  

The initial outputs in Fig. 2.7 details similar information about the coded vari-
ables and analysis of variance.

As you can see in Fig. 2.7, there is a significant difference between an intercept 
only model and the linear, quadratic and cross-product models, suggesting that the 

Fig. 2.5 Ridge analysis maximum response (experience points)
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variables have considerable influence on deaths. However, as demonstrated by 
Fig. 2.8, the full model has a significant lack of fit, meaning that the average val-
ues of death deviate more than we would expect by chance from the predicted 
responses of deaths.

Indeed, although there are significant effects regarding the difficulty term 
(t = 3.45, p < .01) and overall interaction term (i.e., difficulty*complexity, t = 2.38, 
p = .02), the lack of fit finding puts a hitch into the entire analysis because it means 
that we cannot generalize much of the subsequent canonical and ridge analysis. 
From here, this usually means the researcher might look into some additional rea-
sons for the lack of fit. For instance, there may not be enough variability in deaths 
and it might be useful to transform it to make it look more normally distributed (e.g., 
log linear transformation). Alternatively, the researchers might attempt to add more 
data or additional explanatory variables. Nevertheless, for demonstration, we will 
carry on with the canonical and ridge analysis.

As expected, there was no unique solution because of the saddle point response 
shape as demonstrated by the mixed signs of the eigenvalues (see Fig. 2.9). 
Nevertheless, the eigenvalue for difficulty (λ1 = 12.51) is quite larger for complexity 
(λ2  =  −1.03), suggesting that there was more variability regarding changes in 
 difficulty. Because there was a significant quadratic interaction, it is useful to look 
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at a maximum ridge analysis to see what exact levels of difficulty were more associ-
ated with more deaths.

The ridge analysis complicates things even further because although the 
regression model suggested a nonlinear effect on difficulty, the ridge analysis 
does suggest a linear relationship (see Fig. 2.10). In other words, the more groups 
attempt quests that have difficulty levels higher than their highest level character, 
they are more likely to die in that attempt. Again, however, this might be due to 
a lack of fit.

Finally, the contour plot in Fig. 2.11 visually demonstrates the relationship 
between difficulty and complexity as it relates to the number of deaths incurred on 
a question. The wide open space in the middle indicates the least amount of deaths, 
but does not reveal a solution because those groups varied too widely on complexity 
and difficulty. Moreover, the bottom left and top right corners specify very high 
predicted values of deaths, meaning that no maximum solution could be found 
either because the existence of these high values occurs at seemingly opposite ends 
of the spectrum. That is, a high number of deaths can occur at a combination of 
either high complexity and low difficulty, or high difficulty and low complexity.

The SAS System

Coding Coefficients for the Independent
Variables

The RSREG Procedure

Factor

difficulty

Subtracted off

Response Surface for Variable deaths: deaths

Response Mean

Root MSE

R.Square

Coefficient of Variation
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Covariates
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Fig. 2.7 Coding coefficients and ANOVA (deaths)
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2.10  Conclusion

With the advent of mass amounts of data (e.g., trace data), it is possible to extract a 
bulk amount of information on how groups face different environments, process 
information, and perform. RSM inherently requires multiple observations on simi-
lar values of variables and is in a unique position to exploit such data. The main 
contribution of RSM is optimization. That is, through enough data collection, RSM 
can specify the conditions that are most likely to lead towards a certain outcome.

For instance, in the current example, traditional methods like regression and 
ANOVA would have been able to detect nonlinear relationships between difficulty 
and complexity, but they would not have been able to detect the specific values that 
can yield a certain outcome. The canonical analysis that RSM provides is more 
practical because it adds specific values and a contour plot that demonstrates how an 
outcome fluctuates based on different values of the independent variables. In this 
sense, the contour plot is a lot like a road map, guiding the researcher towards opti-
mal paths that can yield insightful suggestions for practical implications.

Fig. 2.8 Model coefficients and lack of fit (deaths)
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Fig. 2.9 Canonical 
analysis (deaths)

Fig. 2.10 Ridge analysis for maximum response (deaths)
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For instance, in EQII, groups are faced with decisions on which quests to attempt. 
Although traditional methods can detect relationships, they do provide an easy 
go-to guide that can be useful for actual decision-making. RSM, on the other hand, 
provides a very useful heuristic to help groups make decisions. For example, before 
a group attempts a quest, they can locate the values of the current quest and group 
(e.g., its difficulty) and pinpoint via the contour plot where their performance is 
predicted to land. If it lands on a very low performance spectrum, then this could be 
used as an important piece of information on whether or not that group should 
attempt to take on the quest.

Theoretically, RSM has the ability to test and examine a number of theoretical 
perspective. Notably, however, RSM has a unique opportunity to examine the basic 
tenets of chaos theory (see Tutzauer, 1996, for an application to organizations and 
groups), which highlights notions of unpredictability and unstableness. For instance, 
canonical and ridge analysis might not be very clean at times. That is, results that 
yield saddle points do not necessarily mean null findings. Instead, they have the 
ability to show how even small fluctions in the independent variables could cause 
dramatic changes in an outcome variable. Indeed, chaos theory would predict that 
in many contexts, a simple unique solution is not possible.
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